Sample records for flow field eigenmode

  1. Magnetic Eigenmode Analysis of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Nornberg, M. D.; Forest, C. B.; Kendrick, Roch; O'Connell, R.; Spence, E. J.

    2004-11-01

    The magnetic field generated by a spherical homogeneous liquid-sodium dynamo is explored in terms of the magnetic eigenmodes predicted by Dudley and James. The flow geometry chosen corresponds to the T2S2 flow and is created by two counter-rotating propellers driven by 100HP motors with flow velocities up to 15 m/s. A perturbative magnetic field is generated by pulsing a set axial field coils. The largest growing eigenmode is predicted by linear analysis to be a strong equatorial-dipole field. The field is measured using an array of Hall probes both on the surface of the sphere and within the sphere. From the measured field the growth or decay rates of the magnetic eigenmodes are determined. Turbulence in the flow is expected to give rise to modifications of the growth rates and the structure of the eigenmodes.

  2. Magnetic Eigenmode Analysis of the Madison Dyanmo Experiment

    NASA Astrophysics Data System (ADS)

    Nornberg, M. D.; Bayliss, R. A.; Forest, C. B.; Kendrick, R. D.; O'Connell, R.; Spence, E. J.

    2003-10-01

    The magnetic field generated from a spherical homogeneous liquid sodium dynamo is explored in terms of the magnetic eigenmodes predicted by Dudley and James. The flow geometry chosen corresponds to the T2S2 flow. It is expected to produce a growing magnetic field at Rm ˜ 50 and is created by two counter-rotating propellors driven by 100HP motors with flow velocities up to 15 m/s. The magnetic field is perturbed by pulsing a set of axial coils. The largest growing eigenmode is expected to have a strong equatorial dipole moment. The field is measured using an array of Hall probes both on the surface of the sphere and within the sphere. From the measured field the growth or decay rate of the magnetic eigenmodes are determined. Turbulence in the flow is expected to give rise to modifications of the growth rates and the structure of the eigenmodes.

  3. Streaming sausage, kink and tearing instabilities in a current sheet with applications to the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Wang, S.; Wei, C. Q.; Tsurutani, B. T.

    1988-01-01

    This paper investigates the growth rates and eigenmode structures of the streaming sausage, kink, and tearing instabilities in a current sheet with a super-Alfvenic flow. The growth rates and eigenmode structures are first considered in the ideal incompressible limit by using a four-layer model, as well as a more realistic case in which all plasma parameters and the magnetic field vary continuously along the direction perpendicular to the magnetic field and plasma flow. An initial-value method is applied to obtain the growth rate and eigenmode profiles of the fastest growing mode, which is either the sausage mode or kink mode. It is shown that, in the earth's magnetotail, where super-Alfvenic plasma flows are observed in the plasma sheet and the ratio between the plasma and magnetic pressures far away from the current layer is about 0.1-0.3 in the lobes, the streaming sausage and streaming tearing instabilities, but not kink modes, are likely to occur.

  4. Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow.

    PubMed

    Bayliss, R A; Forest, C B; Nornberg, M D; Spence, E J; Terry, P W

    2007-02-01

    The role of turbulence in current generation and self-excitation of magnetic fields has been studied in the geometry of a mechanically driven, spherical dynamo experiment, using a three-dimensional numerical computation. A simple impeller model drives a flow that can generate a growing magnetic field, depending on the magnetic Reynolds number Rm=micro0sigmaVa and the fluid Reynolds number Re=Vanu of the flow. For Re<420, the flow is laminar and the dynamo transition is governed by a threshold of Rmcrit=100, above which a growing magnetic eigenmode is observed that is primarily a dipole field transverse to the axis of symmetry of the flow. In saturation, the Lorentz force slows the flow such that the magnetic eigenmode becomes marginally stable. For Re>420 and Rm approximately 100 the flow becomes turbulent and the dynamo eigenmode is suppressed. The mechanism of suppression is a combination of a time varying large-scale field and the presence of fluctuation driven currents (such as those predicted by the mean-field theory), which effectively enhance the magnetic diffusivity. For higher Rm, a dynamo reappears; however, the structure of the magnetic field is often different from the laminar dynamo. It is dominated by a dipolar magnetic field aligned with the axis of symmetry of the mean-flow, which is apparently generated by fluctuation-driven currents. The magnitude and structure of the fluctuation-driven currents have been studied by applying a weak, axisymmetric seed magnetic field to laminar and turbulent flows. An Ohm's law analysis of the axisymmetric currents allows the fluctuation-driven currents to be identified. The magnetic fields generated by the fluctuations are significant: a dipole moment aligned with the symmetry axis of the mean-flow is generated similar to those observed in the experiment, and both toroidal and poloidal flux expulsion are observed.

  5. Eigenmode resonance in a two-layer stratification

    NASA Astrophysics Data System (ADS)

    Kanda, Isao; Linden, P. F.

    2002-06-01

    In this paper, we study the velocity field at the density interface of a two-layer stratification system when the flow is forced at the mid-depth of the lower layer by the source sink forcing method. It is known that, in a sufficiently strong linear stratification, the source sink forcing in certain configurations produces a single-vortex pattern which corresponds to the lowest eigenmode of the Helmholtz equation (Kanda & Linden 2001). Two types of forcing configuration are used for the two-layer experiments: one that leads to a steady single-vortex pattern in a linear stratification, and one that results in an unsteady irregular state. Strong single-vortex patterns appear intermittently for the former configurations despite the absence of stratification at the forcing height. When the single-vortex pattern occurs at the density interface, a similar flow field extends down to the forcing height. The behaviour is explained as the coupling of the resonant eigenmode at the interface with the horizontal component of the forcing jets. The results show that stratification can organise a flow, even though it is forced by an apparently random three-dimensional forcing.

  6. Magnetic Eigenmodes in the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Nornberg, M. D.; Bayliss, R. A.; Forest, C. B.; Kendrick, R. D.; O'Connell, R.; Spence, E. J.

    2002-11-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of 100, and understand the role of fluid turbulence in current generation. Magnetic field generation is only possible for specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from the water experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities of 15 m/s. A gaussian grid of 66 Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. A pair of magnetic field coils produce a roughly uniform field inside the sphere with a centerline field strength of 100 gauss. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.

  7. Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows.

    PubMed

    Giesecke, André; Stefani, Frank; Burguete, Javier

    2012-12-01

    We present numerical simulations of the kinematic induction equation in order to examine the dynamo efficiency of an axisymmetric von Kármán-like flow subject to time-dependent nonaxisymmetric velocity perturbations. The numerical model is based on the setup of the French von Kármán-sodium dynamo (VKS) and on the flow measurements from a water experiment conducted at the University of Navarra in Pamplona, Spain. The principal experimental observations that are modeled in our simulations are nonaxisymmetric vortexlike structures which perform an azimuthal drift motion in the equatorial plane. Our simulations show that the interactions of these periodic flow perturbations with the fundamental drift of the magnetic eigenmode (including the special case of nondrifting fields) essentially determine the temporal behavior of the dynamo state. We find two distinct regimes of dynamo action that depend on the (prescribed) drift frequency of an (m=2) vortexlike flow perturbation. For comparatively slowly drifting vortices we observe a narrow window with enhanced growth rates and a drift of the magnetic eigenmode that is synchronized with the perturbation drift. The resonance-like enhancement of the growth rates takes place when the vortex drift frequency roughly equals the drift frequency of the magnetic eigenmode in the unperturbed system. Outside of this small window, the field generation is hampered compared to the unperturbed case, and the field amplitude of the magnetic eigenmode is modulated with approximately twice the vortex drift frequency. The abrupt transition between the resonant regime and the modulated regime is identified as a spectral exceptional point where eigenvalues (growth rates and frequencies) and eigenfunctions of two previously independent modes collapse. In the actual configuration the drift frequencies of the velocity perturbations that are observed in the water experiment are much larger than the fundamental drift frequency of the magnetic eigenmode that is obtained from our numerical simulations. Hence, we conclude that the fulfillment of the resonance condition might be unlikely in present day dynamo experiments. However, a possibility to increase the dynamo efficiency in the VKS experiment might be realized by an application of holes or fingers on the outer boundary in the equatorial plane. These mechanical distortions provoke an anchorage of the vortices at fixed positions thus allowing an adjustment of the temporal behavior of the nonaxisymmetric flow perturbations.

  8. The acoustic Green's function for swirling flow with variable entropy in a lined duct

    NASA Astrophysics Data System (ADS)

    Mathews, J. R.; Peake, N.

    2018-04-01

    This paper extends previous work by the authors (Journal of Sound and Vibration, 395:294-316,2017) on the acoustic field inside an annular duct with acoustic lining carrying mean axial and swirling flow so as to allow for non-uniform mean entropy, as would be found for instance in the turbine stage of an aeroengine. The main aim of this paper is to understand the effect of a non-uniform entropy on both the eigenmodes of the flow and the Green's function, which will allow noise prediction once we have identified acoustic sources. We first derive a new acoustic analogy in isentropic swirling flow, which allows us to derive the equation the tailored Green's function satisfies. The eigenmodes are split into two distinct families, acoustic and hydrodynamic modes, and are computed using different analytical methods; in the limit of high reduced frequency using the WKB method for the acoustic modes; and by considering a Frobenius expansion for the hydrodynamic modes. These are then compared with numerical results, with excellent agreement for all eigenmodes. The Green's function is also calculating analytically using the realistic limit of high reduced frequency, again with excellent agreement compared to numerical calculations. We see that for both the eigenmodes and Green's function the effect of non-uniform mean entropy is significant.

  9. Stable Eigenmodes and Energy Dynamics in a Model of LAPD Turbulence

    NASA Astrophysics Data System (ADS)

    Friedman, Brett; Carter, T. A.; Umansky, M. V.

    2011-10-01

    A three field Braginskii fluid model that semi-quantitatively predicts turbulent statistics in the Large Plasma Device (LAPD) at UCLA is analyzed. A 3D simulation of turbulence in LAPD using the BOUT++ fluid code is shown to reproduce experimental turbulent properties such as the frequency spectrum and correlation length with semi-qualitative and semi-quantitative accuracy. In an attempt to explain turbulent saturation in the simulation, equations for the energy dynamics are derived and applied to the results. The degree to which stable linear drift wave eigenmodes draw energy from the system and the affect that zonal flows have on transferring energy to stable eigenmode branches is explored. It is also shown that zonal flows drive Kelvin-Helmholtz flute modes, which come to dominate the energy dynamics in the quasi steady state regime.

  10. Spatiotemporal splitting of global eigenmodes due to cross-field coupling via vortex dynamics in drift wave turbulence.

    PubMed

    Brandt, C; Thakur, S C; Light, A D; Negrete, J; Tynan, G R

    2014-12-31

    Spatiotemporal splitting events of drift wave (DW) eigenmodes due to nonlinear coupling are investigated in a cylindrical helicon plasma device. DW eigenmodes in the radial-azimuthal cross section have been experimentally observed to split at radial locations and recombine into the global eigenmode with a time shorter than the typical DW period (t≪fDW(-1)). The number of splits correlates with the increase of turbulence. The observed dynamics can be theoretically reproduced by a Kuramoto-type model of a network of radially coupled azimuthal eigenmodes. Coupling by E×B-vortex convection cell dynamics and ion gyro radii motion leads to cross-field synchronization and occasional mode splitting events.

  11. Statistical independence of the initial conditions in chaotic mixing.

    PubMed

    García de la Cruz, J M; Vassilicos, J C; Rossi, L

    2017-11-01

    Experimental evidence of the scalar convergence towards a global strange eigenmode independent of the scalar initial condition in chaotic mixing is provided. This convergence, underpinning the independent nature of chaotic mixing in any passive scalar, is presented by scalar fields with different initial conditions casting statistically similar shapes when advected by periodic unsteady flows. As the scalar patterns converge towards a global strange eigenmode, the scalar filaments, locally aligned with the direction of maximum stretching, as described by the Lagrangian stretching theory, stack together in an inhomogeneous pattern at distances smaller than their asymptotic minimum widths. The scalar variance decay becomes then exponential and independent of the scalar diffusivity or initial condition. In this work, mixing is achieved by advecting the scalar using a set of laminar flows with unsteady periodic topology. These flows, that resemble the tendril-whorl map, are obtained by morphing the forcing geometry in an electromagnetic free surface 2D mixing experiment. This forcing generates a velocity field which periodically switches between two concentric hyperbolic and elliptic stagnation points. In agreement with previous literature, the velocity fields obtained produce a chaotic mixer with two regions: a central mixing and an external extensional area. These two regions are interconnected through two pairs of fluid conduits which transfer clean and dyed fluid from the extensional area towards the mixing region and a homogenized mixture from the mixing area towards the extensional region.

  12. Eigenmode electric field profiles in cylindrical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, C.; Hershkowitz, N.

    Electric field profiles of plasma column eigenmodes in the ion-cyclotron range of frequencies are discussed. Step and parabolic density profiles are compared. The role of temperature and Alfven resonance is analyzed.

  13. Cortical geometry as a determinant of brain activity eigenmodes: Neural field analysis

    NASA Astrophysics Data System (ADS)

    Gabay, Natasha C.; Robinson, P. A.

    2017-09-01

    Perturbation analysis of neural field theory is used to derive eigenmodes of neural activity on a cortical hemisphere, which have previously been calculated numerically and found to be close analogs of spherical harmonics, despite heavy cortical folding. The present perturbation method treats cortical folding as a first-order perturbation from a spherical geometry. The first nine spatial eigenmodes on a population-averaged cortical hemisphere are derived and compared with previous numerical solutions. These eigenmodes contribute most to brain activity patterns such as those seen in electroencephalography and functional magnetic resonance imaging. The eigenvalues of these eigenmodes are found to agree with the previous numerical solutions to within their uncertainties. Also in agreement with the previous numerics, all eigenmodes are found to closely resemble spherical harmonics. The first seven eigenmodes exhibit a one-to-one correspondence with their numerical counterparts, with overlaps that are close to unity. The next two eigenmodes overlap the corresponding pair of numerical eigenmodes, having been rotated within the subspace spanned by that pair, likely due to second-order effects. The spatial orientations of the eigenmodes are found to be fixed by gross cortical shape rather than finer-scale cortical properties, which is consistent with the observed intersubject consistency of functional connectivity patterns. However, the eigenvalues depend more sensitively on finer-scale cortical structure, implying that the eigenfrequencies and consequent dynamical properties of functional connectivity depend more strongly on details of individual cortical folding. Overall, these results imply that well-established tools from perturbation theory and spherical harmonic analysis can be used to calculate the main properties and dynamics of low-order brain eigenmodes.

  14. Nonlinear cross-field coupling on the route to broadband turbulence

    NASA Astrophysics Data System (ADS)

    Brandt, Christian; Thakur, Saikat C.; Cui, Lang; Gosselin, Jordan J.; Negrete, Jose, Jr.; Holland, Chris; Tynan, George R.

    2013-10-01

    In the linear magnetized plasma device CSDX (Controlled Shear De-correlation eXperiment) drift interchange modes are studied coexisting on top of a weak turbulence driven azimuthally symmetric, radially sheared plasma flow. In helicon discharges (helicon antenna diameter 15 cm) with increasing magnetic field (B <= 0 . 24 T) the system can be driven to fully developed broadband turbulence. Fast imaging using a refractive telescope setup is applied to study the dynamics in the azimuthal-radial cross-section. The image data is supported by Langmuir probe measurements. In the present study we examine the development of nonlinear transfer as the fully developed turbulence emerges. Nonlinear cross-field coupling between eigenmodes at different radial positions is investigated using Fourier decomposition of azimuthal eigenmodes. The coupling strength between waves at different radial positions is inferred to radial profiles and cross-field transport between adjacent magnetic flux surfaces. Nonlinear effects like synchronization, phase slippages, phase pulling and periodic pulling are observed. The effects of mode coupling and the stability of modes is compared to the dynamics of a coupled chain of Kuramoto oscillators.

  15. Simulations of initial MHD experiments on the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    O'Connell, R.; Forest, C. B.; Goldwin, J. M.; Kendrick, R. D.; Canary, H. W.; Nornberg, M. D.; Jaun, A.

    1999-11-01

    Initial experiments for a liquid metal MHD device have been modelled using measurements from geometrically similar water experiments. In the low B limit the water flows are the same as sodium flows. Two codes have been written to predict 1) linear stability of the system and 2) the response of the system to an externally applied vertical magnetic field, using measured velocity profiles. Predictions are made for a first set of MHD experiments, including: a) demonstration of the distortion and amplification of externally applied magnetic fields by sheared flows, b) demonstration of the β-effect by measurement of the turbulent conductivity, c) demonstration of a turbulent α effect and d) characterization of magnetic eigenmodes.

  16. Thermal Hawking radiation of black hole with supertranslation field

    NASA Astrophysics Data System (ADS)

    Iofa, Mikhail Z.

    2018-01-01

    Using the analytical solution for the Schwarzschild metric containing supertranslation field, we consider two main ingredients of calculation of the thermal Hawking black hole radiation: solution for eigenmodes of the d'Alambertian and solution of the geodesic equations for null geodesics. For calculation of Hawking radiation it is essential to determine the behavior of both the eigenmodes and geodesics in the vicinity of horizon. The equation for the eigenmodes is solved, first, perturbatively in the ratio O( C) /M of the supertranslation field to the mass of black hole, and, next, non-perturbatively in the near- horizon region. It is shown that in any order of perturbation theory solution for the eigenmodes in the metric containing supertranslation field differs from solution in the pure Schwarzschild metric by terms of order L 1/2 = (1 - 2 M/r)1/2. In the non-perturbative approach, solution for the eigenmodes differs from solution in the Schwarzschild metric by terms of order L 1/2 which vanish on horizon. Using the simplified form of geodesic equations in vicinity of horizon, it is shown that in vicinity of horizon the null geodesics have the same behavior as in the Schwarzschild metric. As a result, the density matrices of thermal radiation in both cases are the same.

  17. Summary of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kendrick, R. D.; Spence, E. J.; Nornberg, M. D.; Forest, C. B.

    2001-10-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of ~100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from this experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities ~ 15 m/s. A gaussian grid of Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.

  18. Design of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kendrick, R. D.; Bayliss, R. A.; Forest, C. B.; Nornberg, M. D.; O'Connell, R.; Spence, E. J.

    2003-10-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of ˜100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from this experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities ˜ 15 m/s. A grid of Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.

  19. A Novel Approach to Resonant Absorption of the Fast Magnetohydrodynamic Eigenmodes of a Coronal Arcade

    NASA Astrophysics Data System (ADS)

    Hindman, Bradley W.; Jain, Rekha

    2018-05-01

    The arched field lines forming coronal arcades are often observed to undulate as magnetohydrodynamic waves propagate both across and along the magnetic field. These waves are most likely a combination of resonantly coupled fast magnetoacoustic waves and Alfvén waves. The coupling results in resonant absorption of the fast waves, converting fast wave energy into Alfvén waves. The fast eigenmodes of the arcade have proven difficult to compute or derive analytically, largely because of the mathematical complexity that the coupling introduces. When a traditional spectral decomposition is employed, the discrete spectrum associated with the fast eigenmodes is often subsumed into the continuous Alfvén spectrum. Thus fast eigenmodes become collective modes or quasi-modes. Here we present a spectral decomposition that treats the eigenmodes as having real frequencies but complex wavenumbers. Using this procedure we derive dispersion relations, spatial damping rates, and eigenfunctions for the resonant, fast eigenmodes of the arcade. We demonstrate that resonant absorption introduces a fast mode that would not exist otherwise. This new mode is heavily damped by resonant absorption, travelling only a few wavelengths before losing most of its energy.

  20. Low-Frequency Microinstabilities in Rotating Tokamak Plasmas.

    NASA Astrophysics Data System (ADS)

    Artun, Mehmet

    1994-01-01

    Low-frequency drift-type microinstabilities have often been suggested as the leading candidates to account for the anomalously large transport; observed in tokamak plasmas. The effects of sheared equilibrium flows on this important class of instabilities is systematically investigated in the present thesis. In particular, the analysis is carried out in two parts. In order to gain some insight into the key elements of this problem, the first part deals with the stability properties of the kinetic ion temperature gradient mode under the influence of parallel and perpendicular shear flows in a simplified sheared magnetic slab geometry. The eigenmode analysis is performed using a shooting code for long-wavelength modes (k_|rho _{i} << 1), and an integral eigenmode code for short-wavelength modes (k_ |rho_{i} ~ 1). Numerical results are cross-checked with analytical estimates in the fluid regime. While the differential analysis is mostly limited to ground state modes of the system--due to the requirement that the average perpendicular wavenumber be small--the integral eigenmode code has been used to calculate higher radial eigenmodes with confidence. New features observed through the introduction of shear flows are discussed. In the second part we present the shear flow generalization of the nonlinear electromagnetic gyrokinetic equation for realistic toroidal geometry. In accordance with the most natural choice for such studies, the coordinate frame is chosen to be shifted in velocity space and unchanged in configuration space. The natural equilibrium constraints of the toroidal problem limits the choice of the flow profile to that in which the angular velocity is a function of the flux surface. The general form of the gyrokinetic equation obtained is then used to derive the two-dimensional linear electrostatic eigenmode equation in circular toroidal geometry including trapped particle effects. In addition to magnetic trapping, electrostatic and centrifugal trapping are also found to play an important role here. A modified version of a finite element code is utilized to analyze shear flow effects on the trapped ion mode (TIM) in the long wavelength limit. Numerical results for fully coupled as well as single poloidal harmonic cases are presented. Implications of the results obtained in the present investigation are discussed and suggestions are given for future studies.

  1. Evanescent fields of laser written waveguides

    NASA Astrophysics Data System (ADS)

    Jukić, Dario; Pohl, Thomas; Götte, Jörg B.

    2015-03-01

    We investigate the evanescent field at the surface of laser written waveguides. The waveguides are written by a direct femtosecond laser writing process into fused silica, which is then sanded down to expose the guiding layer. These waveguides support eigenmodes which have an evanescent field reaching into the vacuum above the waveguide. We study the governing wave equations and present solution for the fundamental eigenmodes of the modified waveguides.

  2. Invited Paper Optical Resonators For Associative Memory

    NASA Astrophysics Data System (ADS)

    Anderson, Dana Z.

    1986-06-01

    One can construct a memory having associative characteristics using optical resonators with an internal gain medium. The device operates on the principle that an optical resonator employing a holographic grating can have user prescribed eigenmodes. Information that is to be recalled is contained in the hologram. Each information entity (e.g. an image of a cat) defines an eigenmode of the resonator. The stored information is accessed by injecting partial information (e.g. an image of the cat's ear) into the resonator. The appropriate eigenmode is selected through a competitive process in a gain medium placed inside the resonator. With a net gain greater than one, the gain amplifies the field belonging to the eigenmode that most resembles the injected field; the other eigenmodes are suppressed via the competition for the gain. One can expect this device to display several intriguing features such as recall transitions and creativity. I will discuss some of the general properties of this class of devices and present the results from a series of experiments with a simple holographic resonator employing photorefractive gain.

  3. Background field Landau mode operators for the nucleon

    NASA Astrophysics Data System (ADS)

    Kamleh, Waseem; Bignell, Ryan; Leinweber, Derek B.; Burkardt, Matthias

    2018-03-01

    The introduction of a uniform background magnetic field breaks threedimensional spatial symmetry for a charged particle and introduces Landau mode effects. Standard quark operators are inefficient at isolating the nucleon correlation function at nontrivial field strengths. We introduce novel quark operators constructed from the twodimensional Laplacian eigenmodes that describe a charged particle on a finite lattice. These eigenmode-projected quark operators provide enhanced precision for calculating nucleon energy shifts in a magnetic field. Preliminary results are obtained for the neutron and proton magnetic polarisabilities using these methods.

  4. Double-gap Alfvén eigenmodes: revisiting eigenmode interaction with the alfvén continuum.

    PubMed

    Gorelenkov, N N

    2005-12-31

    A new type of global shear Alfvén eigenmode is found in tokamak plasmas where the mode localization is in the region intersecting the Alfvén continuum. The eigenmode is formed by the coupling of two solutions from two adjacent gaps (akin to potential wells) in the shear Alfvén continuum. For tokamak plasmas with reversed magnetic shear, it is shown that the toroidicity-induced solution tunnels through the continuum to match the ellipticity-induced Alfvén eigenmode so that the resulting solution is continuous at the point of resonance with the continuum. The existence of these double-gap Alfvén eigenmodes allows for potentially new ways of coupling edge fields to the plasma core in conditions where the core region is conventionally considered inaccessible. Implications include new approaches to heating and current drive in fusion plasmas as well as its possible use as a core diagnostic in burning plasmas.

  5. Observations of toroidicity-induced Alfvén eigenmodes in a reversed field pinch plasma

    NASA Astrophysics Data System (ADS)

    Regnoli, G.; Bergsâker, H.; Tennfors, E.; Zonca, F.; Martines, E.; Serianni, G.; Spolaore, M.; Vianello, N.; Cecconello, M.; Antoni, V.; Cavazzana, R.; Malmberg, J.-A.

    2005-04-01

    High frequency peaks in the spectra of magnetic field signals have been detected at the edge of Extrap-T2R [P. R. Brunsell, H. Bergsåker, M. Cecconello, J. R. Drake, R. M. Gravestijn, A. Hedqvist, and J.-A. Malmberg, Plasma Phys. Controlled Fusion, 43, 1457 (2001)]. The measured fluctuation is found to be mainly polarized along the toroidal direction, with high toroidal periodicity n and Alfvénic scaling (f∝B/√mini ). Calculations for a reversed field pinch plasma predict the existence of an edge resonant, high frequency, high-n number toroidicity-induced Alfvén eigenmode with the observed frequency scaling. In addition, gas puffing experiments show that edge density fluctuations are responsible for the rapid changes of mode frequency. Finally a coupling with the electron drift turbulence is proposed as drive mechanism for the eigenmode.

  6. Coherent control of plasmonic nanoantennas using optical eigenmodes

    NASA Astrophysics Data System (ADS)

    Kosmeier, Sebastian; de Luca, Anna Chiara; Zolotovskaya, Svetlana; di Falco, Andrea; Dholakia, Kishan; Mazilu, Michael

    2013-05-01

    The last decade has seen subwavelength focusing of the electromagnetic field in the proximity of nanoplasmonic structures with various designs. However, a shared issue is the spatial confinement of the field, which is mostly inflexible and limited to fixed locations determined by the geometry of the nanostructures, which hampers many applications. Here, we coherently address numerically and experimentally single and multiple plasmonic nanostructures chosen from a given array, resorting to the principle of optical eigenmodes. By decomposing the light field into optical eigenmodes, specifically tailored to the nanostructure, we create a subwavelength, selective and dynamic control of the incident light. The coherent control of plasmonic nanoantennas using this approach shows an almost zero crosstalk. This approach is applicable even in the presence of large transmission aberrations, such as present in holographic diffusers and multimode fibres. The method presents a paradigm shift for the addressing of plasmonic nanostructures by light.

  7. Global stability analysis of axisymmetric boundary layer over a circular cylinder

    NASA Astrophysics Data System (ADS)

    Bhoraniya, Ramesh; Vinod, Narayanan

    2018-05-01

    This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.

  8. Mode Reduction and Upscaling of Reactive Transport Under Incomplete Mixing

    NASA Astrophysics Data System (ADS)

    Lester, D. R.; Bandopadhyay, A.; Dentz, M.; Le Borgne, T.

    2016-12-01

    Upscaling of chemical reactions in partially-mixed fluid environments is a challenging problem due to the detailed interactions between inherently nonlinear reaction kinetics and complex spatio-temporal concentration distributions under incomplete mixing. We address this challenge via the development of an order reduction method for the advection-diffusion-reaction equation (ADRE) via projection of the reaction kinetics onto a small number N of leading eigenmodes of the advection-diffusion operator (the so-called "strange eigenmodes" of the flow) as an N-by-N nonlinear system, whilst mixing dynamics only are projected onto the remaining modes. For simple kinetics and moderate Péclet and Damkhöler numbers, this approach yields analytic solutions for the concentration mean, evolving spatio-temporal distribution and PDF in terms of the well-mixed reaction kinetics and mixing dynamics. For more complex kinetics or large Péclet or Damkhöler numbers only a small number of modes are required to accurately quantify the mixing and reaction dynamics in terms of the concentration field and PDF, facilitating greatly simplified approximation and analysis of reactive transport. Approximate solutions of this low-order nonlinear system provide quantiative predictions of the evolving concentration PDF. We demonstrate application of this method to a simple random flow and various mass-action reaction kinetics.

  9. Dose coverage calculation using a statistical shape model—applied to cervical cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Tilly, David; van de Schoot, Agustinus J. A. J.; Grusell, Erik; Bel, Arjan; Ahnesjö, Anders

    2017-05-01

    A comprehensive methodology for treatment simulation and evaluation of dose coverage probabilities is presented where a population based statistical shape model (SSM) provide samples of fraction specific patient geometry deformations. The learning data consists of vector fields from deformable image registration of repeated imaging giving intra-patient deformations which are mapped to an average patient serving as a common frame of reference. The SSM is created by extracting the most dominating eigenmodes through principal component analysis of the deformations from all patients. The sampling of a deformation is thus reduced to sampling weights for enough of the most dominating eigenmodes that describe the deformations. For the cervical cancer patient datasets in this work, we found seven eigenmodes to be sufficient to capture 90% of the variance in the deformations of the, and only three eigenmodes for stability in the simulated dose coverage probabilities. The normality assumption of the eigenmode weights was tested and found relevant for the 20 most dominating eigenmodes except for the first. Individualization of the SSM is demonstrated to be improved using two deformation samples from a new patient. The probabilistic evaluation provided additional information about the trade-offs compared to the conventional single dataset treatment planning.

  10. System Identification and POD Method Applied to Unsteady Aerodynamics

    NASA Technical Reports Server (NTRS)

    Tang, Deman; Kholodar, Denis; Juang, Jer-Nan; Dowell, Earl H.

    2001-01-01

    The representation of unsteady aerodynamic flow fields in terms of global aerodynamic modes has proven to be a useful method for reducing the size of the aerodynamic model over those representations that use local variables at discrete grid points in the flow field. Eigenmodes and Proper Orthogonal Decomposition (POD) modes have been used for this purpose with good effect. This suggests that system identification models may also be used to represent the aerodynamic flow field. Implicit in the use of a systems identification technique is the notion that a relative small state space model can be useful in describing a dynamical system. The POD model is first used to show that indeed a reduced order model can be obtained from a much larger numerical aerodynamical model (the vortex lattice method is used for illustrative purposes) and the results from the POD and the system identification methods are then compared. For the example considered, the two methods are shown to give comparable results in terms of accuracy and reduced model size. The advantages and limitations of each approach are briefly discussed. Both appear promising and complementary in their characteristics.

  11. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds.

    PubMed

    Zhang, Zhaoyan; Neubauer, Juergen; Berry, David A

    2006-11-01

    In a single-layered, isotropic, physical model of the vocal folds, distinct phonation types were identified based on the medial surface dynamics of the vocal fold. For acoustically driven phonation, a single, in-phase, x-10 like eigenmode captured the essential dynamics, and coupled with one of the acoustic resonances of the subglottal tract. Thus, the fundamental frequency appeared to be determined primarily by a subglottal acoustic resonance. In contrast, aerodynamically driven phonation did not naturally appear in the single-layered model, but was facilitated by the introduction of a vertical constraint. For this phonation type, fundamental frequency was relatively independent of the acoustic resonances, and two eigenmodes were required to capture the essential dynamics of the vocal fold, including an out-of-phase x-11 like eigenmode and an in-phase x-10 like eigenmode, as described in earlier theoretical work. The two eigenmodes entrained to the same frequency, and were decoupled from subglottal acoustic resonances. With this independence from the acoustic resonances, vocal fold dynamics appeared to be determined primarily by near-field, fluid-structure interactions.

  12. Micromagnetic simulation of energy consumption and excited eigenmodes in elliptical nanomagnetic switches

    NASA Astrophysics Data System (ADS)

    Carlotti, G.; Madami, M.; Gubbiotti, G.; Tacchi, S.

    2014-02-01

    Sub-200 nm patterned magnetic dots are key elements for the design of magnetic switches, memory cells or elementary units of nanomagnetic logic circuits. In this paper, we analyse by micromagnetic simulations the magnetization reversal, the dissipated energy and the excited spin eigenmodes in bistable magnetic switches, consisting of elliptical nanodots with 100×60 nm lateral dimensions. Two different strategies for reversal are considered and the relative results compared: (i) the irreversible switching obtained by the application of an external field along the easy axis, in the direction opposite to the initial magnetization; (ii) the precessional switching accomplished by the application of a short magnetic field pulse, oriented perpendicular to the initial magnetization direction. The obtained results are discussed in terms of deviation from the macrospin behavior, energy dissipation and characteristics of the spectrum of spin eigenmodes excited during the magnetization reversal process.

  13. Mode conversion between Alfvén wave eigenmodes in axially inhomogeneous two-ion-species plasmas

    NASA Astrophysics Data System (ADS)

    Roberts, D. R.; Hershkowitz, N.; Tataronis, J. A.

    1990-04-01

    The uniform cylindrical plasma model of Litwin and Hershkowitz [Phys. Fluids 30, 1323 (1987)] is shown to predict mode conversion between the lowest radial order m=+1 fast magnetosonic surface and slow ion-cyclotron global eigenmodes of the Alfvén wave at the light-ion species Alfvén resonance of a cold two-ion plasma. A hydrogen (h)-deuterium (d) plasma is examined in experiments. The fast mode is efficiently excited by a rotating field antenna array at ω˜Ωh in the central cell of the Phaedrus-B tandem mirror [Phys. Rev. Lett. 51, 1955(1983)]. Radially scanned magnetic probes observe the propagating eigenmode wave fields within a shallow central cell magnetic gradient in which the conversion zone is axially localized according to nd/nh. A low radial-order slow ion-cyclotron mode, observed in the vicinity of the conversion zone, gives evidence for the predicted mode conversion.

  14. The temporal evolution of the resistive pressure-gradient-driven turbulence and anomalous transport in shear flow across the magnetic field

    NASA Astrophysics Data System (ADS)

    Lee, Hae June; Mikhailenko, Vladmir; Mikhailenko, Vladimir

    2017-10-01

    The temporal evolution of the resistive pressure-gradient-driven mode in the sheared flow is investigated by employing the shearing modes approach. It reveals an essential difference in the processes, which occur in the case of the flows with velocity shearing rate less than the growth rate of the instability in the steady plasmas, and in the case of the flows with velocity shear larger than the instability growth rate in steady plasmas. It displays the physical content of the empirical ``quench rule'' which predicts the suppression of the turbulence in the sheared flows when the velocity shearing rate becomes larger than the maximum growth rate of the possible instability. We found that the distortion of the perturbations by the sheared flow with such velocity shear introduces the time dependencies into the governing equations, which prohibits the application of the eigenmodes formalism and requires the solution of the initial value problem.

  15. The effect of vortex merging and non-merging on the transfer of modal turbulent kinetic energy content

    NASA Astrophysics Data System (ADS)

    Ground, Cody; Vergine, Fabrizio; Maddalena, Luca

    2016-08-01

    A defining feature of the turbulent free shear layer is that its growth is hindered by compressibility effects, thus limiting its potential to sufficiently mix the injected fuel and surrounding airstream at the supersonic Mach numbers intrinsic to the combustor of air-breathing hypersonic vehicles. The introduction of streamwise vorticity is often proposed in an attempt to counteract these undesired effects. This fact makes the strategy of introducing multiple streamwise vortices and imposing upon them certain modes of mutual interaction in order to potentially enhance mixing an intriguing concept. However, many underlying fundamental characteristics of the flowfields in the presence such interactions are not yet well understood; therefore, the fundamental physics of these flowfields should be independently investigated before the explicit mixing performance is characterized. In this work, experimental measurements are taken with the stereoscopic particle image velocimetry technique on two specifically targeted modes of vortex interaction—the merging and non-merging of two corotating vortices. The fluctuating velocity fields are analyzed utilizing the proper orthogonal decomposition (POD) in order to identify the content, organization, and distribution of the modal turbulent kinetic energy content of the fluctuating velocity eigenmodes. The effects of the two modes of vortex interaction are revealed by the POD analysis which shows distinct differences in the modal features of the two cases. When comparing the low-order eigenmodes of the two cases, the size of the structures contained within the first ten modes is seen to increase as the flow progresses downstream for the merging case, whereas the opposite is true for the non-merging case. Additionally, the relative modal energy contribution of the first ten eigenmodes increases as the vortices evolve downstream for the merging case, whereas in the non-merging case the relative modal energy contribution decreases. The POD results show that the vortex merging process reorients and redistributes the relative turbulent kinetic energy content toward the larger-scale structures within the low-order POD eigenmodes. This result suggests that by specifically designing the vortex generation system to impose preselected modes of vortex interaction upon the flow it is possible to exert some form of control over the downstream evolution and distribution of the global and modal turbulent kinetic energy content.

  16. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio m i/m e. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic m i/m e. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location wheremore » $$\\vec{k}$$• $$\\vec{B}$$ =0, consistent with previous analytical and simulation studies. Here, $$\\vec{B}$$ is the equilibrium magnetic field and $$\\vec{k}$$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $$\\vec{k}$$ •$$\\vec{B}$$ ≠0. Additionally, the simulation results indicate that varying m i/m e, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.« less

  17. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    DOE PAGES

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; ...

    2016-07-07

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio m i/m e. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic m i/m e. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location wheremore » $$\\vec{k}$$• $$\\vec{B}$$ =0, consistent with previous analytical and simulation studies. Here, $$\\vec{B}$$ is the equilibrium magnetic field and $$\\vec{k}$$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $$\\vec{k}$$ •$$\\vec{B}$$ ≠0. Additionally, the simulation results indicate that varying m i/m e, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.« less

  18. Auroral vortex street formed by the magnetosphere-ionosphere coupling instability

    NASA Astrophysics Data System (ADS)

    Hiraki, Y.

    2015-02-01

    By performing three-dimensional magnetohydrodynamic simulations including Alfvén eigenmode perturbations most unstable to the ionospheric feedback effects, we examined the auroral vortex street that often appears just before substorm onset. We found that an initially placed arc splits, intensifies, and rapidly deforms into a vortex street. We also found that there is a critical convection electric field for growth of the Alfvén eigenmodes. The vortex street is shown to be a consequence of coupling between the magnetospheric Alfvén waves carrying field-aligned currents and the ionospheric density waves driven by Pedersen/Hall currents.

  19. Characteristics of phonation onset in a two-layer vocal fold model.

    PubMed

    Zhang, Zhaoyan

    2009-02-01

    Characteristics of phonation onset were investigated in a two-layer body-cover continuum model of the vocal folds as a function of the biomechanical and geometric properties of the vocal folds. The analysis showed that an increase in either the body or cover stiffness generally increased the phonation threshold pressure and phonation onset frequency, although the effectiveness of varying body or cover stiffness as a pitch control mechanism varied depending on the body-cover stiffness ratio. Increasing body-cover stiffness ratio reduced the vibration amplitude of the body layer, and the vocal fold motion was gradually restricted to the medial surface, resulting in more effective flow modulation and higher sound production efficiency. The fluid-structure interaction induced synchronization of more than one group of eigenmodes so that two or more eigenmodes may be simultaneously destabilized toward phonation onset. At certain conditions, a slight change in vocal fold stiffness or geometry may cause phonation onset to occur as eigenmode synchronization due to a different pair of eigenmodes, leading to sudden changes in phonation onset frequency, vocal fold vibration pattern, and sound production efficiency. Although observed in a linear stability analysis, a similar mechanism may also play a role in register changes at finite-amplitude oscillations.

  20. Stabilization of numerical interchange in spectral-element magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sovinec, C. R.

    In this study, auxiliary numerical projections of the divergence of flow velocity and vorticity parallel to magnetic field are developed and tested for the purpose of suppressing unphysical interchange instability in magnetohydrodynamic simulations. The numerical instability arises with equal-order C 0 finite- and spectral-element expansions of the flow velocity, magnetic field, and pressure and is sensitive to behavior at the limit of resolution. The auxiliary projections are motivated by physical field-line bending, and coercive responses to the projections are added to the flow-velocity equation. Their incomplete expansions are limited to the highest-order orthogonal polynomial in at least one coordinate ofmore » the spectral elements. Cylindrical eigenmode computations show that the projections induce convergence from the stable side with first-order ideal-MHD equations during h-refinement and p-refinement. Hyperbolic and parabolic projections and responses are compared, together with different methods for avoiding magnetic divergence error. Lastly, the projections are also shown to be effective in linear and nonlinear time-dependent computations with the NIMROD code [C. R. Sovinec, et al., J. Comput. Phys. 195 (2004) 355-386], provided that the projections introduce numerical dissipation.« less

  1. Stabilization of numerical interchange in spectral-element magnetohydrodynamics

    DOE PAGES

    Sovinec, C. R.

    2016-05-10

    In this study, auxiliary numerical projections of the divergence of flow velocity and vorticity parallel to magnetic field are developed and tested for the purpose of suppressing unphysical interchange instability in magnetohydrodynamic simulations. The numerical instability arises with equal-order C 0 finite- and spectral-element expansions of the flow velocity, magnetic field, and pressure and is sensitive to behavior at the limit of resolution. The auxiliary projections are motivated by physical field-line bending, and coercive responses to the projections are added to the flow-velocity equation. Their incomplete expansions are limited to the highest-order orthogonal polynomial in at least one coordinate ofmore » the spectral elements. Cylindrical eigenmode computations show that the projections induce convergence from the stable side with first-order ideal-MHD equations during h-refinement and p-refinement. Hyperbolic and parabolic projections and responses are compared, together with different methods for avoiding magnetic divergence error. Lastly, the projections are also shown to be effective in linear and nonlinear time-dependent computations with the NIMROD code [C. R. Sovinec, et al., J. Comput. Phys. 195 (2004) 355-386], provided that the projections introduce numerical dissipation.« less

  2. Optimization of Antenna Current Feeding for the Alfvén Eigenmodes Active Diagnostic System of JET

    NASA Astrophysics Data System (ADS)

    Albarracin Manrique, Marcos A.; Ruchko, L.; Pires, C. J. A.; Galvão, R. M. O.; Elfimov, A. G.

    2018-04-01

    The possibility of exploring proper phasing of the feeding currents in the existing antenna of the Alfvén Eigenmodes Active Diagnostic system of JET, to excite pure toroidal spectra of Toroidal Alfvén Eigenmodes, is numerically investigated. Special attention is given to the actual perturbed fields excited in the plasma, which are calculated self-consistently using the antenna version of the CASTOR code. It is found that due to the close spacing of the JET antenna modules and quasi degeneracy of modes with medium to high values of the toroidal mode number n, although a proper choice of the phasing of the feeding currents of the antenna modules indeed leads to an increase of the perturbed fields of the selected mode, modes with nearby values of n are also excited with large amplitudes, so that a scheme to proper select the detected modes remains necessary. A scheme using different antenna position distribution is proposed to achieve successful optimization.

  3. Mode conversion between Alfven wave eigenmodes in axially inhomogeneous two-ion-species plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, D.R.; Hershkowitz, N.; Tataronis, J.A.

    The uniform cylindrical plasma model of Litwin and Hershkowitz (Phys. Fluids {bold 30}, 1323 (1987)) is shown to predict mode conversion between the lowest radial order {ital m}=+1 fast magnetosonic surface and slow ion-cyclotron global eigenmodes of the Alfven wave at the light-ion species Alfven resonance of a cold two-ion plasma. A hydrogen ({ital h})--deuterium ({ital d}) plasma is examined in experiments. The fast mode is efficiently excited by a rotating field antenna array at {omega}{similar to}{Omega}{sub {ital h}} in the central cell of the Phaedrus-B tandem mirror (Phys. Rev. Lett. {bold 51}, 1955(1983)). Radially scanned magnetic probes observe themore » propagating eigenmode wave fields within a shallow central cell magnetic gradient in which the conversion zone is axially localized according to {ital n}{sub {ital d}}/{ital n}{sub {ital h}}. A low radial-order slow ion-cyclotron mode, observed in the vicinity of the conversion zone, gives evidence for the predicted mode conversion.« less

  4. Electromagnetics. Volume 1, Number 4, October-December 1981.

    DTIC Science & Technology

    1981-01-01

    terms. 1.6 Matrix and Operator Theory Integral equations have been cast in approximate numerical form by the moment method (MoM). In this numerical...introduced the eigenmode expansion method to find more properties of the SEM [3.4]. One defines eigenvalues and eigenmodes for the integral operator (kernel...exterior surface of the system. Mechanisms that play a role in the penetration are (1) diffusion through metal skins , (2) field leakage through

  5. Damping Rates of Energetic Particle Modes and Stability With Changing Equilibrium Conditions in the MST Reversed-Field Pinch

    NASA Astrophysics Data System (ADS)

    Sears, S. H.; Almagri, A. F.; Anderson, J. K.; Bonofiglo, P. J.; Capecchi, W.; Kim, J.

    2016-10-01

    The damping of Alfvenic waves is an important process, with implications varying from anomalous ion heating in laboratory and astrophysical plasmas to the stability of fusion alpha-driven modes in a burning plasma. With a 1 MW NBI on the MST, a controllable set of energetic particle modes (EPMs) and Alfvenic eigenmodes can be excited. We investigate the damping of these modes as a function of both magnetic and flow shear. Typical EPM damping rates are -104 s-1 in standard RFP discharges. Magnetic shear in the region of large energetic ion density is -2 cm-1 and can be increased up to -2.5 cm-1 by varying the boundary field. Continuum mode damping rates can be reduced up to 50%. New experiments use a bias probe to control the rotation profile. Accelerating the edge plasma relative to the rapidly rotating NBI-driven core decreases the flow shear, while decelerating the edge plasma increases the flow shear in the region of strong energetic ion population. Mode damping rates measured as a function of the local flow shear are compared to ideal MHD predictions. Work supported by US DOE.

  6. Radiation from an electron beam in magnetized plasma: excitation of a whistler mode wave packet by interacting, higher-frequency, electrostatic-wave eigenmodes

    NASA Astrophysics Data System (ADS)

    Brenning, N.; Axnäs, I.; Koepke, M.; Raadu, M. A.; Tennfors, E.

    2017-12-01

    Infrequent, bursty, electromagnetic, whistler-mode wave packets, excited spontaneously in the laboratory by an electron beam from a hot cathode, appear transiently, each with a time duration τ around ∼1 μs. The wave packets have a center frequency f W that is broadly distributed in the range 7 MHz < f W < 40 MHz. They are excited in a region with separate electrostatic (es) plasma oscillations at values of f hf, 200 MHz < f hf < 500 MHz, that are hypothesized to match eigenmode frequencies of an axially localized hf es field in a well-defined region attached to the cathode. Features of these es-eigenmodes that are studied include: the mode competition at times of transitions from one dominating es-eigenmode to another, the amplitude and spectral distribution of simultaneously occurring es-eigenmodes that do not lead to a transition, and the correlation of these features with the excitation of whistler mode waves. It is concluded that transient coupling of es-eigenmode pairs at f hf such that | {{{f}}}1,{{h}{{f}}}-{{{f}}}2,{{h}{{f}}}| = {f}{{W}}< {f}{{g}{{e}}} can explain both the transient lifetime and the frequency spectra of the whistler-mode wave packets (f W) as observed in lab. The generalization of the results to bursty whistler-mode excitation in space from electron beams, created on the high potential side of double layers, is discussed.

  7. Magnetic Shear Damped Polar Convective Fluid Instabilities

    NASA Astrophysics Data System (ADS)

    Atul, Jyoti K.; Singh, Rameswar; Sarkar, Sanjib; Kravchenko, Oleg V.; Singh, Sushil K.; Chattopadhyaya, Prabal K.; Kaw, Predhiman K.

    2018-01-01

    The influence of the magnetic field shear is studied on the E × B (and/or gravitational) and the Current Convective Instabilities (CCI) occurring in the high-latitude F layer ionosphere. It is shown that magnetic shear reduces the growth rate of these instabilities. The magnetic shear-induced stabilization is more effective at the larger-scale sizes (≥ tens of kilometers) while at the scintillation causing intermediate scale sizes (˜ a few kilometers), the growth rate remains largely unaffected. The eigenmode structure gets localized about a rational surface due to finite magnetic shear and has broken reflectional symmetry due to centroid shift of the mode by equilibrium parallel flow or current.

  8. Growth rate degeneracies in kinematic dynamos

    NASA Astrophysics Data System (ADS)

    Favier, B.; Proctor, M. R. E.

    2013-09-01

    We consider the classical problem of kinematic dynamo action in simple steady flows. Due to the adjointness of the induction operator, we show that the growth rate of the dynamo will be exactly the same for two types of magnetic boundary conditions: the magnetic field can be normal (infinite magnetic permeability, also called pseudovacuum) or tangent (perfect electrical conductor) to the boundaries of the domain. These boundary conditions correspond to well-defined physical limits often used in numerical models and relevant to laboratory experiments. The only constraint is for the velocity field u to be reversible, meaning there exists a transformation changing u into -u. We illustrate this surprising property using S2T2 type of flows in spherical geometry inspired by [Dudley and James, Proc. R. Soc. London A1364-502110.1098/rspa.1989.0112 425, 407 (1989)]. Using both types of boundary conditions, it is shown that the growth rates of the dynamos are identical, although the corresponding magnetic eigenmodes are drastically different.

  9. Generalized radiation-field quantization method and the Petermann excess-noise factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Y.-J.; Siegman, A.E.; E.L. Ginzton Laboratory, Stanford University, Stanford, California 94305

    2003-10-01

    We propose a generalized radiation-field quantization formalism, where quantization does not have to be referenced to a set of power-orthogonal eigenmodes as conventionally required. This formalism can be used to directly quantize the true system eigenmodes, which can be non-power-orthogonal due to the open nature of the system or the gain/loss medium involved in the system. We apply this generalized field quantization to the laser linewidth problem, in particular, lasers with non-power-orthogonal oscillation modes, and derive the excess-noise factor in a fully quantum-mechanical framework. We also show that, despite the excess-noise factor for oscillating modes, the total spatially averaged decaymore » rate for the laser atoms remains unchanged.« less

  10. Nonlinear Decay and Plasma Heating by a Toroidal Alfvén Eigenmode

    NASA Astrophysics Data System (ADS)

    Qiu, Z.; Chen, L.; Zonca, F.; Chen, W.

    2018-03-01

    We demonstrate theoretically that a toroidal Alfvén eigenmode (TAE) can parametrically decay into a geodesic acoustic mode and kinetic TAE in a toroidal plasma. The corresponding threshold condition for the TAE amplitude is estimated to be |δ B⊥/B0|˜O (10-4). Here, δ B⊥ and B0 are, respectively, the perturbed magnetic field of the pump TAE and the equilibrium magnetic field. This novel decay process, in addition to contributing to the nonlinear saturation of energetic-particle or α -particle driven TAE instability, could also contribute to the heating as well as regulating the transports of thermal plasmas.

  11. Magneto-optic dynamics in a ferromagnetic nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Potisk, Tilen; Mertelj, Alenka; Sebastián, Nerea; Osterman, Natan; Lisjak, Darja; Brand, Helmut R.; Pleiner, Harald; Svenšek, Daniel

    2018-01-01

    We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M , and the director field, n , associated with the liquid crystalline orientational order. We demonstrate that the experimentally studied macroscopic dynamic behavior reveals the importance of a dynamic cross-coupling between M and n . The experimental data are used to extract the value of the dissipative cross-coupling coefficient. We also make concrete predictions about how reversible cross-coupling terms between the magnetization and the director could be detected experimentally by measurements of the transmitted light intensity as well as by analyzing the azimuthal angle of the magnetization and the director out of the plane spanned by the anchoring axis and the external magnetic field. We derive the eigenmodes of the coupled system and study their relaxation rates. We show that in the usual experimental setup used for measuring the relaxation rates of the splay-bend or twist-bend eigenmodes of a nematic liquid crystal one expects for a ferromagnetic nematic liquid crystal a mixture of at least two eigenmodes.

  12. Numerical study of aero-excitation of steam-turbine rotor blade self-oscillations

    NASA Astrophysics Data System (ADS)

    Galaev, S. A.; Makhnov, V. Yu.; Ris, V. V.; Smirnov, E. M.

    2018-05-01

    Blade aero-excitation increment is evaluated by numerical solution of the full 3D unsteady Reynolds-averaged Navier-Stokes equations governing wet steam flow in a powerful steam-turbine last stage. The equilibrium wet steam model was adopted. Blade surfaces oscillations are defined by eigen-modes of a row of blades bounded by a shroud. Grid dependency study was performed with a reduced model being a set of blades multiple an eigen-mode nodal diameter. All other computations were carried out for the entire blade row. Two cases are considered, with an original-blade row and with a row of modified (reinforced) blades. Influence of eigen-mode nodal diameter and blade reinforcing on aero-excitation increment is analyzed. It has been established, in particular, that maximum value of the aero-excitation increment for the reinforced-blade row is two times less as compared with the original-blade row. Generally, results of the study point definitely to less probability of occurrence of blade self-oscillations in case of the reinforced blade-row.

  13. Inertial modes in a rotating triaxial ellipsoid

    PubMed Central

    Vantieghem, S.

    2014-01-01

    In this work, we present an algorithm that enables computation of inertial modes and their corresponding frequencies in a rotating triaxial ellipsoid. The method consists of projecting the inertial mode equation onto finite-dimensional bases of polynomial vector fields. It is shown that this leads to a well-posed eigenvalue problem, and hence, that eigenmodes are of polynomial form. Furthermore, these results shed new light onto the question whether the eigenmodes form a complete basis, i.e. whether any arbitrary velocity field can be expanded in a sum of inertial modes. Finally, we prove that two intriguing integral properties of inertial modes in rotating spheres and spheroids also extend to triaxial ellipsoids. PMID:25104908

  14. Spatial localization of resistive drift wave structure in tokamak edge plasmas with an embedded magnetic island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shilin; Qu, Hongpeng; Li, Jiquan, E-mail: lijq@energy.kyoto-u.ac.jp

    Resistive drift wave instability is investigated numerically in tokamak edge plasma confined by sheared slab magnetic field geometry with an embedded magnetic island. The focus is on the structural characteristics of eigenmode inside the island, where the density profile tends to be flattened. A transition of the dominant eigenmode occurs around a critical island width w{sub c}. For thin islands with a width below w{sub c}, two global long wavelength eigenmodes with approximately the same growth rate but different eigenfrequency are excited, which are stabilized by the magnetic island through two-dimensional mode coupling in both x and y (corresponding tomore » radial and poloidal in tokamak) directions. On the other hand, a short wavelength eigenmode, which is destabilized by thick islands with a width above w{sub c}, dominates the edge fluctuation, showing a prominent structural localization in the region between the X-point and the O-point of the magnetic island. The main destabilization mechanism is identified as the mode coupling in the y direction, which is similar to the so-called toroidal coupling in tokamak plasmas. These three eigenmodes may coexist in the drift wave fluctuation for the island with a width around w{sub c}. It is demonstrated that the structural localization results mainly from the quasilinear flattening of density profile inside the magnetic island.« less

  15. Spatial eigenmodes and synchronous oscillation: co-incidence detection in simulated cerebral cortex.

    PubMed

    Chapman, Clare L; Wright, James J; Bourke, Paul D

    2002-07-01

    Zero-lag synchronisation arises between points on the cerebral cortex receiving concurrent independent inputs; an observation generally ascribed to nonlinear mechanisms. Using simulations of cerebral cortex and Principal Component Analysis (PCA) we show patterns of zero-lag synchronisation (associated with empirically realistic spectral content) can arise from both linear and nonlinear mechanisms. For low levels of activation, we show the synchronous field is described by the eigenmodes of the resultant damped wave activity. The first and second spatial eigenmodes (which capture most of the signal variance) arise from the even and odd components of the independent input signals. The pattern of zero-lag synchronisation can be accounted for by the relative dominance of the first mode over the second, in the near-field of the inputs. The simulated cortical surface can act as a few millisecond response coincidence detector for concurrent, but uncorrelated, inputs. As cortical activation levels are increased, local damped oscillations in the gamma band undergo a transition to highly nonlinear undamped activity with 40 Hz dominant frequency. This is associated with "locking" between active sites and spatially segregated phase patterns. The damped wave synchronisation and the locked nonlinear oscillations may combine to permit fast representation of multiple patterns of activity within the same field of neurons.

  16. Large- to small-scale dynamo in domains of large aspect ratio: kinematic regime

    NASA Astrophysics Data System (ADS)

    Shumaylova, Valeria; Teed, Robert J.; Proctor, Michael R. E.

    2017-04-01

    The Sun's magnetic field exhibits coherence in space and time on much larger scales than the turbulent convection that ultimately powers the dynamo. In this work, we look for numerical evidence of a large-scale magnetic field as the magnetic Reynolds number, Rm, is increased. The investigation is based on the simulations of the induction equation in elongated periodic boxes. The imposed flows considered are the standard ABC flow (named after Arnold, Beltrami & Childress) with wavenumber ku = 1 (small-scale) and a modulated ABC flow with wavenumbers ku = m, 1, 1 ± m, where m is the wavenumber corresponding to the long-wavelength perturbation on the scale of the box. The critical magnetic Reynolds number R_m^{crit} decreases as the permitted scale separation in the system increases, such that R_m^{crit} ∝ [L_x/L_z]^{-1/2}. The results show that the α-effect derived from the mean-field theory ansatz is valid for a small range of Rm after which small scale dynamo instability occurs and the mean-field approximation is no longer valid. The transition from large- to small-scale dynamo is smooth and takes place in two stages: a fast transition into a predominantly small-scale magnetic energy state and a slower transition into even smaller scales. In the range of Rm considered, the most energetic Fourier component corresponding to the structure in the long x-direction has twice the length-scale of the forcing scale. The long-wavelength perturbation imposed on the ABC flow in the modulated case is not preserved in the eigenmodes of the magnetic field.

  17. Observation of odd toroidal Alfvén eigenmodes.

    PubMed

    Kramer, G J; Sharapov, S E; Nazikian, R; Gorelenkov, N N; Budny, R V

    2004-01-09

    Experimental evidence is presented for the existence of the theoretically predicted odd toroidicity induced Alfvén eigenmode (TAE) from the simultaneous appearance of odd and even TAEs in a normal shear discharge of the joint European torus. The modes are observed in low central magnetic shear plasmas created by injecting lower hybrid current drive. A fast ion population was created by applying ion cyclotron heating at the high-field side to excite the TAEs. The odd TAEs were identified from their frequency, mode number, and timing relative to the even TAEs.

  18. Predictor-based multivariable closed-loop system identification of the EXTRAP T2R reversed field pinch external plasma response

    NASA Astrophysics Data System (ADS)

    Olofsson, K. Erik J.; Brunsell, Per R.; Rojas, Cristian R.; Drake, James R.; Hjalmarsson, Håkan

    2011-08-01

    The usage of computationally feasible overparametrized and nonregularized system identification signal processing methods is assessed for automated determination of the full reversed-field pinch external plasma response spectrum for the experiment EXTRAP T2R. No assumptions on the geometry of eigenmodes are imposed. The attempted approach consists of high-order autoregressive exogenous estimation followed by Markov block coefficient construction and Hankel matrix singular value decomposition. It is seen that the obtained 'black-box' state-space models indeed can be compared with the commonplace ideal magnetohydrodynamics (MHD) resistive thin-shell model in cylindrical geometry. It is possible to directly map the most unstable autodetected empirical system pole to the corresponding theoretical resistive shell MHD eigenmode.

  19. Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components

    NASA Astrophysics Data System (ADS)

    Kuzmiak, Vladimir; Maradudin, Alexei A.

    1998-09-01

    We study the distribution of the electromagnetic field of the eigenmodes and corresponding group velocities associated with the photonic band structures of two-dimensional periodic systems consisting of an array of infinitely long parallel metallic rods whose intersections with a perpendicular plane form a simple square lattice. We consider both nondissipative and lossy metallic components characterized by a complex frequency-dependent dielectric function. Our analysis is based on the calculation of the complex photonic band structure obtained by using a modified plane-wave method that transforms the problem of solving Maxwell's equations into the problem of diagonalizing an equivalent non-Hermitian matrix. In order to investigate the nature and the symmetry properties of the eigenvectors, which significantly affect the optical properties of the photonic lattices, we evaluate the associated field distribution at the high symmetry points and along high symmetry directions in the two-dimensional first Brillouin zone of the periodic system. By considering both lossless and lossy metallic rods we study the effect of damping on the spatial distribution of the eigenvectors. Then we use the Hellmann-Feynman theorem and the eigenvectors and eigenfrequencies obtained from a photonic band-structure calculation based on a standard plane-wave approach applied to the nondissipative system to calculate the components of the group velocities associated with individual bands as functions of the wave vector in the first Brillouin zone. From the group velocity of each eigenmode the flow of energy is examined. The results obtained indicate a strong directional dependence of the group velocity, and confirm the experimental observation that a photonic crystal is a potentially efficient tool in controlling photon propagation.

  20. Statistical dynamo theory: Mode excitation.

    PubMed

    Hoyng, P

    2009-04-01

    We compute statistical properties of the lowest-order multipole coefficients of the magnetic field generated by a dynamo of arbitrary shape. To this end we expand the field in a complete biorthogonal set of base functions, viz. B= summation operator_{k}a;{k}(t)b;{k}(r) . The properties of these biorthogonal function sets are treated in detail. We consider a linear problem and the statistical properties of the fluid flow are supposed to be given. The turbulent convection may have an arbitrary distribution of spatial scales. The time evolution of the expansion coefficients a;{k} is governed by a stochastic differential equation from which we infer their averages a;{k} , autocorrelation functions a;{k}(t)a;{k *}(t+tau) , and an equation for the cross correlations a;{k}a;{l *} . The eigenfunctions of the dynamo equation (with eigenvalues lambda_{k} ) turn out to be a preferred set in terms of which our results assume their simplest form. The magnetic field of the dynamo is shown to consist of transiently excited eigenmodes whose frequency and coherence time is given by Ilambda_{k} and -1/Rlambda_{k} , respectively. The relative rms excitation level of the eigenmodes, and hence the distribution of magnetic energy over spatial scales, is determined by linear theory. An expression is derived for |a;{k}|;{2}/|a;{0}|;{2} in case the fundamental mode b;{0} has a dominant amplitude, and we outline how this expression may be evaluated. It is estimated that |a;{k}|;{2}/|a;{0}|;{2} approximately 1/N , where N is the number of convective cells in the dynamo. We show that the old problem of a short correlation time (or first-order smoothing approximation) has been partially eliminated. Finally we prove that for a simple statistically steady dynamo with finite resistivity all eigenvalues obey Rlambda_{k}<0 .

  1. Contributions from the data samples in NOC technique on the extracting of the Sq variation

    NASA Astrophysics Data System (ADS)

    Wu, Yingyan; Xu, Wenyao

    2015-04-01

    The solar quiet daily variation, Sq, a rather regular variation is usually observed at mid-low latitudes on magnetic quiet days or less-disturbed days. It is mainly resulted from the dynamo currents in the ionospheric E region, which are driven by the atmospheric tidal wind and different processes and flow as two current whorls in each of the northern and southern hemispheres[1]. The Sq exhibits a conspicuous day-to-day (DTD) variability in daily range (or strength), shape (or phase) and its current focus. This variability is mainly attributed to changes in the ionospheric conductivity and tidal winds, varying with solar radiation and ionospheric conditions. Furthermore, it presents a seasonal variation and solar cycle variation[2-4]. In generally, Sq is expressed with the average value of the five international magnetic quiet days. Using data from global magnetic stations, equivalent current system of daily variation can be constructed to reveal characteristics of the currents[5]. In addition, using the differences of H component at two stations on north and south side of the Sq currents of focus, Sq is extracted much better[6]. Recently, the method of Natural Orthoganal Components (NOC) is used to decompose the magnetic daily variation and express it as the summation of eigenmodes, and indicate the first NOC eigenmode as the solar quiet daily variation, the second as the disturbance daily variation[7-9]. As we know, the NOC technique can help reveal simpler patterns within a complex set of variables, without designed basic-functions such as FFT technique. But the physical explanation of the NOC eigenmodes is greatly depends on the number of data samples and data regular-quality. Using the NOC method, we focus our present study on the analysis of the hourly means of the H component at BMT observatory in China from 2001 to 2008. The contributions of the number and the regular-quality of the data samples on which eigenmode corresponds to the Sq are analyzed, by using different number of data sample from 5 to 365. The result shows the first eigenmode expresses the Sq in most cases. 1.Campbell, W, Introduction to Geomagnetic Fields, Cambridge Univ. Press, New York. 1997 2.Hasegawa, M, Geomagnetic Sq current system, J. Geophys. Res., 1960, 65: 1437~ 1447 3.Tarpley J D. The Ionospheric wind dynanmo 2 solar tides. Planet. Space Sci., 1970, 18: 1091~ 1103 4.Richmond A D. Modeling the ionospheric wind dynamo a review. Pure Appl. Geophys., 1989, 131: 413 ~ 435 5.Suzuki, A., and H. Maeda (1978), Equivalent current systems of the daily geomagnetic variations in December 1964, Data Book No. 1, World Data Center C2 for Geomagnetic. 6.Hibberd, F H. Day-to-day variability of the Sq geomagnetic field variation, Aust. J. Phys., 1981, 34: 81~ 90 7.Xu, W.-Y., and Y. Kamide (2004), Decomposition of daily geomagnetic variation by using method of natural orthogonal component, J. Geophys. Res., 109(A5), A05218, doi:10.1029/2003JA010216. 8.Chen G X, Xu W Y, Du A M, and et al, Statistical characteristics of the day-to-day variability in the geomagnetic Sq field, J. Geophys. Res.,2007, 112, A06320, doi:10.1029/2006JA012059 9.Michelis P. De. Principal components' features of mid-latitude geomagnetic daily variation. Ann. Geophys., 2010,28: 1-14

  2. Saturation of a toroidal Alfvén eigenmode due to enhanced damping of nonlinear sidebands

    NASA Astrophysics Data System (ADS)

    Todo, Y.; Berk, H. L.; Breizman, B. N.

    2012-09-01

    This paper examines nonlinear magneto-hydrodynamic effects on the energetic particle driven toroidal Alfvén eigenmode (TAE) for lower dissipation coefficients and with higher numerical resolution than in the previous simulations (Todo et al 2010 Nucl. Fusion 50 084016). The investigation is focused on a TAE mode with toroidal mode number n = 4. It is demonstrated that the mechanism of mode saturation involves generation of zonal (n = 0) and higher-n (n ⩾ 8) sidebands, and that the sidebands effectively increase the mode damping rate via continuum damping. The n = 0 sideband includes the zonal flow peaks at the TAE gap locations. It is also found that the n = 0 poloidal flow represents a balance between the nonlinear driving force from the n = 4 components and the equilibrium plasma response to the n = 0 fluctuations. The spatial profile of the n = 8 sideband peaks at the n = 8 Alfvén continuum, indicating enhanced dissipation due to continuum damping.

  3. Propagation and scattering of acoustic-vorticity waves in annular swirling flows

    NASA Astrophysics Data System (ADS)

    Golubev, Vladimir Viktorovich

    1997-08-01

    The dissertation presents a fundamental extension of unsteady aerodynamic theory developed to predict fluctuating forces on aircraft structural components. These excitations may result from a variety of upstream flow non-uniformities such as atmospheric turbulence, airframe tip vortices and wakes, engine inlet distortions and secondary flows. In the frame of reference of a downstream aircraft component, an upstream flow non- uniformity appears as a propagating vorticity wave (a gust). Classical treatment of gust interaction problems developed for uniform, potential upstream mean flows is based on the fact that it is possible to consider separately incident or scattered acoustic, entropic and vortical modes of unsteady flow motion. A purely vortical gust remains 'frozen' as it convects with the flow. The coupling between different unsteady components may occur only at the surface of a solid structure, or in the close vicinity of a lifting body. The classical approach, however, is not justified for an aircraft engine system where the internal turbomachinery flow is non-uniform and non-potential as it exhibits a strong swirling motion. In such a flow, acting centrifugal and Coriolis forces couple the various unsteady modes which thus can no longer be determined independently of each other. The new developed theory follows the decomposition of unsteady velocity field into vortical and potential components. In spite of the modal coupling, this decomposition elucidates the physical phenomena associated with unsteady swirling motion by indicating the degree of interaction between the various modes. It paves the way for generalizing the classical definition of a gust for vortical swirling flows. The concept of a generalized gust is developed based on the eigenmode pseudospectral analysis of the coupled equations of unsteady swirling motion. This analysis reveals two distinct regions of eigenvalues corresponding to pressure-dominated nearly-sonic and vorticity- dominated nearly-convected eigenmodes. A compact discrete spectrum of nearly-convected eigenvalues clusters with infinitely increasing density approaching an accumulation convected critical layer. The generalized gust is then identified with the nearly-convected eigenspectrum and formulated in terms of a non-amplifying nearly-convected wave and an instability wave growing in the critical layer. Based on the generalized gust model, a boundary-value problem of unsteady three-dimensional acoustic-vorticity waves propagating in a vortical swirling flow and impinging on a turbomachinery blading is formulated and solved numerically. A set of benchmark results reveals a significant effect of swirling flow motion on aerodynamic and acoustic response of the annular cascade.

  4. Optimal and robust control of transition

    NASA Technical Reports Server (NTRS)

    Bewley, T. R.; Agarwal, R.

    1996-01-01

    Optimal and robust control theories are used to determine feedback control rules that effectively stabilize a linearly unstable flow in a plane channel. Wall transpiration (unsteady blowing/suction) with zero net mass flux is used as the control. Control algorithms are considered that depend both on full flowfield information and on estimates of that flowfield based on wall skin-friction measurements only. The development of these control algorithms accounts for modeling errors and measurement noise in a rigorous fashion; these disturbances are considered in both a structured (Gaussian) and unstructured ('worst case') sense. The performance of these algorithms is analyzed in terms of the eigenmodes of the resulting controlled systems, and the sensitivity of individual eigenmodes to both control and observation is quantified.

  5. Unsteady features of the flow on a bump in transonic environment

    NASA Astrophysics Data System (ADS)

    Budovsky, A. D.; Sidorenko, A. A.; Polivanov, P. A.; Vishnyakov, O. I.; Maslov, A. A.

    2016-10-01

    The study deals with experimental investigation of unsteady features of separated flow on a profiled bump in transonic environment. The experiments were conducted in T-325 wind tunnel of ITAM for the following flow conditions: P0 = 1 bar, T0 = 291 K. The base flow around the model was studied by schlieren visualization, steady and unsteady wall pressure measurements and PIV. The experimentally data obtained using PIV are analyzed by Proper Orthogonal Decomposition (POD) technique to investigate the underlying unsteady flow organization, as revealed by the POD eigenmodes. The data obtained show that flow pulsations revealed upstream and downstream of shock wave are correlated and interconnected.

  6. Stability of plasma cylinder with current in a helical plasma flow

    NASA Astrophysics Data System (ADS)

    Leonovich, Anatoly S.; Kozlov, Daniil A.; Zong, Qiugang

    2018-04-01

    Stability of a plasma cylinder with a current wrapped by a helical plasma flow is studied. Unstable surface modes of magnetohydrodynamic (MHD) oscillations develop at the boundary of the cylinder enwrapped by the plasma flow. Unstable eigenmodes can also develop for which the plasma cylinder is a waveguide. The growth rate of the surface modes is much higher than that for the eigenmodes. It is shown that the asymmetric MHD modes in the plasma cylinder are stable if the velocity of the plasma flow is below a certain threshold. Such a plasma flow velocity threshold is absent for the symmetric modes. They are unstable in any arbitrarily slow plasma flows. For all surface modes there is an upper threshold for the flow velocity above which they are stable. The helicity index of the flow around the plasma cylinder significantly affects both the Mach number dependence of the surface wave growth rate and the velocity threshold values. The higher the index, the lower the upper threshold of the velocity jump above which the surface waves become stable. Calculations have been carried out for the growth rates of unstable oscillations in an equilibrium plasma cylinder with current serving as a model of the low-latitude boundary layer (LLBL) of the Earth's magnetic tail. A tangential discontinuity model is used to simulate the geomagnetic tail boundary. It is shown that the magnetopause in the geotail LLBL is unstable to a surface wave (having the highest growth rate) in low- and medium-speed solar wind flows, but becomes stable to this wave in high-speed flows. However, it can remain weakly unstable to the radiative modes of MHD oscillations.

  7. Evolution of Eigenmodes of the Mhd-Waveguide in the Outer Magnetosphere

    NASA Astrophysics Data System (ADS)

    Chuiko, Daniil

    EVOLUTION OF EIGENMODES OF THE MHD-WAVEGUIDE IN THE OUTER MAGNETOSPHERE Mazur V.A., Chuiko D.A. Institute of Solar-Terrestrial Physics, Irkutsk, Russia. Geomagnetic field and plasma inhomogeneties in the outer equatorial part of the magnetosphere al-lows for existence of a channel with low Alfven speeds, which spans from the nose to the far flanks of the magnetosphere, in the morning as well as in the evening sectors. This channel plays a role of a waveguide for fast magnetosonic waves. When an eigenmode travels along the waveguide (i.e. in the azimuthal direction) it undergoes certain evolution. The parameters of the waveguide are changing along the way of wave’s propagation and the eigenmode “adapts” to these parameters. Conditions of the Kelvin-Helmholtz instability are changing due to the increment in the solar wind speed along the magnetopause. The conditions of the solar wind hydromagnetic waves penetration to the magnetosphere are changing due to the same increment. As such, the process of the penetration turns to overreflection regime, which abruptly increases the pump level of the magnetospheric waveguide. There is an Alfven resonance deep within the magnetosphere, which corresponds to the propagation of the fast mode along the waveguide. Oscillation energy dissipation takes place in the vicinity of the Alfven resonance. Alfven resonance is a standing Alfven wave along the magnetic field lines, so it reaches the ionosphere and the Earth surface, when the fast modes of the waveguide, localized in the low Alfven speed channel cannot be observed on Earth. The evolution of the waveguide oscillation propagating from the nose to the far tail is theoretically investigated in this work with consideration of all aforementioned effects. The spatial structure var-iation character, spectral composition and amplitude along the waveguide are found.

  8. Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy.

    PubMed

    Nikfarjam, Miead; López-Guerra, Enrique A; Solares, Santiago D; Eslami, Babak

    2018-01-01

    In this short paper we explore the use of higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy (AFM) for the small-indentation imaging of soft viscoelastic materials. In viscoelastic materials, whose response depends on the deformation rate, the tip-sample forces generated as a result of sample deformation increase as the tip velocity increases. Since the eigenfrequencies in a cantilever increase with eigenmode order, and since higher oscillation frequencies lead to higher tip velocities for a given amplitude (in viscoelastic materials), the sample indentation can in some cases be reduced by using higher eigenmodes of the cantilever. This effect competes with the lower sensitivity of higher eigenmodes, due to their larger force constant, which for elastic materials leads to greater indentation for similar amplitudes, compared with lower eigenmodes. We offer a short theoretical discussion of the key underlying concepts, along with numerical simulations and experiments to illustrate a simple recipe for imaging soft viscoelastic matter with reduced indentation.

  9. Parasitic momentum flux in the tokamak core

    DOE PAGES

    Stoltzfus-Dueck, T.

    2017-03-06

    A geometrical correction to the E × B drift causes an outward flux of co-current momentum whenever electrostatic potential energy is transferred to ion parallel flows. The robust, fully nonlinear symmetry breaking follows from the free-energy flow in phase space and does not depend on any assumed linear eigenmode structure. The resulting rotation peaking is counter-current and scales as temperature over plasma current. Lastly, this peaking mechanism can only act when fluctuations are low-frequency enough to excite ion parallel flows, which may explain some recent experimental observations related to rotation reversals.

  10. Finite Larmor radius effects on the (m = 2, n = 1) cylindrical tearing mode

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Chowdhury, J.; Parker, S. E.; Wan, W.

    2015-04-01

    New field solvers are developed in the gyrokinetic code GEM [Chen and Parker, J. Comput. Phys. 220, 839 (2007)] to simulate low-n modes. A novel discretization is developed for the ion polarization term in the gyrokinetic vorticity equation. An eigenmode analysis with finite Larmor radius effects is developed to study the linear resistive tearing mode. The mode growth rate is shown to scale with resistivity as γ ˜ η1/3, the same as the semi-collisional regime in previous kinetic treatments [Drake and Lee, Phys. Fluids 20, 1341 (1977)]. Tearing mode simulations with gyrokinetic ions are verified with the eigenmode calculation.

  11. Numerical simulation of eigenmodes of ring and race-track optical microresonators

    NASA Astrophysics Data System (ADS)

    Raskhodchikov, A. V.; Raskhodchikov, D. V.; Scherbak, S. A.; Lipovskii, A. A.

    2017-11-01

    We have performed a numerical study of whispering gallery modes of ring and race-track optical microresonators. Mode excitation was considered and their spectra and electromagnetic field distributions were calculated via numerical solution of the Helmholtz equation. We pay additional attention to features of eigenmodes in race-tracks in contrast with ring resonators. Particularly, we demonstrate that modes in race-tracks are not “classic” WGM in terms of total internal reflection from a single boundary, and an inner boundary is essential for their formation. The dependence of effective refractive index of race-tracks modes on the resonator width is shown.

  12. Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air

    PubMed Central

    An, Sangmin; Long, Christian J

    2014-01-01

    Summary We present an exploratory study of multimodal tapping-mode atomic force microscopy driving more than three cantilever eigenmodes. We present tetramodal (4-eigenmode) imaging experiments conducted on a thin polytetrafluoroethylene (PTFE) film and computational simulations of pentamodal (5-eigenmode) cantilever dynamics and spectroscopy, focusing on the case of large amplitude ratios between the fundamental eigenmode and the higher eigenmodes. We discuss the dynamic complexities of the tip response in time and frequency space, as well as the average amplitude and phase response. We also illustrate typical images and spectroscopy curves and provide a very brief description of the observed contrast. Overall, our findings are promising in that they help to open the door to increasing sophistication and greater versatility in multi-frequency AFM through the incorporation of a larger number of driven eigenmodes, and in highlighting specific future research opportunities. PMID:25383276

  13. The role of large eddy fluctuations in the magnetic dynamics of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kaplan, Elliot

    The Madison Dynamo Experiment (MDE), a liquid sodium magnetohydrodynamics experiment in a 1 m diameter sphere at the University of Wisconsin-Madison, had measured [in Spence et al., 2006] diamagnetic electrical currents in the experiment that violated an anti dynamo theorem for axisymmetric flow. The diamagnetic currents were instead attributed to nonaxisymmetric turbulent fluctuations. The experimental apparatus has been modified to reduce the strength of the large-scale turbulence driven by the shear layer in its flow. A 7.62 cm baffle was affixed to the equator of the machine to stabilize the shear layer. This reduction has correlated with a decrease in the magnetic fields, induced by the flow, which had been associated with the α and β effects of mean-field magnetohydrodynamics. The research presented herein presents the experimental evidence for reduced fluctuations and reduced mean field emfs, and provides a theoretical framework—based upon mean-field MHD—that connects the observations. The shapes of the large-scale velocity fluctuations are inferred by the spectra of induced magnetic fluctuations and measured in a kinematically similar water experiment. The Bullard and Gellman [1954] formalism demonstrates that the large-scale velocity fluctuations that are inhibited by the baffle can beat with the large-scale magnetic fluctuations that they produce to generate a mean-field emf of the sort measured in Spence et al. [2006]. This shows that the reduction of these large-scale eddies has brought the MDE closer to exciting a dynamo magnetic field. We also examine the mean-field like effects of large-scale (stable) eddies in the Dudley-James [1989] two-vortex dynamo (that the MDE was based upon). Rotating the axis of symmetry redefines the problem from one of an axisymmetric flow exciting a nonaxisymmetric field to one of a combination of axisymmetric and nonaxisymmetric flows exciting a predominantly axisymmetric magnetic eigenmode. As a result, specific interactions between large-scale velocity modes and large-scale magnetic modes are shown to correspond to the Ω effect and the mean-field α and β effects.

  14. Concentration of vorticity due to selective decay in doubly periodic vortices and a vortex pair

    NASA Astrophysics Data System (ADS)

    Hattori, Yuji

    2018-01-01

    Strong vortices like tornadoes, typhoons, and tropical cyclones are often created in geophysical flows. It is important to understand the mechanism for the creation of these strong vortices. Recently, we found a purely hydrodynamic mechanism for the concentration of vorticity: it is due to selective decay in which circulation decays faster than angular momentum and energy. In this paper, two problems are investigated by direct numerical simulation to seek universality of this mechanism: doubly periodic vortices disturbed by an unstable eigenmode and a vortex pair disturbed by localized disturbances. In the former case, concentration of vorticity occurs when the wavenumber of the eigenmode is large, while it does not occur for small wavenumbers. For small wavenumbers the disturbances grow to a large amplitude eventually destroying the base flow. For large wavenumber, on the other hand, the growth of the disturbances saturates before destroying the base flow. Selective decay of inviscid invariants is shown to be responsible for the concentration of vorticity as in the previous study. In the case of a vortex pair disturbed by localized disturbances concentration of vorticity occurs twice: the first concentration is not related to selective decay; however, the second weak concentration is most likely due to selective decay.

  15. Exploring the distinction between experimental resonant modes and theoretical eigenmodes: from vibrating plates to laser cavities.

    PubMed

    Tuan, P H; Wen, C P; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F

    2014-02-01

    Experimentally resonant modes are commonly presumed to correspond to eigenmodes in the same bounded domain. However, the one-to-one correspondence between theoretical eigenmodes and experimental observations is never reached. Theoretically, eigenmodes in numerous classical and quantum systems are the solutions of the homogeneous Helmholtz equation, whereas resonant modes should be solved from the inhomogeneous Helmholtz equation. In the present paper we employ the eigenmode expansion method to derive the wave functions for manifesting the distinction between eigenmodes and resonant modes. The derived wave functions are successfully used to reconstruct a variety of experimental results including Chladni figures generated from the vibrating plate, resonant patterns excited from microwave cavities, and lasing modes emitted from the vertical cavity.

  16. Neural field theory of perceptual echo and implications for estimating brain connectivity

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Pagès, J. C.; Gabay, N. C.; Babaie, T.; Mukta, K. N.

    2018-04-01

    Neural field theory is used to predict and analyze the phenomenon of perceptual echo in which random input stimuli at one location are correlated with electroencephalographic responses at other locations. It is shown that this echo correlation (EC) yields an estimate of the transfer function from the stimulated point to other locations. Modal analysis then explains the observed spatiotemporal structure of visually driven EC and the dominance of the alpha frequency; two eigenmodes of similar amplitude dominate the response, leading to temporal beating and a line of low correlation that runs from the crown of the head toward the ears. These effects result from mode splitting and symmetry breaking caused by interhemispheric coupling and cortical folding. It is shown how eigenmodes obtained from functional magnetic resonance imaging experiments can be combined with temporal dynamics from EC or other evoked responses to estimate the spatiotemporal transfer function between any two points and hence their effective connectivity.

  17. Special section containing papers presented at the 13th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (Beijing, China, 17-20 September 2013) Special section containing papers presented at the 13th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (Beijing, China, 17-20 September 2013)

    NASA Astrophysics Data System (ADS)

    Lin, Z.

    2014-10-01

    In magnetic fusion plasmas, a significant fraction of the kinetic pressure is contributed by superthermal charged particles produced by auxiliary heating (fast ions and electrons) and fusion reactions (a-particles). Since these energetic particles are often far away from thermal equilibrium due to their non-Maxwellian distribution and steep pressure gradients, the free energy can excite electromagnetic instabilities to intensity levels well above the thermal fluctuations. The resultant electromagnetic turbulence could induce large transport of energetic particles, which could reduce heating efficiency, degrade overall plasma confinement, and damage fusion devices. Therefore, understanding and predicting energetic particle confinement properties are critical to the success of burning plasma experiments such as ITER since the ignition relies on plasma self-heating by a-particles. To promote international exchanges and collaborations on energetic particle physics, the biannual conference series under the auspices of the International Atomic Energy Agency (IAEA) were help in Kyiv (1989), Aspenas (1991), Trieste (1993), Princeton (1995), JET/Abingdon (1997), Naka (1999), Gothenburg (2001), San Diego (2003), Takayama (2005), Kloster Seeon (2007), Kyiv (2009), and Austin (2011). The papers in this special section were presented at the most recent meeting, the 13th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, which was hosted by the Fusion Simulation Center, Peking University, Beijing, China (17-20 September 2013). The program of the meeting consisted of 71 presentations, including 13 invited talks, 26 oral contributed talks, 30 posters, and 2 summary talks, which were selected by the International Advisory Committee (IAC). The IAC members include H. Berk, L.G. Eriksson, A. Fasoli, W. Heidbrink, Ya. Kolesnichenko, Ph. Lauber, Z. Lin, R. Nazikian, S. Pinches, S. Sharapov, K. Shinohara, K. Toi, G. Vlad, and X.T. Ding. The conference program, abstracts of all papers, and slides of oral presentations are available at the conference website:www.phy.pku.edu.cn/fsc/w18419.jsp As a measure of the breadth in current research activities, a wide range of topics in energetic particle physics were covered in the meeting program, including dynamics of various Alfvén eigenmodes and energetic particle modes, energetic particle transport, energetic particle effects on magnetohydrodynamic (MHD) modes, runaway electrons, and diagnostics of energetic particles and neutrons. Energetic particle experiments were reported on tokamaks, stellarators, spherical tori, reversed field pinches, and linear devices. Most of the papers have direct comparisons between experimental data and simulation results, a very healthy trend in the research of energetic particle physics. As an indication for the depth in current research activities and possible future directions in energetic particle physics, some exciting progress reported at the meeting is highlighted here. The 3D fields of resonant magnetic perturbations (RMP) for controlling edge localized modes (ELM) are found to drive significant ripple loss of fast ions in DIII-D and ASDEX-U experiments. Similar loss is predicted for ITER RMP fields in the vacuum approximation. Fortunately, plasma response to RMP fields is found by the simulation to reduce the loss of fast ions and α-particles to a benign level. These results call for more accurate measurements and more reliable modeling of the plasma response to RMP fields in existing tokamak experiments and in future ITER experiments. Interesting progress on energetic particle transport by Alfvén eigenmodes was made in reduced 1D models based on the critical gradients model, in which energetic particle pressure gradients are relaxed to the local threshold of Alfvén eigenmode stability. Some experimental support for the critical gradient model was reported in DIII-D off-axis neutral beam injection (NBI) experiments, in which the fast-ion density relaxes to similar profiles for all injection angles. Further verification and validation of these reduced models by existing tokamak experiments and nonlinear simulations are needed. Impressive progress in first-principles simulations of Alfvén eigenmodes and energetic particle transport was prominently featured at the meeting. Rigorous verification and validation have been successfully carried out for global gyrokinetic simulations of Alfvén eigenmodes with kinetic effects of thermal plasmas and non-perturbative contributions by energetic particles. The gyrokinetic turbulence simulation provides an indispensable new capability for studying the nonlinear physics of energetic particles and Alfvén eigenmodes by incorporating important physics of radial variations and toroidal mode coupling. For example, gyrokinetic simulations have found nonlinear oscillations of Alfvén eigenmode amplitude and frequency consistent with experimental observations. With better understanding of linear and nonlinear properties of Alfvén eigenmodes, a fruitful future direction is the self-consistent simulation of energetic particle transport, which requires long time simulations of nonlinear interactions between multiple Alfvén eigenmodes. A significant step in this direction has been taken by MHD-gyrokinetic hybrid simulations, which have demonstrated that fast ion profile is flattened by enhanced transport due to resonance overlaps in multiple interacting Alfvén eigenmodes with realistic amplitudes. A very interesting physics here is that the re-distribution of the energetic particle profile by an initially dominant Alfvén eigenmode leads to the excitation of other Alfvén eigenmodes. The broaden phase space volume for the extraction of free energy can then drive large fluctuation amplitudes and enhanced energetic particle transport. Some experimental evidences of such indirect interaction of multiple modes through energetic particles were observed in JT-60U and ASDEX-U experiments. Thirteen papers presented at the meeting were reviewed to the usual high standard of Nuclear Fusion and published in this special section. On behalf of the IAC, I would like to thank all participants for their contributions to this conference and to thank Nuclear Fusion for publishing this special section. The next meeting of this series will be organized by Simon Pinches and will be held at the IAEA headquarters in Vienna, in the fall of 2015.

  18. Finite Larmor radius effects on the (m = 2, n = 1) cylindrical tearing mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.; Chowdhury, J.; Parker, S. E.

    2015-04-15

    New field solvers are developed in the gyrokinetic code GEM [Chen and Parker, J. Comput. Phys. 220, 839 (2007)] to simulate low-n modes. A novel discretization is developed for the ion polarization term in the gyrokinetic vorticity equation. An eigenmode analysis with finite Larmor radius effects is developed to study the linear resistive tearing mode. The mode growth rate is shown to scale with resistivity as γ ∼ η{sup 1∕3}, the same as the semi-collisional regime in previous kinetic treatments [Drake and Lee, Phys. Fluids 20, 1341 (1977)]. Tearing mode simulations with gyrokinetic ions are verified with the eigenmode calculation.

  19. The Origin and Limit of Asymmetric Transmission in Chiral Resonators.

    PubMed

    Parappurath, Nikhil; Alpeggiani, Filippo; Kuipers, L; Verhagen, Ewold

    2017-04-19

    We observe that the asymmetric transmission (AT) through photonic systems with a resonant chiral response is strongly related to the far-field properties of eigenmodes of the system. This understanding can be used to predict the AT for any resonant system from its complex eigenmodes. We find that the resonant chiral phenomenon of AT is related to, and is bounded by, the nonresonant scattering properties of the system. Using the principle of reciprocity, we determine a fundamental limit to the maximum AT possible for a single mode in any chiral resonator. We propose and follow a design route for a highly chiral dielectric photonic crystal structure that reaches this fundamental limit for AT.

  20. The Origin and Limit of Asymmetric Transmission in Chiral Resonators

    PubMed Central

    2017-01-01

    We observe that the asymmetric transmission (AT) through photonic systems with a resonant chiral response is strongly related to the far-field properties of eigenmodes of the system. This understanding can be used to predict the AT for any resonant system from its complex eigenmodes. We find that the resonant chiral phenomenon of AT is related to, and is bounded by, the nonresonant scattering properties of the system. Using the principle of reciprocity, we determine a fundamental limit to the maximum AT possible for a single mode in any chiral resonator. We propose and follow a design route for a highly chiral dielectric photonic crystal structure that reaches this fundamental limit for AT. PMID:28470027

  1. On the use of the fourier modal method for calculation of localized eigenmodes of integrated optical resonators O пpineнeнii neToдa фypьe-noд k pacчёTy лokaлiзoвaнныx noд iнTegpaльныx oпTiчeckix peзoнaTopoв</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bykov, D. A.; Doskolovich, L. L.</p> <p>2015-12-01</p> <p>We propose the generalization of the Fourier modal method aimed at calculating localized eigenmodes of integrated optical resonators. The method is based on constructing the analytic continuation of the structure's scattering matrix and calculating its poles. The method allows one to calculate the complex frequency of the localized mode and the corresponding field distribution. We use the proposed method to calculate the eigenmodes of rectangular dielectric block located on metal surface. We show that excitation of these modes by surface plasmon-polariton (SPP) results in resonant features in the SPP transmission spectrum. The proposed method can be used to design and investigate optical properties of integrated and plasmonic optical devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EL....11014003B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EL....11014003B"><span>Toward an asymptotic behaviour of the ABC dynamo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bouya, Ismaël; Dormy, Emmanuel</p> <p>2015-04-01</p> <p>The ABC flow was originally introduced by Arnol'd to investigate Lagrangian chaos. It soon became the prototype example to illustrate magnetic-field amplification via fast dynamo action, i.e. dynamo action exhibiting magnetic-field amplification on a typical timescale independent of the electrical resistivity of the medium. Even though this flow is the most classical example for this important class of dynamos (with application to large-scale astrophysical objects), it was recently pointed out (Bouya Ismaël and Dormy Emmanuel, Phys. Fluids, 25 (2013) 037103) that the fast dynamo nature of this flow was unclear, as the growth rate still depended on the magnetic Reynolds number at the largest values available so far (\\text{Rm} = 25000) . Using state-of-the-art high-performance computing, we present high-resolution simulations (up to 40963) and extend the value of \\text{Rm} up to 5\\cdot105 . Interestingly, even at these huge values, the growth rate of the leading eigenmode still depends on the controlling parameter and an asymptotic regime is not reached yet. We show that the maximum growth rate is a decreasing function of \\text{Rm} for the largest values of \\text{Rm} we could achieve (as anticipated in the above-mentioned paper). Slowly damped oscillations might indicate either a new mode crossing or that the system is approaching the limit of an essential spectrum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1325198','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1325198"><span>AE3D</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Spong, Donald A</p> <p></p> <p>AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10384E..07C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10384E..07C"><span>Eigenmode multiplexing with SLM for volume holographic data storage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Guanghao; Miller, Bo E.; Takashima, Yuzuru</p> <p>2017-08-01</p> <p>The cavity supports the orthogonal reference beam families as its eigenmodes while enhancing the reference beam power. Such orthogonal eigenmodes are used as additional degree of freedom to multiplex data pages, consequently increase storage densities for volume Holographic Data Storage Systems (HDSS) when the maximum number of multiplexed data page is limited by geometrical factor. Image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at multiple Bragg angles by using Liquid Crystal on Silicon (LCOS) spatial light modulators (SLMs) in reference arms. Total of nine holograms are recorded with three angular and three eigenmode.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1368183-compressional-alfven-eigenmodes-rotating-spherical-tokamak-plasmas','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1368183-compressional-alfven-eigenmodes-rotating-spherical-tokamak-plasmas"><span>Compressional Alfvén eigenmodes in rotating spherical tokamak plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Smith, H. M.; Fredrickson, E. D.</p> <p>2017-02-07</p> <p>Spherical tokamaks often have a considerable toroidal plasma rotation of several tens of kHz. Compressional Alfvén eigenmodes in such devices therefore experience a frequency shift, which if the plasma were rotating as a rigid body, would be a simple Doppler shift. However, since the rotation frequency depends on minor radius, the eigenmodes are affected in a more complicated way. The eigenmode solver CAE3B (Smith et al 2009 Plasma Phys. Control. Fusion 51 075001) has been extended to account for toroidal plasma rotation. The results show that the eigenfrequency shift due to rotation can be approximated by a rigid body rotationmore » with a frequency computed from a spatial average of the real rotation profile weighted with the eigenmode amplitude. To investigate the effect of extending the computational domain to the vessel wall, a simplified eigenmode equation, yet retaining plasma rotation, is solved by a modified version of the CAE code used in Fredrickson et al (2013 Phys. Plasmas 20 042112). Lastly, both solving the full eigenmode equation, as in the CAE3B code, and placing the boundary at the vessel wall, as in the CAE code, significantly influences the calculated eigenfrequencies.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NucFu..56g6007F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NucFu..56g6007F"><span>Comprehensive evaluation of the linear stability of Alfvén eigenmodes driven by alpha particles in an ITER baseline scenario</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Figueiredo, A. C. A.; Rodrigues, P.; Borba, D.; Coelho, R.; Fazendeiro, L.; Ferreira, J.; Loureiro, N. F.; Nabais, F.; Pinches, S. D.; Polevoi, A. R.; Sharapov, S. E.</p> <p>2016-07-01</p> <p>The linear stability of Alfvén eigenmodes in the presence of fusion-born alpha particles is thoroughly assessed for two variants of an ITER baseline scenario, which differ significantly in their core and pedestal temperatures. A systematic approach based on CASTOR-K (Borba and Kerner 1999 J. Comput. Phys. 153 101; Nabais et al 2015 Plasma Sci. Technol. 17 89) is used that considers all possible eigenmodes for a given magnetic equilibrium and determines their growth rates due to alpha-particle drive and Landau damping on fuel ions, helium ashes and electrons. It is found that the fastest growing instabilities in the aforementioned ITER scenario are core-localized, low-shear toroidal Alfvén eigenmodes. The largest growth-rates occur in the scenario variant with higher core temperatures, which has the highest alpha-particle density and density gradient, for eigenmodes with toroidal mode numbers n≈ 30 . Although these eigenmodes suffer significant radiative damping, which is also evaluated, their growth rates remain larger than those of the most unstable eigenmodes found in the variant of the ITER baseline scenario with lower core temperatures, which have n≈ 15 and are not affected by radiative damping.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ChPhB..25j5204C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ChPhB..25j5204C"><span>Influence of number and depth of magnetic mirror on Alfvénic gap eigenmode</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, Lei; Hu, Ning; Yao, Jianyao</p> <p>2016-10-01</p> <p>Alfvénic gap eigenmode (AGE) can eject energetic particles from confinement and thereby threaten the success of magnetically controlled fusion. A low-temperature plasma cylinder is a promising candidate to study this eigenmode, due to easy diagnostic access and simple geometry, and the idea is to arrange a periodic array of magnetic mirrors along the plasma cylinder and introduce a local defect to break the field periodicity. The present work validates this idea by reproducing a clear AGE inside a spectral gap, and more importantly details the influence of the number and depth (or modulation factor) of magnetic mirror on the characteristics of AGE. Results show that AGE is suppressed by other modes inside the spectral gap when the number of magnetic mirrors is below a certain value, which leads to a weakened Bragg’s effect. The structure and frequency of AGE remain unchanged for a decreased number of magnetic mirrors, as long as this number is enough for the AGE formation. The width of spectral gap and decay constant (inverse of decay length) of AGE are linearly proportional to the depth of magnetic mirror, implying easier observation of AGE through a bigger mirror depth. The frequency of AGE shifts to a lower range with the depth increased, possibly due to the unfrozen plasma with field line and the invalidity of small-perturbation analysis. Nevertheless, it is exciting to find that the depth of field modulation can be increased to form AGE for a very limited number of magnetic mirrors. This is of particular interest for the experimental implementation of AGE on a low-temperature plasma cylinder with limited length. Project supported by the National Natural Science Foundation of China (Grant Nos. 11405271, 11372104, 75121543, 11332013, 11372363, and 11502037).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JChPh.139v5104S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JChPh.139v5104S"><span>The eigenmode perspective of NMR spin relaxation in proteins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shapiro, Yury E.; Meirovitch, Eva</p> <p>2013-12-01</p> <p>We developed in recent years the two-body (protein and probe) coupled-rotator slowly relaxing local structure (SRLS) approach for elucidating protein dynamics from NMR spin relaxation. So far we used as descriptors the set of physical parameters that enter the SRLS model. They include the global (protein-related) diffusion tensor, D1, the local (probe-related) diffusion tensor, D2, and the local coupling/ordering potential, u. As common in analyzes based on mesoscopic dynamic models, these parameters have been determined with data-fitting techniques. In this study, we describe structural dynamics in terms of the eigenmodes comprising the SRLS time correlation functions (TCFs) generated by using the best-fit parameters as input to the Smoluchowski equation. An eigenmode is a weighted exponential with decay constant given by an eigenvalue of the Smoluchowski operator, and weighting factor determined by the corresponding eigenvector. Obviously, both quantities depend on the SRLS parameters as determined by the SRLS model. Unlike the set of best-fit parameters, the eigenmodes represent patterns of motion of the probe-protein system. The following new information is obtained for the typical probe, the 15N-1H bond. Two eigenmodes, associated with the protein and the probe, dominate when the time scale separation is large (i.e., D2 ≫ D1), the tensorial properties are simple, and the local potential is either very strong or very weak. When the potential exceeds these limits while the remaining conditions are preserved, new eigenmodes arise. The multi-exponentiality of the TCFs is associated in this case with the restricted nature of the local motion. When the time scale separation is no longer large, the rotational degrees of freedom of the protein and the probe become statistically dependent (coupled dynamically). The multi-exponentiality of the TCFs is associated in this case with the restricted nature of both the local and the global motion. The effects of local diffusion axiality, potential strength, and extent of mode-coupling on the eigenmode setup are investigated. We detect largely global motional or largely local motional eigenmodes. In addition, we detect mixed eigenmodes associated with correlated/prograde or anti-correlated/retrograde rotations of the global (D1) and local (D2) motional modes. The eigenmode paradigm is applied to N-H bond dynamics in the β-sheet residue K19, and the α-helix residue A34, of the third immunoglobulin-binding domain of streptococcal protein G. The largest contribution to the SRLS TCFs is made by mixed anti-correlated D1 and D2 eigenmodes. The next largest contribution is made by D1-dominated eigenmodes. Eigenmodes dominated by the local motion contribute appreciably to A34 and marginally to K19. Correlated D1 and D2 eigenmodes contribute exclusively to K19 and do not contribute above 1% to A34. The differences between K19 and A34 are delineated and rationalized in terms of the best-fit SRLS parameters and mode-mixing. It may be concluded that eigenmode analysis is complementary and supplementary to data-fitting-based analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599003-transition-turbulence-noise-radiation-heated-coaxial-jet-flows','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599003-transition-turbulence-noise-radiation-heated-coaxial-jet-flows"><span>Transition to turbulence and noise radiation in heated coaxial jet flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gloor, Michael, E-mail: gloor@ifd.mavt.ethz.ch; Bühler, Stefan; Kleiser, Leonhard</p> <p>2016-04-15</p> <p>Laminar-turbulent transition and noise radiation of a parametrized set of subsonic coaxial jet flows with a hot primary (core) stream are investigated numerically by Large-Eddy Simulation (LES) and direct noise computation. This study extends our previous research on local linear stability of heated coaxial jet flows by analyzing the nonlinear evolution of initially laminar flows disturbed by a superposition of small-amplitude unstable eigenmodes. First, a baseline configuration is studied to shed light on the flow dynamics of coaxial jet flows. Subsequently, LESs are performed for a range of Mach and Reynolds numbers to systematically analyze the influences of the temperaturemore » and the velocity ratios between the primary and the secondary (bypass) stream. The results provide a basis for a detailed analysis of fundamental flow-acoustic phenomena in the considered heated coaxial jet flows. Increasing the primary-jet temperature leads to an increase of fluctuation levels and to an amplification of far-field noise, especially at low frequencies. Strong mixing between the cold bypass stream and the hot primary stream as well as the intermittent character of the flow field at the end of the potential core lead to a pronounced noise radiation at an aft angle of approximately 35{sup ∘}. The velocity ratio strongly affects the shear-layer development and therefore also the noise generation mechanisms. Increasing the secondary-stream velocity amplifies the dominance of outer shear-layer perturbations while the disturbance growth rates in the inner shear layer decrease. Already for r{sub mic} > 40R{sub 1}, where r{sub mic} is the distance from the end of the potential core and R{sub 1} is the core-jet radius, a perfect 1/r{sub mic} decay of the sound pressure amplitudes is observed. The potential-core length increases for higher secondary-stream velocities which leads to a shift of the center of the dominant acoustic radiation in the downstream direction.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA527290','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA527290"><span>Control of Spatially Inhomogeneous Shear Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-11-27</p> <p>vectors fi with unit norm represent the eigenfunctions of H∗H, i.e. H∗ Hfi = σ 2i fi , (3.11) then the output energy will be given by the square of the so...modes, it is convenient to show that φoci are the eigenmodes of PQ; multiplying (3.11) with Lc yields LcH∗ Hfi = PQφoci = σ 2i φoci . (3.18) The</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1263563-dynamic-calibration-higher-eigenmode-parameters-cantilever-atomic-force-microscopy-using-tipsurface-interactions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1263563-dynamic-calibration-higher-eigenmode-parameters-cantilever-atomic-force-microscopy-using-tipsurface-interactions"><span>Dynamic calibration of higher eigenmode parameters of a cantilever in atomic force microscopy by using tip–surface interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Borysov, Stanislav S.; Forchheimer, Daniel; Haviland, David B.</p> <p>2014-10-29</p> <p>Here we present a theoretical framework for the dynamic calibration of the higher eigenmode parameters (stiffness and optical lever inverse responsivity) of a cantilever. The method is based on the tip–surface force reconstruction technique and does not require any prior knowledge of the eigenmode shape or the particular form of the tip–surface interaction. The calibration method proposed requires a single-point force measurement by using a multimodal drive and its accuracy is independent of the unknown physical amplitude of a higher eigenmode.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1006414','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1006414"><span>Skew chicane based betatron eigenmode exchange module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Douglas, David</p> <p>2010-12-28</p> <p>A skewed chicane eigenmode exchange module (SCEEM) that combines in a single beamline segment the separate functionalities of a skew quad eigenmode exchange module and a magnetic chicane. This module allows the exchange of independent betatron eigenmodes, alters electron beam orbit geometry, and provides longitudinal parameter control with dispersion management in a single beamline segment with stable betatron behavior. It thus reduces the spatial requirements for multiple beam dynamic functions, reduces required component counts and thus reduces costs, and allows the use of more compact accelerator configurations than prior art design methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18517919','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18517919"><span>Dynamo action with wave motion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tilgner, A</p> <p>2008-03-28</p> <p>It is shown that time dependent velocity fields in a fluid conductor can act as dynamos even when the same velocity fields frozen in at any particular time cannot. This effect is observed in propagating waves in which the time dependence is simply a steady drift of a fixed velocity pattern. The effect contributes to magnetic field generation in numerical models of planetary dynamos and relies on the property that eigenmodes of the induction equation are not all orthogonal to each other.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRA..118.5277H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRA..118.5277H"><span>Stability of Alfvén eigenmodes in the vicinity of auroral arc</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hiraki, Yasutaka</p> <p>2013-08-01</p> <p>The purpose of this study is to give a theoretical suggestion to the essential question why east-west elongated auroral arc can keep its anisotropic structure for a long time. It could be related to the stability of east-westward traveling modes in the vicinity of arc, which may develop into wavy or spiral structures, whereas north-southward modes are related to splitting of arcs. Taking into account the arc-inducing field-aligned current and magnetic shears, we examine changes in the stability of Alfvén eigenmodes that are coupled to perpendicular modes in the presence of convection electric field. It is demonstrated that the poleward current shear suppresses growth of the westward mode in case of the westward convection electric field. Only the poleward mode is still unstable because of the properties of feedback shear waves. It is suggested that this tends to promote (poleward) arc splitting as often observed during quiet times. We further draw a diagram of the westward mode growth rate as a function of convection electric field and current shear, evaluating critical fields for instabilities of lower Alfvén harmonics. It is discovered that a switching phenomenon of fast-growing mode from fundamental to the first harmonic occurs for a high electric field regime. Our stability criterion is applied to some observed situations of auroral arc current system during pre-breakup active times.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004SPIE.5333...18A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004SPIE.5333...18A"><span>Three-dimensional computation of laser cavity eigenmodes by the use of finite element analysis (FEA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Altmann, Konrad; Pflaum, Christoph; Seider, David</p> <p>2004-06-01</p> <p>A new method for computing eigenmodes of a laser resonator by the use of finite element analysis (FEA) is presented. For this purpose, the scalar wave equation [Δ + k2]E(x,y,z) = 0 is transformed into a solvable 3D eigenvalue problem by separating out the propagation factor exp(-ikz) from the phasor amplitude E(x,y,z) of the time-harmonic electrical field. For standing wave resonators, the beam inside the cavity is represented by a two-wave ansatz. For cavities with parabolic optical elements the new approach has successfully been verified by the use of the Gaussian mode algorithm. For a DPSSL with a thermally lensing crystal inside the cavity the expected deviation between Gaussian approximation and numerical solution could be demonstrated clearly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NIMPA.890...51A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NIMPA.890...51A"><span>Magnetic design and method of a superconducting magnet for muon g - 2/EDM precise measurements in a cylindrical volume with homogeneous magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abe, M.; Murata, Y.; Iinuma, H.; Ogitsu, T.; Saito, N.; Sasaki, K.; Mibe, T.; Nakayama, H.</p> <p>2018-05-01</p> <p>A magnetic field design method of magneto-motive force (coil block (CB) and iron yoke) placements for g - 2/EDM measurements has been developed and a candidate placements were designed under superconducting limitations of current density 125 A/mm2 and maximum magnetic field on CBs less than 5.5 T. Placements of CBs and an iron yoke with poles were determined by tuning SVD (singular value decomposition) eigenmode strengths. The SVD was applied on a response matrix from magneto-motive forces to the magnetic fields in the muon storage region and two-dimensional (2D) placements of magneto-motive forces were designed by tuning the magnetic field eigenmode strengths obtained by the magnetic field. The tuning was performed iteratively. Magnetic field ripples in the azimuthal direction were minimized for the design. The candidate magnetic design had five CBs and an iron yoke with center iron poles. The magnet satisfied specifications of homogeneity (0.2 ppm peak-to-peak in 2D placements (the cylindrical coordinate of the radial position R and axial position Z) and less than 1.0 ppm ripples in the ring muon storage volume (0.318 m < R < 0 . 348 m and -0.05 < Z < 0.05 m) with 3.0 T strength and a slightly negative BR (magnetic field radial component) at Z > 0.0 m) for the spiral muon injection from the iron yoke at top.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/871973','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/871973"><span>Magnetically excited flexural plate wave apparatus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Martin, Stephen J.; Butler, Michael A.; Frye, Gregory C.; Smith, James H.</p> <p>1998-01-01</p> <p>A non-piezoelectric flexural plate wave apparatus having meander-line transducers mounted on a non-piezoelectric membrane. A static magnetic field is directed perpendicularly to the conductive legs of the transducers in the plane of the membrane. Single-port, two-port, resonant, non-resonant, eigenmode, and delay-line modes may be employed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E1452K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E1452K"><span>MHD waves and instabilities for gravitating, magnetized configurations in motion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keppens, Rony; Goedbloed, Hans J. P.</p> <p></p> <p>Seismic probing of equilibrium configurations is of course well-known from geophysics, but has also been succesfully used to determine the internal structure of the Sun to an amazing accuracy. The results of helioseismology are quite impressive, although they only exploit an equilibrium structure where inward gravity is balanced by a pressure gradient in a 1D radial fashion. In principle, one can do the same for stationary, gravitating, magnetized plasma equilibria, as needed to perform MHD seismology in astrophysical jets or accretion disks. The introduction of (sheared) differential rotation does require the important switch from diagnosing static to stationary equilibrium configurations. The theory to describe all linear waves and instabilities in ideal MHD, given an exact stationary, gravitating, magnetized plasma equilibrium, in any dimensionality (1D, 2D, 3D) has been known since 1960, and is governed by the Frieman-Rotenberg equation. The full (mathematical) power of spectral theory governing physical eigenmode determination comes into play when using the Frieman-Rotenberg equation for moving equilibria, as applicable to astrophysical jets, accretion disks, but also solar flux ropes with stationary flow patterns. I will review exemplary seismic studies of flowing equilibrium configurations, covering solar to astrophysical configurations in motion. In that case, even essentially 1D configurations require quantification of the spectral web of eigenmodes, organizing the complex eigenfrequency plane.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.S43F..08K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.S43F..08K"><span>Characterization of Fluid Oscillations at Kilauea Volcano Through Time-Dependent Modeling of Seismic Displacements from Rockfall Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karlstrom, L.; Dunham, E. M.; Thelen, W. A.; Patrick, M. R.; Liang, C.; Prochnow, B. N.</p> <p>2015-12-01</p> <p>Beginning with the opening of a summit vent in 2008, Kilauea's (Hawaíi) summit eruption has exhibited frequent rockfalls from the crater walls into the active lava lake. These events perturb the lake surface, causing vigorous outgassing and sometimes explosions. A network of broadband seismometers records these events as a combination of high-frequency, long-period, and very long period (VLP) oscillations. The VLP portion of the signal has varied in period from 20-40 s since the summit vent opened and has a duration of 10-15 min. These seismic signals reflect the coupling of fluid motion in the conduit to elastic wall rocks. Oscillatory flow can be quantified in terms of the eigenmodes of a magma-filled conduit. Wave motion is affected by conduit geometry, multiphase fluid compressibility, viscosity, and pressure dependent H2O and CO2 solubility. Background stratification and a large impedance contrast at the depth where volatiles first exsolve gives rise to spatially localized families of conduit eigenmodes. The longest period modes are sensitive to properties of bubbly magma and to the length of the conduit above exsolution (which is set by total volatile content). To study the VLP events, we linearize the conduit flow equations assuming small perturbations to an initially magmastatic column, accounting for non-equilibrium multiphase fluid properties, stratification and buoyancy, and conduit width changes. We solve for conduit eigenmodes and associated eigenfrequencies, as well as for the time-domain conduit response to forces applied to the surface of the lava lake. We use broadband records of rockfalls from 2011-2015 that exhibit consistent periods along with lake level measurements to estimate conduit parameters. Preliminary results suggest that VLP periods can be matched with volatile contents similar to those inferred from melt inclusions from Halemaumau explosions. We are currently conducting a more thorough exploration of the parameter space to investigate this further.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApPhL.110r3102E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApPhL.110r3102E"><span>Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ebeling, Daniel; Zhong, Qigang; Ahles, Sebastian; Chi, Lifeng; Wegner, Hermann A.; Schirmeisen, André</p> <p>2017-05-01</p> <p>We demonstrate the ability of resolving the chemical structure of single organic molecules using non-contact atomic force microscopy with higher normal eigenmodes of quartz tuning fork sensors. In order to achieve submolecular resolution, CO-functionalized tips at low temperatures are used. The tuning fork sensors are operated in ultrahigh vacuum in the frequency modulation mode by exciting either their first or second eigenmode. Despite the high effective spring constant of the second eigenmode (on the order of several tens of kN/m), the force sensitivity is sufficiently high to achieve atomic resolution above the organic molecules. This is observed for two different tuning fork sensors with different tip geometries (small tip vs. large tip). These results represent an important step towards resolving the chemical structure of single molecules with multifrequency atomic force microscopy techniques where two or more eigenmodes are driven simultaneously.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvB..95p5422G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvB..95p5422G"><span>Poloidal and toroidal plasmons and fields of multilayer nanorings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.; Passian, A.</p> <p>2017-04-01</p> <p>Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24778952','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24778952"><span>Challenges and complexities of multifrequency atomic force microscopy in liquid environments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Solares, Santiago D</p> <p>2014-01-01</p> <p>This paper illustrates through numerical simulation the complexities encountered in high-damping AFM imaging, as in liquid enviroments, within the specific context of multifrequency atomic force microscopy (AFM). The focus is primarily on (i) the amplitude and phase relaxation of driven higher eigenmodes between successive tip-sample impacts, (ii) the momentary excitation of non-driven higher eigenmodes and (iii) base excitation artifacts. The results and discussion are mostly applicable to the cases where higher eigenmodes are driven in open loop and frequency modulation within bimodal schemes, but some concepts are also applicable to other types of multifrequency operations and to single-eigenmode amplitude and frequency modulation methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22482474-parabolized-stability-equations-analysis-nonlinear-interactions-forced-eigenmodes-control-subsonic-jet-instabilities','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22482474-parabolized-stability-equations-analysis-nonlinear-interactions-forced-eigenmodes-control-subsonic-jet-instabilities"><span>Parabolized Stability Equations analysis of nonlinear interactions with forced eigenmodes to control subsonic jet instabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Itasse, Maxime, E-mail: Maxime.Itasse@onera.fr; Brazier, Jean-Philippe, E-mail: Jean-Philippe.Brazier@onera.fr; Léon, Olivier, E-mail: Olivier.Leon@onera.fr</p> <p>2015-08-15</p> <p>Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m{sub 1}, n{sub 1}), (m{sub 2}, n{sub 2}), such that the difference in azimuth and in frequencymore » matches the desired “target” mode (m{sub 1} − m{sub 2}, n{sub 1} − n{sub 2}). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvP...9a4020S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvP...9a4020S"><span>Locally Enhanced Image Quality with Tunable Hybrid Metasurfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shchelokova, Alena V.; Slobozhanyuk, Alexey P.; Melchakova, Irina V.; Glybovski, Stanislav B.; Webb, Andrew G.; Kivshar, Yuri S.; Belov, Pavel A.</p> <p>2018-01-01</p> <p>Metasurfaces represent a new paradigm in artificial subwavelength structures due to their potential to overcome many challenges typically associated with bulk metamaterials. The ability to make very thin structures and change their properties dynamically makes metasurfaces an exceptional meta-optics platform for engineering advanced electromagnetic and photonic metadevices. Here, we suggest and demonstrate experimentally a tunable metasurface capable of enhancing significantly the local image quality in magnetic resonance imaging. We present a design of the hybrid metasurface based on electromagnetically coupled dielectric and metallic elements. We demonstrate how to tailor the spectral characteristics of the metasurface eigenmodes by changing dynamically the effective permittivity of the structure. By maximizing a coupling between metasurface eigenmodes and transmitted and received fields in the magnetic resonance imaging (MRI) system, we enhance the device sensitivity that results in a substantial improvement of the image quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6571080','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6571080"><span>Ballooning instabilities in tokamaks with sheared toroidal flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Waelbroeck, F.L.; Chen, L.</p> <p>1990-11-01</p> <p>The stability of ballooning modes in the presence of sheared toroidal flows is investigated. The eigenmodes are shown to be related by a Fourier transformation to the non-exponentially growing Floquet solutions found by Cooper. It is further shown that the problem cannot be reduced further than to a two dimensional partial differential equation. Next, the generalized ballooning equation is solved analytically for a circular tokamak equilibrium with sonic flows, but with a small rotation shear compared to the sound speed. With this ordering, the centrifugal forces are comparable to the pressure gradient forces driving the instability, but coupling of themore » mode with the sound wave is avoided. A new stability criterion is derived which explicitly demonstrates that flow shear is stabilizing at constant centrifugal force gradient. 34 refs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JAP...115qD119C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JAP...115qD119C"><span>Exchange-dominated eigenmodes in sub-100 nm permalloy dots: A micromagnetic study at finite temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carlotti, G.; Gubbiotti, G.; Madami, M.; Tacchi, S.; Stamps, R. L.</p> <p>2014-05-01</p> <p>Micromagnetic simulations at room temperature (300 K) have been carried out in order to analyse the magnetic eigenmodes (frequency and spatial profile) in elliptical dots with sub-100 nm lateral size. Features are found that are qualitatively different from those typical of larger dots because of the dominant role played by the exchange-energy. These features can be understood most simply in terms of nodal planes defined relative to the orientation of the static magnetization. A new, generalized labeling scheme is proposed that simplifies discussion and comparison of modes from different geometries. It is shown that the lowest-frequency mode for small dots is characterized by an in-phase precession of spins, without nodal planes, but with a maximum amplitude at the edges. This mode softens at an applied switching field with magnitude comparable to the coercive field and determines specific aspects of magnetization reversal. This characteristic behavior can be relevant for optimization of microwave assisting switching as well as for maximizing interdot coupling in dense arrays of dots.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28949932','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28949932"><span>Magnetization dynamics of weak stripe domains in Fe-N thin films: a multi-technique complementary approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Camara, Ibrahima; Tacchi, Silvia; Garnier, Louis-Charles; Eddrief, Mahmoud; Fortuna, Franck; Carlotti, Giovanni; Marangolo, Massimiliano</p> <p>2017-09-26</p> <p>The resonant eigenmodes of a nitrogen-implanted iron α'-FeN characterized by weak stripe domains are investigated by Brillouin light scattering and broadband ferromagnetic resonance experiments, assisted by micromagnetic simulations. The spectrum of the dynamic eigenmodes in the presence of the weak stripes is very rich and two different families of modes can be selectively detected using different techniques or different experimental configurations. Attention is paid to the evolution of the mode frequencies and spatial profiles under the application of an external magnetic field, of variable intensity, in the direction parallel or transverse to the stripes. The different evolution of the modes with the external magnetic field is accompanied by a distinctive spatial localization in specific regions, such as the closure domains at the surface of the stripes and the bulk domains localized in the inner part of the stripes. The complementarity of BLS and FMR techniques, based on different selection rules, is found to be a fruitful tool for the study of the wealth of localized mag-netic excitations generally found in nanostructures. © 2017 IOP Publishing Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPCM...29T5803C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPCM...29T5803C"><span>Magnetization dynamics of weak stripe domains in Fe-N thin films: a multi-technique complementary approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Camara, I. S.; Tacchi, S.; Garnier, L.-C.; Eddrief, M.; Fortuna, F.; Carlotti, G.; Marangolo, M.</p> <p>2017-11-01</p> <p>The resonant eigenmodes of an α‧-FeN thin film characterized by weak stripe domains are investigated by Brillouin light scattering and broadband ferromagnetic resonance experiments, assisted by micromagnetic simulations. The spectrum of the dynamic eigenmodes in the presence of the weak stripes is very rich and two different families of modes can be selectively detected using different techniques or different experimental configurations. Attention is paid to the evolution of the mode frequencies and spatial profiles under the application of an external magnetic field, of variable intensity, in the direction parallel or transverse to the stripes. The different evolution of the modes with the external magnetic field is accompanied by a distinctive spatial localization in specific regions, such as the closure domains at the surface of the stripes and the bulk domains localized in the inner part of the stripes. The complementarity of BLS and FMR techniques, based on different selection rules, is found to be a fruitful tool for the study of the wealth of localized magnetic excitations generally found in nanostructures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PPCF...60e5011C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PPCF...60e5011C"><span>Effects of radial envelope modulations on the collisionless trapped-electron mode in tokamak plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Hao-Tian; Chen, Liu</p> <p>2018-05-01</p> <p>Adopting the ballooning-mode representation and including the effects of radial envelope modulations, we have derived the corresponding linear eigenmode equation for the collisionless trapped-electron mode in tokamak plasmas. Numerical solutions of the eigenmode equation indicate that finite radial envelope modulations can affect the linear stability properties both quantitatively and qualitatively via the significant modifications in the corresponding eigenmode structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3999742','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3999742"><span>Challenges and complexities of multifrequency atomic force microscopy in liquid environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2014-01-01</p> <p>Summary This paper illustrates through numerical simulation the complexities encountered in high-damping AFM imaging, as in liquid enviroments, within the specific context of multifrequency atomic force microscopy (AFM). The focus is primarily on (i) the amplitude and phase relaxation of driven higher eigenmodes between successive tip–sample impacts, (ii) the momentary excitation of non-driven higher eigenmodes and (iii) base excitation artifacts. The results and discussion are mostly applicable to the cases where higher eigenmodes are driven in open loop and frequency modulation within bimodal schemes, but some concepts are also applicable to other types of multifrequency operations and to single-eigenmode amplitude and frequency modulation methods. PMID:24778952</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DPPBP8006F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DPPBP8006F"><span>Linear non-normality as the cause of nonlinear instability in LAPD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Friedman, Brett; Carter, Troy; Umansky, Maxim</p> <p>2013-10-01</p> <p>A BOUT + + simulation using a Braginskii fluid model reproduces drift-wave turbulence in LAPD with high qualitative and quantitative agreement. The turbulent fluctuations in the simulation sustain themselves through a nonlinear instability mechanism that injects energy into k|| = 0 fluctuations despite the fact that all of the linear eigenmodes at k|| = 0 are stable. The reason for this is the high non-orthogonality of the eigenmodes caused by the non-normality of the linear operator, which is common in fluid and plasma models that contain equilibrium gradients. While individual stable eigenmodes must decay when acted upon by their linear operator, the sum of the eigenmodes may grow transiently with initial algebraic time dependence. This transient growth can inject energy into the system, and the nonlinearities can remix the eigenmode amplitudes to self-sustain the growth. Such a mechanism also acts in subcritical neutral fluid turbulence, and the self-sustainment process is quite similar, indicating the universality of this nonlinear instability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CMMPh..58..410Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CMMPh..58..410Z"><span>Asymptotic Approach to the Problem of Boundary Layer Instability in Transonic Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhuk, V. I.</p> <p>2018-03-01</p> <p>Tollmien-Schlichting waves can be analyzed using the Prandtl equations involving selfinduced pressure. This circumstance was used as a starting point to examine the properties of the dispersion relation and the eigenmode spectrum, which includes modes with amplitudes increasing with time. The fact that the asymptotic equations for a nonclassical boundary layer (near the lower branch of the neutral curve) have unstable fluctuation solutions is well known in the case of subsonic and transonic flows. At the same time, similar solutions for supersonic external flows do not contain unstable modes. The bifurcation pattern of the behavior of dispersion curves in complex domains gives a mathematical explanation of the sharp change in the stability properties occurring in the transonic range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA609529','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA609529"><span>The Variability of Internal Tides in the Northern South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-08-27</p> <p>mean N(z) profile from the climatology dataset provided by the Generalized Digital Environmental Model ( GDEM ) (Teague et al. 1990) (Fig. 2). Eigenmode...decomposed eigenmodes have similar magnitude. The GDEM profiles for the eigenmode decomposition are used for this analysis because the profiles from...provided by the Generalized Digital Environmental Model ( GDEM ) and the shading represents one standard deviation. b Vertical structures of the first</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NucFu..55j4002K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NucFu..55j4002K"><span>An overview of recent physics results from NSTX</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaye, S. M.; Abrams, T.; Ahn, J.-W.; Allain, J. P.; Andre, R.; Andruczyk, D.; Barchfeld, R.; Battaglia, D.; Bhattacharjee, A.; Bedoya, F.; Bell, R. E.; Belova, E.; Berkery, J.; Berry, L.; Bertelli, N.; Beiersdorfer, P.; Bialek, J.; Bilato, R.; Boedo, J.; Bonoli, P.; Boozer, A.; Bortolon, A.; Boyer, M. D.; Boyle, D.; Brennan, D.; Breslau, J.; Brooks, J.; Buttery, R.; Capece, A.; Canik, J.; Chang, C. S.; Crocker, N.; Darrow, D.; Davis, W.; Delgado-Aparicio, L.; Diallo, A.; D'Ippolito, D.; Domier, C.; Ebrahimi, F.; Ethier, S.; Evans, T.; Ferraro, N.; Ferron, J.; Finkenthal, M.; Fonck, R.; Fredrickson, E.; Fu, G. Y.; Gates, D.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Gorelenkova, M.; Goumiri, I.; Gray, T.; Green, D.; Guttenfelder, W.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hirooka, Y.; Hooper, E. B.; Hosea, J.; Humphreys, D.; Jaeger, E. F.; Jarboe, T.; Jardin, S.; Jaworski, M. A.; Kaita, R.; Kessel, C.; Kim, K.; Koel, B.; Kolemen, E.; Kramer, G.; Ku, S.; Kubota, S.; LaHaye, R. J.; Lao, L.; LeBlanc, B. P.; Levinton, F.; Liu, D.; Lore, J.; Lucia, M.; Luhmann, N., Jr.; Maingi, R.; Majeski, R.; Mansfield, D.; Maqueda, R.; McKee, G.; Medley, S.; Meier, E.; Menard, J.; Mueller, D.; Munsat, T.; Muscatello, C.; Myra, J.; Nelson, B.; Nichols, J.; Ono, M.; Osborne, T.; Park, J.-K.; Peebles, W.; Perkins, R.; Phillips, C.; Podesta, M.; Poli, F.; Raman, R.; Ren, Y.; Roszell, J.; Rowley, C.; Russell, D.; Ruzic, D.; Ryan, P.; Sabbagh, S. A.; Schuster, E.; Scotti, F.; Sechrest, Y.; Shaing, K.; Sizyuk, T.; Sizyuk, V.; Skinner, C.; Smith, D.; Snyder, P.; Solomon, W.; Sovenic, C.; Soukhanovskii, V.; Startsev, E.; Stotler, D.; Stratton, B.; Stutman, D.; Taylor, C.; Taylor, G.; Tritz, K.; Walker, M.; Wang, W.; Wang, Z.; White, R.; Wilson, J. R.; Wirth, B.; Wright, J.; Yuan, X.; Yuh, H.; Zakharov, L.; Zweben, S. J.</p> <p>2015-10-01</p> <p>The National Spherical Torus Experiment (NSTX) is currently being upgraded to operate at twice the toroidal field and plasma current (up to 1 T and 2 MA), with a second, more tangentially aimed neutral beam (NB) for current and rotation control, allowing for pulse lengths up to 5 s. Recent NSTX physics analyses have addressed topics that will allow NSTX-Upgrade to achieve the research goals critical to a Fusion Nuclear Science Facility. These include producing stable, 100% non-inductive operation in high-performance plasmas, assessing plasma-material interface (PMI) solutions to handle the high heat loads expected in the next-step devices and exploring the unique spherical torus (ST) parameter regimes to advance predictive capability. Non-inductive operation and current profile control in NSTX-U will be facilitated by co-axial helicity injection (CHI) as well as radio frequency (RF) and NB heating. CHI studies using NIMROD indicate that the reconnection process is consistent with the 2D Sweet-Parker theory. Full-wave AORSA simulations show that RF power losses in the scrape-off layer (SOL) increase significantly for both NSTX and NSTX-U when the launched waves propagate in the SOL. Toroidal Alfvén eigenmode avalanches and higher frequency Alfvén eigenmodes can affect NB-driven current through energy loss and redistribution of fast ions. The inclusion of rotation and kinetic resonances, which depend on collisionality, is necessary for predicting experimental stability thresholds of fast growing ideal wall and resistive wall modes. Neutral beams and neoclassical toroidal viscosity generated from applied 3D fields can be used as actuators to produce rotation profiles optimized for global stability. DEGAS-2 has been used to study the dependence of gas penetration on SOL temperatures and densities for the MGI system being implemented on the Upgrade for disruption mitigation. PMI studies have focused on the effect of ELMs and 3D fields on plasma detachment and heat flux handling. Simulations indicate that snowflake and impurity seeded radiative divertors are candidates for heat flux mitigation in NSTX-U. Studies of lithium evaporation on graphite surfaces indicate that lithium increases oxygen surface concentrations on graphite, and deuterium-oxygen affinity, which increases deuterium pumping and reduces recycling. In situ and test-stand experiments of lithiated graphite and molybdenum indicate temperature-enhanced sputtering, although that test-stand studies also show the potential for heat flux reduction through lithium vapour shielding. Non-linear gyro kinetic simulations have indicated that ion transport can be enhanced by a shear-flow instability, and that non-local effects are necessary to explain the observed rapid changes in plasma turbulence. Predictive simulations have shown agreement between a microtearing-based reduced transport model and the measured electron temperatures in a microtearing unstable regime. Two Alfvén eigenmode-driven fast ion transport models have been developed and successfully benchmarked against NSTX data. Upgrade construction is moving on schedule with initial physics research operation of NSTX-U planned for mid-2015.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1256734','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1256734"><span>An overview of recent physics results from NSTX</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kaye, S. M.; Abrams, T.; Ahn, J. -W.</p> <p></p> <p>Currently, the National Spherical Torus Experiment (NSTX) is being upgraded to operate at twice the toroidal field and plasma current (up to 1 T and 2 MA), with a second, more tangentially aimed neutral beam (NB) for current and rotation control, allowing for pulse lengths up to 5 s. Recent NSTX physics analyses have addressed topics that will allow NSTX-Upgrade to achieve the research goals critical to a Fusion Nuclear Science Facility. These include producing stable, 100% non-inductive operation in high-performance plasmas, assessing plasma-material interface (PMI) solutions to handle the high heat loads expected in the next-step devices and exploringmore » the unique spherical torus (ST) parameter regimes to advance predictive capability. Non-inductive operation and current profile control in NSTX-U will be facilitated by co-axial helicity injection (CHI) as well as radio frequency (RF) and NB heating. CHI studies using NIMROD indicate that the reconnection process is consistent with the 2D Sweet-Parker theory. Full-wave AORSA simulations show that RF power losses in the scrape-off layer (SOL) increase significantly for both NSTX and NSTX-U when the launched waves propagate in the SOL. Moreover, Toroidal Alfven eigenmode avalanches and higher frequency Alfven eigenmodes can affect NB-driven current through energy loss and redistribution of fast ions. The inclusion of rotation and kinetic resonances, which depend on collisionality, is necessary for predicting experimental stability thresholds of fast growing ideal wall and resistive wall modes. Neutral beams and neoclassical toroidal viscosity generated from applied 3D fields can be used as actuators to produce rotation profiles optimized for global stability. DEGAS-2 has been used to study the dependence of gas penetration on SOL temperatures and densities for the MGI system being implemented on the Upgrade for disruption mitigation. PMI studies have focused on the effect of ELMs and 3D fields on plasma detachment and heat flux handling. Simulations indicate that snowflake and impurity seeded radiative divertors are candidates for heat flux mitigation in NSTX-U. Studies of lithium evaporation on graphite surfaces indicate that lithium increases oxygen surface concentrations on graphite, and deuterium-oxygen affinity, which increases deuterium pumping and reduces recycling. In situ and test-stand experiments of lithiated graphite and molybdenum indicate temperature-enhanced sputtering, although that test-stand studies also show the potential for heat flux reduction through lithium vapour shielding. Non-linear gyro kinetic simulations have indicated that ion transport can be enhanced by a shear-flow instability, and that non-local effects are necessary to explain the observed rapid changes in plasma turbulence. Predictive simulations have shown agreement between a microtearing-based reduced transport model and the measured electron temperatures in a microtearing unstable regime. Finally, two Alfven eigenmode-driven fast ion transport models have been developed and successfully benchmarked against NSTX data. Upgrade construction is moving on schedule with initial physics research operation of NSTX-U planned for mid-2015.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1256734-overview-recent-physics-results-from-nstx','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1256734-overview-recent-physics-results-from-nstx"><span>An overview of recent physics results from NSTX</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kaye, S. M.; Abrams, T.; Ahn, J. -W.; ...</p> <p>2015-03-27</p> <p>Currently, the National Spherical Torus Experiment (NSTX) is being upgraded to operate at twice the toroidal field and plasma current (up to 1 T and 2 MA), with a second, more tangentially aimed neutral beam (NB) for current and rotation control, allowing for pulse lengths up to 5 s. Recent NSTX physics analyses have addressed topics that will allow NSTX-Upgrade to achieve the research goals critical to a Fusion Nuclear Science Facility. These include producing stable, 100% non-inductive operation in high-performance plasmas, assessing plasma-material interface (PMI) solutions to handle the high heat loads expected in the next-step devices and exploringmore » the unique spherical torus (ST) parameter regimes to advance predictive capability. Non-inductive operation and current profile control in NSTX-U will be facilitated by co-axial helicity injection (CHI) as well as radio frequency (RF) and NB heating. CHI studies using NIMROD indicate that the reconnection process is consistent with the 2D Sweet-Parker theory. Full-wave AORSA simulations show that RF power losses in the scrape-off layer (SOL) increase significantly for both NSTX and NSTX-U when the launched waves propagate in the SOL. Moreover, Toroidal Alfven eigenmode avalanches and higher frequency Alfven eigenmodes can affect NB-driven current through energy loss and redistribution of fast ions. The inclusion of rotation and kinetic resonances, which depend on collisionality, is necessary for predicting experimental stability thresholds of fast growing ideal wall and resistive wall modes. Neutral beams and neoclassical toroidal viscosity generated from applied 3D fields can be used as actuators to produce rotation profiles optimized for global stability. DEGAS-2 has been used to study the dependence of gas penetration on SOL temperatures and densities for the MGI system being implemented on the Upgrade for disruption mitigation. PMI studies have focused on the effect of ELMs and 3D fields on plasma detachment and heat flux handling. Simulations indicate that snowflake and impurity seeded radiative divertors are candidates for heat flux mitigation in NSTX-U. Studies of lithium evaporation on graphite surfaces indicate that lithium increases oxygen surface concentrations on graphite, and deuterium-oxygen affinity, which increases deuterium pumping and reduces recycling. In situ and test-stand experiments of lithiated graphite and molybdenum indicate temperature-enhanced sputtering, although that test-stand studies also show the potential for heat flux reduction through lithium vapour shielding. Non-linear gyro kinetic simulations have indicated that ion transport can be enhanced by a shear-flow instability, and that non-local effects are necessary to explain the observed rapid changes in plasma turbulence. Predictive simulations have shown agreement between a microtearing-based reduced transport model and the measured electron temperatures in a microtearing unstable regime. Finally, two Alfven eigenmode-driven fast ion transport models have been developed and successfully benchmarked against NSTX data. Upgrade construction is moving on schedule with initial physics research operation of NSTX-U planned for mid-2015.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21505435','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21505435"><span>Magnetic vortex core reversal by excitation of spin waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kammerer, Matthias; Weigand, Markus; Curcic, Michael; Noske, Matthias; Sproll, Markus; Vansteenkiste, Arne; Van Waeyenberge, Bartel; Stoll, Hermann; Woltersdorf, Georg; Back, Christian H; Schuetz, Gisela</p> <p>2011-01-01</p> <p>Micron-sized magnetic platelets in the flux-closed vortex state are characterized by an in-plane curling magnetization and a nanometer-sized perpendicularly magnetized vortex core. Having the simplest non-trivial configuration, these objects are of general interest to micromagnetics and may offer new routes for spintronics applications. Essential progress in the understanding of nonlinear vortex dynamics was achieved when low-field core toggling by excitation of the gyrotropic eigenmode at sub-GHz frequencies was established. At frequencies more than an order of magnitude higher vortex state structures possess spin wave eigenmodes arising from the magneto-static interaction. Here we demonstrate experimentally that the unidirectional vortex core reversal process also occurs when such azimuthal modes are excited. These results are confirmed by micromagnetic simulations, which clearly show the selection rules for this novel reversal mechanism. Our analysis reveals that for spin-wave excitation the concept of a critical velocity as the switching condition has to be modified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017R%26QE...60..525K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017R%26QE...60..525K"><span>Eigenmodes of Multilayer Slit Structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kovalenko, A. N.</p> <p>2017-12-01</p> <p>We generalize the high-efficiency numerical-analytical method of calculating the eigenmodes of a microstrip line, which was proposed in [1], to multilayer slit structures. The obtained relationships make it possible to allow for the multilayer nature of the medium on the basis of solving the electrodynamic problem for a two-layer structure. The algebraic models of a single line and coupled slit lines in a multilayer dielectric medium are constructed. The matrix elements of the system of linear algebraic equations, which is used to determine the expansion coefficients of the electric field inside the slits in a Chebyshev basis, are converted to rapidly convergent series. The constructed models allow one to use computer simulation to obtain numerical results with high speed and accuracy, regardless of the number of dielectric layers. The presented results of a numerical study of the method convergence confirm high efficiency of the method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770004401','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770004401"><span>The eigenvalue spectrum of the Orr-Sommerfeld problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Antar, B. N.</p> <p>1976-01-01</p> <p>A numerical investigation of the temporal eigenvalue spectrum of the ORR-Sommerfeld equation is presented. Two flow profiles are studied, the plane Poiseuille flow profile and the Blasius boundary layer (parallel): flow profile. In both cases a portion of the complex c-plane bounded by 0 less than or equal to CR sub r 1 and -1 less than or equal to ci sub i 0 is searched and the eigenvalues within it are identified. The spectra for the plane Poiseuille flow at alpha = 1.0 and R = 100, 1000, 6000, and 10000 are determined and compared with existing results where possible. The spectrum for the Blasius boundary layer flow at alpha = 0.308 and R = 998 was found to be infinite and discrete. Other spectra for the Blasius boundary layer at various Reynolds numbers seem to confirm this result. The eigenmodes belonging to these spectra were located and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1362224-poloidal-toroidal-plasmons-fields-multilayer-nanorings','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1362224-poloidal-toroidal-plasmons-fields-multilayer-nanorings"><span>Poloidal and toroidal plasmons and fields of multilayer nanorings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Garapati, K. V.; Salhi, M.; Kouchekian, S.; ...</p> <p>2017-04-17</p> <p>Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit andmore » obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22403023-spin-wave-eigenmodes-single-coupled-sub-rectangular-permalloy-dots','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22403023-spin-wave-eigenmodes-single-coupled-sub-rectangular-permalloy-dots"><span>Spin wave eigenmodes in single and coupled sub-150 nm rectangular permalloy dots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Carlotti, G., E-mail: giovanni.carlotti@fisica.unipg.it; Madami, M.; Tacchi, S.</p> <p>2015-05-07</p> <p>We present the results of a Brillouin light scattering investigation of thermally excited spin wave eigenmodes in square arrays of either isolated rectangular dots of permalloy or twins of dipolarly coupled elements, placed side-by-side or head-to-tail. The nanodots, fabricated by e-beam lithography and lift-off, are 20 nm thick and have the major size D in the range between 90 nm and 150 nm. The experimental spectra show the presence of two main peaks, corresponding to modes localized either at the edges or in the center of the dots. Their frequency dependence on the dot size and on the interaction with adjacent elements hasmore » been measured and successfully interpreted on the basis of dynamical micromagnetic simulations. The latter enabled us also to describe the spatial profile of the eigenmodes, putting in evidence the effects induced by the dipolar interaction between coupled dots. In particular, in twinned dots the demagnetizing field is appreciably modified in proximity of the “internal edges” if compared to the “external” ones, leading to a splitting of the edge mode. These results can be relevant for the exploitation of sub-150 nm magnetic dots in new applications, such as magnonic metamaterials, bit-patterned storage media, and nano-magnetic logic devices.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DPPJP8105W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DPPJP8105W"><span>M3D-K Simulations of Beam-Driven Alfven Eigenmodes in ASDEX-U</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Ge; Fu, Guoyong; Lauber, Philipp; Schneller, Mirjam</p> <p>2013-10-01</p> <p>Core-localized Alfven eigenmodes are often observed in neutral beam-heated plasma in ASDEX-U tokamak. In this work, hybrid simulations with the global kinetic/MHD hybrid code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven Alfven eigenmodes using experimental parameters and profiles of an ASDEX-U discharge. The safety factor q profile is weakly reversed with minimum q value about qmin = 3.0. The simulation results show that the n = 3 mode transits from a reversed shear Alfven eigenmode (RSAE) to a core-localized toroidal Alfven eigenmode (TAE) as qmin drops from 3.0 to 2.79, consistent with results from the stability code NOVA as well as the experimental measurement. The M3D-K results are being compared with those of the linear gyrokinetic stability code LIGKA for benchmark. The simulation results will also be compared with the measured mode frequency and mode structure. This work was funded by the Max-Planck/Princeton Center for Plasma Physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PhDT........10O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PhDT........10O"><span>Electrokinetic transport phenomena: Mobility measurement and electrokinetic instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oddy, Michael Huson</p> <p></p> <p>Miniaturization and integration of traditional bioassay procedures into microfabricated on-chip assay systems, commonly referred to as "Micro Total Analysis" (muTAS) systems, may have a significant impact on the fields of genomics, proteomics, and clinical analysis. These bioanalytical microsystems leverage electroosmosis and electrophoresis for sample transport, mixing, manipulation, and separation. This dissertation addresses the following three topics relevant to such systems: a new diagnostic for measuring the electrophoretic mobility of sub-micron, fluorescently-labeled particles and the electroosmotic mobility of a microchannel; a novel method and device for rapidly stirring micro- and nanoliter volume solutions for microfluidic bioanalytical applications; and a multiple-species electrokinetic instability model. Accurate measurement of the electrophoretic particle mobility and the electroosmotic mobility of microchannel surfaces is crucial to understanding the stability of colloidal suspensions, obtaining particle tracking-based velocimetry measurements of electroosmotic flow fields, and the quantification of electrokinetic bioanalytical device performance. A method for determining these mobilities from alternating and direct current electrokinetic particle tracking measurements is presented. The ability to rapidly mix fluids at low Reynolds numbers is important to the functionality of many bioanalytical, microfluidic devices. We present an electrokinetic process for rapidly stirring microflow streams by initiating an electrokinetic flow instability. The design, fabrication and performance analysis of two micromixing devices capable of rapidly stirring two low Reynolds number fluid streams are presented. Electroosmotic and electrophoretic transport in the presence of conductivity mismatches between reagent streams and the background electrolytes, can lead to an unstable flow field generating significant sample dispersion. In the multiple-species electrokinetic instability model, we consider a high aspect ratio microchannel geometry, a conductivity gradient orthogonal to the applied electric field, and a four-species chemistry model. A linear stability analysis of the depth-averaged governing equations shows unstable eigenmodes for conductivity ratios as close to unity as 1.01. Experiments and full nonlinear simulations of the governing equations were conducted for a conductivity ratio of 1.05. Images of the disturbance dye field from the nonlinear simulations show good qualitative and quantitative agreement with experiment. Species electromigration is shown to a have significant influence on the development of the conductivity field and instability dynamics in multi-ion configurations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPA....8e5317Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPA....8e5317Z"><span>Torsional wave band gap properties in a circular plate of a two-dimensional generalized phononic crystal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Lei; Shu, Haisheng; Liang, Shanjun; Shi, Xiaona; An, Shuowei; Ren, Wanyue; Zhu, Jie</p> <p>2018-05-01</p> <p>The torsional wave band gap properties of a two-dimensional generalized phononic crystal (GPC) are investigated in this paper. The GPC structure considered is consisted of two different materials being arranged with radial and circumferential periodicities simultaneously. Based on the viewpoint of energy distribution and the finite element method, the power flow, energy density, sound intensity vector together with the stress field of the structure excited by torsional load are numerically calculated and discussed. Our results show that, the band gap of Bragg type exists in these two-dimensional composite structures, and the band gap range is mainly determined by radial periodicity while the circumferential periodicity would result in some transmission peaks within the band gap. These peaks are mainly produced by two different mechanisms, the energy leakage occurred in circumferential channels and the excitation of the local eigenmodes of certain scatterers. These results may be useful in torsional vibration control for various rotational parts and components, and in the application of energy harvesting, etc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20301124','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20301124"><span>Real time characterization of hydrodynamics in optically trapped networks of micro-particles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Curran, Arran; Yao, Alison M; Gibson, Graham M; Bowman, Richard; Cooper, Jon M; Padgett, Miles L</p> <p>2010-04-01</p> <p>The hydrodynamic interactions of micro-silica spheres trapped in a variety of networks using holographic optical tweezers are measured and characterized in terms of their predicted eigenmodes. The characteristic eigenmodes of the networks are distinguishable within 20-40 seconds of acquisition time. Three different multi-particle networks are considered; an eight-particle linear chain, a nine-particle square grid and, finally, an eight-particle ring. The eigenmodes and their decay rates are shown to behave as predicted by the Oseen tensor and the Langevin equation, respectively. Finally, we demonstrate the potential of using our micro-ring as a non-invasive sensor to the local environmental viscosity, by showing the distortion of the eigenmode spectrum due to the proximity of a planar boundary. ((c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvB..96s5404T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvB..96s5404T"><span>Circularly polarized vacuum field in three-dimensional chiral photonic crystals probed by quantum dot emission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, S.; Ota, Y.; Tajiri, T.; Tatebayashi, J.; Iwamoto, S.; Arakawa, Y.</p> <p>2017-11-01</p> <p>The modification of a circularly polarized vacuum field in three-dimensional chiral photonic crystals was measured by spontaneous emission from quantum dots in the structures. Due to the circularly polarized eigenmodes along the helical axis in the GaAs-based mirror-asymmetric structures we studied, we observed highly circularly polarized emission from the quantum dots. Both spectroscopic and time-resolved measurements confirmed that the obtained circularly polarized light was influenced by a large difference in the photonic density of states between the orthogonal components of the circular polarization in the vacuum field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28085851','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28085851"><span>All-fiber magnetic field sensor based on tapered thin-core fiber and magnetic fluid.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Junying; Qiao, Xueguang; Yang, Hangzhou; Wang, Ruohui; Rong, Qiangzhou; Lim, Kok-Sing; Ahmad, Harith</p> <p>2017-01-10</p> <p>A method for the measurement of a magnetic field by combining a tapered thin-core fiber (TTCF) and magnetic fluid is proposed and experimentally demonstrated. The modal interference effect is caused by the core mode and excited eigenmodes in the TTCF cladding. The transmission spectra of the proposed sensor are measured and theoretically analyzed at different magnetic field strengths. The results field show that the magnetic sensitivity reaches up to -0.1039  dB/Oe in the range of 40-1600 e. The proposed method possesses high sensitivity and low cost compared with other expensive methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P41A2047G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P41A2047G"><span>The precession dynamo experiment at HZDR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giesecke, A.; Gundrum, T.; Herault, J.; Stefani, F.; Gerbeth, G.</p> <p>2015-12-01</p> <p>In a next generation dynamo experiment currently under development atthe Helmholtz-Zentrum Dresden-Rossendorf (HZDR) a fluid flow of liquidsodium, solely driven by precession, will be considered as a possiblesource for magnetic field generation. The experiment is mainlymotivated by alternative concepts for astrophysical dynamos that arebased on mechanical flow driving. For example, it has long beendiscussed whether precession may be a complementary power source forthe geodynamo (Malkus, Science 1968) or for the ancient lunar dynamodue to the Earth-driven precession of the lunar spin axis (Dwyer, Nature 2011).We will present the current state of development of the dynamoexperiment together with results from non-linear hydrodynamicsimulations with moderate precessional forcing. Our simulations reveala non-axisymmetric forced mode with an amplitude of up to one fourthof the rotation velocity of the cylindrical container confirming thatprecession provides a rather efficient flow driving mechanism even atmoderate precession rates.More relevant for dynamo action might be free Kelvin modes (thenatural flow eigenmodes in a rotating cylinder) with higher azimuthalwave number. These modes may become relevant when constituting atriadic resonance with the fundamental forced mode, i.e., when theheight of the container matches their axial wave lengths. We findtriadic resonances at aspect ratios close to those predicted by thelinear theory except around the primary resonance of the forcedmode. In that regime we still identify free Kelvin modes propagatingin retrograde direction but none of them can be assigned to a triade.Our results will enter into the development of flow models that willbe used in kinematic simulations of the electromagnetic inductionequation in order to determine whether a precession driven flow willbe capable to drive a dynamo at all and to limit the parameter spacewithin which the occurrence of dynamo action is most promising.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004APS..DPPBP1046L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004APS..DPPBP1046L"><span>Studies of a driven Alfvénic cavity and cylindrical Alfven eigenmodes in LAPD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lybarger, Warren; Carter, Troy; Brugman, Brian; Pribyl, Pat</p> <p>2004-11-01</p> <p>An Alfven wave MASER has been observed in the Large Plasma Device (LAPD), where an instability drives a resonant Alfven wave in the cavity defined by the cathode and anode of the discharge source(J.E. Maggs and G.J. Morales, PRL, 91, 035004-1 (2003)). We will present a study of external driving of this cavity, motivated by a desire to find a source of large amplitude Alfvén waves for studies of nonlinear interactions. The cavity is driven by modulating the discharge current using a broadband, high power push-pull amplifier. The Alfvén waves launched by exciting the cavity are large amplitude (δ B/B ˜ 1%) and are eigenmodes of the cylindrical column. Experimental results will be presented on the structure of the eigenmodes in the plasma column, the Q-value of the cavity and its dependence on plasma parameters, and deviations in the structure of the eigenmodes from ideal MHD due to kinetic effects. Experimental results will be compared to theories of Alfvén eigenmodes in a cylindrical column. * Work supported by DOE grant # DE-FG03-02ER54688</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22614132-drift-geodesic-effects-ion-sound-eigenmode-tokamak-plasmas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22614132-drift-geodesic-effects-ion-sound-eigenmode-tokamak-plasmas"><span>Drift and geodesic effects on the ion sound eigenmode in tokamak plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Elfimov, A. G., E-mail: elfimov@if.usp.br; Smolyakov, A. I., E-mail: andrei.smolyakov@usask.ca; Melnikov, A. V.</p> <p></p> <p>A kinetic treatment of geodesic acoustic modes (GAMs), taking into account ion parallel dynamics, drift and the second poloidal harmonic effects is presented. It is shown that first and second harmonics of the ion sound modes, which have respectively positive and negative radial dispersion, can be coupled due to the geodesic and drift effects. This coupling results in the drift geodesic ion sound eigenmode with a frequency below the standard GAM continuum frequency. Such eigenmode may be able to explain the split modes observed in some experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23616939','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23616939"><span>Bimodal atomic force microscopy driving the higher eigenmode in frequency-modulation mode: Implementation, advantages, disadvantages and comparison to the open-loop case.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ebeling, Daniel; Solares, Santiago D</p> <p>2013-01-01</p> <p>We present an overview of the bimodal amplitude-frequency-modulation (AM-FM) imaging mode of atomic force microscopy (AFM), whereby the fundamental eigenmode is driven by using the amplitude-modulation technique (AM-AFM) while a higher eigenmode is driven by using either the constant-excitation or the constant-amplitude variant of the frequency-modulation (FM-AFM) technique. We also offer a comparison to the original bimodal AFM method, in which the higher eigenmode is driven with constant frequency and constant excitation amplitude. General as well as particular characteristics of the different driving schemes are highlighted from theoretical and experimental points of view, revealing the advantages and disadvantages of each. This study provides information and guidelines that can be useful in selecting the most appropriate operation mode to characterize different samples in the most efficient and reliable way.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010APS..DPPCP9013K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010APS..DPPCP9013K"><span>Axisymmetric Eigenmodes of Spheroidal Pure Electron Plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kawai, Yosuke; Saitoh, Haruhiko; Yoshida, Zensho; Kiwamoto, Yasuhito</p> <p>2010-11-01</p> <p>The axisymmetric electrostatic eigenmodes of spheroidal pure electron plasmas have been studied experimentally. It is confirmed that the observed spheroidal plasma attains a theoretically expected equilibrium density distribution, with the exception of a low-density halo distribution surrounding the plasma. When the eigenmode frequency observed for the plasma is compared with the frequency predicted by the dispersion relation derived under ideal conditions wherein the temperature is zero and the boundary is located at an infinite distance from the plasma, it is observed that the absolute value of the observed frequency is systematically higher than the theoretical prediction. Experimental examinations and numerical calculations indicate that the upward shift of the eigenmode frequency cannot be accounted for solely by the finite temperature effect, but is significantly affected by image charges induced on the conducting boundary and the resulting distortion of the density profile from the theoretical expectation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1358658-nonlinear-simulations-beam-driven-compressional-alfven-eigenmodes-nstx','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1358658-nonlinear-simulations-beam-driven-compressional-alfven-eigenmodes-nstx"><span>Nonlinear simulations of beam-driven Compressional Alfv´en Eigenmodes in NSTX</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Belova, Elena V.; Gorelenkov, N. N.; Crocker, N. A.; ...</p> <p>2017-03-10</p> <p>We present results for the 3D nonlinear simulations of neutral-beam-driven compressional Alfv´en eigenmodes (CAEs) in the National Spherical Torus Experiment (NSTX). Hybrid MHD-particle simulations for the H-mode NSTX discharge (shot 141398) using the HYM code show unstable CAE modes for a range of toroidal mode numbers, n = 4 - 9, and frequencies below the ion cyclotron frequency. It is found that the essential feature of CAEs is their coupling to kinetic Alfv´en wave (KAW) that occurs on the high-field side at the Alfv´en resonance location. We frequently observe high-frequency Alfv´en eigenmodes in beam-heated NSTX plasmas, and have been linkedmore » to flattening of the electron temperature profiles at high beam power. Coupling between CAE and KAW suggests an energy channeling mechanism to explain these observations, in which beam driven CAEs dissipate their energy at the resonance location, therefore significantly modifying the energy deposition profile. Nonlinear simulations demonstrate that CAEs can channel the energy of the beam ions from the injection region near the magnetic axis to the location of the resonant mode conversion at the edge of the beam density profile. Furthermore, a set of nonlinear simulations show that the CAE instability saturates due to nonlinear particle trapping, and a large fraction of beam energy can be transferred to several unstable CAEs of relatively large amplitudes and absorbed at the resonant location. Absorption rate shows a strong scaling with the beam power.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1358658','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1358658"><span>Nonlinear simulations of beam-driven Compressional Alfv´en Eigenmodes in NSTX</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Belova, Elena V.; Gorelenkov, N. N.; Crocker, N. A.</p> <p></p> <p>We present results for the 3D nonlinear simulations of neutral-beam-driven compressional Alfv´en eigenmodes (CAEs) in the National Spherical Torus Experiment (NSTX). Hybrid MHD-particle simulations for the H-mode NSTX discharge (shot 141398) using the HYM code show unstable CAE modes for a range of toroidal mode numbers, n = 4 - 9, and frequencies below the ion cyclotron frequency. It is found that the essential feature of CAEs is their coupling to kinetic Alfv´en wave (KAW) that occurs on the high-field side at the Alfv´en resonance location. We frequently observe high-frequency Alfv´en eigenmodes in beam-heated NSTX plasmas, and have been linkedmore » to flattening of the electron temperature profiles at high beam power. Coupling between CAE and KAW suggests an energy channeling mechanism to explain these observations, in which beam driven CAEs dissipate their energy at the resonance location, therefore significantly modifying the energy deposition profile. Nonlinear simulations demonstrate that CAEs can channel the energy of the beam ions from the injection region near the magnetic axis to the location of the resonant mode conversion at the edge of the beam density profile. Furthermore, a set of nonlinear simulations show that the CAE instability saturates due to nonlinear particle trapping, and a large fraction of beam energy can be transferred to several unstable CAEs of relatively large amplitudes and absorbed at the resonant location. Absorption rate shows a strong scaling with the beam power.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100018576','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100018576"><span>Global Instability on Laminar Separation Bubbles-Revisited</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Theofilis, Vassilis; Rodriquez, Daniel; Smith, Douglas</p> <p>2010-01-01</p> <p>In the last 3 years, global linear instability of LSB has been revisited, using state-of-the-art hardware and algorithms. Eigenspectra of LSB flows have been understood and classified in branches of known and newly-discovered eigenmodes. Major achievements: World-largest numerical solutions of global eigenvalue problems are routinely performed. Key aerodynamic phenomena have been explained via critical point theory, applied to our global mode results. Theoretical foundation for control of LSB flows has been laid. Global mode of LSB at the origin of observable phenomena. U-separation on semi-infinite plate. Stall cells on (stalled) airfoil. Receptivity/Sensitivity/AFC feasible (practical?) via: Adjoint EVP solution. Direct/adjoint coupling (the Crete connection). Minor effect of compressibility on global instability in the subsonic compressible regime. Global instability analysis of LSB in realistic supersonic flows apparently quite some way down the horizon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22614050-alfven-eigenmode-evolution-computed-venus-kinx-codes-iter-baseline-scenario','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22614050-alfven-eigenmode-evolution-computed-venus-kinx-codes-iter-baseline-scenario"><span>Alfvén eigenmode evolution computed with the VENUS and KINX codes for the ITER baseline scenario</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Isaev, M. Yu., E-mail: isaev-my@nrcki.ru; Medvedev, S. Yu.; Cooper, W. A.</p> <p></p> <p>A new application of the VENUS code is described, which computes alpha particle orbits in the perturbed electromagnetic fields and its resonant interaction with the toroidal Alfvén eigenmodes (TAEs) for the ITER device. The ITER baseline scenario with Q = 10 and the plasma toroidal current of 15 MA is considered as the most important and relevant for the International Tokamak Physics Activity group on energetic particles (ITPA-EP). For this scenario, typical unstable TAE-modes with the toroidal index n = 20 have been predicted that are localized in the plasma core near the surface with safety factor q = 1.more » The spatial structure of ballooning and antiballooning modes has been computed with the ideal MHD code KINX. The linear growth rates and the saturation levels taking into account the damping effects and the different mode frequencies have been calculated with the VENUS code for both ballooning and antiballooning TAE-modes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJMPA..3350054C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJMPA..3350054C"><span>Distribution law of the Dirac eigenmodes in QCD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Catillo, Marco; Glozman, Leonid Ya.</p> <p>2018-04-01</p> <p>The near-zero modes of the Dirac operator are connected to spontaneous breaking of chiral symmetry in QCD (SBCS) via the Banks-Casher relation. At the same time, the distribution of the near-zero modes is well described by the Random Matrix Theory (RMT) with the Gaussian Unitary Ensemble (GUE). Then, it has become a standard lore that a randomness, as observed through distributions of the near-zero modes of the Dirac operator, is a consequence of SBCS. The higher-lying modes of the Dirac operator are not affected by SBCS and are sensitive to confinement physics and related SU(2)CS and SU(2NF) symmetries. We study the distribution of the near-zero and higher-lying eigenmodes of the overlap Dirac operator within NF = 2 dynamical simulations. We find that both the distributions of the near-zero and higher-lying modes are perfectly described by GUE of RMT. This means that randomness, while consistent with SBCS, is not a consequence of SBCS and is linked to the confining chromo-electric field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10105E..0KG','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10105E..0KG"><span>Exceptional points in anisotropic photonic structures: from non-Hermitian physics to possible device applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grundmann, Marius; Richter, Steffen; Michalsky, Tom; Sturm, Chris; Zúñiga-Pérez, Jesús; Schmidt-Grund, Rüdiger</p> <p>2017-02-01</p> <p>We demonstrate that exceptional points exist in fully transparent, optically "effectively" biaxial, anisotropic micro-cavities, fabricated using an uniaxial cavity material with its axis inclined to the Bragg mirror growth direction. This is similar to the existence of singular (optic) axes in absorbing biaxial crystals, but the lack of time reversal symmetry is mediated by the mode broadening, i.e. the photon escape from the - in principle - open cavity system. As a consequence the eigenmodes are generally elliptically polarized, and completely circularly polarized eigenmodes are expected in certain directions. Via geometric and chemical composition design degrees of freedom, the spectral and angular position of these chiral modes can be rationally designed. Possible applications arise from the use of such directions for circularly polarized emission without the use of spin injection or internal or external magnetic fields. Also the coupling of such modes to excitons, adding oscillator strength to the system, seems a promising avenue of research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvA..97d3804S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvA..97d3804S"><span>Enhanced response of non-Hermitian photonic systems near exceptional points</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sunada, Satoshi</p> <p>2018-04-01</p> <p>This paper theoretically and numerically studies the response characteristics of non-Hermitian resonant photonic systems operating near an exceptional point (EP), where two resonant eigenmodes coalesce. It is shown that a system near an EP can exhibit a non-Lorentzian frequency response, whose line shape and intensity strongly depend on the modal decay rate and coupling parameters for the input waves, unlike a normal Lorentzian response around a single resonance. In particular, it is shown that the peak intensity of the frequency response is inversely proportional to the fourth power of the modal decay rate and can be significantly enhanced with the aid of optical gain. The theoretical results are numerically verified by a full wave simulation of a microring cavity with gain. In addition, the effects of the nonlinear gain saturation and spontaneous emission are discussed. The response enhancement and its parametric dependence may be useful for designing and controlling the excitation of eigenmodes by external fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97a3102Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97a3102Y"><span>Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, C. X.; Xue, C.; Liu, J.; Hu, X. Y.; Liu, Y. Y.; Ye, W. H.; Wang, L. F.; Wu, J. F.; Fan, Z. F.</p> <p>2018-01-01</p> <p>In this article, multiple eigen-systems including linear growth rates and eigen-functions have been discovered for the Rayleigh-Taylor instability (RTI) by numerically solving the Sturm-Liouville eigen-value problem in the case of two-dimensional plane geometry. The system called the first mode has the maximal linear growth rate and is just extensively studied in literature. Higher modes have smaller eigen-values, but possess multi-peak eigen-functions which bring on multiple pairs of vortices in the vorticity field. A general fitting expression for the first four eigen-modes is presented. Direct numerical simulations show that high modes lead to appearances of multi-layered spike-bubble pairs, and lots of secondary spikes and bubbles are also generated due to the interactions between internal spikes and bubbles. The present work has potential applications in many research and engineering areas, e.g., in reducing the RTI growth during capsule implosions in inertial confinement fusion.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvL.120p7203L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvL.120p7203L"><span>Exploration of Fermi-Pasta-Ulam Behavior in a Magnetic System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lewis, Jeramy; Camley, Robert E.; Anderson, Nicholas R.</p> <p>2018-04-01</p> <p>We study nonlinear spin motion in one-dimensional magnetic chains. We find significant differences from the classic Fermi-Pasta-Ulam (FPU) problem examining nonlinear elastic motion in a chain. We find that FPU behavior, the transfer of energy among low order eigenmodes, does not occur in magnetic systems with only exchange and external fields, but does exist if a uniaxial anisotropy is also present. The FPU behavior may be altered or turned off through the magnitude and orientation of an external magnetic field. A realistic micromagnetic model shows such behavior could be measurable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20783121-weakly-collisional-landau-damping-three-dimensional-bernstein-greene-kruskal-modes-new-results-old-problems','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20783121-weakly-collisional-landau-damping-three-dimensional-bernstein-greene-kruskal-modes-new-results-old-problems"><span>Weakly collisional Landau damping and three-dimensional Bernstein-Greene-Kruskal modes: New results on old problems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ng, C.; Bhattacharjee, A.; Skiff, F.</p> <p>2006-05-15</p> <p>Landau damping and Bernstein-Greene-Kruskal (BGK) modes are among the most fundamental concepts in plasma physics. While the former describes the surprising damping of linear plasma waves in a collisionless plasma, the latter describes exact undamped nonlinear solutions of the Vlasov equation. There does exist a relationship between the two: Landau damping can be described as the phase mixing of undamped eigenmodes, the so-called Case-Van Kampen modes, which can be viewed as BGK modes in the linear limit. While these concepts have been around for a long time, unexpected new results are still being discovered. For Landau damping, we show thatmore » the textbook picture of phase mixing is altered profoundly in the presence of collision. In particular, the continuous spectrum of Case-Van Kampen modes is eliminated and replaced by a discrete spectrum, even in the limit of zero collision. Furthermore, we show that these discrete eigenmodes form a complete set of solutions. Landau-damped solutions are then recovered as true eigenmodes (which they are not in the collisionless theory). For BGK modes, our interest is motivated by recent discoveries of electrostatic solitary waves in magnetospheric plasmas. While one-dimensional BGK theory is quite mature, there appear to be no exact three-dimensional solutions in the literature (except for the limiting case when the magnetic field is sufficiently strong so that one can apply the guiding-center approximation). We show, in fact, that two- and three-dimensional solutions that depend only on energy do not exist. However, if solutions depend on both energy and angular momentum, we can construct exact three-dimensional solutions for the unmagnetized case, and two-dimensional solutions for the case with a finite magnetic field. The latter are shown to be exact, fully electromagnetic solutions of the steady-state Vlasov-Poisson-Ampere system.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003DyAtO..37..171A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003DyAtO..37..171A"><span>Non-normal perturbation growth in idealised island and headland wakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aiken, C. M.; Moore, A. M.; Middleton, J. H.</p> <p>2003-12-01</p> <p>Generalised linear stability theory is used to calculate the linear perturbations that furnish most rapid growth in energy in a model of a steady recirculating island wake. This optimal peturbation is found to be antisymmetric and to evolve into a von Kármán vortex street. Eigenanalysis of the linearised system reveals that the eigenmodes corresponding to vortex sheet formation are damped, so the growth of the perturbation is understood through the non-normality of the linearised system. Qualitatively similar perturbation growth is shown to occur in a non-linear model of stochastically-forced subcritical flow, resulting in transition to an unsteady wake. Free-stream variability with amplitude 8% of the mean inflow speed sustains vortex street structures in the non-linear model with perturbation velocities the order of the inflow speed, suggesting that environmental stochastic forcing may similarly be capable of exciting growing disturbances in real island wakes. To support this, qualitatively similar perturbation growth is demonstrated in the straining wake of a realistic island obstacle. It is shown that for the case of an idealised headland, where the vortex street eigenmodes are lacking, vortex sheets are produced through a similar non-normal process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20577312','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20577312"><span>Numerical solution of the exact cavity equations of motion for an unstable optical resonator.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bowers, M S; Moody, S E</p> <p>1990-09-20</p> <p>We solve numerically, we believe for the first time, the exact cavity equations of motion for a realistic unstable resonator with a simple gain saturation model. The cavity equations of motion, first formulated by Siegman ["Exact Cavity Equations for Lasers with Large Output Coupling," Appl. Phys. Lett. 36, 412-414 (1980)], and which we term the dynamic coupled modes (DCM) method of solution, solve for the full 3-D time dependent electric field inside the optical cavity by expanding the field in terms of the actual diffractive transverse eigenmodes of the bare (gain free) cavity with time varying coefficients. The spatially varying gain serves to couple the bare cavity transverse modes and to scatter power from mode to mode. We show that the DCM method numerically converges with respect to the number of eigenmodes in the basis set. The intracavity intensity in the numerical example shown reaches a steady state, and this steady state distribution is compared with that computed from the traditional Fox and Li approach using a fast Fourier transform propagation algorithm. The output wavefronts from both methods are quite similar, and the computed output powers agree to within 10%. The usefulness and advantages of using this method for predicting the output of a laser, especially pulsed lasers used for coherent detection, are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DPS....4741706V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DPS....4741706V"><span>Predicting Precession Rates from Secular Dynamics for Extra-solar Multi-planet Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Laerhoven, Christa L.</p> <p>2015-11-01</p> <p>Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods. Using this catalog, and assuming a Gausian distribution for the eigenmode amplitudes and a uniform distribution for the eigenmode phases, I have predicted what range of precession rates the planets may have. Generally, planets that have more than one eigenmode significantly contribute to their eccentricity ('groupies') can have a wide range of possible precession rates, while planets that are 'loners' have a narrow range of possible precession rates. One might have assumed that in any given system, the planets with shorter periods would have faster precession rates. However, I show that in systems where the planets suffer strong secular interactions this is not necessarily the case.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012NucFu..52c3003T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012NucFu..52c3003T"><span>Simulation of Alfvén eigenmode bursts using a hybrid code for nonlinear magnetohydrodynamics and energetic particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Todo, Y.; Berk, H. L.; Breizman, B. N.</p> <p>2012-03-01</p> <p>A hybrid simulation code for nonlinear magnetohydrodynamics (MHD) and energetic-particle dynamics has been extended to simulate recurrent bursts of Alfvén eigenmodes by implementing the energetic-particle source, collisions and losses. The Alfvén eigenmode bursts with synchronization of multiple modes and beam ion losses at each burst are successfully simulated with nonlinear MHD effects for the physics condition similar to a reduced simulation for a TFTR experiment (Wong et al 1991 Phys. Rev. Lett. 66 1874, Todo et al 2003 Phys. Plasmas 10 2888). It is demonstrated with a comparison between nonlinear MHD and linear MHD simulation results that the nonlinear MHD effects significantly reduce both the saturation amplitude of the Alfvén eigenmodes and the beam ion losses. Two types of time evolution are found depending on the MHD dissipation coefficients, namely viscosity, resistivity and diffusivity. The Alfvén eigenmode bursts take place for higher dissipation coefficients with roughly 10% drop in stored beam energy and the maximum amplitude of the dominant magnetic fluctuation harmonic δBm/n/B ~ 5 × 10-3 at the mode peak location inside the plasma. Quadratic dependence of beam ion loss rate on magnetic fluctuation amplitude is found for the bursting evolution in the nonlinear MHD simulation. For lower dissipation coefficients, the amplitude of the Alfvén eigenmodes is at steady levels δBm/n/B ~ 2 × 10-3 and the beam ion losses take place continuously. The beam ion pressure profiles are similar among the different dissipation coefficients, and the stored beam energy is higher for higher dissipation coefficients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22750075','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22750075"><span>Electrodynamic eigenmodes in cellular morphology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cifra, M</p> <p>2012-09-01</p> <p>Eigenmodes of the spherical and ellipsoidal dielectric electromagnetic resonator have been analysed. The sizes and shape of the resonators have been chosen to represent the shape of the interphase and dividing animal cell. Electromagnetic modes that have shape exactly suitable for positioning of the sufficiently large organelles in cell (centrosome, nucleus) have been identified. We analysed direction and magnitude of dielectrophoretic force exerted on large organelles by electric field of the modes. We found that the TM(1m1) mode in spherical resonator acts by centripetal force which drags the large organelles which have higher permittivity than the cytosol to the center of the cell. TM-kind of mode in the ellipsoidal resonator acts by force on large polarizable organelles in a direction that corresponds to the movement of the centrosomes (also nucleus) observed during the cell division, i.e. to the foci of the ellipsoidal cell. Minimal required force (10(-16) N), gradient of squared electric field and corresponding energy (10(-16) J) of the mode have been calculated to have biological significance within the periods on the order of time required for cell division. Minimal required energy of the mode, in order to have biological significance, can be lower in the case of resonance of organelle with the field of the cellular resonator mode. In case of sufficient energy in the biologically relevant mode, electromagnetic field of the mode will act as a positioning or steering mechanism for centrosome and nucleus in the cell, thus contribute to the spatial and dynamical self-organization in biological systems. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Nanot..26d5701W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Nanot..26d5701W"><span>Vibrational shape tracking of atomic force microscopy cantilevers for improved sensitivity and accuracy of nanomechanical measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagner, Ryan; Killgore, Jason P.; Tung, Ryan C.; Raman, Arvind; Hurley, Donna C.</p> <p>2015-01-01</p> <p>Contact resonance atomic force microscopy (CR-AFM) methods currently utilize the eigenvalues, or resonant frequencies, of an AFM cantilever in contact with a surface to quantify local mechanical properties. However, the cantilever eigenmodes, or vibrational shapes, also depend strongly on tip-sample contact stiffness. In this paper, we evaluate the potential of eigenmode measurements for improved accuracy and sensitivity of CR-AFM. We apply a recently developed, in situ laser scanning method to experimentally measure changes in cantilever eigenmodes as a function of tip-sample stiffness. Regions of maximum sensitivity for eigenvalues and eigenmodes are compared and found to occur at different values of contact stiffness. The results allow the development of practical guidelines for CR-AFM experiments, such as optimum laser spot positioning for different experimental conditions. These experiments provide insight into the complex system dynamics that can affect CR-AFM and lay a foundation for enhanced nanomechanical measurements with CR-AFM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21316343-decaying-growing-eigenmodes-open-quantum-systems-biorthogonality-petermann-factor','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21316343-decaying-growing-eigenmodes-open-quantum-systems-biorthogonality-petermann-factor"><span>Decaying and growing eigenmodes in open quantum systems: Biorthogonality and the Petermann factor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lee, Soo-Young</p> <p>2009-10-15</p> <p>We study the biorthogonality between decaying and growing eigenmodes in one-dimensional potential barrier problems. It is shown that Petermann factors K{sub n} of the eigenmodes, a measure of nonorthogonality, are involved in decaying mechanism of an initially confined particle. We also show that the decay tail of the growing modes at an exceptional point (EP), where K{sub n} become infinite, is not exponential, but {approx}t{sup 2}e{sup -{gamma}{sub EP}t}, {gamma}{sub EP} the decay rate of the decaying mode at EP. In addition, the geometrical phase near an EP is illustrated by the evolution of wave function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1372395-direct-numerical-simulation-pebble-bed-flows-database-development-investigation-low-frequency-temporal-instabilities','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1372395-direct-numerical-simulation-pebble-bed-flows-database-development-investigation-low-frequency-temporal-instabilities"><span>Direct Numerical Simulation of Pebble Bed Flows: Database Development and Investigation of Low-Frequency Temporal Instabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Fick, Lambert H.; Merzari, Elia; Hassan, Yassin A.</p> <p>2017-02-20</p> <p>Computational analyses of fluid flow through packed pebble bed domains using the Reynolds-averaged NavierStokes framework have had limited success in the past. Because of a lack of high-fidelity experimental or computational data, optimization of Reynolds-averaged closure models for these geometries has not been extensively developed. In the present study, direct numerical simulation was employed to develop a high-fidelity database that can be used for optimizing Reynolds-averaged closure models for pebble bed flows. A face-centered cubic domain with periodic boundaries was used. Flow was simulated at a Reynolds number of 9308 and cross-verified by using available quasi-DNS data. During the simulations,more » low-frequency instability modes were observed that affected the stationary solution. Furthermore, these instabilities were investigated by using the method of proper orthogonal decomposition, and a correlation was found between the time-dependent asymmetry of the averaged velocity profile data and the behavior of the highest energy eigenmodes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1372395','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1372395"><span>Direct Numerical Simulation of Pebble Bed Flows: Database Development and Investigation of Low-Frequency Temporal Instabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fick, Lambert H.; Merzari, Elia; Hassan, Yassin A.</p> <p></p> <p>Computational analyses of fluid flow through packed pebble bed domains using the Reynolds-averaged NavierStokes framework have had limited success in the past. Because of a lack of high-fidelity experimental or computational data, optimization of Reynolds-averaged closure models for these geometries has not been extensively developed. In the present study, direct numerical simulation was employed to develop a high-fidelity database that can be used for optimizing Reynolds-averaged closure models for pebble bed flows. A face-centered cubic domain with periodic boundaries was used. Flow was simulated at a Reynolds number of 9308 and cross-verified by using available quasi-DNS data. During the simulations,more » low-frequency instability modes were observed that affected the stationary solution. Furthermore, these instabilities were investigated by using the method of proper orthogonal decomposition, and a correlation was found between the time-dependent asymmetry of the averaged velocity profile data and the behavior of the highest energy eigenmodes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28747685','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28747685"><span>Fast modal decomposition for optical fibers using digital holography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lyu, Meng; Lin, Zhiquan; Li, Guowei; Situ, Guohai</p> <p>2017-07-26</p> <p>Eigenmode decomposition of the light field at the output end of optical fibers can provide fundamental insights into the nature of electromagnetic-wave propagation through the fibers. Here we present a fast and complete modal decomposition technique for step-index optical fibers. The proposed technique employs digital holography to measure the light field at the output end of the multimode optical fiber, and utilizes the modal orthonormal property of the basis modes to calculate the modal coefficients of each mode. Optical experiments were carried out to demonstrate the proposed decomposition technique, showing that this approach is fast, accurate and cost-effective.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100024436','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100024436"><span>Radio-Frequency Tank Eigenmode Sensor for Propellant Quantity Gauging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zimmerli, Gregory A.; Buchanan, David A.; Follo, Jeffrey C.; Vaden, Karl R.; Wagner, James D.; Asipauskas, Marius; Herlacher, Michael D.</p> <p>2010-01-01</p> <p>Although there are several methods for determining liquid level in a tank, there are no proven methods to quickly gauge the amount of propellant in a tank while it is in low gravity or under low-settling thrust conditions where propellant sloshing is an issue. Having the ability to quickly and accurately gauge propellant tanks in low-gravity is an enabling technology that would allow a spacecraft crew or mission control to always know the amount of propellant onboard, thus increasing the chances for a successful mission. The Radio Frequency Mass Gauge (RFMG) technique measures the electromagnetic eigenmodes, or natural resonant frequencies, of a tank containing a dielectric fluid. The essential hardware components consist of an RF network analyzer that measures the reflected power from an antenna probe mounted internal to the tank. At a resonant frequency, there is a drop in the reflected power, and these inverted peaks in the reflected power spectrum are identified as the tank eigenmode frequencies using a peak-detection software algorithm. This information is passed to a pattern-matching algorithm, which compares the measured eigenmode frequencies with a database of simulated eigenmode frequencies at various fill levels. A best match between the simulated and measured frequency values occurs at some fill level, which is then reported as the gauged fill level. The database of simulated eigenmode frequencies is created by using RF simulation software to calculate the tank eigenmodes at various fill levels. The input to the simulations consists of a fairly high-fidelity tank model with proper dimensions and including internal tank hardware, the dielectric properties of the fluid, and a defined liquid/vapor interface. Because of small discrepancies between the model and actual hardware, the measured empty tank spectra and simulations are used to create a set of correction factors for each mode (typically in the range of 0.999 1.001), which effectively accounts for the small discrepancies. These correction factors are multiplied to the modes at all fill levels. By comparing several measured modes with the simulations, it is possible to accurately gauge the amount of propellant in the tank. An advantage of the RFMG approach of applying computer simulations and a pattern-matching algorithm is that the Although there are several methods for determining liquid level in a tank, there are no proven methods to quickly gauge the amount of propellant in a tank while it is in low gravity or under low-settling thrust conditions where propellant sloshing is an issue. Having the ability to quickly and accurately gauge propellant tanks in low-gravity is an enabling technology that would allow a spacecraft crew or mission control to always know the amount of propellant onboard, thus increasing the chances for a successful mission. The Radio Frequency Mass Gauge (RFMG) technique measures the electromagnetic eigenmodes, or natural resonant frequencies, of a tank containing a dielectric fluid. The essential hardware components consist of an RF network analyzer that measures the reflected power from an antenna probe mounted internal to the tank. At a resonant frequency, there is a drop in the reflected power, and these inverted peaks in the reflected power spectrum are identified as the tank eigenmode frequencies using a peak-detection software algorithm. This information is passed to a pattern-matching algorithm, which compares the measured eigenmode frequencies with a database of simulated eigenmode frequencies at various fill levels. A best match between the simulated and measured frequency values occurs at some fill level, which is then reported as the gauged fill level. The database of simulated eigenmode frequencies is created by using RF simulation software to calculate the tank eigenmodes at various fill levels. The input to the simulations consists of a fairly high-fidelity tank model with proper dimensions and including internal tank harare, the dielectric properties of the fluid, and a defined liquid/vapor interface. Because of small discrepancies between the model and actual hardware, the measured empty tank spectra and simulations are used to create a set of correction factors for each mode (typically in the range of 0.999 1.001), which effectively accounts for the small discrepancies. These correction factors are multiplied to the modes at all fill levels. By comparing several measured modes with the simulations, it is possible to accurately gauge the amount of propellant in the tank. An advantage of the RFMG approach of applying computer simulations and a pattern-matching algorithm is that the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150007949','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150007949"><span>Discrete Kinetic Eigenmode Spectra of Electron Plasma Oscillations in Weakly Collisional Plasma: A Numerical Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Black, Carrie; Germaschewski, Kai; Bhattacharjee, Amitava; Ng, C. S.</p> <p>2013-01-01</p> <p>It has been demonstrated that in the presence of weak collisions, described by the Lenard-Bernstein collision operator, the Landau-damped solutions become true eigenmodes of the system and constitute a complete set. We present numerical results from an Eulerian Vlasov code that incorporates the Lenard-Bernstein collision operator. The effect of the collisions on the numerical recursion phenomenon seen in Vlasov codes is discussed. The code is benchmarked against exact linear eigenmode solutions in the presence of weak collisions, and a spectrum of Landau-damped solutions is determined within the limits of numerical resolution. Tests of the orthogonality and the completeness relation are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007CEJPh...5..293M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007CEJPh...5..293M"><span>Computational studies of steady-state sound field and reverberant sound decay in a system of two coupled rooms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meissner, Mirosław</p> <p>2007-09-01</p> <p>The acoustical properties of an irregularly shaped room consisting of two connected rectangular subrooms were studied. An eigenmode method supported by a numerical implementation has been used to predict acoustic characteristics of the coupled system, such as the distribution of the sound pressure in steady-state and the reverberation time. In the theoretical model a low-frequency limit was considered. In this case the eigenmodes are lightly damped, thusthey were approximated by normal acoustic modes of a hard-walled room. The eigenfunctions and eigenfrequencies were computed numerically via application of a forced oscillator method with a finite difference algorithm. The influence of coupling between subrooms on acoustic parameters of the enclosure was demonstrated in numerical simulations where different distributions of absorbing materials on the walls of the subrooms and various positions of the sound source were assumed. Calculation results have shown that for large differences in the absorption coefficient in the subrooms the effect of modal localization contributes to peaks of RMS pressure in steady-state and a large increase in the reverberation time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1253781-mitigation-alfvenic-activity-magnetic-perturbations-nstx','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1253781-mitigation-alfvenic-activity-magnetic-perturbations-nstx"><span>Mitigation of Alfvenic activity by 3D magnetic perturbations on NSTX</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; ...</p> <p>2016-07-05</p> <p>Observations on the National Spherical Torus eXperiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of Toroidal Alfven Eigenmodes (TAE) and Global Alfven Eigenmodes (GAE) in response to pulsed n=3 non-resonant fields. From full-orbit following Monte Carlo simulations with the 1- and 2-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfven continuum at the plasma edge wasmore » found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. Furthermore, the results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfven instabilities by tailoring the fast-ion distribution function and/or continuum structure.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22407993-non-modal-analytical-method-predict-turbulent-properties-applied-hasegawa-wakatani-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22407993-non-modal-analytical-method-predict-turbulent-properties-applied-hasegawa-wakatani-model"><span>A non-modal analytical method to predict turbulent properties applied to the Hasegawa-Wakatani model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Friedman, B., E-mail: friedman11@llnl.gov; Lawrence Livermore National Laboratory, Livermore, California 94550; Carter, T. A.</p> <p>2015-01-15</p> <p>Linear eigenmode analysis often fails to describe turbulence in model systems that have non-normal linear operators and thus nonorthogonal eigenmodes, which can cause fluctuations to transiently grow faster than expected from eigenmode analysis. When combined with energetically conservative nonlinear mode mixing, transient growth can lead to sustained turbulence even in the absence of eigenmode instability. Since linear operators ultimately provide the turbulent fluctuations with energy, it is useful to define a growth rate that takes into account non-modal effects, allowing for prediction of energy injection, transport levels, and possibly even turbulent onset in the subcritical regime. We define such amore » non-modal growth rate using a relatively simple model of the statistical effect that the nonlinearities have on cross-phases and amplitude ratios of the system state variables. In particular, we model the nonlinearities as delta-function-like, periodic forces that randomize the state variables once every eddy turnover time. Furthermore, we estimate the eddy turnover time to be the inverse of the least stable eigenmode frequency or growth rate, which allows for prediction without nonlinear numerical simulation. We test this procedure on the 2D and 3D Hasegawa-Wakatani model [A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 50, 682 (1983)] and find that the non-modal growth rate is a good predictor of energy injection rates, especially in the strongly non-normal, fully developed turbulence regime.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1395522','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1395522"><span>A non-modal analytical method to predict turbulent properties applied to the Hasegawa-Wakatani model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Friedman, B.; Carter, T. A.</p> <p>2015-01-15</p> <p>Linear eigenmode analysis often fails to describe turbulence in model systems that have non-normal linear operators and thus nonorthogonal eigenmodes, which can cause fluctuations to transiently grow faster than expected from eigenmode analysis. When combined with energetically conservative nonlinear mode mixing, transient growth can lead to sustained turbulence even in the absence of eigenmode instability. Since linear operators ultimately provide the turbulent fluctuations with energy, it is useful to define a growth rate that takes into account non-modal effects, allowing for prediction of energy injection, transport levels, and possibly even turbulent onset in the subcritical regime. Here, we define suchmore » a non-modal growth rate using a relatively simple model of the statistical effect that the nonlinearities have on cross-phases and amplitude ratios of the system state variables. In particular, we model the nonlinearities as delta-function-like, periodic forces that randomize the state variables once every eddy turnover time. Furthermore, we estimate the eddy turnover time to be the inverse of the least stable eigenmode frequency or growth rate, which allows for prediction without nonlinear numerical simulation. Also, we test this procedure on the 2D and 3D Hasegawa-Wakatani model [A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 50, 682 (1983)] and find that the non-modal growth rate is a good predictor of energy injection rates, especially in the strongly non-normal, fully developed turbulence regime.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27399715','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27399715"><span>First Eigenmode Transmission by High Efficient CSI Estimation for Multiuser Massive MIMO Using Millimeter Wave Bands.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maruta, Kazuki; Iwakuni, Tatsuhiko; Ohta, Atsushi; Arai, Takuto; Shirato, Yushi; Kurosaki, Satoshi; Iizuka, Masataka</p> <p>2016-07-08</p> <p>Drastic improvements in transmission rate and system capacity are required towards 5th generation mobile communications (5G). One promising approach, utilizing the millimeter wave band for its rich spectrum resources, suffers area coverage shortfalls due to its large propagation loss. Fortunately, massive multiple-input multiple-output (MIMO) can offset this shortfall as well as offer high order spatial multiplexing gain. Multiuser MIMO is also effective in further enhancing system capacity by multiplexing spatially de-correlated users. However, the transmission performance of multiuser MIMO is strongly degraded by channel time variation, which causes inter-user interference since null steering must be performed at the transmitter. This paper first addresses the effectiveness of multiuser massive MIMO transmission that exploits the first eigenmode for each user. In Line-of-Sight (LoS) dominant channel environments, the first eigenmode is chiefly formed by the LoS component, which is highly correlated with user movement. Therefore, the first eigenmode provided by a large antenna array can improve the robustness against the channel time variation. In addition, we propose a simplified beamforming scheme based on high efficient channel state information (CSI) estimation that extracts the LoS component. We also show that this approximate beamforming can achieve throughput performance comparable to that of the rigorous first eigenmode transmission. Our proposed multiuser massive MIMO scheme can open the door for practical millimeter wave communication with enhanced system capacity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......105F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......105F"><span>Simulation Analysis of Zero Mean Flow Edge Turbulence in LAPD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Friedman, Brett Cory</p> <p></p> <p>I model, simulate, and analyze the turbulence in a particular experiment on the Large Plasma Device (LAPD) at UCLA. The experiment, conducted by Schaffner et al. [D. Schaffner et al., Phys. Rev. Lett. 109, 135002 (2012)], nulls out the intrinsic mean flow in LAPD by limiter biasing. The model that I use in the simulation is an electrostatic reduced Braginskii two-fluid model that describes the time evolution of density, electron temperature, electrostatic potential, and parallel electron velocity fluctuations in the edge region of LAPD. The spatial domain is annular, encompassing the radial coordinates over which a significant equilibrium density gradient exists. My model breaks the independent variables in the equations into time-independent equilibrium parts and time-dependent fluctuating parts, and I use experimentally obtained values as input for the equilibrium parts. After an initial exponential growth period due to a linear drift wave instability, the fluctuations saturate and the frequency and azimuthal wavenumber spectra become broadband with no visible coherent peaks, at which point the fluctuations become turbulent. The turbulence develops intermittent pressure and flow filamentary structures that grow and dissipate, but look much different than the unstable linear drift waves, primarily in the extremely long axial wavelengths that the filaments possess. An energy dynamics analysis that I derive reveals the mechanism that drives these structures. The long k|| ˜ 0 intermittent potential filaments convect equilibrium density across the equilibrium density gradient, setting up local density filaments. These density filaments, also with k || ˜ 0, produce azimuthal density gradients, which drive radially propagating secondary drift waves. These finite k|| drift waves nonlinearly couple to one another and reinforce the original convective filament, allowing the process to bootstrap itself. The growth of these structures is by nonlinear instability because they require a finite amplitude to start, and they require nonlinear terms in the equations to sustain their growth. The reason why k|| ˜ 0 structures can grow and support themselves in a dynamical system with no k|| = 0 linear instability is because the linear eigenmodes of the system are nonorthogonal. Nonorthogonal eigenmodes that individually decay under linear dynamics can transiently inject energy into the system, allowing for instability. The instability, however, can only occur when the fluctuations have a finite starting amplitude, and nonlinearities are available to mix energy among eigenmodes. Finally, I attempt to figure out how many effective degrees of freedom control the turbulence to determine whether it is stochastic or deterministic. Using two different methods - permutation entropy analysis by means of time delay trajectory reconstruction and Proper Orthogonal Decomposition - I determine that more than a few degrees of freedom, possibly even dozens or hundreds, are all active. The turbulence, while not stochastic, is not a manifestation of low-dimensional chaos - it is high-dimensional.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NucFu..58g6017V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NucFu..58g6017V"><span>Analysis of Alfven eigenmode destabilization in DIII-D high poloidal β discharges using a Landau closure model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Varela, J.; Spong, D. A.; Garcia, L.; Huang, J.; Murakami, M.; Garofalo, A. M.; Qian, J. P.; Holcomb, C. T.; Hyatt, A. W.; Ferron, J. R.; Collins, C. S.; Ren, Q. L.; McClenaghan, J.; Guo, W.</p> <p>2018-07-01</p> <p>Alfvén eigenmodes are destabilized at the DIII-D pedestal during transient beta drops in high poloidal β discharges with internal transport barriers (ITBs), driven by n  =  1 external kink modes, leading to energetic particle losses. There are two different scenarios in the thermal β recovery phase: with bifurcation (two instability branches with different frequencies) or without bifurcation (single instability branch). We use the reduced MHD equations in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles as well as the geodesic acoustic wave dynamics, to study the properties of the instabilities observed in the DIII-D high poloidal β discharges and identify the conditions to trigger the bifurcation. The simulations suggest that instabilities with lower frequency in the bifurcation case are ballooning modes driven at the plasma pedestal, while the instability branch with higher frequencies are low n (n  <  4) toroidal Alfvén eigenmodes nearby the pedestal. The reverse shear region between the middle and plasma periphery in the non-bifurcated case avoids the excitation of ballooning modes at the pedestal, although toroidal Alfvén eigenmodes and reverse shear Alfvén eigenmodes are unstable in the reverse shear region. The n  =  1 and n  =  2 Alfvén eigenmode activity can be suppressed or minimized if the neutral beam injector (NBI) intensity is lower than the experimental value (). In addition, if the beam energy or neutral beam injector voltage is lower than in the experiment (), the resonance between beam and thermal plasma is weaker. The and 6 AE activity can not be fully suppressed, although the growth rate and frequency is smaller for an optimized neutral beam injector operation regime. In conclusion, AE activity in high poloidal β discharges can be minimized for optimized NBI operation regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JAP...103a3304L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JAP...103a3304L"><span>Spatial distribution of the wave field of the surface modes sustaining filamentary discharges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lishev, St.; Shivarova, A.; Tarnev, Kh.</p> <p>2008-01-01</p> <p>The study presents the electrodynamical description of surface-wave-sustained discharges contracted in filamentary structures. The results are for the spatial distribution of the wave field and for the wave propagation characteristics obtained from a two-dimensional model developed for describing surface-wave behavior in plasmas with an arbitrary distribution of the plasma density. In accordance with the experimental observations of filamentary discharges, the plasma density distribution considered is completed by cylindrically shaped gas-discharge channels extended along the discharge length and positioned in the out-of-center region of the discharge, equidistantly in an azimuthal direction. Due to the two-dimensional inhomogeneity of the plasma density of the filamentary structure, the eigen surface mode of the structure is a hybrid wave, with all—six—field components. For identification of its behavior, the surface wave properties in the limiting cases of a plasma ring and a single filament—both radially inhomogeneous—are involved in the discussions. The presentation of the results is for filamentary structures with a decreasing number of filaments (from 10 to 2) starting with the plasma ring, the latter supporting propagation of an azimuthally symmetric wave. Due to the resonance absorption of the surface waves, always present because of the smooth variation of the plasma density, the contours of the critical density are those guiding the surface wave propagation. Decreasing number of filaments in the structure leads to localization of the amplitudes of the wave-field components around the filaments. By analogy with the spatial distribution of the wave field in the plasma ring, the strong resonance enhancement of the wave-field components is along that part of the contour of the critical density which is far off the center of the filamentary structure. The analysis of the spatial distribution of the field components of the filamentary structure shows that the hybrid wave is an eigenmode of the whole structure, i.e., the wave field does not appear as a superposition of fields of eigenmodes of the separated filaments completing it. It is stressed that the spatial distribution of the field components of the eigen hybrid mode of the filamentary structure has an azimuthally symmetric background field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663033-magneto-acoustic-waves-gravitationally-stratified-magnetized-plasma-eigen-solutions-applications-solar-atmosphere','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663033-magneto-acoustic-waves-gravitationally-stratified-magnetized-plasma-eigen-solutions-applications-solar-atmosphere"><span>MAGNETO-ACOUSTIC WAVES IN A GRAVITATIONALLY STRATIFIED MAGNETIZED PLASMA: EIGEN-SOLUTIONS AND THEIR APPLICATIONS TO THE SOLAR ATMOSPHERE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mather, J. F.; Erdélyi, R., E-mail: robertus@sheffield.ac.uk</p> <p>2016-05-10</p> <p>Magneto-acoustic gravity (MAG) waves have been studied intensively in the context of astrophysical plasmas. There are three popular choices of analytic modeling using a Cartesian coordinate system: a magnetic field parallel, perpendicular, or at an angle to the gravitational field. Here, we study a gravitationally stratified plasma embedded in a parallel, so called vertical, magnetic field. We find a governing equation for the auxiliary quantity Θ = p {sub 1}/ ρ {sub 0}, and find solutions in terms of hypergeometric functions. With the convenient relationship between Θ and the vertical velocity component, v {sub z}, we derive the solution formore » v{sub z}. We show that the four linearly independent functions for v{sub z} can also be cast as single hypergeometric functions, rather than the Frobenius series derived by Leroy and Schwartz. We are then able to analyze a case of approximation for a one-layer solution, taking the small wavelength limit. Motivated by solar atmospheric applications, we finally commence study of the eigenmodes of perturbations for a two-layer model using our solutions, solving the dispersion relation numerically. We show that, for a transition between a photospheric and chromospheric plasma embedded in a vertical magnetic field, modes exist that are between the observationally widely investigated three and five minute oscillation periods, interpreted as solar global oscillations in the lower solar atmosphere . It is also shown that, when the density contrast between the layers is large (e.g., applied to photosphere/chromosphere-corona), the global eigenmodes are practically a superposition of the same as in each of the separate one-layer systems.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25c2111U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25c2111U"><span>Helicons in uniform fields. I. Wave diagnostics with hodograms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Urrutia, J. M.; Stenzel, R. L.</p> <p>2018-03-01</p> <p>The wave equation for whistler waves is well known and has been solved in Cartesian and cylindrical coordinates, yielding plane waves and cylindrical waves. In space plasmas, waves are usually assumed to be plane waves; in small laboratory plasmas, they are often assumed to be cylindrical "helicon" eigenmodes. Experimental observations fall in between both models. Real waves are usually bounded and may rotate like helicons. Such helicons are studied experimentally in a large laboratory plasma which is essentially a uniform, unbounded plasma. The waves are excited by loop antennas whose properties determine the field rotation and transverse dimensions. Both m = 0 and m = 1 helicon modes are produced and analyzed by measuring the wave magnetic field in three dimensional space and time. From Ampère's law and Ohm's law, the current density and electric field vectors are obtained. Hodograms for these vectors are produced. The sign ambiguity of the hodogram normal with respect to the direction of wave propagation is demonstrated. In general, electric and magnetic hodograms differ but both together yield the wave vector direction unambiguously. Vector fields of the hodogram normal yield the phase flow including phase rotation for helicons. Some helicons can have locally a linear polarization which is identified by the hodogram ellipticity. Alternatively the amplitude oscillation in time yields a measure for the wave polarization. It is shown that wave interference produces linear polarization. These observations emphasize that single point hodogram measurements are inadequate to determine the wave topology unless assuming plane waves. Observations of linear polarization indicate wave packets but not plane waves. A simple qualitative diagnostics for the wave polarization is the measurement of the magnetic field magnitude in time. Circular polarization has a constant amplitude; linear polarization results in amplitude modulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM33C2683D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM33C2683D"><span>Hybrid simulations of radial transport driven by the Rayleigh-Taylor instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delamere, P. A.; Stauffer, B. H.; Ma, X.</p> <p>2017-12-01</p> <p>Plasma transport in the rapidly rotating giant magnetospheres is thought to involve a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) instability. In three dimensions, the convective flow patterns associated with the RT instability can produce strong guide field reconnection, allowing plasma mass to move radially outward while conserving magnetic flux (Ma et al., 2016). We present a set of hybrid (kinetic ion / fluid electron) plasma simulations of the RT instability using high plasma beta conditions appropriate for Jupiter's inner and middle magnetosphere. A density gradient, combined with a centrifugal force, provide appropriate RT onset conditions. Pressure balance is achieved by initializing two ion populations: one with fixed temperature, but varying density, and the other with fixed density, but a temperature gradient that offsets the density gradient from the first population and the centrifugal force (effective gravity). We first analyze two-dimensional results for the plane perpendicular to the magnetic field by comparing growth rates as a function of wave vector following Huba et al. (1998). Prescribed perpendicular wave modes are seeded with an initial velocity perturbation. We then extend the model to three dimensions, introducing a stabilizing parallel wave vector. Boundary conditions in the parallel direction prohibit motion of the magnetic field line footprints to model the eigenmodes of the magnetodisc's resonant cavity. We again compare growth rates based on perpendicular wave number, but also on the parallel extent of the resonant cavity, which fixes the size of the largest parallel wavelength. Finally, we search for evidence of strong guide field magnetic reconnection within the domain by identifying areas with large parallel electric fields or changes in magnetic field topology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870020466','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870020466"><span>Computational procedures for evaluating the sensitivity derivatives of vibration frequencies and Eigenmodes of framed structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fetterman, Timothy L.; Noor, Ahmed K.</p> <p>1987-01-01</p> <p>Computational procedures are presented for evaluating the sensitivity derivatives of the vibration frequencies and eigenmodes of framed structures. Both a displacement and a mixed formulation are used. The two key elements of the computational procedure are: (a) Use of dynamic reduction techniques to substantially reduce the number of degrees of freedom; and (b) Application of iterative techniques to improve the accuracy of the derivatives of the eigenmodes. The two reduction techniques considered are the static condensation and a generalized dynamic reduction technique. Error norms are introduced to assess the accuracy of the eigenvalue and eigenvector derivatives obtained by the reduction techniques. The effectiveness of the methods presented is demonstrated by three numerical examples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NanoF...2a5005M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NanoF...2a5005M"><span>Higher-eigenmode piezoresponse force microscopy: a path towards increased sensitivity and the elimination of electrostatic artifacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MacDonald, Gordon A.; DelRio, Frank W.; Killgore, Jason P.</p> <p>2018-03-01</p> <p>Piezoresponse force microscopy (PFM) and related bias-induced strain sensing atomic force microscopy techniques provide unique characterization of material-functionality at the nanoscale. However, these techniques are prone to unwanted artifact signals that influence the vibration amplitude of the detecting cantilever. Here, we show that higher-order contact resonance eigenmodes can be readily excited in PFM. The benefits of using the higher-order eigenmodes include absolute sensitivity enhancement, electrostatic artifact reduction, and lateral versus normal strain decoupling. This approach can significantly increase the proportion of total signal arising from desired strain (as opposed to non-strain artifacts) in measurements with cantilevers exhibiting typical, few N m‑1 spring constants to cantilevers up to 1000× softer than typically used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003NucFu..43..228G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003NucFu..43..228G"><span>Theory and observations of high frequency Alfvén eigenmodes in low aspect ratio plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gorelenkov, N. N.; Fredrickson, E.; Belova, E.; Cheng, C. Z.; Gates, D.; Kaye, S.; White, R.</p> <p>2003-04-01</p> <p>New observations of sub-cyclotron frequency instability in low aspect ratio plasmas in national spherical torus experiments are reported. The frequencies of observed instabilities correlate with the characteristic Alfvén velocity of the plasma. A theory of localized compressional Alfvén eigenmodes (CAE) and global shear Alfvén eigenmodes (GAE) in low aspect ratio plasmas is presented to explain the observed high frequency instabilities. CAEs/GAEs are driven by the velocity space gradient of energetic super-Alfvénic beam ions via Doppler shifted cyclotron resonances. One of the main damping mechanisms of GAEs, the continuum damping, is treated perturbatively within the framework of ideal MHD. Properties of these cyclotron instability ions are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1358041','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1358041"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>McClements, K. G.; Fredrickson, E. D.</p> <p></p> <p>Spherical tokamaks (STs) typically have lower magnetic fields than conventional tokamaks, but similar mass densities. Suprathermal ions with relatively modest energies, in particular beam-injected ions, consequently have speeds close to or exceeding the Alfvén velocity, and can therefore excite a range of Alfvénic instabilities which could be driven by (and affect the behaviour of) fusion α-particles in a burning plasma. STs heated with neutral beams, including the small tight aspect ratio tokamak (START), the mega amp spherical tokamak (MAST), the national spherical torus experiment (NSTX) and Globus-M, have thus provided an opportunity to study toroidal Alfvén eigenmodes (TAEs), together withmore » higher frequency global Alfvén eigenmodes (GAEs) and compressional Alfvén eigenmodes (CAEs), which could affect beam current drive and channel fast ion energy into bulk ions in future devices. In NSTX GAEs were correlated with a degradation of core electron energy confinement. In MAST pulses with reduced magnetic field, CAEs were excited across a wide range of frequencies, extending to the ion cyclotron range, but were suppressed when hydrogen was introduced to the deuterium plasma, apparently due to mode conversion at ion–ion hybrid resonances. At lower frequencies fishbone instabilities caused fast particle redistribution in some MAST and NSTX pulses, but this could be avoided by moving the neutral beam line away from the magnetic axis or by operating the plasma at either high density or elevated safety factor. Fast ion redistribution has been observed during GAE avalanches on NSTX, while in both NSTX and MAST fast ions were transported by saturated kink modes, sawtooth crashes, resonant magnetic perturbations and TAEs. The energy dependence of fast ion redistribution due to both sawteeth and TAEs has been studied in Globus-M. High energy charged fusion products are unconfined in present-day STs, but have been shown in MAST to provide a useful diagnostic of beam ion behaviour, supplementing the information provided by neutron detectors. In MAST electrons were accelerated to highly suprathermal energies as a result of edge localised modes, while in both MAST and NSTX ions were accelerated due to internal reconnection events. Lastly, ion acceleration has also been observed during merging-compression start-up in MAST.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PPCF...59e3001M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PPCF...59e3001M"><span>Energetic particles in spherical tokamak plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McClements, K. G.; Fredrickson, E. D.</p> <p>2017-05-01</p> <p>Spherical tokamaks (STs) typically have lower magnetic fields than conventional tokamaks, but similar mass densities. Suprathermal ions with relatively modest energies, in particular beam-injected ions, consequently have speeds close to or exceeding the Alfvén velocity, and can therefore excite a range of Alfvénic instabilities which could be driven by (and affect the behaviour of) fusion α-particles in a burning plasma. STs heated with neutral beams, including the small tight aspect ratio tokamak (START), the mega amp spherical tokamak (MAST), the national spherical torus experiment (NSTX) and Globus-M, have thus provided an opportunity to study toroidal Alfvén eigenmodes (TAEs), together with higher frequency global Alfvén eigenmodes (GAEs) and compressional Alfvén eigenmodes (CAEs), which could affect beam current drive and channel fast ion energy into bulk ions in future devices. In NSTX GAEs were correlated with a degradation of core electron energy confinement. In MAST pulses with reduced magnetic field, CAEs were excited across a wide range of frequencies, extending to the ion cyclotron range, but were suppressed when hydrogen was introduced to the deuterium plasma, apparently due to mode conversion at ion-ion hybrid resonances. At lower frequencies fishbone instabilities caused fast particle redistribution in some MAST and NSTX pulses, but this could be avoided by moving the neutral beam line away from the magnetic axis or by operating the plasma at either high density or elevated safety factor. Fast ion redistribution has been observed during GAE avalanches on NSTX, while in both NSTX and MAST fast ions were transported by saturated kink modes, sawtooth crashes, resonant magnetic perturbations and TAEs. The energy dependence of fast ion redistribution due to both sawteeth and TAEs has been studied in Globus-M. High energy charged fusion products are unconfined in present-day STs, but have been shown in MAST to provide a useful diagnostic of beam ion behaviour, supplementing the information provided by neutron detectors. In MAST electrons were accelerated to highly suprathermal energies as a result of edge localised modes, while in both MAST and NSTX ions were accelerated due to internal reconnection events. Ion acceleration has also been observed during merging-compression start-up in MAST.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004PhFl...16.4359F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004PhFl...16.4359F"><span>Scalar decay in two-dimensional chaotic advection and Batchelor-regime turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fereday, D. R.; Haynes, P. H.</p> <p>2004-12-01</p> <p>This paper considers the decay in time of an advected passive scalar in a large-scale flow. The relation between the decay predicted by "Lagrangian stretching theories," which consider evolution of the scalar field within a small fluid element and then average over many such elements, and that observed at large times in numerical simulations, associated with emergence of a "strange eigenmode" is discussed. Qualitative arguments are supported by results from numerical simulations of scalar evolution in two-dimensional spatially periodic, time aperiodic flows, which highlight the differences between the actual behavior and that predicted by the Lagrangian stretching theories. In some cases the decay rate of the scalar variance is different from the theoretical prediction and determined globally and in other cases it apparently matches the theoretical prediction. An updated theory for the wavenumber spectrum of the scalar field and a theory for the probability distribution of the scalar concentration are presented. The wavenumber spectrum and the probability density function both depend on the decay rate of the variance, but can otherwise be calculated from the statistics of the Lagrangian stretching history. In cases where the variance decay rate is not determined by the Lagrangian stretching theory, the wavenumber spectrum for scales that are much smaller than the length scale of the flow but much larger than the diffusive scale is argued to vary as k-1+ρ, where k is wavenumber, and ρ is a positive number which depends on the decay rate of the variance γ2 and on the Lagrangian stretching statistics. The probability density function for the scalar concentration is argued to have algebraic tails, with exponent roughly -3 and with a cutoff that is determined by diffusivity κ and scales roughly as κ-1/2 and these predictions are shown to be in good agreement with numerical simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990028363','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990028363"><span>Development of a Three-Dimensional PSE Code for Compressible Flows: Stability of Three-Dimensional Compressible Boundary Layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Balakumar, P.; Jeyasingham, Samarasingham</p> <p>1999-01-01</p> <p>A program is developed to investigate the linear stability of three-dimensional compressible boundary layer flows over bodies of revolutions. The problem is formulated as a two dimensional (2D) eigenvalue problem incorporating the meanflow variations in the normal and azimuthal directions. Normal mode solutions are sought in the whole plane rather than in a line normal to the wall as is done in the classical one dimensional (1D) stability theory. The stability characteristics of a supersonic boundary layer over a sharp cone with 50 half-angle at 2 degrees angle of attack is investigated. The 1D eigenvalue computations showed that the most amplified disturbances occur around x(sub 2) = 90 degrees and the azimuthal mode number for the most amplified disturbances range between m = -30 to -40. The frequencies of the most amplified waves are smaller in the middle region where the crossflow dominates the instability than the most amplified frequencies near the windward and leeward planes. The 2D eigenvalue computations showed that due to the variations in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the most amplified disturbances are shifted to 120 degrees compared to 90 degrees for the parallel theory. It is also observed that the nonparallel amplification rates are smaller than that is obtained from the parallel theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvB..94t1406F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvB..94t1406F"><span>Material-independent modes for electromagnetic scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forestiere, Carlo; Miano, Giovanni</p> <p>2016-11-01</p> <p>In this Rapid Communication, we introduce a representation of the electromagnetic field for the analysis and synthesis of the full-wave scattering by a homogeneous dielectric object of arbitrary shape in terms of a set of eigenmodes independent of its permittivity. The expansion coefficients are rational functions of the permittivity. This approach naturally highlights the role of plasmonic and photonic modes in any scattering process and suggests a straightforward methodology to design the permittivity of the object to pursue a prescribed tailoring of the scattered field. We discuss in depth the application of the proposed approach to the analysis and design of the scattering properties of a dielectric sphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1350089-ions-lost-first-orbit-can-impact-alfven-eigenmode-stability','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1350089-ions-lost-first-orbit-can-impact-alfven-eigenmode-stability"><span>Ions lost on their first orbit can impact Alfvén eigenmode stability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Heidbrink, William W.; Fu, Guo -Yong; Van Zeeland, Michael A.</p> <p>2015-08-13</p> <p>Some neutral-beam ions are deflected onto loss orbits by Alfvén eigenmodes on their first bounce orbit. Here, the resonance condition for these ions differs from the usual resonance condition for a confined fast ion. Estimates indicate that particles on single-pass loss orbits transfer enough energy to the wave to alter mode stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3460984','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3460984"><span>Asymmetric vibration in a two-layer vocal fold model with left-right stiffness asymmetry: Experiment and simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Zhaoyan; Hieu Luu, Trung</p> <p>2012-01-01</p> <p>Vibration characteristics of a self-oscillating two-layer vocal fold model with left-right asymmetry in body-layer stiffness were experimentally and numerically investigated. Two regimes of distinct vibratory pattern were identified as a function of left-right stiffness mismatch. In the first regime with extremely large left-right stiffness mismatch, phonation onset resulted from an eigenmode synchronization process that involved only eigenmodes of the soft fold. Vocal fold vibration in this regime was dominated by a large-amplitude vibration of the soft fold, and phonation frequency was determined by the properties of the soft fold alone. The stiff fold was only enslaved to vibrate at a much reduced amplitude. In the second regime with small left-right stiffness mismatch, eigenmodes of both folds actively participated in the eigenmode synchronization process. The two folds vibrated with comparable amplitude, but the stiff fold consistently led the soft fold in phase for all conditions. A qualitatively good agreement was obtained between experiment and simulation, although the simulations generally underestimated phonation threshold pressure and onset frequency. The clinical implications of the results of this study are also discussed. PMID:22978891</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22978891','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22978891"><span>Asymmetric vibration in a two-layer vocal fold model with left-right stiffness asymmetry: experiment and simulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Zhaoyan; Luu, Trung Hieu</p> <p>2012-09-01</p> <p>Vibration characteristics of a self-oscillating two-layer vocal fold model with left-right asymmetry in body-layer stiffness were experimentally and numerically investigated. Two regimes of distinct vibratory pattern were identified as a function of left-right stiffness mismatch. In the first regime with extremely large left-right stiffness mismatch, phonation onset resulted from an eigenmode synchronization process that involved only eigenmodes of the soft fold. Vocal fold vibration in this regime was dominated by a large-amplitude vibration of the soft fold, and phonation frequency was determined by the properties of the soft fold alone. The stiff fold was only enslaved to vibrate at a much reduced amplitude. In the second regime with small left-right stiffness mismatch, eigenmodes of both folds actively participated in the eigenmode synchronization process. The two folds vibrated with comparable amplitude, but the stiff fold consistently led the soft fold in phase for all conditions. A qualitatively good agreement was obtained between experiment and simulation, although the simulations generally underestimated phonation threshold pressure and onset frequency. The clinical implications of the results of this study are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAP...121n3105N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAP...121n3105N"><span>Solution of cavity resonance and waveguide scattering problems using the eigenmode projection technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nasr, Mamdouh H.; Othman, Mohamed A. K.; Eshrah, Islam A.; Abuelfadl, Tamer M.</p> <p>2017-04-01</p> <p>New developments in the eigenmode projection technique (EPT) are introduced in solving problems of electromagnetic resonance in closed cavities as well as scattering from discontinuities in guided-wave structures. The EPT invokes the eigenmodes of a canonical predefined cavity in the solution procedure and uses the expansion of these eigenmodes to solve Maxwell's equations, in conjunction with a convenient choice of port boundary conditions. For closed cavities, a new spurious-mode separation method is developed, showing robust and efficient spurious-mode separation. This has been tested using more complex and practical examples demonstrating the powerful use of the presented approach. For waveguide scattering problems, convergence studies are being performed showing stable solutions for a relatively small number of expansion modes, and the proposed method has advantages over conventional solvers in analyzing electromagnetic problems with inhomogeneous materials. These convergence studies also lead to an efficient rule-of-thumb for the number of modes to be used in the simulation. The ability to handle closed and open structures is presented in a unified framework that highlights the generality of the EPT which could be used to analyze and design a variety of microwave components.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22305971-selection-higher-eigenmode-amplitude-based-dissipated-power-virial-contrast-bimodal-atomic-force-microscopy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22305971-selection-higher-eigenmode-amplitude-based-dissipated-power-virial-contrast-bimodal-atomic-force-microscopy"><span>Selection of higher eigenmode amplitude based on dissipated power and virial contrast in bimodal atomic force microscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Diaz, Alfredo J.; Eslami, Babak; López-Guerra, Enrique A.</p> <p>2014-09-14</p> <p>This paper explores the effect of the amplitude ratio of the higher to the fundamental eigenmode in bimodal atomic force microscopy (AFM) on the phase contrast and the dissipated power contrast of the higher eigenmode. We explore the optimization of the amplitude ratio in order to maximize the type of contrast that is most relevant to the particular study. Specifically, we show that the trends in the contrast range behave differently for different quantities, especially the dissipated power and the phase, with the former being more meaningful than the latter (a similar analysis can be carried out using the virial,more » for which we also provide a brief example). Our work is based on numerical simulations using two different conservative-dissipative tip-sample models, including the standard linear solid and the combination of a dissipation coefficient with a conservative model, as well as experimental images of thin film Nafion{sup ®} proton exchange polymers. We focus on the original bimodal AFM method, where the higher eigenmode is driven with constant amplitude and frequency (i.e., in “open loop”).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15789729','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15789729"><span>Ince-Gaussian series representation of the two-dimensional fractional Fourier transform.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bandres, Miguel A; Gutiérrez-Vega, Julio C</p> <p>2005-03-01</p> <p>We introduce the Ince-Gaussian series representation of the two-dimensional fractional Fourier transform in elliptical coordinates. A physical interpretation is provided in terms of field propagation in quadratic graded-index media whose eigenmodes in elliptical coordinates are derived for the first time to our knowledge. The kernel of the new series representation is expressed in terms of Ince-Gaussian functions. The equivalence among the Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian series representations is verified by establishing the relation among the three definitions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28059333','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28059333"><span>Cavity-enhanced eigenmode and angular hybrid multiplexing in holographic data storage systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miller, Bo E; Takashima, Yuzuru</p> <p>2016-12-26</p> <p>Resonant optical cavities have been demonstrated to improve energy efficiencies in Holographic Data Storage Systems (HDSS). The orthogonal reference beams supported as cavity eigenmodes can provide another multiplexing degree of freedom to push storage densities toward the limit of 3D optical data storage. While keeping the increased energy efficiency of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO<sub>3</sub> medium with a 532 nm laser at two Bragg angles. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modification of current angular multiplexing HDSS.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NucFu..56k2006R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NucFu..56k2006R"><span>Sensitivity of alpha-particle-driven Alfvén eigenmodes to q-profile variation in ITER scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodrigues, P.; Figueiredo, A. C. A.; Borba, D.; Coelho, R.; Fazendeiro, L.; Ferreira, J.; Loureiro, N. F.; Nabais, F.; Pinches, S. D.; Polevoi, A. R.; Sharapov, S. E.</p> <p>2016-11-01</p> <p>A perturbative hybrid ideal-MHD/drift-kinetic approach to assess the stability of alpha-particle-driven Alfvén eigenmodes in burning plasmas is used to show that certain foreseen ITER scenarios, namely the {{I}\\text{p}}=15 MA baseline scenario with very low and broad core magnetic shear, are sensitive to small changes in the background magnetic equilibrium. Slight variations (of the order of 1% ) of the safety-factor value on axis are seen to cause large changes in the growth rate, toroidal mode number, and radial location of the most unstable eigenmodes found. The observed sensitivity is shown to proceed from the very low magnetic shear values attained throughout the plasma core, raising issues about reliable predictions of alpha-particle transport in burning plasmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97e3107G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97e3107G"><span>Three-dimensional instabilities of natural convection between two differentially heated vertical plates: Linear and nonlinear complementary approaches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Zhenlan; Podvin, Berengere; Sergent, Anne; Xin, Shihe; Chergui, Jalel</p> <p>2018-05-01</p> <p>The transition to the chaos of the air flow between two vertical plates maintained at different temperatures is studied in the Boussinesq approximation. After the first bifurcation at critical Rayleigh number Rac, the flow consists of two-dimensional (2D) corotating rolls. The stability of the 2D rolls is examined, confronting linear predictions with nonlinear integration. In all cases the 2D rolls are destabilized in the spanwise direction. Efficient linear stability analysis based on an Arnoldi method shows competition between two eigenmodes, corresponding to different spanwise wavelengths and different types of roll distortion. Nonlinear integration shows that the lower-wave-number mode is always dominant. A partial route to chaos is established through the nonlinear simulations. The flow becomes temporally chaotic for Ra =1.05 Rac , but remains characterized by the spatial patterns identified by linear stability analysis. This highlights the complementary role of linear stability analysis and nonlinear simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPN11024F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPN11024F"><span>Shear-Flow Instability Saturation by Stable Modes: Hydrodynamics and Gyrokinetics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fraser, Adrian; Pueschel, M. J.; Terry, P. W.; Zweibel, E. G.</p> <p>2017-10-01</p> <p>We present simulations of shear-driven instabilities, focusing on the impact of nonlinearly excited, large-scale, linearly stable modes on the nonlinear cascade, momentum transport, and secondary instabilities. Stable modes, which have previously been shown to significantly affect instability saturation [Fraser et al. PoP 2017], are investigated in a collisionless, gyrokinetic, periodic zonal flow using the <emph type="smallcap">Gene</emph> code by projecting the results of nonlinear simulations onto a basis of linear eigenmodes that includes both stable and unstable modes. Benchmarking growth rates against previous gyrokinetic studies and an equivalent fluid system demonstrates comparable linear dynamics in the fluid and gyrokinetic systems. Cases of driven and decaying shear-flow turbulence are compared in <emph type="smallcap">Gene</emph> by using a Krook operator as an effective forcing. For comparison with existing hydrodynamic and MHD shear-flow instability studies, we present results for the shear layer obtained by similar means with the code Dedalus. Supported by U.S. DOE Grant No. DE-FG02-89ER53291, the NSF, and UW-Madison.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22227906-measurements-eigenfunction-reversed-shear-alfven-eigenmodes-sweep-downward-frequency','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22227906-measurements-eigenfunction-reversed-shear-alfven-eigenmodes-sweep-downward-frequency"><span>Measurements of the eigenfunction of reversed shear Alfvén eigenmodes that sweep downward in frequency</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Heidbrink, W. W.; Austin, M. E.; Spong, D. A.</p> <p>2013-08-15</p> <p>Reversed shear Alfvén eigenmodes (RSAEs) usually sweep upward in frequency when the minimum value of the safety factor q{sub min} decreases in time. On rare occasions, RSAEs sweep downward prior to the upward sweep. Electron cyclotron emission measurements show that the radial eigenfunction during the downsweeping phase is similar to the eigenfunction of normal, upsweeping RSAEs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990032080','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990032080"><span>Eigenmodes of Ducted Flows With Radially-Dependent Axial and Swirl Velocity Components</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kousen, Kenneth A.</p> <p>1999-01-01</p> <p>This report characterizes the sets of small disturbances possible in cylindrical and annular ducts with mean flow whose axial and tangential components vary arbitrarily with radius. The linearized equations of motion are presented and discussed, and then exponential forms for the axial, circumferential, and time dependencies of any unsteady disturbances are assumed. The resultant equations form a generalized eigenvalue problem, the solution of which yields the axial wavenumbers and radial mode shapes of the unsteady disturbances. Two numerical discretizations are applied to the system of equations: (1) a spectral collocation technique based on Chebyshev polynomial expansions on the Gauss-Lobatto points, and (2) second and fourth order finite differences on uniform grids. The discretized equations are solved using a standard eigensystem package employing the QR algorithm. The eigenvalues fall into two primary categories: a discrete set (analogous to the acoustic modes found in uniform mean flows) and a continuous band (analogous to convected disturbances in uniform mean flows) where the phase velocities of the disturbances correspond to the local mean flow velocities. Sample mode shapes and eigensystem distributions are presented for both sheared axial and swirling flows. The physics of swirling flows is examined with reference to hydrodynamic stability and completeness of the eigensystem expansions. The effect of assuming exponential dependence in the axial direction is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4701306','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4701306"><span>A Unique Self-Sensing, Self-Actuating AFM Probe at Higher Eigenmodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wu, Zhichao; Guo, Tong; Tao, Ran; Liu, Leihua; Chen, Jinping; Fu, Xing; Hu, Xiaotang</p> <p>2015-01-01</p> <p>With its unique structure, the Akiyama probe is a type of tuning fork atomic force microscope probe. The long, soft cantilever makes it possible to measure soft samples in tapping mode. In this article, some characteristics of the probe at its second eigenmode are revealed by use of finite element analysis (FEA) and experiments in a standard atmosphere. Although the signal-to-noise ratio in this environment is not good enough, the 2 nm resolution and 0.09 Hz/nm sensitivity prove that the Akiyama probe can be used at its second eigenmode under FM non-contact mode or low amplitude FM tapping mode, which means that it is easy to change the measuring method from normal tapping to small amplitude tapping or non-contact mode with the same probe and equipment. PMID:26580619</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DPPG12083C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DPPG12083C"><span>Core heat convection in NSTX-U via modification of electron orbits by high frequency Alfvén eigenmodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crocker, N. A.; Tritz, K.; White, R. B.; Fredrickson, E. D.; Gorelenkov, N. N.; NSTX-U Team</p> <p>2015-11-01</p> <p>New simulation results demonstrate that high frequency compressional (CAE) and global (GAE) Alfvén eigenmodes cause radial convection of electrons, with implications for particle and energy confinement, as well as electric field formation in NSTX-U. Simulations of electron orbits in the presence of multiple experimentally determined CAEs and GAEs, using the gyro-center code ORBIT, have revealed substantial convective transport, in addition to the expected diffusion via orbit stochastization. These results advance understanding of anomalous core energy transport expected in high performance, beam-heated NSTX-U plasmas. The simulations make use of experimentally determined density perturbation (δn) amplitudes and mode structures obtained by inverting measurements from 16 a channel reflectometer array using a synthetic diagnostic. Combined with experimentally determined mode polarizations (i.e. CAE or GAE), the δn are used to estimate the ExB displacements for use in ORBIT. Preliminary comparison of the simulation results with transport modeling by TRANSP indicate that the convection is currently underestimated. Supported by US DOE Contracts DE-SC0011810, DE-FG02-99ER54527 & DE-AC02-09CH11466.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004APS..DPPNP1014H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004APS..DPPNP1014H"><span>Compressional Alfven Eigenmode Similarity Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heidbrink, W. W.; Fredrickson, E. D.; Gorelenkov, N. N.; Rhodes, T. L.</p> <p>2004-11-01</p> <p>NSTX and DIII-D are nearly ideal for Alfven eigenmode (AE) similarity experiments, having similar neutral beams, fast-ion to Alfven speed v_f/v_A, fast-ion pressure, and shape of the plasma, but with a factor of 2 difference in the major radius. Toroidicity-induced AE with ˜100 kHz frequencies were compared in an earlier study [1]; this paper focuses on higher frequency AE with f ˜ 1 MHz. Compressional AE (CAE) on NSTX have a polarization, dependence on the fast-ion distribution function, frequency scaling, and low-frequency limit that are qualitatively consistent with CAE theory [2]. Global AE (GAE) are also observed. On DIII-D, coherent modes in this frequency range are observed during low-field (0.6 T) similarity experiments. Experiments will compare the CAE stability limits on DIII-D with the NSTX stability limits, with the aim of determining if CAE will be excited by alphas in a reactor. Predicted differences in the frequency splitting Δ f between excited modes will also be used. \\vspace0.25em [1] W.W. Heidbrink, et al., Plasmas Phys. Control. Fusion 45, 983 (2003). [2] E.D. Fredrickson, et al., Princeton Plasma Physics Laboratory Report PPPL-3955 (2004).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21347175-fourier-domain-study-drift-turbulence-driven-sheared-flow-laboratory-plasma','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21347175-fourier-domain-study-drift-turbulence-driven-sheared-flow-laboratory-plasma"><span>Fourier-domain study of drift turbulence driven sheared flow in a laboratory plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xu, M.; Tynan, G. R.; Holland, C.</p> <p>2010-03-15</p> <p>Frequency-resolved nonlinear internal and kinetic energy transfer rates have been measured in the Controlled Shear Decorrelation Experiment (CSDX) linear plasma device using a recently developed technique [Xu et al., Phys. Plasmas 16, 042312 (2009)]. The results clearly show a net kinetic energy transfer into the zonal flow frequency region, consistent with previous time-domain observations of turbulence-driven shear flows [Tynan et al., Plasma Phys. Controlled Fusion 48, S51 (2006)]. The experimentally measured dispersion relation has been used to map the frequency-resolved energy transfer rates into the wave number domain, which shows that the shear flow drive comes from midrange (k{sub t}hetarho{submore » S}>0.3) drift fluctuations, and the strongest flow drive comes from k{sub t}hetarho{sub S}approx =1 fluctuations. Linear growth rates have been inferred from a linearized Hasegawa-Wakatani model [Hasegawa et al., Phys. Fluids 22, 2122 (1979)], which indicates that the m=0 mode is linearly stable and the m=1-10 modes (corresponding to k{sub t}hetarho{sub S}>0.3) are linearly unstable for the n=1 and n=2 radial eigenmodes. This is consistent with our energy transfer measurements.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDD35003M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDD35003M"><span>Zombie Turbulence and More in Stratified Couette Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marcus, Philip; Barranco, Joe; Pei, Suyang; Jiang, Chung-Hsiang</p> <p>2016-11-01</p> <p>Zombie turbulence occurs in rotating, shearing vertically-stratified flows such as stratified Couette flows. The turbulence is triggered by a neutrally-stable eigenmode with a critical layer receptive to finite-amplitude perturbations. Once excited, the critical layer becomes a vortex layer pair that rolls up into discrete vortices. Those vortices excite new critical layers, and the process repeats ad infinitum. When the vortex amplitudes become sufficiently large, the flow becomes turbulent. Although possessing a mid-range energy spectrum with E (k) k - 5 / 3 , the turbulence is non-Kolmogorov, highly anisotropic, and with large turbulent, but coherent, structures that retain the length scales of the spacing between the critical layers. The motivation for this study is protoplanetary disks (PPDs) where new stars form. In the PPD the Brunt-Vaisala frequency N increases as a function of distance from the midplane where it is zero. We cannot trigger the initial finite amplitude instability where N is small (close to the midplane). However, computations in PPDs and Couette flows show that zombie turbulence forms where N is large, and then a new type of turbulence, that is neither zombie nor Kolmogorov turbulence, fills in the remainder of the domain even where N = 0 .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA568383','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA568383"><span>Acquisition Management for Systems-of-Systems: Analysis of Alternatives via Computational Exploratory Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-02-03</p> <p>node to the analysis of eigenmodes (connected trees /networks) of disruption sequences. The identification of disruption eigenmodes is particularly...investment portfolio approach enables the identification of optimal SoS network topologies and provides a tool for acquisition professionals to...a program based on its ability to provide a new capability for a given cost, and not on its ability to meet specific performance requirements ( Spacy</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17707277','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17707277"><span>Principal component analysis-based pattern analysis of dose-volume histograms and influence on rectal toxicity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Söhn, Matthias; Alber, Markus; Yan, Di</p> <p>2007-09-01</p> <p>The variability of dose-volume histogram (DVH) shapes in a patient population can be quantified using principal component analysis (PCA). We applied this to rectal DVHs of prostate cancer patients and investigated the correlation of the PCA parameters with late bleeding. PCA was applied to the rectal wall DVHs of 262 patients, who had been treated with a four-field box, conformal adaptive radiotherapy technique. The correlated changes in the DVH pattern were revealed as "eigenmodes," which were ordered by their importance to represent data set variability. Each DVH is uniquely characterized by its principal components (PCs). The correlation of the first three PCs and chronic rectal bleeding of Grade 2 or greater was investigated with uni- and multivariate logistic regression analyses. Rectal wall DVHs in four-field conformal RT can primarily be represented by the first two or three PCs, which describe approximately 94% or 96% of the DVH shape variability, respectively. The first eigenmode models the total irradiated rectal volume; thus, PC1 correlates to the mean dose. Mode 2 describes the interpatient differences of the relative rectal volume in the two- or four-field overlap region. Mode 3 reveals correlations of volumes with intermediate doses ( approximately 40-45 Gy) and volumes with doses >70 Gy; thus, PC3 is associated with the maximal dose. According to univariate logistic regression analysis, only PC2 correlated significantly with toxicity. However, multivariate logistic regression analysis with the first two or three PCs revealed an increased probability of bleeding for DVHs with more than one large PC. PCA can reveal the correlation structure of DVHs for a patient population as imposed by the treatment technique and provide information about its relationship to toxicity. It proves useful for augmenting normal tissue complication probability modeling approaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/552289-new-model-high-power-electromagnetic-field-instability-transparent-media','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/552289-new-model-high-power-electromagnetic-field-instability-transparent-media"><span>New model for high-power electromagnetic field instability in transparent media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gruzdev, V.E.; Libenson, M.N.</p> <p></p> <p>A model of high-power field instability is developed to describe local abrupt increasing of electromagnetic field intensity in transparent dielectric. Small local enhancement of the field amplitude is initiated by low-absorbing spherical inclusion which size is less than radiation wavelength. Exceeding threshold of optical bistability results in abrupt increasing of field amplitude in the defect that also leads to local increasing of field amplitude in the host material in the vicinity of the inclusion. Bearing in mind nonlinear dependence of refractive index of the host material on light intensity we develop a model to describe spreading of initial defect upmore » to size appropriate for the first resonant field mode to be formed. Increasing of refraction index due to nonlinear light-matter interaction and existence of high-Q eigenmodes of dielectric sphere can both cause positive feedback`s and result in field instability in the medium. Estimates are obtained of the threshold value of incident-field amplitude.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22370039-magnetorotational-instability-nonmodal-growth-relationship-global-modes-shearing-box','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22370039-magnetorotational-instability-nonmodal-growth-relationship-global-modes-shearing-box"><span>Magnetorotational instability: nonmodal growth and the relationship of global modes to the shearing box</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Squire, J.; Bhattacharjee, A.</p> <p>2014-12-10</p> <p>We study magnetorotational instability (MRI) using nonmodal stability techniques. Despite the spectral instability of many forms of MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very different from the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localized in a completely different region ofmore » space. These ideas lead—for both axisymmetric and non-axisymmetric modes—to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary differential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using nonmodal analysis techniques, we conclude by analyzing local MRI growth over finite timescales using these methods. The strong growth over a wide range of wave-numbers suggests that nonmodal linear physics could be of fundamental importance in MRI turbulence.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MicST.tmp...47S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MicST.tmp...47S"><span>Inertial Waves and Steady Flows in a Liquid Filled Librating Cylinder</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Subbotin, Stanislav; Dyakova, Veronika</p> <p>2018-05-01</p> <p>The fluid flow in a non-uniformly rotating (librating) cylinder about a horizontal axis is experimentally studied. In the absence of librations the fluid performs a solid-body rotation together with the cavity. Librations lead to the appearance of steady zonal flow in the whole cylinder and the intensive steady toroidal flows near the cavity corners. If the frequency of librations is twice lower than the mean rotation rate the inertial waves are excited. The oscillating motion associated with the propagation of inertial wave in the fluid bulk leads to the appearance of an additional steady flow in the Stokes boundary layers on the cavity side wall. In this case the heavy particles of the visualizer are assembled on the side wall into ring structures. The patterns are determined by the structure of steady flow, which in turn depends on the number of reflections of inertial wave beams from the cavity side wall. For some frequencies, inertial waves experience spatial resonance, resulting in inertial modes, which are eigenmodes of the cavity geometry. The resonance of the inertial modes modifies the steady flow structure close to the boundary layer that is manifested in the direct rebuilding of patterns. It is shown that the intensity of zonal flow, as well as the intensity of steady flows excited by inertial waves, is proportional to the square of the amplitude of librations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21064487-spatial-distribution-wave-field-surface-modes-sustaining-filamentary-discharges','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21064487-spatial-distribution-wave-field-surface-modes-sustaining-filamentary-discharges"><span>Spatial distribution of the wave field of the surface modes sustaining filamentary discharges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lishev, St.; Shivarova, A.; Tarnev, Kh.</p> <p>2008-01-01</p> <p>The study presents the electrodynamical description of surface-wave-sustained discharges contracted in filamentary structures. The results are for the spatial distribution of the wave field and for the wave propagation characteristics obtained from a two-dimensional model developed for describing surface-wave behavior in plasmas with an arbitrary distribution of the plasma density. In accordance with the experimental observations of filamentary discharges, the plasma density distribution considered is completed by cylindrically shaped gas-discharge channels extended along the discharge length and positioned in the out-of-center region of the discharge, equidistantly in an azimuthal direction. Due to the two-dimensional inhomogeneity of the plasma density ofmore » the filamentary structure, the eigen surface mode of the structure is a hybrid wave, with all--six--field components. For identification of its behavior, the surface wave properties in the limiting cases of a plasma ring and a single filament--both radially inhomogeneous--are involved in the discussions. The presentation of the results is for filamentary structures with a decreasing number of filaments (from 10 to 2) starting with the plasma ring, the latter supporting propagation of an azimuthally symmetric wave. Due to the resonance absorption of the surface waves, always present because of the smooth variation of the plasma density, the contours of the critical density are those guiding the surface wave propagation. Decreasing number of filaments in the structure leads to localization of the amplitudes of the wave-field components around the filaments. By analogy with the spatial distribution of the wave field in the plasma ring, the strong resonance enhancement of the wave-field components is along that part of the contour of the critical density which is far off the center of the filamentary structure. The analysis of the spatial distribution of the field components of the filamentary structure shows that the hybrid wave is an eigenmode of the whole structure, i.e., the wave field does not appear as a superposition of fields of eigenmodes of the separated filaments completing it. It is stressed that the spatial distribution of the field components of the eigen hybrid mode of the filamentary structure has an azimuthally symmetric background field.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMagR.286...78S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMagR.286...78S"><span>Experimental investigation of a metasurface resonator for in vivo imaging at 1.5 T</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shchelokova, Alena V.; Slobozhanyuk, Alexey P.; de Bruin, Paul; Zivkovic, Irena; Kallos, Efthymios; Belov, Pavel A.; Webb, Andrew</p> <p>2018-01-01</p> <p>In this work, we experimentally demonstrate an increase in the local transmit efficiency of a 1.5 T MRI scanner by using a metasurface formed by an array of brass wires embedded in a high permittivity low loss medium. Placement of such a structure inside the scanner results in strong coupling of the radiofrequency field produced by the body coil with the lowest frequency electromagnetic eigenmode of the metasurface. This leads to spatial redistribution of the near fields with enhancement of the local magnetic field and an increase in the transmit efficiency per square root maximum specific absorption rate in the region-of-interest. We have investigated this structure in vivo and achieved a factor of 3.3 enhancement in the local radiofrequency transmit efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2688821','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2688821"><span>Asymmetric spatiotemporal chaos induced by a polypoid mass in the excised larynx</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Yu; Jiang, Jack J.</p> <p>2008-01-01</p> <p>In this paper, asymmetric spatiotemporal chaos induced by a polypoid mass simulating the laryngeal pathology of a vocal polyp is experimentally observed using high-speed imaging in an excised larynx. Spatiotemporal analysis reveals that the normal vocal folds show spatiotemporal correlation and symmetry. Normal vocal fold vibrations are dominated mainly by the first vibratory eigenmode. However, pathological vocal folds with a polypoid mass show broken symmetry and spatiotemporal irregularity. The spatial correlation is decreased. The pathological vocal folds spread vibratory energy across a large number of eigenmodes and induce asymmetric spatiotemporal chaos. High-order eigenmodes show complicated dynamics. Spatiotemporal analysis provides a valuable biomedical application for investigating the spatiotemporal chaotic dynamics of pathological vocal fold systems with a polypoid mass and may represent a valuable clinical tool for the detection of laryngeal mass lesion using high-speed imaging. PMID:19123612</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1395200-degenerate-critical-coupling-all-dielectric-metasurface-absorbers','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1395200-degenerate-critical-coupling-all-dielectric-metasurface-absorbers"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ming, Xianshun; Liu, Xinyu; Sun, Liqun</p> <p></p> <p>We develop the theory of all-dielectric absorbers based on temporal coupled mode theory (TCMT), with parameters extracted from eigenfrequency simulations. An infinite square array of cylindrical resonators embedded in air is investigated, and we find that it supports two eigenmodes of opposite symmetry that are each responsible for half of the total absorption. The even and odd eigenmodes are found to be the hybrid electric (EH111) and hybrid magnetic (HE111) waveguide modes of a dielectric wire of circular cross section, respectively. The geometry of the cylindrical array is shown to be useful for individual tuning of the radiative loss ratesmore » of the eigenmodes, thus permitting frequency degeneracy. Further, by specifying the resonators’ loss tangent, the material loss rate can be made to equal the radiative loss rate, thus achieving a state of degenerate critical coupling and perfect absorption. Our results are supported by S-parameter simulations, and agree well with waveguide theory.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930052831&hterms=Magnetic+Flux&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DMagnetic%2BFlux','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930052831&hterms=Magnetic+Flux&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DMagnetic%2BFlux"><span>Resonant behavior of MHD waves on magnetic flux tubes. IV - Total resonant absorption and MHD radiating eigenmodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goossens, Marcel; Hollweg, Joseph V.</p> <p>1993-01-01</p> <p>Resonant absorption of MHD waves on a nonuniform flux tube is investigated as a driven problem for a 1D cylindrical equilibrium. The variation of the fractional absorption is studied as a function of the frequency and its relation to the eigenvalue problem of the MHD radiating eigenmodes of the nonuniform flux tube is established. The optimal frequencies producing maximal fractional absorption are determined and the condition for total absorption is obtained. This condition defines an impedance matching and is fulfilled for an equilibrium that is fine tuned with respect to the incoming wave. The variation of the spatial wave solutions with respect to the frequency is explained as due to the variation of the real and imaginary parts of the dispersion relation of the MHD radiating eigenmodes with respect to the real driving frequency.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4512741','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4512741"><span>Self responses along cingulate cortex reveal quantitative neural phenotype for high functioning autism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chiu, Pearl H.; Kayali, M. Amin; Kishida, Kenneth T.; Tomlin, Damon; Klinger, Laura G.; Klinger, Mark R.; Montague, P. Read</p> <p>2014-01-01</p> <p>Summary Attributing behavioral outcomes correctly to oneself or to other agents is essential for all productive social exchange. We approach this issue in high-functioning males with autism spectrum disorder (ASD) using two separate fMRI paradigms. First, using a visual imagery task, we extract a basis set for responses along the cingulate cortex of control subjects that reveals an agent-specific eigenvector (self eigenmode) associated with imagining oneself executing a specific motor act. Second, we show that the same self eigenmode arises during one's own decision (the self phase) in an interpersonal exchange game (iterated trust game). Third, using this exchange game, we show that ASD males exhibit a severely diminished self eigenmode when playing the game with a human partner. This diminished response covaries parametrically with their behaviorally assessed symptom severity suggesting its value as an objective endophenotype. These findings may provide a quantitative assessment tool for high functioning ASD. PMID:18255038</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MS%26E...95a2005M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MS%26E...95a2005M"><span>Experimental determinations of the eigenmodes for composite bars made with carbon and Kevlar-carbon fibers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miriţoiu, C. M.; Stănescu, M. M.; Burada, C. O.; Bolcu, D.; Roşca, V.</p> <p>2015-11-01</p> <p>For modal identification, the single-point excitation method has been widely used in modal tests and it consists in applying a force in a given point and recording the vibratory structure response in all interest points, including the excitation point. There will be presented the experimental recordings for the studied bars (with Kevlar-carbon or carbon fibers), the frequency response function in Cartesian and polar coordinates. By using the frequency response functions we determine the eigenparameters for each bar. We present the final panel of the eigenmodes (with the damping factors, eigenfrequencies and critical damping) for each considered bar. Using the eigenfrequency of the first determined eigenmode, the bars stiffness has been determined. The presented bars can be used in practical engineering for: car or bus body parts, planes body parts, bullet-proof vests, reinforcements for sandwich beams, and so on.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhPl...23e2106V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhPl...23e2106V"><span>Electromagnetic fluctuation spectra of collective oscillations in magnetized Maxwellian plasmas for parallel wave vectors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vafin, S.; Schlickeiser, R.; Yoon, P. H.</p> <p>2016-05-01</p> <p>The general electromagnetic fluctuation theory for magnetized plasmas is used to calculate the steady-state wave number spectra and total electromagnetic field strength of low-frequency collective weakly damped eigenmodes with parallel wavevectors in a Maxwellian electron-proton plasma. These result from the equilibrium of spontaneous emission and collisionless damping, and they represent the minimum electromagnetic fluctuations guaranteed in quiet thermal space plasmas, including the interstellar and interplanetary medium. Depending on the plasma beta, the ratio of |δB |/B0 can be as high as 10-12 .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25104912','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25104912"><span>A non-asymptotic homogenization theory for periodic electromagnetic structures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsukerman, Igor; Markel, Vadim A</p> <p>2014-08-08</p> <p>Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PPCF...59l5007H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PPCF...59l5007H"><span>Global Alfvén eigenmodes in the H-1 heliac</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hole, M. J.; Blackwell, B. D.; Bowden, G.; Cole, M.; Könies, A.; Michael, C.; Zhao, F.; Haskey, S. R.</p> <p>2017-12-01</p> <p>Recent upgrades in H-1 power supplies have enabled the operation of the H-1 experiment at higher heating powers than previously attainable. A heating power scan in mixed hydrogen/helium plasmas reveals a change in mode activity with increasing heating power. At low power (< 50 kW) modes with beta-induced Alfvén eigenmode frequency scaling are observed. At higher power modes consistent with an analysis of nonconventional global Alfvén eigenmodes (GAEs) are observed, the subject of this work. We have computed the mode continuum, and identified GAE structures using the ideal MHD solver CKA and the gyrokinetic code EUTERPE. An analytic model for ICRH-heated minority ions is used to estimate the fast ion temperature from the hydrogen species. Linear growth rate scans using a local flux surface stability calculation, LGRO, are performed. These studies demonstrate drive from the radial spatial gradient of circulating particles whose speed is significantly less than the Alfvén speed, and are resonant with the mode through harmonics of the Fourier decomposition of the strongly shaped heliac magnetic field. They reveal drive is possible with a small ({n}f/{n}0< 0.2) hot energetic tail of the hydrogen species, for which {T}f> 300 {eV}. Local linear growth rate scans are also complemented with global calculations from CKA and EUTERPE. These qualitatively confirm the findings from the LGRO study, and show that the inclusion of finite Larmor radius effects can reduce the growth rate by a factor of up to ten, and increases the marginal stability fast ion temperature by a factor of two. Finally, a study of damping of the global mode with the thermal plasma is conducted, computing continuum damping , and the damping arising from finite Larmor radius and parallel electric fields (via resistivity). We find that continuum damping is of order 0.1% for the configuration studied. A similar calculation in the cylindrical plasma model produces a frequency 35% higher and a damping 30% of the three-dimensional result: this confirms the importance of strong magnetic shaping to the frequency and damping. The inclusion of resistivity lifts the damping to γ /ω =-0.189. Such large damping is consistent with experimental observations that in absence of drive the mode decays rapidly (∼0.1 ms).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1358041-energetic-particles-spherical-tokamak-plasmas','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1358041-energetic-particles-spherical-tokamak-plasmas"><span>Energetic particles in spherical tokamak plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>McClements, K. G.; Fredrickson, E. D.</p> <p>2017-03-21</p> <p>Spherical tokamaks (STs) typically have lower magnetic fields than conventional tokamaks, but similar mass densities. Suprathermal ions with relatively modest energies, in particular beam-injected ions, consequently have speeds close to or exceeding the Alfvén velocity, and can therefore excite a range of Alfvénic instabilities which could be driven by (and affect the behaviour of) fusion α-particles in a burning plasma. STs heated with neutral beams, including the small tight aspect ratio tokamak (START), the mega amp spherical tokamak (MAST), the national spherical torus experiment (NSTX) and Globus-M, have thus provided an opportunity to study toroidal Alfvén eigenmodes (TAEs), together withmore » higher frequency global Alfvén eigenmodes (GAEs) and compressional Alfvén eigenmodes (CAEs), which could affect beam current drive and channel fast ion energy into bulk ions in future devices. In NSTX GAEs were correlated with a degradation of core electron energy confinement. In MAST pulses with reduced magnetic field, CAEs were excited across a wide range of frequencies, extending to the ion cyclotron range, but were suppressed when hydrogen was introduced to the deuterium plasma, apparently due to mode conversion at ion–ion hybrid resonances. At lower frequencies fishbone instabilities caused fast particle redistribution in some MAST and NSTX pulses, but this could be avoided by moving the neutral beam line away from the magnetic axis or by operating the plasma at either high density or elevated safety factor. Fast ion redistribution has been observed during GAE avalanches on NSTX, while in both NSTX and MAST fast ions were transported by saturated kink modes, sawtooth crashes, resonant magnetic perturbations and TAEs. The energy dependence of fast ion redistribution due to both sawteeth and TAEs has been studied in Globus-M. High energy charged fusion products are unconfined in present-day STs, but have been shown in MAST to provide a useful diagnostic of beam ion behaviour, supplementing the information provided by neutron detectors. In MAST electrons were accelerated to highly suprathermal energies as a result of edge localised modes, while in both MAST and NSTX ions were accelerated due to internal reconnection events. Lastly, ion acceleration has also been observed during merging-compression start-up in MAST.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhPl...21a2114Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhPl...21a2114Z"><span>Nonlinearly driven harmonics of Alfvén modes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, B.; Breizman, B. N.; Zheng, L. J.; Berk, H. L.</p> <p>2014-01-01</p> <p>In order to study the leading order nonlinear magneto-hydrodynamic (MHD) harmonic response of a plasma in realistic geometry, the AEGIS code has been generalized to account for inhomogeneous source terms. These source terms are expressed in terms of the quadratic corrections that depend on the functional form of a linear MHD eigenmode, such as the Toroidal Alfvén Eigenmode. The solution of the resultant equation gives the second order harmonic response. Preliminary results are presented here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910034717&hterms=conjunctions&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dconjunctions','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910034717&hterms=conjunctions&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dconjunctions"><span>An examination of coherent structures in a lobed mixer using multifractal measures in conjunction with the proper orthogonal decomposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ukeiley, L.; Varghese, M.; Glauser, M.; Valentine, D.</p> <p>1991-01-01</p> <p>A 'lobed mixer' device that enhances mixing through secondary flows and streamwise vorticity is presently studied within the framework of multifractal-measures theory, in order to deepen understanding of velocity time trace data gathered on its operation. Proper orthogonal decomposition-based knowledge of coherent structures has been applied to obtain the generalized fractal dimensions and multifractal spectrum of several proper eigenmodes for data samples of the velocity time traces; this constitutes a marked departure from previous multifractal theory applications to self-similar cascades. In certain cases, a single dimension may suffice to capture the entire spectrum of scaling exponents for the velocity time trace.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/39082','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/39082"><span>Reynolds stress of localized toroidal modes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Y.Z.; Mahajan, S.M.</p> <p>1995-02-01</p> <p>An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at {pi}/2 (or -{pi}/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stressmore » (a possible source of poloidal flow) can be significant.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004APS..DPPEP1051C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004APS..DPPEP1051C"><span>Finite-beta and equilibrium sheared flow effects on core plasma turbulence and transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Yang; Parker, Scott E.</p> <p>2004-11-01</p> <p>Recent GEM (Y. Chen and S. E. Parker, J. Comp. Phys. 189 (2003)463) simulations have revealed the following features of ITG turbulence and transport: (1) For η_e ˜η_i, as β increases the turbulence level and transport increase, leading to fast streamer transport for β ˜ β_crit/2, β_ crit the ideal ballooning limit; (2) Sheared E_r× B flow with shearing rate γ_E=(r/q)partial(qv_ E× B/r)/partial r ˜ γ readily stabilizes the linear eigenmode. However, starting with a nonlinear state obtained without sheared flow, and continue the simulation with a shearing rate γE ≤ 3γ, the turbulence and transport are reduced but not completely quenched, indicating that turbulence is nonlinearly self-sustained.(J. F. Drake, A. Zeiler and D. Biskamp, Phys. Rev. Lett 75 (1995) 4222) At β=0.4β_crit, turbulence is completely quenched only when the shearing rate far exceeds the linear growth rate; (3) As β increases, the shearing rate threshold at which the turbulence can self-sustain increases. Electromagnetic turbulence is more robust in the presence of sheared flow than electrostatic turbulence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JSV...384..177D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JSV...384..177D"><span>A one dimensional numerical approach for computing the eigenmodes of elastic waves in buried pipelines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duan, Wenbo; Kirby, Ray; Mudge, Peter; Gan, Tat-Hean</p> <p>2016-12-01</p> <p>Ultrasonic guided waves are often used in the detection of defects in oil and gas pipelines. It is common for these pipelines to be buried underground and this may restrict the length of the pipe that can be successfully tested. This is because acoustic energy travelling along the pipe walls may radiate out into the surrounding medium. Accordingly, it is important to develop a better understanding of the way in which elastic waves propagate along the walls of buried pipes, and so in this article a numerical model is developed that is suitable for computing the eigenmodes for uncoated and coated buried pipes. This is achieved by combining a one dimensional eigensolution based on the semi-analytic finite element (SAFE) method, with a perfectly matched layer (PML) for the infinite medium surrounding the pipe. This article also explores an alternative exponential complex coordinate stretching function for the PML in order to improve solution convergence. It is shown for buried pipelines that accurate solutions may be obtained over the entire frequency range typically used in long range ultrasonic testing (LRUT) using a PML layer with a thickness equal to the pipe wall thickness. This delivers a fast and computationally efficient method and it is shown for pipes buried in sand or soil that relevant eigenmodes can be computed and sorted in less than one second using relatively modest computer hardware. The method is also used to find eigenmodes for a buried pipe coated with the viscoelastic material bitumen. It was recently observed in the literature that a viscoelastic coating may effectively isolate particular eigenmodes so that energy does not radiate from these modes into the surrounding [elastic] medium. A similar effect is also observed in this article and it is shown that this occurs even for a relatively thin layer of bitumen, and when the shear impedance of the coating material is larger than that of the surrounding medium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22661250-spectral-analysis-non-ideal-mri-modes-effect-hall-diffusion','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22661250-spectral-analysis-non-ideal-mri-modes-effect-hall-diffusion"><span>Spectral Analysis of Non-ideal MRI Modes: The Effect of Hall Diffusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mohandas, Gopakumar; Pessah, Martin E., E-mail: gopakumar@nbi.ku.dk, E-mail: mpessah@nbi.ku.dk</p> <p></p> <p>The effect of magnetic field diffusion on the stability of accretion disks is a problem that has attracted considerable interest of late. In particular, the Hall effect has the potential to bring about remarkable changes in the dynamical behavior of disks that are without parallel. In this paper, we conduct a systematic examination of the linear eigenmodes in a weakly magnetized differentially rotating gas with a special focus on Hall diffusion. We first develop a geometrical representation of the eigenmodes and provide a detailed quantitative description of the polarization properties of the oscillatory modes under the combined influence of themore » Coriolis and Hall effects. We also analyze the effects of magnetic diffusion on the structure of the unstable modes and derive analytical expressions for the kinetic and magnetic stresses and energy densities associated with the non-ideal magnetorotational instability (MRI). Our analysis explicitly demonstrates that, if the dissipative effects are relatively weak, the kinetic stresses and energies make up the dominant contribution to the total stress and energy density when the equilibrium angular momentum and magnetic field vectors are anti-parallel. This is in sharp contrast to what is observed in the case of the ideal or dissipative MRI. We conduct shearing box simulations and find very good agreement with the results derived from linear theory. Because the modes under consideration are also exact solutions of the nonlinear equations, the unconventional nature of the kinetic and magnetic stresses may have significant implications for the nonlinear evolution in some regions of protoplanetary disks.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22521854-eigenmodes-three-dimensional-magnetic-arcades-suns-corona','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22521854-eigenmodes-three-dimensional-magnetic-arcades-suns-corona"><span>EIGENMODES OF THREE-DIMENSIONAL MAGNETIC ARCADES IN THE SUN’S CORONA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hindman, Bradley W.; Jain, Rekha, E-mail: hindman@solarz.colorado.edu</p> <p></p> <p>We develop a model of coronal-loop oscillations that treats the observed bright loops as an integral part of a larger three-dimensional (3D) magnetic structure comprised of the entire magnetic arcade. We demonstrate that magnetic arcades within the solar corona can trap MHD fast waves in a 3D waveguide. This is accomplished through the construction of a cylindrically symmetric model of a magnetic arcade with a potential magnetic field. For a magnetically dominated plasma, we derive a governing equation for MHD fast waves and from this equation we show that the magnetic arcade forms a 3D waveguide if the Alfvén speedmore » increases monotonically beyond a fiducial radius. Both magnetic pressure and tension act as restoring forces, instead of just tension as is generally assumed in 1D models. Since magnetic pressure plays an important role, the eigenmodes involve propagation both parallel and transverse to the magnetic field. Using an analytic solution, we derive the specific eigenfrequencies and eigenfunctions for an arcade possessing a discontinuous density profile. The discontinuity separates a diffuse cylindrical cavity and an overlying shell of denser plasma that corresponds to the bright loops. We emphasize that all of the eigenfunctions have a discontinuous axial velocity at the density interface; hence, the interface can give rise to the Kelvin–Helmholtz instability. Further, we find that all modes have elliptical polarization with the degree of polarization changing with height. However, depending on the line of sight, only one polarization may be clearly visible.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990009053','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990009053"><span>Eigenmode Analysis of Boundary Conditions for One-Dimensional Preconditioned Euler Equations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Darmofal, David L.</p> <p>1998-01-01</p> <p>An analysis of the effect of local preconditioning on boundary conditions for the subsonic, one-dimensional Euler equations is presented. Decay rates for the eigenmodes of the initial boundary value problem are determined for different boundary conditions. Riemann invariant boundary conditions based on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach numbers, disturbances do not decay. Other boundary conditions are investigated which are non-reflective with preconditioning and numerical results are presented confirming the analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20867132','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20867132"><span>Nonlinear hybridization of the fundamental eigenmodes of microscopic ferromagnetic ellipses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Demidov, V E; Buchmeier, M; Rott, K; Krzysteczko, P; Münchenberger, J; Reiss, G; Demokritov, S O</p> <p>2010-05-28</p> <p>We have studied experimentally with high spatial resolution the nonlinear eigenmodes of microscopic Permalloy elliptical elements. We show that the nonlinearity affects the frequencies of the edge and the center modes in an essentially different way. This leads to repulsion of corresponding resonances and to nonlinear mode hybridization resulting in qualitative modifications of the spatial characteristics of the modes. We find that the nonlinear counterparts of the edge and the center modes simultaneously exhibit features specific for both their linear analogues.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA079961','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA079961"><span>On the Physical Realizability of Broad-Band Equivalent Circuits for Wire Loop and Dipole Antennas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1979-05-01</p> <p>found numerically, the task of grouping the poles by eigenmodes is much more difficult. For a complex object where the poles are experimentally . ived...structure is PR or can be made PR, then when all the poles for the structure are grouped the low frequency non -PR character of the higher poles are...the quarter point of the wire, some non -PR results are discovered. These groupings are indicated in Figures 45 through 49. The postulated eigenmode</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006OptL...31.3417H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006OptL...31.3417H"><span>Modal analysis of circular Bragg fibers with arbitrary index profiles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horikis, Theodoros P.; Kath, William L.</p> <p>2006-12-01</p> <p>A finite-difference approach based upon the immersed interface method is used to analyze the mode structure of Bragg fibers with arbitrary index profiles. The method allows general propagation constants and eigenmodes to be calculated to a high degree of accuracy, while computation times are kept to a minimum by exploiting sparse matrix algebra. The method is well suited to handle complicated structures comprised of a large number of thin layers with high-index contrast and simultaneously determines multiple eigenmodes without modification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvB..90j4418H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvB..90j4418H"><span>Coupled oscillations of vortex cores confined in a ferromagnetic elliptical disk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hata, Hiroshi; Goto, Minori; Yamaguchi, Akinobu; Sato, Tomonori; Nakatani, Yoshinobu; Nozaki, Yukio</p> <p>2014-09-01</p> <p>By solving the Thiele equation with simultaneous application of a radio-frequency (rf) magnetic field (hrf) and an rf spin current (jsp), the dynamic susceptibility of exchange-coupled vortices in response to hrf and jsp was obtained. It was found that the four eigenmodes expected for two vortices trapped in a magnetic elliptical disk were coupled to different components of hrf and jsp. As a consequence, orthogonal hrf and jsp (which are simultaneously generated by the application of an rf current to an elliptical disk) can excite two modes with different eigenfrequencies. This result suggests that a fieldlike nonadiabatic torque caused by an rf spin current can be spectroscopically distinguished from the one caused by the rf magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1198327-surface-plasmon-states-inhomogeneous-media-critical-subcritical-metal-concentrations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1198327-surface-plasmon-states-inhomogeneous-media-critical-subcritical-metal-concentrations"><span>Surface Plasmon States in Inhomogeneous Media at Critical and Subcritical Metal Concentrations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Seal, Katyayani; Genov, Dentcho A.</p> <p></p> <p>Semicontinuous metal-dielectric films are composed of a wide range of metal clusters of various geometries—sizes as well as structures. This ensures that at any given wavelength of incident radiation, clusters exist in the film that will respond resonantly, akin to resonating nanoantennas, resulting in the broad optical response (absorption) that is a characteristic of semicontinuous films. The physics of the surface plasmon states that are supported by such systems is complex and can involve both localized and propagating plasmons. This chapter describes near-field experimental and numerical studies of the surface plasmon states in semicontinuous films at critical and subcritical metalmore » concentrations and evaluates the local field intensity statistics to discuss the interplay between various eigenmodes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29197694','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29197694"><span>Experimental investigation of a metasurface resonator for in vivo imaging at 1.5 T.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shchelokova, Alena V; Slobozhanyuk, Alexey P; de Bruin, Paul; Zivkovic, Irena; Kallos, Efthymios; Belov, Pavel A; Webb, Andrew</p> <p>2018-01-01</p> <p>In this work, we experimentally demonstrate an increase in the local transmit efficiency of a 1.5 T MRI scanner by using a metasurface formed by an array of brass wires embedded in a high permittivity low loss medium. Placement of such a structure inside the scanner results in strong coupling of the radiofrequency field produced by the body coil with the lowest frequency electromagnetic eigenmode of the metasurface. This leads to spatial redistribution of the near fields with enhancement of the local magnetic field and an increase in the transmit efficiency per square root maximum specific absorption rate in the region-of-interest. We have investigated this structure in vivo and achieved a factor of 3.3 enhancement in the local radiofrequency transmit efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..DPPPP8018F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..DPPPP8018F"><span>Predator-prey modeling of the coupling of co-propagating CAE to kink modes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fredrickson, Eric</p> <p>2012-10-01</p> <p>Co-propagating Compressional Alfven eigenmodes (CAE) with shorter wavelength and higher frequency than the counter-propagating CAE and Global Alfven eigenmodes (GAE) often accompany a low frequency n=1 kink. The lower frequency CAE and GAE are excited through a Doppler-shifted cyclotron resonance; the high frequency CAE (hfCAE) through a simple parallel resonance. We present measurements of the mode structure and spectrum of the hfCAE, and compare those measurements to predictions of a simple model for CAE. The modes are bursting with a typical burst frequency on the order of a few kHz. The n=1 kink frequency is usually higher than this, but when the kink frequency does drop towards the hfCAE burst frequency, the hfCAE burst frequency can become locked with the kink frequency. A simple predator-prey model to simulate the hfCAE bursting demonstrates that a modulation of the growth or damping rate by a few percent, at a frequency near the natural burst frequency, can lock the burst frequency to the modulation frequency. The modulation of the damping rate is postulated to be through a coupling of the kink with a symmetry-breaking error field. The deeper question is how the kink interaction with a locked mode can affect the damping/growth rates of the CAE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DPPN10034B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DPPN10034B"><span>Interaction between high harmonic fast waves and fast ions in NSTX/NSTX-U plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bertelli, N.; Valeo, E. J.; Gorelenkova, M.; Green, D. L.; RF SciDAC Team</p> <p>2016-10-01</p> <p>Fast wave (FW) heating in the ion cyclotron range of frequency (ICRF) has been successfully used to sustain and control the fusion plasma performance, and it will likely play an important role in the ITER experiment. As demonstrated in the NSTX and DIII-D experiments the interactions between fast waves and fast ions can be so strong to significantly modify the fast ion population from neutral beam injection. In fact, it has been recently found in NSTX that FWs can modify and, under certain conditions, even suppress the energetic particle driven instabilities, such as toroidal Alfvén eigenmodes and global Alfvén eigenmodes and fishbones. This paper examines such interactions in NSTX/NSTX-U plasmas by using the recent extension of the RF full-wave code TORIC to include non-Maxwellian ions distribution functions. Particular attention is given to the evolution of the fast ions distribution function w/ and w/o RF. Tests on the RF kick-operator implemented in the Monte-Carlo particle code NUBEAM is also discussed in order to move towards a self consistent evaluation of the RF wave-field and the ion distribution functions in the TRANSP code. Work supported by US DOE Contract DE-AC02-09CH11466.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4801569','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4801569"><span>Using Finite Element and Eigenmode Expansion Methods to Investigate the Periodic and Spectral Characteristic of Superstructure Fiber Bragg Gratings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>He, Yue-Jing; Hung, Wei-Chih; Lai, Zhe-Ping</p> <p>2016-01-01</p> <p>In this study, a numerical simulation method was employed to investigate and analyze superstructure fiber Bragg gratings (SFBGs) with five duty cycles (50%, 33.33%, 14.28%, 12.5%, and 10%). This study focuses on demonstrating the relevance between design period and spectral characteristics of SFBGs (in the form of graphics) for SFBGs of all duty cycles. Compared with complicated and hard-to-learn conventional coupled-mode theory, the result of the present study may assist beginner and expert designers in understanding the basic application aspects, optical characteristics, and design techniques of SFBGs, thereby indirectly lowering the physical concepts and mathematical skills required for entering the design field. To effectively improve the accuracy of overall computational performance and numerical calculations and to shorten the gap between simulation results and actual production, this study integrated a perfectly matched layer (PML), perfectly reflecting boundary (PRB), object meshing method (OMM), and boundary meshing method (BMM) into the finite element method (FEM) and eigenmode expansion method (EEM). The integrated method enables designers to easily and flexibly design optical fiber communication systems that conform to the specific spectral characteristic by using the simulation data in this paper, which includes bandwidth, number of channels, and band gap size. PMID:26861322</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OptEn..56l7102H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OptEn..56l7102H"><span>Application of the finite-element method and the eigenmode expansion method to investigate the periodic and spectral characteristic of discrete phase-shift fiber Bragg grating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Yue-Jing; Hung, Wei-Chih; Syu, Cheng-Jyun</p> <p>2017-12-01</p> <p>The finite-element method (FEM) and eigenmode expansion method (EEM) were adopted to analyze the guided modes and spectrum of phase-shift fiber Bragg grating at five phase-shift degrees (including zero, 1/4π, 1/2π, 3/4π, and π). In previous studies on optical fiber grating, conventional coupled-mode theory was crucial. This theory contains abstruse knowledge about physics and complex computational processes, and thus is challenging for users. Therefore, a numerical simulation method was coupled with a simple and rigorous design procedure to help beginners and users to overcome difficulty in entering the field; in addition, graphical simulation results were presented. To reduce the difference between the simulated context and the actual context, a perfectly matched layer and perfectly reflecting boundary were added to the FEM and the EEM. When the FEM was used for grid cutting, the object meshing method and the boundary meshing method proposed in this study were used to effectively enhance computational accuracy and substantially reduce the time required for simulation. In summary, users can use the simulation results in this study to easily and rapidly design an optical fiber communication system and optical sensors with spectral characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1181185-eigenmode-analysis-high-gain-free-electron-laser-based-transverse-gradient-undulator','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1181185-eigenmode-analysis-high-gain-free-electron-laser-based-transverse-gradient-undulator"><span>Eigenmode analysis of a high-gain free-electron laser based on a transverse gradient undulator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Baxevanis, Panagiotis; Huang, Zhirong; Ruth, Ronald; ...</p> <p>2015-01-27</p> <p>Here, the use of a transverse gradient undulator (TGU) is viewed as an attractive option for free-electron lasers (FELs) driven by beams with a large energy spread. By suitably dispersing the electron beam and tilting the undulator poles, the energy spread effect can be substantially mitigated. However, adding the dispersion typically leads to electron beams with large aspect ratios. As a result, the presence of higher-order modes in the FEL radiation can become significant. To investigate this effect, we study the eigenmode properties of a TGU-based, high-gain FEL, using both an analytically-solvable model and a variational technique. Our analysis, whichmore » includes the fundamental and the higher-order FEL eigenmodes, can provide an estimate of the mode content for the output radiation. This formalism also enables us to study the trade-off between FEL gain and transverse coherence. Numerical results are presented for a representative soft X-ray, TGU FEL example.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvS..18a0701B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvS..18a0701B"><span>Eigenmode analysis of a high-gain free-electron laser based on a transverse gradient undulator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baxevanis, Panagiotis; Huang, Zhirong; Ruth, Ronald; Schroeder, Carl B.</p> <p>2015-01-01</p> <p>The use of a transverse gradient undulator (TGU) is viewed as an attractive option for free-electron lasers (FELs) driven by beams with a large energy spread. By suitably dispersing the electron beam and tilting the undulator poles, the energy spread effect can be substantially mitigated. However, adding the dispersion typically leads to electron beams with large aspect ratios. As a result, the presence of higher-order modes in the FEL radiation can become significant. To investigate this effect, we study the eigenmode properties of a TGU-based, high-gain FEL, using both an analytically-solvable model and a variational technique. Our analysis, which includes the fundamental and the higher-order FEL eigenmodes, can provide an estimate of the mode content for the output radiation. This formalism also enables us to study the trade-off between FEL gain and transverse coherence. Numerical results are presented for a representative soft X-ray, TGU FEL example.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10384E..06M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10384E..06M"><span>Cavity enhanced eigenmode multiplexing for volume holographic data storage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, Bo E.; Takashima, Yuzuru</p> <p>2017-08-01</p> <p>Previously, we proposed and experimentally demonstrated enhanced recording speeds by using a resonant optical cavity to semi-passively increase the reference beam power while recording image bearing holograms. In addition to enhancing the reference beam power the cavity supports the orthogonal reference beam families of its eigenmodes, which can be used as a degree of freedom to multiplex data pages and increase storage densities for volume Holographic Data Storage Systems (HDSS). While keeping the increased recording speed of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles for expedited recording of four multiplexed holograms. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modifications to current angular multiplexing HDSS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1395200-degenerate-critical-coupling-all-dielectric-metasurface-absorbers','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1395200-degenerate-critical-coupling-all-dielectric-metasurface-absorbers"><span>Degenerate critical coupling in all-dielectric metasurface absorbers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ming, Xianshun; Liu, Xinyu; Sun, Liqun; ...</p> <p>2017-09-27</p> <p>We develop the theory of all-dielectric absorbers based on temporal coupled mode theory (TCMT), with parameters extracted from eigenfrequency simulations. An infinite square array of cylindrical resonators embedded in air is investigated, and we find that it supports two eigenmodes of opposite symmetry that are each responsible for half of the total absorption. The even and odd eigenmodes are found to be the hybrid electric (EH111) and hybrid magnetic (HE111) waveguide modes of a dielectric wire of circular cross section, respectively. The geometry of the cylindrical array is shown to be useful for individual tuning of the radiative loss ratesmore » of the eigenmodes, thus permitting frequency degeneracy. Further, by specifying the resonators’ loss tangent, the material loss rate can be made to equal the radiative loss rate, thus achieving a state of degenerate critical coupling and perfect absorption. Our results are supported by S-parameter simulations, and agree well with waveguide theory.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1179780','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1179780"><span>Magnetorotational Instability: Nonmodal Growth and the Relationship of Global Modes to the Shearing Box</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>J Squire, A Bhattacharjee</p> <p></p> <p>We study the magnetorotational instability (MRI) (Balbus & Hawley 1998) using non-modal stability techniques.Despite the spectral instability of many forms of the MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very diff erent to the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localizedmore » in a completely di fferent region of space. These ideas lead – for both axisymmetric and non-axisymmetric modes – to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary diff erential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using non-modal analysis techniques, we conclude by analyzing local MRI growth over finite time-scales using these methods. The strong growth over a wide range of wave-numbers suggests that non-modal linear physics could be of fundamental importance in MRI turbulence (Squire & Bhattacharjee 2014).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PhDT........85F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PhDT........85F"><span>Decorrelation dynamics and spectra in drift-Alfven turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fernandez Garcia, Eduardo</p> <p></p> <p>Motivated by the inability of one-fluid magnetohydrodynamics (MHD) to explain key turbulence characteristics in systems ranging from the solar wind and interstellar medium to fusion devices like the reversed field pinch, this thesis studies magnetic turbulence using a drift-Alfven model that extends MHD by including electron density dynamics. Electron effects play a significant role in the dynamics by changing the structure of turbulent decorrelation in the Alfvenic regime (where fast Alfvenic propagation provides the fastest decorrelation of the system): besides the familiar counter-propagating Alfvenic branches of MHD, an additional branch tied to the diamagnetic and eddy-turn- over rates enters in the turbulent response. This kinematic branch gives hydrodynamic features to turbulence that is otherwise strongly magnetic. Magnetic features are observed in the RMS frequency, energy partitions, cross-field energy transfer and in the turbulent response, whereas hydrodynamic features appear in the average frequency, self-field transfer, turbulent response and finally the wavenumber spectrum. These features are studied via renormalized closure theory and numerical simulation. The closure calculation naturally incorporates the eigenmode structure of the turbulent response in specifying spectral energy balance equations for the magnetic, kinetic and internal (density) energies. Alfvenic terms proportional to cross correlations and involved in cross field transfer compete with eddy-turn-over, self transfer, auto-correlation terms. In the steady state, the kinematic terms dominate the energy balances and yield a 5/3 Kolmogorov spectrum (as observed in the interstellar medium) for the three field energies in the strong turbulence, long wavelength limit. Alfvenic terms establish equipartition of kinetic and magnetic energies. In the limit where wavelengths are short compared to the gyroradius, the Alfvenic terms equipartition the internal and magnetic energies resulting in a steep (-2) spectrum fall-off for those energies while the largely uncoupled kinetic modes still obey a 5/3 law. From the numerical simulations, the response function of drift-Alfven turbulence is measured. Here, a statistical ensemble is constructed from small perturbations of the turbulent amplitudes at fixed wavenumber. The decorrelation structure born out of the eigenmode calculation is verified in the numerical measurement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21074465','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21074465"><span>Structure of the two-dimensional relaxation spectra seen within the eigenmode perturbation theory and the two-site exchange model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bytchenkoff, Dimitri; Rodts, Stéphane</p> <p>2011-01-01</p> <p>The form of the two-dimensional (2D) NMR-relaxation spectra--which allow to study interstitial fluid dynamics in diffusive systems by correlating spin-lattice (T(1)) and spin-spin (T(2)) relaxation times--has given rise to numerous conjectures. Herein we find analytically a number of fundamental structural properties of the spectra: within the eigen-modes formalism, we establish relationships between the signs and intensities of the diagonal and cross-peaks in spectra obtained by various 1 and 2D NMR-relaxation techniques, reveal symmetries of the spectra and uncover interdependence between them. We investigate more specifically a practically important case of porous system that has sets of T(1)- and T(2)-eigenmodes and eigentimes similar to each other by applying the perturbation theory. Furthermore we provide a comparative analysis of the application of the, mathematically more rigorous, eigen-modes formalism and the, rather more phenomenological, first-order two-site exchange model to diffusive systems. Finally we put the results that we could formulate analytically to the test by comparing them with computer-simulations for 2D porous model systems. The structural properties, in general, are to provide useful clues for assignment and analysis of relaxation spectra. The most striking of them--the presence of negative peaks--underlines an urgent need for improvement of the current 2D Inverse Laplace Transform (ILT) algorithm used for calculation of relaxation spectra from NMR raw data. Copyright © 2010 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21371197-advanced-tokamak-research-integrated-modeling-jt-upgrade','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21371197-advanced-tokamak-research-integrated-modeling-jt-upgrade"><span>Advanced tokamak research with integrated modeling in JT-60 Upgrade</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hayashi, N.</p> <p>2010-05-15</p> <p>Researches on advanced tokamak (AT) have progressed with integrated modeling in JT-60 Upgrade [N. Oyama et al., Nucl. Fusion 49, 104007 (2009)]. Based on JT-60U experimental analyses and first principle simulations, new models were developed and integrated into core, rotation, edge/pedestal, and scrape-off-layer (SOL)/divertor codes. The integrated models clarified complex and autonomous features in AT. An integrated core model was implemented to take account of an anomalous radial transport of alpha particles caused by Alfven eigenmodes. It showed the reduction in the fusion gain by the anomalous radial transport and further escape of alpha particles. Integrated rotation model showed mechanismsmore » of rotation driven by the magnetic-field-ripple loss of fast ions and the charge separation due to fast-ion drift. An inward pinch model of high-Z impurity due to the atomic process was developed and indicated that the pinch velocity increases with the toroidal rotation. Integrated edge/pedestal model clarified causes of collisionality dependence of energy loss due to the edge localized mode and the enhancement of energy loss by steepening a core pressure gradient just inside the pedestal top. An ideal magnetohydrodynamics stability code was developed to take account of toroidal rotation and clarified a destabilizing effect of rotation on the pedestal. Integrated SOL/divertor model clarified a mechanism of X-point multifaceted asymmetric radiation from edge. A model of the SOL flow driven by core particle orbits which partially enter the SOL was developed by introducing the ion-orbit-induced flow to fluid equations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28949761','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28949761"><span>Many-Body Subradiant Excitations in Metamaterial Arrays: Experiment and Theory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jenkins, Stewart D; Ruostekoski, Janne; Papasimakis, Nikitas; Savo, Salvatore; Zheludev, Nikolay I</p> <p>2017-08-04</p> <p>Subradiant excitations, originally predicted by Dicke, have posed a long-standing challenge in physics owing to their weak radiative coupling to environment. Here we engineer massive coherently driven classical subradiance in planar metamaterial arrays as a spatially extended eigenmode comprising over 1000 metamolecules. By comparing the near- and far-field response in large-scale numerical simulations with those in experimental observations we identify strong evidence for classically correlated multimetamolecule subradiant states that dominate the total excitation energy. We show that similar spatially extended many-body subradiance can also exist in plasmonic metamaterial arrays at optical frequencies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4075791','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4075791"><span>A non-asymptotic homogenization theory for periodic electromagnetic structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tsukerman, Igor; Markel, Vadim A.</p> <p>2014-01-01</p> <p>Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions. PMID:25104912</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhRvA..84e3822S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhRvA..84e3822S"><span>Microcavities coupled to multilevel atoms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmid, Sandra Isabelle; Evers, Jörg</p> <p>2011-11-01</p> <p>A three-level atom in the Λ configuration coupled to a microcavity is studied. The two transitions of the atom are assumed to couple to different counterpropagating mode pairs in the cavity. We analyze the dynamics both in the strong-coupling and the bad-cavity limits. We find that, compared to a two-level setup, the third atomic state and the additional control field modes crucially modify the system dynamics and enable more advanced control schemes. All results are explained using appropriate dressed-state and eigenmode representations. As potential applications, we discuss optical switching and turnstile operations and detection of particles close to the resonator surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2728949','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2728949"><span>Origins of phase contrast in the atomic force microscope in liquids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L.; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind</p> <p>2009-01-01</p> <p>We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage ϕ29 virions in buffer solutions using the phase-contrast images. PMID:19666560</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19666560','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19666560"><span>Origins of phase contrast in the atomic force microscope in liquids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind</p> <p>2009-08-18</p> <p>We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage 29 virions in buffer solutions using the phase-contrast images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhPl...18e2503C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhPl...18e2503C"><span>Free-boundary toroidal Alfvén eigenmodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Eugene Y.; Berk, H. L.; Breizman, B.; Zheng, L. J.</p> <p>2011-05-01</p> <p>A numerical study is presented for the n = 1 free-boundary toroidal Alfvén eigenmodes (TAE) in tokamaks, which shows that there is considerable sensitivity of n = 1 modes to the position of the conducting wall. An additional branch of the TAE is shown to emerge from the upper continuum as the ratio of conducting wall radius to plasma radius increases. Such phenomena arise in plasma equilibria with both circular and shaped cross sections, where the shaped profile studied here is similar to that found in Alcator C-Mod.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840026391','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840026391"><span>Dynamic analysis of evolutive conservative systems. Discussion of eigenmode crossings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Morand, H. J. P.</p> <p>1984-01-01</p> <p>After an analysis of the close connection between the symmetries of a dynamical system and the multiplicity of its vibrational natural frequencies, it is proved by variational arguments that for a system of invariable symmetry the eigenfrequencies associated with the eigenmodes of a given symmetry type do not cross, in general, during the evolution of this system. The theory is implemented by some numerical calculations applied to the analysis of the evolution of the axisymmetric hydroelastic modes of the Ariane launch vehicle during burning of the first stage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AIPC..622...61B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AIPC..622...61B"><span>Chaos in the Music of the Spheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buchler, J. Robert; Kolláth, Zoltan; Cadmus, Robert</p> <p>2002-07-01</p> <p>The light curves (time series of the radiated energy) of most large amplitude, pulsating stars such as the well known Cepheid stars are regular. However, a smaller group of variable stars that are located next to them in the Hertzsprung-Russell diagram undergoes irregular light variations and exhibits irregular radial velocities as well. The mechanism behind this irregular behavior was a long standing mystery. A flow reconstruction technique based on the observed lightcurves of six separate stars shows that their underlying dynamics is chaotic and low dimensional (d = 4). Furthermore, we present evidence that the physical mechanism behind the behavior is the nonlinear interaction of just two pulsation eigenmodes. In a generalized Shil'nikov scenario, the pulsation energy alternates continuously, but irregularly between a lower frequency mode that is linearly unstable and thus growing, and a stable overtone that gets entrained through a low order resonance (2:1), but that wants to decay. The flow reconstruction from the stellar light curve thus yields interesting physical insight into the pulsation mechanism.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvS..21c1302G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvS..21c1302G"><span>Radiation of a charge flying in a partially loaded dielectric section of a waveguide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grigoreva, Aleksandra A.; Tyukhtin, Andrey V.; Vorobev, Viktor V.; Galyamin, Sergey N.; Antipov, Sergey</p> <p>2018-03-01</p> <p>We consider the electromagnetic field of a point charged particle moving along the axis of a cylindrical waveguide from a homogeneously filled area to a dielectric loading area having an axially symmetrical channel. We are interested in studying the Cherenkov radiation excited in the bilayer area. The solution is performed by expanding the field in each area in a series of orthogonal eigenmodes. The main attention is focused on investigation of the wave field in the bilayer section. We show that, at a given observation point, the "reduced wakefield" is simplified with time (the number of modes decreases). The obtained results are generalized for the case of a bunch with Gaussian longitudinal profile. The typical numerical results for wakefield formation process are presented. These results agree with simulations done by the industry standard electromagnetic code CST Particle Studio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1402654-radial-transport-radiation-belt-electrons-kinetic-field-line-resonances','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1402654-radial-transport-radiation-belt-electrons-kinetic-field-line-resonances"><span>Radial transport of radiation belt electrons in kinetic field-line resonances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chaston, Christopher C.; Bonnell, J. W.; Wygant, J. R.</p> <p></p> <p>A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low-frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfvén eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport on the order of hours in storm time events at energies from <100 keV to MeVs over equatorial pitch angles from the edge of the loss cone to nearly perpendicular tomore » the geomagnetic field. In conclusion, the correlation of kinetic resonances with electron depletions and enhancements during storm main phase and recovery, and the rapid diffusion these waves drive, suggests that they may modulate the outer radiation belt.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866994','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866994"><span>Position, rotation, and intensity invariant recognizing method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ochoa, Ellen; Schils, George F.; Sweeney, Donald W.</p> <p>1989-01-01</p> <p>A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1402654-radial-transport-radiation-belt-electrons-kinetic-field-line-resonances','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1402654-radial-transport-radiation-belt-electrons-kinetic-field-line-resonances"><span>Radial transport of radiation belt electrons in kinetic field-line resonances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Chaston, Christopher C.; Bonnell, J. W.; Wygant, J. R.; ...</p> <p>2017-07-25</p> <p>A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low-frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfvén eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport on the order of hours in storm time events at energies from <100 keV to MeVs over equatorial pitch angles from the edge of the loss cone to nearly perpendicular tomore » the geomagnetic field. In conclusion, the correlation of kinetic resonances with electron depletions and enhancements during storm main phase and recovery, and the rapid diffusion these waves drive, suggests that they may modulate the outer radiation belt.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1305819','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1305819"><span>Synergy between fast-ion transport by core MHD and test blanket module fields in DIII-D experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Heidbrink, W. W.; Austin, M. E.; Collins, C. S.</p> <p>2015-07-21</p> <p>We measured fast-ion transport caused by the combination of MHD and a mock-up test-blanket module (TBM) coil in the DIII-D tokamak. The primary diagnostic is an infrared camera that measures the heat flux on the tiles surrounding the coil. The combined effects of the TBM and four other potential sources of transport are studied: neoclassical tearing modes, Alfvén eigenmodes, sawteeth, and applied resonant magnetic perturbation fields for the control of edge localized modes. A definitive synergistic effect is observed at sawtooth crashes where, in the presence of the TBM, the localized heat flux at a burst increases from 0.36 ±0.27more » to 2.6 ±0.5 MW/m -2.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PMB....57.3693S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PMB....57.3693S"><span>Dosimetric treatment course simulation based on a statistical model of deformable organ motion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Söhn, M.; Sobotta, B.; Alber, M.</p> <p>2012-06-01</p> <p>We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective ‘virtual’ evaluation of the possible benefits of new radiotherapy schemes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22614733','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22614733"><span>Dosimetric treatment course simulation based on a statistical model of deformable organ motion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Söhn, M; Sobotta, B; Alber, M</p> <p>2012-06-21</p> <p>We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective 'virtual' evaluation of the possible benefits of new radiotherapy schemes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22490136-calculation-continuum-damping-alfven-eigenmodes-tokamak-stellarator-equilibria','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22490136-calculation-continuum-damping-alfven-eigenmodes-tokamak-stellarator-equilibria"><span>Calculation of continuum damping of Alfvén eigenmodes in tokamak and stellarator equilibria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bowden, G. W.; Hole, M. J.; Könies, A.</p> <p>2015-09-15</p> <p>In an ideal magnetohydrodynamic (MHD) plasma, shear Alfvén eigenmodes may experience dissipationless damping due to resonant interaction with the shear Alfvén continuum. This continuum damping can make a significant contribution to the overall growth/decay rate of shear Alfvén eigenmodes, with consequent implications for fast ion transport. One method for calculating continuum damping is to solve the MHD eigenvalue problem over a suitable contour in the complex plane, thereby satisfying the causality condition. Such an approach can be implemented in three-dimensional ideal MHD codes which use the Galerkin method. Analytic functions can be fitted to numerical data for equilibrium quantities inmore » order to determine the value of these quantities along the complex contour. This approach requires less resolution than the established technique of calculating damping as resistivity vanishes and is thus more computationally efficient. The complex contour method has been applied to the three-dimensional finite element ideal MHD Code for Kinetic Alfvén waves. In this paper, we discuss the application of the complex contour technique to calculate the continuum damping of global modes in tokamak as well as torsatron, W7-X and H-1NF stellarator cases. To the authors' knowledge, these stellarator calculations represent the first calculation of continuum damping for eigenmodes in fully three-dimensional equilibria. The continuum damping of global modes in W7-X and H-1NF stellarator configurations investigated is found to depend sensitively on coupling to numerous poloidal and toroidal harmonics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PMB....57..395B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PMB....57..395B"><span>Classifying geometric variability by dominant eigenmodes of deformation in regressing tumours during active breath-hold lung cancer radiotherapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Badawi, Ahmed M.; Weiss, Elisabeth; Sleeman, William C., IV; Hugo, Geoffrey D.</p> <p>2012-01-01</p> <p>The purpose of this study is to develop and evaluate a lung tumour interfraction geometric variability classification scheme as a means to guide adaptive radiotherapy and improve measurement of treatment response. Principal component analysis (PCA) was used to generate statistical shape models of the gross tumour volume (GTV) for 12 patients with weekly breath hold CT scans. Each eigenmode of the PCA model was classified as ‘trending’ or ‘non-trending’ depending on whether its contribution to the overall GTV variability included a time trend over the treatment course. Trending eigenmodes were used to reconstruct the original semi-automatically delineated GTVs into a reduced model containing only time trends. Reduced models were compared to the original GTVs by analyzing the reconstruction error in the GTV and position. Both retrospective (all weekly images) and prospective (only the first four weekly images) were evaluated. The average volume difference from the original GTV was 4.3% ± 2.4% for the trending model. The positional variability of the GTV over the treatment course, as measured by the standard deviation of the GTV centroid, was 1.9 ± 1.4 mm for the original GTVs, which was reduced to 1.2 ± 0.6 mm for the trending-only model. In 3/13 cases, the dominant eigenmode changed class between the prospective and retrospective models. The trending-only model preserved GTV and shape relative to the original GTVs, while reducing spurious positional variability. The classification scheme appears feasible for separating types of geometric variability by time trend.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004APS..DPPCP1006S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004APS..DPPCP1006S"><span>Active MHD Spectroscopy of Alfvén Eigenmodes on Alcator C-Mod</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sears, J.; Snipes, J.; Burke, W.; Parker, R.; Fasoli, A.</p> <p>2004-11-01</p> <p>Alfvén eigenmode resonances are excited in a variety of plasma conditions in C-Mod with two moderate-n antennas positioned above and below the outboard midplane. Power amplifiers (≈ 3 kW) sweep the driving frequency over the audio range (< 30 kHz) or over a selected ± 50 kHz range from 100 kHz to 1 MHz. Logic circuitry that calculates the center frequency of the Toroidal Alfven Eigenmode gap, f_TAE=v_A/4π qR, in real-time from BT and e measurements is being developed to enable the antennas to track f_TAE. Simultaneous in-vessel phase calibration of the pick-up coils will be used to better identify toroidal mode numbers. Shot-to-shot elongation scans do not show the dependence of damping on edge shear that was seen in results at JET. Inner wall limited plasmas with moderate outer gaps show higher damping rates than diverted plasmas with low outer gaps. Low frequency experiments below 20kHz will also be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1369229','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1369229"><span>Diverse wave-particle interactions for energetic ions that traverse Alfvén eigenmodes on their first full orbit [Diverse nonlinear wave-particle interactions for energetic ions that traverse Alfvén eigenmodes on their first full orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Heidbrink, W. W.; Persico, E. A. D.; Austin, M. E.</p> <p>2016-02-09</p> <p>Here, neutral-beam ions that are deflected onto loss orbits by Alfvén eigenmodes (AE) on their first bounce orbit and are detected by a fast-ion loss detector (FILD) satisfy the “local resonance” condition. This theory qualitatively explains FILD observations for a wide variety of AE-particle interactions. When coherent losses are measured for multiple AE, oscillations at the sum and difference frequencies of the independent modes are often observed. The amplitudes of the sum and difference peaks correlate with the amplitudes of the fundamental loss-signal amplitudes but do not correlate with the measured mode amplitudes. In contrast to a simple uniform-plasma theorymore » of the interaction, the loss-signal amplitude at the sum frequency is often larger than the loss-signal amplitude at the difference frequency, indicating a more detailed computation of the orbital trajectories through the mode eigenfunctions is needed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPG11099H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPG11099H"><span>Alfven Eigenmode Control in DIII-D</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, W.; Olofsson, E.; Welander, A.; van Zeeland, M.; Collins, C.; Heidbrink, W.</p> <p>2017-10-01</p> <p>Alfven eigenmodes (AE) driven by fast ions from neutral beam and ion cyclotron heating are common in present day tokamak plasmas and are expected to be destabilized by alpha particles in future burning plasma experiments. Because these waves have been shown to cause loss and redistribution of fast ions which can impact plasma performance and potentially device integrity, developing control techniques for AEs is of paramount importance. In the DIII-D plasma control system, spectral analysis of real-time ECE data is used as a monitor of AE amplitude, frequency, and location. These values are then used for feedback control of the neutral beam power to control Alfven waves and reduce fast ion loss. This work describes tests of AE control experiments in the current ramp up phase, during which multiple Alfven eigenmodes are typically unstable and fast ion confinement is degraded significantly. Comparisons of neutron emission and confined fast ion profiles with and without active AE control will be made. Work supported by the U.S. Dept. of Energy under Award Number DE-FC02-04ER54698.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPU11074P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPU11074P"><span>Upgrade of JET AE Active Diagnostic for Low Frequency Eigenmodes Detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Puglia, P.; Blanchard, P.; Testa, D.; Fasoli, A.; Aslanyan, V.; Porkolab, M.; Woskov, P.; Ruchko, L.; Galvao, R.; Pires de Sa, W.; Dos Reis, A.; Sharapov, S.; Dowson, S.,; Sheikh, H.; Blackman, T.; Jones, G.; Dorling, S.; Figueiredo, J.; Perez von Thun, C.; JET Collaboration</p> <p>2017-10-01</p> <p>The upgrade of the Toroidal Alfvén Eigenmode Active Antenna diagnostic at JET was commissioned last year. The new amplifiers have an operational frequency range limited to bands within 10-1000 kHz by a choice of filters. In the last campaigns the AE excitation system was operated on the Alfvénic range of frequencies (f > 80 kHz). For the next campaigns we are proposing operation on the frequency range of 25-50 kHz to excite eigenmodes on the Alfvén-acoustic range (GAMs, BAEs and Alfvén Cascades). The next JET campaigns will involve use of deuterium, tritium and hydrogen, giving a wide range of parameters for the modes to be investigated. Details of the system modifications for operation in this new frequency range and experimental scenarios will be discussed. This work has been carried out within the framework of the EUROfusion Consortium No 633053. Support was provided by the US DOE, FAPESP Project 2011/50773-0, by the Swiss NSF, and also the RCUK Energy Programme [Grant Number EP/P012450/1].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4142983','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4142983"><span>Trade-offs in sensitivity and sampling depth in bimodal atomic force microscopy and comparison to the trimodal case</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Eslami, Babak; Ebeling, Daniel</p> <p>2014-01-01</p> <p>Summary This paper presents experiments on Nafion® proton exchange membranes and numerical simulations illustrating the trade-offs between the optimization of compositional contrast and the modulation of tip indentation depth in bimodal atomic force microscopy (AFM). We focus on the original bimodal AFM method, which uses amplitude modulation to acquire the topography through the first cantilever eigenmode, and drives a higher eigenmode in open-loop to perform compositional mapping. This method is attractive due to its relative simplicity, robustness and commercial availability. We show that this technique offers the capability to modulate tip indentation depth, in addition to providing sample topography and material property contrast, although there are important competing effects between the optimization of sensitivity and the control of indentation depth, both of which strongly influence the contrast quality. Furthermore, we demonstrate that the two eigenmodes can be highly coupled in practice, especially when highly repulsive imaging conditions are used. Finally, we also offer a comparison with a previously reported trimodal AFM method, where the above competing effects are minimized. PMID:25161847</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..MAR.Y6006S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..MAR.Y6006S"><span>Hyperbolic polaritons in nanoparticles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Zhiyuan; Rubio, Angel; Guinea, Francisco; Basov, Dimitri; Fogler, Michael</p> <p>2015-03-01</p> <p>Hyperbolic optical materials (HM) are characterized by permittivity tensor that has both positive and negative principal values. Collective electromagnetic modes (polaritons) of HM have novel properties promising for various applications including subdiffractional imaging and on-chip optical communication. Hyperbolic response is actively investigated in the context of metamaterials, anisotropic polar insulators, and layered superconductors. We study polaritons in spheroidal HM nanoparticles using Hamiltonian optics. The field equations are mapped to classical dynamics of fictitious particles (wave packets) of an indefinite Hamiltonian. This dynamics is quantized using the Einstein-Brillouin-Keller quantization rule. The eigenmodes are classified as either bulk or surface according to whether their transverse momenta are real or imaginary. To model how such hyperbolic polaritons can be probed by near-field experiments, we compute the field distribution induced inside and outside the spheroid by an external point dipole. At certain magic frequencies the field shows striking geometric patterns whose origin is traced to the classical periodic orbits. The theory is applied to natural hyperbolic materials hexagonal boron nitride and superconducting LaSrCuO.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApPhL.108w3107T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApPhL.108w3107T"><span>Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tamma, Venkata Ananth; Huang, Fei; Nowak, Derek; Kumar Wickramasinghe, H.</p> <p>2016-06-01</p> <p>We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol and l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22590764-stimulated-raman-spectroscopy-nanoscopy-molecules-using-near-field-photon-induced-forces-without-resonant-electronic-enhancement-gain','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22590764-stimulated-raman-spectroscopy-nanoscopy-molecules-using-near-field-photon-induced-forces-without-resonant-electronic-enhancement-gain"><span>Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tamma, Venkata Ananth; Huang, Fei; Kumar Wickramasinghe, H., E-mail: hkwick@uci.edu</p> <p></p> <p>We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol andmore » l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvF...2h3901J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvF...2h3901J"><span>Algebraic disturbances and their consequences in rotating channel flow transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jose, Sharath; Kuzhimparampil, Vishnu; Pier, Benoît.; Govindarajan, Rama</p> <p>2017-08-01</p> <p>It is now established that subcritical mechanisms play a crucial role in the transition to turbulence of nonrotating plane shear flows. The role of these mechanisms in rotating channel flow is examined here in the linear and nonlinear stages. Distinct patterns of behavior are found: the transient growth leading to nonlinearity at low rotation rates R o , a highly chaotic intermediate R o regime, a localized weak chaos at higher R o , and complete stabilization of transient disturbances at very high R o . At very low R o , the transient growth amplitudes are close to those for nonrotating flow, but Coriolis forces assert themselves by producing distinct asymmetry about the channel centreline. Nonlinear processes are then triggered, in a streak-breakdown mode of transition. The high R o regimes do not show these signatures; here the leading eigenmode emerges as dominant in the early stages. Elongated structures plastered close to one wall are seen at higher rotation rates. Rotation is shown to reduce nonnormality in the linear operator, in an indirect manifestation of Taylor-Proudman effects. Although the critical Reynolds for exponential growth of instabilities is known to vary a lot with rotation rate, we show that the energy critical Reynolds number is insensitive to rotation rate. It is hoped that these findings will motivate experimental verification and examination of other rotating flows in this light.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100003042','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100003042"><span>Development and Breakdown of Goertler Vortices in High Speed Boundary Layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Li, Fei; Choudhari, Meelan; Chang, Chau-Lyan; Wu, Minwei; Greene, Ptrick T.</p> <p>2010-01-01</p> <p>The nonlinear development of G rtler instability over a concave surface gives rise to a highly distorted stationary flow in the boundary layer that has strong velocity gradients in both spanwise and wall-normal directions. This distorted flow is susceptible to strong, high frequency secondary instability that leads to the onset of transition. For high Mach number flows, the boundary layer is also subject to the second mode instability. The nonlinear development of G rtler vortices and the ensuing growth and breakdown of secondary instability, the G rtler vortex interactions with second mode instabilities as well as oblique second mode interactions are examined in the context of both internal and external hypersonic configurations using nonlinear parabolized stability equations, 2-D eigenvalue analysis and direct numerical simulation. For G rtler vortex development inside the Purdue Mach 6 Ludwieg tube wind tunnel, multiple families of unstable secondary eigenmodes are identified and their linear and nonlinear evolution is examined. The computation of secondary instability is continued past the onset of transition to elucidate the physical mechanisms underlying the laminar breakdown process. Nonlinear breakdown scenarios associated with transition over a Mach 6 compression cone configuration are also explored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1185351','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1185351"><span>Optical Control of Fluorescence through plasmonic eigenmode extinction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xu, Xiaoying; Lin, Shih-Che; Li, Quanshui</p> <p></p> <p>We introduce the concept of optical control of the fluorescence yield of CdSe quantum dots through plasmon-induced structural changes in random semicontinuous nanostructured gold films. We demonstrate that the wavelength- and polarization dependent coupling between quantum dots and the semicontinuous films, and thus the fluorescent emission spectrum, can be controlled and significantly increased through the optical extinction of a selective band of eigenmodes in the films. This optical method of effecting controlled changes in the metal nanostructure allows for versatile functionality in a single sample and opens a pathway to in situ control over the fluorescence spectrum.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1185351-optical-control-fluorescence-through-plasmonic-eigenmode-extinction','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1185351-optical-control-fluorescence-through-plasmonic-eigenmode-extinction"><span>Optical Control of Fluorescence through plasmonic eigenmode extinction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Xu, Xiaoying; Lin, Shih-Che; Li, Quanshui; ...</p> <p>2015-04-30</p> <p>We introduce the concept of optical control of the fluorescence yield of CdSe quantum dots through plasmon-induced structural changes in random semicontinuous nanostructured gold films. We demonstrate that the wavelength- and polarization dependent coupling between quantum dots and the semicontinuous films, and thus the fluorescent emission spectrum, can be controlled and significantly increased through the optical extinction of a selective band of eigenmodes in the films. This optical method of effecting controlled changes in the metal nanostructure allows for versatile functionality in a single sample and opens a pathway to in situ control over the fluorescence spectrum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CPL...659...25M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CPL...659...25M"><span>Modes competition in superradiant emission from an inverted sub-wavelength thick slab of two-level atoms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manassah, Jamal T.</p> <p>2016-08-01</p> <p>Using the expansion in the eigenmodes of 1-D Lienard-Wiechert kernel, the temporal and spectral profiles of the radiation emitted by a fully inverted collection of two-level atoms in a sub-wavelength slab geometry are computed. The initial number of amplifying modes determine the specific regime of radiation. In particular, the temporal profile of the field intensity is oscillatory and the spectral profile is non-Lorentzian with two unequal height peaks in a narrow band centered at the slab thickness value at which the real parts of the lowest order odd and even eigenvalues are equal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011NucFu..51j3019G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011NucFu..51j3019G"><span>Investigation of beam- and wave-plasma interactions in spherical tokamak Globus-M</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gusev, V. K.; Aminov, R. M.; Berezutskiy, A. A.; Bulanin, V. V.; Chernyshev, F. V.; Chugunov, I. N.; Dech, A. V.; Dyachenko, V. V.; Ivanov, A. E.; Khitrov, S. A.; Khromov, N. A.; Kurskiev, G. S.; Larionov, M. M.; Melnik, A. D.; Minaev, V. B.; Mineev, A. B.; Mironov, M. I.; Miroshnikov, I. V.; Mukhin, E. E.; Novokhatsky, A. N.; Panasenkov, A. A.; Patrov, M. I.; Petrov, A. V.; Petrov, Yu. V.; Podushnikova, K. A.; Rozhansky, V. A.; Rozhdestvensky, V. V.; Sakharov, N. V.; Shevelev, A. E.; Senichenkov, I. Yu.; Shcherbinin, O. N.; Stepanov, A. Yu.; Tolstyakov, S. Yu.; Varfolomeev, V. I.; Voronin, A. V.; Yagnov, V. A.; Yashin, A. Yu.; Zhilin, E. G.</p> <p>2011-10-01</p> <p>The experimental and theoretical results obtained in the last two years on the interaction of neutral particle beams and high-frequency waves with a plasma using the spherical tokamak Globus-M are discussed. The experiments on the injection of low-energy proton beam of ~300 eV directed particle energy are performed with a plasma gun that produces a hydrogen plasma jet of density up to 3 × 1022 m-3 and a high velocity up to 250 km s-1. A moderate density rise (up to 30%) is achieved in the central plasma region without plasma disruption. Experiments on high-energy (up to 30 keV) neutral beam injection into the D-plasma are analysed. Modelling results on confinement of fast particles inside the plasma column that follows the neutral beam injection are discussed. The influence of the magnetic field on the fast particle losses is argued. A neutral beam injection regime with primary ion heating is obtained and discussed. The new regime with fast current ramp-up and early neutral beam injection shows electron temperature rise and formation of broad Te profiles until the q = 1 flux surface enters the plasma column. An energetic particle mode in the range of frequencies 5-30 kHz and toroidal Alfvén eigenmodes in the range 50-300 kHz are recorded in that regime simultaneously with the Te rise. The energetic particle mode and toroidal Alfvén eigenmodes behaviour are discussed. The toroidal Alfvén eigenmode spectrum appears in Globus-M as a narrow band corresponding to n = 1. The first experimental results on plasma start-up and noninductive current drive generation are presented. The experiments are carried out with antennae providing mostly poloidal slowing down of waves with a frequency of 920 MHz, which is higher than a lower hybrid one existing under the experimental conditions. The high current drive efficiency is shown to be high (of about 0.25 A W-1), and its mechanism is proposed. Some near future plans of the experiments are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011qrle.book..231W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011qrle.book..231W"><span>Grid Effects on LES Thermo-Acoustic Limit-Cycle of a Full Annular Aeronautical Engine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wolf, Pierre; Gicquel, Laurent Y. M.; Staffelbach, Gabriel; Poinsot, Thierry</p> <p></p> <p>Recent developments in large scale computer architectures allow Large Eddy Simulation (LES) to be considered for the prediction of turbulent reacting flows in geometries encountered in industry. To do so, various difficulties must be overcome and the first one is to ensure that proper meshes can be used for LES. Indeed, the quality of meshes is known to be a critical factor in LES of reacting flows. This issue becomes even more crucial when LES is used to compute large configurations such as full annular combustion chambers. Various analysis of mesh effects on LES results have been published before but all are limited to single-sector computational domains. However, real annular gas-turbine engines contain ten to twenty of such sectors and LES must also be used in such full chambers for the study of ignition or azimuthal thermo-acoustic interactions. Instabilities (mostly azimuthal modes involving the full annular geometry) remain a critical issue to aeronautical or power-generation industries and LES seems to be a promising path to properly apprehend such complex unsteady couplings. Based on these observations, mesh effects on LES in a full annular gas-turbine combustion chamber (including its casing) is studied here in the context of its azimuthal thermo-acoustic response. To do so, a fully compressible, multi-species reacting LES is used on two meshes yielding two fully unsteady turbulent reacting predictions of the same configuration. The two tetrahedra meshes contain respectively 38 and 93 millions cells. Limit-cycles as obtained by the two LES are gauged against each other for various flow quantities such as mean velocity profiles, flame position and temperature fields. The thermo-acoustic limit-cycles are observed to be relatively indepedent of the grid resolution which comforts the use of LES tools to provide insights and understanding of the mechanisms triggering the coupling between the system acoustic eigenmodes and combustion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23644764','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23644764"><span>Functionalized AFM probes for force spectroscopy: eigenmode shapes and stiffness calibration through thermal noise measurements.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Laurent, Justine; Steinberger, Audrey; Bellon, Ludovic</p> <p>2013-06-07</p> <p>The functionalization of an atomic force microscope (AFM) cantilever with a colloidal bead is a widely used technique when the geometry between the probe and the sample must be controlled, particularly in force spectroscopy. But some questions remain: how does a bead glued at the end of a cantilever influence its mechanical response? And more importantly for quantitative measurements, can we still determine the stiffness of the AFM probe with traditional techniques?In this paper, the influence of the colloidal mass loading on the eigenmode shape and resonant frequency is investigated by measuring the thermal noise on rectangular AFM microcantilevers with and without beads attached at their extremities. The experiments are performed with a home-made ultra-sensitive AFM, based on differential interferometry. The focused beam from the interferometer probes the cantilever at different positions and the spatial shapes of the modes are determined up to the fifth resonance, without external excitation. The results clearly demonstrate that the first eigenmode is almost unchanged by mass loading. However the oscillation behavior of higher resonances presents a marked difference: with a particle glued at its extremity, the nodes of the modes are displaced towards the free end of the cantilever. These results are compared to an analytical model taking into account the mass and inertial moment of the load in an Euler-Bernoulli framework, where the normalization of the eigenmodes is explicitly worked out in order to allow a quantitative prediction of the thermal noise amplitude of each mode. A good agreement between the experimental results and the analytical model is demonstrated, allowing a clean calibration of the probe stiffness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22570214-general-solution-strategy-modified-power-method-higher-mode-solutions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22570214-general-solution-strategy-modified-power-method-higher-mode-solutions"><span>A general solution strategy of modified power method for higher mode solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung, E-mail: deokjung@unist.ac.kr</p> <p>2016-01-15</p> <p>A general solution strategy of the modified power iteration method for calculating higher eigenmodes has been developed and applied in continuous energy Monte Carlo simulation. The new approach adopts four features: 1) the eigen decomposition of transfer matrix, 2) weight cancellation for higher modes, 3) population control with higher mode weights, and 4) stabilization technique of statistical fluctuations using multi-cycle accumulations. The numerical tests of neutron transport eigenvalue problems successfully demonstrate that the new strategy can significantly accelerate the fission source convergence with stable convergence behavior while obtaining multiple higher eigenmodes at the same time. The advantages of the newmore » strategy can be summarized as 1) the replacement of the cumbersome solution step of high order polynomial equations required by Booth's original method with the simple matrix eigen decomposition, 2) faster fission source convergence in inactive cycles, 3) more stable behaviors in both inactive and active cycles, and 4) smaller variances in active cycles. Advantages 3 and 4 can be attributed to the lower sensitivity of the new strategy to statistical fluctuations due to the multi-cycle accumulations. The application of the modified power method to continuous energy Monte Carlo simulation and the higher eigenmodes up to 4th order are reported for the first time in this paper. -- Graphical abstract: -- Highlights: •Modified power method is applied to continuous energy Monte Carlo simulation. •Transfer matrix is introduced to generalize the modified power method. •All mode based population control is applied to get the higher eigenmodes. •Statistic fluctuation can be greatly reduced using accumulated tally results. •Fission source convergence is accelerated with higher mode solutions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22410302-numerical-calculation-ion-runaway-distributions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22410302-numerical-calculation-ion-runaway-distributions"><span>Numerical calculation of ion runaway distributions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Embréus, O.; Stahl, A.; Hirvijoki, E.</p> <p>2015-05-15</p> <p>Ions accelerated by electric fields (so-called runaway ions) in plasmas may explain observations in solar flares and fusion experiments; however, limitations of previous analytic work have prevented definite conclusions. In this work, we describe a numerical solver of the 2D non-relativistic linearized Fokker-Planck equation for ions. It solves the initial value problem in velocity space with a spectral-Eulerian discretization scheme, allowing arbitrary plasma composition and time-varying electric fields and background plasma parameters. The numerical ion distribution function is then used to consider the conditions for runaway ion acceleration in solar flares and tokamak plasmas. Typical time scales and electric fieldsmore » required for ion acceleration are determined for various plasma compositions, ion species, and temperatures, and the potential for excitation of toroidal Alfvén eigenmodes during tokamak disruptions is considered.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22156559-short-wavelength-magnetic-buoyancy-instability','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22156559-short-wavelength-magnetic-buoyancy-instability"><span>SHORT-WAVELENGTH MAGNETIC BUOYANCY INSTABILITY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mizerski, K. A.; Davies, C. R.; Hughes, D. W., E-mail: kamiz@igf.edu.pl, E-mail: tina@maths.leeds.ac.uk, E-mail: d.w.hughes@leeds.ac.uk</p> <p>2013-04-01</p> <p>Magnetic buoyancy instability plays an important role in the evolution of astrophysical magnetic fields. Here we revisit the problem introduced by Gilman of the short-wavelength linear stability of a plane layer of compressible isothermal fluid permeated by a horizontal magnetic field of strength decreasing with height. Dissipation of momentum and magnetic field is neglected. By the use of a Rayleigh-Schroedinger perturbation analysis, we explain in detail the limit in which the transverse horizontal wavenumber of the perturbation, denoted by k, is large (i.e., short horizontal wavelength) and show that the fastest growing perturbations become localized in the vertical direction asmore » k is increased. The growth rates are determined by a function of the vertical coordinate z since, in the large k limit, the eigenmodes are strongly localized in the vertical direction. We consider in detail the case of two-dimensional perturbations varying in the directions perpendicular to the magnetic field, which, for sufficiently strong field gradients, are the most unstable. The results of our analysis are backed up by comparison with a series of initial value problems. Finally, we extend the analysis to three-dimensional perturbations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhyA..471..154J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhyA..471..154J"><span>Localized motion in random matrix decomposition of complex financial systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Xiong-Fei; Zheng, Bo; Ren, Fei; Qiu, Tian</p> <p>2017-04-01</p> <p>With the random matrix theory, we decompose the multi-dimensional time series of complex financial systems into a set of orthogonal eigenmode functions, which are classified into the market mode, sector mode, and random mode. In particular, the localized motion generated by the business sectors, plays an important role in financial systems. Both the business sectors and their impact on the stock market are identified from the localized motion. We clarify that the localized motion induces different characteristics of the time correlations for the stock-market index and individual stocks. With a variation of a two-factor model, we reproduce the return-volatility correlations of the eigenmodes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhRvA..87b2306Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhRvA..87b2306Y"><span>Quantum logic between remote quantum registers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yao, N. Y.; Gong, Z.-X.; Laumann, C. R.; Bennett, S. D.; Duan, L.-M.; Lukin, M. D.; Jiang, L.; Gorshkov, A. V.</p> <p>2013-02-01</p> <p>We consider two approaches to dark-spin-mediated quantum computing in hybrid solid-state spin architectures. First, we review the notion of eigenmode-mediated unpolarized spin-chain state transfer and extend the analysis to various experimentally relevant imperfections: quenched disorder, dynamical decoherence, and uncompensated long-range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yields a natural optimal channel fidelity, which we calculate. Long-range dipolar couplings induce a finite intrinsic lifetime for the mediating eigenmode; extensive numerical simulations of dipolar chains of lengths up to L=12 show remarkably high fidelity despite these decay processes. We further briefly consider the extension of the protocol to bosonic systems of coupled oscillators. Second, we introduce a quantum mirror based architecture for universal quantum computing that exploits all of the dark spins in the system as potential qubits. While this dramatically increases the number of qubits available, the composite operations required to manipulate dark-spin qubits significantly raise the error threshold for robust operation. Finally, we demonstrate that eigenmode-mediated state transfer can enable robust long-range logic between spatially separated nitrogen-vacancy registers in diamond; disorder-averaged numerics confirm that high-fidelity gates are achievable even in the presence of moderate disorder.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NucFu..56k2007V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NucFu..56k2007V"><span>Electron cyclotron heating can drastically alter reversed shear Alfvén eigenmode activity in DIII-D through finite pressure effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Zeeland, M. A.; Heidbrink, W. W.; Sharapov, S. E.; Spong, D.; Cappa, A.; Chen, Xi; Collins, C.; García-Muñoz, M.; Gorelenkov, N. N.; Kramer, G. J.; Lauber, P.; Lin, Z.; Petty, C.</p> <p>2016-11-01</p> <p>A recent DIII-D experiment investigating the impact of electron cyclotron heating (ECH) on neutral beam driven reversed shear Alfvén eigenmode (RSAE) activity is presented. The experiment includes variations of ECH injection location and timing, current ramp rate, beam injection geometry (on/off-axis), and neutral beam power. Essentially all variations carried out in this experiment were observed to change the impact of ECH on AE activity significantly. In some cases, RSAEs were observed to be enhanced with ECH near the off-axis minimum in magnetic safety factor ({{q}\\min} ), in contrast to the original DIII-D experiments where the modes were absent when ECH was deposited near {{q}\\min} . It is found that during intervals when the geodesic acoustic mode (GAM) frequency at {{q}\\min} is elevated and the calculated RSAE minimum frequency, including contributions from thermal plasma gradients, is very near or above the nominal TAE frequency (f TAE), RSAE activity is not observed or RSAEs with a much reduced frequency sweep range are found. This condition is primarily brought about by ECH modification of the local electron temperature (T e) which can raise both the local T e at {{q}\\min} as well as its gradient. A q-evolution model that incorporates this reduction in RSAE frequency sweep range is in agreement with the observed spectra and appears to capture the relative balance of TAE or RSAE-like modes throughout the current ramp phase of over 38 DIII-D discharges. Detailed ideal MHD calculations using the NOVA code show both modification of plasma pressure and pressure gradient at {{q}\\min} play an important role in modifying the RSAE activity. Analysis of the ECH injection near the {{q}\\min} case where no frequency sweeping RSAEs are observed shows the typical RSAE is no longer an eigenmode of the system. What remains is an eigenmode with poloidal harmonic content reminiscent of the standard RSAE, but absent of the typical frequency sweeping behavior. The remaining eigenmode is also often strongly coupled to gap TAEs. Analysis with the non-perturbative gyro fluid code TAEFL confirms this change in RSAE activity and also shows a large drop in the resultant mode growth rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1371849-electron-cyclotron-heating-can-drastically-alter-reversed-shear-alfven-eigenmode-activity-diii-through-finite-pressure-effects','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1371849-electron-cyclotron-heating-can-drastically-alter-reversed-shear-alfven-eigenmode-activity-diii-through-finite-pressure-effects"><span>Electron cyclotron heating can drastically alter reversed shear Alfvén eigenmode activity in DIII-D through finite pressure effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Van Zeeland, M. A.; Heidbrink, W. W.; Sharapov, S. E.; ...</p> <p>2016-07-22</p> <p>Here, a recent DIII-D experiment investigating the impact of electron cyclotron heating (ECH) on neutral beam driven reversed shear Alfvén eigenmode (RSAE) activity is presented. The experiment includes variations of ECH injection location and timing, current ramp rate, beam injection geometry (on/off-axis), and neutral beam power. Essentially all variations carried out in this experiment were observed to change the impact of ECH on AE activity significantly. In some cases, RSAEs were observed to be enhanced with ECH near the off-axis minimum in magnetic safety factor (more » $${{q}_{\\min}}$$ ), in contrast to the original DIII-D experiments where the modes were absent when ECH was deposited near $${{q}_{\\min}}$$ . It is found that during intervals when the geodesic acoustic mode (GAM) frequency at $${{q}_{\\min}}$$ is elevated and the calculated RSAE minimum frequency, including contributions from thermal plasma gradients, is very near or above the nominal TAE frequency (f TAE), RSAE activity is not observed or RSAEs with a much reduced frequency sweep range are found. This condition is primarily brought about by ECH modification of the local electron temperature (T e) which can raise both the local T e at $${{q}_{\\min}}$$ as well as its gradient. A q-evolution model that incorporates this reduction in RSAE frequency sweep range is in agreement with the observed spectra and appears to capture the relative balance of TAE or RSAE-like modes throughout the current ramp phase of over 38 DIII-D discharges. Detailed ideal MHD calculations using the NOVA code show both modification of plasma pressure and pressure gradient at $${{q}_{\\min}}$$ play an important role in modifying the RSAE activity. Analysis of the ECH injection near the $${{q}_{\\min}}$$ case where no frequency sweeping RSAEs are observed shows the typical RSAE is no longer an eigenmode of the system. What remains is an eigenmode with poloidal harmonic content reminiscent of the standard RSAE, but absent of the typical frequency sweeping behavior. The remaining eigenmode is also often strongly coupled to gap TAEs. Analysis with the non-perturbative gyro fluid code TAEFL confirms this change in RSAE activity and also shows a large drop in the resultant mode growth rates.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........17E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........17E"><span>On the stability and control of a trailing vortex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edstrand, Adam M.</p> <p></p> <p>Trailing vortices are both a fundamental and practical problem of fluid mechanics. Fundamentally, they provide a canonical vortex flow that is pervasive in finite aspect ratio lifting bodies, practically producing many adverse effects across aeronautical and maritime applications. These adverse effects coupled with the broad range of applicability make their active control desirable; however, they remain robust to control efforts. Experimental baseline results provided an explanation of vortex wandering, the side-to-side motion often attributed to wind-tunnel unsteadiness or a vortex instability. We extracted the wandering motion and found striking similarities with the eigenmodes, growth rates, and frequencies from a stability analysis of the Batchelor vortex. After concluding that wandering is a result of a vortex instability, we applied control to the trailing vortex flow field through blowing from a slot at the wingtip. We experimentally obtained modest reductions in the metrics, but found the parameter space for optimization unwieldy. With the ultimate goal of designing control, we performed a physics-based stability analysis in the wake of a NACA0012 wing with an aspect ratio of 1.25 positioned at a geometric angle of attack of 5 degrees. Numerically computing the base flow at a chord Reynolds number of 1000, we perform a parallel temporal and spatial stability analysis three chords downstream of the trailing edge finding seven instabilities: three temporal, four spatial. The three temporal contain a wake instability, a vortex instability, and a mixed instability, which is a higher-order wake instability. The primary instability localized to the wake results from the two-dimensional wake, while the secondary instability is the mixed instability, containing higher-order spanwise structures in the wake. These instabilities imply that although it may be intuitive to place control at the wingtip, these results show that control may be more effective at the trailing edge, which would excite these instabilities that result with the eventual break up of the vortex. Further, by performing a wave-packet analysis, we found the wave packets contained directivity, coming inward toward the vortex above and below the wing, and traveling outward in the spanwise directions. We conjecture that this directivity can be translated to receptivity, with free-stream disturbances above and below the wing being more receptive than spanwise disturbances. With this, we provide two methods for instability excitation: utilizing control devices on the wing to excite near-field instabilities directly and utilizing free-stream disturbances to such as a speaker to excite near-field instabilities through receptivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JPhCS.329a2013C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JPhCS.329a2013C"><span>Electric field generated by longitudinal axial microtubule vibration modes with high spatial resolution microtubule model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cifra, M.; Havelka, D.; Deriu, M. A.</p> <p>2011-12-01</p> <p>Microtubules are electrically polar structures fulfilling prerequisites for generation of oscillatory electric field in the kHz to GHz region. Energy supply for excitation of elasto-electrical vibrations in microtubules may be provided from GTP-hydrolysis; motor protein-microtubule interactions; and energy efflux from mitochondria. It recently was determined from anisotropic elastic network modeling of entire microtubules that the frequencies of microtubule longitudinal axial eigenmodes lie in the region of tens of GHz for the physiologically common microtubule lengths. We calculated electric field generated by axial longitudinal vibration modes of microtubule, which model is based on subnanometer precision of charge distribution. Due to elastoelectric nature of the vibrations, the vibration wavelength is million-fold shorter than that of the electromagnetic field in free space and the electric field around the microtubule manifests rich spatial structure with multiple minima. The dielectrophoretic force exerted by electric field on the surrounding molecules will influence the kinetics of reactions via change in the probability of the transport of charge and mass particles. The electric field generated by vibrations of electrically polar cellular structures is expected to play a role in biological self-organization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JSV...333.3639Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JSV...333.3639Z"><span>Feedback control of acoustic disturbance transient growth in triggering thermoacoustic instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Dan; Reyhanoglu, Mahmut</p> <p>2014-08-01</p> <p>Transient growth of acoustic disturbances could trigger thermoacoustic instability in a combustion system with non-orthogonal eigenmodes, even with stable eigenvalues. In this work, feedback control of transient growth of flow perturbations in a Rijke-type combustion system is considered. For this, a generalized thermoacoustic model with distributed monopole-like actuators is developed. The model is formulated in state-space to gain insights on the interaction between various eigenmodes and the dynamic response of the system to the actuators. Three critical parameters are identified: (1) the mode number, (2) the number of actuators, and (3) the locations of the actuators. It is shown that in general the number of the actuators K is related to the mode number N as K=N2. For simplicity in illustrating the main results of the paper, two different thermoacoustic systems are considered: system (a) with one mode and system (b) that involves two modes. The actuator location effect is studied in system (a) and it is found that the actuator location plays an important role in determining the control effort. In addition, sensitivity analysis of pressure- and velocity-related control parameters is conducted. In system (b), when the actuators are turned off (i.e., open-loop configuration), it is observed that acoustic energy transfers from the high frequency mode to the lower frequency mode. After some time, the energy is transferred back. Moreover, the high frequency oscillation grows into nonlinear limit cycle with the low frequency oscillation amplified. As a linear-quadratic regulator (LQR) is implemented to tune the actuators, both systems become asymptotically stable. However, the LQR controller fails in eliminating the transient growth, which may potentially trigger thermoacoustic instability. In order to achieve strict dissipativity (i.e., unity maximum transient growth), a transient growth controller is systematically designed and tested in both systems. Comparison is then made between the performance of the LQR controller and that of the transient growth controller. It is found in both systems that the transient growth controller achieves both exponential decay of the flow disturbance energy and unity maximum transient growth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20702229-chandrasekhar-kendall-modes-taylor-relaxation-axisymmetric-torus','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20702229-chandrasekhar-kendall-modes-taylor-relaxation-axisymmetric-torus"><span>Chandrasekhar-Kendall modes and Taylor relaxation in an axisymmetric torus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tang, X.Z.; Boozer, A.H.; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027</p> <p>2005-10-01</p> <p>The helicity-conserving Taylor relaxation of a plasma in a toroidal chamber to a force-free configuration, which means j=(j{sub parallel})/B)B with j{sub parallel}/B independent of position, can be generalized to include the external injection of magnetic helicity. When this is done, j{sub parallel}/B has resonant values, which can be understood using the eigenmodes of Taylor-relaxed plasmas enclosed by a perfectly conducting toroidal shell. These eigenmodes include a toroidal generalization of those found by Chandrasekhar and Kendall (CK) [Astrophys. J. 126, 457 (1957)] for a spherical chamber, which has no externally produced magnetic flux. It is shown that the CK modes inmore » an axisymmetric torus are of three types: (1) helical modes as well as axisymmetric modes that have (2) and have no (3) net toroidal flux. Yoshida and Giga (YG) [Math. Z. 204, 235 (1990)] published a fourth class of modes: axisymmetric modes that have no net toroidal flux in the chamber due to toroidal flux produced by a net poloidal current in the shell canceling the net toroidal flux from the plasma currents. Jensen and Chu [Phys. Fluids 27, 2881 (1984)], as well as Taylor [Rev. Mod. Phys. 58, 741 (1986)], considered modes in which the vector potential was zero on the axisymmetric toroidal chamber. It is shown that these Jensen-Chu-Taylor modes include only the CK helical modes and the CK axisymmetric modes without net toroidal flux. If the toroidal chamber is perfectly conducting except for a cut that prevents a net poloidal current from flowing, resonances in j{sub parallel}/B occur at the eigenvalues of the axisymmetric CK modes. Jensen and Chu studied this type of resonance. Without the cut, so a poloidal current flows to conserve the net toroidal flux, it is shown that j{sub parallel}/B resonances occur at the eigenvalues of the CK modes that have no net toroidal flux and at the eigenvalues of the YG modes, which are upshifted from the eigenvalues of the axisymmetric CK modes that carry net toroidal flux.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001APS..DPPQP1092M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001APS..DPPQP1092M"><span>Properties of density and magnetic fluctuations occurring in density striations in the new LAPD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maggs, J. E.; Morales, G. J.</p> <p>2001-10-01</p> <p>Previous studies of density striations (long, narrow magnetic-field-aligned density depletions) in the LAPD plasma device at UCLA revealed an eigenmode structure to fluctuations driven by the pressure gradient in the striation wall (Maggs and Morales, Phys. Plasmas, 4, 1997). The nature of these fluctuations depended on the plasma beta external to the striation, with shear Alfvén wave turbulence developing at betas less than the mass ratio and drift-Alfvén waves at betas above the mass ratio. These fluctuations were found to have a direct connection to turbulence observed at the plasma edge. The new LAPD is 18 meters in length with a background field up to twice previously attainable values. We report on the properties of fluctuations associated with density striations in the new device over a wider range of beta, and compare them to previous results. The behavior of fluctuations in density striations created in flared-field and magnetic-mirror geometries will also be presented. Research sponsored by ONR and NSF</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThCFD..31..643P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThCFD..31..643P"><span>Lattice Boltzmann methods for global linear instability analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pérez, José Miguel; Aguilar, Alfonso; Theofilis, Vassilis</p> <p>2017-12-01</p> <p>Modal global linear instability analysis is performed using, for the first time ever, the lattice Boltzmann method (LBM) to analyze incompressible flows with two and three inhomogeneous spatial directions. Four linearization models have been implemented in order to recover the linearized Navier-Stokes equations in the incompressible limit. Two of those models employ the single relaxation time and have been proposed previously in the literature as linearization of the collision operator of the lattice Boltzmann equation. Two additional models are derived herein for the first time by linearizing the local equilibrium probability distribution function. Instability analysis results are obtained in three benchmark problems, two in closed geometries and one in open flow, namely the square and cubic lid-driven cavity flow and flow in the wake of the circular cylinder. Comparisons with results delivered by classic spectral element methods verify the accuracy of the proposed new methodologies and point potential limitations particular to the LBM approach. The known issue of appearance of numerical instabilities when the SRT model is used in direct numerical simulations employing the LBM is shown to be reflected in a spurious global eigenmode when the SRT model is used in the instability analysis. Although this mode is absent in the multiple relaxation times model, other spurious instabilities can also arise and are documented herein. Areas of potential improvements in order to make the proposed methodology competitive with established approaches for global instability analysis are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22598969-instability-surface-electron-cyclotron-tm-modes-influenced-non-monochromatic-alternating-electric-field','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22598969-instability-surface-electron-cyclotron-tm-modes-influenced-non-monochromatic-alternating-electric-field"><span>Instability of surface electron cyclotron TM-modes influenced by non-monochromatic alternating electric field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Girka, I. O., E-mail: igorgirka@karazin.ua; Girka, V. O.; Sydora, R. D.</p> <p>2016-06-15</p> <p>The influence of non-monochromaticity of an external alternating electric field on excitation of TM eigenmodes at harmonics of the electron cyclotron frequency is considered here. These TM-modes propagate along the plasma interface in a metal waveguide. An external static constant magnetic field is oriented perpendicularly to the plasma interface. The problem is solved theoretically using the kinetic Vlasov-Boltzmann equation for description of plasma particles motion and the Maxwell equations for description of the electromagnetic mode fields. The external alternating electric field is supposed to be a superposition of two waves, whose amplitudes are different and their frequencies correlate as 2:1.more » An infinite set of equations for electric field harmonics of these modes is derived with the aid of nonlinear boundary conditions. This set is solved using the wave packet approach consisting of the main harmonic frequency and two nearest satellite temporal harmonics. Analytical studies of the obtained set of equations allow one to find two different regimes of parametric instability, namely, enhancement and suppression of the instability. Numerical analysis of the instability is carried out for the three first electron cyclotron harmonics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSV...420..204S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSV...420..204S"><span>Vibroacoustic study of a point-constrained plate mounted in a duct</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sapkale, Swapnil L.; Sucheendran, Mahesh M.; Gupta, Shakti S.; Kanade, Shantanu V.</p> <p>2018-04-01</p> <p>The vibroacoustic study of the interaction of sound with a point-constrained, simply-supported square plate is considered in this paper. The plate is mounted flush on one of the walls of an infinite duct of rectangular cross section and is backed by a cavity. The plate response and the acoustic field is predicted by solving the coupled governing equations using modal expansion with the relevant eigenmodes of the plate dynamics and acoustic fields in the duct and cavity. By varying the location of the point constraint, the frequency characteristics of the transmission loss in the duct can be tuned. The point constraint can also alter the amplitude and spectral characteristics of the plate's response. Interestingly, some new peaks are observed in the response because of the excitation of unsymmetric modes which are otherwise dormant. Mode-localization phenomenon, which is the localization of vibration in specific regions of the plate, is observed for selected constrained points.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvE..93c2108G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvE..93c2108G"><span>Lossy chaotic electromagnetic reverberation chambers: Universal statistical behavior of the vectorial field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gros, J.-B.; Kuhl, U.; Legrand, O.; Mortessagne, F.</p> <p>2016-03-01</p> <p>The effective Hamiltonian formalism is extended to vectorial electromagnetic waves in order to describe statistical properties of the field in reverberation chambers. The latter are commonly used in electromagnetic compatibility tests. As a first step, the distribution of wave intensities in chaotic systems with varying opening in the weak coupling limit for scalar quantum waves is derived by means of random matrix theory. In this limit the only parameters are the modal overlap and the number of open channels. Using the extended effective Hamiltonian, we describe the intensity statistics of the vectorial electromagnetic eigenmodes of lossy reverberation chambers. Finally, the typical quantity of interest in such chambers, namely, the distribution of the electromagnetic response, is discussed. By determining the distribution of the phase rigidity, describing the coupling to the environment, using random matrix numerical data, we find good agreement between the theoretical prediction and numerical calculations of the response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22490963-electromagnetic-fluctuations-magnetized-plasmas-rigorous-relativistic-kinetic-theory','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22490963-electromagnetic-fluctuations-magnetized-plasmas-rigorous-relativistic-kinetic-theory"><span>Electromagnetic fluctuations in magnetized plasmas. I. The rigorous relativistic kinetic theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schlickeiser, R., E-mail: rsch@tp4.rub.de, E-mail: yoonp@umd.edu; Yoon, P. H., E-mail: rsch@tp4.rub.de, E-mail: yoonp@umd.edu; School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701</p> <p>2015-07-15</p> <p>Using the system of the Klimontovich and Maxwell equations, the general linear fluctuation theory for magnetized plasmas is developed. General expressions for the electromagnetic fluctuation spectra (electric and magnetic fields) from uncorrelated plasma particles in plasmas with a uniform magnetic field are derived, which are covariantly correct within the theory of special relativity. The general fluctuation spectra hold for plasmas of arbitrary composition, arbitrary momentum dependences of the plasma particle distribution functions, and arbitrary orientations of the wave vector with respect to the uniform magnetic field. Moreover, no restrictions on the values of the real and the imaginary parts ofmore » the frequency are made. The derived fluctuation spectra apply to both non-collective fluctuations and collective plasma eigenmodes in magnetized plasmas. In the latter case, kinetic equations for the components of fluctuating electric and magnetic fields in magnetized plasmas are derived that include the effect of spontaneous emission and absorption. In the limiting case of an unmagnetized plasmas, the general fluctuation spectra correctly reduce to the unmagnetized fluctuation spectra derived before.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NucFu..55f3005E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NucFu..55f3005E"><span>Limit cycle oscillations at the L-I-H transition in TJ-II plasmas: triggering, temporal ordering and radial propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Estrada, T.; Ascasíbar, E.; Blanco, E.; Cappa, A.; Castejón, F.; Hidalgo, C.; van Milligen, B. Ph.; Sánchez, E.</p> <p>2015-06-01</p> <p>The spatiotemporal evolution of the interaction between turbulence and flows has been studied close to the L-H transition threshold conditions in the edge of TJ-II plasmas. As in other devices the temporal dynamics of the interaction displays limit cycle oscillations (LCO) with a characteristic predator-prey relationship between flows and turbulence. At TJ-II, the turbulence-flow front is found to propagate radially outwards at the onset of the LCO and in some particular cases, after a short time interval without oscillations, a reversal in the front propagation velocity is observed. Associated to this velocity reversal, a change in the temporal ordering of the LCO is measured. However, the change in the temporal ordering is not related to an intrinsic change in the nature of the LCO. In all cases the turbulence increase leads the process and produces an increase in the E × B flow shear. Dedicated experiments have been carried out to investigate the physical mechanisms triggering the onset of the LCO. At TJ-II the LCO are preferentially observed close to the transition threshold conditions at specific magnetic configurations having a low order rational surface located at the inner side of the E × B flow shear location. The behaviour of different frequency modes has been analysed and interpreted in terms of a geodesic acoustic mode generated by the non-linear mode coupling of Alfvén eigenmodes that evolves towards a low frequency flow, plus a MHD mode linked to the low order rational surface, as precursors of the LCO.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AnPhy.390..180W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AnPhy.390..180W"><span>Dynamics of bright-bright solitons in Bose-Einstein condensate with Raman-induced one-dimensional spin-orbit coupling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wen, Lin; Zhang, Xiao-Fei; Hu, Ai-Yuan; Zhou, Jing; Yu, Peng; Xia, Lei; Sun, Qing; Ji, An-Chun</p> <p>2018-03-01</p> <p>We investigate the dynamics of bright-bright solitons in one-dimensional two-component Bose-Einstein condensates with Raman-induced spin-orbit coupling, via the variational approximation and the numerical simulation of Gross-Pitaevskii equations. For the uniform system without trapping potential, we obtain two population balanced stationary solitons. By performing the linear stability analysis, we find a Goldstone eigenmode and an oscillation eigenmode around these stationary solitons. Moreover, we derive a general dynamical solution to describe the center-of-mass motion and spin evolution of the solitons under the action of spin-orbit coupling. The effects of a harmonic trap have also been discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LaPhL..15c5901K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LaPhL..15c5901K"><span>Loss compensation symmetry in dimers made of gain and lossy nanoparticles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klimov, V. V.; Zabkov, I. V.; Guzatov, D. V.; Vinogradov, A. P.</p> <p>2018-03-01</p> <p>The eigenmodes in a two-dimensional dimer made of gain and lossy nanoparticles have been investigated within an exact analytical approach. It has been shown that there are eigenmodes for which all Joule losses are exactly compensated by the gain. Among such solutions there are solutions with a new type of symmetry, which we refer to as loss compensation symmetry, as well as well-known parity-time (PT) symmetric solutions. Unlike PT symmetric ones, the modes with loss compensation symmetry allow one to achieve full loss compensation with significantly less gain that in the case of PT symmetry. This effect paves the way to new loss compensation methods in optics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DPPP10007Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DPPP10007Z"><span>Nonlinear dynamics of toroidal Alfvén eigenmodes in presence of tearing modes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Jia; Ma, Zhiwei; Wang, Sheng; Zhang, Wei</p> <p>2016-10-01</p> <p>A new hybrid kinetic-MHD code CLT-K is developed to study nonlinear dynamics of n =1 toroidal Alfvén eigenmodes (TAEs) with the m/n =2/1 tearing mode. It is found that the n =1 TAE is first excited by isotropic energetic particles in the earlier stage and reaches the steady state due to wave-particle interaction. After the saturation of the n =1 TAE, the tearing mode intervenes and triggers the second growth of the mode. The modes goes into the second steady state due to multiple tearing mode-mode nonlinear coupling. Both wave-particle and wave-wave interactions are observed in our hybrid simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DDA....4610002V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DDA....4610002V"><span>Loners, Groupies, and Long-term Eccentricity (and Inclination) Behavior: Insights from Secular Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Laerhoven, Christa L.</p> <p>2015-05-01</p> <p>Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods. Using this catalog of secular character, I will discuss the prevalence of dynamically grouped planets ('groupies') versus dynamically uncoupled planets ('loners') and how this relates to the exoplanets' long-term eccentricity and inclination behavior. I will also touch on the distribution of the secular eigenfreqiencies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1349633-experiment-theory-comparison-low-frequency-bae-modes-strongly-shaped-stellarator','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1349633-experiment-theory-comparison-low-frequency-bae-modes-strongly-shaped-stellarator"><span>Experiment-theory comparison for low frequency BAE modes in the strongly shaped H-1NF stellarator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Haskey, S. R.; Blackwell, B. D.; Nuhrenberg, C.; ...</p> <p>2015-08-12</p> <p>Here, recent advances in the modeling, analysis, and measurement of fluctuations have significantly improved the diagnosis and understanding of Alfvén eigenmodes in the strongly shaped H-1NF helical axis stellarator. Experimental measurements, including 3D tomographic inversions of high resolution visible light images, are in close agreement with beta-induced Alfvén eigenmodes (BAEs) calculated using the compressible ideal MHD code, CAS3D. This is despite the low β in H-1NF, providing experimental evidence that these modes can exist due to compression that is induced by the strong shaping in stellarators, in addition to high β, as is the case in tokamaks. This is confirmedmore » using the CONTI and CAS3D codes, which show significant gap structures at lower frequencies which contain BAE and beta-acoustic Alfvén eigenmodes (BAAEs). The BAEs are excited in the absence of a well confined energetic particle source, further confirming previous studies that thermal particles, electrons, or even radiation fluctuations can drive these modes. Datamining of magnetic probe data shows the experimentally measured frequency of these modes has a clear dependence on the rotational transform profile, which is consistent with a frequency dependency due to postulated confinement related temperature variations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1414294','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1414294"><span>Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chen, Liu</p> <p></p> <p>This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novelmore » findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27164969','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27164969"><span>Extension and Application of High-Speed Digital Imaging Analysis Via Spatiotemporal Correlation and Eigenmode Analysis of Vocal Fold Vibration Before and After Polyp Excision.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Jun-Sheng; Olszewski, Emily; Devine, Erin E; Hoffman, Matthew R; Zhang, Yu; Shao, Jun; Jiang, Jack J</p> <p>2016-08-01</p> <p>To evaluate the spatiotemporal correlation of vocal fold vibration using eigenmode analysis before and after polyp removal and explore the potential clinical relevance of spatiotemporal analysis of correlation length and entropy as quantitative voice parameters. We hypothesized that increased order in the vibrating signal after surgical intervention would decrease the eigenmode-based entropy and increase correlation length. Prospective case series. Forty subjects (23 males, 17 females) with unilateral (n = 24) or bilateral (n = 16) polyps underwent polyp removal. High-speed videoendoscopy was performed preoperatively and 2 weeks postoperatively. Spatiotemporal analysis was performed to determine entropy, quantification of signal disorder, correlation length, size, and spatially ordered structure of vocal fold vibration in comparison to full spatial consistency. The signal analyzed consists of the vibratory pattern in space and time derived from the high-speed video glottal area contour. Entropy decreased (Z = -3.871, P < .001) and correlation length increased (t = -8.913, P < .001) following polyp excision. The intraclass correlation coefficients (ICC) for correlation length and entropy were 0.84 and 0.93. Correlation length and entropy are sensitive to mass lesions. These parameters could potentially be used to augment subjective visualization after polyp excision when evaluating procedural efficacy. © The Author(s) 2016.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhG...44l4001S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhG...44l4001S"><span>Relating quark confinement and chiral symmetry breaking in QCD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suganuma, Hideo; Doi, Takahiro M.; Redlich, Krzysztof; Sasaki, Chihiro</p> <p>2017-12-01</p> <p>We study the relation between quark confinement and chiral symmetry breaking in QCD. Using lattice QCD formalism, we analytically express the various ‘confinement indicators’, such as the Polyakov loop, its fluctuations, the Wilson loop, the inter-quark potential and the string tension, in terms of the Dirac eigenmodes. In the Dirac spectral representation, there appears a power of the Dirac eigenvalue {λ }n such as {λ }n{Nt-1}, which behaves as a reduction factor for small {λ }n. Consequently, since this reduction factor cannot be cancelled, the low-lying Dirac eigenmodes give negligibly small contribution to the confinement quantities, while they are essential for chiral symmetry breaking. These relations indicate that there is no direct one-to-one correspondence between confinement and chiral symmetry breaking in QCD. In other words, there is some independence of quark confinement from chiral symmetry breaking, which can generally lead to different transition temperatures/densities for deconfinement and chiral restoration. We also investigate the Polyakov loop in terms of the eigenmodes of the Wilson, the clover and the domain-wall fermion kernels, and find similar results. The independence of quark confinement from chiral symmetry breaking seems to be natural, because confinement is realized independently of quark masses and heavy quarks are also confined even without the chiral symmetry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT.......407S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT.......407S"><span>Time reversal acoustics for small targets using decomposition of the time reversal operator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simko, Peter C.</p> <p></p> <p>The method of time reversal acoustics has been the focus of considerable interest over the last twenty years. Time reversal imaging methods have made consistent progress as effective methods for signal processing since the initial demonstration that physical time reversal methods can be used to form convergent wave fields on a localized target, even under conditions of severe multipathing. Computational time reversal methods rely on the properties of the so-called 'time reversal operator' in order to extract information about the target medium. Applications for which time reversal imaging have previously been explored include medical imaging, non-destructive evaluation, and mine detection. Emphasis in this paper will fall on two topics within the general field of computational time reversal imaging. First, we will examine previous work on developing a time reversal imaging algorithm based on the MUltiple SIgnal Classification (MUSIC) algorithm. MUSIC, though computationally very intensive, has demonstrated early promise in simulations using array-based methods applicable to true volumetric (three-dimensional) imaging. We will provide a simple algorithm through which the rank of the time reversal operator subspaces can be properly quantified so that the rank of the associated null subspace can be accurately estimated near the central pulse wavelength in broadband imaging. Second, we will focus on the scattering from small acoustically rigid two dimensional cylindrical targets of elliptical cross section. Analysis of the time reversal operator eigenmodes has been well-studied for symmetric response matrices associated with symmetric systems of scattering targets. We will expand these previous results to include more general scattering systems leading to asymmetric response matrices, for which the analytical complexity increases but the physical interpretation of the time reversal operator remains unchanged. For asymmetric responses, the qualitative properties of the time reversal operator eigenmodes remain consistent with those obtained from the more tightly constrained systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMSM71B..05L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMSM71B..05L"><span>Quasi-Static Alfv{é}n Dynamics and Scale-Dependent Energy Deposition in Magnetosphere-Ionosphere Coupling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lotko, W.; Lysak, R. L.; Streltsov, A. V.</p> <p>2002-12-01</p> <p>Alfv{é}n wave dynamics become quasi-static in the ionosphere and low-altitude magnetosphere in the ULF regime below 10 mHz and at altitudes less than a few RE when the following two conditions are met: ω L RE << vA (l) and ω l << 1 / μ 0 Σ P. L is the dipole shell parameter, ω is the wave frequency in radians, l represents field-aligned distance above the ionosphere, vA (l) is the local Alfv{é}n speed, and Σ P is the ionospheric Pedersen conductance. In this limit, reactive power stored in Alfv{é}nic fluctuations at high altitude flows quasi-statically into ionospheric Joule heating and low-altitude collisionless dissipation. The combined dissipative effects are described by the electrostatic model of Chiu-Cornwall-Lyons [1980] which captures the transverse wavelength dependence of low-altitude Alfv{é}nic energy deposition. The analysis and results described here 1) correspond to the low-altitude, low-frequency limit of theories for the interaction of an Alfv{é}n wave with the ionosphere [Knudsen et al., 1992], including effects of a low-altitude collisionless dissipation layer [Vogt and Haerendel, 1998], and field line eigenmodes with allowance for finite ionospheric conductivity and realistic parallel inhomogeneity [Allan and Knox, 1979]; 2) reconcile the interpretation of inverted-V precipitation regions as electrostatic potential structures with electromagnetic energy deposition via Alfv{é}n waves at frequencies below 10 mHz; 3) provide criteria for the validity of the Knight current-voltage relation in the ULF regime and its use in global MHD simulations; 4) relate low-altitude satellite measurements of both ``static'' and ULF electric and magnetic fields directly to the ionospheric Pedersen conductivity; and 5) offer a resolution to debates about high-altitude closure of auroral potential structures as O-, U-, or S-potential forms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25d2104W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25d2104W"><span>Electrostatic odd symmetric eigenmode in inhomogeneous Bernstein-Greene-Kruskal equilibrium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woo, M.-H.; Dokgo, K.; Yoon, Peter H.; Lee, D.-Y.; Choi, Cheong R.</p> <p>2018-04-01</p> <p>A self-consistent electrostatic odd-symmetric eigenmode (OEM) is analytically found in a solitary type Bernstein-Greene-Kruskal (BGK) equilibrium. The frequency of the OEM is order of the electron bounce frequency and it is spatially odd-symmetric with the scale comparable to that of the solitary BGK equilibrium structure. Such an OEM is consistent with the recent observation from particle-in-cell simulation of the solitary wave [Dokgo et al., Phys. Plasmas 23, 092107 (2016)]. The mode can be driven unstable by trapped electrons within the hole structure of the solitary wave. Such a low frequency, pure electron mode, which may possibly interact resonantly with the ion acoustic mode, provides a possible damping mechanism of the BGK equilibrium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1353401-improving-fast-ion-confinement-high-performance-discharges-suppressing-alfven-eigenmodes','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1353401-improving-fast-ion-confinement-high-performance-discharges-suppressing-alfven-eigenmodes"><span>Improving fast-ion confinement in high-performance discharges by suppressing Alfvén eigenmodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kramer, Geritt J.; Podestà, Mario; Holcomb, Christopher; ...</p> <p>2017-03-28</p> <p>Here, we show that the degradation of fast-ion confinement in steady-state DIII-D discharges is quantitatively consistent with predictions based on the effects of multiple unstable Alfven eigenmodes on beam-ion transport. Simulation and experiment show that increasing the radius where the magnetic safety factor has its minimum is effective in minimizing beam-ion transport. This is favorable for achieving high performance steady-state operation in DIII-D and future reactors. A comparison between the experiments and a critical gradient model, in which only equilibrium profiles were used to predict the most unstable modes, show that in a number of cases this model reproduces themore » measured neutron rate well.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010011956','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010011956"><span>Dynamics of Aqueous Foam Drops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Akhatov, Iskander; McDaniel, J. Gregory; Holt, R. Glynn</p> <p>2001-01-01</p> <p>We develop a model for the nonlinear oscillations of spherical drops composed of aqueous foam. Beginning with a simple mixture law, and utilizing a mass-conserving bubble-in-cell scheme, we obtain a Rayleigh-Plesset-like equation for the dynamics of bubbles in a foam mixture. The dispersion relation for sound waves in a bubbly liquid is then coupled with a normal modes expansion to derive expressions for the frequencies of eigenmodal oscillations. These eigenmodal (breathing plus higher-order shape modes) frequencies are elicited as a function of the void fraction of the foam. A Mathieu-like equation is obtained for the dynamics of the higher-order shape modes and their parametric coupling to the breathing mode. The proposed model is used to explain recently obtained experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013NatSR...3E3160J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013NatSR...3E3160J"><span>Spin wave nonreciprocity for logic device applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jamali, Mahdi; Kwon, Jae Hyun; Seo, Soo-Man; Lee, Kyung-Jin; Yang, Hyunsoo</p> <p>2013-11-01</p> <p>The utilization of spin waves as eigenmodes of the magnetization dynamics for information processing and communication has been widely explored recently due to its high operational speed with low power consumption and possible applications for quantum computations. Previous proposals of spin wave Mach-Zehnder devices were based on the spin wave phase, a delicate entity which can be easily disrupted. Here, we propose a complete logic system based on the spin wave amplitude utilizing the nonreciprocal spin wave behavior excited by microstrip antennas. The experimental data reveal that the nonreciprocity of magnetostatic surface spin wave can be tuned by the bias magnetic field. Furthermore, engineering of the device structure could result in a high nonreciprocity factor for spin wave logic applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvL.116u3901K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvL.116u3901K"><span>Universal Sign Control of Coupling in Tight-Binding Lattices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keil, Robert; Poli, Charles; Heinrich, Matthias; Arkinstall, Jake; Weihs, Gregor; Schomerus, Henning; Szameit, Alexander</p> <p>2016-05-01</p> <p>We present a method of locally inverting the sign of the coupling term in tight-binding systems, by means of inserting a judiciously designed ancillary site and eigenmode matching of the resulting vertex triplet. Our technique can be universally applied to all lattice configurations, as long as the individual sites can be detuned. We experimentally verify this method in laser-written photonic lattices and confirm both the magnitude and the sign of the coupling by interferometric measurements. Based on these findings, we demonstrate how such universal sign-flipped coupling links can be embedded into extended lattice structures to impose a Z2-gauge transformation. This opens a new avenue for investigations on topological effects arising from magnetic fields with aperiodic flux patterns or in disordered systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3819604','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3819604"><span>Spin wave nonreciprocity for logic device applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jamali, Mahdi; Kwon, Jae Hyun; Seo, Soo-Man; Lee, Kyung-Jin; Yang, Hyunsoo</p> <p>2013-01-01</p> <p>The utilization of spin waves as eigenmodes of the magnetization dynamics for information processing and communication has been widely explored recently due to its high operational speed with low power consumption and possible applications for quantum computations. Previous proposals of spin wave Mach-Zehnder devices were based on the spin wave phase, a delicate entity which can be easily disrupted. Here, we propose a complete logic system based on the spin wave amplitude utilizing the nonreciprocal spin wave behavior excited by microstrip antennas. The experimental data reveal that the nonreciprocity of magnetostatic surface spin wave can be tuned by the bias magnetic field. Furthermore, engineering of the device structure could result in a high nonreciprocity factor for spin wave logic applications. PMID:24196318</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDM11009A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDM11009A"><span>A straightforward characterization of non-modal effects from the evolution of linear dynamical systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arratia, Cristobal</p> <p>2014-11-01</p> <p>A simple construction will be shown, which reveals a general property satisfied by the evolution in time of a state vector composed by a superposition of orthogonal eigenmodes of a linear dynamical system. This property results from the conservation of the inner product between such state vectors evolving forward and backwards in time, and it can be simply evaluated from the state vector and its first and second time derivatives. This provides an efficient way to characterize, instantaneously along any specific phase-space trajectory of the linear system, the relevance of the non-normality of the linearized Navier-Stokes operator on the energy (or any other norm) gain or decay of small perturbations. Examples of this characterization applied to stationary or time dependent base flows will be shown. CONICYT, Concurso de Apoyo al Retorno de Investigadores del Extranjero, folio 821320055.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2973991','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2973991"><span>A method to map errors in the deformable registration of 4DCT images1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Vaman, Constantin; Staub, David; Williamson, Jeffrey; Murphy, Martin J.</p> <p>2010-01-01</p> <p>Purpose: To present a new approach to the problem of estimating errors in deformable image registration (DIR) applied to sequential phases of a 4DCT data set. Methods: A set of displacement vector fields (DVFs) are made by registering a sequence of 4DCT phases. The DVFs are assumed to display anatomical movement, with the addition of errors due to the imaging and registration processes. The positions of physical landmarks in each CT phase are measured as ground truth for the physical movement in the DVF. Principal component analysis of the DVFs and the landmarks is used to identify and separate the eigenmodes of physical movement from the error eigenmodes. By subtracting the physical modes from the principal components of the DVFs, the registration errors are exposed and reconstructed as DIR error maps. The method is demonstrated via a simple numerical model of 4DCT DVFs that combines breathing movement with simulated maps of spatially correlated DIR errors. Results: The principal components of the simulated DVFs were observed to share the basic properties of principal components for actual 4DCT data. The simulated error maps were accurately recovered by the estimation method. Conclusions: Deformable image registration errors can have complex spatial distributions. Consequently, point-by-point landmark validation can give unrepresentative results that do not accurately reflect the registration uncertainties away from the landmarks. The authors are developing a method for mapping the complete spatial distribution of DIR errors using only a small number of ground truth validation landmarks. PMID:21158288</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26832557','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26832557"><span>Resonant absorption and amplification of circularly-polarized waves in inhomogeneous chiral media.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Seulong; Kim, Kihong</p> <p>2016-01-25</p> <p>It has been found that in the media where the dielectric permittivity ε or the magnetic permeability μ is near zero and in transition metamaterials where ε or μ changes from positive to negative values, there occur a strong absorption or amplification of the electromagnetic wave energy in the presence of an infinitesimally small damping or gain and a strong enhancement of the electromagnetic fields. We attribute these phenomena to the mode conversion of transverse electromagnetic waves into longitudinal plasma oscillations and its inverse process. In this paper, we study analogous phenomena occurring in chiral media theoretically using the invariant imbedding method. In uniform isotropic chiral media, right-circularly-polarized and left-circularly-polarized waves are the eigen-modes of propagation with different effective refractive indices n(+) and n(-), whereas in the chiral media with a nonuniform impedance variation, they are no longer the eigenmodes and are coupled to each other. We find that both in uniform chiral slabs where either n(+) or n(-) is near zero and in chiral transition metamaterials where n(+) or n(-) changes from positive to negative values, a strong absorption or amplification of circularly-polarized waves occurs in the presence of an infinitesimally small damping or gain. We present detailed calculations of the mode conversion coefficient, which measures the fraction of the electromagnetic wave energy absorbed into the medium, for various configurations of ε and μ with an emphasis on the influence of a nonuniform impedance. We propose possible applications of these phenomena to linear and nonlinear optical devices that react selectively to the helicity of the circular polarization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JFM...844..597R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JFM...844..597R"><span>Axisymmetric inertial modes in a spherical shell at low Ekman numbers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rieutord, M.; Valdettaro, L.</p> <p>2018-06-01</p> <p>We investigate the asymptotic properties of axisymmetric inertial modes propagating in a spherical shell when viscosity tends to zero. We identify three kinds of eigenmodes whose eigenvalues follow very different laws as the Ekman number $E$ becomes very small. First are modes associated with attractors of characteristics that are made of thin shear layers closely following the periodic orbit traced by the characteristic attractor. Second are modes made of shear layers that connect the critical latitude singularities of the two hemispheres of the inner boundary of the spherical shell. Third are quasi-regular modes associated with the frequency of neutral periodic orbits of characteristics. We thoroughly analyse a subset of attractor modes for which numerical solutions point to an asymptotic law governing the eigenvalues. We show that three length scales proportional to $E^{1/6}$, $E^{1/4}$ and $E^{1/3}$ control the shape of the shear layers that are associated with these modes. These scales point out the key role of the small parameter $E^{1/12}$ in these oscillatory flows. With a simplified model of the viscous Poincar\\'e equation, we can give an approximate analytical formula that reproduces the velocity field in such shear layers. Finally, we also present an analysis of the quasi-regular modes whose frequencies are close to $\\sin(\\pi/4)$ and explain why a fluid inside a spherical shell cannot respond to any periodic forcing at this frequency when viscosity vanishes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007APS..DPPTP8024H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007APS..DPPTP8024H"><span>Finite temperature m=0 upper-hybrid modes in a non-neutral plasma, theory and simulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hart, Grant W.; Takeshi Nakata, M.; Spencer, Ross L.</p> <p>2007-11-01</p> <p>Axisymmetric upper-hybrid oscillations have been known to exist in non-neutral plasmas and FTICR/MS devices for a number of years^1,2. However, because they are electrostatic in nature and axisymmetric, they are self-shielding and therefore difficult to detect in long systems. Previous theoretical studies have assumed a zero temperature plasma. In the zero temperature limit these oscillations are not properly represented as a mode, because the frequency at a given radius depends only on the local density and is not coupled to neighboring radii, much like the zero temperature plasma oscillation. Finite temperature provides the coupling which links the oscillation into a coherent mode. We have analyzed the finite-temperature theory of these modes and find that they form an infinite set of modes with frequencies above 2̂c- 2̂p. For a constant density plasma the eigenmodes are Bessel functions. For a more general plasma the eigenmodes must be numerically calculated. We have simulated these modes in our r-θ particle-in-cell code that includes a full Lorentz-force mover^3 and find that the eigenmodes correspond well with the theory.^1 J.J. Bollinger, et al., Phys. Rev. A 48, 525 (1993).^2 S.E. Barlow, et al., Int. J. Mass Spectrom. Ion Processes 74, 97 (1986).^3 M. Takeshi Nakata, et al., Bull. Am. Phys. Soc. 51, 245 (2006).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvP...7f4034B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvP...7f4034B"><span>Redirection and Splitting of Sound Waves by a Periodic Chain of Thin Perforated Cylindrical Shells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bozhko, Andrey; Sánchez-Dehesa, José; Cervera, Francisco; Krokhin, Arkadii</p> <p>2017-06-01</p> <p>The scattering of sound by finite and infinite chains of equally spaced perforated metallic cylindrical shells in an ideal (inviscid) and viscous fluid is theoretically studied using rigorous analytical and numerical approaches. Because of perforations, a chain of thin shells is practically transparent for sound within a wide range of frequencies. It is shown that strong scattering and redirection of sound by 90° may occur only for a discrete set of frequencies (Wood's anomalies) where the leaky eigenmodes are excited. The spectrum of eigenmodes consists of antisymmetric and symmetric branches with normal and anomalous dispersion, respectively. The antisymmetric eigenmode turns out to be a deaf mode, since it cannot be excited at normal incidence. However, at slightly oblique incidence, both modes can be resonantly excited at different but close frequencies. The symmetric mode, due to its anomalous dispersion, scatters sound in the "wrong" direction. This property may find an application for the splitting of the two resonant harmonics of the incoming signal into two beams propagating along the chain in the opposite directions. A chain of perforated cylinders may also be used as a passive antenna that detects the direction to the incoming signal by measuring the frequencies of the waves excited in the chain. Calculations are presented for aluminum shells in viscous air where the effects of anomalous scattering, redirection, and signal splitting are well manifested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6472876','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6472876"><span>A synopsis of collective alpha effects and implications for ITER</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sigmar, D.J.</p> <p>1990-10-01</p> <p>This paper discusses the following: Alpha Interaction with Toroidal Alfven Eigenmodes; Alpha Interaction with Ballooning Modes; Alpha Interaction with Fishbone Oscillations; and Implications for ITER.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22600180-helicon-waves-uniform-plasmas-iv-bessel-beams-gendrin-beams-helicons','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22600180-helicon-waves-uniform-plasmas-iv-bessel-beams-gendrin-beams-helicons"><span>Helicon waves in uniform plasmas. IV. Bessel beams, Gendrin beams, and helicons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Urrutia, J. M.; Stenzel, R. L.</p> <p></p> <p>Electromagnetic waves in the low frequency whistler mode regime are investigated experimentally and by digital data superposition. The radiation from a novel circular antenna array is shown to produce highly collimated helicon beams in a uniform unbounded plasma. The differences to Bessel beams in free space are remarked upon. Low divergence beams arise from the parallel group velocity of whistlers with phase velocity either along the guide field or at the Gendrin angle. Waves with angular momentum are produced by phasing the array in the circular direction. The differences in the field topologies for positive and negative modes numbers aremore » shown. It is also shown that in uniform plasmas, the radial amplitude profile of the waves depends on the antenna field topology. Thus, there are no helicon “eigenmodes” with radial Bessel function profiles in uniform plasmas. It is pointed out that phase measurements in helicon devices indicate radial wave propagation which is inconsistent with helicon eigenmode theory based on paraxial wave propagation. Trivelpiece-Gould modes also exist in uniform unbounded plasmas.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMFM..tmp....7S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMFM..tmp....7S"><span>Dynamic Transitions and Baroclinic Instability for 3D Continuously Stratified Boussinesq Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Şengül, Taylan; Wang, Shouhong</p> <p>2018-02-01</p> <p>The main objective of this article is to study the nonlinear stability and dynamic transitions of the basic (zonal) shear flows for the three-dimensional continuously stratified rotating Boussinesq model. The model equations are fundamental equations in geophysical fluid dynamics, and dynamics associated with their basic zonal shear flows play a crucial role in understanding many important geophysical fluid dynamical processes, such as the meridional overturning oceanic circulation and the geophysical baroclinic instability. In this paper, first we derive a threshold for the energy stability of the basic shear flow, and obtain a criterion for local nonlinear stability in terms of the critical horizontal wavenumbers and the system parameters such as the Froude number, the Rossby number, the Prandtl number and the strength of the shear flow. Next, we demonstrate that the system always undergoes a dynamic transition from the basic shear flow to either a spatiotemporal oscillatory pattern or circle of steady states, as the shear strength of the basic flow crosses a critical threshold. Also, we show that the dynamic transition can be either continuous or catastrophic, and is dictated by the sign of a transition number, fully characterizing the nonlinear interactions of different modes. Both the critical shear strength and the transition number are functions of the system parameters. A systematic numerical method is carried out to explore transition in different flow parameter regimes. In particular, our numerical investigations show the existence of a hypersurface which separates the parameter space into regions where the basic shear flow is stable and unstable. Numerical investigations also yield that the selection of horizontal wave indices is determined only by the aspect ratio of the box. We find that the system admits only critical eigenmodes with roll patterns aligned with the x-axis. Furthermore, numerically we encountered continuous transitions to multiple steady states, as well as continuous and catastrophic transitions to spatiotemporal oscillations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22408069-singular-finite-element-technique-calculating-continuum-damping-alfven-eigenmodes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22408069-singular-finite-element-technique-calculating-continuum-damping-alfven-eigenmodes"><span>A singular finite element technique for calculating continuum damping of Alfvén eigenmodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bowden, G. W.; Hole, M. J.</p> <p>2015-02-15</p> <p>Damping due to continuum resonances can be calculated using dissipation-less ideal magnetohydrodynamics provided that the poles due to these resonances are properly treated. We describe a singular finite element technique for calculating the continuum damping of Alfvén waves. A Frobenius expansion is used to determine appropriate finite element basis functions on an inner region surrounding a pole due to the continuum resonance. The location of the pole due to the continuum resonance and mode frequency is calculated iteratively using a Galerkin method. This method is used to find the complex frequency and mode structure of a toroidicity-induced Alfvén eigenmode inmore » a large aspect ratio circular tokamak and is shown to agree closely with a complex contour technique.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhPl...24f2506S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhPl...24f2506S"><span>Numerical study of the existence criterion for the reversed shear Alfven eigenmode in the presence of a parallel equilibrium current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shahzad, M.; Rizvi, H.; Panwar, A.; Ryu, C. M.</p> <p>2017-06-01</p> <p>We have re-visited the existence criterion of the reverse shear Alfven eigenmodes (RSAEs) in the presence of the parallel equilibrium current by numerically solving the eigenvalue equation using a fast eigenvalue solver code KAES. The parallel equilibrium current can bring in the kink effect and is known to be strongly unfavorable for the RSAE. We have numerically estimated the critical value of the toroidicity factor Qtor in a circular tokamak plasma, above which RSAEs can exist, and compared it to the analytical one. The difference between the numerical and analytical critical values is small for low frequency RSAEs, but it increases as the frequency of the mode increases, becoming greater for higher poloidal harmonic modes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25a2512L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25a2512L"><span>Mode structure symmetry breaking of energetic particle driven beta-induced Alfvén eigenmode</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, Z. X.; Wang, X.; Lauber, Ph.; Zonca, F.</p> <p>2018-01-01</p> <p>The mode structure symmetry breaking of energetic particle driven Beta-induced Alfvén Eigenmode (BAE) is studied based on global theory and simulation. The weak coupling formula gives a reasonable estimate of the local eigenvalue compared with global hybrid simulation using XHMGC. The non-perturbative effect of energetic particles on global mode structure symmetry breaking in radial and parallel (along B) directions is demonstrated. With the contribution from energetic particles, two dimensional (radial and poloidal) BAE mode structures with symmetric/asymmetric tails are produced using an analytical model. It is demonstrated that the symmetry breaking in radial and parallel directions is intimately connected. The effects of mode structure symmetry breaking on nonlinear physics, energetic particle transport, and the possible insight for experimental studies are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008qchs.confE.155K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008qchs.confE.155K"><span>Momentum dependence of the topological susceptibility and its derivative at zero momentum with overlap fermions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koma, Y.</p> <p></p> <p>The derivative of the topological susceptibility at zero momentum is responsible for the validity of the Witten-Veneziano formula for the η mass, and also for the resolution of the EMC pro- ton spin problem. We investigate the momentum dependence of the topological susceptibility and its derivative at zero momentum using lattice QCD simulations with overlap fermions within quenched approximation. We expose the role of the low-lying Dirac eigenmodes for the topolog- ical charge density, and find the negative value for the derivative. While the sign of the derivative is consistent with the QCD sum rule in pure Yang-Mills theory, the absolute value becomes larger if only the contribution from the zero modes and the low-lying eigenmodes is taken into account.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1353060','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1353060"><span>Non-linear wave-particle interactions and fast ion loss induced by multiple Alfvén eigenmodes in the DIII-D tokamak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chen, Xi; Kramer, Gerrit J.; Heidbrink, William W.</p> <p>2014-05-21</p> <p>A new non-linear feature has been observed in fast-ion loss from tokamak plasmas in the form of oscillations at the sum, difference and second harmonic frequencies of two independent Alfvén eigenmodes (AEs). Full orbit calculations and analytic theory indicate this non-linearity is due to coupling of fast-ion orbital response as it passes through each AE — a change in wave-particle phase k • r by one mode alters the force exerted by the next. Furthermore, the loss measurement is of barely confined, non-resonant particles, while similar non-linear interactions can occur between well-confined particles and multiple AEs leading to enhanced fast-ionmore » transport.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26991180','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26991180"><span>Observation of Critical-Gradient Behavior in Alfvén-Eigenmode-Induced Fast-Ion Transport.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Collins, C S; Heidbrink, W W; Austin, M E; Kramer, G J; Pace, D C; Petty, C C; Stagner, L; Van Zeeland, M A; White, R B; Zhu, Y B</p> <p>2016-03-04</p> <p>Experiments in the DIII-D tokamak show that fast-ion transport suddenly becomes stiff above a critical threshold in the presence of many overlapping small-amplitude Alfvén eigenmodes (AEs). The threshold is phase-space dependent and occurs when particle orbits become stochastic due to resonances with AEs. Above threshold, equilibrium fast-ion density profiles are unchanged despite increased drive, and intermittent fast-ion losses are observed. Fast-ion Dα spectroscopy indicates radially localized transport of the copassing population at radii that correspond to the location of midcore AEs. The observation of stiff fast-ion transport suggests that reduced models can be used to effectively predict alpha profiles, beam ion profiles, and losses to aid in the design of optimized scenarios for future burning plasma devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JPhD...41i5103H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JPhD...41i5103H"><span>Transmission property of the one-dimensional phononic crystal thin plate by the eigenmode matching theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hou, Zhilin; Assouar, Badreddine M.</p> <p>2008-05-01</p> <p>Eigenmode matching theory, which was developed originally for the band structure and the transmission property of the infinite phononic crystal (PC), is extended to deal with the PC thin plate. By this method, the transmission property of the one-dimensional PC thin plate with and without a uniform substrate is investigated. It is shown that in the PC thin plate without a substrate, the permitted band of the structure can be separated into two parts, which can be excited by the incident antisymmetric and symmetric Lamb modes, respectively. However, for the PC plate with a substrate, the energy conversion between the symmetric and antisymmetric modes can be found in the transmission spectrum. The physical origin of such an energy conversion is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20136206','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20136206"><span>Boundary element analyses for sound transmission loss of panels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Ran; Crocker, Malcolm J</p> <p>2010-02-01</p> <p>The sound transmission characteristics of an aluminum panel and two composite sandwich panels were investigated by using two boundary element analyses. The effect of air loading on the structural behavior of the panels is included in one boundary element analysis, by using a light-fluid approximation for the eigenmode series to evaluate the structural response. In the other boundary element analysis, the air loading is treated as an added mass. The effect of the modal energy loss factor on the sound transmission loss of the panels was investigated. Both boundary element analyses were used to study the sound transmission loss of symmetric sandwich panels excited by a random incidence acoustic field. A classical wave impedance analysis was also used to make sound transmission loss predictions for the two foam-filled honeycomb sandwich panels. Comparisons between predictions of sound transmission loss for the two foam-filled honeycomb sandwich panels excited by a random incidence acoustic field obtained from the wave impedance analysis, the two boundary element analyses, and experimental measurements are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870052583&hterms=wave&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D30%26Ntt%3Dthe%2B5%2Bwave','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870052583&hterms=wave&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D30%26Ntt%3Dthe%2B5%2Bwave"><span>A model for the harmonic of compressional Pc 5 waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Takahashi, K.; Zanetti, L. J.; Potemra, T. A.; Acuna, M. H.</p> <p>1987-01-01</p> <p>Compressional Pc 5 magnetic waves in the magnetosphere are a unique phenomenon showing a nonsinusoidal waveform in spite of a well-defined period. Although the waveform can be Fourier-decomposed into the fundamental and the second harmonics, the phase between the two is kept constant from event to event, implying that the waveform is not the result of a chance superposition of two magnetospheric eigenmodes. A phenomenological explanation to this waveform is offered using a field-line configuration model that is a modified version of a previously proposed antisymmetric standing wave. In this model, the location of the equatorial node of field-line displacement is assumed to oscillate with the wave, with a peak-to-peak amplitude greater than 10 percent of the wavelength of the standing wave. The predicted waveform at various magnetic latitudes is found to be in excellent agreement with an observation taken near the magnetic equator by the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer spacecraft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987GeoRL..14..363T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987GeoRL..14..363T"><span>A model for the harmonic of compressional Pc 5 waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, K.; Zanetti, L. J.; Potemra, T. A.; Acuna, M. H.</p> <p>1987-04-01</p> <p>Compressional Pc 5 magnetic waves in the magnetosphere are a unique phenomenon showing a nonsinusoidal waveform in spite of a well-defined period. Although the waveform can be Fourier-decomposed into the fundamental and the second harmonics, the phase between the two is kept constant from event to event, implying that the waveform is not the result of a chance superposition of two magnetospheric eigenmodes. A phenomenological explanation to this waveform is offered using a field-line configuration model that is a modified version of a previously proposed antisymmetric standing wave. In this model, the location of the equatorial node of field-line displacement is assumed to oscillate with the wave, with a peak-to-peak amplitude greater than 10 percent of the wavelength of the standing wave. The predicted waveform at various magnetic latitudes is found to be in excellent agreement with an observation taken near the magnetic equator by the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer spacecraft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvA..95b3821F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvA..95b3821F"><span>Fractional-topological-charge-induced vortex birth and splitting of light fields on the submicron scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fang, Yiqi; Lu, Qinghong; Wang, Xiaolei; Zhang, Wuhong; Chen, Lixiang</p> <p>2017-02-01</p> <p>The study of vortex dynamics is of fundamental importance in understanding the structured light's propagation behavior in the realm of singular optics. Here, combining with the large-angle holographic lithography in photoresist, a simple experiment to trace and visualize the vortex birth and splitting of light fields induced by various fractional topological charges is reported. For a topological charge M =1.76 , the recorded microstructures reveal that although it finally leads to the formation of a pair of fork gratings, these two vortices evolve asynchronously. More interestingly, it is observed on the submicron scale that high-order topological charges M =3.48 and 3.52, respectively, give rise to three and four characteristic forks embedded in the samples with one-wavelength resolution of about 450 nm. Numerical simulations based on orbital angular momentum eigenmode decomposition support well the experimental observations. Our method could be applied effectively to study other structured matter waves, such as the electron and neutron beams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1295127-experimental-tests-linear-nonlinear-three-dimensional-equilibrium-models-diii','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1295127-experimental-tests-linear-nonlinear-three-dimensional-equilibrium-models-diii"><span>Experimental tests of linear and nonlinear three-dimensional equilibrium models in DIII-D</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>King, Josh D.; Strait, Edward J.; Lazerson, Samuel A.; ...</p> <p>2015-07-01</p> <p>DIII-D experiments using new detailed magnetic diagnostics show that linear, ideal magnetohydrodynamics (MHD) theory quantitatively describes the magnetic structure (as measured externally) of three-dimensional (3D) equilibria resulting from applied fields with toroidal mode number n = 1, while a nonlinear solution to ideal MHD force balance, using the VMEC code, requires the inclusion of n ≥ 1 to achieve similar agreement. Moreover, these tests are carried out near ITER baseline parameters, providing a validated basis on which to exploit 3D fields for plasma control development. We determine scans of the applied poloidal spectrum and edge safety factors which confirm thatmore » low-pressure, n = 1 non-axisymmetric tokamak equilibria are a single, dominant, stable eigenmode. But, at higher beta, near the ideal kink mode stability limit in the absence of a conducting wall, the qualitative features of the 3D structure are observed to vary in a way that is not captured by ideal MHD.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22679850-direct-effect-toroidal-magnetic-fields-stellar-oscillations-analytical-expression-general-matrix-element','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22679850-direct-effect-toroidal-magnetic-fields-stellar-oscillations-analytical-expression-general-matrix-element"><span>The Direct Effect of Toroidal Magnetic Fields on Stellar Oscillations: An Analytical Expression for the General Matrix Element</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kiefer, René; Schad, Ariane; Roth, Markus</p> <p>2017-09-10</p> <p>Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies.more » If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005ASAJ..118R1971B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005ASAJ..118R1971B"><span>Analysis of temporal decay of diffuse broadband sound fields in enclosures by decomposition in powers of an absorption parameter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bliss, Donald; Franzoni, Linda; Rouse, Jerry; Manning, Ben</p> <p>2005-09-01</p> <p>An analysis method for time-dependent broadband diffuse sound fields in enclosures is described. Beginning with a formulation utilizing time-dependent broadband intensity boundary sources, the strength of these wall sources is expanded in a series in powers of an absorption parameter, thereby giving a separate boundary integral problem for each power. The temporal behavior is characterized by a Taylor expansion in the delay time for a source to influence an evaluation point. The lowest-order problem has a uniform interior field proportional to the reciprocal of the absorption parameter, as expected, and exhibits relatively slow exponential decay. The next-order problem gives a mean-square pressure distribution that is independent of the absorption parameter and is primarily responsible for the spatial variation of the reverberant field. This problem, which is driven by input sources and the lowest-order reverberant field, depends on source location and the spatial distribution of absorption. Additional problems proceed at integer powers of the absorption parameter, but are essentially higher-order corrections to the spatial variation. Temporal behavior is expressed in terms of an eigenvalue problem, with boundary source strength distributions expressed as eigenmodes. Solutions exhibit rapid short-time spatial redistribution followed by long-time decay of a predominant spatial mode.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...846..162K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...846..162K"><span>The Direct Effect of Toroidal Magnetic Fields on Stellar Oscillations: An Analytical Expression for the General Matrix Element</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiefer, René; Schad, Ariane; Roth, Markus</p> <p>2017-09-01</p> <p>Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies. If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...822...87H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...822...87H"><span>Instability of Non-uniform Toroidal Magnetic Fields in Accretion Disks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hirabayashi, Kota; Hoshino, Masahiro</p> <p>2016-05-01</p> <p>We present a new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of this growing eigenmode, which we name “magneto-gradient driven instability,” is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to the angular momentum transport, we find that the mode coupling between neighboring toroidal fields under multiple localized magnetic field channels drastically generates a highly turbulent state and leads to the enhanced transport of angular momentum, which is comparable to the efficiency seen in previous studies on MRIs. This horizontally confined mode may play an important role in the saturation of an MRI through complementray growth with the toroidal MRIs and coupling with magnetic reconnection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663047-instability-non-uniform-toroidal-magnetic-fields-accretion-disks','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663047-instability-non-uniform-toroidal-magnetic-fields-accretion-disks"><span>INSTABILITY OF NON-UNIFORM TOROIDAL MAGNETIC FIELDS IN ACCRETION DISKS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp</p> <p></p> <p>We present a new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of thismore » growing eigenmode, which we name “magneto-gradient driven instability,” is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to the angular momentum transport, we find that the mode coupling between neighboring toroidal fields under multiple localized magnetic field channels drastically generates a highly turbulent state and leads to the enhanced transport of angular momentum, which is comparable to the efficiency seen in previous studies on MRIs. This horizontally confined mode may play an important role in the saturation of an MRI through complementray growth with the toroidal MRIs and coupling with magnetic reconnection.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998SPIE.3234...66M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998SPIE.3234...66M"><span>Propagation of eigenmodes and transfer functions in waveguide WDM structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mashkov, Vladimir A.; Francoeur, S.; Geuss, U.; Neiser, K.; Temkin, Henryk</p> <p>1998-02-01</p> <p>A method of propagation functions and transfer amplitudes suitable for the design of integrated optical circuits is presented. The method is based on vectorial formulation of electrodynamics: the distributions and propagation of electromagnetic fields in optical circuits is described by equivalent surface sources. This approach permits a division of complex optical waveguide structures into sets of primitive blocks and to separately calculate the transfer function and the transfer amplitude for each block. The transfer amplitude of the entire optical system is represented by a convolution of transfer amplitudes of its primitive blocks. The eigenvalues and eigenfunctions of arbitrary waveguide structure are obtained in the WKB approximation and compared with other methods. The general approach is illustrated with the transfer amplitude calculations for Dragone's star coupler and router.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThCFD..31..555S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThCFD..31..555S"><span>Spanwise effects on instabilities of compressible flow over a long rectangular cavity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Y.; Taira, K.; Cattafesta, L. N.; Ukeiley, L. S.</p> <p>2017-12-01</p> <p>The stability properties of two-dimensional (2D) and three-dimensional (3D) compressible flows over a rectangular cavity with length-to-depth ratio of L/D=6 are analyzed at a free-stream Mach number of M_∞ =0.6 and depth-based Reynolds number of Re_D=502. In this study, we closely examine the influence of three-dimensionality on the wake mode that has been reported to exhibit high-amplitude fluctuations from the formation and ejection of large-scale spanwise vortices. Direct numerical simulation (DNS) and bi-global stability analysis are utilized to study the stability characteristics of the wake mode. Using the bi-global stability analysis with the time-averaged flow as the base state, we capture the global stability properties of the wake mode at a spanwise wavenumber of β =0. To uncover spanwise effects on the 2D wake mode, 3D DNS are performed with cavity width-to-depth ratio of W/D=1 and 2. We find that the 2D wake mode is not present in the 3D cavity flow with W/D=2, in which spanwise structures are observed near the rear region of the cavity. These 3D instabilities are further investigated via bi-global stability analysis for spanwise wavelengths of λ /D=0.5{-}2.0 to reveal the eigenspectra of the 3D eigenmodes. Based on the findings of 2D and 3D global stability analysis, we conclude that the absence of the wake mode in 3D rectangular cavity flows is due to the release of kinetic energy from the spanwise vortices to the streamwise vortical structures that develops from the spanwise instabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22572344-extension-modified-power-method-two-dimensional-problems','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22572344-extension-modified-power-method-two-dimensional-problems"><span>Extension of modified power method to two-dimensional problems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Peng; Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919; Lee, Hyunsuk</p> <p>2016-09-01</p> <p>In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. Themore » stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem. - Graphical abstract:.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850025229','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850025229"><span>A substructure coupling procedure applicable to general linear time-invariant dynamic systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Howsman, T. G.; Craig, R. R., Jr.</p> <p>1984-01-01</p> <p>A substructure synthesis procedure applicable to structural systems containing general nonconservative terms is presented. In their final form, the nonself-adjoint substructure equations of motion are cast in state vector form through the use of a variational principle. A reduced-order mode for each substructure is implemented by representing the substructure as a combination of a small number of Ritz vectors. For the method presented, the substructure Ritz vectors are identified as a truncated set of substructure eigenmodes, which are typically complex, along with a set of generalized real attachment modes. The formation of the generalized attachment modes does not require any knowledge of the substructure flexible modes; hence, only the eigenmodes used explicitly as Ritz vectors need to be extracted from the substructure eigenproblem. An example problem is presented to illustrate the method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JPhD...47z5001C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JPhD...47z5001C"><span>From micro- to nanomagnetic dots: evolution of the eigenmode spectrum on reducing the lateral size</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carlotti, G.; Gubbiotti, G.; Madami, M.; Tacchi, S.; Hartmann, F.; Emmerling, M.; Kamp, M.; Worschech, L.</p> <p>2014-07-01</p> <p>Brillouin light scattering experiments and micromagnetic simulations have been exploited to investigate the spectrum of thermally excited magnetic eigenmodes in 10 nm-thick elliptical Permalloy dots, when the longer axis D is scaled down from about 1000 to 100 nm. It is shown that for D larger than about 200 nm the characteristics of the spin-wave eigenmodes are dominated by dipolar energy, while for D in the range of about 100 to 200 nm exchange energy effects cause qualitative and quantitative differences in the spin-wave spectrum. In this ‘mesoscopic’ regime, the usual classification scheme, involving one fundamental mode with large average magnetization and many other modes collected in families with specific symmetries, no longer holds. Rather, one finds the simultaneous presence of two modes with ‘fundamental’ character, i.e. with a significant and comparable value of the average dynamical magnetization: the former is at larger frequency and has its maximum amplitude at the dot's centre, while the latter occurs at lower frequency and is localized at the dot's edges. Interestingly, the maximum intensity swaps from the higher frequency mode to the lower frequency one, just when the dot size is reduced from about 200 to 100 nm. This is relevant in view of the exploitation of nanodots for the design of nanomagnetic devices with lateral dimensions in the above interval, such as memory cells, logic gates, reading heads and spin-torque oscillators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ipco.conf..153A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ipco.conf..153A"><span>Linearized Model of an Actively Controlled Cable for a Carlina Diluted Telescope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andersen, T.; Le Coroller, H.; Owner-Petersen, M.; Dejonghe, J.</p> <p>2014-04-01</p> <p>The Carlina thinned pupil telescope has a focal unit (``gondola'') suspended by cables over the primary mirror. To predict the structural behavior of the gondola system, a simulation building block of a single cable is needed. A preloaded cable is a strongly non-linear system and can be modeled either with partial differential equations or non-linear finite elements. Using the latter, we set up an iteration procedure for determination of the static cable form and we formulate the necessary second-order differential equations for such a model. We convert them to a set of first-order differential equations (an ``ABCD''-model). Symmetrical in-plane eigenmodes and ``axial'' eigenmodes are the only eigenmodes that play a role in practice for a taut cable. Using the model and a generic suspension, a parameter study is made to find the influence of various design parameters. We conclude that the cable should be as stiff and thick as practically possible with a fairly high preload. Steel or Aramid are suitable materials. Further, placing the cable winches on the gondola and not on the ground does not provide significant advantages. Finally, it seems that use of reaction-wheels and/or reaction-masses will make the way for more accurate control of the gondola position under wind load. An adaptive stage with tip/tilt/piston correction for subapertures together with a focus and guiding system for freezing the fringes must also be studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1252190','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1252190"><span>Center for Extended Magnetohydrodynamics Modeling - Final Technical Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Parker, Scott</p> <p></p> <p>This project funding supported approximately 74 percent of a Ph.D. graduate student, not including costs of travel and supplies. We had a highly successful research project including the development of a second-order implicit electromagnetic kinetic ion hybrid model [Cheng 2013, Sturdevant 2016], direct comparisons with the extended MHD NIMROD code and kinetic simulation [Schnack 2013], modeling of slab tearing modes using the fully kinetic ion hybrid model and finally, modeling global tearing modes in cylindrical geometry using gyrokinetic simulation [Chen 2015, Chen 2016]. We developed an electromagnetic second-order implicit kinetic ion fluid electron hybrid model [Cheng 2013]. As a firstmore » step, we assumed isothermal electrons, but have included drift-kinetic electrons in similar models [Chen 2011]. We used this simulation to study the nonlinear evolution of the tearing mode in slab geometry, including nonlinear evolution and saturation [Cheng 2013]. Later, we compared this model directly to extended MHD calculations using the NIMROD code [Schnack 2013]. In this study, we investigated the ion-temperature-gradient instability with an extended MHD code for the first time and got reasonable agreement with the kinetic calculation in terms of linear frequency, growth rate and mode structure. We then extended this model to include orbit averaging and sub-cycling of the ions and compared directly to gyrokinetic theory [Sturdevant 2016]. This work was highlighted in an Invited Talk at the International Conference on the Numerical Simulation of Plasmas in 2015. The orbit averaging sub-cycling multi-scale algorithm is amenable to hybrid architectures with GPUS or math co-processors. Additionally, our participation in the Center for Extend Magnetohydrodynamics motivated our research on developing the capability for gyrokinetic simulation to model a global tearing mode. We did this in cylindrical geometry where the results could be benchmarked with existing eigenmode calculations. First, we developed a gyrokinetic code capable of simulating long wavelengths using a fluid electron model [Chen 2015]. We benchmarked this code with an eigenmode calculation. Besides having to rewrite the field solver due to the breakdown in the gyrokinetic ordering for long wavelengths, very high radial resolution was required. We developed a technique where we used the solution from the eigenmode solver to specify radial boundary conditions allowing for a very high radial resolution of the inner solution. Using this technique enabled us to use our direct algorithm with gyrokinetic ions and drift kinetic electrons [Chen 2016]. This work was highlighted in an Invited Talk at the American Physical Society - Division of Plasma Physics in 2015.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999PhDT........66F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999PhDT........66F"><span>Thermonuclear instabilities and plasma edge transport in tokamaks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fulop, Tunde Maria</p> <p></p> <p>High-energy ions generated by fusion reactions in a burning fusion plasma may give rise to different types of wave instabilities. The present thesis investigates two types of such instabilities which recently have been observed in fusion experiments: the Toroidal Alfvén Eigenmode (TAE) instability and the magnetoacoustic cyclotron instability (MCI) which is predicted to give rise to ion cyclotron emission (ICE). The TAE instability may degrade the confinement of fusion-produced high energy alpha particles and adversely affect the possibilities of reaching ignition. The present work derives it generalized expression for the linear growth rate of the instability, by including the effects of finite orbit width and finite Larmor radius of energetic particles, as well as the effects of mode localization and the possible mode excitation by both passing and trapped energetic ions. ICE does not threaten the plasma performance, but it might be useful as a fast ion diagnostic. The ICE originates from the MCI involving fast magnetoacoustic waves driven unstable by toroidicity-affected cyclotron resonance with fast ions. In the present thesis a detailed numerical and analytical investigation of this instability is presented, that explains most of the experimental ICE features observed in JET and TFTR. Moreover, the radial and poloidal localization of the fast magnetoacoustic eigenmodes is investigated, including the effects of toroidicity, ellipticity, the presence of a subpopulation of high energy ions and various profiles of the bulk ion density. In a fusion reactor, the transport of the particles near the edge have a strong influence on the global confinement of the plasma. In the edge region, where neutral atoms and impurity ions are abundant and the temperature and density gradients are large, the assumptions of the standard neoclassical theory break down. In this thesis, we explore the effect of neutral particles on the ion flow shear in the edge region. Furthermore, the neoclassical transport theory in an impure, toroidally rotating plasma is extended to allow for steeper pressure and temperature gradients than are usually considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MAR.L6007S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MAR.L6007S"><span>Characterization of perpendicular STT-MRAM by spin torque ferromagnetic resonance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sha, Chengcen; Yang, Liu; Lee, Han Kyu; Barsukov, Igor; Zhang, Jieyi; Krivorotov, Ilya</p> <p></p> <p>We describe a method for simple quantitative measurement of magnetic anisotropy and Gilbert damping of the MTJ free layer in individual perpendicular STT-MRAM devices by spin torque ferromagnetic resonance (ST-FMR) with magnetic field modulation. We first show the dependence of ST-FMR spectra of an STT-MRAM element on out-of-plane magnetic field. In these spectra, resonances arising from excitation of the quasi-uniform and higher order spin wave eigenmodes of the free layer as well as acoustic mode of the synthetic antiferromagnet (SAF) are clearly seen. The quasi-uniform mode frequency at zero field gives magnetic anisotropy field of the free layer. Then we show dependence of the quasi-uniform mode linewidth on frequency is linear over a range of frequencies but deviatesfrom linearity in the low and high frequency regimes. Comparison to ST-FMR spectrareveals that the high frequency line broadening is linked to the SAF mode softening near the SAF spin flop transition at 5 kG. In the low field regime, the SAF mode frequency approaches that of the quasi-uniform mode, and resonant coupling of the modes leads to the line broadening. A linear fit to the linewidth data outside of the high and low field regimes gives the Gilbert damping parameter of the free layer. This work was supported by the Samsung Global MRAM Innovation Program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20632358-theory-excess-noise-unstable-resonator-lasers','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20632358-theory-excess-noise-unstable-resonator-lasers"><span>Theory of excess noise in unstable resonator lasers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lamprecht, C.; Ritsch, H.</p> <p>2002-11-01</p> <p>We theoretically investigate the quantum dynamics of an unstable resonator laser. Compared to a stable cavity laser of equal gain and loss it exhibits a K-fold enhanced linewidth. This excess noise factor K is a measure of the nonorthogonality of the resonator eigenmodes and amounts to an enlargement of the quantum vacuum fluctuations. Using a quantum treatment starting from first principles based on the nonorthogonal eigenmodes, we put previous theoretical predictions onto a more firm ground. While we find a position-dependent enhancement of the spontaneous emission rate into an empty mode of only {radical}(K), the constructive quantum interference of themore » spontaneous emission with a single oscillating mode lets the Petermann excess noise factor K reappear in the phase diffusion (laser linewidth). Hence locally enhanced spontaneous emission as well as noise enhanced by interference (amplified spontaneous emission) play an equal role in the origin of excess noise.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhPl...14b2105P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhPl...14b2105P"><span>Electromagnetic eigenmodes of collisional and collisionless plasmas and their stability to stimulated Brillouin scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pathak, Vishwa Bandhu; Tripathi, V. K.</p> <p>2007-02-01</p> <p>Nonlinear electromagnetic eigenmodes of collisional and collisionless plasmas, when the temporal extent of the modes is longer than the ambipolar diffusion time, have been investigated. The nonlinearity in a collisionless plasma arises through ponderomotive force, whereas in collisional plasmas Ohmic nonlinearity prevails. The mode structure in both cases, representing a balance between the nonlinearity-induced self-convergence and diffraction-induced divergence, closely resembles Gaussian form. The spot size of the mode decreases with the increasing axial amplitude of the laser, attains a minimum, and then rises very gradually. The modes are susceptible to stimulated Brillouin backscattering. The growth rate of the Brillouin process initially increases with mode amplitude, attains a maximum, and then decreases. The reduction in the growth rate is caused by strong electron evacuation from the axial region by the ponderomotive force and thermal pressure gradient force created by nonuniform Ohmic heating.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1356336-confinement-degradation-alfven-eigenmode-induced-fast-ion-transport-steady-state-scenario-discharges','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1356336-confinement-degradation-alfven-eigenmode-induced-fast-ion-transport-steady-state-scenario-discharges"><span>Confinement degradation by Alfvén-eigenmode induced fast-ion transport in steady-state scenario discharges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Heidbrink, William W.; Ferron, John R.; Holcomb, Christopher T.; ...</p> <p>2014-08-21</p> <p>Here, analysis of neutron and fast-ion D α data from the DIII-D tokamak shows that Alfvén eigenmode activity degrades fast-ion confinement in many high β N, high q min, steady-state scenario discharges. (β N is the normalized plasma pressure and q min is the minimum value of the plasma safety factor.) Fast-ion diagnostics that are sensitive to the co-passing population exhibit the largest reduction relative to classical predictions. The increased fast-ion transport in discharges with strong AE activity accounts for the previously observed reduction in global confinement with increasing q min; however, not all high q min discharges show appreciablemore » degradation. Two relatively simple empirical quantities provide convenient monitors of these effects: (1) an 'AE amplitude' signal based on interferometer measurements and (2) the ratio of the neutron rate to a zero-dimensional classical prediction.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22408113-parallel-equilibrium-current-effect-existence-reversed-shear-alfven-eigenmodes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22408113-parallel-equilibrium-current-effect-existence-reversed-shear-alfven-eigenmodes"><span>Parallel equilibrium current effect on existence of reversed shear Alfvén eigenmodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xie, Hua-sheng, E-mail: huashengxie@gmail.com; Xiao, Yong, E-mail: yxiao@zju.edu.cn</p> <p>2015-02-15</p> <p>A new fast global eigenvalue code, where the terms are segregated according to their physics contents, is developed to study Alfvén modes in tokamak plasmas, particularly, the reversed shear Alfvén eigenmode (RSAE). Numerical calculations show that the parallel equilibrium current corresponding to the kink term is strongly unfavorable for the existence of the RSAE. An improved criterion for the RSAE existence is given for with and without the parallel equilibrium current. In the limits of ideal magnetohydrodynamics (MHD) and zero-pressure, the toroidicity effect is the main possible favorable factor for the existence of the RSAE, which is however usually small.more » This suggests that it is necessary to include additional physics such as kinetic term in the MHD model to overcome the strong unfavorable effect of the parallel current in order to enable the existence of RSAE.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5293079','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5293079"><span>Zero-index structures as an alternative platform for quantum optics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liberal, Iñigo</p> <p>2017-01-01</p> <p>Vacuum fluctuations are one of the most distinctive aspects of quantum optics, being the trigger of multiple nonclassical phenomena. Thus, platforms like resonant cavities and photonic crystals that enable the inhibition and manipulation of vacuum fluctuations have been key to our ability to control light–matter interactions (e.g., the decay of quantum emitters). Here, we theoretically demonstrate that vacuum fluctuations may be naturally inhibited within bodies immersed in epsilon-and-mu-near-zero (EMNZ) media, while they can also be selectively excited via bound eigenmodes. Therefore, zero-index structures are proposed as an alternative platform to manipulate the decay of quantum emitters, possibly leading to the exploration of qualitatively different dynamics. For example, a direct modulation of the vacuum Rabi frequency is obtained by deforming the EMNZ region without detuning a bound eigenmode. Ideas for the possible implementation of these concepts using synthetic implementations based on structural dispersion are also proposed. PMID:28096367</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007APS..DPPNP8095S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007APS..DPPNP8095S"><span>Influence of ICRF heating on the stability of TAEs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sears, J.; Burke, W.; Parker, R. R.; Snipes, J. A.; Wolfe, S.</p> <p>2007-11-01</p> <p>Unstable toroidicity-induced Alfv'en eigenmodes (TAEs) can appear spontaneously due to resonant interaction with fast particles such as fusion alphas, raising concern that TAEs may threaten ITER performance. This work investigates the progression of stable TAE damping rates toward instability during a scan of ICRF heating power up to 3.1 MW. Stable eigenmodes are identified in Alcator C-Mod by the Active MHD diagnostic. Unstable TAEs are observed to appear spontaneously in C-Mod limited L-mode plasmas at sufficient tail energies generated by >3 MW of ICRF heating. However preliminary analysis of experiments with moderate ICRF heating power show that TAE stability may not simply degrade with overall fast particle content. There are hints that the stability of some TAEs may be enhanced in the presence of fast particle distribution tails. Furthermore, the radial profile of the energetic particle distribution relative to the safety factor profile affects the ICRF power influence on TAE stability.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28096367','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28096367"><span>Zero-index structures as an alternative platform for quantum optics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liberal, Iñigo; Engheta, Nader</p> <p>2017-01-31</p> <p>Vacuum fluctuations are one of the most distinctive aspects of quantum optics, being the trigger of multiple nonclassical phenomena. Thus, platforms like resonant cavities and photonic crystals that enable the inhibition and manipulation of vacuum fluctuations have been key to our ability to control light-matter interactions (e.g., the decay of quantum emitters). Here, we theoretically demonstrate that vacuum fluctuations may be naturally inhibited within bodies immersed in epsilon-and-mu-near-zero (EMNZ) media, while they can also be selectively excited via bound eigenmodes. Therefore, zero-index structures are proposed as an alternative platform to manipulate the decay of quantum emitters, possibly leading to the exploration of qualitatively different dynamics. For example, a direct modulation of the vacuum Rabi frequency is obtained by deforming the EMNZ region without detuning a bound eigenmode. Ideas for the possible implementation of these concepts using synthetic implementations based on structural dispersion are also proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/284165-evidence-coupling-global-alfv-acute-ne-eigenmodes-during-alfv-acute-wave-current-drive-experiments-phaedrus-tokamak','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/284165-evidence-coupling-global-alfv-acute-ne-eigenmodes-during-alfv-acute-wave-current-drive-experiments-phaedrus-tokamak"><span>Evidence of coupling to Global Alfv{acute e}ne Eigenmodes during Alfv{acute e}n wave current drive experiments on the Phaedrus-T tokamak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vukovic, M.; Wukitch, S.; Harper, M.</p> <p>1996-02-01</p> <p>A series of experiments designed to explore mechanisms of power deposition during Alfv{acute e}n wave current drive experiments on the Phaedrus-T tokamak has shown evidence of power deposition via mode conversion of Global Alfv{acute e}n Eigenmodes at the Alfv{acute e}n resonance. Observation of radially localized RF induced density fluctuations in the plasma and their location vs. {ital B}{sub {ital T}} is in agreement with the predictions of behaviour of GAE damping on the AR by the toroidal code LION. Furthermore, the change in the time evolution of the loop voltage, is consistent with the change of effective power deposition radius,more » {ital r}{sub PD}, and is in agreement with the density fluctuations radius. {copyright} {ital 1996 American Institute of Physics.}« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599131-gyrokinetic-particle-simulation-beta-induced-alfven-acoustic-eigenmode','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599131-gyrokinetic-particle-simulation-beta-induced-alfven-acoustic-eigenmode"><span>Gyrokinetic particle simulation of beta-induced Alfven-acoustic eigenmode</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, H. S., E-mail: zhang.huasen@gmail.com; Institute of Applied Physics and Computational Mathematics, Beijing 100088; Liu, Y. Q.</p> <p>2016-04-15</p> <p>The beta-induced Alfven-acoustic eigenmode (BAAE) in toroidal plasmas is verified and studied by global gyrokinetic particle simulations. When ion temperature is much lower than electron temperature, the existence of the weakly damped BAAE is verified in the simulations using initial perturbation, antenna excitation, and energetic particle excitation, respectively. When the ion temperature is comparable to the electron temperature, the unstable BAAE can be excited by realistic energetic particle density gradient, even though the stable BAAE (in the absence of energetic particles) is heavily damped by the thermal ions. In the simulations with reversed magnetic shear, BAAE frequency sweeping is observedmore » and poloidal mode structure has a triangle shape with a poloidal direction similar to that observed in tokamak experiments. The triangle shape changes the poloidal direction, and no frequency sweeping is found in the simulations with normal magnetic shear.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007APS..DPPNP8102K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007APS..DPPNP8102K"><span>Damping Rate Measurements of Medium n Alfv'en Eigenmodes in JET</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klein, Alexander; Testa, Duccio; Snipes, Joseph; Fasoli, Ambrogio; Carfantan, Hervé</p> <p>2007-11-01</p> <p>Alfv'en Eigenmodes (AE's) with mode numbers 5 < n < 20 are expected to be unstable in burning tokamaks and may lead to loss of fast particle confinement. The active MHD spectroscopy program at JET has already provided a wealth of information about low n (n <= 2) AE's in the past decade, but a recently installed array of four antennas is capable of driving higher mode numbered (n < 100, 30 < f < 350 kHz) perturbations. In the latest JET campaign, the damping rates for several types of AE's were measured parasitically in a wide range of tokamak scenarios. We review the active MHD diagnostic and present the first measurements of medium-n AE stability on JET, then describe future plans for the active MHD spectroscopy project. The data analysis involves a novel method for resolving multiple AE's that exist at identical frequencies, which uses techniques based on the SparSpec code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4410988D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4410988D"><span>First Observation of the Earth's Permanent Free Oscillations on Ocean Bottom Seismometers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deen, M.; Wielandt, E.; Stutzmann, E.; Crawford, W.; Barruol, G.; Sigloch, K.</p> <p>2017-11-01</p> <p>The Earth's hum is the permanent free oscillations of the Earth recorded in the absence of earthquakes, at periods above 30 s. We present the first observations of its fundamental spheroidal eigenmodes on broadband ocean bottom seismometers (OBSs) in the Indian Ocean. At the ocean bottom, the effects of ocean infragravity waves (compliance) and seafloor currents (tilt) overshadow the hum. In our experiment, data are also affected by electronic glitches. We remove these signals from the seismic trace by subtracting average glitch signals; performing a linear regression; and using frequency-dependent response functions between pressure, horizontal, and vertical seismic components. This reduces the long period noise on the OBS to the level of a good land station. Finally, by windowing the autocorrelation to include only the direct arrival, the first and second orbits around the Earth, and by calculating its Fourier transform, we clearly observe the eigenmodes at the ocean bottom.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28827580','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28827580"><span>Lattice topology dictates photon statistics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A</p> <p>2017-08-21</p> <p>Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24580365','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24580365"><span>Robust computation of dipole electromagnetic fields in arbitrarily anisotropic, planar-stratified environments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sainath, Kamalesh; Teixeira, Fernando L; Donderici, Burkay</p> <p>2014-01-01</p> <p>We develop a general-purpose formulation, based on two-dimensional spectral integrals, for computing electromagnetic fields produced by arbitrarily oriented dipoles in planar-stratified environments, where each layer may exhibit arbitrary and independent anisotropy in both its (complex) permittivity and permeability tensors. Among the salient features of our formulation are (i) computation of eigenmodes (characteristic plane waves) supported in arbitrarily anisotropic media in a numerically robust fashion, (ii) implementation of an hp-adaptive refinement for the numerical integration to evaluate the radiation and weakly evanescent spectra contributions, and (iii) development of an adaptive extension of an integral convergence acceleration technique to compute the strongly evanescent spectrum contribution. While other semianalytic techniques exist to solve this problem, none have full applicability to media exhibiting arbitrary double anisotropies in each layer, where one must account for the whole range of possible phenomena (e.g., mode coupling at interfaces and nonreciprocal mode propagation). Brute-force numerical methods can tackle this problem but only at a much higher computational cost. The present formulation provides an efficient and robust technique for field computation in arbitrary planar-stratified environments. We demonstrate the formulation for a number of problems related to geophysical exploration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPP11084B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPP11084B"><span>Linear instabilities near the DIII-D edge simulated in fluid models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bass, Eric; Holland, Christopher</p> <p>2017-10-01</p> <p>The linear instability spectrum is reported near the DIII-D edge (within the separatrix) for L-mode and H-mode shots using the new eigenvalue solver FluTES (Fluid Toroidal Eigenvalue Solver). FluTES circumvents difficulties with convergence to clean linear eigenmodes (required for diagnosis of nonlinear simulations in codes such as BOUT++) often encountered with fluid initial-value solvers. FluTES is well-verified in analytic cases and against a BOUT++/ELITE benchmark toroidal case. We report results for both a 3-field, one-fluid model (the well-known ``elm-pb'' model) and a 5-field, two-fluid model. For the peeling-ballooning-dominated H-mode, the two solutions are qualitatively the same. In the driftwave-dominated L-mode edge, only the two-fluid solution gives robust instabilities which occur primarily at n > 50 . FluTES is optimized for this regime (near-flutelike limit, toroidally spectral). Cross-separatrix, coupled fluid and drift instabilities may play a role in explaining the gyrokinetic L-mode edge transport shortfall. Extension of FluTES into the open-field-line region is underway. Prepared by UCSD under Contract Number DE-FG02-06ER54871.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21249886-perturbations-moduli-space-dynamics-tachyon-kinks','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21249886-perturbations-moduli-space-dynamics-tachyon-kinks"><span>Perturbations and moduli space dynamics of tachyon kinks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hindmarsh, Mark; Li Huiquan</p> <p>2008-03-15</p> <p>The dynamic process of unstable D-branes decaying into stable ones with one dimension lower can be described by a tachyon field with a Dirac-Born-Infeld effective action. In this paper we investigate the fluctuation modes of the tachyon field around a two-parameter family of static solutions representing an array of brane-antibrane pairs. Besides a pair of zero modes associated with the parameters of the solution, and instabilities associated with annihilation of the brane-antibrane pairs, we find states corresponding to excitations of the tachyon field around the brane and in the bulk. In the limit that the brane thickness tends to zero,more » the support of the eigenmodes is limited to the brane, consistent with the idea that propagating tachyon modes drop out of the spectrum as the tachyon field approaches its ground state. The zero modes, and other low-lying excited states, show a fourfold degeneracy in this limit, which can be identified with some of the massless superstring modes in the brane-antibrane system. Finally, we also discuss the slow motion of the solution corresponding to the decay process in the moduli space, finding a trajectory which oscillates periodically between the unstable D-brane and the brane-antibrane pairs of one dimension lower.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22252178-structure-micro-instabilities-tokamak-plasmas-stiff-transport-plasma-eruptions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22252178-structure-micro-instabilities-tokamak-plasmas-stiff-transport-plasma-eruptions"><span>Structure of micro-instabilities in tokamak plasmas: Stiff transport or plasma eruptions?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dickinson, D., E-mail: dd502@york.ac.uk; EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB; Roach, C. M.</p> <p>2014-01-15</p> <p>Solutions to a model 2D eigenmode equation describing micro-instabilities in tokamak plasmas are presented that demonstrate a sensitivity of the mode structure and stability to plasma profiles. In narrow regions of parameter space, with special plasma profiles, a maximally unstable mode is found that balloons on the outboard side of the tokamak. This corresponds to the conventional picture of a ballooning mode. However, for most profiles, this mode cannot exist, and instead, a more stable mode is found that balloons closer to the top or bottom of the plasma. Good quantitative agreement with a 1D ballooning analysis is found, providedmore » the constraints associated with higher order profile effects, often neglected, are taken into account. A sudden transition from this general mode to the more unstable ballooning mode can occur for a critical flow shear, providing a candidate model for why some experiments observe small plasma eruptions (Edge Localised Modes, or ELMs) in place of large Type I ELMs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..DPPNP8108Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..DPPNP8108Z"><span>Modeling TAE Response To Nonlinear Drives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin</p> <p>2012-10-01</p> <p>Experiment has detected the Toroidal Alfven Eigenmodes (TAE) with signals at twice the eigenfrequency.These harmonic modes arise from the second order perturbation in amplitude of the MHD equation for the linear modes that are driven the energetic particle free energy. The structure of TAE in realistic geometry can be calculated by generalizing the linear numerical solver (AEGIS package). We have have inserted all the nonlinear MHD source terms, where are quadratic in the linear amplitudes, into AEGIS code. We then invert the linear MHD equation at the second harmonic frequency. The ratio of amplitudes of the first and second harmonic terms are used to determine the internal field amplitude. The spatial structure of energy and density distribution are investigated. The results can be directly employed to compare with experiments and determine the Alfven wave amplitude in the plasma region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JCoPh.364..347G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JCoPh.364..347G"><span>Eigenmode computation of cavities with perturbed geometry using matrix perturbation methods applied on generalized eigenvalue problems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gorgizadeh, Shahnam; Flisgen, Thomas; van Rienen, Ursula</p> <p>2018-07-01</p> <p>Generalized eigenvalue problems are standard problems in computational sciences. They may arise in electromagnetic fields from the discretization of the Helmholtz equation by for example the finite element method (FEM). Geometrical perturbations of the structure under concern lead to a new generalized eigenvalue problems with different system matrices. Geometrical perturbations may arise by manufacturing tolerances, harsh operating conditions or during shape optimization. Directly solving the eigenvalue problem for each perturbation is computationally costly. The perturbed eigenpairs can be approximated using eigenpair derivatives. Two common approaches for the calculation of eigenpair derivatives, namely modal superposition method and direct algebraic methods, are discussed in this paper. Based on the direct algebraic methods an iterative algorithm is developed for efficiently calculating the eigenvalues and eigenvectors of the perturbed geometry from the eigenvalues and eigenvectors of the unperturbed geometry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25105648','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25105648"><span>Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stadler, P; Belzig, W; Rastelli, G</p> <p>2014-07-25</p> <p>We study the nonequilibrium steady state of a mechanical resonator in the quantum regime realized by a suspended carbon nanotube quantum dot in contact with two ferromagnets. Because of the spin-orbit interaction and/or an external magnetic field gradient, the spin on the dot couples directly to the flexural eigenmodes. Accordingly, the nanomechanical motion induces inelastic spin flips of the tunneling electrons. A spin-polarized current at finite bias voltage causes either heating or active cooling of the mechanical modes. We show that maximal cooling is achieved at resonant transport when the energy splitting between two dot levels of opposite spin equals the vibrational frequency. Even for weak electron-resonator coupling and moderate polarizations we can achieve ground-state cooling with a temperature of the leads, for instance, of T = 10 ω.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhFl...21d4103A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhFl...21d4103A"><span>Transient growth analysis of the flow past a circular cylinder</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abdessemed, N.; Sharma, A. S.; Sherwin, S. J.; Theofilis, V.</p> <p>2009-04-01</p> <p>We apply direct transient growth analysis in complex geometries to investigate its role in the primary and secondary bifurcation/transition process of the flow past a circular cylinder. The methodology is based on the singular value decomposition of the Navier-Stokes evolution operator linearized about a two-dimensional steady or periodic state which leads to the optimal growth modes. Linearly stable and unstable steady flow at Re=45 and 50 is considered first, where the analysis demonstrates that strong two-dimensional transient growth is observed with energy amplifications of order of 103 at U∞τ/D≈30. Transient growth at Re=50 promotes the linear instability which ultimately saturates into the well known von-Kármán street. Subsequently we consider the transient growth upon the time-periodic base state corresponding to the von-Kármán street at Re=200 and 300. Depending upon the spanwise wavenumber the flow at these Reynolds numbers are linearly unstable due to the so-called mode A and B instabilities. Once again energy amplifications of order of 103 are observed over a time interval of τ /T=2, where T is the time period of the base flow shedding. In all cases the maximum energy of the optimal initial conditions are located within a diameter of the cylinder in contrast to the spatial distribution of the unstable eigenmodes which extend far into the downstream wake. It is therefore reasonable to consider the analysis as presenting an accelerator to the existing modal mechanism. The rapid amplification of the optimal growth modes highlights their importance in the transition process for flow past circular cylinder, particularly when comparing with experimental results where these types of convective instability mechanisms are likely to be activated. The spatial localization, close to the cylinder, of the optimal initial condition may be significant when considering strategies to promote or control shedding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011OptSp.111..241K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011OptSp.111..241K"><span>Strong field localization in subwavelength metal-dielectric optical waveguides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kozina, O. N.; Mel'Nikov, L. A.; Nefedov, I. S.</p> <p>2011-08-01</p> <p>Detailed calculations of eigenmodes of waveguiding structures made of silver and glass and containing coaxial cables with a nanoscale cross section of different configurations are conducted. In particular, the study focuses on optical coaxial waveguides with the core made in the form of a thin metallic cylinder filled with a dielectric. We show that these waveguides support relatively low-loss propagation of radiation that is strongly localized in the central region, has phase velocity approaching the speed of light and predominant electric-field orientation (dipole type). Optical characteristics of such waveguides are compared with those of coaxial-type waveguides containing a continuous central filament made of metal and with a multilayer structure. Using numeric modeling, we established that the proposed type of the waveguide enables the transmission of an optical image with relatively low losses with a submicron resolution over a distance considerably longer than its cross section. A typical propagation length in the waveguides based on silver and glass with the refractive index of about 1.5 at a wavelength of 500 nm is about 1700 nm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvL.120w7201B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvL.120w7201B"><span>Néel Spin-Orbit Torque Driven Antiferromagnetic Resonance in Mn2Au Probed by Time-Domain THz Spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhattacharjee, N.; Sapozhnik, A. A.; Bodnar, S. Yu.; Grigorev, V. Yu.; Agustsson, S. Y.; Cao, J.; Dominko, D.; Obergfell, M.; Gomonay, O.; Sinova, J.; Kläui, M.; Elmers, H.-J.; Jourdan, M.; Demsar, J.</p> <p>2018-06-01</p> <p>We observe the excitation of collective modes in the terahertz (THz) range driven by the recently discovered Néel spin-orbit torques (NSOTs) in the metallic antiferromagnet Mn2Au . Temperature-dependent THz spectroscopy reveals a strong absorption mode centered near 1 THz, which upon heating from 4 to 450 K softens and loses intensity. A comparison with the estimated eigenmode frequencies implies that the observed mode is an in-plane antiferromagnetic resonance (AFMR). The AFMR absorption strength exceeds those found in antiferromagnetic insulators, driven by the magnetic field of the THz radiation, by 3 orders of magnitude. Based on this and the agreement with our theory modeling, we infer that the driving mechanism for the observed mode is the current-induced NSOT. Here the electric field component of the THz pulse drives an ac current in the metal, which subsequently drives the AFMR. This electric manipulation of the Néel order parameter at high frequencies makes Mn2Au a prime candidate for antiferromagnetic ultrafast memory applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/963666-variational-wkb-descriptions-laterally-localized-eigenmodes-non-collinear-optical-parametric-amplifiers','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/963666-variational-wkb-descriptions-laterally-localized-eigenmodes-non-collinear-optical-parametric-amplifiers"><span>Variational and WKB Descriptions of Laterally Localized Eigenmodes in Non-Collinear Optical Parametric Amplifiers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Afeyan, Bedros; Charbonneau-Lefort, Mathieu; Fejer, Martin</p> <p></p> <p>With a finite lateral width pump, non-collinear interactions result in metastable or stable laterally localized bound states. The physical processes involved are group velocity walk-off, diffraction, chirped QPM gratings and different pump shapes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/5003591','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/5003591"><span>Study of ICRF wave propagation and plasma coupling efficiency in a linear magnetic mirror device</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Peng, S.Y.</p> <p>1991-07-01</p> <p>Ion Cyclotron Range of Frequency (ICRF) wave propagation in an inhomogeneous axial magnetic field in a cylindrical plasma-vacuum system has historically been inadequately modelled. Previous works either sacrifice the cylindrical geometry in favor of a simpler slab geometry, concentrate on the resonance region, use a single mode to represent the entire field structure, or examine only radial propagation. This thesis performs both analytical and computational studies to model the ICRF wave-plasma coupling and propagation problem. Experimental analysis is also conducted to compare experimental results with theoretical predictions. Both theoretical as well as experimental analysis are undertaken as part of themore » thesis. The theoretical studies simulate the propagation of ICRF waves in an axially inhomogeneous magnetic field and in cylindrical geometry. Two theoretical analysis are undertaken - an analytical study and a computational study. The analytical study treats the inhomogeneous magnetic field by transforming the (r,z) coordinate into another coordinate system ({rho},{xi}) that allows the solution of the fields with much simpler boundaries. The plasma fields are then Fourier transformed into two coupled convolution-integral equations which are then differenced and solved for both the perpendicular mode number {alpha} as well as the complete EM fields. The computational study involves a multiple eigenmode computational analysis of the fields that exist within the plasma-vacuum system. The inhomogeneous axial field is treated by dividing the geometry into a series of transverse axial slices and using a constant dielectric tensor in each individual slice. The slices are then connected by longitudinal boundary conditions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA524885','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA524885"><span>Enhanced Ultrafast Nonlinear Optics With Microstructure Fibers And Photonic Crystals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2004-07-01</p> <p>NANOHOLES FREQUENCY-TUNABLE ANTI-STOKES LINE EMISSION BY EIGENMODES OF A BIREFRINGENT MICROSTRUCTURE FIBER GENERATION OF FEMTOSECOND ANTI-STOKES PULSES...laser technologies, and ultrafast photonics. ANTI-STOKES GENERATION IN GUIDED MODES OF PHOTONIC-CRYSTAL FIBERS MODIFIED WITH AN ARRAY OF NANOHOLES</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ESS.....310912V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ESS.....310912V"><span>Predicting Precession Rates from Secular Dynamics for Extra-solar Multi-planet Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Laerhoven, Christa</p> <p>2015-12-01</p> <p>Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods and have used this to predict what range of pericenter precession (and nodal regression) rates the planets may have. One might have assumed that in any given system the planets with shorter periods would have faster precession rates, but I show that this is not necessarily the case. Planets that are 'loners' have narrow ranges of possible precession rates, while planets that are 'groupies' can have a wider range of possible precession rates. Several planets are expected to undergo significant precession on few-year timescales and many planets (though not the majority of planets) will undergo significant precession on decade timescales.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22407917-temporal-evolution-surface-ripples-finite-plasma-slab-subject-magneto-rayleigh-taylor-instability','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22407917-temporal-evolution-surface-ripples-finite-plasma-slab-subject-magneto-rayleigh-taylor-instability"><span>Temporal evolution of surface ripples on a finite plasma slab subject to the magneto-Rayleigh-Taylor instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Weis, M. R.; Zhang, P.; Lau, Y. Y., E-mail: yylau@umich.edu</p> <p>2014-12-15</p> <p>Using the ideal magnetohydrodynamic model, we calculate the temporal evolution of initial ripples on the boundaries of a planar plasma slab that is subjected to the magneto-Rayleigh-Taylor instability. The plasma slab consists of three regions. We assume that in each region the plasma density is constant with an arbitrary value and the magnetic field is also constant with an arbitrary magnitude and an arbitrary direction parallel to the interfaces. Thus, the instability may be driven by a combination of magnetic pressure and kinetic pressure. The general dispersion relation is derived, together with the feedthrough factor between the two interfaces. Themore » temporal evolution is constructed from the superposition of the eigenmodes. Previously established results are recovered in the various limits. Numerical examples are given on the temporal evolution of ripples on the interfaces of the finite plasma slab.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930053275&hterms=growth+population&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dgrowth%2Bpopulation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930053275&hterms=growth+population&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dgrowth%2Bpopulation"><span>On the stability of nongyrotropic ion populations - A first (analytic and simulation) assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brinca, A. L.; Borda De Agua, L.; Winske, D.</p> <p>1993-01-01</p> <p>The wave and dispersion equations for perturbations propagating parallel to an ambient magnetic field in magnetoplasmas with nongyrotropic ion populations show, in general, the occurrence of coupling between the parallel (left- and right-hand circularly polarized electromagnetic and longitudinal electrostatic) eigenmodes of the associated gyrotropic medium. These interactions provide a means to driving linearly one mode with free-energy sources of other modes in homogeneous media. Different types of nongyrotropy bring about distinct classes of coupling. The stability of a hydrogen magnetoplasma with anisotropic, nongyrotropic protons that only couple the electromagnetic modes to each other is investigated analytically (via solution of the derived dispersion equation) and numerically (via simulation with a hybrid code). Nongyrotropy enhances growth and enlarges the unstable spectral range relative to the corresponding gyrotropic situation. The relevance of the properties of nongyrotropic populations to space plasma environments is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MARX28012K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MARX28012K"><span>Non-integral-spin bosonic excitations in untextured magnets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kamra, Akashdeep; Agrawal, Utkarsh; Belzig, Wolfgang</p> <p></p> <p>Interactions are responsible for intriguing physics, e.g. emergence of exotic ground states and excitations, in a wide range of systems. Here we theoretically demonstrate that dipole-dipole interactions lead to bosonic eigen-excitations with spin ranging from zero to above ℏ in magnets with uniformly magnetized ground states. These exotic excitations can be interpreted as quantum coherent conglomerates of magnons, the eigen-excitations when the dipolar interactions are disregarded. We further find that the eigenmodes in an easy-axis antiferromagnet are spin-zero quasiparticles instead of the widely believed spin +/- ℏ magnons. The latter re-emerge when the symmetry is broken by a sufficiently large applied magnetic field. The spin greater than ℏ is accompanied by vacuum fluctuations and may be considered a weak form of frustration. We acknowledge financial support from the Alexander von Humboldt Foundation and the DFG through SFB 767.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1183090-temporal-evolution-surface-ripples-finite-plasma-slab-subject-magneto-rayleigh-taylor-instability','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1183090-temporal-evolution-surface-ripples-finite-plasma-slab-subject-magneto-rayleigh-taylor-instability"><span>Temporal evolution of surface ripples on a finite plasma slab subject to the magneto-Rayleigh-Taylor instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Weis, Matthew Robert; Zhang, Peng; Lau, Yue Ying; ...</p> <p>2014-12-17</p> <p>Using the ideal magnetohydrodynamic model, we calculate the temporal evolution of initial ripples on the boundaries of a planar plasma slab that is subjected to the magneto-Rayleigh-Taylor instability. The plasma slab consists of three regions. We assume that in each region the plasma density is constant with an arbitrary value and the magnetic field is also constant with an arbitrary magnitude and an arbitrary direction parallel to the interfaces. Then, the instability may be driven by a combination of magnetic pressure and kinetic pressure. Thus the general dispersion relation is derived, together with the feedthrough factor between the two interfaces.more » The temporal evolution is constructed from the superposition of the eigenmodes. Those previously established results are recovered in the various limits. Numerical examples are given on the temporal evolution of ripples on the interfaces of the finite plasma slab.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA41A2616Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA41A2616Z"><span>Diagnosis of middle atmosphere chemistry-dynamics interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, X.; Swartz, W. H.; Garcia, R. R.; Chartier, A.; Yee, J. H.; Yue, J.</p> <p>2017-12-01</p> <p>We apply the recently developed middle atmosphere climate feedback-response analysis method (MCFRAM) to diagnosing the temperature variations associated with chemistry-dynamics interactions in the middle atmosphere. By using output fields from the Whole Atmosphere Community Climate Model (WACCM) coupled with the measurements, we identify and isolate the distinctive characteristics of different components in the observed temperature variations. Both the temperature trends associated with the anthropogenic forcing and temperature changes associated with natural and internal feedback processes are quantified based on MCFRAM defined partial temperature changes corresponding to localized radiative heating, non-localized chemical heating, eddy transport, and transport by the mean meridional circulation of energy and chemical species. In addition, the temperature responses to variations of CO2, O3, and solar flux have distinctly different spatial structures that can be systematically categorized by the eigenmodes of the generalized damping matrix derived from MCFRAM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ChPhB..25l4211W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ChPhB..25l4211W"><span>Microscale vortex laser with controlled topological charge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Xing-Yuan; Chen, Hua-Zhou; Li, Ying; Li, Bo; Ma, Ren-Min</p> <p>2016-12-01</p> <p>A microscale vortex laser is a new type of coherent light source with small footprint that can directly generate vector vortex beams. However, a microscale laser with controlled topological charge, which is crucial for virtually any of its application, is still unrevealed. Here we present a microscale vortex laser with controlled topological charge. The vortex laser eigenmode was synthesized in a metamaterial engineered non-Hermitian micro-ring cavity system at exceptional point. We also show that the vortex laser cavity can operate at exceptional point stably to lase under optical pumping. The microscale vortex laser with controlled topological charge can serve as a unique and general building block for next-generation photonic integrated circuits and coherent vortex beam sources. The method we used here can be employed to generate lasing eigenmode with other complex functionalities. Project supported by the “Youth 1000 Talent Plan” Fund, Ministry of Education of China (Grant No. 201421) and the National Natural Science Foundation of China (Grant Nos. 11574012 and 61521004).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9440E..15S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9440E..15S"><span>Iterative approach as alternative to S-matrix in modal methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semenikhin, Igor; Zanuccoli, Mauro</p> <p>2014-12-01</p> <p>The continuously increasing complexity of opto-electronic devices and the rising demands of simulation accuracy lead to the need of solving very large systems of linear equations making iterative methods promising and attractive from the computational point of view with respect to direct methods. In particular, iterative approach potentially enables the reduction of required computational time to solve Maxwell's equations by Eigenmode Expansion algorithms. Regardless of the particular eigenmodes finding method used, the expansion coefficients are computed as a rule by scattering matrix (S-matrix) approach or similar techniques requiring order of M3 operations. In this work we consider alternatives to the S-matrix technique which are based on pure iterative or mixed direct-iterative approaches. The possibility to diminish the impact of M3 -order calculations to overall time and in some cases even to reduce the number of arithmetic operations to M2 by applying iterative techniques are discussed. Numerical results are illustrated to discuss validity and potentiality of the proposed approaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1089858','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1089858"><span>Properties of Alfven Eigenmodes in the TAE range on the National Spherical Torus Experiment-Upgrade</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>None</p> <p>2013-04-24</p> <p>A second Neutral Beam (NB) injection line is being installed on the NSTX Upgrade device, resulting in six NB sources with di erent tangency radii that will be available for heating and current drive. This work explores the properties of instabilities in the frequency range of the Toroidal Alfv en Eigenmode (TAE) for NSTX-U scenarios with various NB injection geometries, from more perpendicular to more tangential, and with increased toroidal magnetic eld with respect to previous NSTX scenarios. Predictions are based on analysis through the ideal MHD code NOVA-K. For the scenarios considered in this work, modi cations of themore » Alfv en continuum result in a frequency upshift and a broadening of the radial mode structure. The latter e ect may have consequences for fast ion transport and loss. Preliminary stability considerations indicate that TAEs are potentially unstable, with ion Landau damping representing the dominant damping mechanism« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvA..92e3861P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvA..92e3861P"><span>Projective filtering of the fundamental eigenmode from spatially multimode radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pérez, A. M.; Sharapova, P. R.; Straupe, S. S.; Miatto, F. M.; Tikhonova, O. V.; Leuchs, G.; Chekhova, M. V.</p> <p>2015-11-01</p> <p>Lossless filtering of a single coherent (Schmidt) mode from spatially multimode radiation is a problem crucial for optics in general and for quantum optics in particular. It becomes especially important in the case of nonclassical light that is fragile to optical losses. An example is bright squeezed vacuum generated via high-gain parametric down conversion or four-wave mixing. Its highly multiphoton and multimode structure offers a huge increase in the information capacity provided that each mode can be addressed separately. However, the nonclassical signature of bright squeezed vacuum, photon-number correlations, are highly susceptible to losses. Here we demonstrate lossless filtering of a single spatial Schmidt mode by projecting the spatial spectrum of bright squeezed vacuum on the eigenmode of a single-mode fiber. Moreover, we show that the first Schmidt mode can be captured by simply maximizing the fiber-coupled intensity. Importantly, the projection operation does not affect the targeted mode and leaves it usable for further applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JPhCS.305a2125R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JPhCS.305a2125R"><span>Nonlinear vibration of a hemispherical dome under external water pressure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ross, C. T. F.; McLennan, A.; Little, A. P. F.</p> <p>2011-07-01</p> <p>The aim of this study was to analyse the behaviour of a hemi-spherical dome when vibrated under external water pressure, using the commercial computer package ANSYS 11.0. In order to achieve this aim, the dome was modelled and vibrated in air and then in water, before finally being vibrated under external water pressure. The results collected during each of the analyses were compared to the previous studies, and this demonstrated that ANSYS was a suitable program and produced accurate results for this type of analysis, together with excellent graphical displays. The analysis under external water pressure, clearly demonstrated that as external water pressure was increased, the resonant frequencies decreased and a type of dynamic buckling became likely; because the static buckling eigenmode was similar to the vibration eigenmode. ANSYS compared favourably with the in-house software, but had the advantage that it produced graphical displays. This also led to the identification of previously undetected meridional modes of vibration; which were not detected with the in-house software.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatPh..14..360L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatPh..14..360L"><span>Self-hybridization within non-Hermitian localized plasmonic systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lourenço-Martins, Hugo; Das, Pabitra; Tizei, Luiz H. G.; Weil, Raphaël; Kociak, Mathieu</p> <p>2018-04-01</p> <p>The orthogonal eigenmodes are well-defined solutions of Hermitian equations describing many physical situations from quantum mechanics to acoustics. However, a large variety of non-Hermitian problems, including gravitational waves close to black holes or leaky electromagnetic cavities, require the use of a bi-orthogonal eigenbasis with consequences challenging our physical understanding1-4. The need to compensate for energy losses made the few successful attempts5-8 to experimentally probe non-Hermiticity extremely complicated. We overcome this problem by considering localized plasmonic systems. As the non-Hermiticity in these systems does not stem from temporal invariance breaking but from spatial symmetry breaking, its consequences can be observed more easily. We report on the theoretical and experimental evidence for non-Hermiticity-induced strong coupling between surface plasmon modes of different orders within silver nanodaggers. The symmetry conditions for triggering this counter-intuitive self-hybridization phenomenon are provided. Similar observable effects are expected to exist in any system exhibiting bi-orthogonal eigenmodes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvB..94w5438M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvB..94w5438M"><span>Exact mode volume and Purcell factor of open optical systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muljarov, E. A.; Langbein, W.</p> <p>2016-12-01</p> <p>The Purcell factor quantifies the change of the radiative decay of a dipole in an electromagnetic environment relative to free space. Designing this factor is at the heart of photonics technology, striving to develop ever smaller or less lossy optical resonators. The Purcell factor can be expressed using the electromagnetic eigenmodes of the resonators, introducing the notion of a mode volume for each mode. This approach allows an analytic treatment, reducing the Purcell factor and other observables to sums over eigenmode resonances. Calculating the mode volumes requires a correct normalization of the modes. We introduce an exact normalization of modes, not relying on perfectly matched layers. We present an analytic theory of the Purcell effect based on this exact mode normalization and the resulting effective mode volume. We use a homogeneous dielectric sphere in vacuum, which is analytically solvable, to exemplify these findings. We furthermore verify the applicability of the normalization to numerically determined modes of a finite dielectric cylinder.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvA..97c3832G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvA..97c3832G"><span>Control of polarization rotation in nonlinear propagation of fully structured light</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gibson, Christopher J.; Bevington, Patrick; Oppo, Gian-Luca; Yao, Alison M.</p> <p>2018-03-01</p> <p>Knowing and controlling the spatial polarization distribution of a beam is of importance in applications such as optical tweezing, imaging, material processing, and communications. Here we show how the polarization distribution is affected by both linear and nonlinear (self-focusing) propagation. We derive an analytical expression for the polarization rotation of fully structured light (FSL) beams during linear propagation and show that the observed rotation is due entirely to the difference in Gouy phase between the two eigenmodes comprising the FSL beams, in excellent agreement with numerical simulations. We also explore the effect of cross-phase modulation due to a self-focusing (Kerr) nonlinearity and show that polarization rotation can be controlled by changing the eigenmodes of the superposition, and physical parameters such as the beam size, the amount of Kerr nonlinearity, and the input power. Finally, we show that by biasing cylindrical vector beams to have elliptical polarization, we can vary the polarization state from radial through spiral to azimuthal using nonlinear propagation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1352930-using-neutral-beams-light-ion-beam-probe-invited','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1352930-using-neutral-beams-light-ion-beam-probe-invited"><span>Using neutral beams as a light ion beam probe (invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Chen, Xi; Heidbrink, William W.; Van Zeeland, Michael A.; ...</p> <p>2014-08-05</p> <p>By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of 1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge, and 2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fieldsmore » appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g. Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally-imposed 3D fields, e.g. magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. Additionally, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7028999','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7028999"><span>Position, rotation, and intensity invariant recognizing method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ochoa, E.; Schils, G.F.; Sweeney, D.W.</p> <p>1987-09-15</p> <p>A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output plane to determine whether a particular target is present in the field of view. Preferably, a temporal pattern is imaged in the output plane with a optical detector having a plurality of pixels and a correlation coefficient for each pixel is determined by accumulating the intensity and intensity-square of each pixel. The orbiting of the constant response caused by the filter rotation is also preferably eliminated either by the use of two orthogonal mirrors pivoted correspondingly to the rotation of the filter or the attaching of a refracting wedge to the filter to remove the offset angle. Detection is preferably performed of the temporal pattern in the output plane at a plurality of different angles with angular separation sufficient to decorrelate successive frames. 1 fig.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22308653-using-neutral-beams-light-ion-beam-probe-invited','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22308653-using-neutral-beams-light-ion-beam-probe-invited"><span>Using neutral beams as a light ion beam probe (invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chen, Xi, E-mail: chenxi@fusion.gat.com; Heidbrink, W. W.; Van Zeeland, M. A.</p> <p></p> <p>By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fieldsmore » appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1352930','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1352930"><span>Using neutral beams as a light ion beam probe (invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chen, Xi; Heidbrink, William W.; Van Zeeland, Michael A.</p> <p></p> <p>By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of 1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge, and 2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fieldsmore » appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g. Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally-imposed 3D fields, e.g. magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. Additionally, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1254855-identification-multi-modal-plasma-responses-applied-magnetic-perturbations-using-plasma-reluctance','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1254855-identification-multi-modal-plasma-responses-applied-magnetic-perturbations-using-plasma-reluctance"><span>Identification of multi-modal plasma responses to applied magnetic perturbations using the plasma reluctance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Logan, Nikolas C.; Paz-Soldan, Carlos; Park, Jong-Kyu; ...</p> <p>2016-05-03</p> <p>Using the plasma reluctance, the Ideal Perturbed Equilibrium Code is able to efficiently identify the structure of multi-modal magnetic plasma response measurements and the corresponding impact on plasma performance in the DIII-D tokamak. Recent experiments demonstrated that multiple kink modes of comparable amplitudes can be driven by applied nonaxisymmetric fields with toroidal mode number n = 2. This multi-modal response is in good agreement with ideal magnetohydrodynamic models, but detailed decompositions presented here show that the mode structures are not fully described by either the least stable modes or the resonant plasma response. This paper identifies the measured response fieldsmore » as the first eigenmodes of the plasma reluctance, enabling clear diagnosis of the plasma modes and their impact on performance from external sensors. The reluctance shows, for example, how very stable modes compose a significant portion of the multi-modal plasma response field and that these stable modes drive significant resonant current. Finally, this work is an overview of the first experimental applications using the reluctance to interpret the measured response and relate it to multifaceted physics, aimed towards providing the foundation of understanding needed to optimize nonaxisymmetric fields for independent control of stability and transport.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22273666-size-dependence-magnetization-switching-its-dispersion-co-pt-nanodots-under-assistance-radio-frequency-fields','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22273666-size-dependence-magnetization-switching-its-dispersion-co-pt-nanodots-under-assistance-radio-frequency-fields"><span>Size dependence of magnetization switching and its dispersion of Co/Pt nanodots under the assistance of radio frequency fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Furuta, Masaki, E-mail: furutam@mail.tagen.tohoku.ac.jp; Okamoto, Satoshi; Kikuchi, Nobuaki</p> <p>2014-04-07</p> <p>We have studied the dot size dependence of microwave assisted magnetization switching (MAS) on perpendicular magnetic Co/Pt multilayer dot array. The significant microwave assistance effect has been observed over the entire dot size D ranging from 50 nm to 330 nm examined in the present study. The MAS behavior, however, critically depends on D. The excitation frequency dependence of the switching field is well consistent with the spin wave theory, indicating that the magnetization precession in MAS is in accordance with the well defined eigenmodes depending on the dot diameter. The lowest order spin wave is only excited for D ≤ 100 nm, and thenmore » the MAS effect is well consistent with that of the single macrospin prediction. On the other hand, higher order spin waves are excited for D > 100 nm, giving rise to the significant enhancement of the MAS effect. The dispersion of MAS effect also depends on D and is significantly reduced for the region of D > 100 nm. This significant reduction of the dispersion is attributed to the essential feature of the MAS effect which is insensitive to the local fluctuation of anisotropy field, such as defect, damaged layer, and so on.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhPl...23e2706V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhPl...23e2706V"><span>Stability of stagnation via an expanding accretion shock wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Velikovich, A. L.; Murakami, M.; Taylor, B. D.; Giuliani, J. L.; Zalesak, S. T.; Iwamoto, Y.</p> <p>2016-05-01</p> <p>Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22600194-stability-stagnation-via-expanding-accretion-shock-wave','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22600194-stability-stagnation-via-expanding-accretion-shock-wave"><span>Stability of stagnation via an expanding accretion shock wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Velikovich, A. L.; Giuliani, J. L.; Murakami, M.</p> <p></p> <p>Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never beenmore » studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvA..97b3844Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvA..97b3844Z"><span>Controlling the stability of nonlinear optical modes via electromagnetically induced transparency</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Kun; Liang, Yi-zeng; Lin, Ji; Li, Hui-jun</p> <p>2018-02-01</p> <p>We propose a scheme to generate and stabilize the high-dimensional spatial solitons via electromagnetically induced transparency (EIT). The system we consider is a resonant atomic ensemble having Λ configuration. We illustrate that under EIT conditions the equation satisfied by the probe field envelope is reduced to a saturable nonlinear Schrödinger equation with the trapping potential, provided by a far-detuned laser field and a random magnetic field. We present high-dimensional soliton solutions exhibiting many interesting characteristics, including diversity (i.e., many different types of soliton solutions can be found, including bright, ring multipole bright, ring multipole defect mode, multiring bright, multiring defect mode, and vortices solitons), the phase transition between bright soliton and higher-order defect modes (i.e., the phase transition can be realized by controlling the nonlinear coefficient or the intensity of the trapping potential), and stability (i.e., various solitons can be stabilized by the Gaussian potential provided by the far detuned laser field, or the random potential provided by the magnetic field). We also find that some solitons are the extension of the linear eigenmode, whereas others entirely derive from the role of nonlinearity. Compared with previous studies, we not only show the diverse soliton solutions in the same system but also find the boundary of the phase transition for the type of solitons. In addition, we present the possibility of using the random potential to stabilize various solitons and vortices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DPPT10026A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DPPT10026A"><span>On extended analytic theory of 2D ballooning modes in tokamak plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abdoul, Peshwaz; Dickinson, David; Roach, Colin; Wilson, Howard</p> <p>2016-10-01</p> <p>We have extended the leading order ballooning theory which typically yields more unstable isolated mode (IM) that usually sit on the outboard mid-plane, to higher order where less unstable general mode (GM) sits at a different poloidal location. Our analytic theory has revealed that any poloidal shift of the mode with respect to the outboard mid-plane - arising from the effect of profile variations, for example - is always accompanied by an asymmetry of the radial eigenmode structure. Hence, GMs have radial asymmetry. Our theory can have important consequences, especially for calculations that invoke quasilinear theory to model intrinsic rotation arising from Reynolds stress. This is very important in ITER for which external torques are small. In such theories it is the radial asymmetry in the global GM mode which can generate a Reynolds stress that could in principle contribute to the poloidal flow during the low to high (L-H) mode transition in tokamaks. I am also an associate member at the York Plasma Institute, University of York and teaching at the Physics Department, University of Sulaimani, Kurdistan Region, Iraq.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920005142','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920005142"><span>Determination of Rotordynamic Coefficients for Labyrinth Seals and Application to Rotordynamic Design Calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weiser, P.; Nordmann, R.</p> <p>1991-01-01</p> <p>In today's rotordynamic calculations, the input parameters for a finite element analysis (FEA) determine very much the reliability of eigenvalue and eigenmode predictions. While modeling of an elastic structure by means of beam elements etc. is relatively straightforward to perform and the input data for journal bearings are usually known exactly enough, the determination of stiffness and damping for labyrinth seals is still the subject of many investigations. Therefore, the rotordynamic influence of labyrinths is often not included in FEA for rotating machinery because of a lack of computer programs to calculate these parameters. This circumstance can give rise to severe vibration problems especially for high performance turbines or compressors, resulting in remarkable economic losses. The forces generated in labyrinths can be described for small motions around the seal center with a linearized force-motion relationship. Several years ago, we started with the development of computer codes for the determination of rotordynamic seal coefficients. Our different approaches to evaluate the dynamic fluid forces generated by turbulent, compressible seal flow are introduced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22403000-edge-waves-resonances-two-dimensional-phononic-crystal-plates','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22403000-edge-waves-resonances-two-dimensional-phononic-crystal-plates"><span>Edge waves and resonances in two-dimensional phononic crystal plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hsu, Jin-Chen, E-mail: hsujc@yuntech.edu.tw; Hsu, Chih-Hsun</p> <p>2015-05-07</p> <p>We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. Wemore » design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SurSc.672...47K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SurSc.672...47K"><span>Fabry-Perot magnonic ballistic coherent transport across ultrathin ferromagnetic lamellar bcc Ni nanostructures between Fe leads</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khater, A.; Saim, L.; Tigrine, R.; Ghader, D.</p> <p>2018-06-01</p> <p>We propose thermodynamically stable systems of ultrathin lamellar bcc Ni nanostructures between bcc Fe leads, sbnd Fe[Ni(n)]Fesbnd , based on the available literature for bcc Ni overlayers on Fe(001) surfaces, and establish the necessary criteria for their structural and ferromagnetic order, for thicknesses n ≤ 6 bcc Ni monatomic layers. The system is globally ferromagnetic. A theoretical model is presented to investigate and understand the ballistic coherent scattering of Fe spin-waves, incident from the leads, at the ferromagnetic bcc Ni nanostructure. The Nisbnd Ni and Nisbnd Fe exchange are computed using the Ising effective field theory (EFT), and the magnetic ground state of the system is constructed in the Heisenberg representation. We compute the spin-wave eigenmodes localized on the bcc Ni nanostructure, using the phase field matching theory (PFMT), illustrating the effects of symmetry breaking on the confinement of localized spin excitations. The reflection and transmission scattering properties of spin-waves incident from the Fe leads, across the embedded Ni nanostructures are investigated within the framework of the same PFMT methodology. A highly refined Fabry-Perot magnonic ballistic coherent transmission spectra is observed for these sbnd Fe[Ni(n)]Fesbnd systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatPh..14..315S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatPh..14..315S"><span>Statistical projection effects in a hydrodynamic pilot-wave system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sáenz, Pedro J.; Cristea-Platon, Tudor; Bush, John W. M.</p> <p>2018-03-01</p> <p>Millimetric liquid droplets can walk across the surface of a vibrating fluid bath, self-propelled through a resonant interaction with their own guiding or `pilot' wave fields. These walking droplets, or `walkers', exhibit several features previously thought to be peculiar to the microscopic, quantum realm. In particular, walkers confined to circular corrals manifest a wave-like statistical behaviour reminiscent of that of electrons in quantum corrals. Here we demonstrate that localized topological inhomogeneities in an elliptical corral may lead to resonant projection effects in the walker's statistics similar to those reported in quantum corrals. Specifically, we show that a submerged circular well may drive the walker to excite specific eigenmodes in the bath that result in drastic changes in the particle's statistical behaviour. The well tends to attract the walker, leading to a local peak in the walker's position histogram. By placing the well at one of the foci, a mode with maxima near the foci is preferentially excited, leading to a projection effect in the walker's position histogram towards the empty focus, an effect strongly reminiscent of the quantum mirage. Finally, we demonstrate that the mean pilot-wave field has the same form as the histogram describing the walker's statistics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21716455','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21716455"><span>Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, H W; Schmidt, M A; Russell, R F; Joly, N Y; Tyagi, H K; Uebel, P; Russell, P St J</p> <p>2011-06-20</p> <p>We report a novel splicing-based pressure-assisted melt-filling technique for creating metallic nanowires in hollow channels in microstructured silica fibers. Wires with diameters as small as 120 nm (typical aspect ration 50:1) could be realized at a filling pressure of 300 bar. As an example we investigate a conventional single-mode step-index fiber with a parallel gold nanowire (wire diameter 510 nm) running next to the core. Optical transmission spectra show dips at wavelengths where guided surface plasmon modes on the nanowire phase match to the glass core mode. By monitoring the side-scattered light at narrow breaks in the nanowire, the loss could be estimated. Values as low as 0.7 dB/mm were measured at resonance, corresponding to those of an ultra-long-range eigenmode of the glass-core/nanowire system. By thermal treatment the hollow channel could be collapsed controllably, permitting creation of a conical gold nanowire, the optical properties of which could be monitored by side-scattering. The reproducibility of the technique and the high optical quality of the wires suggest applications in fields such as nonlinear plasmonics, near-field scanning optical microscope tips, cylindrical polarizers, optical sensing and telecommunications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NCimR..40...33T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NCimR..40...33T"><span>Laser acceleration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tajima, T.; Nakajima, K.; Mourou, G.</p> <p>2017-02-01</p> <p>The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35.4241B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35.4241B"><span>Thermocapillary flow stability in floating zone under low gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bouizi, O.; Dang Vu-Delcarte, C.; Kasperski, G.</p> <p></p> <p>The floating zone is a crucible-free process used to produce high-quality crystals. A molten zone is created by a lateral heating between a feed and a single crystal rod, and helds by capillary forces. The translation of the material through the heat flux induces the solidification of the crystal. Temperature gradients induce surface tension variations which are the source of thermocapillary convection. In order to reduce buoyancy effects, experiments have been performed in a low gravity environment te{Croll} and have demonstrated that thermocapillary convection alone can induce defects in the product due to flow instabilities. A major goal is to identify the mechanisms leading to the growth of those instabilities. The experimental difficulty comes from the fact that measurements in the core of the flow are usually limited to transparent fluids, that is having a Prandtl number value (Pr), ratio of the characteristic thermal to dynamical diffusion times, larger than 6 or so. However, it has been shown that, just as well in real experiments as in numerical experiences, performed on the simplified half-zone model, the transitions thresholds strongly depend on the Prandtl number value te{Carotenuto}, te{Levenstam}. It is thus interesting to study the nature and thresholds of the instabilities of the thermocapillary flow in a full liquid bridge as a function of the Prandtl number. In that case, a 2D study te{kasper1} has shown an important variation of the thresholds with Pr. The considered model consists of a vertical cylindrical liquid bridge, between two isothermal parallel concentric rigid disks, %of radius Rwhich are separated by a distance H and presenting a non-deformable free surface. This surface is submitted to a steady heating flux symmetrical about the horizontal mid-plane. The parameters of the model are the Prandtl number, the Marangoni number (Ma) which characterises the thermal convective regime and the aspect ratio A=H/2R fixed here to 1. Gravity is absent. The capillary convective flow is governed by the Navier-Stokes and energy equations associated to boundary conditions which include the source of the flow. The mathematical system is solved with a spectral collocation code using a projection-diffusion method te{Batoul_94a} in order to uncouple the pressure and velocity fields. The steady flows are calculated with a Newton method, the first unstable eigenmodes using an Arnoldi method te{chenier-Stability}. These tools, in addition to direct numerical simulation, are necessary to observe transitions related to the mid-plane symmetry breaking of the 2D flow te{chenier-mult}, due to the low values of the growth rates of the instabilities. The sensitivity of the solutions to the treatment of a vorticity singularity at the junction free surface/solid boundaries was studied in te{kasper4}. An first analysis of the most sensitive regions of the flow to local thermal perturbations with the adjoint technique has been initiated te{Bouizi}. In the present contribution, we study the perturbation of the 2-D axisymmetric steady state through azimuthal modes as a function of the Prandtl and Marangoni number values. We will show that the critical Marangoni values are lower for 3D than for 2D perturbations for all Prandtl numbers but the azimutal Fourier modes, the bifurcation types and the threshold Ma_c values highly depend on the Prandtl number.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/5139115','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/5139115"><span>Effect of magnetic shear on dissipative drift instabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Guzdar, P.N.; Chen, L.; Kaw, P.K.</p> <p>1978-03-01</p> <p>In this letter we report the results of a linear radial eigenmode analysis of dissipative drift waves in a plasma with magnetic shear and spatially varying density gradient. The results of the analysis are shown to be consistent with a recent experiment on the study of dissipative drift instabilities in a toroidal stellarator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25d2508L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25d2508L"><span>Energetic-particle-modified global Alfvén eigenmodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lestz, J. B.; Belova, E. V.; Gorelenkov, N. N.</p> <p>2018-04-01</p> <p>Fully self-consistent hybrid MHD/particle simulations reveal strong energetic particle modifications to sub-cyclotron global Alfvén eigenmodes (GAEs) in low-aspect ratio, NSTX-like conditions. Key parameters defining the fast ion distribution function—the normalized injection velocity v0/vA and central pitch—are varied in order to study their influence on the characteristics of the excited modes. It is found that the frequency of the most unstable mode changes significantly and continuously with beam parameters, in accordance with the Doppler-shifted cyclotron resonances which drive the modes, and depending most substantially on v0/vA . This unexpected result is present for both counter-propagating GAEs, which are routinely excited in NSTX, and high frequency co-GAEs, which have not been previously studied. Large changes in frequency without clear corresponding changes in the mode structure are signatures of an energetic particle mode, referred to here as an energetic-particle-modified GAE. Additional simulations conducted for a fixed MHD equilibrium demonstrate that the GAE frequency shift cannot be explained by the equilibrium changes due to energetic particle effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1436767-energetic-particle-modified-global-alfven-eigenmodes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1436767-energetic-particle-modified-global-alfven-eigenmodes"><span>Energetic-particle-modified global Alfven eigenmodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lestz, J. B.; Belova, E. V.; Gorelenkov, N. N.</p> <p></p> <p>Fully self-consistent hybrid MHD/particle simulations reveal strong energetic particle modifications to sub-cyclotron global Alfvén eigenmodes (GAEs) in low-aspect ratio, NSTX-like conditions. Key parameters defining the fast ion distribution function—the normalized injection velocity v 0/v A and central pitch—are varied in order to study their influence on the characteristics of the excited modes. It is found that the frequency of the most unstable mode changes significantly and continuously with beam parameters, in accordance with the Doppler-shifted cyclotron resonances which drive the modes, and depending most substantially on v 0/v A. This unexpected result is present for both counter-propagating GAEs, which aremore » routinely excited in NSTX, and high frequency co-GAEs, which have not been previously studied. Large changes in frequency without clear corresponding changes in the mode structure are signatures of an energetic particle mode, referred to here as an energetic-particle-modified GAE. In conclusion, additional simulations conducted for a fixed MHD equilibrium demonstrate that the GAE frequency shift cannot be explained by the equilibrium changes due to energetic particle effects.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014DPS....4630107V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014DPS....4630107V"><span>Groupies and Loners: The Population of Multi-planet Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Laerhoven, Christa L.; Greenberg, Richard</p> <p>2014-11-01</p> <p>Observational surveys with Kepler and other telescopes have shown that multi-planet systems are very numerous. Considering the secular dynamcis of multi-planet systems provides substantial insight into the interactions between planets in those systems. Since the underlying secular structure of a multi-planet system (the secular eigenmodes) can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in those systems even without knowing the planets' current eccentricities and inclinations. We have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods. We will discuss the commonality of dynamically grouped planets ('groupies') vs dynamically uncoupled planets ('loners'), and compare to what would be expected from randomly generated systems with the same overall distribution of masses and semi-major axes. We will also discuss the occurrence of planets that strongly influence the behavior of other planets without being influenced by those others ('overlords'). Examples will be given and general trends will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1436767-energetic-particle-modified-global-alfven-eigenmodes','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1436767-energetic-particle-modified-global-alfven-eigenmodes"><span>Energetic-particle-modified global Alfven eigenmodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Lestz, J. B.; Belova, E. V.; Gorelenkov, N. N.</p> <p>2018-04-30</p> <p>Fully self-consistent hybrid MHD/particle simulations reveal strong energetic particle modifications to sub-cyclotron global Alfvén eigenmodes (GAEs) in low-aspect ratio, NSTX-like conditions. Key parameters defining the fast ion distribution function—the normalized injection velocity v 0/v A and central pitch—are varied in order to study their influence on the characteristics of the excited modes. It is found that the frequency of the most unstable mode changes significantly and continuously with beam parameters, in accordance with the Doppler-shifted cyclotron resonances which drive the modes, and depending most substantially on v 0/v A. This unexpected result is present for both counter-propagating GAEs, which aremore » routinely excited in NSTX, and high frequency co-GAEs, which have not been previously studied. Large changes in frequency without clear corresponding changes in the mode structure are signatures of an energetic particle mode, referred to here as an energetic-particle-modified GAE. In conclusion, additional simulations conducted for a fixed MHD equilibrium demonstrate that the GAE frequency shift cannot be explained by the equilibrium changes due to energetic particle effects.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DPPJ10125C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DPPJ10125C"><span>Critical Gradient Behavior of Alfvén Eigenmode Induced Fast-Ion Transport in Phase Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Collins, C. S.; Pace, D. C.; van Zeeland, M. A.; Heidbrink, W. W.; Stagner, L.; Zhu, Y. B.; Kramer, G. J.; Podesta, M.; White, R. B.</p> <p>2016-10-01</p> <p>Experiments on DIII-D have shown that energetic particle (EP) transport suddenly increases when multiple Alfvén eigenmodes (AEs) cause particle orbits to become stochastic. Several key features have been observed; (1) the transport threshold is phase-space dependent and occurs above the AE linear stability threshold, (2) EP losses become intermittent above threshold and appear to depend on the types of AEs present, and (3) stiff transport causes the EP density profile to remain unchanged even if the source increases. Theoretical analysis using the NOVA and ORBIT codes shows that the threshold corresponds to when particle orbits become stochastic due to wave-particle resonances with AEs in the region of phase space measured by the diagnostics. The kick model in NUBEAM (TRANSP) is used to evolve the EP distribution function to study which modes cause the most transport and further characterize intermittent bursts of EP losses, which are associated with large scale redistribution through the domino effect. Work supported by the US DOE under DE-FC02-04ER54698.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JSV...320..893K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JSV...320..893K"><span>Dynamic train-turnout interaction in an extended frequency range using a detailed model of track dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kassa, Elias; Nielsen, Jens C. O.</p> <p>2009-03-01</p> <p>A time domain solution method for general three-dimensional dynamic interaction of train and turnout (switch and crossing) that accounts for excitation in an extended frequency range (up to several hundred Hz) is proposed. Based on a finite element (FE) model of a standard turnout design, a complex-valued modal superposition of track dynamics is applied using the first 500 eigenmodes of the turnout model. The three-dimensional model includes the distribution of structural flexibility along the turnout, such as bending and torsion of rails and sleepers, and the variations in rail cross-section and sleeper length. Convergence of simulation results is studied while using an increasing number of eigenmodes. It is shown that modes with eigenfrequencies up to at least 200 Hz have a significant influence on the magnitudes of the wheel-rail contact forces. Results from using a simplified track model with a commercial computer program for low-frequency vehicle dynamics are compared with the results from using the detailed FE model in conjunction with the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPA....8c5104W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPA....8c5104W"><span>Numerical simulation of the multiple core localized low shear toroidal Alfvenic eigenmodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Wenjia; Zhou, Deng; Hu, Youjun; Ming, Yue</p> <p>2018-03-01</p> <p>In modern tokamak experiments, scenarios with weak central magnetic shear has been proposed. It is necessary to study the Alfvenic mode activities in such scenarios. Theoretical researches have predicted the multiplicity of core-localized toroidally induced Alfvenic eigenmodes for ɛ/s > 1, where ɛ is the inverse aspect ratio and s is magnetic shear. We numerically investigate the existence of multiplicity of core-localized TAEs and mode characteristics using NOVA code in the present work. We firstly verify the existence of the multiplicity for zero beta plasma and the even mode at the forbidden zone. For finite beta plasma, the mode parities become more distinguishable, and the frequencies of odd modes are close to the upper tip of the continuum, while the frequencies of even modes are close to the lower tip of the continuum. Their frequencies are well separated by the forbidden zone. With the increasing value of ɛ/s, more modes with multiple radial nodes will appear, which is in agreement with theoretical prediction. The discrepancy between theoretical prediction and our numerical simulation is also discussed in the main text.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22493884-diverse-wave-particle-interactions-energetic-ions-traverse-alfven-eigenmodes-first-full-orbit','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22493884-diverse-wave-particle-interactions-energetic-ions-traverse-alfven-eigenmodes-first-full-orbit"><span>Diverse wave-particle interactions for energetic ions that traverse Alfvén eigenmodes on their first full orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Heidbrink, W. W.; Persico, E. A. D.; Austin, M. E.</p> <p>2016-02-15</p> <p>Neutral-beam ions that are deflected onto loss orbits by Alfvén eigenmodes (AE) on their first bounce orbit and are detected by a fast-ion loss detector (FILD) satisfy the “local resonance” condition proposed by Zhang et al. [Nucl. Fusion 55, 22002 (2015)]. This theory qualitatively explains FILD observations for a wide variety of AE-particle interactions. When coherent losses are measured for multiple AE, oscillations at the sum and difference frequencies of the independent modes are often observed in the loss signal. The amplitudes of the sum and difference peaks correlate weakly with the amplitudes of the fundamental loss-signal amplitudes but domore » not correlate with the measured mode amplitudes. In contrast to a simple uniform-plasma theory of the interaction [Chen et al., Nucl. Fusion 54, 083005 (2014)], the loss-signal amplitude at the sum frequency is often larger than the loss-signal amplitude at the difference frequency, indicating a more detailed computation of the orbital trajectories through the mode eigenfunctions is needed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DPPP10005H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DPPP10005H"><span>Toroidal Alfvénic Eigenmodes Driven by Energetic Particles with Maxwell and Slowing-down Distributions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hou, Yawei; Zhu, Ping; Zou, Zhihui; Kim, Charlson C.; Hu, Zhaoqing; Wang, Zhengxiong</p> <p>2016-10-01</p> <p>The energetic-particle (EP) driven toroidal Alfvén eigenmodes (TAEs) in a circular-shaped large aspect ratio tokamak are studied using the hybrid kinetic-MHD model in the NIMROD code, where the EPs are advanced using the δf particle-in-cell (PIC) method and their kinetic effects are coupled to the bulk plasma through moment closures. Two initial distributions of EPs, Maxwell and slowing-down, are considered. The influence of EP parameters, including density, temperature and density gradient, on the frequency and the growth rate of TAEs are obtained and benchmarked with theory and gyrokinetic simulations for the Maxwell distribution with good agreement. When the density and temperature of EPs are above certain thresholds, the transition from TAE to energetic particle modes (EPM) occurs and the mode structure also changes. Comparisons between Maxwell and slowing-down distributions in terms of EP-driven TAEs and EPMs will also be presented and discussed. Supported by the National Magnetic Confinement Fusion Science Program of China Grant Nos. 2014GB124002 and 2015GB101004, and the Natural Science Foundation of China Grant No. 11205194.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhDT.......155T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhDT.......155T"><span>Electron cyclotron emission imaging and applications in magnetic fusion energy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tobias, Benjamin John</p> <p></p> <p>Energy production through the burning of fossil fuels is an unsustainable practice. Exponentially increasing energy consumption and dwindling natural resources ensure that coal and gas fueled power plants will someday be a thing of the past. However, even before fuel reserves are depleted, our planet may well succumb to disastrous side effects, namely the build up of carbon emissions in the environment triggering world-wide climate change and the countless industrial spills of pollutants that continue to this day. Many alternatives are currently being developed, but none has so much promise as fusion nuclear energy, the energy of the sun. The confinement of hot plasma at temperatures in excess of 100 million Kelvin by a carefully arranged magnetic field for the realization of a self-sustaining fusion power plant requires new technologies and improved understanding of fundamental physical phenomena. Imaging of electron cyclotron radiation lends insight into the spatial and temporal behavior of electron temperature fluctuations and instabilities, providing a powerful diagnostic for investigations into basic plasma physics and nuclear fusion reactor operation. This dissertation presents the design and implementation of a new generation of Electron Cyclotron Emission Imaging (ECEI) diagnostics on toroidal magnetic fusion confinement devices, or tokamaks, around the world. The underlying physics of cyclotron radiation in fusion plasmas is reviewed, and a thorough discussion of millimeter wave imaging techniques and heterodyne radiometry in ECEI follows. The imaging of turbulence and fluid flows has evolved over half a millennium since Leonardo da Vinci's first sketches of cascading water, and applications for ECEI in fusion research are broad ranging. Two areas of physical investigation are discussed in this dissertation: the identification of poloidal shearing in Alfven eigenmode structures predicted by hybrid gyrofluid-magnetohydrodynamic (gyrofluid-MHD) modeling, and magnetic field line displacement during precursor oscillations associated with the sawtooth crash, a disruptive instability observed both in tokamak plasmas with high core current and in the magnetized plasmas of solar flares and other interstellar plasmas. Understanding both of these phenomena is essential for the future of magnetic fusion energy, and important new observations described herein underscore the advantages of imaging techniques in experimental physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JGRE..107.5079B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JGRE..107.5079B"><span>Morphology, stratigraphy, and surface roughness properties of Venusian lava flow fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Byrnes, Jeffrey M.; Crown, David A.</p> <p>2002-10-01</p> <p>Morphologic characteristics, flow stratigraphy, and radar backscatter properties of five lava flow fields on Venus (Turgmam Fluctus, Zipaltonal Fluctus, Tuli Mons/Uilata Fluctus, Var Mons, and Mylitta Fluctus) were examined to understand flow field emplacement mechanisms and relationships to other surface processes. These analyses indicate that the flow fields studied developed through emplacement of numerous, thin flow units, presumably over extended periods of time. Although the Venusian fields display flow morphologies similar to those observed within terrestrial flow fields, the Venusian flow units are significantly larger and have a larger range of radar backscatter coefficients. Both simple and compound flow emplacement appear to have occurred within the flow fields. A potential correlation between flow rheology and radar brightness is suggested by differences in planform morphology, apparent flow thickness, and apparent sensitivity to topography between bright and dark flows. Distributary flow morphologies may result from tube-fed flows, and postemplacement modification by processes such as flow inflation and crustal foundering is consistent with discrete zones of increased radar brightness within individual flow lobes. Mapping of these flow fields does not indicate any simple evolutionary trend in eruptive/resurfacing style within the flow fields, or any consistent temporal sequence relative to other tectonic and volcanic features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10574E..2LS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10574E..2LS"><span>Generative statistical modeling of left atrial appendage appearance to substantiate clinical paradigms for stroke risk stratification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanatkhani, Soroosh; Menon, Prahlad G.</p> <p>2018-03-01</p> <p>Left atrial appendage (LAA) is the source of 91% of the thrombi in patients with atrial arrhythmias ( 2.3 million US adults), turning this region into a potential threat for stroke. LAA geometries have been clinically categorized into four appearance groups viz. Cauliflower, Cactus, Chicken-Wing and WindSock, based on visual appearance in 3D volume visualizations of contrast-enhanced computed tomography (CT) imaging, and have further been correlated with stroke risk by considering clinical mortality statistics. However, such classification from visual appearance is limited by human subjectivity and is not sophisticated enough to address all the characteristics of the geometries. Quantification of LAA geometry metrics can reveal a more repeatable and reliable estimate on the characteristics of the LAA which correspond with stasis risk, and in-turn cardioembolic risk. We present an approach to quantify the appearance of the LAA in patients in atrial fibrillation (AF) using a weighted set of baseline eigen-modes of LAA appearance variation, as a means to objectify classification of patient-specific LAAs into the four accepted clinical appearance groups. Clinical images of 16 patients (4 per LAA appearance category) with atrial fibrillation (AF) were identified and visualized as volume images. All the volume images were rigidly reoriented in order to be spatially co-registered, normalized in terms of intensity, resampled and finally reshaped appropriately to carry out principal component analysis (PCA), in order to parametrize the LAA region's appearance based on principal components (PCs/eigen mode) of greyscale appearance, generating 16 eigen-modes of appearance variation. Our pilot studies show that the most dominant LAA appearance (i.e. reconstructable using the fewest eigen-modes) resembles the Chicken-Wing class, which is known to have the lowest stroke risk per clinical mortality statistics. Our findings indicate the possibility that LAA geometries with high risk of stroke are higher-order statistical variants of underlying lower risk shapes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4121089','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4121089"><span>On nodes and modes in resting state fMRI</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Friston, Karl J.; Kahan, Joshua; Razi, Adeel; Stephan, Klaas Enno; Sporns, Olaf</p> <p>2014-01-01</p> <p>This paper examines intrinsic brain networks in light of recent developments in the characterisation of resting state fMRI timeseries — and simulations of neuronal fluctuations based upon the connectome. Its particular focus is on patterns or modes of distributed activity that underlie functional connectivity. We first demonstrate that the eigenmodes of functional connectivity – or covariance among regions or nodes – are the same as the eigenmodes of the underlying effective connectivity, provided we limit ourselves to symmetrical connections. This symmetry constraint is motivated by appealing to proximity graphs based upon multidimensional scaling. Crucially, the principal modes of functional connectivity correspond to the dynamically unstable modes of effective connectivity that decay slowly and show long term memory. Technically, these modes have small negative Lyapunov exponents that approach zero from below. Interestingly, the superposition of modes – whose exponents are sampled from a power law distribution – produces classical 1/f (scale free) spectra. We conjecture that the emergence of dynamical instability – that underlies intrinsic brain networks – is inevitable in any system that is separated from external states by a Markov blanket. This conjecture appeals to a free energy formulation of nonequilibrium steady-state dynamics. The common theme that emerges from these theoretical considerations is that endogenous fluctuations are dominated by a small number of dynamically unstable modes. We use this as the basis of a dynamic causal model (DCM) of resting state fluctuations — as measured in terms of their complex cross spectra. In this model, effective connectivity is parameterised in terms of eigenmodes and their Lyapunov exponents — that can also be interpreted as locations in a multidimensional scaling space. Model inversion provides not only estimates of edges or connectivity but also the topography and dimensionality of the underlying scaling space. Here, we focus on conceptual issues with simulated fMRI data and provide an illustrative application using an empirical multi-region timeseries. PMID:24862075</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V53A3063L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V53A3063L"><span>VLP seismicity from resonant modes of acoustic-gravity waves in a conduit-crack system filled with multiphase magma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, C.; Prochnow, B. N.; OReilly, O. J.; Dunham, E. M.; Karlstrom, L.</p> <p>2016-12-01</p> <p>Oscillation of magma in volcanic conduits connected to cracks (dikes and sills) has been suggested as an explanation for very long period (VLP) seismic signals recorded at active basaltic volcanoes such as. Kilauea, Hawaii, and Erebus, Antarctica. We investigate the VLP seismicity using a linearized model for waves in and associated eigenmodes of a coupled conduit-crack system filled with multiphase magma, an extension of the Karlstrom and Dunham (2016) model for acoustic-gravity waves in volcanic conduits. We find that the long period surface displacement (as recorded on broadband seismometers) is dominated by opening/closing of the crack rather than the deformation of the conduit conduit walls. While the fundamental eigenmode is sensitive to the fluid properties and the geometry of the magma plumbing system, a closer scrutiny of various resonant modes reveals that the surface displacement is often more sensitive to higher modes. Here we present a systematic analysis of various long period acoustic-gravity wave resonant modes of a coupled conduit-crack system that the surface displacement is most sensitive to. We extend our previous work on a quasi-one-dimensional conduit model with inviscid magma to a more general axisymmetric conduit model that properly accounts for viscous boundary layers near the conduit walls, based on the numerical method developed by Prochnow et al. (submitted to Computers and Fluids, 2016). The surface displacement is dominated by either the fundamental or higher eigenmodes, depending on magma properties and the geometry of conduit and crack. An examination of the energetics of these modes reveals the complex interplay of different restoring forces (magma compressibility in the conduit, gravity, and elasticity of the crack) driving the VLP oscillations. Both nonequilibrium bubble growth and resorption and viscosity contribute to the damping of VLP signals. Our models thus provide a means to infer properties of open-vent basaltic volcanoes from seismic observations of VLP events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22037045-semi-blind-eigen-analyses-recombination-histories-using-cosmic-microwave-background-data','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22037045-semi-blind-eigen-analyses-recombination-histories-using-cosmic-microwave-background-data"><span>SEMI-BLIND EIGEN ANALYSES OF RECOMBINATION HISTORIES USING COSMIC MICROWAVE BACKGROUND DATA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Farhang, M.; Bond, J. R.; Chluba, J.</p> <p>2012-06-20</p> <p>Cosmological parameter measurements from cosmic microwave background (CMB) experiments, such as Planck, ACTPol, SPTPol, and other high-resolution follow-ons, fundamentally rely on the accuracy of the assumed recombination model or one with well-prescribed uncertainties. Deviations from the standard recombination history might suggest new particle physics or modified atomic physics. Here we treat possible perturbative fluctuations in the free electron fraction, X{sub e}(z), by a semi-blind expansion in densely packed modes in redshift. From these we construct parameter eigenmodes, which we rank order so that the lowest modes provide the most power to probe X{sub e}(z) with CMB measurements. Since the eigenmodesmore » are effectively weighed by the fiducial X{sub e} history, they are localized around the differential visibility peak, allowing for an excellent probe of hydrogen recombination but a weaker probe of the higher redshift helium recombination and the lower redshift highly neutral freezeout tail. We use an information-based criterion to truncate the mode hierarchy and show that with even a few modes the method goes a long way from the fiducial recombination model computed with RECFAST, X{sub e,i}(z), toward the precise underlying history given by the new and improved recombination calculations of COSMOREC or HYREC, X{sub e,f}(z), in the hydrogen recombination regime, though not well in the helium regime. Without such a correction, the derived cosmic parameters are biased. We discuss an iterative approach for updating the eigenmodes to further hone in on X{sub e,f}(z) if large deviations are indeed found. We also introduce control parameters that downweight the attention on the visibility peak structure, e.g., focusing the eigenmode probes more strongly on the X{sub e}(z) freezeout tail, as would be appropriate when looking for the X{sub e} signature of annihilating or decaying elementary particles.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28297930','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28297930"><span>Analysis of spontaneous oscillations for a three-state power-stroke model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Washio, Takumi; Hisada, Toshiaki; Shintani, Seine A; Higuchi, Hideo</p> <p>2017-02-01</p> <p>Our study considers the mechanism of the spontaneous oscillations of molecular motors that are driven by the power stroke principle by applying linear stability analysis around the stationary solution. By representing the coupling equation of microscopic molecular motor dynamics and mesoscopic sarcomeric dynamics by a rank-1 updated matrix system, we derived the analytical representations of the eigenmodes of the Jacobian matrix that cause the oscillation. Based on these analytical representations, we successfully derived the essential conditions for the oscillation in terms of the rate constants of the power stroke and the reversal stroke transitions of the molecular motor. Unlike the two-state model, in which the dependence of the detachment rates on the motor coordinates or the applied forces on the motors plays a key role for the oscillation, our three-state power stroke model demonstrates that the dependence of the rate constants of the power and reversal strokes on the strains in the elastic elements in the motor molecules plays a key role, where these rate constants are rationally determined from the free energy available for the power stroke, the stiffness of the elastic element in the molecular motor, and the working stroke size. By applying the experimentally confirmed values to the free energy, the stiffness, and the working stroke size, our numerical model reproduces well the experimentally observed oscillatory behavior. Furthermore, our analysis shows that two eigenmodes with real positive eigenvalues characterize the oscillatory behavior, where the eigenmode with the larger eigenvalue indicates the transient of the system of the quick sarcomeric lengthening induced by the collective reversal strokes, and the smaller eigenvalue correlates with the speed of sarcomeric shortening, which is much slower than lengthening. Applying the perturbation analyses with primal physical parameters, we find that these two real eigenvalues occur on two branches derived from a merge point of a pair of complex-conjugate eigenvalues generated by Hopf bifurcation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.1086D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.1086D"><span>Control of ULF Wave Accessibility to the Inner Magnetosphere by the Convection of Plasma Density</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Degeling, A. W.; Rae, I. J.; Watt, C. E. J.; Shi, Q. Q.; Rankin, R.; Zong, Q.-G.</p> <p>2018-02-01</p> <p>During periods of storm activity and enhanced convection, the plasma density in the afternoon sector of the magnetosphere is highly dynamic due to the development of plasmaspheric drainage plume (PDP) structure. This significantly affects the local Alfvén speed and alters the propagation of ULF waves launched from the magnetopause. Therefore, it can be expected that the accessibility of ULF wave power for radiation belt energization is sensitively dependent on the recent history of magnetospheric convection and the stage of development of the PDP. This is investigated using a 3-D model for ULF waves within the magnetosphere in which the plasma density distribution is evolved using an advection model for cold plasma, driven by a (VollandStern) convection electrostatic field (resulting in PDP structure). The wave model includes magnetic field day/night asymmetry and extends to a paraboloid dayside magnetopause, from which ULF waves are launched at various stages during the PDP development. We find that the plume structure significantly alters the field line resonance location, and the turning point for MHD fast waves, introducing strong asymmetry in the ULF wave distribution across the noon meridian. Moreover, the density enhancement within the PDP creates a waveguide or local cavity for MHD fast waves, such that eigenmodes formed allow the penetration of ULF wave power to much lower L within the plume than outside, providing an avenue for electron energization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25216625','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25216625"><span>Research on bandgaps in two-dimensional phononic crystal with two resonators.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gao, Nansha; Wu, Jiu Hui; Yu, Lie</p> <p>2015-02-01</p> <p>In this paper, the bandgap properties of a two-dimensional phononic crystal with the two resonators is studied and embedded in a homogenous matrix. The resonators are not connected with the matrix but linked with connectors directly. The dispersion relationship, transmission spectra, and displacement fields of the eigenmodes of this phononic crystal are studied with finite-element method. In contrast to the phononic crystals with one resonators and hollow structure, the proposed structures with two resonators can open bandgaps at lower frequencies. This is a very interesting and useful phenomenon. Results show that, the opening of the bandgaps is because of the local resonance and the scattering interaction between two resonators and matrix. An equivalent spring-pendulum model can be developed in order to evaluate the frequencies of the bandgap edge. The study in this paper is beneficial to the design of opening and tuning bandgaps in phononic crystals and isolators in low-frequency range. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12513388','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12513388"><span>Wave chaos in the elastic disk.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sondergaard, Niels; Tanner, Gregor</p> <p>2002-12-01</p> <p>The relation between the elastic wave equation for plane, isotropic bodies and an underlying classical ray dynamics is investigated. We study, in particular, the eigenfrequencies of an elastic disk with free boundaries and their connection to periodic rays inside the circular domain. Even though the problem is separable, wave mixing between the shear and pressure component of the wave field at the boundary leads to an effective stochastic part in the ray dynamics. This introduces phenomena typically associated with classical chaos as, for example, an exponential increase in the number of periodic orbits. Classically, the problem can be decomposed into an integrable part and a simple binary Markov process. Similarly, the wave equation can, in the high-frequency limit, be mapped onto a quantum graph. Implications of this result for the level statistics are discussed. Furthermore, a periodic trace formula is derived from the scattering matrix based on the inside-outside duality between eigenmodes and scattering solutions and periodic orbits are identified by Fourier transforming the spectral density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21428487','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21428487"><span>A coupled modal-finite element method for the wave propagation modeling in irregular open waveguides.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pelat, Adrien; Felix, Simon; Pagneux, Vincent</p> <p>2011-03-01</p> <p>In modeling the wave propagation within a street canyon, particular attention must be paid to the description of both the multiple reflections of the wave on the building facades and the radiation in the free space above the street. The street canyon being considered as an open waveguide with a discontinuously varying cross-section, a coupled modal-finite element formulation is proposed to solve the three-dimensional wave equation within. The originally open configuration-the street canyon open in the sky above-is artificially turned into a close waveguiding structure by using perfectly matched layers that truncate the infinite sky without introducing numerical reflection. Then the eigenmodes of the resulting waveguide are determined by a finite element method computation in the cross-section. The eigensolutions can finally be used in a multimodal formulation of the wave propagation along the canyon, given its geometry and the end conditions at its extremities: initial field condition at the entrance and radiation condition at the output. © 2011 Acoustical Society of America</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApPhL.112b1901W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApPhL.112b1901W"><span>Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Xiaole; Luo, Xudong; Zhao, Hui; Huang, Zhenyu</p> <p>2018-01-01</p> <p>We report the mechanism for simultaneous realization of acoustic perfect absorption (PA) and broadband insulation (BI) in the acoustic free field by a layered acoustic metamaterial (LAM). The proposed LAM comprises two critically coupled membrane-type acoustic metamaterials sandwiching a porous material layer. Both theoretical and experimental results verify that the proposed LAM sample can achieve nearly PA (98.4% in experiments) at 312 Hz with a thickness of 15 mm (1/73 of wavelength) and BI in the frequency range of 200-1000 Hz with an areal density of 2.2 kg/m2. In addition, the real parts of both the effective dynamic density and bulk modulus reach zero precisely at the critical frequency of 312 Hz, arising from the monopolar eigenmode of LAM. Our work advances the concept of synthetic design of sound absorption and insulation properties of multi-impedance-coupled acoustic systems and promotes membrane-type acoustic metamaterials to more practical engineering applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhLA..380.3326G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhLA..380.3326G"><span>Design of radial phononic crystal using annular soft material with low-frequency resonant elastic structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Xin, Hang</p> <p>2016-10-01</p> <p>Using FEM, we theoretically study the vibration properties of radial phononic crystal (RPC) with annular soft material. The band structures, transmission spectra, and displacement fields of eigenmode are given to estimate the starting and cut-off frequency of band gaps. Numerical calculation results show that RPC with annular soft material can yield low-frequency band gaps below 350 Hz. Annular soft material decreases equivalent stiffness of the whole structure effectively, and makes corresponding band gaps move to the lower frequency range. Physical mechanism behind band gaps is the coupling effect between long or traveling wave in plate matrix and the vibrations of corrugations. By changing geometrical dimensions of plate thickness e, the length of silicone rubber h2, and the corrugation width b, we can control the location and width of the first band gap. These research conclusions of RPC structure with annular soft material can potentially be applied to optimize band gaps, generate filters, and design acoustic devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002PhyU...45..235P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002PhyU...45..235P"><span>REVIEWS OF TOPICAL PROBLEMS: Transition radiation in media with random inhomogeneities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Platonov, Konstantin Yu; Fleishman, G. D.</p> <p>2002-03-01</p> <p>This review analyzes radiation produced by randomly inhomogeneous media excited by fast particles — i.e., polarization bremsstrahlung for thermodynamically equilibrium inhomogeneities or transition radiation for nonthermal ones — taking into account all the effects important for natural sources. Magnetic field effects on both the motion of fast particles and the dispersion of background plasma are considered, and the multiple scattering of fast particles in the medium is examined. Various resonant effects occurring under the conditions of Cherenkov (or cyclotron) emission for a particular eigenmode are discussed. The transition radiation intensity and absorption (amplification) coefficients are calculated for ensembles of fast particles with realistic distributions over momentum and angles. The value of the developed theory of transition radiation is illustrated by applying it to astrophysical objects. Transition radiation is shown to contribute significantly to the radio emission of the Sun, planets (including Earth), and interplanetary and interstellar media. Possible further applications of transition radiation (particularly stimulated) are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930005154','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930005154"><span>Extensive lava flow fields on Venus: Preliminary investigation of source elevation and regional slope variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Magee-Roberts, K.; Head, James W., III; Lancaster, M. G.</p> <p>1992-01-01</p> <p>Large-volume lava flow fields have been identified on Venus, the most areally extensive of which are known as fluctus and have been subdivided into six morphologic types. Sheetlike flow fields (Type 1) lack the numerous, closely spaced, discrete lava flow lobes that characterize digitate flow fields. Transitional flow fields (Type 2) are similar to sheetlike flow fields but contain one or more broad flow lobes. Digitate flow fields are divided further into divergent (Types 3-5) and subparallel (Type 6) classes on the basis of variations in the amount of downstream flow divergence. As a result of our previous analysis of the detailed morphology, stratigraphy, and tectonic associations of Mylitta Fluctus, we have formulated a number of questions to apply to all large flow fields on Venus. In particular, we would like to address the following: (1) eruption conditions and style of flow emplacement (effusion rate, eruption duration), (2) the nature of magma storage zones (presence of neutral buoyancy zones, deep or shallow crustal magma chambers), (3) the origin of melt and possible link to mantle plumes, and (4) the importance of large flow fields in plains evolution. To answer these questions we have begun to examine variations in flow field dimension and morphology; the distribution of large flow fields in terms of elevation above the mean planetary radius; links to regional tectonic or volcanic structures (e.g., associations with large shield edifices, coronae, or rift zones); statigraphic relationships between large flow fields, volcanic plains, shields, and coronae; and various models of flow emplacement in order to estimate eruption parameters. In this particular study, we have examined the proximal elevations and topographic slopes of 16 of the most distinctive flow fields that represent each of the 6 morphologic types.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvA..96e3845Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvA..96e3845Y"><span>Anti-PT symmetry in dissipatively coupled optical systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Fan; Liu, Yong-Chun; You, Li</p> <p>2017-11-01</p> <p>We show that anti-PT symmetry can be realized in dissipatively coupled optical systems. Its emergence gives rise to spontaneous phase transitions for the guided and localized photonic eigenmodes in the waveguide and cavity systems studied, respectively. As a ubiquitous feature we demonstrate that constant refraction [analogous to unit refraction in [Nat. Phys. 12, 1139 (2016), 10.1038/nphys3842</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1240265-continuum-absorption-vicinity-toroidicity-induced-alfven-gap','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1240265-continuum-absorption-vicinity-toroidicity-induced-alfven-gap"><span>Continuum absorption in the vicinity of the toroidicity-induced Alfvén gap</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Li, M.; Breizman, B. N.; Zheng, L. J.; ...</p> <p>2015-12-04</p> <p>Excitation of Alfvén modes is commonly viewed as a concern for energetic particle confinement in burning plasmas. The 3.5 MeValpha particles produced by fusion may be affected as well as other fast ions in both present and future devices. Continuum damping of such modes is one of the key factors that determine their excitation thresholds and saturation levels. This work examines the resonant dissipative response of the Alfvén continuum to an oscillating driving current when the driving frequency is slightly outside the edges of the toroidicity-induced spectral gap. The problem is largely motivated by the need to describe the continuummore » absorption in the frequency sweeping events. Akey element of this problem is the negative interference of the two closely spaced continuum crossing points.Weexplain why the lower and upper edges of the gap can have very different continuum absorption features. Lastly, the difference is associated with an eigenmode whose frequency can be arbitrarily close to the upper edge of the gap whereas the lower edge of the gap is always a finite distance away from the closest eigenmode.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPG11101T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPG11101T"><span>Experimental investigation of stability, frequency and toroidal mode number of compressional Alfvén eigenmodes in DIII-D</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, S.; Thome, K.; Pace, D.; Heidbrink, W. W.; Carter, T. A.; Crocker, N. A.; NSTX-U Collaboration; DIII-D Collaboration</p> <p>2017-10-01</p> <p>An experimental investigation of the stability of Doppler-shifted cyclotron resonant compressional Alfvén eigenmodes (CAE) using the flexible DIII-D neutral beams has begun to validate a theoretical understanding and realize the CAE's diagnostic potential. CAEs are excited by energetic ions from neutral beams [Heidbrink, NF 2006], with frequencies and toroidal mode numbers sensitive to the fast-ion phase space distribution, making them a potentially powerful passive diagnostic. The experiment also contributes to a predictive capability for spherical tokamak temperature profiles, where CAEs may play a role in energy transport [Crocker, NF 2013]. CAE activity was observed using the recently developed Ion Cyclotron Emission diagnostic-high bandwidth edge magnetic sensors sampled at 200 MS/s. Preliminary results show CAEs become unstable in BT ramp discharges below a critical threshold in the range 1.7 - 1.9 T, with the exact value increasing as density increases. The experiment will be used to validate simulations from relevant codes such as the Hybrid MHD code [Belova, PRL 2015]. This work was supported by US DOE Grants DE-SC0011810 and DE-FC02-04ER54698.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPN11002P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPN11002P"><span>Tornado-like transport in a magnetized plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poulos, Matthew; van Compernolle, Bart; Morales, George</p> <p>2017-10-01</p> <p>Recent heat transport experiments conducted in the LAPD device at UCLA in which avalanche events have been previously documented have also lead to the identification of a new tornado-like transport phenomenon. These tornados occur much earlier than the avalanches events, essentially in the interval following the application of the bias voltage that causes the injection of an electron beam from a ring-shaped LaB6 cathode into the afterglow of a cold, magnetized plasma. The tornados exhibit a low-frequency (4 kHz) (much lower than drift-waves), spiraling, global eigenmode whose transient behavior is responsible for significant radial transport well outside the heated region. Detailed experimental observations are compared with a Braginskii transport code that includes the effects of ExB convection induced by the spiraling global eigenmode. New insights are gained into the necessary modifications of classical transport to accurately simulate the spiraling effects and the possible interaction with avalanches. This work is supported by the NSF/DOE partnership in basic plasma science and engineering, Grant Number 1619505, and is performed at the Basic Plasma Science Facility, sponsored jointly by DOE and NSF. Sponsored by DOE/NSF at BaPSF and NSF 1619505.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DPPNO6005S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DPPNO6005S"><span>Capabilities of Fully Parallelized MHD Stability Code MARS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang</p> <p>2016-10-01</p> <p>Results of full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. Parallel version of MARS, named PMARS, has been recently developed at FAR-TECH. Parallelized MARS is an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, implemented in MARS. Parallelization of the code included parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse vector iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the MARS algorithm using parallel libraries and procedures. Parallelized MARS is capable of calculating eigenmodes with significantly increased spatial resolution: up to 5,000 adapted radial grid points with up to 500 poloidal harmonics. Such resolution is sufficient for simulation of kink, tearing and peeling-ballooning instabilities with physically relevant parameters. Work is supported by the U.S. DOE SBIR program.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NucFu..58d6019Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NucFu..58d6019Z"><span>Nonlinear dynamics of toroidal Alfvén eigenmodes in the presence of tearing modes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, J.; Ma, Z. W.; Wang, S.; Zhang, W.</p> <p>2018-04-01</p> <p>A hybrid simulation is carried out to study nonlinear dynamics of n  =  1 toroidal Alfvén eigenmodes (TAEs) with the m/n  =  2/1 tearing mode. It is found that the n  =  1 TAE is first excited by isotropic energetic particles at the linear stage and reaches the first steady state due to wave-particle interaction. After the saturation of the n  =  1 TAE, the m/n  =  2/1 tearing mode grows continuously and reaches its steady state due to nonlinear mode-mode coupling, especially, the n  =  0 component plays a very important role in the tearing mode saturation. The results suggest that the enhancement of the tearing mode activity with increase of the resistivity could weaken the TAE frequency chirping through the interaction between the p  =  1 TAE resonance and the p  =  2 tearing mode resonance for passing particles in the phase space, which is opposite to the classical physical picture of the TAE frequency chirping that is enhanced with dissipation increase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG21A0149T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG21A0149T"><span>The Coupling between Earth's Inertial and Rotational Eigenmodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Triana, S. A.; Rekier, J.; Trinh, A.; Laguerre, R.; Zhu, P.; Dehant, V. M. A.</p> <p>2017-12-01</p> <p>Wave motions in the Earth's fluid core, supported by the restoring action of both buoyancy (within the stably stratified top layer) and the Coriolis force, lead to the existence of global oscillation modes, the so-called gravito-inertial modes. These fluid modes can couple with the rotational modes of the Earth by exerting torques on the mantle and the inner core. Viscous shear stresses at the fluid boundaries, along with pressure and gravitation, contribute to the overall torque balance. Previous research by Rogister & Valette (2009) suggests that indeed rotational and gravito-inertial modes are coupled, thus shifting the frequencies of the Chandler Wobble (CW), the Free Core Nutation (FCN) and the Free Inner Core Nutation (FICN). Here we present the first results from a numerical model of the Earth's fluid core and its interaction with the rotational eigenmodes. In this first step we consider a fluid core without a solid inner core and we restrict to ellipticities of the same order as the Ekman number. We formulate the problem as a generalised eigenvalue problem that solves simultaneously the Liouville equation for the rotational modes (the torque balance), and the Navier-Stokes equation for the inertial modes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..DPPJP9155W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..DPPJP9155W"><span>Numerical and analytic models of spontaneous frequency sweeping for energetic particle-driven Alfven eigenmodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Ge; Berk, H. L.</p> <p>2011-10-01</p> <p>The frequency chirping signal arising from spontaneous a toroidial Alfven eigenmode (TAE) excited by energetic particles is studied for both numerical and analytic models. The time-dependent numerical model is based on the 1D Vlasov equation. We use a sophisticated tracking method to lock onto the resonant structure to enable the chirping frequency to be nearly constant in the calculation frame. The accuracy of the adiabatic approximation is tested during the simulation which justifies the appropriateness of our analytic model. The analytic model uses the adiabatic approximation which allows us to solve the wave evolution equation in frequency space. Then, the resonant interactions between energetic particles and TAE yield predictions for the chirping rate, wave frequency and amplitudes vs. time. Here, an adiabatic invariant J is defined on the separatrix of a chirping mode to determine the region of confinement of the wave trapped distribution function. We examine the asymptotic behavior of the chirping signal for its long time evolution and find agreement in essential features with the results of the simulation. Work supported by Department of Energy contract DE-FC02-08ER54988.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23231095','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23231095"><span>Large scale modulation of high frequency acoustic waves in periodic porous media.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boutin, Claude; Rallu, Antoine; Hans, Stephane</p> <p>2012-12-01</p> <p>This paper deals with the description of the modulation at large scale of high frequency acoustic waves in gas saturated periodic porous media. High frequencies mean local dynamics at the pore scale and therefore absence of scale separation in the usual sense of homogenization. However, although the pressure is spatially varying in the pores (according to periodic eigenmodes), the mode amplitude can present a large scale modulation, thereby introducing another type of scale separation to which the asymptotic multi-scale procedure applies. The approach is first presented on a periodic network of inter-connected Helmholtz resonators. The equations governing the modulations carried by periodic eigenmodes, at frequencies close to their eigenfrequency, are derived. The number of cells on which the carrying periodic mode is defined is therefore a parameter of the modeling. In a second part, the asymptotic approach is developed for periodic porous media saturated by a perfect gas. Using the "multicells" periodic condition, one obtains the family of equations governing the amplitude modulation at large scale of high frequency waves. The significant difference between modulations of simple and multiple mode are evidenced and discussed. The features of the modulation (anisotropy, width of frequency band) are also analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARH35010T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARH35010T"><span>Theoretical ecology without species</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tikhonov, Mikhail</p> <p></p> <p>The sequencing-driven revolution in microbial ecology demonstrated that discrete ``species'' are an inadequate description of the vast majority of life on our planet. Developing a novel theoretical language that, unlike classical ecology, would not require postulating the existence of species, is a challenge of tremendous medical and environmental significance, and an exciting direction for theoretical physics. Here, it is proposed that community dynamics can be described in a naturally hierarchical way in terms of population fluctuation eigenmodes. The approach is applied to a simple model of division of labor in a multi-species community. In one regime, effective species with a core and accessory genome are shown to naturally appear as emergent concepts. However, the same model allows a transition into a regime where the species formalism becomes inadequate, but the eigenmode description remains well-defined. Treating a community as a black box that expresses enzymes in response to resources reveals mathematically exact parallels between a community and a single coherent organism with its own fitness function. This coherence is a generic consequence of division of labor, requires no cooperative interactions, and can be expected to be widespread in microbial ecosystems. Harvard Center of Mathematical Sciences and Applications;John A. Paulson School of Engineering and Applied Sciences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5025843','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5025843"><span>Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas</p> <p>2016-01-01</p> <p>We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids. PMID:27633351</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998APS..DPP.Q7S06H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998APS..DPP.Q7S06H"><span>Simulation of mode converted ion Bernstein wave - beam deuteron interactions on TFTR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herrmann, Mark; Fisch, Nathaniel</p> <p>1998-11-01</p> <p>Experiments on TFTR have documented strong interactions between mode converted ion Bernstein waves (MCIBW) and beam deuterons(D. S. Darrow et al.), Nucl. Fusion 36, 509 (1996).^,(N. J. Fisch et al.), IAEA, Vol. 1, p. 271 (1996). This is of particular interest in the study of α channelling, since the most promising scenarios(M. C. Herrmann and N. J. Fisch, Phys. Rev. Lett. 79), 1495 (1997). rely on a suitable combination of MCIBW and Alfvén eigenmodes to achieve the cooling of the α particles. Collisional effects, realistic wave fields, and a detailed model of the wave-particle interaction have been added to the Monte Carlo simulations which are used to simulate α channelling in order to model TFTR experiments(M. C. Herrmann, Ph.D. thesis, Princeton University, 1998.). The results are found to be in qualitative agreement with the data. In addition, the simulation is used, in conjunction with the data, to demonstrate the existence of the k_\\|-flip of the MCIBW, and to infer a diffusion coefficient for the beam deuterons interacting with the wave. This diffusion coefficient significantly exceeds what would be expected on the basis of quasilinear theory with the fields specified by 1 D ray tracing of the MCIBW.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880043939&hterms=soup&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsoup','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880043939&hterms=soup&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsoup"><span>On the relation between photospheric flow fields and the magnetic field distribution on the solar surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Simon, George W.; Title, A. M.; Topka, K. P.; Tarbell, T. D.; Shine, R. A.</p> <p>1988-01-01</p> <p>Using the technique of local correlation tracking on a 28 minute time sequence of white-light images of solar granulation, the horizontal flow field on the solar surface is measured. The time series was obtained by the Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 (Space Shuttle flight 51-F) and is free from atmospheric blurring and distortion. The SOUP flow fields have been compared with carefully aligned magnetograms taken over a nine hour period at the Big Bear Solar Observatory before, during, and after the SOUP images. The flow field and the magnetic field agree in considerable detail: vectors which define the flow of the white-light intensity pattern (granulation) point toward magnetic field regions, magnetic fields surround flow cells, and magnetic features move along the flow arrows. The projected locations of free particles ('corks') in the measured flow field congregate at the same locations where the magnetic field is observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940014083','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940014083"><span>Several examples where turbulence models fail in inlet flow field analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, Bernhard H.</p> <p>1993-01-01</p> <p>Computational uncertainties in turbulence modeling for three dimensional inlet flow fields include flows approaching separation, strength of secondary flow field, three dimensional flow predictions of vortex liftoff, and influence of vortex-boundary layer interactions; computational uncertainties in vortex generator modeling include representation of generator vorticity field and the relationship between generator and vorticity field. The objectives of the inlet flow field studies presented in this document are to advance the understanding, prediction, and control of intake distortion and to study the basic interactions that influence this design problem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPS...365..419K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPS...365..419K"><span>Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Jinyong; Luo, Gang; Wang, Chao-Yang</p> <p>2017-10-01</p> <p>3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.1969T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.1969T"><span>Observation and Numerical Simulation of Cavity Mode Oscillations Excited by an Interplanetary Shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, Kazue; Lysak, Robert; Vellante, Massimo; Kletzing, Craig A.; Hartinger, Michael D.; Smith, Charles W.</p> <p>2018-03-01</p> <p>Cavity mode oscillations (CMOs) are basic magnetohydrodynamic eigenmodes in the magnetosphere predicted by theory and are expected to occur following the arrival of an interplanetary shock. However, observational studies of shock-induced CMOs have been sparse. We present a case study of a dayside ultralow-frequency wave event that exhibited CMO properties. The event occurred immediately following the arrival of an interplanetary shock at 0829 UT on 15 August 2015. The shock was observed in the solar wind by the Time History of Events and Macroscale Interactions during Substorms-B and -C spacecraft, and magnetospheric ultralow-frequency waves were observed by multiple spacecraft including the Van Allen Probe-A and Van Allen Probe-B spacecraft, which were located in the dayside plasmasphere at L ˜1.4 and L ˜ 2.4, respectively. Both Van Allen Probes spacecraft detected compressional poloidal mode oscillations at ˜13 mHz (fundamental) and ˜26 mHz (second harmonic). At both frequencies, the azimuthal component of the electric field (Eϕ) lagged behind the compressional component of the magnetic field (Bμ) by ˜90°. The frequencies and the Eϕ-Bμ relative phase are in good agreement with the CMOs generated in a dipole magnetohydrodynamic simulation that incorporates a realistic plasma mass density distribution and ionospheric boundary condition. The oscillations were also detected on the ground by the European quasi-Meridional Magnetometer Array, which was located near the magnetic field footprints of the Van Allen Probes spacecraft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22113418-general-formulation-magnetohydrodynamic-wave-propagation-fire-hose-mirror-instabilities-harris-type-current-sheets','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22113418-general-formulation-magnetohydrodynamic-wave-propagation-fire-hose-mirror-instabilities-harris-type-current-sheets"><span>General formulation for magnetohydrodynamic wave propagation, fire-hose, and mirror instabilities in Harris-type current sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hau, L.-N.; Department of Physics, National Central University, Jhongli, Taiwan; Lai, Y.-T.</p> <p></p> <p>Harris-type current sheets with the magnetic field model of B-vector=B{sub x}(z)x-caret+B{sub y}(z)y-caret have many important applications to space, astrophysical, and laboratory plasmas for which the temperature or pressure usually exhibits the gyrotropic form of p{r_reversible}=p{sub Parallel-To }b-caretb-caret+p{sub Up-Tack }(I{r_reversible}-b-caretb-caret). Here, p{sub Parallel-To} and p{sub Up-Tack} are, respectively, to be the pressure component along and perpendicular to the local magnetic field, b-caret=B-vector/B. This study presents the general formulation for magnetohydrodynamic (MHD) wave propagation, fire-hose, and mirror instabilities in general Harris-type current sheets. The wave equations are expressed in terms of the four MHD characteristic speeds of fast, intermediate, slow, and cuspmore » waves, and in the local (k{sub Parallel-To },k{sub Up-Tack },z) coordinates. Here, k{sub Parallel-To} and k{sub Up-Tack} are, respectively, to be the wave vector along and perpendicular to the local magnetic field. The parameter regimes for the existence of discrete and resonant modes are identified, which may become unstable at the local fire-hose and mirror instability thresholds. Numerical solutions for discrete eigenmodes are shown for stable and unstable cases. The results have important implications for the anomalous heating and stability of thin current sheets.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvL.114t4801B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvL.114t4801B"><span>Observation of Wakefields and Resonances in Coherent Synchrotron Radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Billinghurst, B. E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; Dallin, L.; May, T. E.; Vogt, J. M.; Wurtz, W. A.; Warnock, R.; Bizzozero, D. A.; Kramer, S.</p> <p>2015-05-01</p> <p>We report on high resolution measurements of resonances in the spectrum of coherent synchrotron radiation (CSR) at the Canadian Light Source (CLS). The resonances permeate the spectrum at wave number intervals of 0.074 cm-1 , and are highly stable under changes in the machine setup (energy, bucket filling pattern, CSR in bursting or continuous mode). Analogous resonances were predicted long ago in an idealized theory as eigenmodes of a smooth toroidal vacuum chamber driven by a bunched beam moving on a circular orbit. A corollary of peaks in the spectrum is the presence of pulses in the wakefield of the bunch at well-defined spatial intervals. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber, which has a fluted form much different from a smooth torus. The wakefield is observed directly in the 30-110 GHz range by rf diodes, and indirectly by an interferometer in the THz range. The wake pulse sequence found by diodes is less regular than in the toroidal model, and depends on the point of observation, but is accounted for in a simulation of fields in the fluted chamber. Attention is paid to polarization of the observed fields, and possible coherence of fields produced in adjacent bending magnets. Low frequency wakefield production appears to be mainly local in a single bend, but multibend effects cannot be excluded entirely, and could play a role in high frequency resonances. New simulation techniques have been developed, which should be invaluable in further work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BVol...75..697V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BVol...75..697V"><span>Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vye-Brown, C.; Self, S.; Barry, T. L.</p> <p>2013-03-01</p> <p>The physical features and morphologies of collections of lava bodies emplaced during single eruptions (known as flow fields) can be used to understand flood basalt emplacement mechanisms. Characteristics and internal features of lava lobes and whole flow field morphologies result from the forward propagation, radial spread, and cooling of individual lobes and are used as a tool to understand the architecture of extensive flood basalt lavas. The features of three flood basalt flow fields from the Columbia River Basalt Group are presented, including the Palouse Falls flow field, a small (8,890 km2, ˜190 km3) unit by common flood basalt proportions, and visualized in three dimensions. The architecture of the Palouse Falls flow field is compared to the complex Ginkgo and more extensive Sand Hollow flow fields to investigate the degree to which simple emplacement models represent the style, as well as the spatial and temporal developments, of flow fields. Evidence from each flow field supports emplacement by inflation as the predominant mechanism producing thick lobes. Inflation enables existing lobes to transmit lava to form new lobes, thus extending the advance and spread of lava flow fields. Minimum emplacement timescales calculated for each flow field are 19.3 years for Palouse Falls, 8.3 years for Ginkgo, and 16.9 years for Sand Hollow. Simple flow fields can be traced from vent to distal areas and an emplacement sequence visualized, but those with multiple-layered lobes present a degree of complexity that make lava pathways and emplacement sequences more difficult to identify.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70170890','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70170890"><span>The morphology and evolution of the Stromboli 2002-2003 lava flow field--An example of a basaltic flow field emplaced on a steep slope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lodato, Luigi; Harris, A.; Spampinato, L.; Calvari, Sonia; Dehn, J.; Patrick, M.</p> <p>2007-01-01</p> <p>The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890015306','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890015306"><span>Development of higher-order modal methods for transient thermal and structural analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Camarda, Charles J.; Haftka, Raphael T.</p> <p>1989-01-01</p> <p>A force-derivative method which produces higher-order modal solutions to transient problems is evaluated. These higher-order solutions converge to an accurate response using fewer degrees-of-freedom (eigenmodes) than lower-order methods such as the mode-displacement or mode-acceleration methods. Results are presented for non-proportionally damped structural problems as well as thermal problems modeled by finite elements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/534414-transverse-mode-astigmatism-diode-pumped-unstable-resonator-nd-yvo-sub-laser','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/534414-transverse-mode-astigmatism-diode-pumped-unstable-resonator-nd-yvo-sub-laser"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cheng, Y.; Fanning, C.G.; Siegman, A.E.</p> <p></p> <p>We have observed a sizable astigmatism in the output beam from a diode-pumped unstable resonator Nd:YVO{sub 4} laser operating in a single polarization and a single-longitudinal and transverse mode. The anisotropic index of refraction of the vanadate crystal has been identified as the source of this astigmatism. A theoretical prediction of the eigenmode astigmatism based on this index anisotropy is consistent with our experimental measurements. {copyright} 1997 Optical Society of America</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JSMTE..11..008B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JSMTE..11..008B"><span>Semiflexible polymer dynamics with a bead-spring model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barkema, Gerard T.; Panja, Debabrata; van Leeuwen, J. M. J.</p> <p>2014-11-01</p> <p>We study the dynamical properties of semiflexible polymers with a recently introduced bead-spring model. We focus on double-stranded DNA (dsDNA). The two parameters of the model, T* and ν, are chosen to match its experimental force-extension curve. In comparison to its groundstate value, the bead-spring Hamiltonian is approximated in the first order by the Hessian that is quadratic in the bead positions. The eigenmodes of the Hessian provide the longitudinal (stretching) and transverse (bending) eigenmodes of the polymer, and the corresponding eigenvalues match well with the established phenomenology of semiflexible polymers. At the Hessian approximation of the Hamiltonian, the polymer dynamics is linear. Using the longitudinal and transverse eigenmodes, for the linearized problem, we obtain analytical expressions of (i) the autocorrelation function of the end-to-end vector, (ii) the autocorrelation function of a bond (i.e. a spring, or a tangent) vector at the middle of the chain, and (iii) the mean-square displacement of a tagged bead in the middle of the chain, as the sum over the contributions from the modes—the so-called ‘mode sums’. We also perform simulations with the full dynamics of the model. The simulations yield numerical values of the correlations functions (i-iii) that agree very well with the analytical expressions for the linearized dynamics. This does not however mean that the nonlinearities are not present. In fact, we also study the mean-square displacement of the longitudinal component of the end-to-end vector that showcases strong nonlinear effects in the polymer dynamics, and we identify at least an effective t7/8 power-law regime in its time-dependence. Nevertheless, in comparison to the full mean-square displacement of the end-to-end vector the nonlinear effects remain small at all times—it is in this sense we state that our results demonstrate that the linearized dynamics suffices for dsDNA fragments that are shorter than or comparable to the persistence length. Our results are consistent with those of the wormlike chain (WLC) model, the commonly used descriptive tool of semiflexible polymers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NucFu..58d6016Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NucFu..58d6016Y"><span>Toroidal Alfvén eigenmode triggered by trapped anisotropic energetic particles in a toroidal resistive plasma with free boundary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, S. X.; Hao, G. Z.; Liu, Y. Q.; Wang, Z. X.; Hu, Y. J.; Zhu, J. X.; He, H. D.; Wang, A. K.</p> <p>2018-04-01</p> <p>The toroidal Alfvén eigenmode (TAE), excited by trapped energetic particles (EPs), is numerically investigated in a tokamak plasma, using the non-perturbative magnetohydrodynamic-kinetic hybrid formulation based MARS-K code (Liu et al 2008 Phys. Plasmas 15 112503). Compared with the fixed boundary condition at the plasma edge, a free boundary enhances the critical value of the EPs kinetic contribution for driving the TAE. Free boundary also induces finite perturbations at the plasma edge as expected. An anisotropic distribution of EPs, in the particle pitch angle space, strongly enhances the instability and results in a more global mode structure, compared with the isotropic case. The plasma resistivity is also found to play a role in the EPs-destabilized TAE. In particular, the mode stability domain is mapped out, in the 2D parameter space of the plasma resistivity and a quantity defining the width of the particle distribution in pitch angle (for anisotropic distribution). A resonance layer in the poloidal mode structure, with the layer width increasing with the plasma resistivity, appears at the large width of the particle distribution in pitch angle space. A mode conversion, from the modified ideal kink by the EPs kinetic effect to the TAE, is also observed while increasing the birth energy of EPs. Computational results suggest that the TAE mode structure can be modified by certain key plasma parameters, such as the EPs kinetic contribution, the equilibrium pressure, the plasma resistivity, the distribution of EPs, as well as the birth energy of EPs. Such modification of the eigenmode structure can only be obtained following the non-perturbative hybrid approach (Wang et al 2013 Phys. Rev. Lett. 111 145003, Wang et al 2015 Phys. Plasmas 22 022509), as adopted in this study. More importantly, numerical results show that near the marginal stability point, the dominant poloidal harmonics of the TAE overlap with each other, and are localized at the tip positions of the Alfvén continua. This kind of TAE structure in high beta plasma with unstable ideal kink is substantially different from that of the conventional TAE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.V14A..05D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.V14A..05D"><span>Flow Fields of the 3.5 Ga Komati Formation, South Africa: Geochemical, Stratigraphic, and Temporal relationships between Massive, Vesicular, and Spinifex flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dann, J. C.</p> <p>2007-12-01</p> <p>A challenge of Archean volcanology is to reconstruct submarine flow fields by mapping and analyzing vertically dipping sequences of lavas. Some flow fields are bound by sediments and/or seafloor alteration that mark clear gaps in volcanism. Flow fields in the Lower Komati Fm are defined by alternating layers of komatiite (26% MgO) and komatiitic basalt (15% MgO). Five komatiite flow fields (100-200m thick) repeat the same stratigraphic zoning of spinifex overlying massive komatiite, and each flow field has a distinct Al2O3/CaO, a ratio unaffected by olivine fractionation, consistent with the contention that each komatiite flow field represents a distinct batch of mantle melting. Although massive and spinifex komatiite form distinct stratigraphic units on a map scale, detailed outcrop mapping reveals that the change in flow type represents a transition within a single flow field. In one type of transition, thin massive flows alternate with spinifex flow lobes of a compound flow unit. In another, a vesicular flow along the boundary links the underlying massive komatiite and overlying spinifex flows in time. The vesicular flow has alternating spinifex and vesicular layers that form a distinctive crust above a thick massive interior. Locally, this crust is tilted, intruded by massive komatiite from the interior, and overlain by a thick breccia including a spinifex flow broken into blocks and rotated like dominoes by the tilting. These outcrop relations indicate that spinifex flow lobes were starting to flow over the vesicular flow before it had undergone differential inflation, a temporal link between the lower massive and upper spinifex komatiites consistent with their belonging to the same flow field. The transition in flow type may reflect 1) an overlap of proximal and distal facies of komatiite flows as eruption rates waned and/or 2) thermal maturation prior to eruption. Early, cooler, crystal-rich, massive lava, flowing out as thick sheet flows, was replaced by hotter, crystal-poor, less degassed lava, flowing out as spinifex flows.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA282019','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA282019"><span>On the Relation between Photospheric Flow Fields and the Magnetic Field Distribution on the Solar Surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-04-15</p> <p>granules typically last 10-15 minutes. measure- the divergence of the flow field, and (d) the SOUP flow field muerts must be made in a time short...the magnetograms and ary. If so, the random-walk diffusion of magnetic field dii- AV . I, I68 PHOTOSPIIERIC FLOW FIELDS ON SOLAR SURFACE 967 0011 cussd</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JMiMi..21j4012W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JMiMi..21j4012W"><span>Design, fabrication and testing of an air-breathing micro direct methanol fuel cell with compound anode flow field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Luwen; Zhang, Yufeng; Zhao, Youran; An, Zijiang; Zhou, Zhiping; Liu, Xiaowei</p> <p>2011-10-01</p> <p>An air-breathing micro direct methanol fuel cell (μDMFC) with a compound anode flow field structure (composed of the parallel flow field and the perforated flow field) is designed, fabricated and tested. To better analyze the effect of the compound anode flow field on the mass transfer of methanol, the compound flow field with different open ratios (ratio of exposure area to total area) and thicknesses of current collectors is modeled and simulated. Micro process technologies are employed to fabricate the end plates and current collectors. The performances of the μDMFC with a compound anode flow field are measured under various operating parameters. Both the modeled and the experimental results show that, comparing the conventional parallel flow field, the compound one can enhance the mass transfer resistance of methanol from the flow field to the anode diffusion layer. The results also indicate that the μDMFC with an anode open ratio of 40% and a thickness of 300 µm has the optimal performance under the 7 M methanol which is three to four times higher than conventional flow fields. Finally, a 2 h stability test of the μDMFC is performed with a methanol concentration of 7 M and a flow velocity of 0.1 ml min-1. The results indicate that the μDMFC can work steadily with high methanol concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1175626','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1175626"><span>Fuel cell stack with passive air supply</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ren, Xiaoming; Gottesfeld, Shimshon</p> <p>2006-01-17</p> <p>A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ChJME..28..394C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ChJME..28..394C"><span>Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chong, Cheng Tung; Hochgreb, Simone</p> <p>2015-03-01</p> <p>The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840007055','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840007055"><span>Inlet flow field investigation. Part 1: Transonic flow field survey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yetter, J. A.; Salemann, V.; Sussman, M. B.</p> <p>1984-01-01</p> <p>A wind tunnel investigation was conducted to determine the local inlet flow field characteristics of an advanced tactical supersonic cruise airplane. A data base for the development and validation of analytical codes directed at the analysis of inlet flow fields for advanced supersonic airplanes was established. Testing was conducted at the NASA-Langley 16-foot Transonic Tunnel at freestream Mach numbers of 0.6 to 1.20 and angles of attack from 0.0 to 10.0 degrees. Inlet flow field surveys were made at locations representative of wing (upper and lower surface) and forebody mounted inlet concepts. Results are presented in the form of local inlet flow field angle of attack, sideflow angle, and Mach number contours. Wing surface pressure distributions supplement the flow field data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29048848','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29048848"><span>[Present situation and development trends of asymmetrical flow field-flow fractionation].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liang, Qihui; Wu, Di; Qiu, Bailing; Han, Nanyin</p> <p>2017-09-08</p> <p>Field-flow fractionation (FFF) is a kind of mature separation technologies in the field of bioanalysis, feasible of separating analytes with the differences of certain physical and chemical properties by the combination effects of two orthogonal force fields (flow field and external force field). Asymmetrical flow field-flow fractionation (AF4) is a vital subvariant of FFF, which applying a vertical flow field as the second dimension force field. The separation in AF4 opening channel is carried out by any composition carrier fluid, universally and effectively used in separation of bioparticles and biopolymers due to the non-invasivity feature. Herein, bio-analytes are held in bio-friendly environment and easily sterilized without using degrading carrier fluid which is conducive to maintain natural conformation. In this review, FFF and AF4 principles are briefly described, and some classical and emerging applications and developments in the bioanalytical fields are concisely introduced and tabled. Also, special focus is given to the hyphenation of AF4 with highly specific, sensitive detection technologies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPS...384..295K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPS...384..295K"><span>Redox flow batteries with serpentine flow fields: Distributions of electrolyte flow reactant penetration into the porous carbon electrodes and effects on performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.</p> <p>2018-04-01</p> <p>Redox flow batteries with flow field designs have been demonstrated to boost their capacities to deliver high current density and power density in medium and large-scale energy storage applications. Nevertheless, the fundamental mechanisms involved with improved current density in flow batteries with serpentine flow field designs have been not fully understood. Here we report a three-dimensional model of a serpentine flow field over a porous carbon electrode to examine the distributions of pressure driven electrolyte flow penetrations into the porous carbon electrodes. We also estimate the maximum current densities associated with stoichiometric availability of electrolyte reactant flow penetrations through the porous carbon electrodes. The results predict reasonably well observed experimental data without using any adjustable parameters. This fundamental work on electrolyte flow distributions of limiting reactant availability will contribute to a better understanding of limits on electrochemical performance in flow batteries with serpentine flow field designs and should be helpful to optimizing flow batteries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002PhDT.......178B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002PhDT.......178B"><span>Lava flow field emplacement studies of Manua Ulu (Kilauea Volcano, Hawai'i, United States) and Venus, using field and remote sensing analyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Byrnes, Jeffrey Myer</p> <p>2002-04-01</p> <p>This work examines lava emplacement processes by characterizing surface units using field and remote sensing analyses in order to understand the development of lava flow fields. Specific study areas are the 1969--1974 Mauna Ulu compound flow field, (Kilauea Volcano, Hawai'i, USA), and five lava flow fields on Venus: Turgmam Fluctus, Zipaltonal Fluctus, the Tuli Mons/Uilata Fluctus flow complex, the Var Mons flow field, and Mylitta Fluctus. Lava surface units have been examined in the field and with visible-, thermal-, and radar-wavelength remote sensing datasets for Mauna Ulu, and with radar data for the Venusian study areas. For the Mauna Ulu flow field, visible characteristics are related to color, glass abundance, and dm- to m-scale surface irregularities, which reflect the lava flow regime, cooling, and modification due to processes such as coalescence and inflation. Thermal characteristics are primarily affected by the abundance of glass and small-scale roughness elements (such as vesicles), and reflect the history of cooling, vesiculation and degassing, and crystallization of the lava. Radar characteristics are primarily affected by unit topography and fracturing, which are related to flow inflation, remobilization, and collapse, and reflect the local supply of lava during and after unit emplacement. Mauna Ulu surface units are correlated with pre-eruption topography, lack a simple relationship to the main feeder lava tubes, and are distributed with respect to their position within compound flow lobes and with distance from the vent. The Venusian lava flow fields appear to have developed through emplacement of numerous, thin, simple and compound flows, presumably over extended periods of time, and show a wider range of radar roughness than is observed at Mauna Ulu. A potential correlation is suggested between flow rheology and surface roughness. Distributary flow morphologies may result from tube-fed flows, and flow inflation is consistent with observed surface characteristics. Furthermore, the significance of inflation at Mauna Ulu and comparison of radar characteristics indicates that inflation may, in fact, be more prevalent on Venus than at Mauna Ulu. Although the Venusian flow fields display morphologies similar to those observed within terrestrial flow fields, the Venusian flow units are significantly larger.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090034472','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090034472"><span>Numerical Investigation of Near-Field Plasma Flows in Magnetic Nozzles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sankaran, Kamesh; Polzin, Kurt A.</p> <p>2009-01-01</p> <p>The development and application of a multidimensional numerical simulation code for investigating near-field plasma processes in magnetic nozzles are presented. The code calculates the time-dependent evolution of all three spatial components of both the magnetic field and velocity in a plasma flow, and includes physical models of relevant transport phenomena. It has been applied to an investigation of the behavior of plasma flows found in high-power thrusters, employing a realistic magnetic nozzle configuration. Simulation of a channel-flow case where the flow was super-Alfvenic has demonstrated that such a flow produces adequate back-emf to significantly alter the shape of the total magnetic field, preventing the flow from curving back to the magnetic field coil in the near-field region. Results from this simulation can be insightful in predicting far-field behavior and can be used as a set of self-consistent boundary conditions for far-field simulations. Future investigations will focus on cases where the inlet flow is sub-Alfvenic and where the flow is allowed to freely expand in the radial direction once it is downstream of the coil.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28385882','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28385882"><span>Understanding Angiography-Based Aneurysm Flow Fields through Comparison with Computational Fluid Dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cebral, J R; Mut, F; Chung, B J; Spelle, L; Moret, J; van Nijnatten, F; Ruijters, D</p> <p>2017-06-01</p> <p>Hemodynamics is thought to be an important factor for aneurysm progression and rupture. Our aim was to evaluate whether flow fields reconstructed from dynamic angiography data can be used to realistically represent the main flow structures in intracranial aneurysms. DSA-based flow reconstructions, obtained during interventional treatment, were compared qualitatively with flow fields obtained from patient-specific computational fluid dynamics models and quantitatively with projections of the computational fluid dynamics fields (by computing a directional similarity of the vector fields) in 15 cerebral aneurysms. The average similarity between the DSA and the projected computational fluid dynamics flow fields was 78% in the parent artery, while it was only 30% in the aneurysm region. Qualitatively, both the DSA and projected computational fluid dynamics flow fields captured the location of the inflow jet, the main vortex structure, the intrasaccular flow split, and the main rotation direction in approximately 60% of the cases. Several factors affect the reconstruction of 2D flow fields from dynamic angiography sequences. The most important factors are the 3-dimensionality of the intrasaccular flow patterns and inflow jets, the alignment of the main vortex structure with the line of sight, the overlapping of surrounding vessels, and possibly frame rate undersampling. Flow visualization with DSA from >1 projection is required for understanding of the 3D intrasaccular flow patterns. Although these DSA-based flow quantification techniques do not capture swirling or secondary flows in the parent artery, they still provide a good representation of the mean axial flow and the corresponding flow rate. © 2017 by American Journal of Neuroradiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25974517','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25974517"><span>Electric-field-induced flow-aligning state in a nematic liquid crystal.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fatriansyah, Jaka Fajar; Orihara, Hiroshi</p> <p>2015-04-01</p> <p>The response of shear stress to a weak ac electric field as a probe is measured in a nematic liquid crystal under shear flow and dc electric fields. Two states with different responses are clearly observed when the dc electric field is changed at a constant shear rate: the flow aligning and non-flow aligning states. The director lies in the shear plane in the flow aligning state and out of the plane in the non-flow aligning state. Through application of dc electric field, the non-flow aligning state can be changed to the flow aligning state. In the transition from the flow aligning state to the non-flow aligning state, it is found that the response increases and the relaxation time becomes longer. Here, the experimental results in the flow aligning state are discussed on the basis of the Ericksen-Leslie theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPS...307..782K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPS...307..782K"><span>Effect of flow field on the performance of an all-vanadium redox flow battery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, S.; Jayanti, S.</p> <p>2016-03-01</p> <p>A comparative study of the electrochemical energy conversion performance of a single-cell all-vanadium redox flow battery (VRFB) fitted with three flow fields has been carried out experimentally. The charge-discharge, polarization curve, Coulombic, voltage and round-trip efficiencies of a 100 cm2 active area VRFB fitted with serpentine, interdigitated and conventional flow fields have been obtained under nearly identical experimental conditions. The effect of electrolyte circulation rate has also been investigated for each flow field. Stable performance has been obtained for each flow field for at least 40 charge/discharge cycles. Ex-situ measurements of pressure drop have been carried out using water over a range of Reynolds numbers. Together, the results show that the cell fitted with the serpentine flow field gives the highest energy efficiency, primarily due to high voltaic efficiency and also the lowest pressure drop. The electrolyte flow rate is seen to have considerable effect on the performance; a high round-trip energy efficiency of about 80% has been obtained at the highest flow rate with the serpentine flow field. The data offer interesting insights into the effect of electrolyte circulation on the performance of VRFB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25e2101P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25e2101P"><span>Direct measurement of the transition from edge to core power coupling in a light-ion helicon source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Piotrowicz, P. A.; Caneses, J. F.; Showers, M. A.; Green, D. L.; Goulding, R. H.; Caughman, J. B. O.; Biewer, T. M.; Rapp, J.; Ruzic, D. N.</p> <p>2018-05-01</p> <p>We present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displays characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1429052-collisionless-kinetic-theory-oblique-tearing-instabilities','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1429052-collisionless-kinetic-theory-oblique-tearing-instabilities"><span>Collisionless kinetic theory of oblique tearing instabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.</p> <p>2018-02-15</p> <p>The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. In this paper, we find that this stabilization is associated with the density-gradient-driven diamagnetic drift. Themore » analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. Finally, a simple analytic estimate for the stability criterion is provided.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1429052-collisionless-kinetic-theory-oblique-tearing-instabilities','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1429052-collisionless-kinetic-theory-oblique-tearing-instabilities"><span>Collisionless kinetic theory of oblique tearing instabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.</p> <p></p> <p>The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. In this paper, we find that this stabilization is associated with the density-gradient-driven diamagnetic drift. Themore » analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. Finally, a simple analytic estimate for the stability criterion is provided.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29289155','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29289155"><span>Upgrade of the Mirnov probe arrays on the J-TEXT tokamak.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guo, Daojing; Hu, Qiming; Li, Da; Shen, Chengshuo; Wang, Nengchao; Huang, Zhuo; Huang, Mingxiang; Ding, Yonghua; Xu, Guo; Yu, Qingquan; Tang, Yuejin; Zhuang, Ge</p> <p>2017-12-01</p> <p>The magnetic diagnostic of Mirnov probe arrays has been upgraded on the J-TEXT tokamak to measure the magnetohydrodynamic instabilities with higher spatial resolution and better amplitude-frequency characteristics. The upgraded Mirnov probe array contains one poloidal array with 48 probe modules and two toroidal arrays with 25 probe modules. Each probe module contains two probes which measure both the poloidal and the radial magnetic fields (B p and B r ). To ensure that the Mirnov probe possess better amplitude-frequency characteristics, a novel kind of Mirnov probe made of low temperature co-fired ceramics is utilized. The parameters and frequency response of the probe are measured and can meet the experiment requirement. The new Mirnov arrays have been normally applied for a round of experiments, including the observation of tearing modes and their coupling as well as high frequency magnetic perturbation due to the Alfvén eigenmode. In order to extract useful information from raw signals, visualization processing methods based on singular value decomposition and cross-power spectrum are applied to decompose the coupled modes and to determine the mode number.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1128796','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1128796"><span>X-ray driven channeling acceleration in crystals and carbon nanotubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shin, Young-Min; Still, Dean A.; Shiltsev, Vladimir</p> <p>2013-12-01</p> <p>Acceleration of particles channeling in a crystal by means of diffracted x-rays via Bormann anomalous transmission was conceived for heavy ions and muons by Tajima and Cavenago [Phys. Rev. Lett. 59, 1440 (1987)], which potentially offers an appreciably high field gradient on the order of GV/cm. The theoretical model of the high gradient acceleration has been studied in two kinds of atomic structure, crystals and carbon nanotubes (CNTs), with analytic calculations and electromagnetic eigenmode simulations. A range of acceleration gradients and cutoffs of the x-ray power (the lowest power limit to overcome the Bremsstrahlung radiation losses) are characterized in termsmore » of the lattice constants, unit cell sizes, and photon energies. The parametric analysis indicates that the required x-ray power can be reduced to an order of megawatt by replacing crystals with CNTs. Eventually, the equivalent dielectric approximation of a multi-wall nanotube shows that 250–810 MeV muons can be synchronously coupled with x-rays of 0.65–1.32 keV in the accelerating structure.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25b2115B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25b2115B"><span>Collisionless kinetic theory of oblique tearing instabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.</p> <p>2018-02-01</p> <p>The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. We find that this stabilization is associated with the density-gradient-driven diamagnetic drift. The analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. A simple analytic estimate for the stability criterion is provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJMPB..3150011G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJMPB..3150011G"><span>Excellent low-frequency sound absorption of radial membrane acoustic metamaterial</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Nansha; Wu, Jiu Hui; Hou, Hong; Yu, Lie</p> <p>2017-01-01</p> <p>This paper proposes a new radial membrane acoustic metamaterial (RMAM) structure, wherein a layer membrane substrate is covered with a rigid ring (polymethyl methacrylate frame and aluminum lump). The dispersion relationships, transmission spectra and displacement fields of the eigenmodes of this radial membrane acoustic metamaterial are studied with FEM. In contrast to the traditional radial phononic crystals (RPCs), the proposed structures can open bandgaps (BGs) in lower frequency range (0-300 Hz). Simulation results show that the physical mechanism behind the bandgaps is the coupling effects between the rotational vibration of aluminum lump and the transverse vibration of membrane. Geometrical parameters which can adjust the bandgaps’ widths or positions are analyzed. Finally, we investigate the axial sound transmission loss of this acoustic metamaterial structure, and discuss the effects of factor loss, membrane thickness and the number of layers of unit cell on the axial sound transmission loss. Dynamic effective density proves the accuracy of the FEM results. This kind of structure has potential application in pipe or circular ring structure for damping/noise reduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DPPU10058S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DPPU10058S"><span>Helicon and Trivelpiece-Gould modes in uniform unbounded plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stenzel, R. L.; Urrutia, J. M.</p> <p>2016-10-01</p> <p>Helicon modes are whistler modes with angular orbital momentum caused by phase rotation in addition to the axial phase propagation. Although these modes have been associated with whistler eigenmodes in bounded plasma columns, they do exist in unbounded plasmas. Experiments in a large laboratory plasma show the wave excitation with phased antenna arrays, the wave field topology and the propagation of helicons. Low frequency whistlers can have two modes with different wavelengths at a given frequency, called helicons and Trivelpiece-Gould modes. The latter are whistler modes near the oblique cyclotron resonance. The oblique propagation is due to short radial wavelengths near the boundary. In unbounded plasmas, the oblique propagation arises from short azimuthal wavelengths. This has been observed in high-mode number helicons (e.g., m = 8). It creates wave absorption in the center of the helicon mode. The strong absorption of the wave can heat electrons and create perpendicular wave-particle interactions. These results may be of interest in space plasmas for scattering of energetic electrons and in helicon plasma sources for plasma processing and thruster applications. Work supported by NSF/DOE.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JGRA..11211305Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JGRA..11211305Y"><span>Methods in the study of discrete upper hybrid waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoon, P. H.; Ye, S.; Labelle, J.; Weatherwax, A. T.; Menietti, J. D.</p> <p>2007-11-01</p> <p>Naturally occurring plasma waves characterized by fine frequency structure or discrete spectrum, detected by satellite, rocket-borne instruments, or ground-based receivers, can be interpreted as eigenmodes excited and trapped in field-aligned density structures. This paper overviews various theoretical methods to study such phenomena for a one-dimensional (1-D) density structure. Among the various methods are parabolic approximation, eikonal matching, eigenfunction matching, and full numerical solution based upon shooting method. Various approaches are compared against the full numerical solution. Among the analytic methods it is found that the eigenfunction matching technique best approximates the actual numerical solution. The analysis is further extended to 2-D geometry. A detailed comparative analysis between the eigenfunction matching and fully numerical methods is carried out for the 2-D case. Although in general the two methods compare favorably, significant differences are also found such that for application to actual observations it is prudent to employ the fully numerical method. Application of the methods developed in the present paper to actual geophysical problems will be given in a companion paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RScI...88l3502G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RScI...88l3502G"><span>Upgrade of the Mirnov probe arrays on the J-TEXT tokamak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Daojing; Hu, Qiming; Li, Da; Shen, Chengshuo; Wang, Nengchao; Huang, Zhuo; Huang, Mingxiang; Ding, Yonghua; Xu, Guo; Yu, Qingquan; Tang, Yuejin; Zhuang, Ge</p> <p>2017-12-01</p> <p>The magnetic diagnostic of Mirnov probe arrays has been upgraded on the J-TEXT tokamak to measure the magnetohydrodynamic instabilities with higher spatial resolution and better amplitude-frequency characteristics. The upgraded Mirnov probe array contains one poloidal array with 48 probe modules and two toroidal arrays with 25 probe modules. Each probe module contains two probes which measure both the poloidal and the radial magnetic fields (Bp and Br). To ensure that the Mirnov probe possess better amplitude-frequency characteristics, a novel kind of Mirnov probe made of low temperature co-fired ceramics is utilized. The parameters and frequency response of the probe are measured and can meet the experiment requirement. The new Mirnov arrays have been normally applied for a round of experiments, including the observation of tearing modes and their coupling as well as high frequency magnetic perturbation due to the Alfvén eigenmode. In order to extract useful information from raw signals, visualization processing methods based on singular value decomposition and cross-power spectrum are applied to decompose the coupled modes and to determine the mode number.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1456815-direct-measurement-transition-from-edge-core-power-coupling-light-ion-helicon-source','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1456815-direct-measurement-transition-from-edge-core-power-coupling-light-ion-helicon-source"><span>Direct measurement of the transition from edge to core power coupling in a light-ion helicon source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Piotrowicz, Pawel A.; Caneses, Juan F.; Showers, Melissa A.; ...</p> <p>2018-05-02</p> <p>Here, we present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displaysmore » characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DPPBP8099W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DPPBP8099W"><span>Numerical solution for linear cyclotron and diocotron modes in a nonneutral plasma column</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walsh, Daniel; Dubin, Daniel H. E.</p> <p>2014-10-01</p> <p>This poster presents numerical methods for solution of the linearized Vlasov-Poisson (LVP) equation applied to a cylindrical single-species plasma in a uniform magnetic field. The code is used to study z-independent cyclotron and diocotron modes of these plasmas, including kinetic effects. We transform to polar coordinates in both position and velocity space and Fourier expand in both polar angles (i.e. the cyclotron gyro angle and θ). In one approach, we then discretize in the remaining variables r and v (where v is the magnitude of the perpendicular velocity). However, using centered differences the method is unstable to unphysical eigenmodes with rapid variation on the scale of the grid. We remedy this problem by averaging particular terms in the discretized LVP operator over neighboring gridpoints. We also present a stable Galerkin method that expands the r and v dependence in basis functions. We compare the numerical results from both methods to exact analytic results for various modes. Supported by NSF/DOE Partnership Grants PHY-0903877 and DE-SC0002451.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1456815-direct-measurement-transition-from-edge-core-power-coupling-light-ion-helicon-source','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1456815-direct-measurement-transition-from-edge-core-power-coupling-light-ion-helicon-source"><span>Direct measurement of the transition from edge to core power coupling in a light-ion helicon source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Piotrowicz, Pawel A.; Caneses, Juan F.; Showers, Melissa A.</p> <p></p> <p>Here, we present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displaysmore » characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130008956','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130008956"><span>Radio frequency tank eigenmode sensor for propellant quantity gauging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zimmerli, Gregory A. (Inventor)</p> <p>2013-01-01</p> <p>A method for measuring the quantity of fluid in a tank may include the steps of selecting a match between a measured set of electromagnetic eigenfrequencies and a simulated plurality of sets of electromagnetic eigenfrequencies using a matching algorithm, wherein the match is one simulated set of electromagnetic eigenfrequencies from the simulated plurality of sets of electromagnetic eigenfrequencies, and determining the fill level of the tank based upon the match.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADP022454','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADP022454"><span>Using Large Signal Code TESLA for Wide Band Klystron Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-04-01</p> <p>tuning procedure TESLA simulates of high power klystron [3]. accurately actual eigenmodes of the structure as a solution Wide band klystrons very often...on band klystrons with two-gap two-mode resonators. The decomposition of simulation region into an external results of TESLA simulations for NRL S ...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP022454 TITLE: Using Large Signal Code TESLA for Wide Band Klystron</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA563222','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA563222"><span>Theoretical Background and Prognostic Modeling for Benchmarking SHM Sensors for Composite Structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-10-01</p> <p>minimum flaw size can be detected by the existing SHM based monitoring methods. Sandwich panels with foam , WebCore and honeycomb structures were...Whether it be hat stiffened, corrugated sandwich, honeycomb sandwich, or foam filled sandwich, all composite structures have one basic handicap in...based monitoring methods. Sandwich panels with foam , WebCore and honeycomb structures were considered for use in this study. Eigenmode frequency</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1414903-theory-observation-onset-nonlinear-structures-due-eigenmode-destabilization-fast-ions-tokamaks','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1414903-theory-observation-onset-nonlinear-structures-due-eigenmode-destabilization-fast-ions-tokamaks"><span>Theory and observation of the onset of nonlinear structures due to eigenmode destabilization by fast ions in tokamaks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.; ...</p> <p>2017-12-12</p> <p>Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. Furthermore, the proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterionmore » predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to micro-turbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. We proposed a criterion that constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25e2503P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25e2503P"><span>Simulations of toroidal Alfvén eigenmode excited by fast ions on the Experimental Advanced Superconducting Tokamak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pei, Youbin; Xiang, Nong; Shen, Wei; Hu, Youjun; Todo, Y.; Zhou, Deng; Huang, Juan</p> <p>2018-05-01</p> <p>Kinetic-MagnetoHydroDynamic (MHD) hybrid simulations are carried out to study fast ion driven toroidal Alfvén eigenmodes (TAEs) on the Experimental Advanced Superconducting Tokamak (EAST). The first part of this article presents the linear benchmark between two kinetic-MHD codes, namely MEGA and M3D-K, based on a realistic EAST equilibrium. Parameter scans show that the frequency and the growth rate of the TAE given by the two codes agree with each other. The second part of this article discusses the resonance interaction between the TAE and fast ions simulated by the MEGA code. The results show that the TAE exchanges energy with the co-current passing particles with the parallel velocity |v∥ | ≈VA 0/3 or |v∥ | ≈VA 0/5 , where VA 0 is the Alfvén speed on the magnetic axis. The TAE destabilized by the counter-current passing ions is also analyzed and found to have a much smaller growth rate than the co-current ions driven TAE. One of the reasons for this is found to be that the overlapping region of the TAE spatial location and the counter-current ion orbits is narrow, and thus the wave-particle energy exchange is not efficient.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhPl...24l2508D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhPl...24l2508D"><span>Theory and observation of the onset of nonlinear structures due to eigenmode destabilization by fast ions in tokamaks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.; Heidbrink, W. W.; Kramer, G. J.; Nazikian, R.; Pace, D. C.; Podestà, M.; Van Zeeland, M. A.</p> <p>2017-12-01</p> <p>Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. The proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterion predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to micro-turbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. The proposed criterion constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSV...420...61D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSV...420...61D"><span>Natural oscillations of a gas bubble in a liquid-filled cavity located in a viscoelastic medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doinikov, Alexander A.; Marmottant, Philippe</p> <p>2018-04-01</p> <p>The present study is motivated by cavitation phenomena that occur in the stems of trees. The internal pressure in tree conduits can drop down to significant negative values. This drop gives rise to cavitation bubbles, which undergo high-frequency eigenmodes. The aim of the present study is to determine the parameters of the bubble natural oscillations. To this end, a theory is developed that describes the pulsation of a spherical bubble located at the center of a spherical cavity surrounded by an infinite solid medium. It is assumed that the medium inside the bubble is a gas-vapor mixture, the cavity is filled with a compressible viscous liquid, and the medium surrounding the cavity behaves as a viscoelastic solid. The theoretical solution takes into account the outgoing acoustic wave produced by the bubble pulsation, the incoming wave caused by reflection from the liquid-solid boundary, and the outgoing wave propagating in the solid. A dispersion equation for the calculation of complex wavenumbers of the bubble eigenmodes is derived. Approximate analytical solutions to the dispersion equation are found. Numerical simulations are performed to reveal the effect of different physical parameters on the resonance frequency and the attenuation coefficient of the bubble oscillations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1352905-development-validation-critical-gradient-energetic-particle-driven-alfven-eigenmode-transport-model-diii-tilted-neutral-beam-experiments','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1352905-development-validation-critical-gradient-energetic-particle-driven-alfven-eigenmode-transport-model-diii-tilted-neutral-beam-experiments"><span>Development and validation of a critical gradient energetic particle driven Alfven eigenmode transport model for DIII-D tilted neutral beam experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Waltz, Ronald E.; Bass, Eric M.; Heidbrink, William W.; ...</p> <p>2015-10-30</p> <p>Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code, used tomore » validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a < 0.5 and the central density is about half the slowing down density. Lastly, these results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PPCF...57f5007L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PPCF...57f5007L"><span>Observation of beta-induced Alfvén Eigenmode in J-TEXT tokamak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Linzi; He, Jiyang; Hu, Qiming; Zhuang, Ge</p> <p>2015-06-01</p> <p>High-frequency oscillations have been frequently observed under the conditions of tearing modes and runaway electrons in J-TEXT Ohmic plasmas. It is found the frequencies of these oscillations range from 20 to 45 kHz, being consistent with the beta-induced Alfvén Eigenmodes (BAEs) with the same order of the low-frequency gap induced by finite beta effects and the coupling of the shear Alfvén wave with the compressional response of the plasma. The exciting conditions for BAEs are investigated, which indicate that runaway electrons, as well as magnetic perturbations contributed by magnetic islands, are indispensable in the excitation of BAEs. In addition, externally applied static resonant magnetic perturbations (RMPs) are used to excite BAEs successfully for the first time in J-TEXT, as indicated by high frequency oscillations (~30 kHz). Further studies show that BAEs can be excited only when the coil current of RMP is stronger than 4 kA, and the strength of BAEs becomes stronger with stronger RMP. To assess the verification of the BAEs, the frequencies of observed modes are compared to the calculated frequencies of the BAE frequency gap in the Alfvén continuum, namely the continuum accumulation point (CAP), and they are found to be close.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1414903-theory-observation-onset-nonlinear-structures-due-eigenmode-destabilization-fast-ions-tokamaks','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1414903-theory-observation-onset-nonlinear-structures-due-eigenmode-destabilization-fast-ions-tokamaks"><span>Theory and observation of the onset of nonlinear structures due to eigenmode destabilization by fast ions in tokamaks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.</p> <p></p> <p>Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. Furthermore, the proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterionmore » predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to micro-turbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. We proposed a criterion that constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1438438-nonlinear-verification-linear-critical-gradient-model-energetic-particle-transport-alfven-eigenmodes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1438438-nonlinear-verification-linear-critical-gradient-model-energetic-particle-transport-alfven-eigenmodes"><span>Nonlinear verification of a linear critical gradient model for energetic particle transport by Alfven eigenmodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bass, Eric M.; Waltz, R. E.</p> <p></p> <p>Here, a “stiff transport” critical gradient model of energetic particle (EP) transport by EPdriven Alfven eigenmodes (AEs) is verified against local nonlinear gyrokinetic simulations of a well-studied beam-heated DIII-D discharge 146102. A greatly simplifying linear “recipe” for the limiting EP-density gradient (critical gradient) is considered here. In this recipe, the critical gradient occurs when the AE linear growth rate, driven mainly by the EP gradient, exceeds the ion temperature gradient (ITG) or trapped electron mode (TEM) growth rate, driven by the thermal plasma gradient, at the same toroidal mode number (n) as the AE peak growth, well below the ITG/TEMmore » peak n. This linear recipe for the critical gradient is validated against the critical gradient determined from far more expensive local nonlinear simulations in the gyrokinetic code GYRO, as identified by the point of transport runaway when all driving gradients are held fixed. The reduced linear model is extended to include the stabilization from equilibrium E×B velocity shear. The nonlinear verification unambiguously endorses one of two alternative recipes proposed in Ref. 1: the EP-driven AE growth rate should be determined with rather than without added thermal plasma drive.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1438438-nonlinear-verification-linear-critical-gradient-model-energetic-particle-transport-alfven-eigenmodes','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1438438-nonlinear-verification-linear-critical-gradient-model-energetic-particle-transport-alfven-eigenmodes"><span>Nonlinear verification of a linear critical gradient model for energetic particle transport by Alfven eigenmodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Bass, Eric M.; Waltz, R. E.</p> <p>2017-12-08</p> <p>Here, a “stiff transport” critical gradient model of energetic particle (EP) transport by EPdriven Alfven eigenmodes (AEs) is verified against local nonlinear gyrokinetic simulations of a well-studied beam-heated DIII-D discharge 146102. A greatly simplifying linear “recipe” for the limiting EP-density gradient (critical gradient) is considered here. In this recipe, the critical gradient occurs when the AE linear growth rate, driven mainly by the EP gradient, exceeds the ion temperature gradient (ITG) or trapped electron mode (TEM) growth rate, driven by the thermal plasma gradient, at the same toroidal mode number (n) as the AE peak growth, well below the ITG/TEMmore » peak n. This linear recipe for the critical gradient is validated against the critical gradient determined from far more expensive local nonlinear simulations in the gyrokinetic code GYRO, as identified by the point of transport runaway when all driving gradients are held fixed. The reduced linear model is extended to include the stabilization from equilibrium E×B velocity shear. The nonlinear verification unambiguously endorses one of two alternative recipes proposed in Ref. 1: the EP-driven AE growth rate should be determined with rather than without added thermal plasma drive.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000033617','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000033617"><span>The Plastic Flow Field in the Vicinity of the Pin-Tool During Friction Stir Welding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bernstein, E. L.; Nunes, A. C., Jr.</p> <p>2000-01-01</p> <p>The plastic flow field in the vicinity of the pin-tool during Friction Stir Welding (FSW) needs to be understood if a theoretical understanding of the process is to be attained. The structure of welds does not exhibit the flow field itself, but consists in a residue of displacements left by the plastic flow field. The residue requires analysis to extract from it the instantaneous flow field around the pin-tool. A simplified merry-go-round model makes sense of some tracer experiments reported in the literature. A quantitative comparison is made of the displacements of copper wire markers with displacements computed from a hypothetical plastic flow field. The hypothetical plastic flow field consists in a circular rotation field about a translating pin tool with angular velocity varying with radius from the pin centerline. A sharply localized rotational field comprising slip on a surface around the tool agreed better with observations than a distributed slip field occupying a substantial volume around the tool. Both the tracer and the wire displacements support the "rotating plug" model, originally invoked or thermal reasons, of the FSW process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JPhCS..45...38J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JPhCS..45...38J"><span>Time Resolved Digital PIV Measurements of Flow Field Cyclic Variation in an Optical IC Engine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jarvis, S.; Justham, T.; Clarke, A.; Garner, C. P.; Hargrave, G. K.; Halliwell, N. A.</p> <p>2006-07-01</p> <p>Time resolved digital particle image velocimetry (DPIV) experimental data is presented for the in-cylinder flow field development of a motored four stroke spark ignition (SI) optical internal combustion (IC) engine. A high speed DPIV system was employed to quantify the velocity field development during the intake and compression stroke at an engine speed of 1500 rpm. The results map the spatial and temporal development of the in-cylinder flow field structure allowing comparison between traditional ensemble average and cycle average flow field structures. Conclusions are drawn with respect to engine flow field cyclic variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720000545','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720000545"><span>Probe measures gas and liquid mass flux in high mass flow ratio two-phase flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burick, R. J.</p> <p>1972-01-01</p> <p>Deceleration probe constructed of two concentric tubes with separator inlet operates successfully in flow fields where ratio of droplet flow rate to gas flow rate ranges from 1.0 to 20, and eliminates problems of local flow field disturbances and flooding. Probe is effective tool for characterization of liquid droplet/gas spray fields.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11407583','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11407583"><span>Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Plocková, J; Chmelík, J</p> <p>2001-05-25</p> <p>Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97q4411S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97q4411S"><span>Strongly coupled modes of M and H for perpendicular resonance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Chen; Saslow, Wayne M.</p> <p>2018-05-01</p> <p>We apply the equations for the magnetization M ⃗ and field H ⃗ to study their coupled modes for a semi-infinite ferromagnet, conductor, or insulator with magnetization M0 and field H0 normal to the plane (perpendicular resonance) and wave vector normal to the plane, which makes the modes doubly degenerate. With dimensionless damping constant α and dimensionless transverse susceptibility χ⊥=M0/He(He≡H0-M0) , we derive an analytic expression for the wave vector squared, showing that M ⃗ and H ⃗ are nearly decoupled only if α ≫χ⊥ . This is violated in the ferromagnetic regime, although a first correction is found to give good agreement away from resonance. Emphasizing the conductor permalloy as a function of H0 we study the eigenvalues and eigenmodes and the dissipation rate due to absorption both from the total effective field and from the Joule heating. (We include the contribution of the nonuniform exchange energy term, needed for energy conservation.) Using these modes we then apply, for a semi-infinite ferromagnet, a range of boundary conditions (i.e., surface anisotropies) on M⊥ to find the reflection coefficient R and the reflectivity |R| 2. As a function of H0, absorption is dominated by the the skin depth mode (primarily H ⃗) except near the resonance and at a higher-field Hd associated with a dip in the reflectivity, whose position above the main resonance varies quadratically with the surface anisotropy Ks. The dip is driven by the boundary condition on M ⃗; the coefficient of the (primarily) M ⃗ mode becomes very small at the dip, being compensated by an increase in the amplitude of the M ⃗ mode, which has a Lorentzian line shape of height ˜α-1 and width ˜α .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880011189','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880011189"><span>Graphics and Flow Visualization of Computer Generated Flow Fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kathong, M.; Tiwari, S. N.</p> <p>1987-01-01</p> <p>Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JAESc..84..131M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JAESc..84..131M"><span>Late Holocene lava flow morphotypes of northern Harrat Rahat, Kingdom of Saudi Arabia: Implications for the description of continental lava fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murcia, H.; Németh, K.; Moufti, M. R.; Lindsay, J. M.; El-Masry, N.; Cronin, S. J.; Qaddah, A.; Smith, I. E. M.</p> <p>2014-04-01</p> <p>A "lava morphotype" refers to the recognizable and distinctive characteristics of the surface morphology of a lava flow after solidification, used in a similar way to a sedimentary facies. This classification method is explored on an example volcanic field in the Kingdom of Saudi Arabia, where copious lava outpourings may represent an important transition between monogenetic and flood basalt fields. Here, young and well-preserved mafic lava fields display a wide range of surface morphologies. We focussed on four post-4500 yrs. BP lava flow fields in northern Harrat Rahat (<10 Ma) and propose a framework for describing systematic changes in morphotypes down-flow. The morphotypes give insight into intrinsic and extrinsic parameters of emplacement, rheology and dominant flow behavior, as well as the occurrence and character of other lava structures. The Harrat Rahat lava flow fields studied extend up to 23 km from the source, and vary between 1-2 m and 12 m in thickness. Areas of the lava flow fields are between ˜32 and ˜61 km2, with individual flow field volumes estimated between ˜0.085 and ˜0.29 km3. They exhibit Shelly-, Slabby-, and Rubbly-pahoehoe, Platy-, Cauliflower-, and Rubbly-a'a, and Blocky morphotypes. Morphotypes reflect the intrinsic parameters of: composition, temperature, crystallinity and volatile-content/vesicularity; along with external influences, such as: emission mechanism, effusion rate, topography and slope control of flow velocity. One morphotype can transition to another in individual flow-units or lobes and they may dominate zones. Not all morphotypes were found in a single lava flow field. Pahoehoe morphotypes are related to the simple mechanical disaggregation of the crust, whereas a'a morphotypes are related to the transitional emergence and subsequent transitional disappearance of clinker. Blocky morphotypes result from fracturing and auto-brecciation. A'a morphotypes (i.e. platy-, cauliflower-, rubbly-a'a) dominate the lava flow field surfaces in northern Harrat Rahat, which suggests that core-dominated flows were predominant during flow movement. Lava structures are well-developed and well-preserved and some may be related to some morphotypes. Down-flow changes exhibit key illustrative and easy recognizable features in the lava flow fields and might provide insights into real-time monitoring of future flows in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910055134&hterms=topology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dtopology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910055134&hterms=topology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dtopology"><span>Visualizing vector field topology in fluid flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Helman, James L.; Hesselink, Lambertus</p> <p>1991-01-01</p> <p>Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Ocgy...53..145K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Ocgy...53..145K"><span>Variability of the Baltic Sea level and floods in the Gulf of Finland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kulikov, E. A.; Medvedev, I. P.</p> <p>2013-03-01</p> <p>The statistical analysis of the long-term data on the variability of the Baltic Sea level has revealed the complicated character of the wave field structure. The wave field formed by the variable winds and the disturbances of the atmospheric pressure in the Baltic Sea is a superposition of standing oscillations with random phases. The cross spectral analysis of the synchronous observation series of the level in the Gulf of Finland has shown that the nodal lines of the standing dilatational waves are clearly traced with frequencies corresponding to the distance from the nodal line to the top of the gulf (a quarter of the wave length). Several areas of the water basin with clearly expressed resonant properties may be distinguished: the Gulfs of Finland, Riga, and Bothnia, Neva Bay, etc. The estimations of the statistical correlation of the sea level oscillations with the variation of the wind and atmospheric pressure indicate the dominant role of the zonal wind component during the formation of the floods in the Gulf of Finland. The probable reason for the extreme floods in St. Petersburg may be the resonance rocking of the eigenmode oscillations corresponding to the basic fundamental seiche mode of the Gulf of Finland with a period of 27 h when the repeated atmospheric disturbances in the Baltic Sea occur with a period of 1-2 days.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JaJAP..45.7983C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JaJAP..45.7983C"><span>Electroosmotic Flow Driven by DC and AC Electric Fields in Curved Microchannels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Jia-Kun; Luo, Win-Jet; Yang, Ruey-Jen</p> <p>2006-10-01</p> <p>The purpose of this study is to investigate electroosmotic flows driven by externally applied DC and AC electric fields in curved microchannels. For the DC electric driving field, the velocity distribution and secondary flow patterns are investigated in microchannels with various curvature ratios. We use the Dean number to describe the curvature effect of the flow field in DC electric field. The result implies that the effect of curvatures and the strength of the secondary flows become get stronger when the curvature ratio of C/A (where C is the radius of curvature of the microchannel and A is the half-height of rectangular curved tube.) is smaller. For the AC electric field, the velocity distribution and secondary flow patterns are investigated for driving frequencies in the range of 2.0 kHz (\\mathit{Wo}=0.71) to 11 kHz (\\mathit{Wo}=1.66). The numerical results reveal that the velocity at the center of the microchannel becomes lower at higher frequencies of the AC electric field and the strength of the secondary flow decreases. When the applied frequency exceeds 3.0 kHz (\\mathit{Wo}=0.87), vortices are no longer observed at the corners of the microchannel. Therefore, it can be concluded that the secondary flow induced at higher AC electric field frequencies has virtually no effect on the axial flow field in the microchannel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29696794','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29696794"><span>Impact of non-ideal analyte behavior on the separation of protein aggregates by asymmetric flow field-flow fractionation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boll, Björn; Josse, Lena; Heubach, Anja; Hochenauer, Sophie; Finkler, Christof; Huwyler, Jörg; Koulov, Atanas V</p> <p>2018-04-25</p> <p>Asymmetric flow field-flow fractionation is a valuable tool for the characterization of protein aggregates in biotechnology owing to its broad size range and unique separation principle. However, in practice asymmetric flow field-flow fractionation is non-trivial to use due to the major deviations from theory and the influence on separation by various factors that are not fully understood. Here we report methods to assess the non-ideal effects that influence asymmetric flow field-flow fractionation separation and for the first time identify experimentally the main factors that impact it. Furthermore, we propose new approaches to minimize such non-ideal behavior, showing that by adjusting the mobile phase composition (pH and ionic strength) the resolution of asymmetric flow field-flow fractionation separation can be drastically improved. Additionally, we propose a best practice method for new proteins. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22408325-analytical-theory-shear-alfven-continuum-presence-magnetic-island','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22408325-analytical-theory-shear-alfven-continuum-presence-magnetic-island"><span>Analytical theory of the shear Alfvén continuum in the presence of a magnetic island</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cook, C. R., E-mail: cook@physics.wisc.edu; Hegna, C. C.</p> <p>2015-04-15</p> <p>The effect of a magnetic island chain on the shear Alfvén continuum is calculated analytically. Using a WKB approximation of the linearized ideal MHD equations, the island is shown to cause an upshift in the continuum accumulation point frequency. This minimum of the frequency spectrum is shifted from the rational surface to the island separatrix. The structure of the eigenmodes is also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EPJST.220..243P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EPJST.220..243P"><span>The use of magnetic fields in vertical Bridgman/Gradient Freeze-type crystal growth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pätzold, Olf; Niemietz, Kathrin; Lantzsch, Ronny; Galindo, Vladimir; Grants, Ilmars; Bellmann, Martin; Gerbeth, Gunter</p> <p>2013-03-01</p> <p>This paper outlines advanced vertical Bridgman/Gradient Freeze techniques with flow control using magnetic fields developed for the growth of semiconductor crystals. Low-temperature flow modelling, as well as laboratory-scaled crystal growth under the influence of rotating, travelling, and static magnetic fields are presented. Experimental and numerical flow modelling demonstrate the potential of the magnetic fields to establish a well-defined flow for tailoring heat and mass transfer in the melt during growth. The results of the growth experiments are discussed with a focus on the influence of a rotating field on the segregation of dopants, the influence of a travelling field on the temperature field and thermal stresses, and the potential of rotating and static fields for a stabilization of the melt flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22600128-accelerated-ions-from-pulsed-power-driven-fast-plasma-flow-perpendicular-magnetic-field','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22600128-accelerated-ions-from-pulsed-power-driven-fast-plasma-flow-perpendicular-magnetic-field"><span>Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Takezaki, Taichi, E-mail: ttakezaki@stn.nagaokaut.ac.jp; Takahashi, Kazumasa; Sasaki, Toru, E-mail: sasakit@vos.nagaokaut.ac.jp</p> <p>2016-06-15</p> <p>To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell methodmore » have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4685649','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4685649"><span>Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng</p> <p>2015-01-01</p> <p>We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices. PMID:26687638</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26687638','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26687638"><span>Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng</p> <p>2015-12-21</p> <p>We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..274a2148W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..274a2148W"><span>Optimization Design of Bipolar Plate Flow Field in PEM Stack</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wen, Ming; He, Kanghao; Li, Peilong; Yang, Lei; Deng, Li; Jiang, Fei; Yao, Yong</p> <p>2017-12-01</p> <p>A new design of bipolar plate flow field in proton exchange membrane (PEM) stack was presented to develop a high-performance transfer efficiency of the two-phase flow. Two different flow fields were studied by using numerical simulations and the performance of the flow fields was presented. the hydrodynamic properties include pressure gap between inlet and outlet, the Reynold’s number of the two types were compared based on the Navier-Stokes equations. Computer aided optimization software was implemented in the design of experiments of the preferable flow field. The design of experiments (DOE) for the favorable concept was carried out to study the hydrodynamic properties when changing the design parameters of the bipolar plate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23003960','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23003960"><span>Tuning near field radiative heat flux through surface excitations with a metal insulator transition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>van Zwol, P J; Ranno, L; Chevrier, J</p> <p>2012-06-08</p> <p>The control of heat flow is a formidable challenge due to lack of good thermal insulators. Promising new opportunities for heat flow control were recently theoretically discovered for radiative heat flow in near field, where large heat flow contrasts may be achieved by tuning electronic excitations on surfaces. Here we show experimentally that the phase transition of VO2 entails a change of surface polariton states that significantly affects radiative heat transfer in near field. In all cases the Derjaguin approximation correctly predicted radiative heat transfer in near field, but it underestimated the far field limit. Our results indicate that heat flow contrasts can be realized in near field that can be larger than those obtained in far field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130003300','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130003300"><span>High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kosak, Katie; Upton, Lisa; Hathaway, David</p> <p>2012-01-01</p> <p>We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north-south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north-south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun's polar regions in general and the polar meridonal flow in particular.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130001807','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130001807"><span>High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kosak, Katie; Upton, Lisa; Hathaway, David</p> <p>2012-01-01</p> <p>We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north ]south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north ]south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun fs polar regions in general and the polar meridional flow in particular</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800020750','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800020750"><span>General design method for three-dimensional potential flow fields. 1: Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stanitz, J. D.</p> <p>1980-01-01</p> <p>A general design method was developed for steady, three dimensional, potential, incompressible or subsonic-compressible flow. In this design method, the flow field, including the shape of its boundary, was determined for arbitrarily specified, continuous distributions of velocity as a function of arc length along the boundary streamlines. The method applied to the design of both internal and external flow fields, including, in both cases, fields with planar symmetry. The analytic problems associated with stagnation points, closure of bodies in external flow fields, and prediction of turning angles in three dimensional ducts were reviewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017438','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017438"><span>Development of the 1990 Kalapana Flow Field, Kilauea Volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mattox, T.N.; Heliker, C.; Kauahikaua, J.; Hon, K.</p> <p>1993-01-01</p> <p>The 1990 Kalapana flow field is a complex patchwork of tube-fed pahoehoe flows erupted from the Kupaianaha vent at a low effusion rate (approximately 3.5 m3/s). These flows accumulated over an 11-month period on the coastal plain of Kilauea Volcano, where the pre-eruption slope angle was less than 2??. the composite field thickened by the addition of new flows to its surface, as well as by inflation of these flows and flows emplaced earlier. Two major flow types were identified during the development of the flow field: large primary flows and smaller breakouts that extruded from inflated primary flows. Primary flows advanced more quickly and covered new land at a much higher rate than breakouts. The cumulative area covered by breakouts exceeded that of primary flows, although breakouts frequently covered areas already buried by recent flows. Lava tubes established within primary flows were longer-lived than those formed within breakouts and were often reoccupied by lava after a brief hiatus in supply; tubes within breakouts were never reoccupied once the supply was interrupted. During intervals of steady supply from the vent, the daily areal coverage by lava in Kalapana was constant, whereas the forward advance of the flows was sporadic. This implies that planimetric area, rather than flow length, provides the best indicator of effusion rate for pahoehoe flow fields that form on lowangle slopes. ?? 1993 Springer-Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040161165&hterms=Solar+still&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DSolar%2Bstill','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040161165&hterms=Solar+still&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DSolar%2Bstill"><span>How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hathaway, D. H.</p> <p>2004-01-01</p> <p>Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>