Science.gov

Sample records for flow fractionation devices

  1. A Continuous-Flow, Microfluidic Fraction Collection Device

    PubMed Central

    Baker, Christopher; Roper, Michael G.

    2010-01-01

    A microfluidic device is presented that performs electrophoretic separation coupled with fraction collection. Effluent from the 3.5 cm separation channel was focused via two sheath flow channels into one of seven collection channels. By holding the collection channels at ground potential and varying the voltage ratio at the two sheath flow channels, the separation effluent was directed to either specific collection channels, or could be swept past all channels in a defined time period. As the sum of the voltages applied to the two sheath flow channels was constant, the electric field remained at 275 V/cm during the separation regardless of the collection channel used. The constant potential in the separation channel allowed uninterrupted separation for late-migrating peaks while early-migrating peaks were being collected. To minimize the potential for carryover between fractions, the device geometry was optimized using a three-level factorial model. The optimum conditions were a 22.5° angle between the sheath flow channels and the separation channel, and a 350 µm length of channel between the separation outlet and the fraction channels. Using these optimized dimensions, the device performance was evaluated by separation and fraction collection of a fluorescently-labeled amino acid mixture. The ability to fraction collect on a microfluidic platform will be especially useful during automated or continuous operation of these devices or to collect precious samples. PMID:20730040

  2. Development of a downscale sedimentation field flow fractionation device for biological event monitoring.

    PubMed

    Bégaud-Grimaud, G; Battu, S; Liagre, B; Beneytout, J L; Jauberteau, M O; Cardot, P J P

    2009-12-25

    Classically described as a macroscale size-density based method, Sedimentation field flow fractionation (SdFFF) has been successfully used for cell sorting. The goal of this study was to develop a new SdFFF device for downscale applications, in particular for oncology research to rapidly monitor chemical biological event induction in a cell line. The development of a downscale SdFFF device required reduction of the separation channel volume. Taking advantage of a newly laboratory designed apparatus, channel volume was successfully decreased by reducing both length and breadth. To validate the apparatus and method, we used the well-known model of diosgenin dose-dependent induction of apoptosis or megakaryocytic differentiation in HEL cells. After a minute scale acquisition of a reference profile, the downscale device was able to perform fast, early, significant and reproducible monitoring of apoptosis and differentiation, two important biological mechanisms in the field of cancer research.

  3. Model-based analysis of a dielectrophoretic microfluidic device for field-flow fractionation.

    PubMed

    Mathew, Bobby; Alazzam, Anas; Abutayeh, Mohammad; Stiharu, Ion

    2016-08-01

    We present the development of a dynamic model for predicting the trajectory of microparticles in microfluidic devices, employing dielectrophoresis, for Hyperlayer field-flow fractionation. The electrode configuration is such that multiple finite-sized electrodes are located on the top and bottom walls of the microchannel; the electrodes on the walls are aligned with each other. The electric potential inside the microchannel is described using the Laplace equation while the microparticles' trajectory is described using equations based on Newton's second law. All equations are solved using finite difference method. The equations of motion account for forces including inertia, buoyancy, drag, gravity, virtual mass, and dielectrophoresis. The model is used for parametric study; the geometric parameters analyzed include microparticle radius, microchannel depth, and electrode/spacing lengths while volumetric flow rate and actuation voltage are the two operating parameters considered in the study. The trajectory of microparticles is composed of transient and steady state phases; the trajectory is influenced by all parameters. Microparticle radius and volumetric flow rate, above the threshold, do not influence the steady state levitation height; microparticle levitation is not possible below the threshold of the volumetric flow rate. Microchannel depth, electrode/spacing lengths, and actuation voltage influence the steady-state levitation height. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hybrid gravitational field-flow fractionation using immunofunctionalized walls for integrated bioanalytical devices.

    PubMed

    Roda, Barbara; Casolari, Sonia; Reschiglian, Pierluigi; Mirasoli, Mara; Simoni, Patrizia; Roda, Aldo

    2009-06-01

    In this work, the biospecific recognition antigen-antibody reaction was implemented in gravitational field-flow fractionation (GrFFF), a flow-assisted separation technique for micron-sized particles, in order to realize a hybrid immunomodulated GrFFF system in which two different principles are combined to achieve highly versatile fractionation. Micron-sized polystyrene beads coated with horseradish peroxidase (HRP) were used as a model sample, and anti-HRP antibodies were immobilized on the accumulation wall of the GrFFF channel. Ultrasensitive chemiluminescence imaging was employed to visualize the beads during elution and to optimize experimental conditions. The same principle was then applied to real biological samples composed by Yersinia enterocolitica and Escherichia coli cells. Results show the possibility to modify the elution of selected sample components and even to retain them into the channel. The hybrid immunomodulated GrFFF system is a step towards the development of a module that could be integrated in a lab-on-a-chip-based point-of-care testing device which includes sample pre-analytical cleanup and analysis.

  5. Numerical analysis of a dielectrophoresis field-flow fractionation device for the separation of multiple cell types.

    PubMed

    Shamloo, Amir; Kamali, Ali

    2017-08-10

    In this study, a dielectrophoresis field-flow fractionation device was analyzed using a numerical simulation method and the behaviors of a set of different cells were investigated. By reducing the alternating current frequency of the electrodes from the value used in the original setup configuration and increasing the number of exit channels, total discrimination in cell trajectories and subsequent separation of four cell types were achieved. Cells were differentiated based on their size and dielectric response that are represented in their real part of Clausius-Mossotti factor at different frequencies. A number of novel designs were also proposed based on the original setup configuration. It was seen that by reducing the length of the main channel and the number of electrodes at low frequencies and not changing the inlet flow velocities, cell separation was still achieved successfully, although with a slightly larger electrode voltage. The shorter main channel decreased the residence time for the cells on the chip and also reduced the overall size of the device-these were improvements over the original design. The obtained results can be used to analyze other cell types by knowing their size and dielectric properties to design geometries that can ensure separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Field-Flow Fractionation.

    ERIC Educational Resources Information Center

    Caldwell, Karin D.

    1988-01-01

    Describes a technique for separating samples that range over 15 orders of magnitude in molecular weight. Discusses theory, apparatus, and sample preparation techniques. Lists several types of field-flow fractionation (FFF) and their uses: sedimentation FFF, thermal FFF, flow FFF, electrical FFF, and steric FFF. (ML)

  7. Paper-based flow fractionation system for preconcentration and field-flow fractionation.

    NASA Astrophysics Data System (ADS)

    Hong, Seokbin; Kwak, Rhokyun; Kim, Wonjung

    2015-11-01

    We present a novel paper-based flow fractionation system for preconcentration and field-flow fractionation. The paper fluidic system consisting of a straight channel connected with expansion regions can generate a fluid flow with a constant flow rate for 10 min without any external pumping devices. The flow bifurcates with a fraction ratio of up to 30 depending on the control parameters of the channel geometry. Utilizing this simple paper-based bifurcation system, we developed a continuous-flow preconcentrator and a field-flow fractionator on a paper platform. Our experimental results show that the continuous-flow preconcentrator can produce a 33-fold enrichment of the ion concentration and that the flow fractionation system successfully separates the charged dyes. Our study suggests simple, cheap ways to construct preconcentration and field-flow fractionation systems for paper-based microfluidic diagnostic devices. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (NRF-2015R1A2A2A04006181).

  8. Gravitational field-flow fractionation integrated with chemiluminescence detection for a self-standing point-of-care compact device in bioanalysis.

    PubMed

    Casolari, S; Roda, B; Mirasoli, M; Zangheri, M; Patrono, D; Reschiglian, P; Roda, A

    2013-01-07

    A "Point-Of-Care-Testing" (POCT) system relies on portable and simply operated self-standing analytical devices. To fulfill diagnostic requirements, the POCT system should provide highly sensitive simultaneous detection of several biomarkers of the pathology of interest (multiplexing) in a short assay time. One of the main unsolved issues in POCT device development is the integration of pre-analytical sample preparation procedures in the miniaturized device. In this work, an integrated POCT system based on gravitational field-flow fractionation (GrFFF) and chemiluminescence (CL) detection is presented for the on-line sample pre-analytical treatment and/or clean-up and analysis of biological fluids. As a proof of principle for the new GrFFF-CL POCT system, the automatic on-line analysis of plasma alkaline phosphatase activity, a biomarker of obstructive liver diseases and bone disorders, starting from whole blood samples was developed. The GrFFF-CL POCT system was able to give quantitative results on blood samples from control and patients with low sample volume (0.5 μL) and reagent consumption, short analysis time (10 minutes), high reproducibility and with a linear range of 50-1400 IU L(-1). The system can be easily applied to on-line prepare plasma from whole blood for other clinical biomarkers and for other assay formats, based on immunoassay or DNA hybridization.

  9. Dean flow fractionation of chromosomes

    NASA Astrophysics Data System (ADS)

    Hockin, Matt; Sant, Himanshu J.; Capecchi, Mario; Gale, Bruce K.

    2016-03-01

    Efforts to transfer intact mammalian chromosomes between cells have been attempted for more than 50 years with the consistent result being transfer of sub unit length pieces regardless of method. Inertial microfluidics is a new field that has shown much promise in addressing the fractionation of particles in the 2-20 μm size range (with unknown limits) and separations are based upon particles being carried by curving confined flows (within a spiral shaped, often rectangular flow chamber) and migrating to stable "equilibrium" positions of varying distance from a chamber wall depending on the balance of dean and lift forces. We fabricated spiral channels for inertial microfluidic separations using a standard soft lithography process. The concentration of chromosomes, small contaminant DNA and large cell debris in each outlets were evaluated using microscope (60X) and a flow cytometer. Using Dean Flow Fractionation, we were able to focus 4.5 times more chromosomes in outlet 2 compared to outlet 4 where most of the large debris is found. We recover 16% of the chromosomes in outlet #1- 50% in 2, 23% in 3 and 11% in 4. It should be noted that these estimates of recovery do not capture one piece of information- it actually may be that the chromosomes at each outlet are physically different and work needs to be done to verify this potential.

  10. Fluid flow monitoring device

    DOEpatents

    McKay, Mark D.; Sweeney, Chad E.; Spangler, Jr., B. Samuel

    1993-01-01

    A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

  11. Wellhead flow control devices

    SciTech Connect

    McLean, D.K.

    1981-09-15

    A wellhead flow control device includes a main flow control valve and associated packings designed for operation under extreme conditions associated with the pumping of high viscosity asphaltic crude wherein the formation includes toxic gases. The formation is produced using steam flooding techniques. The main valve seat and the associated valve closure, consisting of a reciprocating ram and packing plug, are coaxial with the pump polished rod. The valve seat icludes tapered walls defining a shoulder which partially confronts the ram plug. The ram plug is formed of a compressible material formed to the shape of the valve seat. The packing plug is retained on the end of the ram by axial tie rods and a retaining ring. The ring may engage the valve seat shoulder to effect axial compression of the packing plug between the retaining ring and ram face, with consequent radial expansion into the sealing engagement. The ram is reciprocated axially, either manually or hydraulically relative to the ram body. A packing gland, suitable to seal against toxic gases, is provided between the ram and valve body. A rod packing, at the upper end of the ram, includes a primary adjustable packing gland for sealing between the ram and the reciprocating polished rod. 41 claims.

  12. Thermomechanical Fractional Model of TEMHD Rotational Flow.

    PubMed

    Hamza, F; Abd El-Latief, A; Khatan, W

    2017-01-01

    In this work, the fractional mathematical model of an unsteady rotational flow of Xanthan gum (XG) between two cylinders in the presence of a transverse magnetic field has been studied. This model consists of two fractional parameters α and β representing thermomechanical effects. The Laplace transform is used to obtain the numerical solutions. The fractional parameter influence has been discussed graphically for the functions field distribution (temperature, velocity, stress and electric current distributions). The relationship between the rotation of both cylinders and the fractional parameters has been discussed on the functions field distribution for small and large values of time.

  13. Thermomechanical Fractional Model of TEMHD Rotational Flow

    PubMed Central

    Hamza, F.; Abd El-Latief, A.; Khatan, W.

    2017-01-01

    In this work, the fractional mathematical model of an unsteady rotational flow of Xanthan gum (XG) between two cylinders in the presence of a transverse magnetic field has been studied. This model consists of two fractional parameters α and β representing thermomechanical effects. The Laplace transform is used to obtain the numerical solutions. The fractional parameter influence has been discussed graphically for the functions field distribution (temperature, velocity, stress and electric current distributions). The relationship between the rotation of both cylinders and the fractional parameters has been discussed on the functions field distribution for small and large values of time. PMID:28045941

  14. Assessing a pneumatic fractionator as a lint cleaning device

    USDA-ARS?s Scientific Manuscript database

    A study assessed a pneumatic fractionator as a lint cleaning device for ginned lint. Results from a test that used two line pressures and three fractionation times showed that higher line pressure and longer fractionation time produced fiber that was shorter in staple length, contained more neps, a...

  15. Method and device for measuring fluid flow

    DOEpatents

    Atherton, Richard; Marinkovich, Phillip S.; Spadaro, Peter R.; Stout, J. Wilson

    1976-11-23

    This invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution.

  16. Devices, systems, and methods for microscale isoelectric fractionation

    DOEpatents

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.

    2016-08-09

    Embodiments of the present invention provide devices, systems, and methods for microscale isoelectric fractionation. Analytes in a sample may be isolated according to their isoelectric point within a fractionation microchannel. A microfluidic device according to an embodiment of the invention includes a substrate at least partially defining a fractionation microchannel. The fractionation microchannel has at least one cross-sectional dimension equal to or less than 1 mm. A plurality of membranes of different pHs are disposed in the microchannel. Analytes having an isoelectric point between the pH of the membranes may be collected in a region of the fractionation channel between the first and second membranes through isoelectric fractionation.

  17. Devices, systems, and methods for microscale isoelectric fractionation

    DOEpatents

    Sommer, Gregory J; Hatch, Anson V; Wang, Ying-Chih; Singh, Anup K

    2015-04-14

    Embodiments of the present invention provide devices, systems, and methods for microscale isoelectric fractionation. Analytes in a sample may be isolated according to their isoelectric point within a fractionation microchannel. A microfluidic device according to an embodiment of the invention includes a substrate at least partially defining a fractionation microchannel. The fractionation microchannel has at least one cross-sectional dimension equal to or less than 1 mm. A plurality of membranes of different pHs are disposed in the microchannel. Analytes having an isoelectric point between the pH of the membranes may be collected in a region of the fractionation channel between the first and second membranes through isoelectric fractionation.

  18. Fractional exhaled nitric oxide measurement with a handheld device.

    PubMed

    Magori, Erhard; Hiltawsky, Karsten; Fleischer, Maximilian; Simon, Elfriede; Pohle, Roland; von Sicard, Oliver; Tawil, Angelika

    2011-06-01

    A sensing system for fractional exhaled nitric oxide (FeNO) measurement is presented, which is characterized by a compact setup and a cost potential to be made available for the patient at home. The sensing is based on the work function measurement of a phthalocyanine-type sensing material, which is shown to be sufficiently sensitive for NO(2) in the ppb range. The transducer used to measure the work function is a field effect transistor with a suspended gate electrode. Selectivity is given with respect to other breath components including typically metabolic by-products. The measurement system includes breath treatments in a simple setup, which essentially are dehumidification and a quantitative conversion of NO to NO(2) with a conversion rate of approx. 95%, using a disposable oxidation catalyst. The accomplishment of the correct exhalation maneuver and feeding of the suited portion of exhaled air to the sensor is provided by breath sampling means. The sensor is not gas consuming. This allows us to fill the measurement chamber once, instead of establishing a gas flow for the measurement. This feature simplifies the device architecture. In this paper, we report on sensor characteristics, system architecture and measurement with artificial breath-gas as well as with human breath with the device.

  19. Integrated electrokinetic sample fractionation and solid-phase extraction in microfluidic devices.

    PubMed

    Wang, Zhen; Jemere, Abebaw B; Harrison, D Jed

    2012-11-01

    A microfluidic device that performs "in space" sample fractionation, collection, and preconcentration for proteomics is described. Effluents from a 2.75 mm long fractionation channel, focused via sheath flow, were sequentially delivered into an array of 36-collection channels containing monolithic polymer beds for SPE. Optimum conditions for the device design, and simultaneous photolytic fabrication of 36 monolithic columns in the 36 channels, as well as for their proper performance in electrokinetic sample fractionation and collection are described. A hydrophobic butyl methacrylate-based monolithic porous polymer was copolymerized with an ionizable monomer, acryloamido-methyl-propane sulfonate, to form a polymer monolith for SPE that also sustains cathodic electroosmotic flow. The SPE bed was made deep enough to greatly reduce the linear flow rate within the bed, in order to compensate for the lower electroosmotic mobility of the cationically charged SPE bed relative to the glass walled device. Under these conditions, electrokinetic fractionation of a protein sample resulted in tightly focused sample zones delivered into each of the 36-channel polymer beds with no observed crosscontamination. Monolithic columns showed reproducible performance with preconcentration factor of 30 for 2 min loading time. The ability to fractionate, collect, and preconcentrate samples on a microfluidic platform will be especially useful for automated or continuous operation of these devices in proteomics research.

  20. Comprehensive assessment of coronary fractional flow reserve

    PubMed Central

    Qi, Xiaolong; Fan, Guoxin; Zhu, Deqiu; Ma, Wanrong

    2015-01-01

    Fractional flow reserve (FFR) is considered nowadays as the gold standard for invasive assessment of physiologic stenosis significance and an indispensable tool for decision-making in coronary revascularization. Robust studies have shown that FFR is more effective in accurately identifying which lesions should be stented, and revascularization guided by FFR improves the outcome of coronary artery disease in patients. Therefore, FFR has been upgraded to a class A recommendation in current guidelines when the ischemic potential for specific target lesions is controversial. This article reviews the laboratory practice, functional evaluation of FFR as a gold standard and its emerging clinical application. In addition, novel noninvasive technologies of FFR measurement are discussed in depth. PMID:26170840

  1. Field-flow fractionation of chromosomes

    SciTech Connect

    Giddings, J.C.

    1991-09-01

    The work done on this project is divided into two principal areas. The first involves the application of sedimentation/steric FFF to metaphase chromosomes in an attempt to fractionate the chromosomes according to their size. The preparation of chromosomes from a number of organisms was attempted; procedures were finally worked out in collaboration with Los Alamos National Laboratory for the preparation of metaphase chromosomes from Chinese hamster cells. After extensive experimental work was done to identify suitable operating conditions, the partial fractionation of the Chinese hamster chromosomes was achieved. In the second component of the project, flow FFF was applied to the separation of DNA fragments. Figures are provided that show considerable success in the separation of plasmid digests and in the separation of single from double stranded DNA under 10{sup 4} base pairs. Preliminary work was done on DNA fragments having a size greater than 10{sup 4} base pairs. This work has served to establish the inversion point for DNA.

  2. Fractional-order variational optical flow model for motion estimation.

    PubMed

    Chen, Dali; Sheng, Hu; Chen, YangQuan; Xue, Dingyü

    2013-05-13

    A new class of fractional-order variational optical flow models, which generalizes the differential of optical flow from integer order to fractional order, is proposed for motion estimation in this paper. The corresponding Euler-Lagrange equations are derived by solving a typical fractional variational problem, and the numerical implementation based on the Grünwald-Letnikov fractional derivative definition is proposed to solve these complicated fractional partial differential equations. Theoretical analysis reveals that the proposed fractional-order variational optical flow model is the generalization of the typical Horn and Schunck (first-order) variational optical flow model and the second-order variational optical flow model, which provides a new idea for us to study the optical flow model and has an important theoretical implication in optical flow model research. The experiments demonstrate the validity of the generalization of differential order.

  3. Microscal Thermal Flow Field Fractionation of DNA by Size

    NASA Astrophysics Data System (ADS)

    Pearce, Jennifer; Alfahani, Faihan

    2015-11-01

    We present results from a lattice-Boltzmann-base Brownian Dynamics simulation on the separation of DNA by length using thermal flow field fractionation in a microfluidic device. A temperature gradient in combination with fluid flow allows us to separate long and short strands of DNA. Shorter DNA fragments have higher Soret coefficients and therefore migrate more strongly in the temperature gradient than long strands. They are therefore closer to the channel walls and have a lower mean velocity than longer strands. The retention time in the channel for longer DNA chains is significantly shorter than for small chains. This technique has the advantage that long strands can be processed quickly, unlike traditional agarose gel techniques which require longer times for longer fragments.

  4. High energy density redox flow device

    DOEpatents

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  5. A novel approach to improve operation and performance in flow field-flow fractionation.

    PubMed

    Johann, Christoph; Elsenberg, Stephan; Roesch, Ulrich; Rambaldi, Diana C; Zattoni, Andrea; Reschiglian, Pierluigi

    2011-07-08

    A new system design and setup are proposed for the combined use of asymmetrical flow field-flow fractionation (AF4) and hollow-fiber flow field-flow fractionation (HF5) within the same instrumentation. To this purpose, three innovations are presented: (a) a new flow control scheme where focusing flow rates are measured in real time allowing to adjust the flow rate ratio as desired; (b) a new HF5 channel design consisting of two sets of ferrule, gasket and cap nut used to mount the fiber inside a tube. This design provides a mechanism for effective and straightforward sealing of the fiber; (c) a new AF4 channel design with only two fluid connections on the upper plate. Only one pump is needed to deliver the necessary flow rates. In the focusing/relaxation step the two parts of the focusing flow and a bypass flow flushing the detectors are created with two splits of the flow from the pump. In the elution mode the cross-flow is measured and controlled with a flow controller device. This leads to reduced pressure pulsations in the channel and improves signal to noise ratio in the detectors. Experimental results of the separation of bovine serum albumin (BSA) and of a mix of four proteins demonstrate a significant improvement in the HF5 separation performance, in terms of efficiency, resolution, and run-to-run reproducibility compared to what has been reported in the literature. Separation performance in HF5 mode is shown to be comparable to the performance in AF4 mode using a channel with two connections in the upper plate.

  6. Self-regulating flow control device

    DOEpatents

    Humphreys, Duane A.

    1984-01-01

    A variable, self-regulating valve having a hydraulic loss coefficient proportional to a positive exponential power of the flow rate. The device includes two objects in a flow channel and structure which assures that the distance between the two objects is an increasing function of the flow rate. The range of spacing between the objects is such that the hydraulic resistance of the valve is an increasing function of the distance between the two objects so that the desired hydraulic loss coefficient as a function of flow rate is obtained without variation in the flow area.

  7. Continuous flow nitration in miniaturized devices

    PubMed Central

    2014-01-01

    Summary This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed. PMID:24605161

  8. Injectant mole-fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.

    1989-01-01

    A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.

  9. Injectant mole-fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.

    1989-01-01

    A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.

  10. Void fraction correlations in two-phase horizontal flow

    SciTech Connect

    Papathanassiou, G.; Maeder, P.F.; DiPippo, R.; Dickinson, D.A.

    1983-05-01

    This study examines some physical mechanisms which impose limits on the possible existence of two-phase flow in a horizontal pipe. With the aid of this analysis and the use of the Martinelli variable, X, a method is developed which determines the range of possible void fractions for a given two-phase flow. This method affords a means of direct comparison among void fraction correlations, as well as between correlation predictions and experimental results. In this respect, four well-known void fraction correlations are compared against each other and with experimental results obtained in the Brown University Two-Phase Flow Research Facility.

  11. Granular flow through an aperture: influence of the packing fraction.

    PubMed

    Aguirre, M A; De Schant, R; Géminard, J-C

    2014-07-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.

  12. The fractional Boussinesq equation of groundwater flow and its applications

    NASA Astrophysics Data System (ADS)

    Su, Ninghu

    2017-04-01

    This paper presents a set of fractional Boussinesq equations (fBEs) for groundwater flow in confined and unconfined aquifers and demonstrates the application of one of the fBEs for groundwater discharges known as recession curves. The fBEs are formulated with two-term distributed fractional orders in time and symmetrical fractional derivatives (SFD) in space applicable to both confined and unconfined aquifers. The SFD in theory consists of the forward fractional derivative (FFD) and the backward fractional derivative (BFD). The FFD represents the forward movement of water along the direction of mainstream flow while the BFD accounts for the backward motion of water in the direction opposite to the mainstream flow. The backward flow at the pore level can be referred to as the micro-scale backwater effect. The analogue of the backwater effect on a micro-scale using the BFD coincides with the wandering processes based on the continuous-time random walk (CTRW) theory which results in the fractional governing equation. With the analytical solutions of the fBE for given initial and boundary conditions of the first type for a finite depth, a set of formulae for groundwater recession has been derived using approximate solutions of the fBE. The examples of the applications of the recession curves are graphically illustrated and the effects of the orders of fractional derivatives on the geometry of the flow curves examined.

  13. Trajectory of microscale entities in a microdevice for field-flow fractionation based on dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Mathew, Bobby; Alazzam, Anas; Khashan, Saud A.; El-Khasawneh, Bashar S.

    2015-06-01

    This article deals with the development of a two-dimensional dynamic model for tracking the path of cells subjected to dielectrophoresis, in a continuous flow microfluidic device, for purposes of field-flow fractionation. The nonuniform electric field exists between the top and bottom surface of the microchannel; the top electrode runs over the entire length of the microchannel while the bottom surface of the same holds multiple finite sized electrodes of opposite polarity. The model consists of two governing equations with each describing the movement of the cell in one of the two dimensions of interest. The equations governing of the cell trajectories as well as that of the electric potential inside the microchannel are solved using finite difference method. The model is subsequently used for parametric study; the parameters considered include cell radii, actuation voltage, microchannel height and volumetric flow rate. The model is particularly useful in the design of microfluidic device employing dielectrophoresis for field flow fractionation.

  14. Experimental Flow Characterization of a Flow Diverting Device

    NASA Astrophysics Data System (ADS)

    Sparrow, Eph; Chow, Ricky; Campbell, Gary; Divani, Afshin; Sheng, Jian

    2012-11-01

    Flow diverters, such as the Pipeline Embolization Device, are a new class of endovascular devices for the treatment of intracranial aneurysms. While clinical studies have demonstrated safety and efficacy, their impact on intra-aneurysmal flow is not confirmed experimentally. As such, optimization of the flow diversion behavior is not currently possible. A quasi-3D PIV technique was developed and applied in various glass models at Re = 275 and 550 to determine the changes to flow characteristics due to the deployment of a flow diverter across the aneurysm neck. Outcomes such as mean velocity, wall shear stress, and others metrics will be presented. Glass models with varying radii of curvature and aneurysm locations will be examined. Experiments were performed in a fully index-matched flow facility using ~10 μm diameter polystyrene particles doped with Rhodium 6G dye. The particles were illuminated with a 532nm laser sheet and observed with a CCD camera and a 592nm +/-43 nm bandpass filter. A quasi 3D flow field was reconstructed from multiple orthogonal planes (spaced 0.4mm apart) encompassing the entire glass model. Wall stresses were evaluated from the near-wall flow viscous stresses.

  15. Axial Flow Conditioning Device for Mitigating Instabilities

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet (Inventor); Birkbeck, Roger M. (Inventor); Hosangadi, Ashvin (Inventor)

    2017-01-01

    A flow conditioning device for incrementally stepping down pressure within a piping system is presented. The invention includes an outer annular housing, a center element, and at least one intermediate annular element. The outer annular housing includes an inlet end attachable to an inlet pipe and an outlet end attachable to an outlet pipe. The outer annular housing and the intermediate annular element(s) are concentrically disposed about the center element. The intermediate annular element(s) separates an axial flow within the outer annular housing into at least two axial flow paths. Each axial flow path includes at least two annular extensions that alternately and locally direct the axial flow radially outward and inward or radially inward and outward thereby inducing a pressure loss or a pressure gradient within the axial flow. The pressure within the axial flow paths is lower than the pressure at the inlet end and greater than the vapor pressure for the axial flow. The invention minimizes fluidic instabilities, pressure pulses, vortex formation and shedding, and/or cavitation during pressure step down to yield a stabilized flow within a piping system.

  16. Fractionating power and outlet stream polydispersity in asymmetrical flow field-flow fractionation. Part I: isocratic operation.

    PubMed

    Williams, P Stephen

    2016-05-01

    Asymmetrical flow field-flow fractionation (As-FlFFF) has become the most commonly used of the field-flow fractionation techniques. However, because of the interdependence of the channel flow and the cross flow through the accumulation wall, it is the most difficult of the techniques to optimize, particularly for programmed cross flow operation. For the analysis of polydisperse samples, the optimization should ideally be guided by the predicted fractionating power. Many experimentalists, however, neglect fractionating power and rely on light scattering detection simply to confirm apparent selectivity across the breadth of the eluted peak. The size information returned by the light scattering software is assumed to dispense with any reliance on theory to predict retention, and any departure of theoretical predictions from experimental observations is therefore considered of no importance. Separation depends on efficiency as well as selectivity, however, and efficiency can be a strong function of retention. The fractionation of a polydisperse sample by field-flow fractionation never provides a perfectly separated series of monodisperse fractions at the channel outlet. The outlet stream has some residual polydispersity, and it will be shown in this manuscript that the residual polydispersity is inversely related to the fractionating power. Due to the strong dependence of light scattering intensity and its angular distribution on the size of the scattering species, the outlet polydispersity must be minimized if reliable size data are to be obtained from the light scattering detector signal. It is shown that light scattering detection should be used with careful control of fractionating power to obtain optimized analysis of polydisperse samples. Part I is concerned with isocratic operation of As-FlFFF, and part II with programmed operation.

  17. Capacitive Sensing Of Gaseous Fraction In Two-Phase Flow

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.; Sahm, Michael K.

    1995-01-01

    Instrument makes nonintrusive, real-time capacitive measurements to determine volume fraction of vapor or other gas in flowing, electrically nonconductive liquid/gas mixture. Works even with liquids having relatively low permittivities. Useful for measuring proportions of vapor in boiling, condensing, and flowing heat-transfer fluids and in cryogenic fluids.

  18. FRACTIONATION OF SPINACH CHLOROPLASTS BY FLOW SEDIMENTATION-ELECTROPHORESIS

    PubMed Central

    Packer, Lester; Nobel, Park S.; Gross, Elizabeth L.; Mel, Howard C.

    1966-01-01

    A separation of spinach chloroplasts in vitro into fractions according to size (volume) and activity (light-dependent shrinkage and NADP reduction) has been achieved by stable-flow free boundary sedimentation-electrophoresis. The salient features of this chloroplast study are: (a) separation is achieved within 30 min; (b) only small density gradients are required, thus minimizing osmotic effects; (c) the fractions are collected continuously, with size fractionation being evidenced; and (d) particles are separated into fractions of higher and lower activities as compared with the control population. PMID:5960807

  19. Fractionating power and outlet stream polydispersity in asymmetrical flow field-flow fractionation. Part II: programmed operation.

    PubMed

    Williams, P Stephen

    2017-01-01

    Asymmetrical flow field-flow fractionation (As-FlFFF) is a widely used technique for analyzing polydisperse nanoparticle and macromolecular samples. The programmed decay of cross flow rate is often employed. The interdependence of the cross flow rate through the membrane and the fluid flow along the channel length complicates the prediction of elution time and fractionating power. The theory for their calculation is presented. It is also confirmed for examples of exponential decay of cross flow rate with constant channel outlet flow rate that the residual sample polydispersity at the channel outlet is quite well approximated by the reciprocal of four times the fractionating power. Residual polydispersity is of importance when online MALS or DLS detection are used to extract quantitative information on particle size or molecular weight. The theory presented here provides a firm basis for the optimization of programmed flow conditions in As-FlFFF. Graphical abstract Channel outlet polydispersity remains significant following fractionation by As-FlFFF under conditions of programmed decay of cross flow rate.

  20. Tunable Microfluidic Devices for Hydrodynamic Fractionation of Cells and Beads: A Review

    PubMed Central

    Alvankarian, Jafar; Majlis, Burhanuddin Yeop

    2015-01-01

    The adjustable microfluidic devices that have been developed for hydrodynamic-based fractionation of beads and cells are important for fast performance tunability through interaction of mechanical properties of particles in fluid flow and mechanically flexible microstructures. In this review, the research works reported on fabrication and testing of the tunable elastomeric microfluidic devices for applications such as separation, filtration, isolation, and trapping of single or bulk of microbeads or cells are discussed. Such microfluidic systems for rapid performance alteration are classified in two groups of bulk deformation of microdevices using external mechanical forces, and local deformation of microstructures using flexible membrane by pneumatic pressure. The main advantage of membrane-based tunable systems has been addressed to be the high capability of integration with other microdevice components. The stretchable devices based on bulk deformation of microstructures have in common advantage of simplicity in design and fabrication process. PMID:26610519

  1. Analysis of Fractional Flow for Transient Two-Phase Flow in Fractal Porous Medium

    NASA Astrophysics Data System (ADS)

    Lu, Ting; Duan, Yonggang; Fang, Quantang; Dai, Xiaolu; Wu, Jinsui

    2016-03-01

    Prediction of fractional flow in fractal porous medium is important for reservoir engineering and chemical engineering as well as hydrology. A physical conceptual fractional flow model of transient two-phase flow is developed in fractal porous medium based on the fractal characteristics of pore-size distribution and on the approximation that porous medium consist of a bundle of tortuous capillaries. The analytical expression for fractional flow for wetting phase is presented, and the proposed expression is the function of structural parameters (such as tortuosity fractal dimension, pore fractal dimension, maximum and minimum diameters of capillaries) and fluid properties (such as contact angle, viscosity and interfacial tension) in fractal porous medium. The sensitive parameters that influence fractional flow and its derivative are formulated, and their impacts on fractional flow are discussed.

  2. Advanced heart failure treated with continuous-flow left ventricular assist device.

    PubMed

    Slaughter, Mark S; Rogers, Joseph G; Milano, Carmelo A; Russell, Stuart D; Conte, John V; Feldman, David; Sun, Benjamin; Tatooles, Antone J; Delgado, Reynolds M; Long, James W; Wozniak, Thomas C; Ghumman, Waqas; Farrar, David J; Frazier, O Howard

    2009-12-03

    Patients with advanced heart failure have improved survival rates and quality of life when treated with implanted pulsatile-flow left ventricular assist devices as compared with medical therapy. New continuous-flow devices are smaller and may be more durable than the pulsatile-flow devices. In this randomized trial, we enrolled patients with advanced heart failure who were ineligible for transplantation, in a 2:1 ratio, to undergo implantation of a continuous-flow device (134 patients) or the currently approved pulsatile-flow device (66 patients). The primary composite end point was, at 2 years, survival free from disabling stroke and reoperation to repair or replace the device. Secondary end points included survival, frequency of adverse events, the quality of life, and functional capacity. Preoperative characteristics were similar in the two treatment groups, with a median age of 64 years (range, 26 to 81), a mean left ventricular ejection fraction of 17%, and nearly 80% of patients receiving intravenous inotropic agents. The primary composite end point was achieved in more patients with continuous-flow devices than with pulsatile-flow devices (62 of 134 [46%] vs. 7 of 66 [11%]; P<0.001; hazard ratio, 0.38; 95% confidence interval, 0.27 to 0.54; P<0.001), and patients with continuous-flow devices had superior actuarial survival rates at 2 years (58% vs. 24%, P=0.008). Adverse events and device replacements were less frequent in patients with the continuous-flow device. The quality of life and functional capacity improved significantly in both groups. Treatment with a continuous-flow left ventricular assist device in patients with advanced heart failure significantly improved the probability of survival free from stroke and device failure at 2 years as compared with a pulsatile device. Both devices significantly improved the quality of life and functional capacity. (ClinicalTrials.gov number, NCT00121485.) 2009 Massachusetts Medical Society

  3. Lie group analysis and similarity solution for fractional Blasius flow

    NASA Astrophysics Data System (ADS)

    Pan, Mingyang; Zheng, Liancun; Liu, Fawang; Zhang, Xinxin

    2016-08-01

    This paper presents an investigation for boundary layer flow of viscoelastic fluids past a flat plate. Fractional-order Blasius equation with spatial fractional Riemann-Liouville derivative is derived firstly by using Lie group transformation. The solution is obtained numerically by the generalized shooting method, employing the shifted Grünwald formula and classical fourth order Runge-Kutta method as the iterative scheme. The effects of the order of fractional derivative and the generalized Reynolds number on the velocity profiles are analyzed and discussed. Numerical results show that the smaller the value of the fractional order derivative leads to the faster velocity of viscoelastic fluids near the plate but not to hold near the outer flow. As the Reynolds number increases, the fluid is moving faster in the whole boundary layer consistently.

  4. Physiologic evaluation of bifurcation lesions using fractional flow reserve.

    PubMed

    Koo, Bon-Kwon

    2009-04-01

    Functional evaluation of bifurcation lesions is more difficult than usual lesions due to their complex anatomy. Angiographic and intravascular ultrasound criteria for main branch intervention cannot be directly applied to side branch lesions due to the difference in underlying lesion characteristics, geometric changes during intervention, and the size of myocardial territory. Fractional flow reserve is a physiologic parameter which reflects both the degree of stenosis and the area of perfusion supplied by a specific coronary artery. The present review will focus on using fractional flow reserve in bifurcation lesions.

  5. The Flow Field Inside Ventricle Assist Device

    NASA Astrophysics Data System (ADS)

    Einav, Shmuel; Rosenfeld, Moshe; Avrahami, Idit

    2000-11-01

    The evaluation of innovative ventricle assist devices (VAD), is of major importance. A New Left Heart Assist Device, with an improved energy converter unit, has been investigated both numerically and experimentally. For this purpose, an experimental Continuous Digital Particle Imagining Velocimetry (CDPIV) is combined with a computational fluid dynamics (CFD) analysis. These tools complement each other to result into a comprehensive description of the complex 3D, viscous and time-dependent flow field inside the artificial ventricle. A 3D numerical model was constructed to simulate the VAD pump and a time-depended CFD analysis with moving walls was performed to predict the flow behaviour in the VAD during the cardiac cycle. A commercial finite element package was used to solve the Navier-Stokes equations (FIDAP, Fluent Inc., Evanston). In the experimental analysis, an optically clear elastic model of the VAD was placed inside a 2D CDPIV system. The CDPIV system is capable of sampling 15 velocity vector fields per second based on image-pairs intervals lower than 0.5 millisecond. Continuous sequences of experimental images, followed by their calculated velocity transient fields, are given as animated presentation of the distensible VAD. These results are used for validating the CFD simulations. Once validated, the CFD results provide a detailed 3D and time dependent description of the flow field, allowing the identification of stagnation or high shear stress regions.

  6. Microfluidic devices and methods for integrated flow cytometry

    DOEpatents

    Srivastava, Nimisha; Singh, Anup K.

    2011-08-16

    Microfluidic devices and methods for flow cytometry are described. In described examples, various sample handling and preparation steps may be carried out within a same microfluidic device as flow cytometry steps. A combination of imaging and flow cytometry is described. In some examples, spiral microchannels serve as incubation chambers. Examples of automated sample handling and flow cytometry are described.

  7. Continuous flow magnetic cell fractionation based on antigen expression level.

    PubMed

    Schneider, Thomas; Moore, Lee R; Jing, Ying; Haam, Seungjoo; Williams, P Stephen; Fleischman, Aaron J; Roy, Shuvo; Chalmers, Jeffrey J; Zborowski, Maciej

    2006-07-31

    Cell separation is important in medical and biological research and plays an increasingly important role in clinical therapy and diagnostics, such as rare cancer cell detection in blood. The immunomagnetic labeling of cells with antibodies conjugated to magnetic nanospheres gives rise to a proportional relationship between the number of magnetic nanospheres attached to the cell and the cell surface marker number. This enables the potential fractionation of cell populations by magnetophoretic mobility (MM). We exploit this feature with our apparatus, the Dipole Magnet Flow Fractionator (DMFF), which consists of an isodynamic magnetic field, an orthogonally-oriented thin ribbon of cell suspension in continuous sheath flow, and ten outlet flows. From a sample containing a 1:1 mixture of immunomagnetically labeled (label+) and unlabeled (label-) cells, we achieved an increase in enrichment of the label+ cell fraction with increasing outlet numbers in the direction of the magnetic field gradient (up to 10-fold). The total recovery of the ten outlet fractions was 90.0+/-7.7%. The mean MM of label+ cells increased with increasing outlet number by up to a factor of 2.3. The postulated proportionality between the number of attached magnetic beads and the number of cell surface markers was validated by comparison of MM measured by cell tracking velocimetry (CTV) with cell florescence intensity measured by flow cytometry.

  8. A Fractional-Flow Based Compressible Multiphase Flow Model with Newly Proposed Constitutive Retentions

    NASA Astrophysics Data System (ADS)

    Tsai, C.; Yeh, G.

    2011-12-01

    In this investigation, newly proposed constitutive retentions are implemented to a fractional-flow based compressible multiphase-phase flow model. With the new model, a compressible three-phase (water, non-aqueous phase liquid (NAPL) and air) flow problem is simulated. In fractional-flow approaches, the three mass balance equations written in terms of three phase pressures are transformed to those in terms of the total pressure, saturation of water, and saturation of total liquid. These three governing equations are discretized with the Galerkin finite element method (FEM). The resulted matrix equation is solved with Bi-CGSTAB. Several numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results show the presented fractional-flow based multiphase flow model is feasible and yields physically realistic solutions for compressible three-phase flow problems in porous media.

  9. Pressure and flow characteristics of restrictive flow orifice devices.

    SciTech Connect

    Shrouf, Roger D.

    2003-06-01

    A Restrictive Flow Orifice (RFO) can be used to enhance the safe design of a pressure system in several ways. Pressure systems frequently incorporate a regulator and relief valve to protect the downstream equipment from accidental overpressure caused by regulator failure. Analysis frequently shows that in cases of high-flow regulator failure, the downstream pressure may rise significantly above the set pressure of the relief valve. This is due to limited flow capacity of the relief valve. A different regulator or relief valve may need to be selected. A more economical solution to this problem is to use an RFO to limit the maximum system flow to acceptable limits within the flow capacity of the relief valve, thereby enhancing the overpressure protection of laboratory equipment. An RFO can also be used to limit the uncontrolled release of system fluid (gas or liquid) upon component or line failure. As an example, potential asphyxiation hazards resultant from the release of large volumes of inert gas from a 'house' nitrogen system can be controlled by the use of an RFO. This report describes a versatile new Sandia-designed RFO available from the Swagelok Company and specifies the gas flow characteristics of this device. Two sizes, 0.010 and 0.020 inch diameter RFOs are available. These sizes will allow enhanced safety for many common applications. This new RFO design are now commercially available and provide advantages over existing RFOs: a high pressure rating (6600 psig); flow through the RFO is equal for either forward or reverse directions; they minimize the potential for leakage by incorporating the highest quality threaded connections; and can enhance the safety of pressure systems.

  10. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    DOEpatents

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  11. Miniaturised free flow isotachophoresis of bacteria using an injection moulded separation device.

    PubMed

    Prest, Jeff E; Baldock, Sara J; Fielden, Peter R; Goddard, Nicholas J; Goodacre, Royston; O'Connor, Richard; Treves Brown, Bernard J

    2012-08-15

    A new design of miniaturised free flow electrophoresis device has been produced. The design contains a separation chamber that is 45 mm long by 31.7 mm wide with a depth of 50 μm and has nine inlet and nine outlet holes to allow for fraction collection. The devices were formed of polystyrene with carbon fibre loaded polystyrene drive electrodes and produced using injection moulding. This means that the devices are low cost and can potentially be mass produced. The devices were used for free flow isotachophoresis (FFITP), a technique that can be used for focussing and concentrating analytes contained within complex sample matrices. The operation of the devices was demonstrated by performing separations of dyes and bacterial samples. Analysis of the output from FFITP separations of samples containing the bacterium Erwinia herbicola, a biological pathogen, by cell culturing and counting showed that fractionation of the output was achieved. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Affinity flow fractionation of cells via transient interactions with asymmetric molecular patterns

    NASA Astrophysics Data System (ADS)

    Bose, Suman; Singh, Rishi; Hanewich-Hollatz, Mikhail; Shen, Chong; Lee, Chia-Hua; Dorfman, David M.; Karp, Jeffrey M.; Karnik, Rohit

    2013-07-01

    Flow fractionation of cells using physical fields to achieve lateral displacement finds wide applications, but its extension to surface molecule-specific separation requires labeling. Here we demonstrate affinity flow fractionation (AFF) where weak, short-range interactions with asymmetric molecular patterns laterally displace cells in a continuous, label-free process. We show that AFF can directly draw neutrophils out of a continuously flowing stream of blood with an unprecedented 400,000-fold depletion of red blood cells, with the sorted cells being highly viable, unactivated, and functionally intact. The lack of background erythrocytes enabled the use of AFF for direct enumeration of neutrophils by a downstream detector, which could distinguish the activation state of neutrophils in blood. The compatibility of AFF with capillary microfluidics and its ability to directly separate cells with high purity and minimal sample preparation will facilitate the design of simple and portable devices for point-of-care diagnostics and quick, cost-effective laboratory analysis.

  13. High energy density redox flow device

    SciTech Connect

    Chiang, Yet -Ming; Carter, W. Craig; Duduta, Mihai; Limthongkul, Pimpa

    2015-10-06

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  14. High energy density redox flow device

    DOEpatents

    Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  15. Reciprocating free-flow isoelectric focusing device for preparative separation of proteins.

    PubMed

    Kong, Fan-Zhi; Yang, Ying; Wang, Yi; Li, Guo-Qing; Li, Shan; Xiao, Hua; Fan, Liu-Yin; Liu, Shao-Rong; Cao, Cheng-Xi

    2015-11-27

    The traditional recycling free-flow isoelectric focusing (RFFIEF) suffered from complex structure, tedious operations and poor extensibility as well as high cost. To address these issues, a novel reciprocating free-flow isoelectric focusing device (ReFFIEF) was developed for proteins or peptides pre-fractionation. In the new device, a reciprocating background flow was for the first time introduced into free flow electrophoresis (FFE) system. The gas cushion injector (GCI) used in the previous continuous free-flow electrophoresis (CFFE) was redesigned for the reciprocating background flow. With the GCI, the reciprocating background flow could be achieved between the GCI, separation chamber and transient self-balance collector (tSBC). In a run, process fluid flowed to and from, forming a stable reciprocating fluid flow in the separation chamber. A pH gradient was created within the separation chamber, and at the same time proteins were focused repeatedly when passing through the chamber under perpendicular electric field. The ReFFIEF procedure was optimized for fractionations of three model proteins, and the optimized method was further used for pre-fractionation of model human serum samples. As compared with the traditional RFFIEF devices developed about 25 years ago, the new ReFFIEF system showed several merits, such as simple design and structure, user-friendly operation and easy to extend as well as low cost.

  16. Asymmetrical flow field-flow fractionation of white wine chromophoric colloidal matter.

    PubMed

    Coelho, Christian; Parot, Jérémie; Gonsior, Michael; Nikolantonaki, Maria; Schmitt-Kopplin, Philippe; Parlanti, Edith; Gougeon, Régis D

    2017-04-01

    Two analytical separation methods-size-exclusion chromatography and asymmetrical flow field-flow fractionation-were implemented to evaluate the integrity of the colloidal composition of Chardonnay white wine and the impact of pressing and fermentations on the final macromolecular composition. Wine chromophoric colloidal matter, representing UV-visible-absorbing wine macromolecules, was evaluated by optical and structural measurements combined with the description of elution profiles obtained by both separative techniques. The objective of this study was to apply these two types of fractionation on a typical Chardonnay white wine produced in Burgundy and to evaluate how each of them impacted the determination of the macromolecular chromophoric content of wine. UV-visible and fluorescence measurements of collected fractions were successfully applied. An additional proteomic study revealed that grape and microorganism proteins largely impacted the composition of chromophoric colloidal matter of Chardonnay wines. Asymmetrical flow field-flow fractionation appeared to be more reliable and less invasive with respect to the native chemical environment of chromophoric wine macromolecules, and hence is recommended as a tool to fractionate chromophoric colloidal matter in white wines. Graphical Abstract An innovative macromolecular separation method based on Asymmetrical Flow Field-Flow Fractionation was developed to better control colloidal dynamics across Chardonnay white winemaking.

  17. Gravitational field-flow fractionation of human hemopoietic stem cells.

    PubMed

    Roda, Barbara; Reschiglian, Pierluigi; Alviano, Francesco; Lanzoni, Giacomo; Bagnara, Gian Paolo; Ricci, Francesca; Buzzi, Marina; Tazzari, Pier Luigi; Pagliaro, Pasqualepaolo; Michelini, Elisa; Roda, Aldo

    2009-12-25

    New cell sorting methodologies, which are simple, fast, non-invasive, and able to isolate homogeneous cell populations, are needed for applications ranging from gene expression analysis to cell-based therapy. In particular, in the forefront of stem cell isolation, progenitor cells have to be separated under mild experimental conditions from complex heterogeneous mixtures prepared from human tissues. Most of the methodologies now employed make use of immunological markers. However, it is widely acknowledged that specific markers for pluripotent stem cells are not as yet available, and cell labelling may interfere with the differentiation process. This work presents for the first time gravitational field-flow fractionation (GrFFF), as a tool for tag-less, direct selection of human hematopoietic stem and progenitor cells from cell samples obtained by peripheral blood aphaeresis. These cells are responsible to repopulate the hemopoietic system and they are used in transplantation therapies. Blood aphaeresis sample were injected into a GrFFF system and collected fractions were characterized by flow cytometry for CD34 and CD45 expression, and then tested for viability and multi-differentiation potential. The developed GrFFF method allowed obtaining high enrichment levels of viable, multi-potent hematopoietic stem cells in specific fraction and it showed to fulfil major requirements of analytical performance, such as selectivity and reproducibility of the fractionation process and high sample recovery.

  18. Flow-test device fits into restricted access passages

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J. J.; Oberschmidt, M.; Rosenbaum, B. J.

    1967-01-01

    Test device using a mandrel with a collapsible linkage assembly enables a fluid flow sensor to be properly positioned in a restricted passage by external manipulation. This device is applicable to the combustion chamber of a rocket motor.

  19. Field-Flow Fractionation of Carbon Nanotubes and Related Materials

    SciTech Connect

    John P. Selegue

    2011-11-17

    During the grant period, we carried out FFF studies of carbonaceous soot, single-walled and multi-walled carbon nanotubes, carbon nano-onions and polyoxometallates. FFF alone does not provide enough information to fully characterize samples, so our suite of characterization techniques grew to include light scattering (especially Photon Correlation Spectroscopy), scanning and transmission electron microscopy, thermogravimetric analysis and spectroscopic methods. We developed convenient techniques to deposit and examine minute FFF fractions by electron microscopy. In collaboration with Arthur Cammers (University of Kentucky), we used Flow Field-Flow Fractionation (Fl-FFF) to monitor the solution-phase growth of keplerates, a class of polyoxometallate (POM) nanoparticles. We monitored the evolution of Mo-POM nanostructures over the course of weeks by by using flow field-flow fractionation and corroborated the nanoparticle structures by using transmission electron microscopy (TEM). Total molybdenum in the solution and precipitate phases was monitored by using inductively coupled plasma analyses, and total Mo-POM concentration by following the UV-visible spectra of the solution phase. We observe crystallization-driven formation of (Mo132) keplerate and solution phase-driven evolution of structurally related nanoscopic species (3-60 nm). FFF analyses of other classes of materials were less successful. Attempts to analyze platelets of layered materials, including exfoliated graphite (graphene) and TaS2 and MoS2, were disappointing. We were not able to optimize flow conditions for the layered materials. The metal sulfides react with the aqueous carrier liquid and settle out of suspension quickly because of their high density.

  20. Performance of selected flow-restricting infusion devices.

    PubMed

    Capes, D F; Asiimwe, D

    1998-02-15

    The flow rate accuracy and flow continuity of the Homepump, Infusor, Intermate, Paragon, Sidekick, and Springfusor 10 flow-restricting infusion devices were studied. Three of each device were tested in a temperature-controlled cabinet at the manufacturer-specified operating temperature and at 20 and 30 degrees C. The flow rates used were 100 ml/hr and the rate that would provide a 24-hour delivery of fluid, except in the case of the Springfusor 10, which was tested at the maximum and minimum flow rates. Flow rate was measured gravimetrically at 30-second intervals. The endopoint of infusion was defined as the start of the terminal-phase decline. The effect of refrigerated storage was studied by using the Intermate as an example of the elastomeric devices tested. All devices exhibited a variable flow profile during infusion except for the Paragon, which had a near-constant flow throughout. The average error in flow rate was within the manufacturer's specifications when the devices were used under the manufacturer-specified operating conditions for all devices except for the Sidekick. The definition of the endopoint made little difference in the flow rate results for the Infusor and Springfusor 10 but significantly affected the flow rate results for the other devices, for which there was a substantial terminal phase with a prolonged period of reduced flow rate. The mean flow rate, error, and coefficient of variation for the Intermate devices stored under refrigeration were significantly different from those for the devices not refrigerated before use. When operated as recommended by the manufacturer, five of six devices had a flow rate error within the manufacturer's specifications; the results were affected by endpoint definition.

  1. Coupling gravitational and flow field-flow fractionation, and size-distribution analysis of whole yeast cells.

    PubMed

    Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa; Reschiglian, Pierluigi; Zattoni, Andrea; Melucci, Dora

    2004-08-01

    This work continues the project on field-flow fractionation characterisation of whole wine-making yeast cells reported in previous papers. When yeast cells are fractionated by gravitational field-flow fractionation and cell sizing of the collected fractions is achieved by the electrosensing zone technique (Coulter counter), it is shown that yeast cell retention depends on differences between physical indexes of yeast cells other than size. Scanning electron microscopy on collected fractions actually shows co-elution of yeast cells of different size and shape. Otherwise, the observed agreement between the particle size distribution analysis obtained by means of the Coulter counter and by flow field-flow fractionation, which employs a second mobile phase flow as applied field instead of Earth's gravity, indicates that yeast cell density can play a major role in the gravitational field-flow fractionation retention mechanism of yeast cells, in which flow field-flow fractionation retention is independent of particle density. Flow field-flow fractionation is then coupled off-line to gravitational field-flow fractionation for more accurate characterisation of the doubly-fractionated cells. Coupling gravitational and flow field-flow fractionation eventually furnishes more information on the multipolydispersity indexes of yeast cells, in particular on their shape and density polydispersity.

  2. Fractional flow in fractured chalk; a flow and tracer test revisited.

    PubMed

    Odling, N E; West, L J; Hartmann, S; Kilpatrick, A

    2013-04-01

    A multi-borehole pumping and tracer test in fractured chalk is revisited and reinterpreted in the light of fractional flow. Pumping test data analyzed using a fractional flow model gives sub-spherical flow dimensions of 2.2-2.4 which are interpreted as due to the partially penetrating nature of the pumped borehole. The fractional flow model offers greater versatility than classical methods for interpreting pumping tests in fractured aquifers but its use has been hampered because the hydraulic parameters derived are hard to interpret. A method is developed to convert apparent transmissivity and storativity (L(4-n)/T and S(2-n)) to conventional transmissivity and storativity (L2/T and dimensionless) for the case where flow dimension, 2fractional flow model. In the case illustrated, improved fits to drawdown data are obtained and the resultant transmissivities and storativities are found to be lower by 30% and an order of magnitude respectively, than estimates from classical methods. The revised hydraulic parameters are used in a reinterpretation of a tracer test using an analytical dual porosity model of solute transport incorporating matrix diffusion and modified for fractional flow. Model results show smaller fracture apertures, spacings and dispersivities than those when 2D flow is assumed. The pumping and tracer test results and modeling presented illustrate the importance of recognizing the potential fractional nature of flow generated by partially penetrating boreholes in fractured aquifers in estimating aquifer properties and interpreting tracer breakthrough curves. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Measurement Of Multiphase Flow Water Fraction And Water-cut

    NASA Astrophysics Data System (ADS)

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  4. Perceptual analysis of vibrotactile flows on a mobile device.

    PubMed

    Seo, Jongman; Choi, Seungmoon

    2013-01-01

    "Vibrotactile flow" refers to a continuously moving sensation of vibrotactile stimulation applied by a few actuators directly onto the skin or through a rigid medium. Research demonstrated the effectiveness of vibrotactile flow for conveying intuitive directional information on a mobile device. In this paper, we extend previous research by investigating the perceptual characteristics of vibrotactile flows rendered on a mobile device and proposing a synthesis framework for vibrotactile flows with desired perceptual properties.

  5. Enrichment of putative stem cells from adipose tissue using dielectrophoretic field-flow fractionation

    PubMed Central

    Vykoukal, Jody; Vykoukal, Daynene M.; Freyberg, Susanne; Alt, Eckhard U.; Gascoyne, Peter R. C.

    2009-01-01

    We have applied the microfluidic cell separation method of dielectrophoretic field-flow fractionation (DEP-FFF) to the enrichment of a putative stem cell population from an enzyme-digested adipose tissue derived cell suspension. A DEP-FFF separator device was constructed using a novel microfluidic-microelectronic hybrid flex-circuit fabrication approach that is scaleable and anticipates future low-cost volume manufacturing. We report the separation of a nucleated cell fraction from cell debris and the bulk of the erythrocyte population, with the relatively rare (<2% starting concentration) NG2-positive cell population (pericytes and/or putative progenitor cells) being enriched up to 14-fold. This work demonstrates a potential clinical application for DEP-FFF and further establishes the utility of the method for achieving label-free fractionation of cell subpopulations. PMID:18651083

  6. Human lymphocyte sorting by gravitational field-flow fractionation.

    PubMed

    Roda, Barbara; Reschiglian, Pierluigi; Zattoni, Andrea; Tazzari, Pier Luigi; Buzzi, Marina; Ricci, Francesca; Bontadini, Andrea

    2008-09-01

    Interest in biological studies on various cell types for many biomedical applications, from research to patient treatments, is constantly increasing. The ability to discriminate (sort) and/or quantify distinct subpopulations of cells has become increasingly important. For instance, not only detection but also the highest depletion of neoplastic cells from normal cells is an important requisite in the autologous transplantation of lymphocytes for blood cancer treatments. In this work, gravitational field-flow fractionation (GrFFF) is shown to be effective for sorting a heterogeneous mixture of human, living lymphocytes constituted of neoplastic B cells from a Burkitt lymphoma cell line and healthy T and B lymphocytes from blood samples. GrFFF does not require the use of fluorescent immunotags for sorting cells, and the sorted cells can be collected for their further characterization. Flow cytometry was used to assess the viability of the cells collected, and to evaluate the cell fractionation achieved. A low amount of neoplastic B lymphocytes (less than 2%) was found in a specific fraction obtained by GrFFF. The high depletion from neoplastic cells (more than 98%) was confirmed by a clonogenicity test.

  7. Autophagic subpopulation sorting by sedimentation field-flow fractionation.

    PubMed

    Naves, Thomas; Battu, Serge; Jauberteau, Marie-Odile; Cardot, Philippe J P; Ratinaud, Marie-Hélène; Verdier, Mireille

    2012-10-16

    The development of hypoxic areas often takes place in solid tumors and leads cells to undergo adaptive signalization like autophagy. This process is responsible for misfolded or aggregated proteins and nonfunctional organelle recycling, allowing cells to maintain their energetic status. However, it could constitute a double-edged pathway leading to both survival and cell death. So, in response to stress such as hypoxia, autophagic and apoptotic cells are often mixed. To specifically study and characterize autophagic cells and the process, we needed to develop a method able to (1) isolate autophagic subpopulation and (2) respect apoptotic and autophagic status. Sedimentation field-flow fractionation (SdFFF) was first used to monitor physical parameter changes due to the hypoxia mimetic CoCl(2) in the p53 mutated SKNBE2(c) human neuroblastoma cell line. Second, we showed that "hyperlayer" elution is able to prepare autophagic enriched populations, fraction (F3), overexpressing autophagic markers (i.e., LC3-II accumulation and punctiform organization of autophagosomes as well as cathepsin B overactivity). Conversely, the first eluted fraction exhibited apoptotic markers (caspase-3 activity and Bax increased expression). For the first time, SdFFF was employed as an analytical tool in order to discriminate apoptotic and autophagic cells, thus providing an enriched autophagic fraction consecutively to a hypoxic stress.

  8. Free-flow electrophoresis for fractionation of Arabidopsis thaliana membranes.

    PubMed

    Bardy, N; Carrasco, A; Galaud, J P; Pont-Lezica, R; Canut, H

    1998-06-01

    Highly purified tonoplast and plasma membrane vesicles were isolated from microsomes of Arabidopsis thaliana by preparative free-flow electrophoresis. The most electronegative fractions were identified as tonoplast using nitrate-inhibited Mg2+-ATPase as enzyme marker. The least electronegative fractions were identified as plasma membrane using glucan-synthase II, UDPG: sterol-glucosyl-transferase, and vanadate-inhibited Mg2+-ATPase as enzyme markers. Other membrane markers, latent inosine-5'-diphosphatase (Golgi), NADPH-cytochrome-c reductase (endoplasmic reticulum) and cytochrome-c oxidase (mitochondria) were recovered in the fractions intermediate between tonoplast and plasma membrane. Immunoblot analysis of membrane fractions by antibodies directed against tonoplast and plasma membrane proteins confirmed the nature and the purity of the isolated membranes. The cytoskeletal protein actin, which was also identified by immunoblotting, was found to be specifically attached to the plasma membrane vesicles. The structural and functional integrity of the isolated membranes from Arabidopsis thaliana is discussed in the light of results obtained for the location of receptors and enzymes, or for the determination of ligand binding activity.

  9. Field_flow Fractionation For The Characterisation of Natural Colloids

    NASA Astrophysics Data System (ADS)

    von der Kammer, F.; Saal, C.; Baborowski, M.

    The investigation of colloid contribution to transport processes requires a detailed analysis of the actually and potentially mobile colloidal phases present in a certain system of interest. In general all important parameters can not be determined with a single method. Field Flow Fractionation (FFF) is considered as a powerful technique regarding the analysis of colloid molecular weight or size-distributions. FFF can be labelled as a hydrodynamic chromatography that provides a fractionation of an usu- ally aqueous colloid dispersion due to the selective retention of particles/colloids in a ribbon shaped channel. The retention ratios of particles are depending on particle volume, density or diffusion coefficient, depending on the type of channel and method used. In contrast to methods like size exclusion chromatography, the absence of a sta- tionary phase enables FFF to cover a particle size range of theoretically five orders of magnitude (0.001 to 100 µm) and provides the analysis even of fragile aggregates. FFF equipped with modern detection systems like on-line (or quasi-on-line) static or dynamic light scattering detectors provide an internal verification of the fractionation itself and methods to retrieve the particles mean shape factor from the combination of different fractionation/detection methods are in development. Moreover, regarding the light scattering techniques, FFF provides close to monodisperse sample slices, enabling the scattering techniques to work at optimal conditions even with broad dis- tributed samples. ICP-detectors provide main and trace element distributions over par- ticle size. The presentation will give a critical overview of the application of advanced FFF methods on natural colloidal samples, covering Flow-FFF, Sedimentation-FFF and hyphenated methods using static and dynamic light scattering, UV-VIS and fluo- rescence detection as well as ICP-MS couplings.

  10. [Role of measurement of fractional flow reserve in coronary artery atherosclerosis].

    PubMed

    Kopylovi, F Yu; Bykova, A A; Vasilevsky, Yu V; Simakov, S S

    2015-01-01

    The paper considers coronary flow in health and coronary flow autoregulation in health and disease. It gives basic methods used to estimate coronary flow reserve in patients with coronary atherosclerosis. The physiological bases for determining fractional flow reserve are presented. Clinical trials investigating the use of fractional flow reserve in patients with coronary heart disease are analyzed.

  11. Hydrodynamic chromatography and field flow fractionation in finite aspect ratio channels.

    PubMed

    Shendruk, T N; Slater, G W

    2014-04-25

    Hydrodynamic chromatography (HC) and field-flow fractionation (FFF) separation methods are often performed in 3D rectangular channels, though ideal retention theory assumes 2D systems. Devices are commonly designed with large aspect ratios; however, it can be unavoidable or desirable to design rectangular channels with small or even near-unity aspect ratios. To assess the significance of finite-aspect ratio effects and interpret experimental retention results, an ideal, analytical retention theory is needed. We derive a series solution for the ideal retention ratio of HC and FFF rectangular channels. Rather than limiting devices' ability to resolve samples, our theory predicts that retention curves for normal-mode FFF are well approximated by the infinite plate solution and that the performance of HC is actually improved. These findings suggest that FFF devices need not be designed with large aspect ratios and that rectangular HC channels are optimal when the aspect ratio is unity.

  12. Field-flow fractionation: addressing the nano challenge.

    PubMed

    Williams, S Kim Ratanathanawongs; Runyon, J Ray; Ashames, Akram A

    2011-02-01

    Field-flow fractionation is coming of age as a family of analytical methods for separating and characterizing macromolecules, nanoparticles, and particulates. The capabilities and versatility of these techniques are discussed in light of the challenges that are being addressed in analyzing nanometer-sized sample components and the insights gained through their use in applications ranging from materials science to biology. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html .).

  13. Hollow-Fiber Flow Field-Flow Fractionation for Mass Spectrometry: From Proteins to Whole Bacteria

    NASA Astrophysics Data System (ADS)

    Reschiglian, Pierluigi; Zattoni, Andrea; Rambaldi, Diana Cristina; Roda, Aldo; Hee Moon, Myeong

    Mass spectrometry (MS) provides analyte identification over a wide molar-mass range. However, particularly in the case of complex matrices, this ability is often enhanced by the use of pre-MS separation steps. A separation, prototype technique for the "gentle" fractionation of large/ultralarge analytes, from proteins to whole cells, is here described to reduce complexity and maintain native characteristics of the sample before MS analysis. It is based on flow field-flow fractionation, and it employs a micro-volume fractionation channel made of a ca. 20 cm hollow-fiber membrane of sub-millimeter section. The key advantages of this technique lie in the low volume and low-cost of the channel, which makes it suitable to a disposable usage. Fractionation performance and instrumental simplicity make it an interesting methodology for in-batch or on-line pre-MS treatment of such samples.

  14. Field flow fractionation techniques to explore the "nano-world".

    PubMed

    Contado, Catia

    2017-04-01

    Field flow fractionation (FFF) techniques are used to successfully characterize several nanomaterials by sizing nano-entities and producing information about the aggregation/agglomeration state of nanoparticles. By coupling FFF techniques to specific detectors, researchers can determine particle-size distributions (PSDs), expressed as mass-based or number-based PSDs. This review considers FFF applications in the food, biomedical, and environmental sectors, mostly drawn from the past 4 y. It thus underlines the prominent role of asymmetrical flow FFF within the FFF family. By concisely comparing FFF techniques with other techniques suitable for sizing nano-objects, the advantages and the disadvantages of these instruments become clear. A consideration of select recent publications illustrates the state of the art of some lesser-known FFF techniques and innovative instrumental set-ups.

  15. Flow rates through intravenous access devices: an in vitro study.

    PubMed

    Khoyratty, Saleem I; Gajendragadkar, Pushpaj R; Polisetty, Kiran; Ward, Sue; Skinner, Tim; Gajendragadkar, Parag R

    2016-06-01

    Fluid administration using intravenous (IV) access devices is required in many settings. There are a lack of quantitative data comparing traditional cannulas and modern access devices. We aimed to investigate flow rates through modern intravenous access devices using an in vitro system. This is an experimental study. Rates of flow of intravenous fluids (crystalloid and colloid) were measured through various access devices using a uroflowmeter. Standardized conditions and repeat measurements ensured validity. Fluid was administered with or without the addition of a pressure bag and needle-free valve. Increasing the size of cannulas improved flow. Fourteen-gauge cannulas had significantly higher mean flow rates compared to 14G central venous lines in all conditions (136% higher with no pressure bag/valve; 95% CI, +130% to +152%; P < .001). Both the emergency infusion device and rapid infusion catheter produced significantly increased mean flows compared to a 14G cannula (12% higher for emergency infusion catheter; 95% CI, +7% to +15%; P = .008, and 15% higher for rapid infusion catheter; 95% CI, +12% to +21%; P = .004). The needle-free valve significantly impaired flow on 16G and wider IV access devices (36% lower with no pressure bag using 14G cannula; 95% CI, -29% to -46%; P = .003), but flow reductions in narrower IV access were insignificant. Pressure bags significantly improved flow in all devices, in all combinations. Flow rates in IV devices can be maximized by pressure bag use and removal of needle-free valves. The rapid infusion catheter and emergency infusion catheter allow some increase in flow over a 14G cannula. Familiarity with varying flow rates across IV access devices could better inform clinical decisions. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  16. Fractional exhaled nitric oxide-measuring devices: technology update

    PubMed Central

    Maniscalco, Mauro; Vitale, Carolina; Vatrella, Alessandro; Molino, Antonio; Bianco, Andrea; Mazzarella, Gennaro

    2016-01-01

    The measurement of exhaled nitric oxide (NO) has been employed in the diagnosis of specific types of airway inflammation, guiding treatment monitoring by predicting and assessing response to anti-inflammatory therapy and monitoring for compliance and detecting relapse. Various techniques are currently used to analyze exhaled NO concentrations under a range of conditions for both health and disease. These include chemiluminescence and electrochemical sensor devices. The cost effectiveness and ability to achieve adequate flexibility in sensitivity and selectivity of NO measurement for these methods are evaluated alongside the potential for use of laser-based technology. This review explores the technologies involved in the measurement of exhaled NO. PMID:27382340

  17. Void fraction in two-phase flow in liquid impingement cooling system

    SciTech Connect

    Ohsone, Yasuo; Nakajima, Tadakatsu; Sasaki, Shigeyuki; Nishihara, Atsuo; Hirasawa, Shigeki

    1995-12-31

    Void fractions in forced-convection subcooled boiling were analyzed to gain information for designing a liquid impingement cooling system for electronic devices. The boiling vessel used in this study has a 160 mm x 160 mm heater. The heater is positioned to face jets of dielectric fluorocarbon (C{sub 6}F{sub 14},FC-72) liquid from circular nozzles 4 mm in diameter. The distance between the heater surface and the nozzles is 6 mm. The test section, which can be rotated 360 degrees, consists of 1.03-m-long acrylic pipes, 20 mm and 15 mm in diameter allows experiments to be conducted for both horizontal and vertical flow. Void fractions in the test section were examined with respect to variations in liquid jet temperature (T{sub Lin} = 26 C and 36C); nozzle exit velocity (U = 0.37--10 m/s); liquid pressure in the vessel (P{sub m} = 115--118 kPa); and heat flux in the heater (q = 3--50 W/cm{sup 2}). Results show that the effects on void fractions during liquid jet impingement flow boiling of nozzle exit velocity, pressure in the vessel, and heat flux in the heater, can be estimated by revising the exponents of these variables depending on the pressure of Miropolskii`s correlation of channel flow boiling.

  18. Coating microchannels to improve Field-Flow Fractionation

    NASA Astrophysics Data System (ADS)

    Shendruk, Tyler N.; Slater, Gary W.

    2011-03-01

    We propose a selective-steric-mode Field-Flow Fractionation (ssFFF) technique for size separation of particles. Grafting a dense polymer brush onto the accumulation wall of a microchannel adds two novel effects to FFF: the particles must pay an entropic cost to enter the brush and the brush has a hydrodynamic thickness that shifts the no-slip condition. For small particles, the brush acts as a low-velocity region, leading to chromatographic-like retention. We present an analytical retention theory for small but finite-sized particles in a microchannel with a dense Alexander brush coating that possesses a well-defined hydrodynamic thickness. This theory is compared to a numerical solution for the retention ratio given by a flow approximated by the Brinkman equation and particle-brush interaction that is both osmotic and compressional. Large performance improvements are predicted in several regimes. Multi-Particle Collision simulations of the system assess the impact of factors neglected by the theory such as the dynamics of particle impingement on the brush subject to a flow.

  19. Evaluation of flow rates for six disposable infusion devices.

    PubMed

    Veal, D F; Altman, C E; McKinnon, B T; Fillingim, O

    1995-03-01

    The accuracy of flow was studied for six disposable infusion devices: Eclipse (Block Medical), Homepump (Block Medical), Intermate (Baxter Healthcare), MedFlo (Secure Medical), ReadyMED (McGaw), and SideKick (I-Flow). Each infusion device had a preset delivery rate of 100 mL/hr. Either 48 or 50 units of each device were filled with 100 mL of 0.9% sodium chloride injection. Flow was measured in a 60-mL syringe set 100 cm above the infusion device. The volume infused was recorded over 60 minutes at 5-minute intervals. Of the six devices tested, Homepump demonstrated the least variability in flow. The mean percentage of initial volume infused at 60 minutes was 93.7% for the Homepump, 92.4% for the MedFlo, 91.9% for the SideKick, 88.7% for the ReadyMED, 87.3% for the Eclipse, and 83.4% for the Intermate. The Intermate was the only device with a mean overall infusion rate outside the manufacturer's specifications of +/- 15%. The SideKick's mean infusion rate exceeded the +/- 15% range during the first half of the infusion. None of six disposable infusion devices delivered 100% of the volume to be infused within 60 minutes. Of the devices tested, the Homepump demonstrated the least variability in flow and the most complete volume delivery.

  20. [Effects of carrier liquid and flow rate on the separation in gravitational field-flow fractionation].

    PubMed

    Guo, Shuang; Zhu, Chenqi; Gao-Yang, Yaya; Qiu, Bailing; Wu, Di; Liang, Qihui; He, Jiayuan; Han, Nanyin

    2016-02-01

    Gravitational field-flow fractionation is the simplest field-flow fractionation technique in terms of principle and operation. The earth' s gravity is its external field. Different sized particles are injected into a thin channel and carried by carrier fluid. The different velocities of the carrier liquid in different places results in a size-based separation. A gravitational field-flow fractionation (GrFFF) instrument was designed and constructed. Two kinds of polystyrene (PS) particles with different sizes (20 µm and 6 µm) were chosen as model particles. In this work, the separation of the sample was achieved by changing the concentration of NaN3, the percentage of mixed surfactant in the carrier liquid and the flow rate of carrier liquid. Six levels were set for each factor. The effects of these three factors on the retention ratio (R) and plate height (H) of the PS particles were investigated. It was found that R increased and H decreased with increasing particle size. On the other hand, the R and H increased with increasing flow rate. The R and H also increased with increasing NaN3 concentration. The reason was that the electrostatic repulsive force between the particles and the glass channel wall increased. The force allowed the samples approach closer to the channel wall. The results showed that the resolution and retention time can be improved by adjusting the experimental conditions. These results can provide important values to the further applications of GrFFF technique.

  1. A validated predictive model of coronary fractional flow reserve

    PubMed Central

    Huo, Yunlong; Svendsen, Mark; Choy, Jenny Susana; Zhang, Z.-D.; Kassab, Ghassan S.

    2012-01-01

    Myocardial fractional flow reserve (FFR), an important index of coronary stenosis, is measured by a pressure sensor guidewire. The determination of FFR, only based on the dimensions (lumen diameters and length) of stenosis and hyperaemic coronary flow with no other ad hoc parameters, is currently not possible. We propose an analytical model derived from conservation of energy, which considers various energy losses along the length of a stenosis, i.e. convective and diffusive energy losses as well as energy loss due to sudden constriction and expansion in lumen area. In vitro (constrictions were created in isolated arteries using symmetric and asymmetric tubes as well as an inflatable occluder cuff) and in vivo (constrictions were induced in coronary arteries of eight swine by an occluder cuff) experiments were used to validate the proposed analytical model. The proposed model agreed well with the experimental measurements. A least-squares fit showed a linear relation as (Δp or FFR)experiment = a(Δp or FFR)theory + b, where a and b were 1.08 and −1.15 mmHg (r2 = 0.99) for in vitro Δp, 0.96 and 1.79 mmHg (r2 = 0.75) for in vivo Δp, and 0.85 and 0.1 (r2 = 0.7) for FFR. Flow pulsatility and stenosis shape (e.g. eccentricity, exit angle divergence, etc.) had a negligible effect on myocardial FFR, while the entrance effect in a coronary stenosis was found to contribute significantly to the pressure drop. We present a physics-based experimentally validated analytical model of coronary stenosis, which allows prediction of FFR based on stenosis dimensions and hyperaemic coronary flow with no empirical parameters. PMID:22112650

  2. The present and future of fractional flow reserve.

    PubMed

    Koo, Bon-Kwon

    2014-01-01

    Revascularization of coronary artery stenosis should be based on objective evidence of ischemia. Fractional flow reserve (FFR) is an invasive physiologic index that can be easily measured in the cardiac catheterization laboratory to assess the functional significance of coronary stenosis. FFR-guided revascularization strategy has been proven to be better than angiography-guided strategy in patients with coronary artery disease. Recent development of more convenient ways to induce hyperemia will reduce the barrier to measuring FFR and further expand its clinical applicability. Invasive physiologic indices without hyperemia are also under active investigation. Moreover, a novel noninvasive FFR measurement based on coronary CT angiography and computational fluid dynamics has been developed and will soon be incorporated into clinical practice. Given the rapid adoption of invasive and noninvasive physiologic indices in daily practice, a review of the current status of FFR and future perspectives is presented.

  3. Sedimentation field flow fractionation monitoring of bimodal wheat starch amylolysis.

    PubMed

    Salesse, C; Battu, S; Begaud-Grimaud, G; Cledat, D; Cook-Moreau, J; Cardot, P J P

    2006-10-06

    Enzymatic starch granule hydrolysis is one of the most important reactions in many industrial processes. In this study, we investigated the capacity of sedimentation field flow fractionation (SdFFF) to monitor the amylolysis of a bimodal starch population: native wheat starch. Results demonstrated a correlation between fractogram changes and enzymatic hydrolysis. Furthermore, SdFFF was used to sort sub-populations which enhanced the study of granule size distribution changes occurring during amylolysis. These results show the interest in coupling SdFFF with particle size measurement methods to study complex starch size/density modifications associated to hydrolysis. These results suggested different applications such as the association of SdFFF with structural investigations to better understand the specific mechanisms of amylolysis or starch granule structure.

  4. Fractional Flow Reserve: The Past, Present and Future

    PubMed Central

    Kim, Jeong-Eun

    2012-01-01

    Revascularization of coronary artery stenosis should be based on the objective evidence of ischemia. It is common practice for physicians to make decisions on revascularization in the cardiac catheterization laboratory based on the results of angiography, despite the fact that angiographic information does not correlate well with the functional significance of a coronary lesion. Fractional flow reserve (FFR) is a physiologic parameter which can be measured easily during the invasive procedure and can assess the functional significance of coronary stenosis. FFR-guided revascularization strategy is reported to be more effective than angiography-guided strategy in patients with coronary artery disease. Moreover, novel technologies based on FFR have been developed and will soon be incorporated into clinical practice. PMID:22870076

  5. CT Assessment of Myocardial Perfusion and Fractional Flow Reserve.

    PubMed

    Hulten, Edward; Ahmadi, Amir; Blankstein, Ron

    2015-01-01

    Coronary computed tomography angiography (CTA) offers a non-invasive method to detect coronary plaque and stenosis. However, to date, CTA has been most useful as a method of ruling out coronary artery disease (CAD) among patients with low to intermediate pretest probability of significant CAD. The reduced specificity of CTA for detecting physiologically significant stenosis is a known limitation of this technique, particularly since some patients require additional functional testing following CTA. Therefore, intense interest has focused on the development of methods to determine the functional significance of anatomical lesions identified by CTA. This article will discuss two emerging methods: stress myocardial perfusion imaging using CT, or CT perfusion, and computer simulation of fractional flow reserve. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Fractional flow reserve and instantaneous wave free ratio in 2015.

    PubMed

    Kondareddy, S R; Singh, M; Stapleton, D; Rudzinski, W; Kaluski, E

    2015-06-01

    In the recent years it has become apparent that angiography-based assessment of coronary artery stenosis suffers from considerable inaccuracy and pitfalls. Besides interobserver variability in assessing stenosis severity, the correlation between angiographic severity and ischemia is suboptimal. Percutaneous coronary intervention (PCI) guided by the physiologic lesion assessment employing fractional flow reserve (FFR) is rendered superior to angiographic lesion assessment and proven to improve cardiovascular outcomes and reduce cost. In this manuscript we discuss the accepted and emerging clinical indications for FFR use. The correlation between FFR and symptoms, stress imaging and intravascular ultrasound are reviewed along with the inherent limitations and pitfalls of these diagnostic technologies. The data regarding the correlation between Instantaneous (vasodilator free) wave-free ratio (iFR) and conventional FFR is summarized.

  7. Evidence for Differentiation by Crystal Fractionation in Theo's Flow, Canada

    NASA Astrophysics Data System (ADS)

    Lentz, R. C.; Collins, L. E.; McCoy, T. J.; Taylor, J.

    2003-12-01

    Theo's Flow, a 120-m thick differentiated lava flow in Munro Twp, Ontario, is an unusual magma body which calls for an unusual formation mechanism. New systematic sampling of the flow for geochemistry and petrography offers additional clues to its post-emplacement differentiation. Evidence for differentiation comes from both petrography and geochemistry. Theo's has four lithologic units: a basal peridotite (3-9 m), a thick pyroxenite (50 m) and gabbro (40 m), and a capping (8-12 m) hyaloclastite. Contacts between lithologic layers are gradual, mostly marked by changes in modal mineralogy, although there is also a distinct change in plagioclase morphology concurrent with its modal increase. From pyroxenite to gabbro, plagioclase shifts from fine, interstitial sprays to large laths in a subophitic intergrowth with pyroxene. Whole rock and pyroxene compositions display typical fractionation trends (e.g. Fe/Mg, Ti, Zr, Nb increase upsection). Furthermore, a weighted sum of 22 whole rock compositions from the internal layers match the hyaloclastite composition well for most non-mobile elements. All these factors suggest formation of the three internal layers by fractional crystallization and evolution of a magma whose composition is represented by the hyaloclastite. Any proposed differentiation process must address some specific observations. Cluster and CSD analysis reveal that pyroxene grains grew in clusters under steady-state conditions of nucleation and growth. Pyroxene grain size is nearly uniform throughout the pyroxenite, suggesting thermal conditions were maintained over a long crystallization interval. Progression of a typical solidification front would produce a fine-grained roof crust beneath the quenched top, but there is no evidence of such a layer in Theo's. Unlike magmas for which solidification fronts are invoked, Theo's parent magma was highly mafic and Al-poor, yielding a low viscosity magma (4 Pa-s) that crystallized only pyroxene over a long

  8. “Virtual” (Computed) Fractional Flow Reserve

    PubMed Central

    Morris, Paul D.; van de Vosse, Frans N.; Lawford, Patricia V.; Hose, D. Rodney; Gunn, Julian P.

    2015-01-01

    Fractional flow reserve (FFR) is the “gold standard” for assessing the physiological significance of coronary artery disease during invasive coronary angiography. FFR-guided percutaneous coronary intervention improves patient outcomes and reduces stent insertion and cost; yet, due to several practical and operator related factors, it is used in <10% of percutaneous coronary intervention procedures. Virtual fractional flow reserve (vFFR) is computed using coronary imaging and computational fluid dynamics modeling. vFFR has emerged as an attractive alternative to invasive FFR by delivering physiological assessment without the factors that limit the invasive technique. vFFR may offer further diagnostic and planning benefits, including virtual pullback and virtual stenting facilities. However, there are key challenges that need to be overcome before vFFR can be translated into routine clinical practice. These span a spectrum of scientific, logistic, commercial, and political areas. The method used to generate 3-dimensional geometric arterial models (segmentation) and selection of appropriate, patient-specific boundary conditions represent the primary scientific limitations. Many conflicting priorities and design features must be carefully considered for vFFR models to be sufficiently accurate, fast, and intuitive for physicians to use. Consistency is needed in how accuracy is defined and reported. Furthermore, appropriate regulatory and industry standards need to be in place, and cohesive approaches to intellectual property management, reimbursement, and clinician training are required. Assuming successful development continues in these key areas, vFFR is likely to become a desirable tool in the functional assessment of coronary artery disease. PMID:26117471

  9. A massively parallel fractional step solver for incompressible flows

    SciTech Connect

    Houzeaux, G. Vazquez, M. Aubry, R. Cela, J.M.

    2009-09-20

    This paper presents a parallel implementation of fractional solvers for the incompressible Navier-Stokes equations using an algebraic approach. Under this framework, predictor-corrector and incremental projection schemes are seen as sub-classes of the same class, making apparent its differences and similarities. An additional advantage of this approach is to set a common basis for a parallelization strategy, which can be extended to other split techniques or to compressible flows. The predictor-corrector scheme consists in solving the momentum equation and a modified 'continuity' equation (namely a simple iteration for the pressure Schur complement) consecutively in order to converge to the monolithic solution, thus avoiding fractional errors. On the other hand, the incremental projection scheme solves only one iteration of the predictor-corrector per time step and adds a correction equation to fulfill the mass conservation. As shown in the paper, these two schemes are very well suited for massively parallel implementation. In fact, when compared with monolithic schemes, simpler solvers and preconditioners can be used to solve the non-symmetric momentum equations (GMRES, Bi-CGSTAB) and to solve the symmetric continuity equation (CG, Deflated CG). This gives good speedup properties of the algorithm. The implementation of the mesh partitioning technique is presented, as well as the parallel performances and speedups for thousands of processors.

  10. Introducing dielectrophoresis as a new force field for field-flow fractionation.

    PubMed Central

    Huang, Y; Wang, X B; Becker, F F; Gascoyne, P R

    1997-01-01

    We present the principle of cell characterization and separation by dielectrophoretic field-flow fractionation and show preliminary experimental results. The operational device takes the form of a thin chamber in which the bottom wall supports an array of microelectrodes. By applying appropriate AC voltage signals to these electrodes, dielectrophoretic forces are generated to levitate cells suspended in the chamber and to affect their equilibrium heights. A laminar flow profile is established in the chamber so that fluid flows faster with increasing distance from the chamber walls. A cell carried in the flow stream will attain an equilibrium height, and a corresponding velocity, based on the balance of dielectrophoretic, gravitational, and hydrodynamic lift forces it experiences. We describe a theoretical model for this system and show that the cell velocity is a function of the mean fluid velocity, the voltage and frequency of the signals applied to the electrodes, and, most significantly, the cell dielectric properties. The validity of the model is demonstrated with human leukemia (HL-60) cells subjected to a parallel electrode array, and application of the device to separating HL-60 cells from peripheral blood mononuclear cells is shown. PMID:9251828

  11. Purely elastic instabilities in a microfluidic flow focusing device

    NASA Astrophysics Data System (ADS)

    Ballesta, P.; Alves, M. A.

    2017-05-01

    In this work, we investigate the behavior of dilute and semidilute polymer solutions flowing in a microfluidic flow focusing device, in which an inlet stream is stretched by two balanced lateral streams. By varying the flow rates in the inlet and lateral channels and their ratio, several types of flow transitions are observed and the resulting velocity fields are analyzed both upstream and downstream of the intersection. At high flow rates, the flow becomes chaotic and the path to this state depends on both the Weissenberg number and the imposed Hencky strain. The thresholds of successive elastic instabilities leading to the chaotic state are also investigated using time-resolved microparticle imaging velocimetry.

  12. Pressure-flow reducer for aerosol focusing devices

    DOEpatents

    Gard, Eric; Riot, Vincent; Coffee, Keith; Woods, Bruce; Tobias, Herbert; Birch, Jim; Weisgraber, Todd

    2008-04-22

    A pressure-flow reducer, and an aerosol focusing system incorporating such a pressure-flow reducer, for performing high-flow, atmosphere-pressure sampling while delivering a tightly focused particle beam in vacuum via an aerodynamic focusing lens stack. The pressure-flow reducer has an inlet nozzle for adjusting the sampling flow rate, a pressure-flow reduction region with a skimmer and pumping ports for reducing the pressure and flow to enable interfacing with low pressure, low flow aerosol focusing devices, and a relaxation chamber for slowing or stopping aerosol particles. In this manner, the pressure-flow reducer decouples pressure from flow, and enables aerosol sampling at atmospheric pressure and at rates greater than 1 liter per minute.

  13. Nonidentical Continuous-Flow Devices For Biventricular Support

    PubMed Central

    Baldwin, Andrew C.W.; Sandoval, Elena; Cohn, William E.; Mallidi, Hari R.; Frazier, O.H.

    2017-01-01

    Although biventricular heart failure has been successfully managed with dual continuous-flow ventricular assist devices, the long-term use of 2 mechanically dissimilar pumps has traditionally been discouraged. We present the case of a 52-year-old man whose treatment with a HeartMate II left ventricular assist device was complicated by right ventricular failure, necessitating the implantation of a long-term right ventricular assist device. A HeartWare left ventricular assist device was placed along the right ventricular base to avoid interference with the HeartMate II housing. The patient was discharged from the hospital after routine postoperative care and dual-device training. This case shows that, despite logistical complexities, nonidentical continuous-flow device pairings can successfully provide long-term biventricular support. PMID:28461802

  14. Deployable Emergency Shutoff Device Blocks High-Velocity Fluid Flows

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center has developed a device and method for blocking the flow of fluid from an open pipe. Motivated by the sea-bed oil-drilling catastrophe in the Gulf of Mexico in 2010, NASA innovators designed the device to plug, control, and meter the flow of gases and liquids. Anchored with friction fittings, spikes, or explosively activated fasteners, the device is well-suited for harsh environments and high fluid velocities and pressures. With the addition of instrumentation, it can also be used as a variable area flow metering valve that can be set based upon flow conditions. With robotic additions, this patent-pending innovation can be configured to crawl into a pipe then anchor and activate itself to block or control fluid flow.

  15. Numerical simulation of flow through biofluid devices

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee

    1990-01-01

    The results of a numerical simulation of flow through an artificial heart and through an artificial tilting-disk heart valve are presented. The simulation involves solving the incompressible Navier-Stokes equations; the solution process is described. The details and difficulties of modeling these particular geometries are discussed. The artificial heart geometry uses a single moving grid, and the valve computation uses an overlaid-grid approach with one moving grid and one stationary grid. The equations must be solved iteratively for each discrete time step of the computations, requiring a significant amount of computing time. It is particularly difficult to analyze and present the fluid physics represented by these calculations because of the time-varying nature of the flow, and because the flows are internal. Three-dimensional graphics and scientific visualization techniques have become instrumental in solving these problems.

  16. Numerical simulation of flow through biofluid devices

    SciTech Connect

    Rogers, S.E.; Kwak, D. ); Kiris, C.; Chang, I.D. )

    1990-01-01

    The results of a numerical simulation on a Cray-2 supercomputer of flow through an artificial heart and through an artificial tilting-disk heart valve are presented. The simulation involves solving the incompressible Navier-Stokes equations; the solution process is described. The details and difficulties of modeling these particular geometries are discussed. The artificial heart geometry uses a single moving grid, and the valve computation uses an overlaid-grid approach with one moving grid and one stationary grid. The equations must be solved iteratively for each discrete time step of the computations, requiring a significant amount of computing time. It is particularly difficult to analyze and present the fluid physics represented by these calculations because of the time-varying nature of the flow, and because the flows are internal. The use of three-dimensional graphics and scientific visualization techniques have become instrumental in solving these problems.

  17. A real-time device for converting Doppler ultrasound audio signals into fluid flow velocity.

    PubMed

    Herr, Michael D; Hogeman, Cynthia S; Koch, Dennis W; Krishnan, Anandi; Momen, Afsana; Leuenberger, Urs A

    2010-05-01

    A Doppler signal converter has been developed to facilitate cardiovascular and exercise physiology research. This device directly converts audio signals from a clinical Doppler ultrasound imaging system into a real-time analog signal that accurately represents blood flow velocity and is easily recorded by any standard data acquisition system. This real-time flow velocity signal, when simultaneously recorded with other physiological signals of interest, permits the observation of transient flow response to experimental interventions in a manner not possible when using standard Doppler imaging devices. This converted flow velocity signal also permits a more robust and less subjective analysis of data in a fraction of the time required by previous analytic methods. This signal converter provides this capability inexpensively and requires no modification of either the imaging or data acquisition system.

  18. Complications of Continuous-Flow Mechanical Circulatory Support Devices

    PubMed Central

    Patel, Harsh; Madanieh, Raef; Kosmas, Constantine E; Vatti, Satya K; Vittorio, Timothy J

    2015-01-01

    Left ventricular assist devices (LVADs), more importantly the continuous-flow subclass, have revolutionized the medical field by improving New York Heart Association (NYHA) functional class status, quality of life, and survival rates in patients with advanced systolic heart failure. From the first pulsatile device to modern day continuous-flow devices, LVADs have continued to improve, but they are still associated with several complications. These complications include infection, bleeding, thrombosis, hemolysis, aortic valvular dysfunction, right heart failure, and ventricular arrhythmias. In this article, we aim to review these complications to understand the most appropriate approach for their prevention and to discuss the available therapeutic modalities. PMID:26052234

  19. Automatic coolant flow control device for a nuclear reactor assembly

    SciTech Connect

    Hutter, Ernest

    1986-01-01

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  20. Automatic coolant flow control device for a nuclear reactor assembly

    DOEpatents

    Hutter, E.

    1984-01-27

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  1. Void fraction distribution in a heated rod bundle under flow stagnation conditions

    SciTech Connect

    Herrero, V.A.; Guido-Lavalle, G.; Clausse, A.

    1995-09-01

    An experimental study was performed to determine the axial void fraction distribution along a heated rod bundle under flow stagnation conditions. The development of the flow pattern was investigated for different heat flow rates. It was found that in general the void fraction is overestimated by the Zuber & Findlay model while the Chexal-Lellouche correlation produces a better prediction.

  2. Meeting in Florida: Using Asymmetric Flow Field-Flow Fractionation (AF4) to Determine C60 Colloidal Size Distributions

    EPA Science Inventory

    The study of nanomaterials in environmental systems requires robust and specific analytical methods. Analytical methods which discriminate based on particle size and molecular composition are not widely available. Asymmetric Flow Field-Flow Fractionation (AF4) is a separation...

  3. Meeting in Florida: Using Asymmetric Flow Field-Flow Fractionation (AF4) to Determine C60 Colloidal Size Distributions

    EPA Science Inventory

    The study of nanomaterials in environmental systems requires robust and specific analytical methods. Analytical methods which discriminate based on particle size and molecular composition are not widely available. Asymmetric Flow Field-Flow Fractionation (AF4) is a separation...

  4. Monitoring the growth of polyoxomolybdate nanoparticles in suspension by flow field-flow fractionation.

    PubMed

    Chen, Bailin; Jiang, Huijian; Zhu, Yan; Cammers, Arthur; Selegue, John P

    2005-03-30

    We follow the evolution of polyoxomolybdate nanoparticles in suspensions derived from the keplerate (NH4)42[MoVI72MoV60O372(CH3CO2)30(H2O)72].ca..300H2O.ca..10CH3CO2NH4 ({Mo132}) by flow field-flow fractionation (FlFFF) to monitor the particle-size distribution in situ, atomic force and high-resolution transmission electron microscopy (AFM, SEM, and HRTEM) to confirm particle sizes, inductively coupled plasma-optical emission spectrometry (ICP-OES) to determine the Mo content of the FlFFF-separated fractions, and UV/visible spectroscopy to confirm the identity of the species in suspension. We observe the formation of 3-75-nm polyoxomolybdate particles in suspension and the dynamic growth of {Mo132} crystals.

  5. High Speed Size Sorting of Subcellular Organelles by Flow Field-Flow Fractionation.

    PubMed

    Yang, Joon Seon; Lee, Ju Yong; Moon, Myeong Hee

    2015-06-16

    Separation/isolation of subcellular species, such as mitochondria, lysosomes, peroxisomes, Golgi apparatus, and others, from cells is important for gaining an understanding of the cellular functions performed by specific organelles. This study introduces a high speed, semipreparative scale, biocompatible size sorting method for the isolation of subcellular organelle species from homogenate mixtures of HEK 293T cells using flow field-flow fractionation (FlFFF). Separation of organelles was achieved using asymmetrical FlFFF (AF4) channel system at the steric/hyperlayer mode in which nuclei, lysosomes, mitochondria, and peroxisomes were separated in a decreasing order of hydrodynamic diameter without complicated preprocessing steps. Fractions in which organelles were not clearly separated were reinjected to AF4 for a finer separation using the normal mode, in which smaller sized species can be well fractionated by an increasing order of diameter. The subcellular species contained in collected AF4 fractions were examined with scanning electron microscopy to evaluate their size and morphology, Western blot analysis using organelle specific markers was used for organelle confirmation, and proteomic analysis was performed with nanoflow liquid chromatography-tandem mass spectrometry (nLC-ESI-MS/MS). Since FlFFF operates with biocompatible buffer solutions, it offers great flexibility in handling subcellular components without relying on a high concentration sucrose solution for centrifugation or affinity- or fluorescence tag-based sorting methods. Consequently, the current study provides an alternative, competitive method for the isolation/purification of subcellular organelle species in their intact states.

  6. Method of fabricating a flow device

    DOEpatents

    Hale, Robert L.

    1978-01-01

    This invention is a novel method for fabricating leak-tight tubular articles which have an interior flow channel whose contour must conform very closely with design specifications but which are composed of metal which tends to warp if welded. The method comprises designing two longitudinal half-sections of the article, the half-sections being contoured internally to cooperatively form the desired flow passageway. Each half-section is designed with a pair of opposed side flanges extending between the end flanges and integral therewith. The half-sections are positioned with their various flanges in confronting relation and with elongated metal gaskets extending between the confronting flanges for the length of the array. The gaskets are a deformable metal which is fusion-weldable to the end flanges. The mating side flanges are joined mechanically to deform the gaskets and provide a longitudinally sealed assembly. The portions of the end flanges contiguous with the ends of the gaskets then are welded to provide localized end welds which incorporate ends of the gaskets, thus transversely sealing the assembly. This method of fabrication provides leak-tight articles having the desired precisely contoured flow channels, whereas various conventional methods have been found unsatisfactory.

  7. Asymmetric flow field flow fractionation with light scattering detection - an orthogonal sensitivity analysis.

    PubMed

    Galyean, Anne A; Filliben, James J; Holbrook, R David; Vreeland, Wyatt N; Weinberg, Howard S

    2016-11-18

    Asymmetric flow field flow fractionation (AF(4)) has several instrumental factors that may have a direct effect on separation performance. A sensitivity analysis was applied to ascertain the relative importance of AF(4) primary instrument factor settings for the separation of a complex environmental sample. The analysis evaluated the impact of instrumental factors namely, cross flow, ramp time, focus flow, injection volume, and run buffer concentration on the multi-angle light scattering measurement of natural organic matter (NOM) molar mass (MM). A 2((5-1)) orthogonal fractional factorial design was used to minimize analysis time while preserving the accuracy and robustness in the determination of the main effects and interactions between any two instrumental factors. By assuming that separations resulting in smaller MM measurements would be more accurate, the analysis produced a ranked list of effects estimates for factors and interactions of factors based on their relative importance in minimizing the MM. The most important and statistically significant AF(4) instrumental factors were buffer concentration and cross flow. The least important was ramp time. A parallel 2((5-2)) orthogonal fractional factorial design was also employed on five environmental factors for synthetic natural water samples containing silver nanoparticles (NPs), namely: NP concentration, NP size, NOM concentration, specific conductance, and pH. None of the water quality characteristic effects or interactions were found to be significant in minimizing the measured MM; however, the interaction between NP concentration and NP size was an important effect when considering NOM recovery. This work presents a structured approach for the rigorous assessment of AF(4) instrument factors and optimal settings for the separation of complex samples utilizing efficient orthogonal factional factorial design and appropriate graphical analysis.

  8. Coronary CT Angiography-derived Fractional Flow Reserve.

    PubMed

    Tesche, Christian; De Cecco, Carlo N; Albrecht, Moritz H; Duguay, Taylor M; Bayer, Richard R; Litwin, Sheldon E; Steinberg, Daniel H; Schoepf, U Joseph

    2017-10-01

    Invasive coronary angiography (ICA) with measurement of fractional flow reserve (FFR) by means of a pressure wire technique is the established reference standard for the functional assessment of coronary artery disease (CAD) ( 1 , 2 ). Coronary computed tomographic (CT) angiography has emerged as a noninvasive method for direct assessment of CAD and plaque characterization with high diagnostic accuracy compared with ICA ( 3 , 4 ). However, the solely anatomic assessment provided with both coronary CT angiography and ICA has poor discriminatory power for ischemia-inducing lesions. FFR derived from standard coronary CT angiography (FFRCT) data sets by using any of several advanced computational analytic approaches enables combined anatomic and hemodynamic assessment of a coronary lesion by a single noninvasive test. Current technical approaches to the calculation of FFRCT include algorithms based on full- and reduced-order computational fluid dynamic modeling, as well as artificial intelligence deep machine learning ( 5 , 6 ). A growing body of evidence has validated the diagnostic accuracy of FFRCT techniques compared with invasive FFR. Improved therapeutic guidance has been demonstrated, showing the potential of FFRCT to streamline and rationalize the care of patients suspected of having CAD and improve outcomes while reducing overall health care costs ( 7 , 8 ). The purpose of this review is to describe the scientific principles, clinical validation, and implementation of various FFRCT approaches, their precursors, and related imaging tests. (©) RSNA, 2017.

  9. Pinched flow fractionation of microbubbles for ultrasound contrast agent enrichment

    NASA Astrophysics Data System (ADS)

    Versluis, Michel; Kok, Maarten; Segers, Tim

    2014-11-01

    An ultrasound contrast agent (UCA) suspension contains a wide size distribution of encapsulated microbubbles (typically 1-10 μm in diameter) that resonate to the driving ultrasound field by the intrinsic relationship between bubble size and ultrasound frequency. Medical transducers, however, operate in a narrow frequency range, which severely limits the number of bubbles that contribute to the echo signal. Thus, the sensitivity can be improved by narrowing down the size distribution of the bubble suspension. Here, we present a novel, low-cost, lab-on-a-chip method for the sorting of contrast microbubbles by size, based on a microfluidic separation technique known as pinched flow fractionation (PFF). We show by experimental and numerical investigation that the inclusion of particle rotation is essential for an accurate physical description of the sorting behavior of the larger bubbles. Successful sorting of a bubble suspension with a narrow size distribution (3.0 +/- 0.6 μm) has been achieved with a PFF microdevice. This sorting technique can be easily parallelized, and may lead to a significant improvement in the sensitivity of contrast-enhanced medical ultrasound. This work is supported by NanoNextNL, a micro and nanotechnology consortium of the Government of the Netherlands and 130 partners.

  10. Fractional flow reserve as a surrogate for inducible myocardial ischaemia.

    PubMed

    van de Hoef, Tim P; Meuwissen, Martijn; Escaned, Javier; Davies, Justin E; Siebes, Maria; Spaan, Jos A E; Piek, Jan J

    2013-08-01

    Documentation of inducible myocardial ischaemia, related to the coronary stenosis of interest, is of increasing importance in lesion selection for percutaneous coronary intervention (PCI). Fractional flow reserve (FFR) is an easily understood, routine diagnostic modality that has become part of daily clinical practice, and is used as a surrogate technique for noninvasive assessment of myocardial ischaemia. However, the application of a single, discrete, cut-off value for FFR-guided lesion selection for PCI, and its adoption in contemporary revascularization guidelines, has limited the requirement for a thorough understanding of the physiological basis of FFR. This limitation constitutes an obstacle for the adequate use and interpretation of this technique, and also for the understanding of new and future modalities of physiological functional intracoronary testing. In this Review, we revisit the fundamental elements of coronary physiology in the absence or presence of coronary artery disease. We provide insight into three essential characteristics of FFR as a diagnostic tool in contemporary clinical practice--the theoretical framework of FFR and its associated limitations; the characteristics and role of FFR as a surrogate for noninvasively assessed myocardial ischaemia; and the requirement and associated caveats of potent vasodilatory drugs to induce maximal vasodilatation of the coronary vascular bed.

  11. Microfluidic Device for Studying Controllable Hydrodynamic Flow Induced Cellular Responses.

    PubMed

    Zheng, Chunhong; Zhang, Xiannian; Li, Chunmei; Pang, Yuhong; Huang, Yanyi

    2017-03-07

    Hydrodynamic flow is an essential stimulus in many cellular functions, regulating many mechanical sensitive pathways and closely associating with human health status and diseases. The flow pattern of blood in vessels is the key factor in causing atherosclerosis. Hemodynamics has great effect on endothelial cells' gene expression and biological functions. There are various tools that can be used for studying flow-induced cellular responses but most of them are either bulky or lack precise controllability. We develop an integrated microfluidic device that can precisely generate different flow patterns to human endothelial cells cultured on-chip. We monitored cell morphology and used small-input RNA-seq technology to depict the transcriptome profiles of human umbilical vein endothelial cells under uni- or bidirectional flow. Such integrated and miniatured device has greatly facilitated our understanding of endothelial functions with shear stimulus, not only providing new data on the transcriptomic scale but also building the connection between cell phenotypic changes and expression alternations.

  12. Development of flow/steric field-flow fractionation as a routine process control method

    SciTech Connect

    Barman, B.N.

    1988-08-30

    Researchers studied the feasibility of using the Flow/Steric Field-Flow Fractionation (Flow/StFFF) method for the characterization of particulate materials with diameters in the 1-100 micrometers range. Studies on the optimization of the method for the separation and characterization of different size particulate samples, as well as on the role of the crossflow field and channel flowrate on the separation and resolution, were performed with a number of spherical polystyrene divinylbenzene latex standards and included in the report. Applicability of the method as a fast and reliable practical tool for industrial process control, particularly for grinding operations, was examined by analyzing a number of samples obtained by grinding. Examples of materials considered include coal, limestone and glass.

  13. Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles.

    PubMed

    Loeschner, Katrin; Navratilova, Jana; Legros, Samuel; Wagner, Stephan; Grombe, Ringo; Snell, James; von der Kammer, Frank; Larsen, Erik H

    2013-01-11

    Asymmetric flow field-flow fractionation (AF(4)) in combination with on-line optical detection and mass spectrometry is one of the most promising methods for separation and quantification of nanoparticles (NPs) in complex matrices including food. However, to obtain meaningful results regarding especially the NP size distribution a number of parameters influencing the separation need to be optimized. This paper describes the development of a separation method for polyvinylpyrrolidone-stabilized silver nanoparticles (AgNPs) in aqueous suspension. Carrier liquid composition, membrane material, cross flow rate and spacer height were shown to have a significant influence on the recoveries and retention times of the nanoparticles. Focus time and focus flow rate were optimized with regard to minimum elution of AgNPs in the void volume. The developed method was successfully tested for injected masses of AgNPs from 0.2 to 5.0 μg. The on-line combination of AF(4) with detection methods including ICP-MS, light absorbance and light scattering was helpful because each detector provided different types of information about the eluting NP fraction. Differences in the time-resolved appearance of the signals obtained by the three detection methods were explained based on the physical origin of the signal. Two different approaches for conversion of retention times of AgNPs to their corresponding sizes and size distributions were tested and compared, namely size calibration with polystyrene nanoparticles (PSNPs) and calculations of size based on AF(4) theory. Fraction collection followed by transmission electron microscopy was performed to confirm the obtained size distributions and to obtain further information regarding the AgNP shape. Characteristics of the absorbance spectra were used to confirm the presence of non-spherical AgNP.

  14. Laser absorption phenomena in flowing gas devices

    NASA Technical Reports Server (NTRS)

    Chapman, P. K.; Otis, J. H.

    1976-01-01

    A theoretical and experimental investigation is presented of inverse Bremsstrahlung absorption of CW CO2 laser radiation in flowing gases seeded with alkali metals. In order to motivate this development, some simple models are described of several space missions which could use laser powered rocket vehicles. Design considerations are given for a test call to be used with a welding laser, using a diamond window for admission of laser radiation at power levels in excess of 10 kW. A detailed analysis of absorption conditions in the test cell is included. The experimental apparatus and test setup are described and the results of experiments presented. Injection of alkali seedant and steady state absorption of the laser radiation were successfully demonstrated, but problems with the durability of the diamond windows at higher powers prevented operation of the test cell as an effective laser powered thruster.

  15. Negative-pressure-induced collector for a self-balance free-flow electrophoresis device.

    PubMed

    Yang, Cheng-Zhang; Yan, Jian; Zhang, Qiang; Guo, Chen-Gang; Kong, Fan-Zhi; Cao, Cheng-Xi; Fan, Liu-Yin; Jin, Xin-Qiao

    2014-06-01

    Uneven flow in free-flow electrophoresis (FFE) with a gravity-induced fraction collector caused by air bubbles in outlets and/or imbalance of the surface tension of collecting tubes would result in a poor separation. To solve these issues, this work describes a novel collector for FFE. The collector is composed of a self-balance unit, multisoft pipe flow controller, fraction collector, and vacuum pump. A negative pressure induced continuous air flow rapidly flowed through the self-balance unit, taking the background electrolyte and samples into the fraction collector. The developed collector has the following advantages: (i) supplying a stable and harmonious hydrodynamic environment in the separation chamber for FFE separation, (ii) effectively preventing background electrolyte and sample flow-back at the outlet of the chamber and improving the resolution, (iii) increasing the preparative scale of the separation, and (iv) simplifying the operation. In addition, the cost of the FFE device was reduced without using a multichannel peristaltic pump for sample collection. Finally, comparative FFE experiments on dyes, proteins, and cells were carried out. It is evident that the new developed collector could overcome the problems inherent in the previous gravity-induced self-balance collector.

  16. Diagnostic Accuracy of Fractional Flow Reserve From Anatomic CT Angiography

    PubMed Central

    Min, James K.; Leipsic, Jonathon; Pencina, Michael J.; Berman, Daniel S.; Koo, Bon-Kwon; van Mieghem, Carlos; Erglis, Andrejs; Lin, Fay Y.; Dunning, Allison M.; Apruzzese, Patricia; Budoff, Matthew J.; Cole, Jason H.; Jaffer, Farouc A.; Leon, Martin B.; Malpeso, Jennifer; John Mancini, G. B.; Park, Seung-Jung; Schwartz, Robert S.; Shaw, Leslee J.; Mauri, Laura

    2014-01-01

    Context Coronary computed tomographic (CT) angiography is a noninvasive anatomic test for diagnosis of coronary stenosis that does not determine whether a stenosis causes ischemia. In contrast, fractional flow reserve (FFR) is a physiologic measure of coronary stenosis expressing the amount of coronary flow still attainable despite the presence of a stenosis, but it requires an invasive procedure. Noninvasive FFR computed from CT (FFRCT) is a novel method for determining the physiologic significance of coronary artery disease (CAD), but its ability to identify ischemia has not been adequately examined to date. Objective To assess the diagnostic performance of FFRCT plus CT for diagnosis of hemodynamically significant coronary stenosis. Design, Setting, and Patients Multicenter diagnostic performance study involving 252 stable patients with suspected or known CAD from 17 centers in 5 countries who underwent CT, invasive coronary angiography (ICA), FFR, and FFRCT between October 2010 and October 2011. Computed tomography, ICA, FFR, and FFRCT were interpreted in blinded fashion by independent core laboratories. Accuracy of FFRCT plus CT for diagnosis of ischemia was compared with an invasive FFR reference standard. Ischemia was defined by an FFR or FFRCT of 0.80 or less, while anatomically obstructive CAD was defined by a stenosis of 50% or larger on CT and ICA. Main Outcome Measures The primary study outcome assessed whether FFRCT plus CT could improve the per-patient diagnostic accuracy such that the lower boundary of the 1-sided 95% confidence interval of this estimate exceeded 70%. Results Among study participants, 137 (54.4%) had an abnormal FFR determined by ICA. On a per-patient basis, diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of FFRCT plus CT were 73% (95% CI, 67%–78%), 90% (95% CI, 84%–95%), 54% (95% CI, 46%–83%), 67% (95% CI, 60%–74%), and 84% (95% CI, 74%–90%), respectively. Compared

  17. Assessment of stent edge dissections by fractional flow reserve.

    PubMed

    Chung, Ju-Hyun; Ann, Soe Hee; Koo, Bon-Kwon; Nam, Chang-Wook; Doh, Joon-Hyung; Singh, Gillian Balbir; Kim, Hyung Il; Shin, Eun-Seok

    2015-04-15

    Edge dissections after intervention have been studied with imaging techniques, however, functional assessment has not been studied yet. We investigated the relationship between fractional flow reserve (FFR) and the angiographic type of stent edge dissections and tried to assess the use of FFR-guided management for edge dissection. 51 edge dissections assessed by FFR were included in this prospective observational study. FFR was measured for each type of edge dissection and compared with quantitative coronary angiographic findings. Clinical outcomes were evaluated based on FFR measurements. Edge dissections were classified as type A (47.1%; 24/51), type B (41.2%; 21/51), type C (2.0%; 1/51) and type D (9.8%; 5/51). Mean FFR in type A dissection was 0.87 ± 0.09, in type B 0.86 ± 0.07, in type C 0.72 and in type D 0.57 ± 0.08. All type C and D dissections (6/51) had FFR ≤ 0.8 and were treated with additional stents. Among the 45 type A and B dissections, 8 had a FFR ≤ 0.8 (17.8%), and 50% received additional stenting. All dissections with FFR >0.8 were left untreated except one long dissection case. There was no death, myocardial infarction or target lesion revascularization during hospitalization or the follow-up period (median 152 days; IQR 42-352 days). FFR correlates well with an angiographic type of edge dissection. Angiographic findings are sufficient for deciding the treatment of severe dissections such as types C and D, while FFR-guided management may be safe and effective for mild edge dissections such as types A and B. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Efficiencies of intracoronary sodium nitroprusside on fractional flow reserve measurement

    PubMed Central

    Li, Shaosheng; Deng, Jie; Wang, Xiaozeng; Zhao, Xin; Han, Yaling

    2015-01-01

    Background: Fractional flow reserve (FFR) has certain advantages of assessing functional severity of coronary stenosis. Adenosine(AD) is the most widely used agents in FFR measurement but has the disadvantages of higher rate of complications. Sodium Nitroprusside (SNP) represents a valuable alternative. Methods and results: In 75 patients with 86 moderate coronary stenosis, FFR values, heart rate and blood pressure were measured at baseline, after 0.6 μg boluses of intracoronary (IC) SNP, and after 140 μg/kg /min of continuous intravenous (IV) AD. FFR values decreased significantly after administering IV AD and IC SNP compared with the baseline Pd/Pa values (P < 0.001). Mean FFR induced by IV AD was not significantly different from that by IC SNP (t = 0.577, P = 0.566). The mean kappa value in the evaluation of two methods was 0.973 for FFR. There was a significant correlation between the FFR values of IV AD and IC SNP (R = 0.911, P < 0.001). Significant decreases in the blood pressures were found after agents were given compared to the baseline. No significant difference was found between AD and SNP. In addition, immediate complications occurred in 60.5% patients of IV AD in contrast to no adverse events after IC SNP. Conclusion: SNP is a safe and effective agent and easy to use for the FFR measurement. Maximal hyperemia by IC SNP is equivalent to that by IV AD. IC SNP could be considered a potential alternative in patients with contraindications to AD administration. PMID:25932219

  19. Combination of gravitational SPLITT fractionation and field-flow fractionation for size-sorting and characterization of sea sediment.

    PubMed

    Moon, Myeong Hee; Yang, Sung Gwon; Lee, Jae Young; Lee, Seungho

    2005-03-01

    A combination of gravitational split-flow thin (SPLITT) fractionation and sedimentation/steric field-flow fractionation (Sd/StFFF) has been used for continuous size-sorting of a sediment sample and for size analysis of the collected fractions. An IAEA (International Atomic Energy Agency) sediment material was separated into four size fractions (with theoretical size ranges <1.0, 1.0-3.0, 3.0-5.0, and >5.0 microm in diameter) by means of a three-step gravitational SPLITT fractionation (GSF) for which the same GSF channel was used throughout. The GSF fractions were collected and examined by optical microscopy (OM) and by Sd/St FFF. The mean diameters of the GSF fractions measured by OM were within the size interval predicted by GSF theory, despite the theory assuming that all particles are spherical, which is not true for the sediment particles. The Sd/St FFF results showed that retention shifted toward shorter elution time (or larger size) than expected, probably because of the shape effect. The results from GSF, OM, and Sd/StFFF are discussed in detail.

  20. An Innovative Flow-Measuring Device: Thermocouple Boundary Layer Rake

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Wrbanek, John D.; Blaha, Charles A.

    2001-01-01

    An innovative flow-measuring device, a thermocouple boundary layer rake, was developed. The sensor detects the flow by using a thin-film thermocouple (TC) array to measure the temperature difference across a heater strip. The heater and TC arrays are microfabricated on a constant-thickness quartz strut with low heat conductivity. The device can measure the velocity profile well into the boundary layer, about 65 gm from the surface, which is almost four times closer to the surface than has been possible with the previously used total pressure tube.

  1. A Microfluidic Flow-switching Device Powered by Vorticella Stalk

    NASA Astrophysics Data System (ADS)

    Nagai, M.; Tanizaki, K.; Hayasaka, Y.; Kawashima, T.; Shibata, T.

    2013-04-01

    Bioactuators are an attractive alternative for mechanical components of MEMS devices. We propose a flow-switching device active to calcium ion based on bioactuator of Vorticella. We develop a fundamental procedure for immobilization of Vorticella in a microfluidic chamber and control of contraction and extension of stalks. Cells were trapped in microfluidic chambers and allowed to adhere. After treatment of cells, stalks were contracted and extended by injecting solutions. Flow speed changed during the motion. Our developed method presents a strategy for application of bioactuator.

  2. Asymmetric flow field-flow fractionation of manufactured silver nanoparticles spiked into soil solution.

    PubMed

    Koopmans, G F; Hiemstra, T; Regelink, I C; Molleman, B; Comans, R N J

    2015-05-01

    Manufactured metallic silver nanoparticles (AgNP) are intensively utilized in consumer products and this will inevitably lead to their release to soils. To assess the environmental risks of AgNP in soils, quantification of both their concentration and size in soil solution is essential. We developed a methodology consisting of asymmetric flow field-flow fractionation (AF4) in combination with on-line detection by UV-vis spectroscopy and off-line HR-ICP-MS measurements to quantify the concentration and size of AgNP, coated with either citrate or polyvinylpyrrolidone (PVP), in water extracts of three different soils. The type of mobile phase was a critical factor in the fractionation of AgNP by AF4. In synthetic systems, fractionation of a series of virgin citrate- and PVP-coated AgNP (10-90 nm) with reasonably high recoveries could only be achieved with ultrahigh purity water as a mobile phase. For the soil water extracts, 0.01% (w:v) sodium dodecyl sulfate (SDS) at pH 8 was the key to a successful fractionation of the AgNP. With SDS, the primary size of AgNP in all soil water extracts could be determined by AF4, except for PVP-coated AgNP when clay colloids were present. The PVP-coated AgNP interacted with colloidal clay minerals, leading to an overestimation of their primary size. Similar interactions between PVP-coated AgNP and clay colloids can take place in the environment and facilitate their transport in soils, aquifers, and surface waters. In conclusion, AF4 in combination with UV-vis spectroscopy and HR-ICP-MS measurements is a powerful tool to characterize AgNP in soil solution if the appropriate mobile phase is used. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A multiple disk centrifugal pump as a blood flow device.

    PubMed

    Miller, G E; Etter, B D; Dorsi, J M

    1990-02-01

    A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps.

  4. Comparison of a fractional bipolar radiofrequency device and a fractional erbium-doped glass 1,550-nm device for the treatment of atrophic acne scars: a randomized split-face clinical study.

    PubMed

    Rongsaard, Nopnarueporn; Rummaneethorn, Paisal

    2014-01-01

    A fractional erbium-doped glass 1,550-nm and a fractional bipolar radiofrequency (RF) device are effective in the treatment of atrophic acne scars. To compare the clinical effectiveness and side effects of fractional bipolar RF with those of fractional erbium-doped glass in atrophic acne scars treatment. Twenty Thai subjects with atrophic acne scars received three split-face monthly treatments, one side with fractional bipolar RF and the other with fractional erbium-doped glass. Three independent physicians and patients evaluated improvement in acne scars 4 weeks after the last treatment. Side effects were also recorded after each treatment. The study found significant improvement in acne scars after treatment with fractional bipolar RF and with a fractional erbium-doped glass device without a statistically significant difference between the two devices. The side effects of both devices were pain, transient facial erythema, and scab formation. The pain score with fractional erbium-doped glass was higher than that with fractional bipolar RF, but duration of scab shedding was shorter. One case had postinflammatory hyperpigmentation on only the side treated with fractional erbium-doped glass. Fractional bipolar RF and fractional erbium-doped glass have similar effectiveness for the treatment of atrophic acne scars. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  5. Hydrodynamic radius determination with asymmetrical flow field-flow fractionation using decaying cross-flows. Part II. Experimental evaluation.

    PubMed

    Magnusson, Emma; Håkansson, Andreas; Janiak, John; Bergenståhl, Björn; Nilsson, Lars

    2012-08-31

    In this study we investigate the effect of programmed cross-flows on the error in the hydrodynamic radii (r(h)) determination with asymmetrical flow field-flow fractionation (AsFlFFF). Three different standard polystyrene particles (nominal radii of 30 and 40 and 50 nm) are fractionated with exponentially and linearly decaying cross-flows with different decay rates. Hydrodynamic radii are calculated according to retention theory including steric effects. Rapid decay is expected to give rise to systematic deviations in r(h) determination. The error in r(h) was found to be small when decay rates with half-lives longer than 6 min were used, whereas steeper decays could give rise to errors as high as 16% of the particle size. The error is often explained in terms of secondary relaxation. However, comparisons show that experimental errors are significantly larger than what would be expected due to secondary relaxation, suggesting that other factors also have to be considered in order to fully understand deviations for rapidly decaying cross-flow.

  6. Nanoparticle separation with a miniaturized asymmetrical flow field-flow fractionation cartridge

    PubMed Central

    Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; de Mello, Andrew J.

    2015-01-01

    Asymmetrical Flow Field-Flow Fractionation (AF4) is a separation technique applicable to particles over a wide size range. Despite the many advantages of AF4, its adoption in routine particle analysis is somewhat limited by the large footprint of currently available separation cartridges, extended analysis times and significant solvent consumption. To address these issues, we describe the fabrication and characterization of miniaturized AF4 cartridges. Key features of the down-scaled platform include simplified cartridge and reagent handling, reduced analysis costs and higher throughput capacities. The separation performance of the miniaturized cartridge is assessed using certified gold and silver nanoparticle standards. Analysis of gold nanoparticle populations indicates shorter analysis times and increased sensitivity compared to conventional AF4 separation schemes. Moreover, nanoparticulate titanium dioxide populations exhibiting broad size distributions are analyzed in a rapid and efficient manner. Finally, the repeatability and reproducibility of the miniaturized platform are investigated with respect to analysis time and separation efficiency. PMID:26258119

  7. Device for deriving energy from a flow of fluid

    SciTech Connect

    van Holten, T.

    1982-12-07

    Improved process and device for extracting energy present in a flowing fluid medium wherein a supported hub with propellers or blades is placed in said medium and the blades are provided with a wing or vane at the tip. The wing is of such a form that it generates a ''venturi effect'' in the flowing medium by which a part of the fluid which should normally pass outside the propeller disc area, is drawn into the propeller. The improvement consists of mixing of fluid which normally should pass outside the venturi with fluid which has flowed through the blades by provisions on blades and/or wing or vanes.

  8. Fractional Flow Reserve-Guided Multivessel Angioplasty in Myocardial Infarction.

    PubMed

    Smits, Pieter C; Abdel-Wahab, Mohamed; Neumann, Franz-Josef; Boxma-de Klerk, Bianca M; Lunde, Ketil; Schotborgh, Carl E; Piroth, Zsolt; Horak, David; Wlodarczak, Adrian; Ong, Paul J; Hambrecht, Rainer; Angerås, Oskar; Richardt, Gert; Omerovic, Elmir

    2017-03-30

    In patients with ST-segment elevation myocardial infarction (STEMI), the use of percutaneous coronary intervention (PCI) to restore blood flow in an infarct-related coronary artery improves outcomes. The use of PCI in non-infarct-related coronary arteries remains controversial. We randomly assigned 885 patients with STEMI and multivessel disease who had undergone primary PCI of an infarct-related coronary artery in a 1:2 ratio to undergo complete revascularization of non-infarct-related coronary arteries guided by fractional flow reserve (FFR) (295 patients) or to undergo no revascularization of non-infarct-related coronary arteries (590 patients). The FFR procedure was performed in both groups, but in the latter group, both the patients and their cardiologist were unaware of the findings on FFR. The primary end point was a composite of death from any cause, nonfatal myocardial infarction, revascularization, and cerebrovascular events at 12 months. Clinically indicated elective revascularizations performed within 45 days after primary PCI were not counted as events in the group receiving PCI for an infarct-related coronary artery only. The primary outcome occurred in 23 patients in the complete-revascularization group and in 121 patients in the infarct-artery-only group that did not receive complete revascularization, a finding that translates to 8 and 21 events per 100 patients, respectively (hazard ratio, 0.35; 95% confidence interval [CI], 0.22 to 0.55; P<0.001). Death occurred in 4 patients in the complete-revascularization group and in 10 patients in the infarct-artery-only group (1.4% vs. 1.7%) (hazard ratio, 0.80; 95% CI, 0.25 to 2.56), myocardial infarction in 7 and 28 patients, respectively (2.4% vs. 4.7%) (hazard ratio, 0.50; 95% CI, 0.22 to 1.13), revascularization in 18 and 103 patients (6.1% vs. 17.5%) (hazard ratio, 0.32; 95% CI, 0.20 to 0.54), and cerebrovascular events in 0 and 4 patients (0 vs. 0.7%). An FFR-related serious adverse event occurred

  9. Global Optimization Techniques for Fluid Flow and Propulsion Devices

    NASA Technical Reports Server (NTRS)

    Shyy, Wei; Papila, Nilay; Vaidyanathan, Raj; Tucker, Kevin; Griffin, Lisa; Dorney, Dan; Huber, Frank; Tran, Ken; Turner, James E. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of global optimization techniques for fluid flow and propulsion devices. Details are given on the need, characteristics, and techniques for global optimization. The techniques include response surface methodology (RSM), neural networks and back-propagation neural networks, design of experiments, face centered composite design (FCCD), orthogonal arrays, outlier analysis, and design optimization.

  10. Analysis of plant ribosomes with asymmetric flow field-flow fractionation.

    PubMed

    Pitkänen, Leena; Tuomainen, Päivi; Eskelin, Katri

    2014-02-01

    Ribosome profiling is a technique used to separate ribosomal subunits, 80S ribosomes (monosomes), and polyribosomes (polysomes) from other RNA-protein complexes. It is traditionally performed in sucrose gradients. In this study, we used asymmetric flow field-flow fractionation (AsFlFFF) to characterize ribosome profiles of Nicotiana benthamiana plants. With the optimized running conditions, we were able to separate free molecules from ribosomal subunits and intact ribosomes. We used various chemical and enzymatic treatments to validate the positions of subunits, monosomes, and polysomes in the AsFlFFF fractograms. We also characterized the protein and RNA content of AsFlFFF fractions by gel electrophoresis and western blotting. The reverse transcription polymerase chain reaction (RT-PCR) analysis showed that ribosomes remained bound to messenger RNAs (mRNAs) during the analysis. Therefore, we conclude that AsFlFFF can be used for ribosome profiling to study the mRNAs that are being translated. It can also be used to study the protein composition of ribosomes that are active in translation at that particular moment.

  11. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.; Kirby, Brian J.

    2005-11-11

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  12. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.

    2004-08-31

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by either fluid or gas pressure against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  13. Flow Control Device Evaluation for an Internal Flow with an Adverse Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Jenkins, Luther N.; Gorton, Susan Althoff; Anders, Scott G.

    2002-01-01

    The effectiveness of several active and passive devices to control flow in an adverse pressure gradient with secondary flows present was evaluated in the 15 Inch Low Speed Tunnel at NASA Langley Research Center. In this study, passive micro vortex generators, micro bumps, and piezoelectric synthetic jets were evaluated for their flow control characteristics using surface static pressures, flow visualization, and 3D Stereo Digital Particle Image Velocimetry. Data also were acquired for synthetic jet actuators in a zero flow environment. It was found that the micro vortex generator is very effective in controlling the flow environment for an adverse pressure gradient, even in the presence of secondary vortical flow. The mechanism by which the control is effected is a re-energization of the boundary layer through flow mixing. The piezoelectric synthetic jet actuators must have sufficient velocity output to produce strong longitudinal vortices if they are to be effective for flow control. The output of these devices in a laboratory or zero flow environment will be different than the output in a flow environment. In this investigation, the output was higher in the flow environment, but the stroke cycle in the flow did not indicate a positive inflow into the synthetic jet.

  14. Quantum Fluctuation Theorem in an Interacting Setup: Point Contacts in Fractional Quantum Hall Edge State Devices

    NASA Astrophysics Data System (ADS)

    Komnik, A.; Saleur, H.

    2011-09-01

    We verify the validity of the Cohen-Gallavotti fluctuation theorem for the strongly correlated problem of charge transfer through an impurity in a chiral Luttinger liquid, which is realizable experimentally as a quantum point contact in a fractional quantum Hall edge state device. This is accomplished via the development of an analytical method to calculate the full counting statistics of the problem in all the parameter regimes involving the temperature, the Hall voltage, and the gate voltage.

  15. Quantum fluctuation theorem in an interacting setup: point contacts in fractional quantum Hall edge state devices.

    PubMed

    Komnik, A; Saleur, H

    2011-09-02

    We verify the validity of the Cohen-Gallavotti fluctuation theorem for the strongly correlated problem of charge transfer through an impurity in a chiral Luttinger liquid, which is realizable experimentally as a quantum point contact in a fractional quantum Hall edge state device. This is accomplished via the development of an analytical method to calculate the full counting statistics of the problem in all the parameter regimes involving the temperature, the Hall voltage, and the gate voltage.

  16. In vitro pulsatility analysis of axial-flow and centrifugal-flow left ventricular assist devices.

    PubMed

    Stanfield, J Ryan; Selzman, Craig H

    2013-03-01

    Recently, continuous-flow ventricular assist devices (CF-VADs) have supplanted older, pulsatile-flow pumps, for treating patients with advanced heart failure. Despite the excellent results of the newer generation devices, the effects of long-term loss of pulsatility remain unknown. The aim of this study is to compare the ability of both axial and centrifugal continuous-flow pumps to intrinsically modify pulsatility when placed under physiologically diverse conditions. Four VADs, two axial- and two centrifugal-flow, were evaluated on a mock circulatory flow system. Each VAD was operated at a constant impeller speed over three hypothetical cardiac conditions: normo-tensive, hypertensive, and hypotensive. Pulsatility index (PI) was compared for each device under each condition. Centrifugal-flow devices had a higher PI than that of axial-flow pumps. Under normo-tension, flow PI was 0.98 ± 0.03 and 1.50 ± 0.02 for the axial and centrifugal groups, respectively (p < 0.01). Under hypertension, flow PI was 1.90 ± 0.16 and 4.21 ± 0.29 for the axial and centrifugal pumps, respectively (p = 0.01). Under hypotension, PI was 0.73 ± 0.02 and 0.78 ± 0.02 for the axial and centrifugal groups, respectively (p = 0.13). All tested CF-VADs were capable of maintaining some pulsatile-flow when connected in parallel with our mock ventricle. We conclude that centrifugal-flow devices outperform the axial pumps from the basis of PI under tested conditions.

  17. Computational Flow Analysis of a Left Ventricular Assist Device

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Kwak, Dochan; Benkowski, Robert

    1995-01-01

    Computational fluid dynamics has been developed to a level where it has become an Indispensable part of aerospace research and design. Technology developed foe aerospace applications am also be utilized for the benefit of human health. For example, a flange-to-flange rocket engine fuel-pump simulation includes the rotating and non-rotating components: the flow straighteners, the impeller, and diffusers A Ventricular Assist Device developed by NASA Johnson Space Center and Baylor College of Medicine has a design similar to a rocket engine fuel pump in that it also consists of a flow straightener, an impeller, and a diffuser. Accurate and detailed knowledge of the flowfield obtained by incompressible flow calculations can be greatly beneficial to designers in their effort to reduce the cost and improve the reliability of these devices. In addition to the geometric complexities, a variety of flow phenomena are encountered in biofluids Then include turbulent boundary layer separation, wakes, transition, tip vortex resolution, three-dimensional effects, and Reynolds number effects. In order to increase the role of Computational Fluid Dynamics (CFD) in the design process the CFD analysis tools must be evaluated and validated so that designers gain Confidence in their use. The incompressible flow solver, INS3D, has been applied to flow inside of a liquid rocket engine turbopump components and extensively validated. This paper details how the computational flow simulation capability developed for liquid rocket engine pump component analysis has bean applied to the Left Ventricular Assist Device being developed jointly by NASA JSC and Baylor College of Medicine.

  18. Computational Flow Analysis of a Left Ventricular Assist Device

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Kwak, Dochan; Benkowski, Robert

    1995-01-01

    Computational fluid dynamics has been developed to a level where it has become an Indispensable part of aerospace research and design. Technology developed foe aerospace applications am also be utilized for the benefit of human health. For example, a flange-to-flange rocket engine fuel-pump simulation includes the rotating and non-rotating components: the flow straighteners, the impeller, and diffusers A Ventricular Assist Device developed by NASA Johnson Space Center and Baylor College of Medicine has a design similar to a rocket engine fuel pump in that it also consists of a flow straightener, an impeller, and a diffuser. Accurate and detailed knowledge of the flowfield obtained by incompressible flow calculations can be greatly beneficial to designers in their effort to reduce the cost and improve the reliability of these devices. In addition to the geometric complexities, a variety of flow phenomena are encountered in biofluids Then include turbulent boundary layer separation, wakes, transition, tip vortex resolution, three-dimensional effects, and Reynolds number effects. In order to increase the role of Computational Fluid Dynamics (CFD) in the design process the CFD analysis tools must be evaluated and validated so that designers gain Confidence in their use. The incompressible flow solver, INS3D, has been applied to flow inside of a liquid rocket engine turbopump components and extensively validated. This paper details how the computational flow simulation capability developed for liquid rocket engine pump component analysis has bean applied to the Left Ventricular Assist Device being developed jointly by NASA JSC and Baylor College of Medicine.

  19. Histological comparison of two different fractional photothermolysis devices operating at 1,550 nm.

    PubMed

    Thongsima, Siremon; Zurakowski, David; Manstein, Dieter

    2010-01-01

    There are a wide variety of fractional resurfacing devices that are available and it is important to understand the tissue effect of different devices at different parameters to ensure a well-controlled treatment. Thus, we have chosen to characterize and compare two different fractional laser devices, the Fraxel SR750 and SR1500 (re:store) (Solta Medical, Hayward, CA). While the SR750 has a fixed focus spot diameter, the SR1500 features an internally controlled zoom optic allowing for an adjustable spot size. Exposures were performed in vitro on human skin samples at 37 degrees C. The exposures were performed for the SR750 at pulse energies between 6 and 40 mJ at 125 MTZ/cm(2) with up to 20 passes, and for the SR1500 between 6 and 100 mJ, at Treatment Level 7 and 8 passes. The skin samples then were processed for serial frozen sectioning, stained with Nitro-Blue-Tetrazolium-Chloride (NBTC) and lesion depth and width was determined. Mean lesion depth was significantly greater for lesions treated with the SR1500 laser compared to the SR750 at pulse energies of 6, 10, 30, and 40 mJ (P<0.001) with a borderline difference at 20 mJ. Mean lesion width was comparable for energies up to 20 mJ and relatively increased for the SR1500 for higher energies. The depth-to-width ratio (DWR) was in general higher for the SR1500, reaching significance at 6, 10, and 40 mJ. We have characterized the lesion depth and width for the for two different Fractional Photothermolysis devices (SR750 vs. SR1500). The device with the adjustable spot size (SR1500 or Fraxel re:store) provides generally deeper lesions at the same energy level. It remains to be shown whether increased lesion depth improves efficacy for certain clinical applications.

  20. Governing equations of transient soil water flow and soil water flux in multi-dimensional fractional anisotropic media and fractional time

    NASA Astrophysics Data System (ADS)

    Kavvas, M. Levent; Ercan, Ali; Polsinelli, James

    2017-03-01

    In this study dimensionally consistent governing equations of continuity and motion for transient soil water flow and soil water flux in fractional time and in fractional multiple space dimensions in anisotropic media are developed. Due to the anisotropy in the hydraulic conductivities of natural soils, the soil medium within which the soil water flow occurs is essentially anisotropic. Accordingly, in this study the fractional dimensions in two horizontal and one vertical directions are considered to be different, resulting in multi-fractional multi-dimensional soil space within which the flow takes place. Toward the development of the fractional governing equations, first a dimensionally consistent continuity equation for soil water flow in multi-dimensional fractional soil space and fractional time is developed. It is shown that the fractional soil water flow continuity equation approaches the conventional integer form of the continuity equation as the fractional derivative powers approach integer values. For the motion equation of soil water flow, or the equation of water flux within the soil matrix in multi-dimensional fractional soil space and fractional time, a dimensionally consistent equation is also developed. Again, it is shown that this fractional water flux equation approaches the conventional Darcy equation as the fractional derivative powers approach integer values. From the combination of the fractional continuity and motion equations, the governing equation of transient soil water flow in multi-dimensional fractional soil space and fractional time is obtained. It is shown that this equation approaches the conventional Richards equation as the fractional derivative powers approach integer values. Then by the introduction of the Brooks-Corey constitutive relationships for soil water into the fractional transient soil water flow equation, an explicit form of the equation is obtained in multi-dimensional fractional soil space and fractional time. The

  1. Investigation of bacterial chemotaxis in flow-based microfluidic devices.

    PubMed

    Englert, Derek L; Manson, Michael D; Jayaraman, Arul

    2010-05-01

    The plug-in-pond and capillary assays are convenient methods for measuring attractant and repellent bacterial chemotaxis. However, these assays do not provide quantitative information on the extent of migration and are not well-suited for investigating repellent taxis. Here, we describe a protocol for a flow-based microfluidic system (microFlow) to quantitatively investigate chemotaxis in response to concentration gradients of attractants and repellents. The microFlow device uses diffusive mixing to generate concentration gradients that are stable throughout the chemotaxis chamber and for the duration of the experiment. The gradients may be of any desired absolute concentration and gradient strength. GFP-expressing bacteria immediately encounter a stable concentration gradient when they enter the chemotaxis chamber, and the migration in response to the gradient is monitored by microscopy. The effects of different parameters that influence the extent of migration in the microFlow device-preparation of the motile bacterial population preparation, strength of the concentration gradient and duration of exposure to the gradient-are discussed in the context of repellent taxis of chemotactically wild-type Escherichia coli cells in a gradient of NiSO(4). Fabrication of the microfluidic device takes 1 d while preparing motile cells and carrying out the chemotaxis experiment takes 4-6 h to complete.

  2. Sedimentation field flow fractionation and flow field flow fractionation as tools for studying the aging effects of WO₃ colloids for photoelectrochemical uses.

    PubMed

    Contado, Catia; Argazzi, Roberto

    2011-07-08

    WO₃ colloidal suspensions obtained through a simple sol-gel procedure were subjected to a controlled temperature aging process whose time evolution in terms of particle mass and size distribution was followed by sedimentation field flow fractionation (SdFFF) and flow field flow fractionation (FlFFF). The experiments performed at a temperature of 60 °C showed that in a few hours the initially transparent sol of WO₃ particles, whose size was less than 25 nm, undergoes a progressive size increase allowing nanoparticles to reach a maximum equivalent spherical size of about 130 nm after 5 h. The observed shift in particle size distribution maxima (SdFFF), the broadening of the curves (FlFFF) and the SEM-TEM observations suggest a mixed mechanism of growth-aggregation of initial nanocrystals to form larger particles. The photoelectrochemical properties of thin WO₃ films obtained from the aged suspensions at regular intervals, were tested in a biased photoelectrocatalytic cell with 1M H₂SO₄ under solar simulated irradiation. The current-voltage polarization curves recorded in the potential range 0-1.8 V (vs. SCE) showed a diminution of the maximum photocurrent from 3.7 mA cm⁻² to 2.8 mA cm⁻² with aging times of 1h and 5h, respectively. This loss of performance was mainly attributed to the reduction of the electroactive surface area of the sintered particles as suggested by the satisfactory linear correlation between the integrated photocurrent and the cyclic voltammetry cathodic wave area of the W(VI)→W(V) process measured in the dark.

  3. Probing and quantifying DNA-protein interactions with asymmetrical flow field-flow fractionation.

    PubMed

    Ashby, Jonathan; Schachermeyer, Samantha; Duan, Yaokai; Jimenez, Luis A; Zhong, Wenwan

    2014-09-05

    Tools capable of measuring binding affinities as well as amenable to downstream sequencing analysis are needed for study of DNA-protein interaction, particularly in discovery of new DNA sequences with affinity to diverse targets. Asymmetrical flow field-flow fractionation (AF4) is an open-channel separation technique that eliminates interference from column packing to the non-covalently bound complex and could potentially be applied for study of macromolecular interaction. The recovery and elution behaviors of the poly(dA)n strand and aptamers in AF4 were investigated. Good recovery of ssDNAs was achieved by judicious selection of the channel membrane with consideration of the membrane pore diameter and the radius of gyration (Rg) of the ssDNA, which was obtained with the aid of a Molecular Dynamics tool. The Rg values were also used to assess the folding situation of aptamers based on their migration times in AF4. The interactions between two ssDNA aptamers and their respective protein components were investigated. Using AF4, near-baseline resolution between the free and protein-bound aptamer fractions could be obtained. With this information, dissociation constants of ∼16nM and ∼57nM were obtained for an IgE aptamer and a streptavidin aptamer, respectively. In addition, free and protein-bound IgE aptamer was extracted from the AF4 eluate and amplified, illustrating the potential of AF4 in screening ssDNAs with high affinity to targets. Our results demonstrate that AF4 is an effective tool holding several advantages over the existing techniques and should be useful for study of diverse macromolecular interaction systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Application of asymmetric flow-field flow fractionation to the characterization of colloidal dispersions undergoing aggregation.

    PubMed

    Lattuada, Marco; Olivo, Carlos; Gauer, Cornelius; Storti, Giuseppe; Morbidelli, Massimo

    2010-05-18

    The characterization of complex colloidal dispersions is a relevant and challenging problem in colloidal science. In this work, we show how asymmetric flow-field flow fractionation (AF4) coupled to static light scattering can be used for this purpose. As an example of complex colloidal dispersions, we have chosen two systems undergoing aggregation. The first one is a conventional polystyrene latex undergoing reaction-limited aggregation, which leads to the formation of fractal clusters with well-known structure. The second one is a dispersion of elastomeric colloidal particles made of a polymer with a low glass transition temperature, which undergoes coalescence upon aggregation. Samples are withdrawn during aggregation at fixed times, fractionated with AF4 using a two-angle static light scattering unit as a detector. We have shown that from the analysis of the ratio between the intensities of the scattered light at the two angles the cluster size distribution can be recovered, without any need for calibration based on standard elution times, provided that the geometry and scattering properties of particles and clusters are known. The nonfractionated samples have been characterized also by conventional static and dynamic light scattering to determine their average radius of gyration and hydrodynamic radius. The size distribution of coalescing particles has been investigated also through image analysis of cryo-scanning electron microscopy (SEM) pictures. The average radius of gyration and the average hydrodynamic radius of the nonfractionated samples have been calculated and successfully compared to the values obtained from the size distributions measured by AF4. In addition, the data obtained are also in good agreement with calculations made with population balance equations.

  5. Non-polydimethylsiloxane devices for oxygen-free flow lithography

    NASA Astrophysics Data System (ADS)

    Bong, Ki Wan; Xu, Jingjing; Kim, Jong-Ho; Chapin, Stephen C.; Strano, Michael S.; Gleason, Karen K.; Doyle, Patrick S.

    2012-05-01

    Flow lithography has become a powerful particle synthesis technique. Currently, flow lithography relies on the use of polydimethylsiloxane microchannels, because the process requires local inhibition of polymerization, near channel interfaces, via oxygen permeation. The dependence on polydimethylsiloxane devices greatly limits the range of precursor materials that can be processed in flow lithography. Here we present oxygen-free flow lithography via inert fluid-lubrication layers for the synthesis of new classes of complex microparticles. We use an initiated chemical vapour deposition nano-adhesive bonding technique to create non-polydimethylsiloxane-based devices. We successfully synthesize microparticles with a sub-second residence time and demonstrate on-the-fly alteration of particle height. This technique greatly expands the synthesis capabilities of flow lithography, enabling particle synthesis, using water-insoluble monomers, organic solvents, and hydrophobic functional entities such as quantum dots and single-walled carbon nanotubes. As one demonstrative application, we created near-infrared barcoded particles for real-time, label-free detection of target analytes.

  6. Non-polydimethylsiloxane devices for oxygen-free flow lithography.

    PubMed

    Bong, Ki Wan; Xu, Jingjing; Kim, Jong-Ho; Chapin, Stephen C; Strano, Michael S; Gleason, Karen K; Doyle, Patrick S

    2012-05-01

    Flow lithography has become a powerful particle synthesis technique. Currently, flow lithography relies on the use of polydimethylsiloxane microchannels, because the process requires local inhibition of polymerization, near channel interfaces, via oxygen permeation. The dependence on polydimethylsiloxane devices greatly limits the range of precursor materials that can be processed in flow lithography. Here we present oxygen-free flow lithography via inert fluid-lubrication layers for the synthesis of new classes of complex microparticles. We use an initiated chemical vapour deposition nano-adhesive bonding technique to create non-polydimethylsiloxane-based devices. We successfully synthesize microparticles with a sub-second residence time and demonstrate on-the-fly alteration of particle height. This technique greatly expands the synthesis capabilities of flow lithography, enabling particle synthesis, using water-insoluble monomers, organic solvents, and hydrophobic functional entities such as quantum dots and single-walled carbon nanotubes. As one demonstrative application, we created near-infrared barcoded particles for real-time, label-free detection of target analytes.

  7. Nasal high flow therapy: a novel treatment rather than a more expensive oxygen device.

    PubMed

    Ischaki, Eleni; Pantazopoulos, Ioannis; Zakynthinos, Spyros

    2017-09-30

    Nasal high flow is a promising novel oxygen delivery device, whose mechanisms of action offer some beneficial effects over conventional oxygen systems. The administration of a high flow of heated and humidified gas mixture promotes higher and more stable inspiratory oxygen fraction values, decreases anatomical dead space and generates a positive airway pressure that can reduce the work of breathing and enhance patient comfort and tolerance. Nasal high flow has been used as a prophylactic tool or as a treatment device mostly in patients with acute hypoxaemic respiratory failure, with the majority of studies showing positive results. Recently, its clinical indications have been expanded to post-extubated patients in intensive care or following surgery, for pre- and peri-oxygenation during intubation, during bronchoscopy, in immunocompromised patients and in patients with "do not intubate" status. In the present review, we differentiate studies that suggest an advantage (benefit) from other studies that do not suggest an advantage (no benefit) compared to conventional oxygen devices or noninvasive ventilation, and propose an algorithm in cases of nasal high flow application in patients with acute hypoxaemic respiratory failure of almost any cause. Copyright ©ERS 2017.

  8. Rapid prototyping of electrochemical lateral flow devices: stencilled electrodes.

    PubMed

    Aller Pellitero, Miguel; Kitsara, Maria; Eibensteiner, Friedrich; del Campo, F Javier

    2016-04-21

    A straightforward and very cost effective method is proposed to prototype electrodes using pressure sensitive adhesives (PSA) and a simple cutting technique. Two cutting methods, namely blade cutting and CO2 laser ablation, are compared and their respective merits are discussed. The proposed method consists of turning the protective liner on the adhesive into a stencil to apply screen-printing pastes. After the electrodes have been printed, the liner is removed and the PSA can be used as a backing material for standard lateral flow membranes. We present the fabrication of band electrodes down to 250 μm wide, and their characterization using microscopy techniques and cyclic voltammetry. The prototyping approach presented here facilitates the development of new electrochemical devices even if very limited fabrication resources are available. Here we demonstrate the fabrication of a simple lateral-flow device capable of determining glucose in blood. The prototyping approach presented here is highly suitable for the development of novel electroanalytical tools.

  9. Numerical simulation of bioparticle separation by dielectrophoretic field-flow-fractionation (DEP-FFF)

    NASA Astrophysics Data System (ADS)

    Marchis, Andreea; Neculae, Adrian

    2014-11-01

    The separation systems based on dielectrophoretic field-flow-fractionation (DEP-FFF) are used for a wide range of bioparticle types, including cells, bacteria, viruses, proteins, etc. An array of interdigitated microelectrodes lining the bottom surface of a thin chamber is used to generate dielectrophoretic forces that levitate the bioparticle mixture. The balance between DEP levitation and gravitational forces determines the bioparticles position at equilibrium heights within a fluid-flow profile, and consequently determines their velocities and the corresponding elution times. The elution time depends on the voltage applied on the microelectrodes, geometry of the device, bioparticle dielectric properties and density. This paper analyses numerically the behavior of a bioparticle mixture suspended in a dense and viscous fluid under dielectrophoresis. The controlled spatial separation of bioparticle mixture is performed by a combination of dielectrophoretic and hydrodynamic forces. The theoretical background and a set of numerical results (calculated DEP force, particle trajectories, etc.) are presented. The numerical solutions are obtained using the COMSOL Multiphysics finite element solver. The presented results demonstrate that the DEP-FFF method can be successfully applicable to many biomedical cell separation problems, including microfluidic-scale diagnosis and preparative-scale purification of cell subpopulations.

  10. Multicenter clinical trial of a home-use nonablative fractional laser device for wrinkle reduction.

    PubMed

    Leyden, James; Stephens, Thomas J; Herndon, James H

    2012-11-01

    Until now, nonablative fractional treatments could only be delivered in an office setting by trained professionals. The goal of this work was to perform clinical testing of a nonablative fractional laser device designed for home-use. This multicenter trial consisted of two clinical studies with slightly varying treatment protocols in which subjects performed at-home treatments of periorbital wrinkles using a handheld nonablative fractional laser. Both studies included an active treatment phase (daily treatments) and a maintenance phase (twice-weekly treatments). In all, 36 subjects were followed up for as long as 5 months after completion of the maintenance phase and 90 subjects were followed up until the completion of the maintenance phase. Evaluations included in-person investigator assessment, independent blinded review of high-resolution images using the Fitzpatrick Wrinkle Scale, and subject self-assessment. All 124 subjects who completed the study were able to use the device following written instructions for use. Treatments were well tolerated with good protocol compliance. Independent blinded evaluations by a panel of physicians showed Fitzpatrick Wrinkle Scale score improvement by one or more grades in 90% of subjects at the completion of the active phase and in 79% of subjects at the completion of the maintenance phase. The most prevalent side effect was transient posttreatment erythema. Lack of a control group and single-blinded study groups were limitations. Safety testing with self-applications by users demonstrated the utility of the device for home use. Independent blinded review of clinical images confirmed the device's proficiency for improving periorbital wrinkles. Copyright © 2012 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  11. Active flow control of subsonic flow in an adverse pressure gradient using synthetic jets and passive micro flow control devices

    NASA Astrophysics Data System (ADS)

    Denn, Michael E.

    Several recent studies have shown the advantages of active and/or passive flow control devices for boundary layer flow modification. Many current and future proposed air vehicles have very short or offset diffusers in order to save vehicle weight and create more optimal vehicle/engine integration. Such short coupled diffusers generally result in boundary layer separation and loss of pressure recovery which reduces engine performance and in some cases may cause engine stall. Deployment of flow control devices can alleviate this problem to a large extent; however, almost all active flow control devices have some energy penalty associated with their inclusion. One potential low penalty approach for enhancing the diffuser performance is to combine the passive flow control elements such as micro-ramps with active flow control devices such as synthetic jets to achieve higher control authority. The goal of this dissertation is twofold. The first objective is to assess the ability of CFD with URANS turbulence models to accurately capture the effects of the synthetic jets and micro-ramps on boundary layer flow. This is accomplished by performing numerical simulations replicating several experimental test cases conducted at Georgia Institute of Technology under the NASA funded Inlet Flow Control and Prediction Technologies Program, and comparing the simulation results with experimental data. The second objective is to run an expanded CFD matrix of numerical simulations by varying various geometric and other flow control parameters of micro-ramps and synthetic jets to determine how passive and active control devices interact with each other in increasing and/or decreasing the control authority and determine their influence on modification of boundary layer flow. The boundary layer shape factor is used as a figure of merit for determining the boundary layer flow quality/modification and its tendency towards separation. It is found by a large number of numerical experiments and

  12. 3D Printed Micro Free-Flow Electrophoresis Device.

    PubMed

    Anciaux, Sarah K; Geiger, Matthew; Bowser, Michael T

    2016-08-02

    The cost, time, and restrictions on creative flexibility associated with current fabrication methods present significant challenges in the development and application of microfluidic devices. Additive manufacturing, also referred to as three-dimensional (3D) printing, provides many advantages over existing methods. With 3D printing, devices can be made in a cost-effective manner with the ability to rapidly prototype new designs. We have fabricated a micro free-flow electrophoresis (μFFE) device using a low-cost, consumer-grade 3D printer. Test prints were performed to determine the minimum feature sizes that could be reproducibly produced using 3D printing fabrication. Microfluidic ridges could be fabricated with dimensions as small as 20 μm high × 640 μm wide. Minimum valley dimensions were 30 μm wide × 130 μm wide. An acetone vapor bath was used to smooth acrylonitrile-butadiene-styrene (ABS) surfaces and facilitate bonding of fully enclosed channels. The surfaces of the 3D-printed features were profiled and compared to a similar device fabricated in a glass substrate. Stable stream profiles were obtained in a 3D-printed μFFE device. Separations of fluorescent dyes in the 3D-printed device and its glass counterpart were comparable. A μFFE separation of myoglobin and cytochrome c was also demonstrated on a 3D-printed device. Limits of detection for rhodamine 110 were determined to be 2 and 0.3 nM for the 3D-printed and glass devices, respectively.

  13. Determining Aqueous Fullerene Particle Size Distributions by Asymmetric Flow Field-Flow Fractionation (AF4) without Surfactants

    EPA Science Inventory

    To determine the behavior of nanoparticles in environmental systems, methods must be developed to measure nanoparticle size. Asymmetric Flow Field Flow Fractionation (AF4) is an aqueous compatible size separation technique which is able to separate particles from 1 nm to 10 µm in...

  14. Determining Aqueous Fullerene Particle Size Distributions by Asymmetric Flow Field-Flow Fractionation (AF4) without Surfactants

    EPA Science Inventory

    To determine the behavior of nanoparticles in environmental systems, methods must be developed to measure nanoparticle size. Asymmetric Flow Field Flow Fractionation (AF4) is an aqueous compatible size separation technique which is able to separate particles from 1 nm to 10 µm in...

  15. Buckling delamination induced microchannel: Flow regulation in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Kang, Jingtian; Wang, Changguo; Xue, Zhiming; Liu, Mengxiong; Tan, Huifeng

    2016-09-01

    The buckling delamination induced microchannel is employed to regulate fluid flow as a microvalve which can be utilized in microfluidic devices. This microvalve consists of a soft substrate and a stiff thin film, between which there is a pre-set small imperfection. Two critical strain values, namely, on-off strain and failure strain, have been proposed to determine the working strain interval using analytical predictions. Within this interval, the cross-sectional area of the microchannel can be controlled and predicted by different compressive strains of the film/substrate system. The fluid flow rate within this microchannel can be then estimated by both analytical and numerical simulations and adjusted to satisfy different values by alternating the compressive strain. In addition, a demonstrative experiment has been taken to verify the feasibility of this approach. This flexible microvalve has potential in the application where the use of traditional rigid microvalves is improper in flexible microfluidic devices. The method and approach of this paper can provide a general guide for flow rate control in microfluidic devices.

  16. FDA Benchmark Medical Device Flow Models for CFD Validation.

    PubMed

    Malinauskas, Richard A; Hariharan, Prasanna; Day, Steven W; Herbertson, Luke H; Buesen, Martin; Steinseifer, Ulrich; Aycock, Kenneth I; Good, Bryan C; Deutsch, Steven; Manning, Keefe B; Craven, Brent A

    Computational fluid dynamics (CFD) is increasingly being used to develop blood-contacting medical devices. However, the lack of standardized methods for validating CFD simulations and blood damage predictions limits its use in the safety evaluation of devices. Through a U.S. Food and Drug Administration (FDA) initiative, two benchmark models of typical device flow geometries (nozzle and centrifugal blood pump) were tested in multiple laboratories to provide experimental velocities, pressures, and hemolysis data to support CFD validation. In addition, computational simulations were performed by more than 20 independent groups to assess current CFD techniques. The primary goal of this article is to summarize the FDA initiative and to report recent findings from the benchmark blood pump model study. Discrepancies between CFD predicted velocities and those measured using particle image velocimetry most often occurred in regions of flow separation (e.g., downstream of the nozzle throat, and in the pump exit diffuser). For the six pump test conditions, 57% of the CFD predictions of pressure head were within one standard deviation of the mean measured values. Notably, only 37% of all CFD submissions contained hemolysis predictions. This project aided in the development of an FDA Guidance Document on factors to consider when reporting computational studies in medical device regulatory submissions. There is an accompanying podcast available for this article. Please visit the journal's Web site (www.asaiojournal.com) to listen.

  17. Effect of fractional blood flow on plasma skimming in the microvasculature

    NASA Astrophysics Data System (ADS)

    Yang, Jiho; Yoo, Sung Sic; Lee, Tae-Rin

    2017-04-01

    Although redistribution of red blood cells at bifurcated vessels is highly dependent on flow rate, it is still challenging to quantitatively express the dependence of flow rate in plasma skimming due to nonlinear cellular interactions. We suggest a plasma skimming model that can involve the effect of fractional blood flow at each bifurcation point. To validate the model, it is compared with in vivo data at single bifurcation points, as well as microvascular network systems. In the simulation results, the exponential decay of the plasma skimming parameter M along fractional flow rate shows the best performance in both cases.

  18. Flow field-flow fractionation and multiangle light scattering for ultrahigh molecular weight sodium hyaluronate characterization.

    PubMed

    Moon, Myeong Hee

    2010-11-01

    This review describes the utility of flow field-flow fractionation coupled with multiangle light scattering and differential refractive index (FlFFF-MALS-DRI) detection methods for the separation of ultrahigh molecular weight sodium hyaluronate (NaHA) materials and for the characterization of molecular weight distribution as well as structural determination. The sodium salt of hyaluronic acid (HA), NaHA, is a water-soluble polysaccharide with a broad range of molecular weights (10(5) -10(8) ) found in various naturally occurring fluids and tissues. Basic principles of FlFFF-MALS using field programming for the separation of the degraded products of NaHA prepared by treating raw materials with depolymerization or degradation processes such as membrane filtration, enzymatic degradation, ultrasonic degradation, alkaline reaction, irradiation by γ-rays, and thermal treatment for the development of pharmaceutical applications are introduced. Changes in molecular weight distribution and conformation of NaHA materials due to external stimuli are also discussed. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Asymmetrical flow field-flow fractionation for the analysis of PEG-asparaginase.

    PubMed

    John, C; Herz, T; Boos, J; Langer, K; Hempel, G

    2016-01-01

    Monomethoxypolyethylene glycol L-asparaginase (PEG-ASNASE) is the PEGylated version of the enzyme L-asparaginase (ASNASE). Both are used for remission induction in acute lymphoblastic leukemia (ALL) and non-Hodgkin's lymphoma (NHL). The treatment control is generally carried out by performing activity assays, though methods to determine the actual enzyme rather than its activity are rare. Using asymmetrical flow field-flow fractionation (AF4) offered the chance to develop a method capable of simultaneously measuring PEG-ASNASE and PEG. A method validation was performed in accordance with FDA guidelines for PEG-ASNASE from non-biological solutions. The method unfolded a linearity of 15-750 U/mL with coefficients of correlation of r(2)>0.99. The coefficients of variation (CV) for within-run and between-run variability were 1.18-10.15% and 2.43-8.73%, respectively. Furthermore, the method was used to perform stability tests of the product Oncaspar® (PEG-ASNASE) and estimation of the molecular weight by multi-angle light scattering (MALS) of stressed samples to correlate them with the corresponding activity. The findings indicate that Oncaspar® stock solution should not be stored any longer than 24 h at room temperature and cannot be frozen in pure aqueous media. The validated method might be useful for the pharmaceutical industry and its quality control of PEG-ASNASE production.

  20. Separation of magnetic beads in a hybrid continuous flow microfluidic device

    NASA Astrophysics Data System (ADS)

    Samanta, Abhishek; Ganguly, Ranjan; Datta, Amitava; Modak, Nipu

    2017-04-01

    Magnetic separation of biological entities in microfluidic environment is a key task for a large number of bio-analytical protocols. In magnetophoretic separation, biochemically functionalized magnetic beads are allowed to bind selectively to target analytes, which are then separated from the background stream using a suitably imposed magnetic field. Here we present a numerical study, characterizing the performance of a magnetophoretic hybrid microfluidic device having two inlets and three outlets for immunomagnetic isolation of three different species from a continuous flow. The hybrid device works on the principle of split-flow thin (SPLITT) fractionation and field flow fractionation (FFF) mechanisms. Transport of the magnetic particles in the microchannel has been predicted following an Eulerian-Lagrangian model and using an in-house numerical code. Influence of the salient geometrical parameters on the performance of the separator is studied by characterizing the particle trajectories and their capture and separation indices. Finally, optimum channel geometry is identified that yields the maximum capture efficiency and separation index.

  1. Fractional Flow Assessment for the Evaluation of Intracranial Atherosclerosis: A Feasibility Study

    PubMed Central

    Miao, ZhongRong; Liebeskind, David S.; Lo, WaiTing; Liu, LiPing; Pu, YueHua; Leng, XinYi; Song, LiGang; Xu, XiaoTong; Jia, BaiXue; Gao, Feng; Mo, DaPeng; Sun, Xuan; Liu, Lian; Ma, Ning; Wang, Bo; Wang, YiLong; Wang, YongJun

    2016-01-01

    Purpose Current studies on endovascular intervention for intracranial atherosclerosis select patients based on luminal stenosis. Coronary studies demonstrated that fractional flow measurements assess ischemia better than anatomical stenosis and can guide patient selection for intervention. We similarly postulated that fractional flow can be used to assess ischemic stroke risk. Methods This was a feasibility study to assess the technical use and safety of applying a pressure guidewire to measure fractional flow across intracranial stenoses. Twenty patients with severe intracranial stenosis were recruited. The percentage of luminal stenosis, distal to proximal pressure ratios (fractional flow) and the fractional flow gradients across the stenosis were measured. Procedural success rate and safety outcomes were documented. Results All 20 patients had successful crossing of stenosis by the pressure guidewire. Ten patients underwent angioplasty, and 5 had stenting performed. There was one perforator stroke, but not related to the use of the pressure wire. For the 13 patients with complete pre- and postintervention data, the mean preintervention stenosis, fractional flow and translesional pressure gradient were 76.2%, 0.66 and 29.9 mm Hg, whilst the corresponding postintervention measurements were 24.7%, 0.88 and 10.9 mm Hg, respectively. Fractional flow (r = −0.530, p = 0.001) and the translesional pressure gradient (r = 0.501, p = 0.002) only had a modest correlation with the luminal stenosis. Conclusion Fractional flow measurement by floating a pressure guidewire across the intracranial stenosis was technically feasible and safe in this study. Further studies are needed to validate its use for ischemic stroke risk assessment. PMID:27610123

  2. Quantum dot agglomerates in biological media and their characterization by asymmetrical flow field-flow fractionation.

    PubMed

    Moquin, Alexandre; Neibert, Kevin D; Maysinger, Dusica; Winnik, Françoise M

    2015-01-01

    The molecular composition of the biological environment of nanoparticles influences their physical properties and changes their pristine physicochemical identity. In order to understand, or predict, the interactions of cells with specific nanoparticles, it is critical to know their size, shape, and agglomeration state not only in their nascent state but also in biological media. Here, we use asymmetrical flow field-flow fractionation (AF4) with on-line multiangle light scattering (MALS), dynamic light scattering (DLS) and UV-Visible absorption detections to determine the relative concentration of isolated nanoparticles and agglomerates in the case of three types of semi-conductor quantum dots (QDs) dispersed in Dulbecco's Modified Eagle Media (DMEM) containing 10% of fetal bovine serum (DMEM-FBS). AF4 analysis also yielded the size and size distribution of the agglomerates as a function of the time of QDs incubation in DMEM-FBS. The preferred modes of internalization of the QDs are assessed for three cell-types, N9 microglia, human hepatocellular carcinoma cells (HepG2) and human embryonic kidney cells (Hek293), by confocal fluorescence imaging of live cells, quantitative determination of the intracellular QD concentration, and flow cytometry. There is an excellent correlation between the agglomeration status of the three types of QDs in DMEM-FBS determined by AF4 analysis and their preferred mode of uptake by the three cell lines, which suggests that AF4 yields an accurate description of the nanoparticles as they encounter cells and advocates its use as a means to characterize particles under evaluation.

  3. Determination of void fraction in two phase liquid-gas flow using gamma absorption

    NASA Astrophysics Data System (ADS)

    Zych, M.; Hanus, R.; Jaszczur, M.; Strzępowicz, A.; Petryka, L.; Mastej, W.

    2016-09-01

    Full description of a two-phase liquid-gas flow requires the designation of lot parameters. First one, which describes which part of the pipeline is fulfilled by the gas, is the void fraction. Moreover the share of gas in a flowing mixture determines the structure of the flow and also affects the velocity of the individual phases. In that case void fraction can be determined by use the gamma absorption method, as well as other flow parameters may be evaluated by the same equipment. In addition the article presents the calibration of radiometric set, which consists of gamma radiation source Am-241 and scintillation probe NaI(Tl), for determination of the void fraction, illustrated by exemplary results of the described method application to various structures of air-water flow in the horizontal pipeline.

  4. Power flow controller with a fractionally rated back-to-back converter

    DOEpatents

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish

    2016-03-08

    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  5. Automated frit inlet/frit outlet flow field-flow fractionation for protein characterization with emphasis on polymeric wheat proteins.

    PubMed

    Stevenson, S G; Ueno, T; Preston, K R

    1999-01-01

    A flow field-flow fractionation (FFF) unit fitted with a 254-nm spacer, frit inlet (FI), and frit outlet (FO) was automated for protein analysis by addition of a system controller, autosampler, and computer software to control pumps, sample loading, and data capture. Standard molecular size marker proteins and polymeric wheat storage protein extracts were used to assess the performance of the automated unit. Optimum resolution for these proteins was obtained with a sample inlet flow of 0.2 mL/min, a frit inlet flow (recirculating) of 1.4 mL/min, and a cross-flow (recirculating) of 5 mL/min using 0.05 M acetic acid containing 0.002% FL-70 as a carrier. Use of the FIFO FFF eliminates the requirement for stop-flow relaxation and pressure balancing, results in better reproducibility, and generates a 7-10-fold increase in sensitivity at the detector by concentrating fractions eluting from the channel. These improvements resulted in superior resolution of polymeric wheat protein fractions compared to those obtained previously using a standard channel with manual load and stop-flow relaxation, allowing accurate integration of peak or size range areas. Automation of this system allows unattended sample fractionation and hence markedly increases potential for sample throughput.

  6. Impact of carrier fluid composition on recovery of nanoparticles and proteins in flow field flow fractionation.

    PubMed

    Schachermeyer, Samantha; Ashby, Jonathan; Kwon, Minjung; Zhong, Wenwan

    2012-11-16

    Flow field flow fractionation (F4) is an invaluable separation tool for large analytes, including nanoparticles and biomolecule complexes. However, sample loss due to analyte-channel membrane interaction limits extensive usage of F4 at present, which could be strongly affected by the carrier fluid composition. This work studied the impacts of carrier fluid (CF) composition on nanoparticle (NP) recovery in F4, with focus on high ionic strength conditions. Successful analysis of NPs in a biomolecules-friendly environment could expand the applicability of F4 to the developing field of nanobiotechnology. Recovery of the unfunctionalized polystyrene NPs of 199, 102, and 45 nm in CFs with various pH (6.2, 7.4 and 8.2), increasing ionic strength (0-0.1M), and different types of co- and counter-ions, were investigated. Additionally, elution of the 85 nm carboxylate NPs and two proteins, human serum albumin (HSA) and immunoglobulin (IgG), at high ionic strengths (0-0.15M) was investigated. Our results suggested that (1) electrostatic repulsion between the negatively charged NPs and the regenerated cellulose membrane was the main force to avoid particle adsorption on the membrane; (2) larger particles experienced higher attractive force and thus were influenced more by variation in CF composition; and (3) buffers containing weak anions or NPs with weak anion as the surface functional groups provided higher tolerance to the increase in ionic strength, owing to more anions being trapped inside the NP porous structure. Protein adsorption onto the membrane was also briefly investigated in salted CFs, using HSA and IgG. We believe our findings could help to identify the basic carrier fluid composition for higher sample recovery in F4 analysis of nanoparticles in a protein-friendly environment, which will be useful for applying F4 in bioassays and in nanotoxicology studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. A Microfluidic Device for Continuous-Flow Magnetically Controlled Capture and Isolation of Microparticles

    PubMed Central

    Zhou, Yao; Wang, Yi; Lin, Qiao

    2013-01-01

    This paper presents a novel microfluidic device that exploits magnetic manipulation for integrated capture and isolation of microparticles in continuous flow. The device, which was fabricated from poly(dimethylsiloxane) (PDMS) by soft-lithography techniques, consists of an incubator and a separator integrated on a single chip. The incubator is based on a novel scheme termed target acquisition by repetitive traversal (TART), in which surface-functionalized magnetic beads repetitively traverse a sample to seek out and capture target particles. This is accomplished by a judicious combination of a serpentine microchannel geometry and a time-invariant magnetic field. Subsequently, in the separator, the captured target particles are isolated from nontarget particles via magnetically driven fractionation in the same magnetic field. Due to the TART incubation scheme that uses a corner-free serpentine channel, the device has no dead volume and allows minimization of undesired particle or magnetic-bead retention. Single-chip integration of the TART incubator with the magnetic-fractionation separator further allows automated continuous isolation and retrieval of specific microparticles in an integrated manner that is free of manual off-chip sample incubation, as often required by alternative approaches. Experiments are conducted to characterize the individual incubation and separation components, as well as the integrated device. The device is found to allow 90% of target particles in a sample to be captured and isolated and 99% of nontarget particles to be eliminated. With this high separation efficiency, along with excellent reliability and flexibility, the device is well suited to sorting, purification, enrichment, and detection of micro/nanoparticles and cells in lab-on-a-chip systems. PMID:24511214

  8. Measurements of Turbulent Flow Field in Separate Flow Nozzles with Enhanced Mixing Devices - Test Report

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2002-01-01

    As part of the Advanced Subsonic Technology Program, a series of experiments was conducted at NASA Glenn Research Center on the effect of mixing enhancement devices on the aeroacoustic performance of separate flow nozzles. Initial acoustic evaluations of the devices showed that they reduced jet noise significantly, while creating very little thrust loss. The explanation for the improvement required that turbulence measurements, namely single point mean and RMS statistics and two-point spatial correlations, be made to determine the change in the turbulence caused by the mixing enhancement devices that lead to the noise reduction. These measurements were made in the summer of 2000 in a test program called Separate Nozzle Flow Test 2000 (SFNT2K) supported by the Aeropropulsion Research Program at NASA Glenn Research Center. Given the hot high-speed flows representative of a contemporary bypass ratio 5 turbofan engine, unsteady flow field measurements required the use of an optical measurement method. To achieve the spatial correlations, the Particle Image Velocimetry technique was employed, acquiring high-density velocity maps of the flows from which the required statistics could be derived. This was the first successful use of this technique for such flows, and shows the utility of this technique for future experimental programs. The extensive statistics obtained were likewise unique and give great insight into the turbulence which produces noise and how the turbulence can be modified to reduce jet noise.

  9. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  10. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  11. Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model

    NASA Astrophysics Data System (ADS)

    Ali, Farhad; Sheikh, Nadeem Ahmad; Khan, Ilyas; Saqib, Muhammad

    2017-02-01

    The effects of magnetohydrodynamics on the blood flow when blood is represented as a Casson fluid, along with magnetic particles in a horizontal cylinder is studied. The flow is due to an oscillating pressure gradient. The Laplace and finite Hankel transforms are used to obtain the closed form solutions of the fractional partial differential equations. Effects of various parameters on the flow of both blood and magnetic particles are shown graphically. The analysis shows that, the model with fractional order derivatives bring a remarkable changes as compared to the ordinary model. The study highlights that applied magnetic field reduces the velocities of both the blood and magnetic particles.

  12. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Astrophysics Data System (ADS)

    Boyd, Ronald D.; Turknett, Jerry C.; Smith, Alvin

    1989-08-01

    The effects of enhancement devices on flow boiling heat transfer in circular coolant channels, which are heated over a fraction of their perimeters, are studied. The variations were examined in both the mean and local (axial, and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls. Improvements were initiated in the present data reduction analysis. These efforts should lead to the development of heat transfer correlations which include effects of single side heat flux and enhancement device configuration. It is hoped that a stage will be set for the study of heat transfer and pressure drop in single sided heated systems under zero gravity conditions.

  13. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D.; Turknett, Jerry C.; Smith, Alvin

    1989-01-01

    The effects of enhancement devices on flow boiling heat transfer in circular coolant channels, which are heated over a fraction of their perimeters, are studied. The variations were examined in both the mean and local (axial, and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls. Improvements were initiated in the present data reduction analysis. These efforts should lead to the development of heat transfer correlations which include effects of single side heat flux and enhancement device configuration. It is hoped that a stage will be set for the study of heat transfer and pressure drop in single sided heated systems under zero gravity conditions.

  14. Analysis of liposomes using asymmetrical flow field-flow fractionation: separation conditions and drug/lipid recovery.

    PubMed

    Kuntsche, Judith; Decker, Christiane; Fahr, Alfred

    2012-08-01

    Liposomes composed of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol were analyzed by asymmetrical flow field-flow fractionation coupled with multi-angle laser light scattering. In addition to evaluation of fractionation conditions (flow conditions, sample mass, carrier liquid), radiolabeled drug-loaded liposomes were used to determine the liposome recovery and a potential loss of incorporated drug during fractionation. Neither sample concentration nor the cross-flow gradient distinctly affected the size results but at very low sample concentration (injected mass 5 μg) the fraction of larger vesicles was underestimated. Imbalance in the osmolality between the inner and outer aqueous phase resulted in liposome swelling after dilution in hypoosmotic carrier liquids. In contrast, liposome shrinking under hyperosmotic conditions was barely visible. The liposomes themselves eluted completely (lipid recoveries were close to 100%) but there was a loss of incorporated drugs during separation with a strong dependence on the octanol-water partition coefficient of the drug. Whereas corticosterone (partition coefficient ~2) was washed out more or less completely (recovery about 2%), loss of temoporfin (partition coefficient ~9) was only minor (recovery about 80%). All fractionations were well repeatable under the experimental conditions applied in the present study. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A simultaneous space sampling method for DNA fraction collection using a comb structure in microfluidic devices.

    PubMed

    Li, Zheyu; Sun, Kai; Sunayama, Misato; Araki, Ryoko; Ueno, Kosei; Abe, Masumi; Misawa, Hiroaki

    2011-11-01

    Fraction collection of selected components from a complex mixture plays a critical role in biomedical research, environmental analysis, and biotechnology. Here, we introduce a novel electrophoretic chip device based on a signal processing theorem that allows simultaneous space sampling for fractionation of ssDNA target fragments. Ten parallel extraction channels, which covered 1.5-mm-long sampling ranges, were used to facilitate the capturing of fast-moving fragments. Furthermore, the space sampling extraction made it possible to acquire pure collection, even from partly overlapping fragments that had been insufficiently separated after a short electrophoretic run. Fragments of 180, 181, and 182 bases were simultaneously collected, and then the recovered DNA was PCR amplified and assessed by CE analysis. The 181-base target was shown to be isolated in a 70-mm-long separation length within 10 min, in contrast to the >50 min required for the 300-mm-long separation channel in our previous study. This method provides effective combination of time and space, which is a breakthrough in the traditional concept of fraction collection on a chip. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2016-08-12

    When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure.

  17. Investigation of a whole blood fluidized bed Taylor-Couette flow device for enzymatic heparin neutralization.

    PubMed

    Ameer, G A; Harmon, W; Sasisekharan, R; Langer, R

    1999-03-05

    The use of clinical bioreactors will increase as more therapeutic proteins are being cloned, expressed, and produced at a reduced cost. The proposed use of an immobilized heparinase I reactor to make heparin anticoagulation a safer therapy is an example of how the specificity and high activity of an enzyme could be incorporated into a system to ultimately benefit a patient. However, the development of a safe and efficient bioreactor is important for the use of immobilized heparinase I and other therapeutic proteins designed for use in medical extracorporeal procedures. This study examined the possibility of using Taylor-Couette flow and "flow-induced" recirculation of the agarose beads as a way to fluidize agarose-bound heparinase in whole blood. Heparinase I was immobilized onto agarose beads via cyanogen bromide activation. A reactor based on Taylor-Couette flow was designed and modified with a tangential recirculation line. The reactor was tested for efficacy and safety in vitro in human blood. Visualization studies in water and 42% glycerol were used to determine the minimum rotation rate for efficient fluidization. The strategic placement of the recirculation line allowed recirculation of the agarose without the use of an external pump. The device removed 90% of the heparin activity within 2 min from 450 cc of human blood at a blood flow rate of 100 mL/min. Furthermore, the device maintained inlet and outlet clotting times of 269 +/- 10 and 235 +/- 6 s, respectively, demonstrating the potential for regional heparinization. Blood damage was a function of gel volume fraction and rotation rate of the inner cylinder. Hemolysis of the red cells is an important issue when Taylor vortices are combined with macroscopic solid particles such as agarose beads. A modified Taylor-Couette flow device was developed to treat whole blood and operational criteria were established to minimize hemolysis.

  18. Design of a continuous flow centrifugal pediatric ventricular assist device.

    PubMed

    Throckmorton, A L; Wood, H G; Day, S W; Song, X; Click, P C; Allaire, P E; Olsen, D B

    2003-11-01

    Thousands of pediatric patients suffering from cardiomyopathy or single ventricular physiologies secondary to debilitating heart defects may benefit from long-term mechanical circulatory support due to the limited number of donor hearts available. This article presents the initial design of a fully implantable centrifugal pediatric ventricular assist device (PVAD) for 2 to 12 year olds. Conventional pump design equations, including a nondimensional scaling approach, enabled performance estimations of smaller scale versions (25 mm and 35 mm impeller diameters) of our adult support VAD. Based on this estimated performance, a computational model of the PVAD with a 35 mm impeller diameter was generated. Employing computational fluid dynamics (CFD) software, the flow paths through the PVAD and overall performance were analyzed for steady state flow conditions. The numerical simulations involved flow rates of 2 to 5 LPM for rotational speeds of 2750 to 3250 RPM and incorporated a k-epsilon fluid turbulence model with a logarithmic wall function to characterize near-wall flow conditions. The CFD results indicated best efficiency points ranging from 25% to 28%, which correlate well with typical values of blood pumps. The results further demonstrated that the pump could deliver 2 to 5 LPM at 70 to 95 mmHg for desired physiologic conditions in resting 2 to 12 year olds. Scalar stress levels remained below 300 Pa, thereby signifying potentially low levels of hemolysis. Several flow regions in the pump exhibited signs of vortices, retrograde flow, and stagnation points, which require optimization and further study. This CFD model represents a reasonable starting point for future model enhancements, leading to prototype manufacturing and experimental validation.

  19. Hydrodynamic radius determination with asymmetrical flow field-flow fractionation using decaying cross-flows. Part I. A theoretical approach.

    PubMed

    Håkansson, Andreas; Magnusson, Emma; Bergenståhl, Björn; Nilsson, Lars

    2012-08-31

    Direct determination of hydrodynamic radius from retention time is an advantage of the field-flow fractionation techniques. However, this is not always completely straight forward since non-idealities exist and assumptions have been made in deriving the retention equations. In this study we investigate the effect on accuracy from two factors: (1) level of sophistication of the equations used to determine channel height from a calibration experiment and (2) the influence of secondary relaxation on the accuracy of hydrodynamic radius determination. A new improved technique for estimating the channel height from calibration experiments is suggested. It is concluded that severe systematic error can arise if the most common channel height equations are used and an alternative more rigorous approach is described. For secondary relaxation it is concluded that this effect increases with the cross-flow decay rate. The secondary relaxation effect is quantified for different conditions. This is part one of two. In the second part the determination of hydrodynamic radius are evaluated experimentally under similar conditions.

  20. Clinical implications of physiological flow adjustment in continuous-flow left ventricular assist devices.

    PubMed

    Tchantchaleishvili, Vakhtang; Luc, Jessica G Y; Cohan, Caitlin M; Phan, Kevin; Hübbert, Laila; Day, Steven W; Massey, H Todd

    2016-11-15

    There is increasing evidence for successful management of end-stage heart failure with continuous-flow left ventricular assist device (CF-LVAD) technology. However, passive flow adjustment at fixed CF-LVAD speed is susceptible to flow balancing issues as well as adverse hemodynamic effects relating to the diminished arterial pulse pressure and flow. With current therapy, flow cannot be adjusted with changes in venous return, which can vary significantly with volume status. This limits the performance and safety of CF-LVAD. Active flow adjustment strategies have been proposed to improve the synchrony between the pump and the native cardiovascular system, mimicking the Frank-Starling mechanism of the heart. These flow adjustment strategies include modulation by CF-LVAD pump speed by synchrony and maintenance of constant flow or constant pressure head, or a combination of these variables. However, none of these adjustment strategies have evolved sufficiently to gain widespread attention. Herein we review the current challenges and future directions of CF-LVAD therapy and sensor technology focusing on the development of a physiologic, long-term active flow adjustment strategy for CF-LVADs.

  1. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    PubMed

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  2. Characterization of colloidal phosphorus species in drainage waters from a clay soil using asymmetric flow field-flow fractionation.

    PubMed

    Regelink, Inge C; Koopmans, Gerwin F; van der Salm, Caroline; Weng, Liping; van Riemsdijk, Willem H

    2013-01-01

    Phosphorus transport from agricultural land contributes to eutrophication of surface waters. Pipe drain and trench waters from a grassland field on a heavy clay soil in the Netherlands were sampled before and after manure application. Phosphorus speciation was analyzed by physicochemical P fractionation, and the colloidal P fraction in the dissolved fraction (<0.45 μm) was analyzed by asymmetric flow field-flow fractionation (AF4) coupled to high-resolution inductively coupled plasma-mass spectrometry and ultraviolet diode array detector. When no manure was applied for almost 7 mo, total P (TP) concentrations were low (<21 μmol L), and TP was almost evenly distributed among dissolved reactive P (DRP), dissolved unreactive P (DUP), and particulate P (PP). Total P concentrations increased by a factor of 60 and 4 when rainfall followed shortly after application of cattle slurry or its solid fraction, respectively. Under these conditions, DRP contributed 50% or more to TP. The P speciation within the DUP and PP fractions varied among the different sampling times. Phosphorus associated with dissolved organic matter, probably via cation bridging, comprised a small fraction of DUP at all sampling times. Colloidal P coeluted with clay particles when P application was withheld for almost 7 mo and after application of the solid cattle slurry fraction. At these sampling times, PP correlated well with particulate Fe, Al, and Si, indicating that P is associated with colloidal clay particles. After cattle slurry application, part of DUP was probably present as phospholipids. Physicochemical fractionation combined with AF4 analysis is a promising tool to unravel the speciation of colloidal P in environmental water samples.

  3. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow.

    PubMed

    Quinlan, Nathan J; Dooley, Patrick N

    2007-08-01

    Viscous shear stress and Reynolds stress are often used to predict hemolysis and thrombosis due to flow-induced stress on blood elements in cardiovascular devices. These macroscopic stresses are distinct from the true stress on an individual cell, which is determined by the local microscale flow field. In this paper the flow-induced stress on blood cells is calculated for laminar and turbulent flow, using simplified models for cells and for turbulent eddies. The model is applied to estimate shear stress on red blood cells in flow through a prosthetic heart valve, using the energy spectral density measured by Liu et al. [J. Biomech. Eng. 122:118-124, 2000]. Results show that in laminar flow, the maximum stress on a cell is approximately equal to the macroscopic viscous shear stress. In turbulent flow through a prosthetic heart valve, the estimated root mean square of flow-induced stress on a cell is at least an order of magnitude less than the Reynolds stress. The results support the hypothesis that smaller turbulent eddies cause higher stress on cells. However, the stress due to an eddy depends on the velocity scale of the eddy as well as its length scale. For the heart valve flow investigated, turbulence contributes to flow-induced stress on cells almost equally across a broad range of the frequency spectrum. The model suggests that Reynolds stress alone is not an adequate predictor of cell damage in turbulent flow, and highlights the importance of the energy spectral density.

  4. Multiphase flowmeter measures three-phase flow at high gas volume fractions

    SciTech Connect

    1997-04-01

    A multiphase flowmeter (MPFM) installed offshore Egypt accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive with no moving parts, requires no flow mixing before measurement and no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow. Average gas volume fraction ranged from 93 to 98% during tests conducted on 7 wells. The meter was installed in the October field in the Gulf of Suez on a well-protector platform and was placed in series with a test separator located on a nearby production platform. Production was routed through both the MPFM and the test separator simultaneously. Flow conditions ranged from 1,300 to 4,700 B/D fluid, with 2.4 to 3.9 MMscf/D and water cuts from 1 to 52%. The MPFM measured gas and liquid rates to within {+-} 10% of test separator reference measurement flow rates at gas volume fractions from 93 to 96%. Accuracy deteriorated at higher gas volume fractions, but the meters provided repeatable results.

  5. Measurement of air distribution and void fraction of an upwards air-water flow using electrical resistance tomography and a wire-mesh sensor

    NASA Astrophysics Data System (ADS)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-03-01

    Measurements on an upwards air-water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air-water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air-water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed.

  6. Fractional flow reserve-guided management in stable coronary disease and acute myocardial infarction: recent developments

    PubMed Central

    Berry, Colin; Corcoran, David; Hennigan, Barry; Watkins, Stuart; Layland, Jamie; Oldroyd, Keith G.

    2015-01-01

    Coronary artery disease (CAD) is a leading global cause of morbidity and mortality, and improvements in the diagnosis and treatment of CAD can reduce the health and economic burden of this condition. Fractional flow reserve (FFR) is an evidence-based diagnostic test of the physiological significance of a coronary artery stenosis. Fractional flow reserve is a pressure-derived index of the maximal achievable myocardial blood flow in the presence of an epicardial coronary stenosis as a ratio to maximum achievable flow if that artery were normal. When compared with standard angiography-guided management, FFR disclosure is impactful on the decision for revascularization and clinical outcomes. In this article, we review recent developments with FFR in patients with stable CAD and recent myocardial infarction. Specifically, we review novel developments in our understanding of CAD pathophysiology, diagnostic applications, prognostic studies, clinical trials, and clinical guidelines. PMID:26038588

  7. Fractional flow reserve-guided management in stable coronary disease and acute myocardial infarction: recent developments.

    PubMed

    Berry, Colin; Corcoran, David; Hennigan, Barry; Watkins, Stuart; Layland, Jamie; Oldroyd, Keith G

    2015-12-01

    Coronary artery disease (CAD) is a leading global cause of morbidity and mortality, and improvements in the diagnosis and treatment of CAD can reduce the health and economic burden of this condition. Fractional flow reserve (FFR) is an evidence-based diagnostic test of the physiological significance of a coronary artery stenosis. Fractional flow reserve is a pressure-derived index of the maximal achievable myocardial blood flow in the presence of an epicardial coronary stenosis as a ratio to maximum achievable flow if that artery were normal. When compared with standard angiography-guided management, FFR disclosure is impactful on the decision for revascularization and clinical outcomes. In this article, we review recent developments with FFR in patients with stable CAD and recent myocardial infarction. Specifically, we review novel developments in our understanding of CAD pathophysiology, diagnostic applications, prognostic studies, clinical trials, and clinical guidelines.

  8. Characterization of Flow Behavior of Semi-Solid Slurries with Low Solid Fractions

    NASA Astrophysics Data System (ADS)

    Chucheep, Thiensak; Wannasin, Jessada; Canyook, Rungsinee; Rattanochaikul, Tanate; Janudom, Somjai; Wisutmethangoon, Sirikul; Flemings, Merton C.

    2013-10-01

    Semi-solid slurry casting is a metal-forming process that involves transforming liquid metal into slurry having a low solid fraction and then forming the slurry into solid parts. To successfully apply this slurry-forming process, it is necessary to fully understand the flow behavior of semi-solid slurries. This present work applied the rapid quenching method and the modified gravity fluidity casting to investigate the flow behavior, which involves characterizations of the initial solid fraction, fluidity, and microstructure of semi-solid slurries. Three commercial aluminum alloys were used in this study: 383 (Al-Si11Cu), 356 (Al-Si7MgFe), and 7075 (Al-Zn6MgCu) alloys. The results show that the initial solid fractions can be controlled by varying the rheocasting time. The rapid quenching mold can be used to determine the initial solid fractions. In this method, it is important to apply the correcting procedure to account for growth during quenching and to include all the solid phases. Results from the fluidity study of semi-solid slurries show that the fluidity decreases as the initial solid fraction increases. The decrease is relatively rapid near the low end of the initial solid fraction curves, but is quite slow near the high end of the curves. All the three alloys follow this trend. The results also demonstrate that the slurries that contain high solid fractions of up to 30 pct can still flow well. The microstructure characterization results show that the solid particles in the slurries flow uniformly in the channel. A uniform and fine microstructure with limited phase segregation is observed in the slurry cast samples.

  9. Unified fractional differential approach for transient interporosity flow in naturally fractured media

    NASA Astrophysics Data System (ADS)

    Babak, Petro; Azaiez, Jalel

    2014-12-01

    A unified approach to modeling flows of slightly compressible fluids through naturally fractured media is presented. The unified fractional differential model is derived by combining the flow at micro scale for matrix blocks and macro scale for fractures, using the transient interporosity flow behavior at the interface between matrix blocks and fractures. The derived model is able to unify existing transient interporosity flow models formulated for different shapes of matrix blocks in any medium dimensions. The model is formulated in the form of a fractional order partial differential equation that involves Caputo derivative of order 1/2 with respect to time. Explicit solutions for the unified model are derived for different axisymmetrical spatial domains using Hankel or Hankel-Weber finite or infinite transforms. Comparisons between the predictions of the unified model and those obtained from existing transient interporosity flow models for matrix blocks in the form of slabs, spheres and cylinders are presented. It is shown that the unified fractional derivative model leads to solutions that are very close to those of transient interporosity flow models for fracture-dominant and transitional fracture-to-matrix dominant flow regimes. An analysis of the results of the unified model reveals that the pressure varies linearly with the logarithm of time for different flow regimes, with half slope for the transitional fracture-to-matrix dominant flow regime vs. the fracture and matrix dominant flow regimes. In addition, a new re-scaling that involves the characteristic length in the form of matrix block volume to surface area ratio is derived for the transient interporosity flow models for matrix blocks of different shapes. It is shown that the re-scaled transient interporosity flow models are governed by two dimensionless parameters Θ and Λ compared to only one dimensionless parameter Θ for the unified model. It is shown that the solutions of the transient

  10. The aerodynamic performance of several flow control devices for internal flow systems

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.; Wettlaufer, B. M.; Mort, K. W.

    1982-01-01

    An experimental reseach and development program was undertaken to develop and document new flow-control devices for use in the major modifications to the 40 by 80 Foot wind tunnel at Ames Research Center. These devices, which are applicable to other facilities as well, included grid-type and quasi-two-dimensional flow straighteners, louver panels for valving, and turning-vane cascades with net turning angles from 0 deg to 90 deg. The tests were conducted at model scale over a Reynolds number range from 2 x 100,000 to 17 x 100,000, based on chord. The results showed quantitatively the performance benefits of faired, low-blockage, smooth-surface straightener systems, and the advantages of curved turning-vanes with hinge-line gaps sealed and a preferred chord-to-gap ratio between 2.5 and 3.0 for 45 deg or 90 deg turns.

  11. Sequential CD34 cell fractionation by magnetophoresis in a magnetic dipole flow sorter.

    PubMed

    Schneider, Thomas; Karl, Stephan; Moore, Lee R; Chalmers, Jeffrey J; Williams, P Stephen; Zborowski, Maciej

    2010-01-01

    Cell separation and fractionation based on fluorescent and magnetic labeling procedures are common tools in contemporary research. These techniques rely on binding of fluorophores or magnetic particles conjugated to antibodies to target cells. Cell surface marker expression levels within cell populations vary with progression through the cell cycle. In an earlier work we showed the reproducible magnetic fractionation (single pass) of the Jurkat cell line based on the population distribution of CD45 surface marker expression. Here we present a study on magnetic fractionation of a stem and progenitor cell (SPC) population using the established acute myelogenous leukemia cell line KG-1a as a cell model. The cells express a CD34 cell surface marker associated with the hematopoietic progenitor cell activity and the progenitor cell lineage commitment. The CD34 expression level is approximately an order of magnitude lower than that of the CD45 marker, which required further improvements of the magnetic fractionation apparatus. The cells were immunomagnetically labeled using a sandwich of anti-CD34 antibody-phycoerythrin (PE) conjugate and anti-PE magnetic nanobead and fractionated into eight components using a continuous flow dipole magnetophoresis apparatus. The CD34 marker expression distribution between sorted fractions was measured by quantitative PE flow cytometry (using QuantiBRITE PE calibration beads), and it was shown to be correlated with the cell magnetophoretic mobility distribution. A flow outlet addressing scheme based on the concept of the transport lamina thickness was used to control cell distribution between the eight outlet ports. The fractional cell distributions showed good agreement with numerical simulations of the fractionation based on the cell magnetophoretic mobility distribution in the unsorted sample.

  12. Sequential CD34 cell fractionation by magnetophoresis in a magnetic dipole flow sorter

    PubMed Central

    Schneider, Thomas; Karl, Stephan; Moore, Lee R.; Chalmers, Jeffrey J.; Williams, P. Stephen; Zborowski, Maciej

    2010-01-01

    Cell separation and fractionation based on fluorescent and magnetic labeling procedures are common tools in contemporary research. These techniques rely on binding of fluorophores or magnetic particles conjugated to antibodies to target cells. Cell surface marker expression levels within cell populations vary with progression through the cell cycle. In an earlier work we showed the reproducible magnetic fractionation (single pass) of the Jurkat cell line based on the population distribution of CD45 surface marker expression. Here we present a study on magnetic fractionation of a stem and progenitor cell (SPC) population using the established acute myelogenous leukemia cell line KG-1a as a cell model. The cells express a CD34 cell surface marker associated with the hematopoietic progenitor cell activity and the progenitor cell lineage commitment (related to the CD34 marker expression level). The CD34 expression level is approximately an order of magnitude lower than that of the CD45 marker, which required further improvements of the magnetic fractionation apparatus. The cells were immuno-magnetically labeled using a sandwich of anti CD34 antibody-phycoerythrin (PE) conjugate and anti PE magnetic nanobead and fractionated into eight components using a continuous flow dipole magnetophoresis apparatus. The CD34 marker expression distribution between sorted fractions was measured by quantitative PE flow cytometry (using QuantiBRITE™ PE calibration beads), and it was shown to be correlated with the cell magnetophoretic mobility distribution. A flow outlet addressing scheme based on the concept of the transport lamina thickness was used to control cell distribution between the eight outlet ports. The fractional cell distributions showed good agreement with numerical simulations of the fractionation based on the cell magnetophoretic mobility distribution in the unsorted sample. PMID:20024182

  13. Assessment of safety and efficacy of a bipolar fractionated radiofrequency device in the treatment of photodamaged skin.

    PubMed

    Bloom, Bradley S; Emer, Jason; Goldberg, David J

    2012-10-01

    A number of devices are available for skin rejuvenation and conventional devices include both ablative and non-ablative lasers. More recently, bipolar fractionated radiofrequency (RF) devices have been introduced. To evaluate the safety and efficacy of a novel 144 pin high density tip bipolar fractionated radiofrequency (RF) device for skin rejuvenation in Fitzpatrick skin types I-IV. This single-center, prospective, study enrolled 25 female between the ages of 35-60 years, with mild to moderate wrinkling based on the Fitzpatrick Wrinkle Scale. The subjects were of Fitzpatrick skin types I-IV. Each subject underwent 3 full-face treatments with a 144 pin fractional bipolar RF device at 30-day intervals. All subjects underwent clinical evaluations during the study period to evaluate for any adverse events. Subsequently, all subjects were evaluated for improvement in rhytides, dyschromias and skin texture based on photographic evaluation by blinded investigators at 6 months following the final RF treatment. A statistically significant improvement in rhytides, dyschromias and texture was noted. Adverse events were limited to mild erythema and swelling. Post-inflammatory pigmentary changes were not observed in any subjects. The novel 144 pin high density tip bipolar fractionated RF device is both safe and effective for facial skin rejuvenation in Fitzpatrick skin types I-IV.

  14. Fractional exhaled nitric oxide: comparison between portable devices and correlation with sputum eosinophils.

    PubMed

    Yune, Sehyo; Lee, Jin Young; Choi, Dong Chull; Lee, Byung Jae

    2015-07-01

    This study was performed to compare the 2 different portable devices measuring fractional exhaled nitric oxide (FeNO) and to see the correlation between FeNO and induced sputum eosinophil count (ISE). Forty consecutive subjects clinically suspected to have asthma underwent FeNO measurement by NIOX-MINO® and NObreath® concurrently. All also had induced sputum analysis, methacholine provocation test or bronchodilator response test, and spin prick test. Agreement between the 2 devices was evaluated. The correlation between FeNO and ISE was assessed, as well as the cut-off level of FeNO to identify ISE ≥3%. The intraclass correlation coefficient (ICC) between FeNO levels measured by NIOX-MINO® (FeNO(NIOX-MINO)) and NObreath® (FeNO(NObreath)) was 0.972 with 95% confidence interval of 0.948-0.985. The 95% limits of agreement were -28.9 to 19.9 ppb. The correlation coefficient between ISE and FeNO(NIOX-MINO) was 0.733 (P<0.001), and 0.751 between ISE and FeNO(NObreath) (P<0.001). The ROC curve found that the FeNO(NIOXMINO) of 37.5 ppb and the FeNO(NObreath) of 36.5 ppb identified ISE ≥3% with 90% sensitivity and 81% specificity. Age, sex, body mass index, smoking history, atopy, and the presence of asthma did not affect the FeNO level and its correlation with ISE. The NIOX-MINO ® and NObreath® agree with each other to a high degree. Both devices showed close correlation with ISE with similar cut-off value in identifying ISE ≥3%.

  15. Long-term durability test of axial-flow ventricular assist device under pulsatile flow.

    PubMed

    Nishida, Masahiro; Kosaka, Ryo; Maruyama, Osamu; Yamane, Takashi; Shirasu, Akio; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2017-03-01

    A long-term durability test was conducted on a newly developed axial-flow ventricular assist device (VAD) with hydrodynamic bearings. The mock circulatory loop consisted of a diaphragm pump with a mechanical heart valve, a reservoir, a compliance tank, a resistance valve, and flow paths made of polymer or titanium. The VAD was installed behind the diaphragm pump. The blood analog fluid was a saline solution with added glycerin at a temperature of 37 °C. A pulsatile flow was introduced into the VAD over a range of flow rates to realize a positive flow rate and a positive pressure head at a given impeller rotational speed, yielding a flow rate of 5 L/min and a pressure of 100 mmHg. Pulsatile flow conditions were achieved with the diastolic and systolic flow rates of ~0 and 9.5 L/min, respectively, and an average flow rate of ~5 L/min at a pulse rate of 72 bpm. The VAD operation was judged by not only the rotational speed of the impeller, but also the diastolic, systolic, and average flow rates and the average pressure head of the VAD. The conditions of the mock circulatory loop, including the pulse rate of the diaphragm pump, the fluid temperature, and the fluid viscosity were maintained. Eight VADs were tested with testing periods of 2 years, during which they were continuously in operation. The VAD performance factors, including the power consumption and the vibration characteristics, were kept almost constant. The long-term durability of the developed VAD was successfully demonstrated.

  16. Characterization of nonspecific crossover in split-flow thin channel fractionation.

    PubMed

    Williams, P Stephen; Hoyos, Mauricio; Kurowski, Pascal; Salhi, Dorra; Moore, Lee R; Zborowski, Maciej

    2008-09-15

    Split-flow thin channel (SPLITT) fractionation is a technique for continuous separation of particles or macromolecules in a fluid stream into fractions according to the lateral migration induced by application of a field perpendicular to the direction of flow. Typical applications have involved isolation of different fractions from a polydisperse sample. Some specialized applications involve the separation of the fraction influenced by the transverse field from the fraction that is not. For example, immunomagnetically labeled biological cells may be separated from nonlabeled cells with the application of a transverse magnetic field gradient. In such cases, it may be critically important to minimize contamination of the labeled cells with nonlabeled cells while at the same time maximizing the throughput. Such contamination is known as nonspecific crossover (NSC) and refers to the real or apparent migration of nonmobile particles or cells across stream lines with the mobile material. The possible mechanisms for NSC are discussed, and experimental results interpreted in terms of shear-induced diffusion (SID) caused by viscous interactions between particles in a sheared flow. It is concluded that SID may contribute to NSC, but that further experiments and mathematical modeling are necessary to more fully explore the phenomenon.

  17. Microaxial Flow Left Ventricular Assist Device as a Bridge to Transplantation after LVAD Malfunction

    PubMed Central

    Reich, Heidi J.; Shah, Aamir; Azarbal, Babak; Kobashigawa, Jon; Moriguchi, Jaime; Czer, Lawrence

    2015-01-01

    Evolving technology and improvements in the design of modern, continuous-flow left ventricular assist devices have substantially reduced the rate of device malfunction. As the number of implanted devices increases and as survival prospects for patients with a device continue to improve, device malfunction is an increasingly common clinical challenge. Here, we present our initial experience with an endovascular microaxial flow left ventricular assist device as a successful bridge to transplantation in a 54-year-old man who experienced left ventricular assist device malfunction. PMID:26664315

  18. Pressure drop, flow pattern and local water volume fraction measurements of oil-water flow in pipes

    NASA Astrophysics Data System (ADS)

    Kumara, W. A. S.; Halvorsen, B. M.; Melaaen, M. C.

    2009-11-01

    Oil-water flow in horizontal and slightly inclined pipes was investigated. The experimental activities were performed using the multiphase flow loop at Telemark University College, Porsgrunn, Norway. The experiments were conducted in a 15 m long, 56 mm diameter, inclinable steel pipe using Exxsol D60 oil (density of 790 kg m-3 and viscosity of 1.64 mPa s) and water (density of 996 kg m-3 and viscosity of 1.00 mPa s) as test fluids. The test pipe inclination was changed in the range from 5° upward to 5° downward. Mixture velocity and inlet water cut vary up to 1.50 m s-1 and 0.975, respectively. The time-averaged cross-sectional distributions of oil and water were measured with a single-beam gamma densitometer. The pressure drop along the test section of the pipe was also measured. The characterization of flow patterns and identification of their boundaries are achieved via visual observations and by analysis of local water volume fraction measurements. The observed flow patterns were presented in terms of flow pattern maps for different pipe inclinations. In inclined flows, dispersions appear at lower mixture velocities compared to the horizontal flows. Smoothly stratified flows observed in the horizontal pipe disappeared in upwardly inclined pipes and new flow patterns, plug flow and stratified wavy flow were observed. The water-in-oil dispersed flow regime slightly shrinks as the pipe inclination increases. In inclined flows, the dispersed oil-in-water flow regime extended to lower mixture velocities and lower inlet water cuts. The present experimental data were compared with the results of a flow-pattern-dependent prediction model, which uses the area-averaged steady-state two-fluid model for stratified flow and the homogeneous model for dispersed flow. The two-fluid model was able to predict the pressure drop and water hold-up for stratified flow. The homogeneous model was not able to predict the pressure profile of dispersed oil-water flow at higher water

  19. Interfacial area, velocity and void fraction in two-phase slug flow

    SciTech Connect

    Kojasoy, G.; Riznic, J.R.

    1997-12-31

    The internal flow structure of air-water plug/slug flow in a 50.3 mm dia transparent pipeline has been experimentally investigated by using a four-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 0.55 to 2.20 m/s and 0.27 to 2.20 m/s, respectively, and area-averaged void fractions ranged from about 10 to 70%. The local distributions of void fractions, interfacial area concentration and interface velocity were measured. Contributions from small spherical bubbles and large elongated slug bubbles toward the total void fraction and interfacial area concentration were differentiated. It was observed that the small bubble void contribution to the overall void fraction was small indicating that the large slug bubble void fraction was a dominant factor in determining the total void fraction. However, the small bubble interfacial area contribution was significant in the lower and upper portions of the pipe cross sections.

  20. Illustrating Some Principles of Separation Science through Gravitational Field-Flow Fractionation

    ERIC Educational Resources Information Center

    Beckett, Ronald; Sharma, Reshmi; Andric, Goja; Chantiwas, Rattikan; Jakmunee, Jaroon; Grudpan, Kate

    2007-01-01

    Particle separation is an important but often neglected topic in undergraduate curricula. This article discusses how the method of gravitational field-flow fractionation (GrFFF) can be used to illustrate many principles of separation science and some fundamental concepts of physical chemistry. GrFFF separates particles during their elution through…

  1. Illustrating Some Principles of Separation Science through Gravitational Field-Flow Fractionation

    ERIC Educational Resources Information Center

    Beckett, Ronald; Sharma, Reshmi; Andric, Goja; Chantiwas, Rattikan; Jakmunee, Jaroon; Grudpan, Kate

    2007-01-01

    Particle separation is an important but often neglected topic in undergraduate curricula. This article discusses how the method of gravitational field-flow fractionation (GrFFF) can be used to illustrate many principles of separation science and some fundamental concepts of physical chemistry. GrFFF separates particles during their elution through…

  2. Preparative free-flow electrophoresis as a method of fractionation of natural organic materials

    USGS Publications Warehouse

    Leenheer, J.A.; Malcolm, R.L.

    1973-01-01

    Preparative free-flow electrophoresis was found to be an efficient method of conducting large-scale fractionations of the natural organic polyelectrolytes occurring in many surface waters and soils. The method of free-flow electrophoresis obviates, the problem of adsorption upon a supporting medium and permits the use of high potential gradients and currents because of an efficient cooling system. Separations were monitored by determining organic carbon concentration with a dissolved carbon analyzer, and color was measured by absorbance at 400 nanometers. Organic materials from waters and soils were purified by filtration, hydrogen exchange, and dialysis and were concentrated by freeze drying or freeze concentration. In electrophoretic fractionations of natural organic materials typically found in surface waters and soils, color was found to increase with the charge of the fraction.

  3. Structural Effects of Biodiesel on Soot Volume Fraction in a Laminar Co-Flow Diffusion Flame

    NASA Astrophysics Data System (ADS)

    Weingarten, Jason

    An experimental study was performed to determine the structural effects of biodiesel on soot volume fraction in a laminar co-flow diffusion flame. These include the effects of the ester function group, the inclusion of a double bond, and its positional effect. The soot volume fraction and temperature profiles of a biodiesel surrogate, n-Decane, 1-Decene, and 5-Decene fuels were measured. Improvements were made to existing laser extinction and rapid thermocouple insertion apparatus and were used to measure soot volume fraction and temperature profiles respectively. Flow rates of each fuel were determined in order to keep the temperature effects on soot negligible. Using n-Decane as a baseline, the double bond increased soot production and was further increased with a more centrally located double bond. The ester function group containing oxygen decreased soot production. The order of most to least sooting fuels were as follows 5-Decene > 1-Decene > n-Decane > Biodiesel Surrogate.

  4. Modification of glass channel walls for separation of biological particles by gravitational field-flow fractionation.

    PubMed

    Plocek, J; Konecný, P; Chmelík, J

    1994-06-17

    In the gravitational field-flow fractionation of complex samples, various interaction and adsorption phenomena can occur in separation channels that influence fractionation and complicate the explanation of resulting fractograms. To overcome these problems, the glass surface was modified to create charge-free, non-adsorbing hydrophilic media for the mild treatment of hydrophilic biological particles. The modification was carried out in two steps: (1) by a simple lacquering of the glass surface with polystyrene diluted in toluene and (2) subsequent adsorption of a detergent layer on polystyrene. Essential suppression of ionic interactions between soluble low-molecular-mass compounds and the channel wall and decreased adsorption effects were demonstrated in separations of blood samples by gravitational field-flow fractionation.

  5. Magnetic design for the PediaFlow ventricular assist device.

    PubMed

    Noh, Myounggyu D; Antaki, James F; Ricci, Michael; Gardiner, Jeff; Paden, Dave; Wu, Jingchun; Prem, Ed; Borovetz, Harvey; Paden, Bradley E

    2008-02-01

    This article describes a design process for a new pediatric ventricular assist device, the PediaFlow. The pump is embodied in a magnetically levitated turbodynamic design that was developed explicitly based on the requirements for chronic support of infants and small children. The procedure entailed the consideration of multiple pump topologies, from which an axial mixed-flow configuration was chosen for further development. The magnetic design includes permanent-magnet (PM) passive bearings for radial support of the rotor, an actively controlled thrust actuator for axial support, and a brushless direct current (DC) motor for rotation. These components are closely coupled both geometrically and magnetically, and were therefore optimized in parallel, using electromagnetic, rotordynamic models and fluid models, and in consideration of hydrodynamic requirements. Multiple design objectives were considered, including efficiency, size, and margin between critical speeds to operating speed. The former depends upon the radial and yaw stiffnesses of the PM bearings. Analytical expressions for the stiffnesses were derived and verified through finite element analysis (FEA). A toroidally wound motor was designed for high efficiency and minimal additional negative radial stiffness. The design process relies heavily on optimization at the component level and system level. The results of this preliminary design optimization yielded a pump design with an overall stability margin of 15%, based on a pressure rise of 100 mm Hg at 0.5 lpm running at 16,000 rpm.

  6. Axial flow ventricular assist device: system performance considerations.

    PubMed

    Damm, G; Mizuguchi, K; Aber, G; Bacak, J; Akkerman, J; Bozeman, R; Svejkovsky, P; Takatani, S; Nosé, Y; Noon, G P

    1994-01-01

    A cooperative effort between Baylor College of Medicine and NASA/Johnson Space Center is under way to develop an implantable left ventricular assist device for either pulmonary or systemic circulatory support for more than 3 months' duration. Using methodical evaluation and testing, an implantable axial pump has been systematically improved. These improvements include the addition of an inducer as a pumping element in front of the impeller and the construction of an efficient brushless direct current motor. To date, less than 10 W of power is required to generate 5 L/min flow against 100 mm Hg. An index of hemolysis of 0.021 g/100 L has been achieved. Two-day in vivo feasibility studies in calves are under way to evaluate the antithrombogenic nature of the pump. Further improvements in system efficiency, hemolytic performance, and the antithrombogenic nature of the pump are expected with the use of empirical studies, computer flow modeling, and in vivo testing in calves.

  7. Fluid control in microfluidic devices using a fluid conveyance extension and an absorbent microfluidic flow modulator.

    PubMed

    Yuen, Po Ki

    2013-05-07

    This article presents a simple method for controlling fluid in microfluidic devices without the need for valves or pumps. A fluid conveyance extension is fluidly coupled to the enclosed outlet chamber of a microfluidic device. After a fluid is introduced into the microfluidic device and saturates the fluid conveyance extension, a fluid flow in the microfluidic device is generated by contacting an absorbent microfluidic flow modulator with the fluid conveyance extension to absorb the fluid from the fluid conveyance extension through capillary action. Since the fluid in the microfluidic device is fluidly coupled with the fluid conveyance extension and the fluid conveyance extension is fluidly coupled with the absorbent microfluidic flow modulator, the absorption rate of the absorbent microfluidic flow modulator, which is the rate at which the absorbent microfluidic flow modulator absorbs fluid, matches the fluid flow rate in the microfluidic device. Thus, the fluid flow rate in the microfluidic device is set by the absorption rate of the absorbent microfluidic flow modulator. Sheath flow and fluid switching applications are demonstrated using this simple fluid control method without the need for valves or pumps. Also, the ability to control the fluid flow rate in the microfluidic device is demonstrated using absorbent microfluidic flow modulators with various absorbent characteristics and dimensions.

  8. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  9. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP).

    PubMed

    Moon, Hui-Sung; Kwon, Kiho; Kim, Seung-Il; Han, Hyunju; Sohn, Joohyuk; Lee, Soohyeon; Jung, Hyo-Il

    2011-03-21

    Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer, so their isolations and quantifications are important for biomedical applications such as cancer prognosis and measuring the responses to drug treatments. In this paper, we present the development of a microfluidic device for the separation of CTCs from blood cells based on the physical properties of cells. For use as a CTC model, we successfully separated human breast cancer cells (MCF-7) from a spiked blood cell sample by combining multi-orifice flow fractionation (MOFF) and dielectrophoretic (DEP) cell separation technique. Hydrodynamic separation takes advantage of the massive and high-throughput filtration of blood cells as it can accommodate a very high flow rate. DEP separation plays a role in precise post-processing to enhance the efficiency of the separation. The serial combination of these two different sorting techniques enabled high-speed continuous flow-through separation without labeling. We observed up to a 162-fold increase in MCF-7 cells at a 126 µL min(-1) flow rate. Red and white blood cells were efficiently removed with separation efficiencies of 99.24% and 94.23% respectively. Therefore, we suggest that our system could be used for separation and detection of CTCs from blood cells for biomedical applications.

  10. Fractional-order viscoelasticity in one-dimensional blood flow models

    NASA Astrophysics Data System (ADS)

    Perdikaris, Paris; Karniadakis, George; Crunch Group Team

    2013-11-01

    In this work, we have integrated different integer, and for the first time, fractional order viscoelastic models in a one-dimensional blood flow solver, and we study their behavior by presenting an in-silico study on a patient-specific arterial network. Integer-order models are directly derived from the QLV (quasi linear viscoelasticity) theory and are comprised by simple combinations of springs and dashpots. Fractional-order models employ fractional derivatives and naturally introduce a new element, the so called ``spring-pot.'' We perform one-dimensional blood flow simulations in a large patient-specific cranial network using four different viscoelastic parameter data-sets. The results aim to quantify the effect of arterial wall viscoelasticity on pulse wave propagation, as well as reflect any sensitivity on the input parameters that define each model. To this end, we provide a comparison of several viscoelastic models, highlight the important role played by the fractional order, and carry out a detailed global sensitivity analysis study on a stochastic fractional order viscoelastic model. This work was supported by the DOE Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) and the DOE/INCITE program.

  11. Effect of oscillatory flow on the performance of a novel cross-flow affinity membrane device

    SciTech Connect

    Najarian, S.; Bellhouse, B.J.

    1997-01-01

    This paper presents the results of an investigation into the effect of oscillatory flow in a membrane-based affinity contactor. This device was designed to accommodate a tubular affinity membrane, and the flow direction of working fluid was tangential to the surface of the membrane. Cibacron Blue F3G-A was utilized as the capturing ligand and bovine serum albumin as the target molecule. The dye molecules were immobilized covalently via spaced molecules (polyethylenimine) onto the pores of a microfiltration membrane with a pore size rating of 0.45{mu}m. Bovine serum albumin was pumped through the annular space between the concentric screw-threaded insert and the tubular membrane in oscillatory flow with a mean flow component. The effects of pulsation frequency and stroke length were investigated. It was found that, as a result of the pulsatile flow, the protein recovery was increased by a factor of 2. To make the interpretation of the results easier, various dimensionless groups were defined specifically for this system and the experimental data were reported in terms of these groups. 25 refs., 5 figs.

  12. Stable isotope fractionation during porous flow with fluid-solid reaction

    NASA Astrophysics Data System (ADS)

    Bohlin, Madeleine S.; Bickle, Mike J.

    2015-04-01

    Chemical weathering of the crust plays an important part in geochemical cycling by redistributing elements between Earth's surface reservoirs. On a geological time scale chemical weathering buffers Earth's climate as atmospheric CO2 is consumed during the breakdown of silicate minerals and eventually stored as carbonates in the ocean. However there are fundamental problems in estimating chemical weathering fluxes and their climatic impact. These include distinguishing between silicate and carbonate sources of riverine dissolved loads, understanding the nature of element cycling along groundwater and river flow paths, and understanding the couplings between climate and chemical weathering rates. An emerging field in studying chemical weathering is the use of light stable isotopes whose fractionations add additional constraints on weathering processes. Lithium isotopes have been highlighted in recent years as they almost exclusively reflect silicate weathering and have been shown to correlate with weathering intensity (e.g. Huh et al., 2001, Geochimica et Cosmochimica Acta). However, in order to understand the relationship between weathering intensity and lithium isotopic fractionation it is important to have appropriate physical models for the interaction of fluids and minerals in weathering environments. Weathering reactions likely take place continuously within catchments with water flowing through a range of shallow to deep paths as rock is progressively exhumed through these flow paths. To model this it is necessary to consider how kinetically-limited fluid-mineral reactions will evolve along individual water flow paths and to understand the range of inputs to river systems. We present a simple one-dimensional transport reaction model to calculate Li-isotopic fractionation in a plausible weathering setting. The modelling reveals the key controlling parameters and predicts the isotopic evolution along the water flow paths. The model shows that for such a one

  13. Internal filtration, filtration fraction, and blood flow resistance in high- and low-flux dialyzers.

    PubMed

    Schneditz, Daniel; Zierler, Edda; Vanholder, Raymond; Eloot, Sunny

    2014-01-01

    It was the aim to examine the fluid flow in blood and dialysate compartments of highly permeable hollow fiber dialyzers where internal filtration contributes to solute removal but where excessive filtration bears a risk of cell activation and damage. Flow characteristics of high- (HF) and low-flux (LF) dialyzers were studied in lab-bench experiments using whole bovine blood. Measurements obtained under different operating conditions and under zero net ultrafiltration were compared to theoretical calculations obtained from a mathematical model. Experimental resistances in the blood compartment were within ±2% of those calculated from the model when dialysate was used as a test fluid. With whole blood, the experimental resistances in the blood compartment were only 81.8 ± 2.8% and 83.7 ± 4.3% of those calculated for the LF and HF dialyzer, respectively. Surprisingly, measured blood flow resistance slightly but significantly decreased with increasing flow rate (p < 0.001). Mathematical modeling confirmed this decrease both in LF and HF dialyzers which was accompanied by a concomitant decrease in internal filtration fraction, while overall internal filtration increased. The increase in internal filtration when increasing blood flow is associated with a beneficial reduction in internal filtration fraction. Concerns of increased hemoconcentration when increasing blood flow therefore appear to be unwarranted.

  14. Interaction effects in superconductor/quantum spin Hall devices: Universal transport signatures and fractional Coulomb blockade

    NASA Astrophysics Data System (ADS)

    Aasen, David; Lee, Shu-Ping; Karzig, Torsten; Alicea, Jason

    2016-10-01

    Interfacing s -wave superconductors and quantum spin Hall edges produces time-reversal-invariant topological superconductivity of a type that can not arise in strictly one-dimensional systems. With the aim of establishing sharp fingerprints of this phase, we use renormalization-group methods to extract universal transport characteristics of superconductor/quantum spin Hall heterostructures where the native edge states serve as leads. We determine scaling forms for the conductance through a grounded superconductor and show that the results depend sensitively on the interaction strength in the leads, the size of the superconducting region, and the presence or absence of time-reversal-breaking perturbations. We also study transport across a floating superconducting island isolated by magnetic barriers. Here, we predict e -periodic Coulomb-blockade peaks, as recently observed in nanowire devices [S. M. Albrecht et al., Nature (London) 531, 206 (2016), 10.1038/nature17162], with the added feature that the island can support fractional charge tunable via the relative orientation of the barrier magnetizations. As an interesting corollary, when the magnetic barriers arise from strong interactions at the edge that spontaneously break time-reversal symmetry, the Coulomb-blockade periodicity changes from e to e /2 . These findings suggest several future experiments that probe unique characteristics of topological superconductivity at the quantum spin Hall edge.

  15. Devices and methods of operation thereof for providing stable flow for centrifugal compressors

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J. (Inventor); Stevens, Mark A. (Inventor); Jett, Thomas A. (Inventor)

    2008-01-01

    Centrifugal compressor flow stabilizing devices and methods of operation thereof are disclosed that act upon the flow field discharging from the impeller of a centrifugal compressor and modify the flow field ahead of the diffuser vanes such that flow conditions contributing to rotating stall and surge are reduced or even eliminated. In some embodiments, shaped rods and methods of operation thereof are disclosed, whereas in other embodiments reverse-tangent air injection devices and methods are disclosed.

  16. A novel optical method for estimating the near-wall volume fraction in granular flows

    NASA Astrophysics Data System (ADS)

    Sarno, Luca; Nicolina Papa, Maria; Carleo, Luigi; Tai, Yih-Chin

    2016-04-01

    Geophysical phenomena, such as debris flows, pyroclastic flows and rock avalanches, involve the rapid flow of granular mixtures. Today the dynamics of these flows is far from being deeply understood, due to their huge complexity compared to clear water or monophasic fluids. To this regard, physical models at laboratory scale represent important tools for understanding the still unclear properties of granular flows and their constitutive laws, under simplified experimental conditions. Beside the velocity and the shear rate, the volume fraction is also strongly interlinked with the rheology of granular materials. Yet, a reliable estimation of this quantity is not easy through non-invasive techniques. In this work a novel cost-effective optical method for estimating the near-wall volume fraction is presented and, then, applied to a laboratory study on steady-state granular flows. A preliminary numerical investigation, through Monte-Carlo generations of grain distributions under controlled illumination conditions, allowed to find the stochastic relationship between the near-wall volume fraction, c3D, and a measurable quantity (the two-dimensional volume fraction), c2D, obtainable through an appropriate binarization of gray-scale images captured by a camera placed in front of the transparent boundary. Such a relation can be well described by c3D = aexp(bc2D), with parameters only depending on the angle of incidence of light, ζ. An experimental validation of the proposed approach is carried out on dispersions of white plastic grains, immersed in various ambient fluids. The mixture, confined in a box with a transparent window, is illuminated by a flickering-free LED lamp, placed so as to form a given ζ with the measuring surface, and is photographed by a camera, placed in front of the same window. The predicted exponential law is found to be in sound agreement with experiments for a wide range of ζ (10° <ζ<45°). The technique is, then, applied to steady-state dry

  17. X-ray densitometry based void fraction flow field measurements of cavitating flow in the wake of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Sun, Tiezhi; Ganesh, Harish; Ceccio, Steven

    2015-11-01

    At sufficiently low cavitation number, the wake vortices behind bluff objects will cavitate. The presence of developed cavitation can alter the underlying vortical flow. In this study, cavitation dynamics in the wake of a circular cylinder is examined in order to determine the relationship between the void fraction in the cavity wake and the resulting modification to the flow compared to the non-cavitating flow. Cavitation in the wake of a cylinder is investigated using high-speed video cameras and cinematographic X-ray densitometry. Using synchronized top and side views from high-speed video cameras, the morphology and extent of the cavities forming on the wake of the circular cylinder is studied for a range of cavitation numbers, at a Reynolds number of 1x10-5, which lies at the transition region between sub-critical to critical regime of wake transitions. The time resolved and mean X-ray densitometry based void fraction of the spanwise and plan view averaged flow field will be related to the vortex dynamics in an attempt to understand the role of vapor production in the observed dynamics.

  18. Measuring Cell Viscoelastic Properties Using a Microfluidic Extensional Flow Device.

    PubMed

    Guillou, Lionel; Dahl, Joanna B; Lin, Jung-Ming G; Barakat, AbduI I; Husson, Julien; Muller, Susan J; Kumar, Sanjay

    2016-11-01

    The quantification of cellular mechanical properties is of tremendous interest in biology and medicine. Recent microfluidic technologies that infer cellular mechanical properties based on analysis of cellular deformations during microchannel traversal have dramatically improved throughput over traditional single-cell rheological tools, yet the extraction of material parameters from these measurements remains quite complex due to challenges such as confinement by channel walls and the domination of complex inertial forces. Here, we describe a simple microfluidic platform that uses hydrodynamic forces at low Reynolds number and low confinement to elongate single cells near the stagnation point of a planar extensional flow. In tandem, we present, to our knowledge, a novel analytical framework that enables determination of cellular viscoelastic properties (stiffness and fluidity) from these measurements. We validated our system and analysis by measuring the stiffness of cross-linked dextran microparticles, which yielded reasonable agreement with previously reported values and our micropipette aspiration measurements. We then measured viscoelastic properties of 3T3 fibroblasts and glioblastoma tumor initiating cells. Our system captures the expected changes in elastic modulus induced in 3T3 fibroblasts and tumor initiating cells in response to agents that soften (cytochalasin D) or stiffen (paraformaldehyde) the cytoskeleton. The simplicity of the device coupled with our analytical model allows straightforward measurement of the viscoelastic properties of cells and soft, spherical objects.

  19. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    PubMed Central

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-01

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488

  20. Determination of fractional flow reserve (FFR) based on scaling laws: a simulation study

    NASA Astrophysics Data System (ADS)

    Wong, Jerry T.; Molloi, Sabee

    2008-07-01

    Fractional flow reserve (FFR) provides an objective physiological evaluation of stenosis severity. A technique that can measure FFR using only angiographic images would be a valuable tool in the cardiac catheterization laboratory. To perform this, the diseased blood flow can be measured with a first pass distribution analysis and the theoretical normal blood flow can be estimated from the total coronary arterial volume based on scaling laws. A computer simulation of the coronary arterial network was used to gain a better understanding of how hemodynamic conditions and coronary artery disease can affect blood flow, arterial volume and FFR estimation. Changes in coronary arterial flow and volume due to coronary stenosis, aortic pressure and venous pressure were examined to evaluate the potential use of flow and volume for FFR determination. This study showed that FFR can be estimated using arterial volume and a scaling coefficient corrected for aortic pressure. However, variations in venous pressure were found to introduce some error in FFR estimation. A relative form of FFR was introduced and was found to cancel out the influence of pressure on coronary flow, arterial volume and FFR estimation. The use of coronary flow and arterial volume for FFR determination appears promising.

  1. Improved performance of gravitational field-flow fractionation for screening wine-making yeast varieties.

    PubMed

    Sanz, R; Torsello, B; Reschiglian, P; Puignou, L; Galceran, M T

    2002-08-09

    Performance of gravitational field-flow fractionation (GFFF) is improved here with respect to the ability to fractionate and distinguish different varieties of wine-making yeast from Saccharomyces cerevisiae. A new GFFF channel with non-polar walls has been employed to enhance fractionation selectivity and reproducibility. Since GFFF retention depends from first principles on particle size, Coulter counter measurements were performed in order to compare size distribution profiles with GFFF profiles. From such a comparison, GFFF was shown to be able to reveal differences in yeast cells other than size. This could make use of GFFF for screening different varieties of wine-making yeast towards future quality assessment procedures based on a possible correlation between yeast cell morphology indexes and quality indexes.

  2. Microalgae fractionation using steam explosion, dynamic and tangential cross-flow membrane filtration.

    PubMed

    Lorente, E; Hapońska, M; Clavero, E; Torras, C; Salvadó, J

    2017-08-01

    In this study, the microalga Nannochloropsis gaditana was subjected to acid catalysed steam explosion treatment and the resulting exploded material was subsequently fractionated to separate the different fractions (lipids, sugars and solids). Conventional and vibrational membrane setups were used with several polymeric commercial membranes. Two different routes were followed: 1) filtration+lipid solvent extraction and 2) lipid solvent extraction+filtration. Route 1 revealed to be much better since the used membrane for filtration was able to permeate the sugar aqueous phase and retained the fraction containing lipids; after this, an extraction required a much lower amount of solvent and a better recovering yield. Filtration allowed complete lipid rejection. Dynamic filtration improved permeability compared to the tangential cross-flow filtration. Best membrane performance was achieved using a 5000Da membrane with the dynamic system, obtaining a permeability of 6L/h/m(2)/bar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Pressure drop of slug flow in microchannels with increasing void fraction: experiment and modeling.

    PubMed

    Molla, Shahnawaz; Eskin, Dmitry; Mostowfi, Farshid

    2011-06-07

    Pressure drop in a gas-liquid slug flow through a long microchannel of rectangular cross-section was investigated. Pressure measurements in a lengthy (∼0.8 m) microchannel determined the pressure gradient to be constant in a flow where gas bubbles progressively expanded and the flow velocity increased due to a significant pressure drop. Most of the earlier studies of slug flow in microchannels considered systems where the expansion of the gas bubbles was negligible in the channel. In contrast, we investigated systems where the volume of the gas phase increased significantly due to a large pressure drop (up to 1811 kPa) along the channel. This expansion of the gas phase led to a significant increase in the void fraction, causing considerable flow acceleration. The pressure drop in the microchannel was studied for three gas-liquid systems; water-nitrogen, dodecane-nitrogen, and pentadecane-nitrogen. Inside the microchannel, local pressure was measured using a series of embedded membranes acting as pressure sensors. Our investigation of the pressure drop showed a linear trend over a wide range of void fractions and flow conditions in the two-phase flow. The lengths and the velocities of the liquid slugs and the gas bubbles were also studied along the microchannel by employing a video imaging technique. Furthermore, a model describing the gas-liquid slug flow in a long microchannel was developed to calculate the pressure drop under conditions similar to the experiments. An excellent agreement between the developed model and the experimental data was obtained.

  4. The Fractional Step Method Applied to Simulations of Natural Convective Flows

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; Heinrich, Juan C.; Saxon, Jeff (Technical Monitor)

    2002-01-01

    This paper describes research done to apply the Fractional Step Method to finite-element simulations of natural convective flows in pure liquids, permeable media, and in a directionally solidified metal alloy casting. The Fractional Step Method has been applied commonly to high Reynold's number flow simulations, but is less common for low Reynold's number flows, such as natural convection in liquids and in permeable media. The Fractional Step Method offers increased speed and reduced memory requirements by allowing non-coupled solution of the pressure and the velocity components. The Fractional Step Method has particular benefits for predicting flows in a directionally solidified alloy, since other methods presently employed are not very efficient. Previously, the most suitable method for predicting flows in a directionally solidified binary alloy was the penalty method. The penalty method requires direct matrix solvers, due to the penalty term. The Fractional Step Method allows iterative solution of the finite element stiffness matrices, thereby allowing more efficient solution of the matrices. The Fractional Step Method also lends itself to parallel processing, since the velocity component stiffness matrices can be built and solved independently of each other. The finite-element simulations of a directionally solidified casting are used to predict macrosegregation in directionally solidified castings. In particular, the finite-element simulations predict the existence of 'channels' within the processing mushy zone and subsequently 'freckles' within the fully processed solid, which are known to result from macrosegregation, or what is often referred to as thermo-solutal convection. These freckles cause material property non-uniformities in directionally solidified castings; therefore many of these castings are scrapped. The phenomenon of natural convection in an alloy under-going directional solidification, or thermo-solutal convection, will be explained. The

  5. Quantitative analysis of virus-like particle size and distribution by field-flow fractionation.

    PubMed

    Chuan, Yap P; Fan, Yuan Y; Lua, Linda; Middelberg, Anton P J

    2008-04-15

    Asymmetric flow field-flow fractionation (AFFFF) coupled with multiple-angle light scattering (MALS) is a powerful technique showing potential for the analysis of pharmaceutically-relevant virus-like particles (VLPs). A lack of published methods, and concerns that membrane adsorption during sample fractionation may cause sample aggregation, have limited widespread acceptance. Here we report a reliable optimized method for VLP analysis using AFFFF-MALS, and benchmark it against dynamic light scattering (DLS) and transmission electron microscopy (TEM). By comparing chemically identical VLPs having very different quaternary structure, sourced from both bacteria and insect cells, we show that optimized AFFFF analysis does not cause significant aggregation, and that accurate size and distribution information can be obtained for heterogeneous samples in a way not possible with TEM and DLS. Optimized AFFFF thus provides a quantitative way to monitor batch consistency for new vaccine products, and rapidly provides unique information on the whole population of particles within a sample.

  6. Flow characteristics of continuous-flow left ventricular assist devices in a novel open-loop system.

    PubMed

    Stanfield, J Ryan; Selzman, Craig H; Pardyjak, Eric R; Bamberg, Stacy

    2012-01-01

    Fluid-pumping technology is a mature engineering subject area with a well-documented knowledge base. However, the pump design optimization techniques accepted in industry are geared toward steady-state constant-flow conditions. In contrast, the implantation of a continuous-flow pump to aid the output of the human left ventricle subjects the device to perpetual variation. This study measures pressure-flow performance characteristics for both axial- and centrifugal continuous-flow rotary blood pumps across a wide range of pressure differential values under uniform conditions by means of a novel open-loop flow system. The axial-flow devices show lower hydraulic efficiency. All pumps yield best efficiency point at a head to flow coefficient ratio of approximately 1.7. The open-loop flow system accounts for the dynamic changes associated with human heart physiology and allows for more precise characterization of existing heart pumps and those in development.

  7. Mechanism modeling for phase fraction measurement with ultrasound attenuation in oil–water two-phase flow

    NASA Astrophysics Data System (ADS)

    Su, Qian; Tan, Chao; Dong, Feng

    2017-03-01

    When measuring the phase fraction of oil–water two-phase flow with the ultrasound attenuation, the phase distribution and fraction have direct influence on the attenuation coefficient. Therefore, the ultrasound propagation at various phase fractions and distributions were investigated. Mechanism models describing phase fraction with the ultrasound attenuation coefficient were established by analyzing the interaction between ultrasound and two-phase flow by considering the scattering, absorption and diffusion effect. Experiments were performed to verify the theoretical analysis, and the test results gave good agreement with the theoretical analysis. When the dispersed phase fraction is low, the relationship between ultrasound attenuation coefficient and phase fraction is of monotonic linearity; at higher dispersed phase fraction, ultrasound attenuation coefficient presents an irregular response to the dispersed phase fraction. The presented mechanism models give reasonable explanations about the trend of ultrasound attenuation.

  8. Salinity independent measurement of gas volume fraction in oil/gas/water pipe flows

    PubMed

    Johansen; Jackson

    2000-10-01

    Dual mode densitometry is presented as a novel method of measuring the gas volume fraction in gas/oil/water pipe flows independent of the salinity of the water component. The different response in photoelectric attenuation and Compton scattering to changes in salinity is utilized. The total attenuation coefficient is found through traditional transmission measurements with a detector positioned outside the pipe wall diametrically opposite the source. The scatter response is measured with a second detector positioned somewhere between the source and the transmission detector. The feasibility of the method is demonstrated for homogeneously mixed flows.

  9. Shape-based Particle Separation via Elasto-Inertia Pinched Flow Fractionation (eiPFF)

    NASA Astrophysics Data System (ADS)

    Lu, Xinyu; Xuan, Xiangchun

    2015-11-01

    We report in this talk a continuous-flow shape-based separation of spherical and peanut-shaped rigid particles of equal volume via elasto-inertial pinched flow fractionation (eiPFF). This separation exploits the shape-dependence of the cross-stream particle migration induced by the elaso-inertial lift force in viscoelastic fluids. The parametric effects on this separation are systematically investigated in terms of dimensionless numbers. It is found that this separation is strongly affected by the Reynolds number, Weissenberg number and channel aspect ratio. Interestingly, the elasto-inertial deflection of peanut particles can be either greater or smaller than that of spherical particles.

  10. Analytical and numerical study of electroosmotic slip flows of fractional second grade fluids

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Qi, Haitao; Yu, Bo; Xiong, Zhen; Xu, Huanying

    2017-09-01

    This work investigates the unsteady electroosmotic slip flow of viscoelastic fluid through a parallel plate micro-channel under combined influence of electroosmotic and pressure gradient forcings with asymmetric zeta potentials at the walls. The generalized second grade fluid with fractional derivative was used for the constitutive equation. The Navier slip model with different slip coefficients at both walls was also considered. By employing the Debye-Hückel linearization and the Laplace and sin-cos-Fourier transforms, the analytical solutions for the velocity distribution are derived. And the finite difference method for this problem was also given. Finally, the influence of pertinent parameters on the generation of flow is presented graphically.

  11. Influence of outlet channel width to the flow velocity and pressure of a flow focusing microfluidic device

    NASA Astrophysics Data System (ADS)

    Fhong Soon, Chin; Hiung Yin, Yap; Sek Tee, Kian; Khairul Ahmad, Mohd; Zainizan Sahdan, Mohd; Nayan, Nafarizal

    2016-11-01

    Microencapsulation using flow focusing microfluidic devices attract great interest because of the simple fabrication technique using polymeric material. Simulation of the microfluidic device provides the advantage of reducing the waste of material before actual implementation of the fabrication. This paper reports the design of a flow focusing microfluidic device based on emulsification of two immiscible fluids. The system was build and simulated in COMSOL Multiphysics software by varying the outlet width in examining the effects of the flow and pressure at the outlet. The simulation results reveal that both the flow rate and the pressure decreased dramatically when the ratio of outlet channel to inlet channel (R) is greater than 2. The width of the outlet is critical in ensuring the flow of microcapsules without accumulation of microcapsules at the output pool due to the poor flow rate at the outlet channel and avoidance of leakage problem. The recommended R to achieve the objective of microencapsulation is between 2 and 4.

  12. Method of electric field flow fractionation wherein the polarity of the electric field is periodically reversed

    DOEpatents

    Stevens, Fred J.

    1992-01-01

    A novel method of electric field flow fractionation for separating solute molecules from a carrier solution is disclosed. The method of the invention utilizes an electric field that is periodically reversed in polarity, in a time-dependent, wave-like manner. The parameters of the waveform, including amplitude, frequency and wave shape may be varied to optimize separation of solute species. The waveform may further include discontinuities to enhance separation.

  13. Improvement of Bubble Model in High Void Fraction for Cavitating Flow Simulations

    NASA Astrophysics Data System (ADS)

    Tsurumi, Nobuo; Tamura, Yoshiaki; Matsumoto, Yoichiro

    One of the cavitation models for cavitating flow simulations is the bubble dynamics based method (bubble model). In a typical bubble dynamics based method, the Rayleigh-Plesset equation is solved for determining the volumetric motion of a bubble. It is derived for a single bubble in uniform fluid, and thus, is not adequate for a bubble in high void fraction fluid. Therefore, in the existing bubble dynamics based model, high void fraction fluid has not been treated as far as utilizing the Rayleigh-Plesset equation is concerned. In this paper, a bubble dynamics model treating high void fraction region is proposed. The present model has a threshold between low and high void fraction. Below the threshold, Rayleigh-Plesset equation is solved. Above the threshold, the second derivative of temporal difference of a bubble radius is set to be zero when the bubble is expanding, and Rayleigh-Plesset equation is again solved when the bubble is shrinking. For computational example, flow around Clark-Y11.7% and NACA0015 is calculated for validation of this approach and compared with experiment and the old bubble dynamics based method.

  14. Effect of varying flow regimes upon elution behaviour, apparent molecular characteristics and hydrodynamic properties of amylopectin isolated from normal corn starch using asymmetrical flow field-flow fractionation.

    PubMed

    Juna, Shazia; Huber, Anton

    2012-01-06

    A detailed study of the elution behaviour, apparent molecular characteristics and hydrodynamic properties of amylopectin-type fraction (isolated from normal corn starch) in aqueous media employing asymmetrical flow field-flow fractionation (AF4) was undertaken by systematically varying the channel flow (F(ch)), cross flow (F(cr)) and F(cr)/F(ch) ratios. Distributions of apparent molar masses and radii of gyration, mass recoveries and hydrodynamic radii decreased as a function of increasing F(cr) at a fixed F(ch), due to the increase in the retention of amylopectin-type fraction in the AF4 channel. Increased retention of the amylopectin-type fraction in the AF4 channel was also observed at low F(ch) and high F(cr)/F(ch) ratios. Large amylopectin-type molecules/particles (possibly aggregates) eluted at high F(ch), low F(cr) and low F(cr)/F(ch) ratios. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Characterization of magnetic nanoparticles using programmed quadrupole magnetic field-flow fractionation

    PubMed Central

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2010-01-01

    Quadrupole magnetic field-flow fractionation is a relatively new technique for the separation and characterization of magnetic nanoparticles. Magnetic nanoparticles are often of composite nature having a magnetic component, which may be a very finely divided material, and a polymeric or other material coating that incorporates this magnetic material and stabilizes the particles in suspension. There may be other components such as antibodies on the surface for specific binding to biological cells, or chemotherapeutic drugs for magnetic drug delivery. Magnetic field-flow fractionation (MgFFF) has the potential for determining the distribution of the magnetic material among the particles in a given sample. MgFFF differs from most other forms of field-flow fractionation in that the magnetic field that brings about particle separation induces magnetic dipole moments in the nanoparticles, and these potentially can interact with one another and perturb the separation. This aspect is examined in the present work. Samples of magnetic nanoparticles were analysed under different experimental conditions to determine the sensitivity of the method to variation of conditions. The results are shown to be consistent and insensitive to conditions, although magnetite content appeared to be somewhat higher than expected. PMID:20732895

  16. Blood flow in an experimental rat brain tumor by tissue equilibration and indicator fractionation.

    PubMed

    Graham, M M; Spence, A M; Abbott, G L; O'Gorman, L; Muzi, M

    1987-01-01

    The tissue equilibration technique (Kety) was compared with the indicator fractionation technique for the measurement of blood flow to normal brain and an experimental brain tumor in the rat. The tumor was a cloned astrocytic glioma implanted in the cerebral hemisphere of F-344 rats. I-125 Iodoantipyrine, using a rising infusion for one minute, was used for the tissue equilibration technique. C-14 butanol, injected as a bolus 8 seconds before sacrifice, was used for the indicator fractionation technique. Samples were assayed using liquid scintillation counting and the iodoantipyrine results were regressed against the butanol results. For normal tissue R = 0.832, SEE = 0.115 ml/g/min, and Slope = 0.626. For tumor R = 0.796, SEE = 0.070 ml/g/min, and Slope = 0.441. The iodoantipyrine tissue/blood partition coefficient for normal hemisphere (gray and white matter) was 0.861 +/-0.037 (SD) and for tumor was 0.876 +/-0.042. The indicator fractionation technique with C-14 butanol underestimated blood flow in a consistent manner, probably because of incomplete extraction, early washout of activity from tissue and from evaporation of butanol during processing. Our experiments revealed no differences between tumor and normal brain tissue that might invalidate the comparison of iodoantipyrine blood flow results in brain tumors and surrounding normal brain.

  17. Exact Transport Properties through Point Contacts in Quantum Wires and Fractional Quantum Hall Effect Devices

    NASA Astrophysics Data System (ADS)

    Ludwig, Andreas W. W.

    1996-03-01

    We review recent exact results (Work done in collaboration with Paul Fendley and Hubert Saleur, Physics Dept., University of Southern California, Los Angeles, CA 90089-0484.) for transport properties through a local impurity in a Luttinger liquid. These represent ``spectroscopic probes'' of the Luttinger non-Fermi-liquid state. Edge modes occuring in the fractional quantum Hall effect provide realizations of Luttinger liquids, insensitive to disorder. The linear-response conductance through a point contact in the ν =1/3 quantum Hall state has been predicted to be a universal function of temperature and point-contact interaction strength, independent of sample-specific details of the device. Our exact result for this scaling function is in quantitative agreement with experimental measurements (F.P. Milliken, C.P. Umbach and R.A. Webb, preprint.). The theoretical advance made in this work(P. Fendley, A.W.W. Ludwig and H. Saleur, Phys. Rev. Lett. 74) (1995) 3005; 75 (1995) 2196; Phys. Rev. B 52 (1995) 8934. is the computation of exact transport properties from the Bethe ansatz; in the past, the Bethe ansatz was useful mainly for thermodynamic quantities. We utilize an exact kinetic transport equation in a particular quasiparticle basis of the Luttinger liquid dictated by the integrability of the point-contact interaction. Since this equation is also valid out of equilibrium, we obtain also non-equilibrium quantum transport properties in this fully interacting system. In particular, we also present universal exact results for the I(V) characteristics and the DC shot noise of the point contact. The differential conductance develops a peak beyond a critical value e V/kB T >7.18868 of driving.

  18. Thrombolysis for suspected intrapump thrombosis in patients with continuous flow centrifugal left ventricular assist device.

    PubMed

    Muthiah, Kavitha; Robson, Desiree; Macdonald, Peter S; Keogh, Anne M; Kotlyar, Eugene; Granger, Emily; Dhital, Kumud; Spratt, Phillip; Jansz, Paul; Hayward, Christopher S

    2013-03-01

    The current recommended anticoagulation regimen during continuous flow centrifugal left ventricular device support is a combination of antiplatelet therapy as well as oral anticoagulation. Despite this, pump thrombosis occurs in rare situations. We report the risk factors and nonsurgical management and outcomes of five patients implanted with continuous flow centrifugal left ventricular assist devices who displayed clinical, hemodynamic, and laboratory features of intrapump thrombosis. This information may support the use of intravenous thrombolytics for suspected pump thrombus in these newer generation devices.

  19. Effect of interstitial fluid on the fraction of flow microstates that precede clogging in granular hoppers

    NASA Astrophysics Data System (ADS)

    Koivisto, Juha; Durian, Douglas J.

    2017-03-01

    We report on the nature of flow events for the gravity-driven discharge of glass beads through a hole that is small enough that the hopper is susceptible to clogging. In particular, we measure the average and standard deviation of the distribution of discharged masses as a function of both hole and grain sizes. We do so in air, which is usual, but also with the system entirely submerged under water. This damps the grain dynamics and could be expected to dramatically affect the distribution of the flow events, which are described in prior work as avalanche-like. Though the flow is slower and the events last longer, we find that the average discharge mass is only slightly reduced for submerged grains. Furthermore, we find that the shape of the distribution remains exponential, implying that clogging is still a Poisson process even for immersed grains. Per Thomas and Durian [Phys. Rev. Lett. 114, 178001 (2015), 10.1103/PhysRevLett.114.178001], this allows for an interpretation of the average discharge mass in terms of the fraction of flow microstates that precede, i.e., that effectively cause, a stable clog to form. Since this fraction is barely altered by water, we conclude that the crucial microscopic variables are the grain positions; grain momenta play only a secondary role in destabilizing weak incipient arches. These insights should aid ongoing efforts to understand the susceptibility of granular hoppers to clogging.

  20. Flow visualization of a non-contact transport device by Coanda effect

    NASA Astrophysics Data System (ADS)

    Iki, Norihiko; Abe, Hiroyuki; Okada, Takashi

    2014-08-01

    AIST proposes new technology of non-contact transport device utilizing Coanda effect. A proposed non-contact transport device has a cylindrical body and circular slit for air. The air flow around non-contact device is turbulent and its flow pattern depends on the injection condition. Therefore we tried visualization of the air flow around non -contact device as the first step of PIV measurement. Several tracer particles were tried such as TiO2 particles, water droplets, potatoes starch, rice starch, corn starch. Hot-wire anemometer is employed to velocity measurement. TiO2 particles deposit inside of a slit and clogging of a slit occurs frequently. Potato starch particles do not clog a slit but they are too heavy to trace slow flow area. Water droplets by ultrasonic atomization also deposit inside of slit but they are useful to visualize flow pattern around a non-contact transport device by being supplied from circumference. Coanda effect of proposed non-contact transport device was confirmed and injected air flow pattern switches by a work. Air flow around non-contact trance port device is turbulent and its velocity range is wide. Therefore flow measurement by tracer part icle has traceability issue. Suitable tracer and exposure condition depends on target area.

  1. Lift-enhanced Electrical Pinched Flow Fractionation for Particle and Cell Separation

    NASA Astrophysics Data System (ADS)

    Thomas, Cory; Todd, Andrew; Lu, Xinyu; Xuan, Xiangchun

    Pinched flow fractionation (PFF) is a microfluidic technique that utilizes the laminar flow profile in microchannels to continuously separate particles or cells by size. The flow can be either pressure-driven or electric field-driven. We demonstrate in this work that the wall-induced electrical lift force can be exploited to significantly increase the particle or cell displacement in electrical PFF due to its strong size dependence. This enhanced particle and cell separation is implemented by a simple elongation of the pinched segment in electrical PFF. It is demonstrated through both a binary and a ternary separation of polymer particles and biological cells based on surface charge and/or size. We also develop a numerical model to predict and understand this lift-enhanced electrical PFF. This work was supported by the Honors and Creative Inquiry programs at Clemson University.

  2. A novel crowd flow model based on linear fractional stable motion

    NASA Astrophysics Data System (ADS)

    Wei, Juan; Zhang, Hong; Wu, Zhenya; He, Junlin; Guo, Yangyong

    2016-03-01

    For the evacuation dynamics in indoor space, a novel crowd flow model is put forward based on Linear Fractional Stable Motion. Based on position attraction and queuing time, the calculation formula of movement probability is defined and the queuing time is depicted according to linear fractal stable movement. At last, an experiment and simulation platform can be used for performance analysis, studying deeply the relation among system evacuation time, crowd density and exit flow rate. It is concluded that the evacuation time and the exit flow rate have positive correlations with the crowd density, and when the exit width reaches to the threshold value, it will not effectively decrease the evacuation time by further increasing the exit width.

  3. Impact of feed solution flow rate on Peptide fractionation by electrodialysis with ultrafiltration membrane.

    PubMed

    Poulin, Jean-François; Amiot, Jean; Bazinet, Laurent

    2008-03-26

    Recently, processes combining an electrical field as a driving force to porous membranes have been developed for the separation of protein or peptide mixtures to obtain more purified products with higher functionality or nutritional value. The objective of this work was to evaluate the influence of the flow rate on the productivity and selectivity as well as on the electrodialytic parameters of electrodialysis with an ultrafiltration membrane (EDUF) during the fractionation of peptides from a beta-lactoglobulin tryptic hydrolysate. It appeared that the feed solution flow rate had no impact on the yield of the process but induced changes in the selectivity. In fact, increases in the flow rate decreased the migration of the peptides with limited electrophoretic mobility.

  4. Temporal variability of colloidal material in agricultural storm runoff from managed grassland using flow field-flow fractionation.

    PubMed

    Gimbert, Laura J; Worsfold, Paul J

    2009-12-25

    This paper reports the use of flow field-flow fractionation (FlFFF) to determine the temporal variability of colloidal (<1mum) particle size distributions in agricultural runoff waters in a small managed catchment in SW England during storm events. Three storm events of varying intensity were captured and the colloidal material in the runoff analysed by FlFFF. The technique had sufficient sensitivity to determine directly the changing colloidal profile over the 0.08-1.0mum size range in the runoff waters during these storm events. Rainfall, total phosphorus and suspended solids in the bulk runoff samples were also determined throughout one storm and showed significant correlation (P<0.01) with the amount of colloidal material. Whilst there are some uncertainties in the resolution and absolute calibration of the FlFFF profiles, the technique has considerable potential for the quantification of colloidal material in storm runoff waters.

  5. Characterisation of cationic potato starch by asymmetrical flow field-flow fractionation. Influence of ionic strength and degree of substitution.

    PubMed

    Santacruz, Stalin

    2014-06-15

    The properties of a paper sheet depend on the absorption together with the physico-chemical properties of additives used in the paper processing. The effect of ionic strength and degree of substitution of cationic potato starch on the elution pattern of asymmetrical flow field-flow fractionation was analysed. The effect of starch derivatisation, in either dry or wet phase, was also investigated. Average molar mass showed no difference between the starches obtained from the two derivatisation processes. Apparent densities showed that dry cationic starch had higher density than wet cationic starch for a hydrodynamic radius between 50 and 100 nm. Elution times of native and three cationic starches increased when the ionic strength increased from 50 to 100mM. No differences in the molar mass among cationic starches with different degree of substitution suggested no degradation due to a derivatisation process. Large sample loads can be used at 100mM without overloading.

  6. Lymphocyte fractionation using immunomagnetic colloid and a dipole magnet flow cell sorter.

    PubMed

    Moore, L R; Zborowski, M; Sun, L; Chalmers, J J

    1998-09-24

    The relationship between cell function and surface marker expression is a subject of active investigation in biology and medicine. These investigations require separating cells of a homogeneous subset into multiple fractions of varying marker expression. We have developed a novel cell sorter, the dipole magnet flow sorter (DMFS), which separates selected T lymphocyte subpopulations, targeted by immunomagnetic colloid, into multiple fractions according to cell surface marker expression, as determined by flow cytometry. A narrow stream of cells is introduced into a sheath of carrier fluid in a rectangular channel while subjected to a perpendicular magnetic force. The special design of the pole pieces ensures a constant magnetic force acting on the magnetically labeled cells in the separation area. Cells are spread across the flow in relation to their magnetophoretic mobility. Separation is achieved by control of the positions of the effluent stream boundaries, which separate fluid volumes with cells of different magnetophoretic mobility. CD4 and CD8 T lymphocytes labeled with primary antibody-fluorescein isothiocyanate (FITC) conjugate and anti-FITC-magnetic colloid are the chosen cell systems. Flow cytometry analysis shows that, for CD4 cells, a three-fold increase in total marker number per cell is observed when comparing the highest to the lowest fluorescence fractions. Similarly, a four-fold increase in total marker number is observed for CD8 cells. We also observed the separation of two dissimilar cell types that differed in expression of the CD4 marker, monocytes and T helper lymphocytes. We believe that this type of separation is applicable to any cells in suspension for which a suitable antibody exists and, due to the comparatively gentle nature of the process, is particularly suitable for the sorting of fragile cells.

  7. Acoustic programming in step-split-flow lateral-transport thin fractionation.

    PubMed

    Ratier, Claire; Hoyos, Mauricio

    2010-02-15

    We propose a new separation scheme for micrometer-sized particles combining acoustic forces and gravitational field in split-flow lateral-transport thin (SPLITT)-like fractionation channels. Acoustic forces are generated by ultrasonic standing waves set up in the channel thickness. We report on the separation of latex particles of two different sizes in a preliminary experiment using this proposed hydrodynamic acoustic sorter, HAS. Total binary separation of 5 and 10 microm diameter particles has been achieved. Numerical simulations of trajectories of particles flowing through a step-SPLITT under the conditions which combine acoustic standing waves and gravity show a very good agreement with the experiment. Calculations in order to compare separations obtained by the acoustic programming s-SPLITT fractionation and the conventional SPLITT fractionation show that the improvement in separation time is around 1 order of magnitude and could still be improved; this is the major finding of this work. This separation technique can be extended to biomimetic particles and blood cells.

  8. Quantification of error associated with stormwater and wastewater flow measurement devices

    EPA Science Inventory

    A novel flow testbed has been designed to evaluate the performance of flumes as flow measurement devices. The newly constructed testbed produces both steady and unsteady flows ranging from 10 to 1500 gpm. Two types of flumes (Parshall and trapezoidal) are evaluated under differen...

  9. Quantification of error associated with stormwater and wastewater flow measurement devices

    EPA Science Inventory

    A novel flow testbed has been designed to evaluate the performance of flumes as flow measurement devices. The newly constructed testbed produces both steady and unsteady flows ranging from 10 to 1500 gpm. Two types of flumes (Parshall and trapezoidal) are evaluated under differen...

  10. Determination of volume fractions in two-phase flows from sound speed measurement

    SciTech Connect

    Chaudhuri, Anirban; Sinha, Dipen N.; Osterhoudt, Curtis F.

    2012-08-15

    Accurate measurement of the composition of oil-water emulsions within the process environment is a challenging problem in the oil industry. Ultrasonic techniques are promising because they are non-invasive and can penetrate optically opaque mixtures. This paper presents a method of determining the volume fractions of two immiscible fluids in a homogenized two-phase flow by measuring the speed of sound through the composite fluid along with the instantaneous temperature. Two separate algorithms are developed by representing the composite density as (i) a linear combination of the two densities, and (ii) a non-linear fractional formulation. Both methods lead to a quadratic equation with temperature dependent coefficients, the root of which yields the volume fraction. The densities and sound speeds are calibrated at various temperatures for each fluid component, and the fitted polynomial is used in the final algorithm. We present results when the new algorithm is applied to mixtures of crude oil and process water from two different oil fields, and a comparison of our results with a Coriolis meter; the difference between mean values is less than 1%. Analytical and numerical studies of sensitivity of the calculated volume fraction to temperature changes and calibration errors are also presented.

  11. Application of flow field-flow fractionation for the characterization of macromolecules of biological interest: a review

    PubMed Central

    Qureshi, Rashid Nazir

    2010-01-01

    An overview is given of the recent literature on (bio) analytical applications of flow field-flow fractionation (FlFFF). FlFFF is a liquid-phase separation technique that can separate macromolecules and particles according to size. The technique is increasingly used on a routine basis in a variety of application fields. In food analysis, FlFFF is applied to determine the molecular size distribution of starches and modified celluloses, or to study protein aggregation during food processing. In industrial analysis, it is applied for the characterization of polysaccharides that are used as thickeners and dispersing agents. In pharmaceutical and biomedical laboratories, FlFFF is used to monitor the refolding of recombinant proteins, to detect aggregates of antibodies, or to determine the size distribution of drug carrier particles. In environmental studies, FlFFF is used to characterize natural colloids in water streams, and especially to study trace metal distributions over colloidal particles. In this review, first a short discussion of the state of the art in instrumentation is given. Developments in the coupling of FlFFF to various detection modes are then highlighted. Finally, application studies are discussed and ordered according to the type of (bio) macromolecules or bioparticles that are fractionated. PMID:20957473

  12. Experimental and numerical studies of a microfluidic device with compliant chambers for flow stabilization

    NASA Astrophysics Data System (ADS)

    Iyer, V.; Raj, A.; Annabattula, R. K.; Sen, A. K.

    2015-07-01

    This paper reports experimental and numerical studies of a passive microfluidic device that stabilizes a pulsating incoming flow and delivers a steady flow at the outlet. The device employs a series of chambers along the flow direction with a thin polymeric membrane (of thickness 75-250 µm) serving as the compliant boundary. The deformation of the membrane allows accumulation of fluid during an overflow and discharge of fluid during an underflow for flow stabilization. Coupled fluid-structure simulations are performed using Mooney-Rivlin formulations to account for a thin hyperelastic membrane material undergoing large deformations to accurately predict the device performance. The device was fabricated with PDMS as the substrate material and thin PDMS membrane as the compliant boundary. The performance of the device is defined in terms of a parameter called ‘Attenuation Factor (AF)’. The effect of various design parameters including membrane thickness, elastic modulus, chamber size and number of chambers in series as well as operating conditions including the outlet pressure, mean input flow rate, fluctuation amplitude and frequency on the device performance were studied using experiments and simulations. The simulation results successfully confront the experimental data (within 10%) which validates the numerical simulations. The device was used at the exit of a PZT actuated valveless micropump to take pulsating flow at the upstream and deliver steady flow downstream. The amplitude of the pulsating flow delivered by the micropump was significantly reduced (AF = 0.05 for a device with three 4 mm chambers) but at the expense of a reduction in the pressure capability (<20%). The proposed device could potentially be used for reducing flow pulsations in practical microfluidic circuits.

  13. Acquisition of void fraction of pulsatile gas-liquid two-phase flow in rectangular channel

    NASA Astrophysics Data System (ADS)

    Zhou, Bao; Liu, Jingxing; Tian, Jingda

    2013-07-01

    Experiment on two-phase pulsatile flow in a narrow rectangular visualization channel was carried out and photographed. Every frame was treated and restored as a black-white binary picture with the threshold of both gray-scale and gray-scale gradient. The gas-liquid interface in the binary pictures can be recognized well, including some very obvious interface, which either cannot be distinguished, or introduce big wrong-recognized area with the gray-scale threshold only. Then after such as `dilate', `erode', `fill', `filter' and so on operating, the binary pictures can reflect the twophase distinction situation in the experimental channel well; The instantaneous average void frictions at the length that the camera covered were calculated by counting the black and white pixels from the pictures. The average void fractions in the whole length of the test section were calculated with an iteration method. The average void fractions in the special length covered by camera and the ones in the whole length of the test section are different. The former shows that the void frictions dramatically frequently change, while the later at steady flow almost stay peace, at pulsatile flow change smoothly.

  14. Solutions with special functions for time fractional free convection flow of Brinkman-type fluid

    NASA Astrophysics Data System (ADS)

    Ali, Farhad; Aftab Alam Jan, Syed; Khan, Ilyas; Gohar, Madeha; Ahmad Sheikh, Nadeem

    2016-09-01

    The objective of this paper is to report the combined effect of heat and mass diffusion on time fractional free convectional incompressible flow of Brinkman-type fluid over an oscillating plate in the presence of first-order chemical reaction. The Laplace transform has been used to obtain the exact solutions for the fractional-order distributions. Exact expressions for temperature, concentration and velocity have been presented in terms of special functions. For instance, we presented temperature in terms of Wright function, concentration in the form of Fox- H function and velocity in terms of Mittag-Leffler and general Wright functions. The effects of various physical parameters on the fluid motion are sketched and discussed graphically. The present solutions have been reduced by taking one or more parameters approaching to zero and an excellent agreement is observed with the published work. The numerical results for skin-friction, Nusselt and Sherwood numbers have been shown in tabular form.

  15. Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe

    NASA Astrophysics Data System (ADS)

    Tong, Dengke; Wang, Ruihe; Yang, Heshan

    2005-08-01

    This paper deals with some unsteady unidirectional transient flows of Oldroyd-B fluid in an annular pipe. The fractional calculus approach in the constitutive relationship model Oldroyd-B fluid is introduced and a generalized Jeffreys model with the fractional calculus has been built. Exact solutions of some unsteady flows of Oldroyd-B fluid in an annular pipe are obtained by using Hankel transform and Laplace transform for fractional calculus. The following four problems have been studied: (1) Poiseuille flow due to a constant pressure gradient; (2) axial Couette flow in an annulus; (3) axial Couette flow in an annulus due to a longitudinal constant shear; (4) Poiseuille flow due to a constant pressure gradient and a longitudinal constant shear. The well-known solutions for Navier-Stokes fluid, as well as those corresponding to a Maxwell fluid and a second grade one, appear as limited cases of our solutions.

  16. Hemodynamics and Myocardial Blood Flow Patterns Following Placement of a Cardiac Passive Restraint Device in a Model of Dilated Cardiomyopathy

    PubMed Central

    Dixon, Jennifer A.; Goodman, Amy M.; Gaillard, William F.; Rivers, William T.; McKinney, Richard A.; Mukherjee, Rupak; Baker, Nathaniel L.; Ikonomidis, John S.; Spinale, Francis G.

    2011-01-01

    Background The present study examined a cardiac passive restraint device which applies epicardial pressure (HeartNetTM Implant) in a clinically relevant model of dilated cardiomyopathy (DCM) to determine effects on hemodynamic and myocardial blood flow patterns. Methods DCM was established in 10 pigs (3 weeks atrial pacing, 240 beats per minute). Hemodynamic parameters and regional left ventricle (LV) blood flow were measured under baseline conditions and following acute HeartNet (Paracor Medical Inc, Sunnyvale, CA) placement. Measurements were repeated following adenosine infusion, allowing maximal coronary vasodilation and coronary flow reserve determination. Results LV dilation and systolic dysfunction occurred relative to baseline as measured by echocardiography. LV end diastolic dimension increased and LV fractional shortening decreased (3.8±0.1 vs 6.1±0.2cm and 31.6±0.5 vs 16.2±2.1%, both p<0.05 respectively) consistent with the DCM phenotype. The HeartNet was successfully deployed without arrhythmias and a computed median mid-LV epicardial pressure of 1.4 mmHg was applied by the HeartNet throughout the cardiac cycle. Acute HeartNet placement did not adversely affect steady state hemodynamics. With the HeartNet in place, coronary reserve was significantly blunted. Conclusions In a large animal model of DCM, the cardiac passive restraint device did not appear to adversely affect basal resting myocardial blood flow. However, following acute HeartNet placement, LV maximal coronary reserve was blunted. These unique results suggest that cardiac passive restraint devices which apply epicardial transmural pressure can alter myocardial blood flow patterns in a DCM model. Whether this blunting of coronary reserve holds clinical relevance with chronic passive restraint device placement remains unestablished. PMID:21397269

  17. Magnetic Resonance Flow Velocity and Temperature Mapping of a Shape Memory Polymer Foam Device

    SciTech Connect

    Small IV, W; Gjersing, E; Herberg, J L; Wilson, T S; Maitland, D J

    2008-10-29

    Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  18. Separation Control Using ZNMF Devices: Flow Physics and Scaling Laws

    DTIC Science & Technology

    2007-12-31

    the baseline uncontrolled flow is massively separated and does not reattached before the trailing edge (i.e. post stall). As mentioned earlier, this... massively leading-edge separated flow. In particular, a recursive ARMARKOV system ID algorithm is used to model the flow dynamics and provide the...3, May-June 2001. Soderstrom, T. and Stoica, P., System Identification, Prentice-Hall, New York, 1989. Song, Q., Tian, Y. and Cattafesta, L., " MIMO

  19. Sparger Effects on Gas Volume Fraction Distributions in Vertical Bubble-Column Flows as Measured by Gamma-Densitometry Tomography

    SciTech Connect

    GEORGE,DARIN L.; SHOLLENBERGER,KIM ANN; TORCZYNSKI,JOHN R.

    2000-01-18

    Gamma-densitometry tomography is applied to study the effect of sparger hole geometry, gas flow rate, column pressure, and phase properties on gas volume fraction profiles in bubble columns. Tests are conducted in a column 0.48 m in diameter, using air and mineral oil, superficial gas velocities ranging from 5 to 30 cm s{sup -1}, and absolute column pressures from 103 to 517 kPa. Reconstructed gas volume fraction profiles from two sparger geometries are presented. The development length of the gas volume fraction profile is found to increase with gas flow rate and column pressure. Increases in gas flow rate increase the local gas volume fraction preferentially on the column axis, whereas increases in column pressure produce a uniform rise in gas volume fraction across the column. A comparison of results from the two spargers indicates a significant change in development length with the number and size of sparger holes.

  20. Self-contained Tubular Compressed-flow Generation Device for Use in Making Differential Measurements

    NASA Technical Reports Server (NTRS)

    England, John D. (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2013-01-01

    A device used in making differential measurements of a flow includes an open-ended tubular flow obstruction and a support arm. The flow obstruction has an outer annular wall and an inner annular wall. The support arm has a first end coupled to an exterior wall of a conduit and a second end coupled to the flow obstruction. The support arm positions the flow obstruction in the conduit such that a first flow region is defined around the flow obstruction's outer annular wall and a second flow region is defined by the flow obstruction's inner annular wall. The support arm's first end and second end are separated from one another with respect to a length dimension of the conduit. Measurement ports provided in the flow obstruction are coupled to points at the exterior wall of the conduit by manifolds extending through the flow obstruction and support arm.

  1. Investigation of zinc oxide particles in cosmetic products by means of centrifugal and asymmetrical flow field-flow fractionation.

    PubMed

    Sogne, Vanessa; Meier, Florian; Klein, Thorsten; Contado, Catia

    2017-09-15

    The dimensional characterization of insoluble, inorganic particles, such as zinc oxide ZnO, dispersed in cosmetic or pharmaceutical formulations, is of great interest considering the current need of declaring the possible presence of nanomaterials on the label of commercial products. This work compares the separation abilities of Centrifugal- and Asymmetrical Flow Field-Flow Fractionation techniques (CF3 and AF4, respectively), equipped with UV-vis, MALS and DLS detectors, in size sorting ZnO particles, both as pristine powders and after their extraction from cosmetic matrices. ZnO particles, bare and superficially modified with triethoxycaprylyl silane, were used as test materials. To identify the most suitable procedure necessary to isolate the ZnO particles from the cosmetic matrix, two O/W and two W/O emulsions were formulated on purpose. The suspensions, containing the extracted particles ZnO, were separated by both Field-Flow Fractionation (FFF) techniques to establish a common analysis protocol, applicable for the analysis of ZnO particles extracted from three commercial products, sold in Europe for the baby skin care. Key aspects of this study were the selection of an appropriate dispersing agent enabling the particles to stay in stable suspensions (>24h)and the use of multiple detectors (UV-vis, MALS and DLS) coupled on-line with the FFF channels, to determine the particle dimensions without using the retention parameters. Between the two FFF techniques, CF3 revealed to be the most robust one, able to sort all suspensions created in this work. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Theory for nanoparticle retention time in the helical channel of quadrupole magnetic field-flow fractionation

    NASA Astrophysics Data System (ADS)

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2009-05-01

    Quadrupole magnetic field-flow fractionation (QMgFFF) is a separation and characterization technique for magnetic nanoparticles such as those used for cell labeling and for targeted drug therapy. A helical separation channel is used to efficiently exploit the quadrupole magnetic field. The fluid and sample components therefore have angular and longitudinal components to their motion in the thin annular space occupied by the helical channel. The retention ratio is defined as the ratio of the times for non-retained and a retained material to pass through the channel. Equations are derived for the respective angular and longitudinal components to retention ratio.

  3. Fractional flow reserve and resting indices for coronary physiologic assessment: Practical guide, tips, and tricks.

    PubMed

    Picard, Fabien; Pighi, Michele; Ly, Hung Q

    2017-02-04

    Physiologic assessment using fractional flow reserve (FFR) to guide percutaneous coronary interventions (PCI) has been demonstrated to improve clinical outcomes, compared to angiography-guided PCI. Recently, resting indices such as resting Pd/Pa, "instantaneous wave-free ratio", and contrast medium induced FFR have been evaluated for the assessment of the functional consequences of coronary lesions. Herein, we review and discuss the use of FFR and other indices for the functional assessment of coronary lesions. This review will cover theoretical aspects, as well as practical points and common pitfalls related to coronary physiological assessment. © 2017 Wiley Periodicals, Inc.

  4. Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and heat source

    NASA Astrophysics Data System (ADS)

    Azhar, Waqas Ali; Vieru, Dumitru; Fetecau, Constantin

    2017-08-01

    Free convection flow of some water based fractional nanofluids over a moving infinite vertical plate with uniform heat flux and heat source is analytically and graphically studied. Exact solutions for dimensionless temperature and velocity fields, Nusselt numbers, and skin friction coefficients are established in integral form in terms of modified Bessel functions of the first kind. These solutions satisfy all imposed initial and boundary conditions and reduce to the similar solutions for ordinary nanofluids when the fractional parameters tend to one. Furthermore, they reduce to the known solutions from the literature when the plate is fixed and the heat source is absent. The influence of fractional parameters on heat transfer and fluid motion is graphically underlined and discussed. The enhancement of heat transfer in such flows is higher for fractional nanofluids in comparison with ordinary nanofluids. Moreover, the use of fractional models allows us to choose the fractional parameters in order to get a very good agreement between experimental and theoretical results.

  5. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  6. Fractional CO2 laser: a novel therapeutic device for refractory necrobiosis lipoidica.

    PubMed

    Buggiani, Gionata; Tsampau, Dionigi; Krysenka, Alena; De Giorgi, Vincenzo; Hercogová, Jana

    2012-01-01

    Necrobiosis lipoidica diabeticorum is a granulomatous skin disease of uncertain pathogenesis. Many therapeutic approaches have been reported in the literature, but none of them can be considered the gold standard. Fractional CO(2) laser treatment shows peculiar effects in the skin, mainly due to its ability of modulating cytokine pathways of tissue-repairing mechanisms. Thus, we propose fractional CO(2) laser in the management of refractory necrobiosis lipoidica in selected recalcitrant patients.

  7. Study on steric transition in asymmetrical flow field-flow fractionation and application to characterization of high-energy material.

    PubMed

    Dou, Haiyang; Lee, Yong-Ju; Jung, Euo Chang; Lee, Byung-Chul; Lee, Seungho

    2013-08-23

    In field-flow fractionation (FFF), there is the 'steric transition' phenomenon where the sample elution mode changes from the normal to steric/hyperlayer mode. Accurate analysis by FFF requires understanding of the steric transition phenomenon, particularly when the sample has a broad size distribution, for which the effect by combination of different modes may become complicated to interpret. In this study, the steric transition phenomenon in asymmetrical flow FFF (AF4) was studied using polystyrene (PS) latex beads. The retention ratio (R) gradually decreases as the particle size increases (normal mode) and reaches a minimum (Ri) at diameter around 0.5μm, after which R increases with increasing diameter (steric/hyperlayer mode). It was found that the size-based selectivity (Sd) tends to increase as the channel thickness (w) increases. The retention behavior of cyclo-1,3,5-trimethylene-2,4,6-trinitramine (commonly called 'research department explosive' (RDX)) particles in AF4 was investigated by varying experimental parameters including w and flow rates. AF4 showed a good reproducibility in size determination of RDX particles with the relative standard deviation of 4.1%. The reliability of separation obtained by AF4 was evaluated by transmission electron microscopy (TEM).

  8. Comparative studies of hemoperfusion devices. II. Pressure drop and flow uniformity tests.

    PubMed

    Cooney, D O; Infantolino, W; Kane, R

    1979-01-01

    One resin-based hemoperfusion device and three charcoal-based hemoperfusion devices were tested to determine their pressure drop and flow uniformity characteristics. Measurements were made on pressure drop versus flow rate using distilled water and on pressure drop versus time using bovine blood. Effluent concentration curves obtained after the step-change introduction of a high molecular weight dye solution to each unit were used to determine the priming volumes of the devices and were interpreted to yield information regarding the uniformities of flow in each device. The pressure drop and priming volume values for the resin-based device were significantly higher than the corresponding values for the charcoal-based units.

  9. Myocardial fractional flow reserve: a biplane angiocardiographic alternative to the pressure gradient method

    NASA Astrophysics Data System (ADS)

    Schrijver, Marc; Slump, Cornelis H.; Storm, Corstiaan J.

    2001-05-01

    Pijls and De Bruyne (1993) developed a method employing intravascular blood pressure gradients to calculate the Myocardial Fractional Flow Reserve (FFR). This flow reserve is a better indication of the functional severity of a coronary stenosis than percentage diameter or luminal area reduction as provided by traditional Quantitative Coronary Angiography (QCA). However, to use this method, all of the relevant artery segments have to be select intra-operatively. After the procedure, only the segments for which a pressure reading is available can be graded. We previously introduced another way to assess the functional severity of stenosis using angiographic projections: the Relative Coronary Flow Reserve (RCFR). It is based on standard densitometric blood velocity and flow reserve methods, but without the need to estimate the geometry of the artery. This paper demonstrates that this RCFR method yields -- in theory -- the same results as the FFR, and can be given an almost identical interpretation. This provides the opportunity to use the RCFR retrospectively, when pressure gradients are not available for the segment(s) of interest.

  10. Fractional flow reserve-guided percutaneous coronary intervention: where to after FAME 2?

    PubMed Central

    van de Hoef, Tim P; Meuwissen, Martijn; Piek, Jan J

    2015-01-01

    Fractional flow reserve (FFR) is a well-validated clinical coronary physiological parameter derived from the measurement of coronary pressures and has drastically changed revascularization decision-making in clinical practice. Nonetheless, it is important to realize that FFR is a coronary pressure-derived estimate of coronary blood flow impairment. It is thereby not the same as direct measures of coronary flow impairment that determine the occurrence of signs and symptoms of myocardial ischemia. This consideration is important, since the FAME 2 study documented a limited discriminatory power of FFR to identify stenoses that require revascularization to prevent adverse events. The physiological difference between FFR and direct measures of coronary flow impairment may well explain the findings in FAME 2. This review aims to address the physiological background of FFR, its ambiguities, and its consequences for the application of FFR in clinical practice, as well as to reinterpret the diagnostic and prognostic characteristics of FFR in the light of the recent FAME 2 trial outcomes. PMID:26673639

  11. Heat transfer at microscopic level in a MHD fractional inertial flow confined between non-isothermal boundaries

    NASA Astrophysics Data System (ADS)

    Shoaib Anwar, Muhammad; Rasheed, Amer

    2017-07-01

    Heat transfer through a Forchheimer medium in an unsteady magnetohydrodynamic (MHD) developed differential-type fluid flow is analyzed numerically in this study. The boundary layer flow is modeled with the help of the fractional calculus approach. The fluid is confined between infinite parallel plates and flows by motion of the plates in their own plane. Both the plates have variable surface temperature. Governing partial differential equations with appropriate initial and boundary conditions are solved by employing a finite-difference scheme to discretize the fractional time derivative and finite-element discretization for spatial variables. Coefficients of skin friction and local Nusselt numbers are computed for the fractional model. The flow behavior is presented for various values of the involved parameters. The influence of different dimensionless numbers on skin friction and Nusselt number is discussed by tabular results. Forchheimer medium flows that involve catalytic converters and gas turbines can be modeled in a similar manner.

  12. Size characterization of incinerator fly ash using sedimentation/steric field-flow fractionation.

    PubMed

    Kimt, Won-Suk; Lee, Dai Woon; Lee, Seungho

    2002-02-15

    Fly ash particles emitted from municipal solid waste-incinerators are of environmental concern. This study aims to investigate the applicability of sedimentation/steric field-flow fractionation (Sd/StFFF) and to develop a Sd/StFFF method for the separation and size characterization of incinerator fly ash. This study focuses on the fly ash particles larger than approxiamtely 1 microm, which comprise more than 90% (w/w) of the fly ash. Fly ash is a complex mixture of particles having various chemical compositions, sizes, shapes, and densities. Prior to Sd/StFFF analysis, fly ash particles are prefractionated into six density classes using a modified centrifugal procedure. It was found that fly ash particles are most abundant in the density range between 2.4 and 2.8 g/cm3. Different density fractions seem to contain particles of different chemical compositions. The Sd/StFFF conditions for the size-characterization of fly ash are sample concentration, approximately 0.3% (w/v); dispersing medium, 50% ethanol in water; and carrier liquid, water with 1.0% FL-70 (ionic strength approximately 0.012 M). Sd/StFFF data show no significant differences in size distribution among different density fractions. Generally, the sizes obtained from Sd/StFFF are larger than those obtained from a Coulter Multisizer and microscopy, probably because of the irregular shapes of the fly ash particles.

  13. Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles.

    PubMed

    Fond, Benoit; Abram, Christopher; Heyes, Andrew L; Kempf, Andreas M; Beyrau, Frank

    2012-09-24

    This paper presents an optical diagnostic technique based on seeded thermographic phosphor particles, which allows the simultaneous two-dimensional measurement of gas temperature, velocity and mixture fraction in turbulent flows. The particle Mie scattering signal is recorded to determine the velocity using a conventional PIV approach and the phosphorescence emission is detected to determine the tracer temperature using a two-color method. Theoretical models presented in this work show that the temperature of small tracer particles matches the gas temperature. In addition, by seeding phosphorescent particles to one stream and non-luminescent particles to the other stream, the mixture fraction can also be determined using the phosphorescence emission intensity after conditioning for temperature. The experimental technique is described in detail and a suitable phosphor is identified based on spectroscopic investigations. The joint diagnostics are demonstrated by simultaneously measuring temperature, velocity and mixture fraction in a turbulent jet heated up to 700 K. Correlated single shots are presented with a precision of 2 to 5% and an accuracy of 2%.

  14. Circuit modification in electrical field flow fractionation systems generating higher resolution separation of nanoparticles.

    PubMed

    Tasci, Tonguc O; Johnson, William P; Fernandez, Diego P; Manangon, Eliana; Gale, Bruce K

    2014-10-24

    Compared to other sub-techniques of field flow fractionation (FFF), cyclical electrical field flow fractionation (CyElFFF) is a relatively new method with many opportunities remaining for improvement. One of the most important limitations of this method is the separation of particles smaller than 100nm. For such small particles, the diffusion rate becomes very high, resulting in severe reductions in the CyElFFF separation efficiency. To address this limitation, we modified the electrical circuitry of the ElFFF system. In all earlier ElFFF reports, electrical power sources have been directly connected to the ElFFF channel electrodes, and no alteration has been made in the electrical circuitry of the system. In this work, by using discrete electrical components, such as resistors and diodes, we improved the effective electric field in the system to allow high resolution separations. By modifying the electrical circuitry of the ElFFF system, high resolution separations of 15 and 40nm gold nanoparticles were achieved. The effects of applying different frequencies, amplitudes and voltage shapes have been investigated and analyzed through experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Fractional flow reserve: Current applications and overview of the available data

    PubMed Central

    Tebaldi, Matteo; Campo, Gianluca; Biscaglia, Simone

    2015-01-01

    Flow fractional reserve (FFR) allows to evaluate the functional significance of coronary artery lesions, through the ratio of the mean coronary artery pressure after the stenosis to the mean aortic pressure during maximum hyperemia. The actual widely accepted cut-off value is 0.80. Below this value a coronary lesion is considered significant and therefore it requires invasive revascularization. Several studies [in particular Fractional Flow Reserve vs Angiography for Multivessel Evaluation 1 (FAME-1) and FAME-2] have shown the relationship between FFR measurement and hard end-points (death, myocardial infarction, and urgent revascularization). Consequently, FFR evaluation represents the cornerstone in the decision-making in intermediate coronary lesions. Recent studies paved the way for further applications of FFR evaluation in complex and tricky clinical settings. In this paper, we perform an overview of the data regarding contemporary application of FFR. In particular, we review the use of FFR in: left main intermediate stenoses, serial stenoses, evaluation after stenting, guidance in coronary artery bypass surgery, and acute coronary syndrome. All the data presented in our overview confirm the essential role of FFR assessment in the daily clinical practice. The shift from “operator-dependent” to “FFR-dependent” evaluation in intermediate coronary artery stenosis is of paramount importance in order to improve the prognosis of our patients, through the discrimination of the functional role of every single coronary stenosis. PMID:26301228

  16. Extensional flow of blood analog solutions in microfluidic devices

    PubMed Central

    Sousa, P. C.; Pinho, F. T.; Oliveira, M. S. N.; Alves, M. A.

    2011-01-01

    In this study, we show the importance of extensional rheology, in addition to the shear rheology, in the choice of blood analog solutions intended to be used in vitro for mimicking the microcirculatory system. For this purpose, we compare the flow of a Newtonian fluid and two well-established viscoelastic blood analog polymer solutions through microfluidic channels containing both hyperbolic and abrupt contractions∕expansions. The hyperbolic shape was selected in order to impose a nearly constant strain rate at the centerline of the microchannels and achieve a quasihomogeneous and strong extensional flow often found in features of the human microcirculatory system such as stenoses. The two blood analog fluids used are aqueous solutions of a polyacrylamide (125 ppm w∕w) and of a xanthan gum (500 ppm w∕w), which were characterized rheologically in steady-shear flow using a rotational rheometer and in extension using a capillary breakup extensional rheometer (CaBER). Both blood analogs exhibit a shear-thinning behavior similar to that of whole human blood, but their relaxation times, obtained from CaBER experiments, are substantially different (by one order of magnitude). Visualizations of the flow patterns using streak photography, measurements of the velocity field using microparticle image velocimetry, and pressure-drop measurements were carried out experimentally for a wide range of flow rates. The experimental results were also compared with the numerical simulations of the flow of a Newtonian fluid and a generalized Newtonian fluid with shear-thinning behavior. Our results show that the flow patterns of the two blood analog solutions are considerably different, despite their similar shear rheology. Furthermore, we demonstrate that the elastic properties of the fluid have a major impact on the flow characteristics, with the polyacrylamide solution exhibiting a much stronger elastic character. As such, these properties must be taken into account in the

  17. Feasibility study of red blood cell debulking by magnetic field-flow fractionation with step-programmed flow

    PubMed Central

    Moore, Lee R.; Williams, P. Stephen; Nehl, Franziska; Abe, Koji; Chalmers, Jeffrey J.; Zborowski, Maciej

    2013-01-01

    Emerging applications of rare cell separation and analysis, such as separation of mature red blood cells from hematopoietic cell cultures require efficient methods of red blood cell (RBC) debulking. We have tested the feasibility of magnetic RBC separation as an alternative to centrifugal separation using an approach based on the mechanism of magnetic field-flow fractionation (MgFFF). A specially designed permanent magnet assembly generated a quadrupole field having a maximum field of 1.68 T at the magnet pole tips, zero field at the aperture axis, and a nearly constant radial field gradient of 1.75 T/mm (with a negligible angular component) inside a cylindrical aperture of 1.9 mm (diameter) and 76 mm (length). The cell samples included high-spin hemoglobin RBCs obtained by chemical conversion of hemoglobin to methemoglobin (met RBC) or by exposure to anoxic conditions (deoxy RBC), low-spin hemoglobin obtained by exposure of RBC suspension to ambient air (oxy RBC), and mixtures of deoxy RBC and cells from a KG-1a white blood cell (WBC) line. The observation that met RBCs did not elute from the channel at the lower flow rate of 0.05 mL/min applied for 15 min but quickly eluted at the subsequent higher flow rate of 2.0 mL/min was in agreement with FFF theory. The well-defined experimental conditions (precise field and flow characteristics) and a well-established FFF theory verified by studies with model cell systems provided us with a strong basis for making predictions about potential practical applications of the magnetic RBC separation. PMID:24141316

  18. Feasibility study of red blood cell debulking by magnetic field-flow fractionation with step-programmed flow.

    PubMed

    Moore, Lee R; Williams, P Stephen; Nehl, Franziska; Abe, Koji; Chalmers, Jeffrey J; Zborowski, Maciej

    2014-02-01

    Emerging applications of rare cell separation and analysis, such as separation of mature red blood cells from hematopoietic cell cultures, require efficient methods of red blood cell (RBC) debulking. We have tested the feasibility of magnetic RBC separation as an alternative to centrifugal separation using an approach based on the mechanism of magnetic field-flow fractionation (MgFFF). A specially designed permanent magnet assembly generated a quadrupole field having a maximum field of 1.68 T at the magnet pole tips, zero field at the aperture axis, and a nearly constant radial field gradient of 1.75 T/mm (with a negligible angular component) inside a cylindrical aperture of 1.9 mm (diameter) and 76 mm (length). The cell samples included high-spin hemoglobin RBCs obtained by chemical conversion of hemoglobin to methemoglobin (met RBC) or by exposure to anoxic conditions (deoxy RBC), low-spin hemoglobin obtained by exposure of RBC suspension to ambient air (oxy RBC), and mixtures of deoxy RBC and cells from a KG-1a white blood cell (WBC) line. The observation that met RBCs did not elute from the channel at the lower flow rate of 0.05 mL/min applied for 15 min but quickly eluted at the subsequent higher flow rate of 2.0 mL/min was in agreement with FFF theory. The well-defined experimental conditions (precise field and flow characteristics) and a well-established FFF theory verified by studies with model cell systems provided us with a strong basis for making predictions about potential practical applications of the magnetic RBC separation.

  19. Mass flow rate measurements in gas-liquid flows by means of a venturi or orifice plate coupled to a void fraction sensor

    SciTech Connect

    Oliveira, Jorge Luiz Goes; Passos, Julio Cesar

    2009-01-15

    Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air-water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi plate is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454-457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil-air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601-606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%. (author)

  20. Flow pattern, pressure drop and void fraction of two-phase gas-liquid flow in an inclined narrow annular channel

    SciTech Connect

    Wongwises, Somchai; Pipathattakul, Manop

    2006-03-01

    Two-phase flow pattern, pressure drop and void fraction in horizontal and inclined upward air-water two-phase flow in a mini-gap annular channel are experimentally studied. A concentric annular test section at the length of 880mm with an outer diameter of 12.5mm and inner diameter of 8mm is used in the experiments. The flow phenomena, which are plug flow, slug flow, annular flow, annular/slug flow, bubbly/plug flow, bubbly/slug-plug flow, churn flow, dispersed bubbly flow and slug/bubbly flow, are observed and recorded by high-speed camera. A slug flow pattern is found only in the horizontal channel while slug/bubbly flow patterns are observed only in inclined channels. When the inclination angle is increased, the onset of transition from the plug flow region to the slug flow region (for the horizontal channel) and from the plug flow region to slug/bubbly flow region (for inclined channels) shift to a lower value of superficial air velocity. Small shifts are found for the transition line between the dispersed bubbly flow and the bubbly/plug flow, the bubbly/plug flow and the bubbly/slug-plug flow, and the bubbly/plug flow and the plug flow. The rest of the transition lines shift to a higher value of superficial air velocity. Considering the effect of flow pattern on the pressure drop in the horizontal tube at low liquid velocity, the occurrence of slug flow stops the rise of pressure drop for a short while, before rising again after the air velocity has increased. However, the pressure does not rise abruptly in the tubes with {theta}=30{sup o} and 60{sup o} when the slug/bubbly flow occurs. At low gas and liquid velocity, the pressure drop increases, when the inclination angles changes from horizontal to 30{sup o} and 60{sup o}. Void fraction increases with increasing gas velocity and decreases with increasing liquid velocity. After increasing the inclination angle from horizontal to {theta}=30{sup o} and 60{sup o}, the void fraction appears to be similar, with a

  1. Evaluation of Three Devices for the Isolation of the Stromal Vascular Fraction from Adipose Tissue and for ASC Culture: A Comparative Study

    PubMed Central

    Pratta, Anne-Sophie; Abbassi, Nacira; Fabre, Hugo; Rodriguez, Fanny; Debard, Cyrille; Adobati, Jacqueline; Boucher, Fabien; Mallein-Gerin, Frédéric; Auxenfans, Céline; Damour, Odile; Mojallal, Ali

    2017-01-01

    Adipose-derived stem/stromal cells (ASCs) reside in the stromal vascular fraction (SVF) of adipose tissue (AT) and can be easily isolated. However, extraction of the SVF from lipoaspirate is a critical step in generating ASC, and semiautomated devices have been developed to enhance the efficacy and reproducibility of the outcomes and to decrease manipulation and contamination. In this study, we compared the reference method used in our lab for SVF isolation from lipoaspirate, with three medical devices: GID SVF-1™, Puregraft™, and Stem.pras®. Cell yield and their viability were evaluated as well as their phenotype with flow cytometry. Further on, we determined their proliferative potential using population doublings (PD), PD time (PDT), and clonogenicity assay (CFU-F). Finally, we checked their genetic stability using RT-qPCR for TERT mRNA assay and karyotyping as well as their multilineage potential including adipogenic, chondrogenic, and osteogenic differentiation. Our results demonstrate that all the devices allow the production of SVF cells with consistent yield and viability, in less time than the reference method. Expanded cells from the four methods showed no significant differences in terms of phenotype, proliferation capabilities, differentiation abilities, and genetic stability. PMID:28321259

  2. Evaluation of Three Devices for the Isolation of the Stromal Vascular Fraction from Adipose Tissue and for ASC Culture: A Comparative Study.

    PubMed

    Rodriguez, Jonathan; Pratta, Anne-Sophie; Abbassi, Nacira; Fabre, Hugo; Rodriguez, Fanny; Debard, Cyrille; Adobati, Jacqueline; Boucher, Fabien; Mallein-Gerin, Frédéric; Auxenfans, Céline; Damour, Odile; Mojallal, Ali

    2017-01-01

    Adipose-derived stem/stromal cells (ASCs) reside in the stromal vascular fraction (SVF) of adipose tissue (AT) and can be easily isolated. However, extraction of the SVF from lipoaspirate is a critical step in generating ASC, and semiautomated devices have been developed to enhance the efficacy and reproducibility of the outcomes and to decrease manipulation and contamination. In this study, we compared the reference method used in our lab for SVF isolation from lipoaspirate, with three medical devices: GID SVF-1™, Puregraft™, and Stem.pras®. Cell yield and their viability were evaluated as well as their phenotype with flow cytometry. Further on, we determined their proliferative potential using population doublings (PD), PD time (PDT), and clonogenicity assay (CFU-F). Finally, we checked their genetic stability using RT-qPCR for TERT mRNA assay and karyotyping as well as their multilineage potential including adipogenic, chondrogenic, and osteogenic differentiation. Our results demonstrate that all the devices allow the production of SVF cells with consistent yield and viability, in less time than the reference method. Expanded cells from the four methods showed no significant differences in terms of phenotype, proliferation capabilities, differentiation abilities, and genetic stability.

  3. Cerebral Blood Flow Autoregulation Is Preserved After Continuous Flow Left Ventricular Assist Device Implantation

    PubMed Central

    Ono, Masahiro; Joshi, Brijen; Brady, Kenneth; Easley, R. Blaine; Kibler, Kathy; Conte, John; Shah, Ashish; Russell, Stuart D.; Hogue, Charles W.

    2012-01-01

    Objective To compare cerebral blood flow (CBF) autoregulation in patients undergoing continuous flow left ventricular assist device (LVAD) implantation with that in patients undergoing coronary artery bypass graft (CABG) surgery. Design Prospective, observational, controlled study. Setting Academic medical center. Participants Fifteen patients undergoing LVAD insertion and 10 patients undergoing CABG surgery. Measurements and Main Results Cerebral autoregulation was monitored with transcranial Doppler and near-infrared spectroscopy (NIRS). A continuous, Pearson's correlation coefficient was calculated between mean arterial pressure (MAP) and CBF velocity, and between MAP and NIRS data rendering the variables mean velocity index (Mx) and cerebral oximetry index (COx), respectively. Mx and COx approach zero when autoregulation is intact (no correlation between CBF and MAP), but approach 1 when autoregulation is impaired. Mx was lower during and immediately after cardiopulmonary bypass (CPB) in the LVAD group than it was in the CABG surgery patients, indicating better preserved autoregulation. Based on COx monitoring, autoregulation tended to be better preserved in the LVAD group than in the CABG group immediately after surgery (p=0.0906). On postoperative day 1, COx was lower in LVAD patients than in CABG surgery patients, again indicating preserved CBF autoregulation (p=0.0410). Based on COx monitoring, 3 (30%) of the CABG patients had abnormal autoregulation (COx ≥ 0.3) on the first postoperative day but none of the LVAD patients had this abnormality (p=0.037). Conclusion These data suggest that CBF autoregulation is preserved during and immediately after surgery in patients undergoing LVAD insertion. PMID:23122299

  4. Systematic characterization of degas-driven flow for poly(dimethylsiloxane) microfluidic devices

    DOE PAGES

    Liang, David Y.; Tentori, Augusto M.; Dimov, Ivan K.; ...

    2011-01-01

    Degas-driven flow is a novel phenomenon used to propel fluids in poly(dimethylsiloxane) (PDMS)-based microfluidic devices without requiring any external power. This method takes advantage of the inherently high porosity and air solubility of PDMS by removing air molecules from the bulk PDMS before initiating the flow. The dynamics of degas-driven flow are dependent on the channel and device geometries and are highly sensitive to temporal parameters. These dependencies have not been fully characterized, hindering broad use of degas-driven flow as a microfluidic pumping mechanism. Here, we characterize, for the first time, the effect of various parameters on the dynamics ofmore » degas-driven flow, including channel geometry, PDMS thickness, PDMS exposure area, vacuum degassing time, and idle time at atmospheric pressure before loading. We investigate the effect of these parameters on flow velocity as well as channel fill time for the degas-driven flow process. Using our devices, we achieved reproducible flow with a standard deviation of less than 8% for flow velocity, as well as maximum flow rates of up to 3 nL/s and mean flow rates of approximately 1-1.5 nL/s. Parameters such as channel surface area and PDMS chip exposure area were found to have negligible impact on degas-driven flow dynamics, whereas channel cross-sectional area, degas time, PDMS thickness, and idle time were found to have a larger impact. In addition, we develop a physical model that can predict mean flow velocities within 6% of experimental values and can be used as a tool for future design of PDMS-based microfluidic devices that utilize degas-driven flow.« less

  5. Systematic characterization of degas-driven flow for poly(dimethylsiloxane) microfluidic devices

    SciTech Connect

    Liang, David Y.; Tentori, Augusto M.; Dimov, Ivan K.; Lee, Luke P.

    2011-01-01

    Degas-driven flow is a novel phenomenon used to propel fluids in poly(dimethylsiloxane) (PDMS)-based microfluidic devices without requiring any external power. This method takes advantage of the inherently high porosity and air solubility of PDMS by removing air molecules from the bulk PDMS before initiating the flow. The dynamics of degas-driven flow are dependent on the channel and device geometries and are highly sensitive to temporal parameters. These dependencies have not been fully characterized, hindering broad use of degas-driven flow as a microfluidic pumping mechanism. Here, we characterize, for the first time, the effect of various parameters on the dynamics of degas-driven flow, including channel geometry, PDMS thickness, PDMS exposure area, vacuum degassing time, and idle time at atmospheric pressure before loading. We investigate the effect of these parameters on flow velocity as well as channel fill time for the degas-driven flow process. Using our devices, we achieved reproducible flow with a standard deviation of less than 8% for flow velocity, as well as maximum flow rates of up to 3 nL/s and mean flow rates of approximately 1-1.5 nL/s. Parameters such as channel surface area and PDMS chip exposure area were found to have negligible impact on degas-driven flow dynamics, whereas channel cross-sectional area, degas time, PDMS thickness, and idle time were found to have a larger impact. In addition, we develop a physical model that can predict mean flow velocities within 6% of experimental values and can be used as a tool for future design of PDMS-based microfluidic devices that utilize degas-driven flow.

  6. Device for Measuring Low Flow Speed in a Duct

    NASA Technical Reports Server (NTRS)

    Quinn, Frank; Magee, Kevin

    2009-01-01

    A multiple-throat venturi system has been invented for measuring laminar flow of air or other gas at low speed (1 to 30 cm/s) in a duct while preserving the laminar nature of the flow and keeping the velocity profile across the duct as nearly flat as possible. While means for measuring flows at higher speeds are well established, heretofore, there have been no reliable means for making consistent, accurate measurements in this speed range. In the original application for which this system was invented, the duct leads into the test section of a low-speed wind tunnel wherein uniform, low-speed, laminar flow is required for scientific experiments. The system could also be used to monitor a slow flow of gas in an industrial process like chemical vapor deposition. In the original application, the multiple- throat venturi system is mounted at the inlet end of the duct having a rectangular cross section of 19 by 14 cm, just upstream of an assembly of inlet screens and flow straighteners that help to suppress undesired flow fluctuations (see Figure 1). The basic venturi measurement principle is well established: One measures the difference in pressure between (1) a point just outside the inlet, where the pressure is highest and the kinetic energy lowest; and (2) the narrowest part (the throat) of the venturi passage, where the kinetic energy is highest and the pressure is lowest. Then by use of Bernoulli s equation for the relationship between pressure and kinetic energy, the volumetric flow speed in the duct can be calculated from the pressure difference and the inlet and throat widths. The design of this system represents a compromise among length, pressure recovery, uniformity of flow, and complexity of assembly. Traditionally, venturis are used to measure faster flows in narrower cross sections, with longer upstream and downstream passages to maintain accuracy. The dimensions of the passages of the present venturi system are sized to provide a readily measurable

  7. Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry.

    PubMed

    Poda, A R; Bednar, A J; Kennedy, A J; Harmon, A; Hull, M; Mitrano, D M; Ranville, J F; Steevens, J

    2011-07-08

    The ability to detect and identify the physiochemical form of contaminants in the environment is important for degradation, fate and transport, and toxicity studies. This is particularly true of nanomaterials that exist as discrete particles rather than dissolved or sorbed contaminant molecules in the environment. Nanoparticles will tend to agglomerate or dissolve, based on solution chemistry, which will drastically affect their environmental properties. The current study investigates the use of field flow fractionation (FFF) interfaced to inductively coupled plasma-mass spectrometry (ICP-MS) as a sensitive and selective method for detection and characterization of silver nanoparticles. Transmission electron microscopy (TEM) is used to verify the morphology and primary particle size and size distribution of precisely engineered silver nanoparticles. Subsequently, the hydrodynamic size measurements by FFF are compared to dynamic light scattering (DLS) to verify the accuracy of the size determination. Additionally, the sensitivity of the ICP-MS detector is demonstrated by fractionation of μg/L concentrations of mixed silver nanoparticle standards. The technique has been applied to nanoparticle suspensions prior to use in toxicity studies, and post-exposure biological tissue analysis. Silver nanoparticles extracted from tissues of the sediment-dwelling, freshwater oligochaete Lumbriculus variegatus increased in size from approximately 31-46nm, indicating a significant change in the nanoparticle characteristics during exposure.

  8. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, James R.

    1982-01-01

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  9. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, J.R.

    1982-05-04

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

  10. Continuous-flow rotary left ventricular assist devices with "3rd generation" design.

    PubMed

    Pagani, Francis D

    2008-01-01

    Left ventricular assist device (LVAD) therapy has become an established treatment option for patients with advanced heart failure. Broader application of this therapy has been limited by the risk profile of the current generation of devices. The development of continuous-flow rotary pump technology with noncontact bearing design offers the promise of improved device durability and safety profile. Clinical evaluation of these innovative pump designs are currently underway.

  11. Clinical trial of a laser device called fractional photothermolysis system for acne scars.

    PubMed

    Hasegawa, Toshio; Matsukura, Tomoyuki; Mizuno, Yuki; Suga, Yasushi; Ogawa, Hideoki; Ikeda, Shigaku

    2006-09-01

    Ablative laser resurfacing is an effective treatment for acne scars. However, edema and prolonged erythema are common. Additionally, scarring and hyperpigmentation are often induced. A new concept of laser called fractional photothermolysis has been designed to create microscopic thermal wounds to achieve skin rejuvenation without significant side-effects. We treated 10 patients with acne scars using this laser system (Reliant Fraxel SR Laser). All the patients were successfully treated with minimal adverse effects. The fractional photothermolysis system represents an optional method for the treatment of acne scars.

  12. Unsteady flow analysis of an axial flow hydraulic turbine with collection devices comprising a different number of blades

    NASA Astrophysics Data System (ADS)

    Nishi, Yasuyuki; Inagaki, Terumi; Li, Yanrong; Hirama, Sou; Kikuchi, Norio

    2015-06-01

    We previously devised a new type of portable hydraulic turbine that uses the kinetic energy of an open-channel flow to improve output power by catching and accelerating the flow. The turbine contains an axial flow runner with an appended collection device and a diffuser section that is not axisymmetric. The objective of this study is to determine how interference between the collection device and the runner influences performance characteristics of the turbine. We investigated the performance characteristics of the turbine and flow field for different numbers of blades during both unsteady and steady flow. During an unsteady flow, the maximum values of power coefficients for three and two blades increased by approximately 8.8% and 21.4%, respectively, compared to those during a steady flow. For the three-blade runner, the power coefficient showed small fluctuations, but for the two-blade runner, the power coefficient showed large fluctuations. These fluctuations in the power coefficient are attributed to fluctuations in the loading coefficient, which were generated by interference between the runner and the diffuser section of the collection device.

  13. Development of a Quasi-Steady Flow Electrochemical Paper-Based Analytical Device.

    PubMed

    Adkins, Jaclyn A; Noviana, Eka; Henry, Charles S

    2016-11-01

    An electrochemical paper-based analytical device (ePAD) was developed for quasi-steady flow detection at microwire electrodes, for the first time. The device implements a fan shaped geometry connected to an analysis channel whereby solution is pulled from an inlet, through a channel, and into the steadily increasing capillary network of the fan. The network counteracts the decrease in solution flow rate associated with increasing viscosity within the channel, generating quasi-steady flow within the analysis channel. Microwire electrodes were embedded between two paper layers within the analysis channel, such that solution flow occurred on both sides of the wire electrodes. The quasi-steady flow ePAD increased the current by 2.5 times and 0.7 times from a saturated channel with no flow and from a single-layer paper device with flow, respectively. Amperometric detection was used for flow injection analysis (FIA) of multiple analytes at both Au and Pt microwire working electrodes, both of which provided similar sensitivity (ca. 0.2 mM(-1)) when normalized to the same standard. The two-layer paper devices provided a detection limit of 31 μM for p-aminophenol (PAP) using Pt electrodes and was also used to detect enzyme activity for the reaction of β-galactosidase with p-aminophenyl-galactopyranoside (PAPG). Measured enzyme kinetics provided similar Vmax (0.079 mM/min) and Km (0.36 mM) values as those found in the literature. This device shows great promise toward use in enzyme-linked immunosorbent assays or other analytical techniques where flow or washing steps are necessary. The developed sensor provides a simple and inexpensive device capable of performing multiple injection analysis with steady-flow and online detection that would normally require an external pump to perform.

  14. Comparison of Fractional Flow Reserve Based on Computational Fluid Dynamics Modeling Using Coronary Angiographic Vessel Morphology Versus Invasively Measured Fractional Flow Reserve.

    PubMed

    Tröbs, Monique; Achenbach, Stephan; Röther, Jens; Redel, Thomas; Scheuering, Michael; Winneberger, David; Klingenbeck, Klaus; Itu, Lucian; Passerini, Tiziano; Kamen, Ali; Sharma, Puneet; Comaniciu, Dorin; Schlundt, Christian

    2016-01-01

    Invasive fractional flow reserve (FFRinvasive), although gold standard to identify hemodynamically relevant coronary stenoses, is time consuming and potentially associated with complications. We developed and evaluated a new approach to determine lesion-specific FFR on the basis of coronary anatomy as visualized by invasive coronary angiography (FFRangio): 100 coronary lesions (50% to 90% diameter stenosis) in 73 patients (48 men, 25 women; mean age 67 ± 9 years) were studied. On the basis of coronary angiograms acquired at rest from 2 views at angulations at least 30° apart, a PC-based computational fluid dynamics modeling software used personalized boundary conditions determined from 3-dimensional reconstructed angiography, heart rate, and blood pressure to derive FFRangio. The results were compared with FFRinvasive. Interobserver variability was determined in a subset of 25 narrowings. Twenty-nine of 100 coronary lesions were hemodynamically significant (FFRinvasive ≤ 0.80). FFRangio identified these with an accuracy of 90%, sensitivity of 79%, specificity of 94%, positive predictive value of 85%, and negative predictive value of 92%. The area under the receiver operating characteristic curve was 0.93. Correlation between FFRinvasive (mean: 0.84 ± 0.11) and FFRangio (mean: 0.85 ± 0.12) was r = 0.85. Interobserver variability of FFRangio was low, with a correlation of r = 0.88. In conclusion, estimation of coronary FFR with PC-based computational fluid dynamics modeling on the basis of lesion morphology as determined by invasive angiography is possible with high diagnostic accuracy compared to invasive measurements.

  15. Computational approach for probing the flow through artificial heart devices.

    PubMed

    Kiris, C; Kwak, D; Rogers, S; Chang, I D

    1997-11-01

    Computational fluid dynamics (CFD) has become an indispensable part of aerospace research and design. The solution procedure for incompressible Navier-Stokes equations can be used for biofluid mechanics research. The computational approach provides detailed knowledge of the flowfield complementary to that obtained by experimental measurements. This paper illustrates the extension of CFD techniques to artificial heart flow simulation. Unsteady incompressible Navier-Stokes equations written in three-dimensional generalized curvilinear coordinates are solved iteratively at each physical time step until the incompressibility condition is satisfied. The solution method is based on the pseudocompressibility approach. It uses an implicit upwind-differencing scheme together with the Gauss-Seidel line-relaxation method. The efficiency and robustness of the time-accurate formulation of the numerical algorithm are tested by computing the flow through model geometries. A channel flow with a moving indentation is computed and validated by experimental measurements and other numerical solutions. In order to handle the geometric complexity and the moving boundary problems, a zonal method and an overlapped grid embedding scheme are employed, respectively. Steady-state solutions for the flow through a tilting-disk heart valve are compared with experimental measurements. Good agreement is obtained. Aided by experimental data, the flow through an entire Penn State artificial heart model is computed.

  16. Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation.

    PubMed Central

    Wang, X B; Vykoukal, J; Becker, F F; Gascoyne, P R

    1998-01-01

    The characterization of a dielectrophoretic/gravitational field-flow-fractionation (DEP/G-FFF) system using model polystyrene (PS) microbeads is presented. Separations of PS beads of different surface functionalization (COOH and none) and different sizes (6, 10, and 15 microm in diameter) are demonstrated. To investigate the factors influencing separation performance, particle elution times were determined as a function of particle suspension conductivity, fluid flow rate, and applied field frequency and voltage. Experimental data were analyzed using a previously reported theoretical model and good agreement between theory and experiment was found. It was shown that separation of PS beads was based on the differences in their effective dielectric properties. Particles possessing different dielectric properties were positioned at different heights in a fluid-flow profile in a thin chamber by the balance of DEP and gravitational forces, transported at different velocities under the influence of the fluid flow, and thereby separated. To explore hydrodynamic (HD) lift effects, velocities of PS beads were determined as a function of fluid flow rate in the separation chamber when no DEP field was applied. In this case, particle equilibrium height positions were governed solely by the balance of HD lift and gravitational forces. It was concluded that under the experimental conditions reported here, the DEP force was the dominant factor in controlling particle equilibrium height and that HD lift force played little role in DEP/G-FFF operation. Finally, the influence of various experimental parameters on separation performance was discussed for the optimization of DEP/G-FFF. PMID:9591693

  17. Self-Contained Compressed-Flow Generation Device for Use in Making Differential Measurements

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2014-01-01

    A device used in making differential measurements of a flow includes a flow obstruction and a support arm. The flow obstruction's forward portion is a nose cone. The flow obstruction's aft portion is coupled to the nose cone. The support arm's first end is coupled to an exterior wall of a conduit, and its second end is coupled to the forward portion of the flow obstruction. The support arm positions the flow obstruction in the conduit such that a flow region is defined around its nose cone, and such that the support arm's first and second end are separated from one another with respect to a length dimension of the conduit. Measurement ports are provided in the support arm and flow obstruction. Manifolds extending through the flow obstruction and support arm couple the ports to points at the exterior wall of the conduit.

  18. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  19. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  20. Study on aggregation behavior of Cytochrome C-conjugated silver nanoparticles using asymmetrical flow field-flow fractionation.

    PubMed

    Kim, Sun Tae; Lee, Yong-Ju; Hwang, Yu-Sik; Lee, Seungho

    2015-01-01

    In this study, 40 nm silver nanoparticles (AgNPs) were synthesized using the citrate reduction method and then the surface of AgNPs was modified by conjugating Cytochrome C (Cyto C) to improve stability and to enhance bioactivity and biocompatibility of AgNPs. It is known that Cyto C may undergo conformational changes under various conditions of pH, temperature, ionic strength, etc., resulting in aggregation of the particles. These parameters also affect the size and size distribution of Cyto C-conjugated AgNPs (Cyto C-AgNP). ζ-potential measurement revealed that the adsorption of Cyto C on the surface of AgNPs is saturated at the molar ratio [Cyto C]/[AgNPs] above about 300. Asymmetrical flow field-flow fractionation (AsFlFFF) analysis showed that hydrodynamic diameter of AgNPs increases by about 4 nm when the particle is saturated by Cyto C. The aggregation behavior of Cyto C-AgNP at various conditions of pH, temperature and ionic strength were investigated using AsFlFFF and UV-vis spectroscopy. It was found that the aggregation of Cyto C-AgNP increases with decreasing pH, increasing temperature and ionic strength due to denaturation of Cyto C on AgNPs and reduction in the thickness of electrostatic double layer on the surface of Cyto C-AgNP.

  1. Aggregation behavior of fullerenes in aqueous solutions: a capillary electrophoresis and asymmetric flow field-flow fractionation study.

    PubMed

    Astefanei, Alina; Núñez, Oscar; Galceran, Maria Teresa; Kok, Wim Th; Schoenmakers, Peter J

    2015-10-01

    In this work, the electrophoretic behavior of hydrophobic fullerenes [buckminsterfullerene (C60), C70, and N-methyl-fulleropyrrolidine (C60-pyrr)] and water-soluble fullerenes [fullerol (C60(OH)24); polyhydroxy small gap fullerene, hydrated (C120(OH)30); C60 pyrrolidine tris acid (C60-pyrr tris acid); and (1,2-methanofullerene C60)-61-carboxylic acid (C60CHCOOH)] in micellar electrokinetic capillary chromatography (MECC) was evaluated. The aggregation behavior of the water-soluble compounds in MECC at different buffer and sodium dodecyl sulfate (SDS) concentrations and pH values of the background electrolyte (BGE) was studied by monitoring the changes observed in the electrophoretic pattern of the peaks. Broad and distorted peaks that can be attributed to fullerene aggregation were obtained in MECC which became narrower and more symmetric by working at low buffer and SDS concentrations (below the critical micelle concentration, capillary zone electrophoresis (CZE) conditions). For the characterization of the suspected aggregates formed (size and shape), asymmetrical flow field-flow fractionation (AF4) and transmission electron microscopy (TEM) were used. The results showed that the increase in the buffer concentration promoted the aggregation of the particles, while the presence of SDS micelles revealed multiple peaks corresponding to particles of different aggregation degrees. Furthermore, MECC has been applied for the first time for the analysis of C60 in two different cosmetic products (i.e., anti-aging serum and facial mask).

  2. Complementary use of flow and sedimentation field-flow fractionation techniques for size characterizing biodegradable poly(lactic acid) nanospheres.

    PubMed

    Contado, Catia; Dalpiaz, Alessandro; Leo, Eliana; Zborowski, Maciej; Williams, P Stephen

    2007-07-20

    Poly(lactic acid) (PLA) nanoparticles were synthesized using a modified evaporation method, testing two different surfactants (sodium cholate and Pluronic F68) for the process. During their formulation the prodrug 5'-octanoyl-CPA (Oct-CPA) of the anti-ischemic N(6)-cyclopentyladenosine (CPA) was encapsulated. Three different purification methods were compared with respect to the influence of surfactant on the size characteristics of the final nanoparticle product. Flow and sedimentation field-flow fractionation techniques (FlFFF and SdFFF, respectively) were used to size characterize the five poly(lactic acid) particle samples. Two different combinations of carrier solution (mobile phase) were employed in the FlFFF analyses, while a solution of poly(vinyl alcohol) was used as mobile phase for the SdFFF runs. The separation performances of the two techniques were compared and the particle size distributions (PSDs), derived from the fractograms, were interpreted with the support of observations by scanning electron microscopy. Some critical aspects, such as the carrier choice and the channel thickness determination for the FlFFF, have been investigated. This is the first comprehensive comparison of the two FFF techniques for characterizing non-standard particulate materials. The two FFF techniques proved to be complementary and gave good, congruent and very useful information on the size distributions of the five poly(lactic acid) particle samples.

  3. Complementary use of flow and sedimentation field-flow fractionation techniques for size characterizing biodegradable poly(lactic acid) nanospheres

    PubMed Central

    Contado, Catia; Dalpiaz, Alessandro; Leo, Eliana; Zborowski, Maciej; Williams, P. Stephen

    2009-01-01

    Poly(lactic acid) nanoparticles were synthesized using a modified evaporation method, testing two different surfactants (sodium cholate and Pluronic F68) for the process. During their formulation the prodrug 5′-octanoyl-CPA (Oct-CPA) of the antiischemic N6-cyclopentyladenosine (CPA) was encapsulated. Three different purification methods were compared with respect to the influence of surfactant on the size characteristics of the final nanoparticle product. Flow and sedimentation field-flow fractionation techniques (FlFFF and SdFFF, respectively) were used to size characterize the five poly(lactic acid) particle samples. Two different combinations of carrier solution (mobile phase) were employed in the FlFFF analyses, while a solution of poly(vinyl alcohol) was used as mobile phase for the SdFFF runs. The separation performances of the two techniques were compared and the particle size distributions, derived from the fractograms, were interpreted with the support of observations by scanning electron microscopy. Some critical aspects, such as the carrier choice and the channel thickness determination for the FlFFF, have been investigated. This is the first comprehensive comparison of the two FFF techniques for characterizing non standard particulate materials. The two FFF techniques proved to be complementary and gave good, congruent and very useful information on the size distributions of the five poly(lactic acid) particle samples. PMID:17482199

  4. Development and evaluation of methods for starch dissolution using asymmetrical flow field-flow fractionation. Part II: Dissolution of amylose.

    PubMed

    Perez-Rea, Daysi; Bergenståhl, Björn; Nilsson, Lars

    2016-02-01

    In this paper, we investigate whether dissolution in water under autoclaving conditions (140 °C, 20 min) or in dimethyl sulfoxide, DMSO (100 °C, 1 h), is preferable for characterization of amylose. Two types of amylose, potato and maize, were dissolved either in water using an autoclave or in DMSO. On the aqueous solutions obtained, the extent of molecular dissolution of the sample (referred to as the dissolution yield) was determined by enzymatic analysis as well as the molecular properties, such as molar mass and root-mean-square radius, obtained with asymmetrical flow field-flow fractionation coupled to multi-angle light scattering and differential refractive index detection (AF4-MALS-dRI). The results showed that both dissolution methods are efficient at dissolving amylose. However, AF4-MALS-dRI analysis revealed substantial differences. Amylose aqueous solutions obtained by dissolution in DMSO were relatively stable over time, but the dissolution method in autoclave caused some degradation of the molecules, and their solutions display a high tendency to retrograde.

  5. Monitoring the Erosion of Hydrolytically-Degradable Nanogels via Multiangle Light Scattering Coupled to Asymmetrical Flow Field-Flow Fractionation

    PubMed Central

    Smith, Michael H.; South, Antoinette B.; Gaulding, Jeffrey C.; Lyon, L. Andrew

    2009-01-01

    We describe the synthesis and characterization of degradable nanogels that display bulk erosion under physiologic conditions (pH = 7.4, 37 °C). Erodible poly(N-isopropylmethacrylamide) nanogels were synthesized by copolymerization with N,O-(dimethacryloyl)hydroxylamine, a cross-linker previously used in the preparation of non-toxic and biodegradable bulk hydrogels. To monitor particle degradation, we employed multiangle light scattering and differential refractometry detection following asymmetrical flow field-flow fractionation. This approach allowed the detection of changes in nanogel molar mass and topology as a function of both temperature and pH. Particle erosion was evident from both an increase in nanogel swelling and a decrease in scattering intensity as a function of time. Following these analyses, the samples were recovered for subsequent characterization by direct particle tracking, which yields hydrodynamic size measurements and enables number density determination. Additionally, we confirmed the conservation of nanogel stimuli-responsivity through turbidity measurements. Thus, we have demonstrated the synthesis of degradable nanogels that erode under conditions and on timescales that are relevant for many drug delivery applications. The combined separation and light scattering detection method is demonstrated to be a versatile means to monitor erosion and should also find applicability in the characterization of other degradable particle constructs. PMID:20000662

  6. The obstacle block as a device to measure turbulent skin friction in compressible flow

    NASA Technical Reports Server (NTRS)

    Elfstrom, G. M.; Kostopoulos, C.; Peake, D. J.; Fisher, D. F.

    1982-01-01

    The obstacle block, developed as an alternative to the Preston tube for indirectly measuring skin friction on smooth surfaces in incompressible flows, is examined as a device for compressible flows as well. The block, which is congruent with a surface static pressure orifice, has a geometry which is easily specified and thus has a universal calibration. Data from two independent studies are used to establish such a calibration using 'wall' variables, valid for Mach numbers up to about 3. Various aspects concerning practical application of the device are examined, such as sensitivity to yaw and the minimum permissible axial spacing between blocks. Several examples showing the utility of the device are given.

  7. Student-Fabricated Microfluidic Devices as Flow Reactors for Organic and Inorganic Synthesis

    ERIC Educational Resources Information Center

    Feng, Z. Vivian; Edelman, Kate R.; Swanson, Benjamin P.

    2015-01-01

    Flow synthesis in microfluidic devices has been rapidly adapted in the pharmaceutical industry and in many research laboratories. Yet, the cost of commercial flow reactors is a major factor limiting the dissemination of this technology in the undergraduate curriculum. Here, we present a laboratory activity where students design and fabricate…

  8. A Device to Emulate Diffusion and Thermal Conductivity Using Water Flow

    ERIC Educational Resources Information Center

    Blanck, Harvey F.

    2005-01-01

    A device designed to emulate diffusion and thermal conductivity using flowing water is reviewed. Water flowing through a series of cells connected by a small tube in each partition in this plastic model is capable of emulating diffusion and thermal conductivity that occurs in variety of systems described by several mathematical equations.

  9. Student-Fabricated Microfluidic Devices as Flow Reactors for Organic and Inorganic Synthesis

    ERIC Educational Resources Information Center

    Feng, Z. Vivian; Edelman, Kate R.; Swanson, Benjamin P.

    2015-01-01

    Flow synthesis in microfluidic devices has been rapidly adapted in the pharmaceutical industry and in many research laboratories. Yet, the cost of commercial flow reactors is a major factor limiting the dissemination of this technology in the undergraduate curriculum. Here, we present a laboratory activity where students design and fabricate…

  10. A Device to Emulate Diffusion and Thermal Conductivity Using Water Flow

    ERIC Educational Resources Information Center

    Blanck, Harvey F.

    2005-01-01

    A device designed to emulate diffusion and thermal conductivity using flowing water is reviewed. Water flowing through a series of cells connected by a small tube in each partition in this plastic model is capable of emulating diffusion and thermal conductivity that occurs in variety of systems described by several mathematical equations.

  11. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, J.R.

    1980-05-02

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  12. Development of a flow rate monitoring method for the wearable ventricular assist device driver.

    PubMed

    Ohnuma, Kentaro; Homma, Akihiko; Sumikura, Hirohito; Tsukiya, Tomonori; Takewa, Yoshiaki; Mizuno, Toshihide; Mukaibayashi, Hiroshi; Kojima, Koichi; Katano, Kazuo; Taenaka, Yoshiyuki; Tatsumi, Eisuke

    2015-06-01

    Our research institute has been working on the development of a compact wearable drive unit for an extracorporeal ventricular assist device (VAD) with a pneumatically driven pump. A method for checking the pump blood flow on the side of the drive unit without modifying the existing blood pump and impairing the portability of it will be useful. In this study, to calculate the pump flow rate indirectly from measuring the flow rate of the driving air of the VAD air chamber, we conducted experiments using a mock circuit to investigate the correlation between the air flow rate and the pump flow rate as well as its accuracy and error factors. The pump flow rate was measured using an ultrasonic flow meter at the inflow and outflow tube, and the air flow was measured using a thermal mass flow meter at the driveline. Similarity in the instantaneous waveform was confirmed between the air flow rate in the driveline and the pump flow rate. Some limitations of this technique were indicated by consideration of the error factors. A significant correlation was found between the average pump flow rate in the ejecting direction and the average air flow rate in the ejecting direction (R2 = 0.704-0.856), and the air flow rate in the filling direction (R2 = 0.947-0.971). It was demonstrated that the average pump flow rate was estimated exactly in a wide range of drive conditions using the air flow of the filling phase.

  13. Chips: How to build and implement fluidic devices in flow based systems.

    PubMed

    Cerdà, Víctor; Avivar, Jessica; Moreno, Daniel

    2017-05-01

    The development of automatic analyzers based on flow techniques involves the use and continuous innovation of fluidic devices. New trends tend toward miniaturization of sophisticated fluidic platforms requiring continuous advances in this field. The availability of a mechanic and electronic workshop together with the know-how to build new fluidic devices provides the tools for the creation of innovative instrumentation and stimulates the creativity of analytical chemists. Thus, in this review we present how to build and use flow-based fluidic devices, together with the tools required, such as computerized controlled lathes, milling machines, laser engraver machines, low-temperature co-fired ceramics technology and 3D printers, highlighting their strong and weak points. In addition, some flow based methods exploiting innovative fluidic platforms are also presented as a way of example of the possible devices these tools can provide and their potential applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Microvalve and micropump controlled shuttle flow microfluidic device for rapid DNA hybridization.

    PubMed

    Huang, Shuqiang; Li, Chunyu; Lin, Bingcheng; Qin, Jianhua

    2010-11-07

    We present a novel microfluidic device integrated with microvalves and micropumps for rapid DNA hybridization using shuttle flow. The device is composed of 48 hybridization units containing 48 microvalves and 96 micropumps for the automation of shuttle flow. We used four serotypes of Dengue Virus genes (18mer) to demonstrate that the automatic shuttle flow shortened the hybridization time to 90 s, reduced sample consumption to 1 μL and lowered detection limit to 100 pM (100 amol in a 1 μL sample). Moreover, we applied this device to realize single base discrimination and analyze 48 samples containing different DNA targets, simultaneously. For kinetic measurements of nucleotide hybridization, on-line monitoring of the processes was carried out. This rapid hybridization device has the ability for accommodating the entire hybridization process (i.e., injection, hybridization, washing, detection, signal acquisition) in an automated and high-throughput fashion.

  15. Flow and Geometry Control the Onset of Jamming in Fractures with High Solid-Fraction Fluids

    NASA Astrophysics Data System (ADS)

    Medina, R.; Elkhoury, J. E.; Shannon, L. J.; Detwiler, R. L.; Morris, J.; Prioul, R.; Desroches, J.

    2013-12-01

    Fluids containing a large fraction of suspended solids are common in the subsurface. Examples include fluids used for environmental remediation, hydraulic fracturing fluids and magma. These fluid-solid mixtures behave as non-Newtonian fluids where interactions between fluid, suspended solids, and pore walls can lead to jamming of the suspended solids. Jamming causes the velocity of the solid to decrease locally to zero causing a rapid decrease in permeability as the fluid is forced to flow through the pore space within the immobilized solid. Here we present results from experiments that quantify the flow of non-Newtonian suspensions in an analog parallel-plate fracture (transparent 15cm x 15cm with ~3-mm aperture) and explore the dependence of jamming on flow conditions, fracture geometry, and the action of gravity. We used guar gum mixed with water (0.75%) as the fluid and added 50% by volume of crushed silica (< 300μm). Flow rates ranged from 0.2ml/min to 6.0ml/min, cell orientation varied from horizontal to vertical (bottom to top) flow and a transducer provided continuous measurement of differential pressure across the cell. A strobed LED panel backlit the cell and a high-resolution CCD camera captured frequent (0.2 Hz) images during all experiments. Particle image velocimetry (PIV) yielded measurements of the evolving velocity field during experiments (see Figure). In the vertical orientation during the initial period of high flow rate, outflow decreased rapidly and the differential pressure increased indicating jamming within the cell. Subsequent efforts to flush solids from the cell suggested that jamming occurred at the inlet of the cell. This was likely due to settling of solids within the flow field indicating that the time scale associated with settling was shorter than the time scale of advection through the cell. In the horizontal orientation, localized jamming occurred at the lowest flow rate in a region near the outlet. This suggests that when

  16. Flow visualization of a pediatric ventricular assist device during stroke volume reductions related to weaning.

    PubMed

    Roszelle, Breigh N; Deutsch, Steven; Weiss, William J; Manning, Keefe B

    2011-07-01

    The aim of this study is to define the fluid mechanics of a pulsatile pneumatically driven pediatric ventricular assist device (PVAD), for the reduced flow rates encountered during device weaning and myocardial recovery, and relate the results to the potential for thromboembolic events. We place an acrylic model of the PVAD in a mock circulatory loop filled with a viscoelastic blood analog and operate at four stroke volumes (SVs), each with two different filling conditions, to mimic how the flow rate of the device may be reduced. Particle image velocimetry is used to acquire flow field data. We find that a SV reduction method provides better rotational flow and higher wall shear rates than a beat rate reduction method; that a quick filling condition with a compressed diastolic time is better than a slow filling condition; and, that a reduction in SV to 40% led to greatly reduced fluid movement and wall shear rates that could increase the thrombogenicity of the device. SV reduction is a viable option for flow reduction during weaning, however, it does lead to significant changes to the device flow field and future studies are needed to develop operational protocols for the PVAD during bridge-to-recovery.

  17. Commissioning and clinical results utilizing the Gildenberg-Laitinen Adapter Device for X-ray in fractionated stereotactic radiotherapy.

    PubMed

    Ashamalla, H; Addeo, D; Ikoro, N C; Ross, P; Cosma, M; Nasr, N

    2003-06-01

    The Gildenberg-Laitinen Adapter Device for X-Ray (GLAD-X/LS) frame is a positioning device that allows the use of the same fiducial points as the Brown-Robert-Wells (BRW) system. Thus it permits treatment planning to be accomplished by the Radionics X-knife Radiosurgery Program. We investigated the commissioning and clinical benefits of the GLAD-X/LS for fractionated stereotactic radiotherapy (FSRT) in patients who were unable to tolerate the Gill-Thomas-Cosman (GTC) frame. Commissioning of the GLAD-X/LS system was done via use of a Rando Phantom. A target volume of 2 x 2 x 2 cm was drilled into the phantom head. An ion chamber and thermoluminescence dosimetric chips (TLDs) were implanted in the target. A simulated treatment course consisting of 5 stereotactic radiotherapy fractions (300 cGy, 30 mm collimator) was delivered to the phantom head. A total of 27 patients who could not tolerate the GTC frame were treated using the GLAD-X/LS system. A total of 35 isocenters were used; the median number of treatment fractions was eight. Reproducibility of the x, y, and z coordinates was examined and correlated to the same determined using orthogonal port films. Relocation accuracy and reproducibility were further assessed comparing the x, y, and z coordinates of the target center with multiplanar reconstructed coronal and sagittal images. Patient tolerance of the device was also evaluated daily throughout the treatment. The measured TLD and ion chamber doses were within 3% of the prescribed dose at the isocenter. The same dose accuracy was also found at incremental distances of 5 mm, 10 mm, and 15 mm from the isocenter. All patients tolerated the treatment and the device well. Six patients experienced mild ear canal pain, and softer or smaller earpieces were substituted. The mean relocation accuracy was 1.5 mm +/- 0.8. The GLAD-X/LS system has excellent accuracy and reproducibility with the mean relocation accuracy of 1.5 mm +/- 0.8. The device is well-tolerated by

  18. Physiologic Assessment of Coronary Artery Disease: Focus on Fractional Flow Reserve.

    PubMed

    Hwang, Doyeon; Lee, Joo Myung; Koo, Bon-Kwon

    2016-01-01

    The presence of myocardial ischemia is the most important prognostic factor in patients with ischemic heart disease. Fractional flow reserve (FFR) is a gold standard invasive method used to detect the stenosis-specific myocardial ischemia. FFR-guided revascularization strategy is superior to angiography-guided strategy. The recently developed hyperemia-free index, instantaneous wave free ratio is being actively investigated. A non-invasive FFR derived from coronary CT angiography is now used in clinical practice. Due to rapid expansion of invasive and non-invasive physiologic assessment, comprehensive understanding of the role and potential pitfalls of each modality are required for its application. In this review, we focus on the basic and clinical aspects of physiologic assessment in ischemic heart disease.

  19. Size characterization of inclusion bodies by sedimentation field-flow fractionation

    PubMed Central

    Margreiter, Gerd; Messner, Paul; Caldwell, Karin D.; Bayer, Karl

    2015-01-01

    Sedimentation field-flow fractionation (sedFFF) was evaluated to characterize the size of Δ(4–23)TEM-β-lactamase inclusion bodies (IBs) overexpressed in fed-batch cultivations of Escherichia coli. Heterologous Δ(4–23)TEM-β-lactamase protein formed different sizes of IBs, depending upon the induction conditions. In the early phases of recombinant protein expression, induced with low concentrations of IPTG (isopropyl-β-d-thiogalactoside), IB masses were larger than expected and showed heterogeneous size distributions. During cultivation, IB sizes showed a Gaussian distribution and reached a broad range by the end of the fed-batch cultivations. The obtained result proved the aptitude of sedFFF to rapidly assess the size distribution of IBs in a culture. PMID:18760314

  20. Storage of Fractional Flow Reserve Hemodynamic Waveforms Using Semantic Extension of the DICOM Standard.

    PubMed

    Kakouros, Nikolaos

    2016-06-01

    Visual assessment of coronary stenoses by coronary angiography remains widely used but correlates poorly with ischemia, particularly for moderate lesions. Fractional flow reserve (FFR) is a cardiac catheterization procedure that aims to provide objective measures of coronary lesion hemodynamic significance and involves the acquisition of phasic pressure and electrocardiographic waveforms. The dataset from these procedures currently remains in proprietary systems with restricted data access, inability for data exchange, and often inadequate archiving. Digital Imaging and Communications in Medicine (DICOM) includes a waveform information object definition. We describe the method of encapsulating FFR procedural information into a DICOM waveform file. We define private data elements to capture modality-specific data that is not represented by standard DICOM data elements. We propose the adoption of this semantic extension of the DICOM waveform information object for exchange and archiving of data from studies of pressure-derived indices of coronary stenoses.

  1. [Measurement of fractional flow reserve in patients with severe aortic stenosis: A valid test?

    PubMed

    Kikoïne, J; Lebon, M; Gouffran, G; Millischer, D; Cattan, S; Nallet, O

    2016-11-01

    A 54-year-old woman was hospitalized for an acute pulmonary oedema revealing a severe aortic stenosis (AS) associated with an aortic aneurysm and a left ventricular hypertrophy (LVH). The coronary angiography found an equivocal left main lesion. Fractional flow reserve (FFR) showed hemodynamic significance (FFR=0.78) and optical coherence tomography confirmed this result with a minimal lumen area of 4.9mm(2). FFR-guided percutaneous intervention is reported to improve outcome in patients with stable coronary disease. However, only few data are available in cases of AS. In this condition, secondary LVH is associated with microcirculatory dysfunction, which interferes with optimal hyperemia. An elevated right atrial pressure could also modify FFR measurement. This risk of underestimation of a coronary lesion in patients with severe AS has to be taken into consideration in clinical practice.

  2. Metoprolol does not effect myocardial fractional flow reserve in patients with intermediate coronary stenoses.

    PubMed

    Ozdemir, Murat; Yazici, Guliz Erdem; Turkoglu, Sedat; Timurkaynak, Timur; Cengel, Atiye

    2007-07-01

    Myocardial fractional flow reserve (FFR) is utilized to determine the hemodynamic significance of coronary stenoses. We sought to determine the effect, if any, of metoprolol on FFR in patients with coronary stenoses of intermediate severity. Eighteen patients (10 males, mean age, 59.4 +/- 7.7 years) with isolated, intermediate (30% to 70% narrowing on coronary angiogram) lesions on the proximal LAD and a preserved ejection fraction, underwent FFR measurement using a 0.014 inch pressurewire and intracoronary adenosine injection before and after intravenous metoprolol at a dose that achieved at least a 10% decrease in the heart rate. Heart rate dropped significantly with metoprolol. At the premetoprolol measurement, aortic pressure (Pa) remained essentially the same (105.7 +/- 11.5 versus 105.6 +/- 11.6 mmHg, P > 0.05) and distal coronary pressure (Pd) dropped significantly by 9% from 96.3 +/- 12.7 to 87.4 +/- 13.4 mmHg (P < 0.001) after adenosine injection yielding an FFR(1) of 0.83 +/- 0.07. At the postmetoprolol phase, Pa dropped nonsignificantly by 2% from 104.4 +/- 12.8 to 102.4 +/- 14.3 mmHg (P = 0.09) and Pd dropped significantly by 11% from 95.7 +/- 14.4 to 85.3 +/- 16.4 mmHg (P < 0.001) after adenosine injection, yielding an FFR(2) of 0.83 +/- 0.08, which was almost exactly the same as FFR(1) (P > 0.05). In this study, FFR was found not to be influenced by metoprolol treatment in patients with intermediate coronary stenoses and a preserved ejection fraction.

  3. Magnetic Nanoparticle Drug Carriers and their Study by Quadrupole Magnetic Field-Flow Fractionation

    PubMed Central

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2009-01-01

    Magnetic nanoparticle drug carriers continue to attract considerable interest for drug targeting in the treatment of cancers and other pathological conditions. The efficient delivery of therapeutic levels of drug to a target site while limiting nonspecific, systemic toxicity requires optimization of the drug delivery materials, the applied magnetic field, and the treatment protocol. The history and current state of magnetic drug targeting is reviewed. While initial studies involved micron-sized and larger carriers, and work with these microcarriers continues, it is the sub-micron carriers or nanocarriers that are of increasing interest. An aspect of magnetic drug targeting using nanoparticle carriers that has not been considered is then addressed. This aspect involves the variation in the magnetic properties of the nanocarriers. Quadrupole magnetic field-flow fractionation (QMgFFF) is a relatively new technique for characterizing magnetic nanoparticles. It is unique in its capability of determining the distribution in magnetic properties of a nanoparticle sample in suspension. The development and current state of this technique is also reviewed. Magnetic nanoparticle drug carriers have been found by QMgFFF analysis to be highly polydisperse in their magnetic properties, and the strength of response of the particles to magnetic field gradients is predicted to vary by orders of magnitude. It is expected that the least magnetic fraction of a formulation will contribute the most to systemic toxicity, and the depletion of this fraction will result in a more effective drug carrying material. A material that has a reduced systemic toxicity will allow higher doses of cytotoxic drugs to be delivered to the tumor with reduced side effects. Preliminary experiments involving a novel method of refining a magnetic nanoparticle drug carrier to achieve this result are described. QMgFFF is used to characterize the refined and unrefined material. PMID:19591456

  4. Iron-rich colloids as carriers of phosphorus in streams: A field-flow fractionation study.

    PubMed

    Baken, Stijn; Regelink, Inge C; Comans, Rob N J; Smolders, Erik; Koopmans, Gerwin F

    2016-08-01

    Colloidal phosphorus (P) may represent an important fraction of the P in natural waters, but these colloids remain poorly characterized. In this work, we demonstrate the applicability of asymmetric flow field-flow fractionation (AF4) coupled to high resolution ICP-MS for the characterization of low concentrations of P-bearing colloids. Colloids from five streams draining catchments with contrasting properties were characterized by AF4-ICP-MS and by membrane filtration. All streams contain free humic substances (2-3 nm) and Fe-bearing colloids (3-1200 nm). Two soft water streams contain primary Fe oxyhydroxide-humic nanoparticles (3-6 nm) and aggregates thereof (up to 150 nm). In contrast, three harder water streams contain larger aggregates (40-1200 nm) which consist of diverse associations between Fe oxyhydroxides, humic substances, clay minerals, and possibly ferric phosphate minerals. Despite the diversity of colloids encountered in these contrasting streams, P is in most of the samples predominantly associated with Fe-bearing colloids (mostly Fe oxyhydroxides) at molar P:Fe ratios between 0.02 and 1.5. The molar P:Fe ratio of the waters explains the partitioning of P between colloids and truly dissolved species. Waters with a high P:Fe ratio predominantly contain truly dissolved species because the Fe-rich colloids are saturated with P, whereas waters with a low P:Fe ratio mostly contain colloidal P species. Overall, AF4-ICP-MS is a suitable technique to characterize the diverse P-binding colloids in natural waters. Such colloids may increase the mobility or decrease the bioavailability of P, and they therefore need to be considered when addressing the transport and environmental effects of P in catchments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Frit inlet field-flow fractionation techniques for the characterization of polyion complex self-assemblies.

    PubMed

    Till, Ugo; Gaucher, Mireille; Amouroux, Baptiste; Gineste, Stéphane; Lonetti, Barbara; Marty, Jean-Daniel; Mingotaud, Christophe; Bria, Carmen R M; Williams, S Kim Ratanathanawongs; Violleau, Frédéric; Mingotaud, Anne-Françoise

    2017-01-20

    Polymer self-assemblies joining oppositely charged chains, known as polyion complexes (PICs), have been formed using poly(ethyleneoxide - b - acrylic acid)/poly(l-lysine), poly(ethyleneoxide-b-acrylic acid)/dendrigraft poly(l-lysine) and poly[(3-acrylamidopropyl) trimethylammonium chloride - b - N - isopropyl acrylamide]/poly(acrylic acid). The self-assemblies have been first characterized in batch by Dynamic Light Scattering. In a second step, their analysis by Flow Field-Flow Fractionation techniques (FlFFF) was examined. They were shown to be very sensitive to shearing, especially during the focus step of the fractionation, and this led to an incompatibility with asymmetrical FlFFF. On the other hand, Frit Inlet FlFFF proved to be very efficient to observe them, either in its symmetrical (FI-FlFFF) or asymmetrical version (FI-AsFlFFF). Conditions of elution were found to optimize the sample recovery in pure water. Spherical self-assemblies were detected, with a size range between 70-400nm depending on the polymers. Compared to batch DLS, FI-AsFlFFF clearly showed the presence of several populations in some cases. The influence of salt on poly(ethyleneoxide-b-acrylic acid) (PEO-PAA) 6000-3000/dendrigraft poly(l-lysine) (DGL 3) was also assessed in parallel in batch DLS and FI-AsFlFFF. Batch DLS revealed a first process of swelling of the self-assembly for low concentrations up to 0.8M followed by the dissociation. FI-AsFlFFF furthermore indicated a possible ejection of DGL3 from the PIC assembly for concentrations as low as 0.2M, which could not be observed in batch DLS.

  6. Size characterization by Sedimentation Field Flow Fractionation of silica particles used as food additives.

    PubMed

    Contado, Catia; Ravani, Laura; Passarella, Martina

    2013-07-25

    Four types of SiO2, available on the market as additives in food and personal care products, were size characterized using Sedimentation Field Flow Fractionation (SdFFF), SEM, TEM and Photon Correlation Spectroscopy (PCS). The synergic use of the different analytical techniques made it possible, for some samples, to confirm the presence of primary nanoparticles (10 nm) organized in clusters or aggregates of different dimension and, for others, to discover that the available information is incomplete, particularly that regarding the presence of small particles. A protocol to extract the silica particles from a simple food matrix was set up, enriching (0.25%, w w(-1)) a nearly silica-free instant barley coffee powder with a known SiO2 sample. The SdFFF technique, in conjunction with SEM observations, made it possible to identify the added SiO2 particles and verify the new particle size distribution. The SiO2 content of different powdered foodstuffs was determined by graphite furnace atomic absorption spectroscopy (GFAAS); the concentrations ranged between 0.006 and 0.35% (w w(-1)). The protocol to isolate the silica particles was so applied to the most SiO2-rich commercial products and the derived suspensions were separated by SdFFF; SEM and TEM observations supported the size analyses while GFAAS determinations on collected fractions permitted element identification. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Field-flow fractionation of chromosomes. Progress report, July 1, 1989--January 31, 1992

    SciTech Connect

    Giddings, J.C.

    1991-09-01

    The work done on this project is divided into two principal areas. The first involves the application of sedimentation/steric FFF to metaphase chromosomes in an attempt to fractionate the chromosomes according to their size. The preparation of chromosomes from a number of organisms was attempted; procedures were finally worked out in collaboration with Los Alamos National Laboratory for the preparation of metaphase chromosomes from Chinese hamster cells. After extensive experimental work was done to identify suitable operating conditions, the partial fractionation of the Chinese hamster chromosomes was achieved. In the second component of the project, flow FFF was applied to the separation of DNA fragments. Figures are provided that show considerable success in the separation of plasmid digests and in the separation of single from double stranded DNA under 10{sup 4} base pairs. Preliminary work was done on DNA fragments having a size greater than 10{sup 4} base pairs. This work has served to establish the inversion point for DNA.

  8. A new contactless impedance sensor for void fraction measurement of gas-liquid two-phase flow

    NASA Astrophysics Data System (ADS)

    Ji, Haifeng; Chang, Ya; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2016-12-01

    With impedance elimination principle and phase sensitive demodulation (PSD) technique, this work aims to develop a new contactless impedance sensor, which is suitable for the void fraction measurement of gas-liquid two-phase flow. The impedance elimination principle is used to overcome the unfavorable influences of the coupling capacitances, i.e. the capacitive reactances of the coupling capacitances are eliminated by the inductive reactance of an introduced inductor. PSD technique is used to implement the impedance measurement. Unlike the conventional conductance/impedance sensors which use the equivalent conductance (the real part of the impedance) or the amplitude of the impedance of gas-liquid two-phase flow, the new contactless impedance sensor makes full use of the total impedance information of gas-liquid two-phase flow (including the amplitude, the real part and the imaginary part of the impedance, especially the imaginary part) to implement the void fraction measurement. As a preliminary study, to verify the effectiveness of the new contactless impedance sensor, two prototypes (with different inner diameters of 17.0 mm and 22.0 mm) are developed and experiments are carried out. Two typical flow patterns (bubble flow and stratified flow) of gas-liquid two-phase flow are investigated. The experimental results show that the new contactless impedance sensor is successful and effective. Compared with the conventional conductance/impedance sensors, the new contactless impedance sensor can avoid polarization effect and electrochemical erosion effect. The total impedance information is used and the void fraction measurement performance of the new sensor is satisfactory. The experimental results also indicate that the imaginary part of the impedance of gas-liquid two-phase flow is very useful for the void fraction measurement. Making full use of the total impedance information of gas-liquid two-phase flow can effectively improve the void fraction measurement

  9. Neurocognitive function in destination therapy patients receiving continuous-flow vs pulsatile-flow left ventricular assist device support.

    PubMed

    Petrucci, Ralph J; Rogers, Joseph G; Blue, Laura; Gallagher, Colleen; Russell, Stuart D; Dordunoo, Dzifa; Jaski, Brian E; Chillcott, Suzanne; Sun, Benjamin; Yanssens, Tammy L; Tatooles, Antone; Koundakjian, Lalig; Farrar, David J; Slaughter, Mark S

    2012-01-01

    The HeartMate II (Thoratec Corp, Pleasanton, CA) continuous-flow left ventricular assist device (LVAD) improved survival in destination therapy (DT) patients during a randomized trial compared with pulsatile-flow LVADs. This study documented changes in cognitive performance in DT patients from that trial to determine if there were differences between continuous-flow and pulsatile-flow support. Data were collected in a sub-study from 96 HeartMate II continuous-flow and 30 HeartMate XVE pulsatile-flow LVAD patients from 12 of the 35 trial sites that followed the same serial neurocognitive (NC) testing protocol at 1, 3, 6, 12, and 24 months after LVAD implantation. Spatial perception, memory, language, executive functions, and processing speed were the domains assessed with 10 standard cognitive measures. Differences over time and between LVAD type were evaluated with linear mixed-effects modeling. From 1 to 24 months after LVAD implantation, changes in NC functions were stable or showed improvement in all domains, and there were no differences between the continuous-flow and pulsatile-flow groups. Data at 24 months were only available from patients with the continuous-flow LVAD due to the limited durability of the HeartMate XVE device. There was no decline in any NC domain over the time of LVAD support. Missing data not collected from patients who died could have resulted in a bias toward inflated study results. The NC performance of advanced heart failure patients supported with continuous-flow and pulsatile-flow LVADs shows stabilization or improvement during support for up to 24 months. Copyright © 2012 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  10. Different elution modes and field programming in gravitational field-flow fractionation. Effect of channel angle.

    PubMed

    Park, Mi Ri; Kang, Da Young; Chmelik, Josef; Kang, Namgoo; Kim, Jin Seog; Lee, Seungho

    2008-10-31

    Gravitational field-flow fractionation (GrFFF) has been shown to be useful for separation and characterization of various types of micrometer-sized particles. It has been recognized however that GrFFF is less versatile than other members of FFF because the external field (Earth's gravity) in GrFFF is relatively weak and is not tunable (constant), which makes the force acting on the particles constant. A few approaches have been suggested to control the force acting on particles in GrFFF. They include (1) changing the angle between the Earth's gravitational field and the longitudinal axis of the channel, and (2) the use of carrier liquid having different densities. In the hyperlayer mode of GrFFF, the hydrodynamic lift force (HLF) also act on particles. The existence of HLF allows other means of changing the force acting on the particles in GrFFF. They include (1) the flow rate programming, or (2) the use of channels having non-constant cross-section. In this study, with polystyrene latex beads used as model particles, the channel angle was varied to study its effect on elution parameters (such as selectivity, band broadening and resolution) in the steric or in the hyperlayer mode of GrFFF. In addition, the effects of the channel thickness and the flow rate on the elution parameters were also investigated. It was found that, in the steric mode, the resolution decreases as the flow rate increases due to increased zone broadening despite of the increase in the selectivity. At a constant volumetric flow rate, both the zone broadening and the selectivity increase as the channel thickness increases, resulting in the net increase in the resolution. It was also found that the retention time decreases as the channel angle increases in both up- and down-flow positions. The zone broadening tends to increase almost linearly with the channel angle, while no particular trends were found in selectivity. As a result, the resolution decreases as the channel angle increases.

  11. Flow pattern, void fraction and pressure drop of two-phase air-water flow in a horizontal circular micro-channel

    SciTech Connect

    Saisorn, Sira; Wongwises, Somchai

    2008-01-15

    Adiabatic two-phase air-water flow characteristics, including the two-phase flow pattern as well as the void fraction and two-phase frictional pressure drop, in a circular micro-channel are experimentally studied. A fused silica channel, 320 mm long, with an inside diameter of 0.53 mm is used as the test section. The test runs are done at superficial velocity of gas and liquid ranging between 0.37-16 and 0.005-3.04 m/s, respectively. The flow pattern map is developed from the observed flow patterns i.e. slug flow, throat-annular flow, churn flow and annular-rivulet flow. The flow pattern map is compared with those of other researchers obtained from different working fluids. The present single-phase experiments also show that there are no significant differences in the data from the use of air or nitrogen gas, and water or de-ionized water. The void fraction data obtained by image analysis tends to correspond with the homogeneous flow model. The two-phase pressure drops are also used to calculate the frictional multiplier. The multiplier data show a dependence on flow pattern as well as mass flux. A new correlation of two-phase frictional multiplier is also proposed for practical application. (author)

  12. Inspiratory flow rate, not type of incentive spirometry device, influences chest wall motion in healthy individuals.

    PubMed

    Chang, Angela T; Palmer, Kerry R; McNaught, Jessie; Thomas, Peter J

    2010-08-01

    This study investigated the effect of flow rates and spirometer type on chest wall motion in healthy individuals. Twenty-one healthy volunteers completed breathing trials to either two times tidal volume (2xV(T)) or inspiratory capacity (IC) at high, low, or natural flow rates, using a volume- or flow-oriented spirometer. The proportions of rib cage movement to tidal volume (%RC/V(T)), chest wall diameters, and perceived level of exertion (RPE) were compared. Low and natural flow rates resulted in significantly lower %RC/V(T) compared to high flow rate trials (p=0.001) at 2xV(T). Low flow trials also resulted in significantly less chest wall motion in the upper anteroposterior direction than high and natural flow rates (p<0.001). At IC, significantly greater movement occurred in the abdominal lateral direction during low flow compared to high and natural flow trials (both p<0.003). RPE was lower for the low flow trials compared to high flow trials at IC and 2xV(T) (p<0.01). In healthy individuals, inspiratory flow (not device type) during incentive spirometry determines the resultant breathing pattern. High flow rates result in greater chest wall motion than low flow rates.

  13. Size-based analysis of incinerator fly ash using gravitational SPLITT fractionation, sedimentation field-flow fractionation, and inductively coupled plasma-atomic emission spectroscopy.

    PubMed

    Kim, Won-Suk; Park, Mira; Lee, Dai Woon; Moon, Myeong Hee; Lim, Heungbin; Lee, Seungho

    2004-02-01

    Fly ash has been regarded as hazardous because of its high adsorption of toxic organic and/or inorganic pollutants. Fly ash is also known to have broad distributions of different chemical and physical properties, such as size and density. In this study, fly ash emitted from a solid waste incinerator was pre-fractionated into six sub-populations by use of gravitational SPLITT fractionation (GSF). The GSF fractions were then analyzed by sedimentation field-flow fractionation (SdFFF) and ICP-AES. SdFFF analysis showed the fly ash has a broad size distribution ranging from a few nanometers up to about 50 microm. SdFFF results were confirmed by electron microscopy. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of the GSF fractions showed the fly-ash particles contain a variety of inorganic elements including Ca, Si, Mg, Fe, and Pb. The most abundant in fly ash was Ca, followed by Si then Mg. No correlations were found between trace element concentration and particle size.

  14. Multiphase flowmeter successfully measures three-phase flow at extremely high gas-volume fractions -- Gulf of Suez, Egypt

    SciTech Connect

    Leggett, R.B.; Borling, D.C.; Powers, B.S.; Shehata, K.; Halvorsen, M.

    1998-02-01

    A multiphase flowmeter (MPFM) installed in offshore Egypt has accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive, with no moving parts, requires no flow mixing before measurement, and has no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow caused by the dynamics of gas-lift gas in the production stream. Average gas-volume fraction ranged from 93 to 98% during tests conducted on seven wells. The meter was installed in the Gulf of Suez on a well protector platform in the Gulf of Suez Petroleum Co. (Gupco) October field, and was placed in series with a test separator located on a nearby production platform. Wells were individually tested with flow conditions ranging from 1,300 to 4,700 B/D fluid, 2.4 to 3.9 MMscf/D of gas, and water cuts from 1 to 52%. The meter is capable of measuring water cuts up to 100%. Production was routed through both the MPFM and the test separator simultaneously as wells flowed with the assistance of gas-lift gas. The MPFM measured gas and liquid rates to within {+-} 10% of test-separator reference measurement flow rates, and accomplished this at gas-volume fractions from 93 to 96%. At higher gas-volume fractions up to 98%, accuracy deteriorated but the meter continued to provide repeatable results.

  15. Chemical speciation studies on DU contaminated soils using flow field flow fractionation linked to inductively coupled plasma mass spectrometry (FlFFF-ICP-MS).

    PubMed

    Brittain, S R; Cox, A G; Tomos, A D; Paterson, E; Siripinyanond, A; McLeod, C W

    2012-03-01

    Flow field flow fractionation (FlFFF) in combination with inductively coupled plasma mass spectrometry (ICP-MS) was used to study the chemical speciation of U and trace metals in depleted uranium (DU) contaminated soils. A chemical extraction procedure using sodium pyrophosphate, followed by isolation of humic and fulvic substances was applied to two dissimilar DU contaminated sample types (a sandy soil and a clay-rich soil), in addition to a control soil. The sodium pyrophosphate fractions of the firing range soils (Eskmeals and Kirkcudbright) were found to contain over 50% of the total U (measured after aqua regia digestion), compared to approximately 10% for the control soil. This implies that the soils from the contaminated sites contained a large proportion of the U within more easily mobile soil fractions. Humic and fulvic acid fractions each gave characteristic peak maxima for analytes of interest (Mn, Fe, Cu, Zn, Pb and U), with the fulvic acid fraction eluting at a smaller diameter (approximately 2.1 nm on average) than the humic fraction (approximately 2.4 nm on average). DU in the fulvic acid fraction gave a bimodal peak, not apparent for other trace elements investigated, including natural U. This implies that DU interacts with the fulvic acid fraction in a different way to all other elements studied.

  16. Lung assist device technology with physiologic blood flow developed on a tissue engineered scaffold platform.

    PubMed

    Hoganson, David M; Pryor, Howard I; Bassett, Erik K; Spool, Ira D; Vacanti, Joseph P

    2011-02-21

    There is no technology available to support failing lung function for patients outside the hospital. An implantable lung assist device would augment lung function as a bridge to transplant or possible destination therapy. Utilizing biomimetic design principles, a microfluidic vascular network was developed for blood inflow from the pulmonary artery and blood return to the left atrium. Computational fluid dynamics analysis was used to optimize blood flow within the vascular network. A micro milled variable depth mold with 3D features was created to achieve both physiologic blood flow and shear stress. Gas exchange occurs across a thin silicone membrane between the vascular network and adjacent alveolar chamber with flowing oxygen. The device had a surface area of 23.1 cm(2) and respiratory membrane thickness of 8.7 ± 1.2 μm. Carbon dioxide transfer within the device was 156 ml min(-1) m(-2) and the oxygen transfer was 34 ml min(-1) m(-2). A lung assist device based on tissue engineering architecture achieves gas exchange comparable to hollow fiber oxygenators yet does so while maintaining physiologic blood flow. This device may be scaled up to create an implantable ambulatory lung assist device.

  17. The stadium shear device: A novel apparatus for studying dense granular flows

    NASA Astrophysics Data System (ADS)

    Miller, Tom; Rognon, Pierre; Einav, Itai

    2013-06-01

    We present a new experimental apparatus for studying dense granular flows. The device is able to produce plane shear flow over large deformations by utilising a novel stadium geometry. Both the grainscale kinematics and the macroscopic stresses can be captured. We report results from a set of experiments which confirm the existence of transient, rotational motions within such flows and reveal the corresponding S shaped velocity profiles, which are not predicted by the local constitutive laws. By borrowing from the concept of eddy viscosity in turbulent boundary layers, we propose a model which suggests this is a result of the non-local behaviour of the material and the proximity to the wall. This new device allows for the experimental examination of dense granular flows in a way not previously possible while our non-local model provides an insight into the flow rheology.

  18. Flow-Field Measurement of Device-Induced Embedded Streamwise Vortex on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Yao, Chung-Sheng; Lin, John C.; Allan, Brian G.

    2002-01-01

    Detailed flow-field measurements were performed downstream of a single vortex generator (VG) using an advanced Stereo Digital Particle Image Velocimetry system. Thc passive flow-control devices examined consisted of a low-profile VG with a device height, h, approximately equal to 20 percent of the boundary-layer thickness, sigma, and a conventional VG with h is approximately sigma. Flow-field data were taken at twelve cross-flow planes downstream of the VG to document and quantify the evolution of embedded streamwise vortex. The effects of device angle of attack on vortex development downstream were compared between the low-profile VG and the conventional VG. Key parameters including vorticity, circulation, trajectory, and half-life radius - describing concentration, strength, path, and size, respectively--of the device-induced streamwise vortex were extracted from the flow-field data. The magnitude of maximum vorticity increases as angle of attack increases for the low-profile VG, but the trend is reversed for the conventional VG, probably due to flow stalling around the larger device at higher angles of attack. Peak vorticity and circulation for the low-profile VG decays exponentially and inversely proportional to the distance downstream from the device. The device-height normalized vortex trajectories for the low-profile VG, especially in the lateral direction, follow the general trends of the conventional VG. The experimental database was used to validate the predictive capability of computational fluid dynamics (CFD). CFD accurately predicts the vortex circulation and path; however, improvements are needed for predicting the vorticity strength and vortex size.

  19. Ionic strength effect on molecular structure of hyaluronic acid investigated by flow field-flow fractionation and multiangle light scattering.

    PubMed

    Kim, Bitnara; Woo, Sohee; Park, Young-Soo; Hwang, Euijin; Moon, Myeong Hee

    2015-02-01

    This study describes the effect of ionic strength on the molecular structure of hyaluronic acid (HA) in an aqueous solution using flow field-flow fractionation and multiangle light scattering (FlFFF-MALS). Sodium salts of HA (NaHA) raw materials (∼2 × 10(6) Da) dispersed in different concentrations of NaCl prepared by repeated dilution/ultrafiltration procedures were examined in order to study conformational changes in terms of the relationship between the radius of gyration and molecular weight (MW) and molecular weight distribution (MWD) of NaHA in solution. This was achieved by varying the ionic strength of the carrier solution used in a frit-inlet asymmetrical FlFFF (FIAF4) channel. Experiments showed that the average MW of NaHA increased as the ionic strength of the NaHA solution decreased due to enhanced entanglement or aggregation of HA molecules. Relatively large molecules (greater than ∼5 MDa) did not show a large increase in RMS radius value as the NaCl concentration decreased. Conversely, smaller species showed larger changes, suggesting molecular expansion at lower ionic strengths. When the ionic strength of the FlFFF carrier solution was decreased, the HA species in a salt-rich solution (0.2 M NaCl) underwent rapid molecular aggregation during FlFFF separation. However, when salt-depleted HA samples (I = 4.66∼0.38 mM) were analyzed with FFF carrier solutions of a high ionic strength, the changes in both molecular structure and size were somewhat reversible, although there was a delay in correction of the molecular structure.

  20. Prototype continuous flow ventricular assist device supported on magnetic bearings.

    PubMed

    Allaire, P E; Kim, H C; Maslen, E H; Olsen, D B; Bearnson, G B

    1996-06-01

    This article describes a prototype continuous flow pump (CFVAD2) fully supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. The pump delivered 6 L/min of flow at 100 mm Hg of differential pressure head operating at 2,400 rpm in water. The pump is totally supported in 4 magnetic bearings: 2 radial and 2 thrust. Magnetic bearings offer the advantages of no required lubrication and large operating clearances. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity and current gains are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water. Much lower levels of force were found than were expected, allowing for a very significant reduction in the size of the next prototype. Hemolysis levels were measured in the prototype pump and found not to indicate damage to the blood cells.

  1. Modelling groundwater fractal flow with fractional differentiation via Mittag-Leffler law

    NASA Astrophysics Data System (ADS)

    Ahokposi, D. P.; Atangana, Abdon; Vermeulen, D. P.

    2017-04-01

    Modelling the flow of groundwater within a network of fractures is perhaps one of the most difficult exercises within the field of geohydrology. This physical problem has attracted the attention of several scientists across the globe. Already two different types of differentiations have been used to attempt modelling this problem including the classical and the fractional differentiation. In this paper, we employed the most recent concept of differentiation based on the non-local and non-singular kernel called the generalized Mittag-Leffler function, to reshape the model of groundwater fractal flow. We presented the existence of positive solution of the new model. Using the fixed-point approach, we established the uniqueness of the positive solution. We solve the new model with three different numerical schemes including implicit, explicit and Crank-Nicholson numerical methods. Experimental data collected from four constant discharge tests conducted in a typical fractured crystalline rock aquifer of the Northern Limb (Bushveld Complex) in the Limpopo Province (South Africa) are compared with the numerical solutions. It is worth noting that the four boreholes (BPAC1, BPAC2, BPAC3, and BPAC4) are located on Faults.

  2. Hybrid flow system for automatic dynamic fractionation and speciation of inorganic arsenic in environmental solids.

    PubMed

    Zhang, Yanlin; Miró, Manuel; Kolev, Spas D

    2015-03-03

    An integrated flow analysis system and protocol are proposed for the first time for automatic dynamic flow-through fractionation of inorganic arsenic (arsenite and arsenate) in environmental solids in combination with its real-time speciation. Four extractants (i.e., (1) 0.05 M ammonium sulfate, (2) 0.05 M ammonium dihydrogen phosphate, (3) 0.2 M ammonium oxalate, and (4) a mixture of 0.2 M ammonium oxalate and 0.1 M ascorbic acid at 96 °C) are applied sequentially to the sample to measure bioaccessible inorganic arsenic associated with (1) nonspecifically sorbed phases, (2) specifically sorbed phases, (3) amorphous plus poorly crystalline hydrous oxides of iron and aluminum, and (4) well-crystallized hydrous oxides of Fe and Al, respectively. The kinetic extraction profiles of arsenite and total inorganic arsenic are obtained for each extractant by automatic collection of a given number of its aliquots (subfractions) exposed to the solid sample. Arsenite and total inorganic arsenic in each subfraction are converted to arsine sequentially by hydride generation at pH 4.50 and in 1.14 M hydrochloric acid, respectively. Arsine is absorbed into a potassium permanganate solution, the discoloration of which is related to the concentration of the corresponding arsenic species. The proposed method is successfully validated by analyzing a soil reference material (NIST 2710a) and a sediment sample.

  3. Dielectrophoretic Field-Flow Fractionation System for Detection of Aquatic Toxicants

    PubMed Central

    Pui-ock, Sittisak; Ruchirawat, Mathuros; Gascoyne, Peter

    2009-01-01

    Dielectrophoretic field-flow fractionation (dFFF) was applied as a contact-free way to sense changes in the plasma membrane capacitances and conductivities of cultured human HL-60 cells in response to toxicant exposure. A micropatterned electrode imposed electric forces on cells in suspension in a parabolic flow profile as they moved through a thin chamber. Relative changes in the dFFF peak elution time, reflecting changes in cell membrane area and ion permeability, were measured as indices of response during the first 150 min of exposure to eight toxicants having different single or mixed modes of action (acrylonitrile, actinomycin D, carbon tetrachloride, endosulfan, N-nitroso-N-methylurea (NMU), paraquat dichloride, puromycin, and styrene oxide). The dFFF method was compared with the cell viability assay for all toxicants and with the mitochondrial potentiometric dye assay or DNA alkaline comet assay according to the mode of action of the specific agents. Except for low doses of nucleic acid-targeting agents (actinomycin D and NMU), the dFFF method detected all toxicants more sensitively than other assays, in some cases up to 105 times more sensitively than the viability approach. The results suggest the dFFF method merits additional study for possible applicability in toxicology. PMID:18788754

  4. Macromolecular geometries determined with field-flow fractionation and their impact on the overlap concentration.

    PubMed

    Rojas, Cinthia Carola; Wahlund, Karl-Gustav; Bergenståhl, Björn; Nilsson, Lars

    2008-06-01

    In this paper we aim to understand the size/conformation relationship in waxy barley starch, a polydisperse and ultrahigh molar mass biomacromolecule. Characterizations are performed with asymmetrical flow field-flow fractionation (AsFlFFF). Furthermore, we study the effect of homogenization on the molar mass, rms radius (r rms) and hydrodynamic radius (r h). For the untreated sample, the macromolecules are elongated objects with low apparent density. As a result of homogenization, molar mass, and r rms decrease, while r h remains unaffected. The process also induces an increase, and scaling with size, of apparent density as well as changes in conformation, represented qualitatively by r rms/ r h. Finally, results from AsFlFFF are compared with viscosimetry and discussed in terms of concentration and close-packing in relation to macromolecular shape and conformation. Hence, the results show that AsFlFFF and our novel methodology enable the determination of several physical properties with high relevance for the solution behavior of polydisperse macromolecules.

  5. Fractional Flow Reserve: Physiological Basis, Advantages and Limitations, and Potential Gender Differences

    PubMed Central

    Crystal, George J.; Klein, Lloyd W.

    2015-01-01

    Fractional flow reserve (FFR) is a physiological index of the severity of a stenosis in an epicardial coronary artery, based on the pressure differential across the stenosis. Clinicians are increasingly relying on this method because it is independent of baseline flow, relatively simple, and cost effective. The accurate measurement of FFR is predicated on maximal hyperemia being achieved by pharmacological dilation of the downstream resistance vessels (arterioles). When the stenosis causes FFR to be impaired by > 20%, it is considered to be significant and to justify revascularization. A diminished hyperemic response due to microvascular dysfunction can lead to a false normal FFR value, and a misguided clinical decision. The blunted vasodilation could be the result of defects in the signaling pathways modulated (activated or inhibited) by the drug. This might involve a downregulation or reduced number of vascular receptors, endothelial impairment, or an increased activity of an opposing vasoconstricting mechanism, such as the coronary sympathetic nerves or endothelin. There are data to suggest that microvascular dysfunction is more prevalent in post-menopausal women, perhaps due to reduced estrogen levels. The current review discusses the historical background and physiological basis for FFR, its advantages and limitations, and the phenomenon of microvascular dysfunction and its impact on FFR measurements. The question of whether it is warranted to apply gender-specific guidelines in interpreting FFR measurements is addressed. PMID:25329922

  6. From medical imaging to computer simulation of fractional flow reserve in four coronary artery trees

    NASA Astrophysics Data System (ADS)

    Melchionna, Simone; Fortini, Stefania; Bernaschi, Massimo; Bisson, Mauro; Kang, Nahyup; Lee, Hyong-Euk

    2014-03-01

    We present the results of a computational study of coronary trees obtained from CT acquisition at resolution of 0.35mm x 0.35mm x 0.4mm and presenting significant stenotic plaques. We analyze the cardiovascular implications of stenotic plaques for a sizeable number of patients and show that the standard clinical criterion for surgical or percutaneous intervention, based on the Fractional Flow Reserve (FFR), is well reproduced by simulations in a range of inflow conditions that can be finely controlled. The relevance of the present study is related to the reproducibility of FFR data by simulating the coronary trees at global level via high performance simulation methods together with an independent assessment based on in vitro hemodynamics. The data show that controlling the flow Reynolds number is a viable procedure to account for FFR as heart-cycle time averages and maximal hyperemia, as measured in vivo. The reproducibility of the clinical data with simulation offers a systematic approach to measuring the functional implications of stenotic plaques.

  7. Fractional flow reserve: physiological basis, advantages and limitations, and potential gender differences.

    PubMed

    Crystal, George J; Klein, Lloyd W

    2015-01-01

    Fractional flow reserve (FFR) is a physiological index of the severity of a stenosis in an epicardial coronary artery, based on the pressure differential across the stenosis. Clinicians are increasingly relying on this method because it is independent of baseline flow, relatively simple, and cost effective. The accurate measurement of FFR is predicated on maximal hyperemia being achieved by pharmacological dilation of the downstream resistance vessels (arterioles). When the stenosis causes FFR to be impaired by > 20%, it is considered to be significant and to justify revascularization. A diminished hyperemic response due to microvascular dysfunction can lead to a false normal FFR value, and a misguided clinical decision. The blunted vasodilation could be the result of defects in the signaling pathways modulated (activated or inhibited) by the drug. This might involve a downregulation or reduced number of vascular receptors, endothelial impairment, or an increased activity of an opposing vasoconstricting mechanism, such as the coronary sympathetic nerves or endothelin. There are data to suggest that microvascular dysfunction is more prevalent in post-menopausal women, perhaps due to reduced estrogen levels. The current review discusses the historical background and physiological basis for FFR, its advantages and limitations, and the phenomenon of microvascular dysfunction and its impact on FFR measurements. The question of whether it is warranted to apply gender-specific guidelines in interpreting FFR measurements is addressed.

  8. Nanoscale surface modifications to control capillary flow characteristics in PMMA microfluidic devices

    PubMed Central

    2011-01-01

    Polymethylmethacrylate (PMMA) microfluidic devices have been fabricated using a hot embossing technique to incorporate micro-pillar features on the bottom wall of the device which when combined with either a plasma treatment or the coating of a diamond-like carbon (DLC) film presents a range of surface modification profiles. Experimental results presented in detail the surface modifications in the form of distinct changes in the static water contact angle across a range from 44.3 to 81.2 when compared to pristine PMMA surfaces. Additionally, capillary flow of water (dyed to aid visualization) through the microfluidic devices was recorded and analyzed to provide comparison data between filling time of a microfluidic chamber and surface modification characteristics, including the effects of surface energy and surface roughness on the microfluidic flow. We have experimentally demonstrated that fluid flow and thus filling time for the microfluidic device was significantly faster for the device with surface modifications that resulted in a lower static contact angle, and also that the incorporation of micro-pillars into a fluidic device increases the filling time when compared to comparative devices. PMID:21711936

  9. Inductively coupled plasma-mass spectrometry as an element-specific detector for field-flow fractionation particle separation

    USGS Publications Warehouse

    Taylor, Howard E.; Garbarino, John R.; Murphy, Deirdre M.; Beckett, Ronald

    1992-01-01

    An inductively coupled plasma-mass spectrometer was used for the quantitative measurement of trace elements In specific,submicrometer size-fraction particulates, separated by sedimentation field-flow fractionation. Fractions were collected from the eluent of the field-flow fractionation centrifuge and nebulized, with a Babington-type pneumatic nebulizer, into an argon inductively coupled plasma-mass spectrometer. Measured Ion currents were used to quantify the major, minor, and trace element composition of the size-separated colloidal (< 1-microm diameter) particulates. The composition of surface-water suspended matter collected from the Yarra and Darling rivers in Australia is presented to illustrate the usefulness of this tool for characterizing environmental materials. An adsorption experiment was performed using cadmium lon to demonstrate the utility for studying the processes of trace metal-suspended sediment interactions and contaminant transport in natural aquatic systems.

  10. A study of heat and mass transfer in a fractional MHD flow over an infinite oscillating plate.

    PubMed

    Shahid, N

    2015-01-01

    Exact expressions of velocity, temperature and mass concentration have been calculated for free convective flow of fractional MHD viscous fluid over an oscillating plate. Expressions of velocity have been obtained both for sine and cosine oscillations of plate. Corresponding fractional differential equations have been solved by using Laplace transform and inverse Laplace transform. The expression of temperature and mass concentration have been presented in the form of Fox-H function and in the form of general Wright function, respectively and velocity is presented in the form of integral solutions using Generalized function. Some limiting cases of fluid and fractional parameters have been discussed to retrieve some solutions present in literature. The influence of thermal radiation, mass diffusion and fractional parameters on fluid flow has been analyzed through graphical illustrations.

  11. Research approaches for studying flow-induced thromboembolic complications in blood recirculating devices.

    PubMed

    Bluestein, Danny

    2004-09-01

    The advent of implantable blood recirculating devices has provided life-saving solutions to patients with severe cardiovascular diseases. Recently it has been reported that ventricular assist devices are superior to drug therapy. The implantable total artificial heart is showing promise as a potential solution to the chronic shortage of available heart transplants. Prosthetic heart valves are routinely used for replacing diseased heart valves. However, all of these devices share a common problem--significant complications such as hemolysis and thromboembolism often arise after their implantation. Elevated flow stresses that are present in the nonphysiologic geometries of blood recirculating devices, enhance their propensity to initiate thromboembolism by chronically activating the blood platelets. This, rather than hemolysis, appears to be the salient aspect of blood trauma in devices. Limitations in characterizing and controlling relevant aspects of the flow-induced mechanical stimuli and the platelet response, hampers our ability to achieve design optimization for these devices. The main objective of this article is to describe state-of-the-art numerical, experimental, and in vivo tools, that facilitate elucidation of flow-induced mechanisms leading to thromboembolism in prosthetic devices. Such techniques are giving rise to an accountable model for flow-induced thrombogenicity, and to a methodology that has the potential to transform current device design and testing practices. It might lead to substantial time and cost savings during the research and development phase, and has the potential to reduce the risks that patients implanted with these devices face, lower the ensuing healthcare costs, and offer viable long-term solutions for these patients.

  12. Blood trauma testing of CentriMag and RotaFlow centrifugal flow devices: a pilot study.

    PubMed

    Sobieski, Michael A; Giridharan, Guruprasad A; Ising, Mickey; Koenig, Steven C; Slaughter, Mark S

    2012-08-01

    Mechanical circulatory assist devices that provide temporary support in heart failure patients are needed to enable recovery or provide a bridge to decision. Minimizing risk of blood damage (i.e., hemolysis) with these devices is critical, especially if the length of support needs to be extended. Hematologic responses of the RotaFlow (Maquet) and CentriMag (Thoratec) temporary support devices were characterized in an in vitro feasibility study. Paired static mock flow loops primed with fresh bovine blood (700 mL, hematocrit [Hct] = 25 ± 3%, heparin titrated for activated clotting time >300 s) pooled from a single-source donor were used to test hematologic responses to RotaFlow (n = 2) and CentriMag (n = 2) simultaneously. Pump differential pressures, temperature, and flow were maintained at 250 ± 10 mm Hg, 25 ± 2°C, and 4.2 ± 0.25 L/min, respectively. Blood samples (3 mL) were collected at 0, 60, 120, 180, 240, 300, and 360 min after starting pumps in accordance with recommended Food and Drug Administration and American Society for Testing and Materials guidelines. The CentriMag operated at a higher average pump speed (3425 rpm) than the RotaFlow (3000 rpm) while maintaining similar constant flow rates (4.2 L/min). Hematologic indicators of blood trauma (hemoglobin, Hct, platelet count, plasma free hemoglobin, and white blood cell) for all measured time points as well as normalized and modified indices of hemolysis were similar (RotaFlow: normalized index of hemolysis [NIH] =  0.021 ± 0.003 g/100 L, modified index of hemolysis [MIH] = 3.28 ± 0.52 mg/mg compared to CentriMag: NIH =  0.041 ± 0.010 g/100 L, MIH = 6.08 ± 1.45 mg/mg). In this feasibility study, the blood trauma performance of the RotaFlow was similar or better than the CentriMag device under clinically equivalent, worst-case test conditions. The RotaFlow device may be a more cost-effective alternative to

  13. Fractional CO2 laser: a novel therapeutic device upon photobiomodulation of tissue remodeling and cytokine pathway of tissue repair.

    PubMed

    Prignano, F; Campolmi, P; Bonan, P; Ricceri, F; Cannarozzo, G; Troiano, M; Lotti, T

    2009-11-01

    Minimally ablative fractional laser devices have gained acceptance as a preferred method for skin resurfacing. Notable improvements in facial rhytides, photodamage, acne scarring, and skin laxity have been reported. The aim of the present work was to compare how different CO(2) laser fluences, by modulating the secretory pathway of cytokines, are able to influence the wound-healing process, and how these fluences are associated with different clinical results. Eighteen patients, all with photodamaged skin, were treated using a fractional CO(2) laser (SmartXide DOT, Deka M.E.L.A., Florence, Italy) with varying laser fluences (2.07, 2.77, and 4.15 J/cm(2)). An immunocytochemical study was performed at defined end points in order to obtain information about specific cytokines of the microenvironment before and after treatment. The secretory pathway of cytokines changed depending on the re-epithelization and the different laser fluences. Different but significant improvements in wrinkles, skin texture, and hyperpigmentation were definitely obtained when using 2.07, 2.77, and 4.15 J/cm(2), indicating fractional CO(2) laser as a valuable tool in photorejuvenation with good clinical results, rapid downtime, and an excellent safety profile.

  14. The Influence of Device Position on the Flow within the Penn State 12 cc Pediatric Ventricular Assist Device

    PubMed Central

    Schönberger, Markus; Deutsch, Steven; Manning, Keefe B.

    2012-01-01

    Ventricular assist devices are a commonly used heart failure therapy for adult patients as bridge-to-transplant or bridge-to-recovery tool. The application of adult ventricular assist devices in pediatric patients has led to increased thrombotic events. Therefore, we have been developing a pediatric ventricular assist device, the Penn State 12 cc PVAD. It is designed for patients with a body weight of 5 to 15 kg and has a stroke volume of 12 cc. Clot formation is the major concern. It is correlated to the coagulability of blood, the blood contacting materials and the fluid dynamics within the system. The intent is for the PVAD to be a long term therapy. Therefore, the system may be oriented in different positions according to the patient’s behavior. This study evaluates for the first time the impact of position on the flow patterns within the Penn State 12 cc PVAD, which may help to improve the PVAD design concerning chamber and ports geometries. The fluid dynamics are visualized by particle image velocimetry. The evaluation is based on inlet jet behavior and calculated wall shear rates. Vertical and horizontal model orientations are compared, both with a beat rate of 75, outlet pressures of 90/60 mmHg and a flow rate of 1.3 l/min. The results show a significant change of the inlet jet behavior and the development of a rotational flow pattern. Vertically, the inlet jet is strong along the wall. It initiates a rotational flow pattern with a wandering axis of rotation. In contrast, the horizontal model orientation results show a weaker inlet jet along the wall with a nearly constant center of rotation location, which can be correlated to a higher risk of thrombotic events. In addition high speed videography illustrates differences in the diaphragm motion during diastole. Diaphragm opening trajectories measurements determine no significant impact of the density of the blood analog fluids. Hence, the results correlate to human blood. PMID:22929894

  15. Effect of carrier fluid viscosity on retention time and resolution in gravitational field-flow fractionation.

    PubMed

    Lee, Seungho; Kang, Da Young; Park, Miri; Williams, P Stephen

    2011-05-01

    Gravitational field-flow fractionation (GrFFF) is a useful technique for fast separation of micrometer-sized particles. Different sized particles are carried at different velocities by a flow of fluid along an unobstructed thin channel, resulting in a size-based separation. They are confined to thin focused layers in the channel thickness where force due to gravity is exactly opposed by hydrodynamic lift forces (HLF). It has been reported that the HLF are a function of various parameters including the flow rate (or shear rate), the size of the particles, and the density and viscosity of the liquid. The dependence of HLF on these parameters offers a means of altering the equilibrium transverse positions of the particles in GrFFF, and hence their elution times. In this study, the effect of the viscosity of the carrier fluid on the elution behavior (retention, zone broadening, and resolution) of micrometer-sized particles in GrFFF was investigated using polystyrene (PS) latex beads as model particles. In order to change the carrier liquid viscosity without affecting its density, various amounts of (hydroxypropyl) methyl cellulose (HPMC) were added to the aqueous carrier liquid. It was found that particles migrate at faster rates as the carrier viscosity is increased, which confirms the dependence of HLF on viscosity. At the same time, particle size selectivity decreased but peak shape and symmetry for the more strongly retained particles improved. As a result, separation was improved in terms of both the separation time and resolution with increase of carrier viscosity. A theoretical model for plate height in GrFFF is also presented, and its predictions are compared to experimentally measured values.

  16. Does Coronary Stenting Following Balloon Angioplasty Improve Myocardial Fractional Flow Reserve?

    SciTech Connect

    Takeuchi, Masaaki; Himeno, Etsuro

    1998-11-15

    Purpose: Suboptimal distal coronary flow reserve after successful balloon angioplasty has been attributed to angiographically unrecognized inadequate lumen expansion, and adjunct coronary stenting has been shown to improve coronary flow reserve. The aim of this study was to investigate whether myocardial fractional flow reserve (FFRmyo) would increase further after coronary stenting compared with balloon angioplasty alone in the same patient group. Methods: FFRmyo and quantitative coronary angiography were obtained before and after pre-stent balloon dilation, and again after stent placement in 11 patients (7 left anterior descending artery, 3 right coronary artery and 1 left circumflex artery). FFRmyo was calculated as the ratio of Pd/Pa during intracoronary adenosine 5'-triphosphate (50 {mu}g and 20 {mu}g in the left and right coronary arteries, respectively)-induced maximum hyperemia, where Pd represents mean distal coronary pressure measured by a 2.1 Fr infusion catheter and Pa represents mean aortic pressure measured by the guiding catheter. Results: Percent diameter stenosis significantly decreased after balloon angioplasty (74% {+-} 15% vs 37% {+-} 17%, p < 0.001), and decreased further after stent placement (18% {+-} 10%, p < 0.001 vs baseline and balloon angioplasty). FFRmyo after coronary stenting (0.85 {+-} 0.09) was significantly higher than that at baseline (0.51 {+-} 0.16, p < 0.001) and after balloon angioplasty (0.77 {+-} 0.11, p < 0.05). There was a significant correlation between angiographic variables and FFRmyo. The increase in lumen dimensions after coronary stenting was followed by a further significant improvement of FFRmyo. Conclusion: These results suggest that coronary stenting may provide a more favorable functional status and lumen geometry of residual coronary stenosis compared with balloon angioplasty alone.

  17. Analysis of the flow of non-Newtonian visco-elastic fluids in fractal reservoir with the fractional derivative

    NASA Astrophysics Data System (ADS)

    Tong, Dengke; Wang, Ruihe

    2004-08-01

    In this paper, fractional order derivative, fractal dimension and spectral dimension are introduced into the seepage flow mechanics to establish the relaxation models of non-Newtonian viscoelastic fluids with the fractional derivative in fractal reservoirs. A new type integral transform is introduced, and the flow characteristics of non-Newtonian viscoelastic fluids with the fractional order derivative through a fractal reservoir are studied by using the integral transform, the discrete Laplace transform of sequential fractional derivatives and the generalized Mittag-Leffler functions. Exact solutions are obtained for arbitrary fractional order derivative. The long-time and short-time asymptotic solutions for an infinite formation are also obtained. The pressure transient behavior of non-Newtonian viscoelastic fluids flow through an infinite fractal reservoir is studied by using the Stehfest's inversion method of the numerical Laplace transform. It is shown that the clearer the viscoelastic characteristics of the fluid, the more the fluid is sensitive to the order of the fractional derivative. The new type integral transform provides a new analytical tool for studying the seepage mechanics of fluid in fractal porous media.

  18. Flows between two parallel plates of couple stress fluids with time-fractional Caputo and Caputo-Fabrizio derivatives

    NASA Astrophysics Data System (ADS)

    Akhtar, Shehraz

    2016-11-01

    The present work provides a comparative study of the unsteady flows between two parallel plates of a couple stress fluid with two different time-fractional derivatives, namely, Caputo time-fractional derivative (derivative with singular kernel) and Caputo-Fabrizio time-fractional derivative (derivative without singular kernel). The solutions to flows of the ordinary couple stress fluid are obtained as limiting cases, using the properties of the time-fractional derivatives. The analysis result shows that it is more advantageous to use the time-fractional derivatives without singular kernel. Advantages consist both in simpler calculations, and, especially, in the final expressions of solutions which are more appropriate for numerical computations. The solutions of the studied problems are obtained by means of the Laplace transform with respect to the time variable t and the finite Fourier transform with respect to the y-variable. It should be noted that by convenient manipulations of the inverse integral transforms, fluid velocity expressions are written as the sum between the steady-state solution (post-transient solution) and the transient solution. Some numerical calculations are carried out in order to study the influence of the time-fractional derivative order on the fluid velocity, shear stresses and couple stress. Also, the critical time at which the steady flow is obtained was numerically determined. Numerical results are illustrated graphically.

  19. Analysis of unsteady natural convective radiating gas flow in a vertical channel by employing the Caputo time-fractional derivative

    NASA Astrophysics Data System (ADS)

    Ahmad, Bakhtiar; Ali Shah, Syed Inayat; Ul Haq, Sami; Ali Shah, Nehad

    2017-09-01

    In this paper the exact solution of the unsteady natural convection radiating flow in an open ended vertical channel is studied. The channel is stationary with non-uniform temperature. The governing equations are fractional differential equations with the Caputo time-fractional derivative. Closed form analytical solutions for the temperature and velocity fields are obtained by using the Laplace transform technique. These solutions are expressed with the Wright function, the Robotnov and Hartley function. The effects of the fractional order and physical parameters on temperature and fluid velocity are presented graphically.

  20. Characterizing the correlations between local phase fractions of gas–liquid two-phase flow with wire-mesh sensor

    PubMed Central

    Liu, W. L.; Dong, F.

    2016-01-01

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas–liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas–liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185959

  1. Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor.

    PubMed

    Tan, C; Liu, W L; Dong, F

    2016-06-28

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  2. Integrated Elastomeric Components for Autonomous Regulation of Sequential and Oscillatory Flow Switching in Microfluidic Devices.

    PubMed

    Mosadegh, Bobak; Kuo, Chuan-Hsien; Tung, Yi-Chung; Torisawa, Yu-Suke; Bersano-Begey, Tommaso; Tavana, Hossein; Takayama, Shuichi

    2010-06-01

    A critical need for enhancing usability and capabilities of microfluidic technologies is the development of standardized, scalable, and versatile control systems1,2. Electronically controlled valves and pumps typically used for dynamic flow regulation, although useful, can limit convenience, scalability, and robustness3-5. This shortcoming has motivated development of device-embedded non-electrical flow-control systems. Existing approaches to regulate operation timing on-chip, however, still require external signals such as timed generation of fluid flow, bubbles, liquid plugs or droplets, or an alteration of chemical compositions or temperature6-16. Here, we describe a strategy to provide device-embedded flow switching and clocking functions. Physical gaps and cavities interconnected by holes are fabricated into a three-layer elastomer structure to form networks of fluidic gates that can spontaneously generate cascading and oscillatory flow output using only a constant flow of Newtonian fluids as the device input. The resulting microfluidic substrate architecture is simple, scalable, and should be applicable to various materials. This flow-powered fluidic gating scheme brings the autonomous signal processing ability of microelectronic circuits to microfluidics where there is the added diversity in current information of having distinct chemical or particulate species and richness in current operation of having chemical reactions and physical interactions.

  3. [Characteristics of auto-CPAP devices during the simulation of sleep-related breathing flow patterns].

    PubMed

    Rühle, K H; Karweina, D; Domanski, U; Nilius, G

    2009-07-01

    The function of automatic CPAP devices is difficult to investigate using clinical examinations due to the high variability of breathing disorders. With a flow generator, however, identical breathing patterns can be reproduced so that comparative studies on the behaviour of pressure of APAP devices are possible. Because the algorithms of APAP devices based on the experience of users can be modified without much effort, also previously investigated devices should regularly be reviewed with regard to programme changes. Had changes occurred in the algorithms of 3 selected devices--compared to the previously published benchmark studies? Do the current versions of these investigated devices differentiate between open and closed apnoeas? With a self-developed respiratory pump, sleep-related breathing patterns and, with the help of a computerised valve, resistances of the upper respiratory tract were simulated. Three different auto-CPAP devices were subjected to a bench test with and without feedback (open/closed loop). Open loop: the 3 devices showed marked differences in the rate of pressure rise but did not differ from the earlier published results. From an initial pressure of 4 mbar the pressure increased to 10 mbar after a different number of apnoeas (1-6 repetitive apnoeas). Only one device differentiated between closed and open apnoeas. Closed loop: due to the pressure increase, the flow generator simulated reduced obstruction of the upper airways (apnoeas changed to hypopnoeas, hypopnoeas changed to flattening) but different patterns of pressure regulation could still be observed. By applying bench-testing, the algorithms of auto-CPAP devices can regularly be reviewed to detect changes in the software. The differentiation between open and closed apnoeas should be improved in several APAP devices.

  4. Optimization of carbon dioxide supply in raceway reactors: Influence of carbon dioxide molar fraction and gas flow rate.

    PubMed

    Duarte-Santos, T; Mendoza-Martín, J L; Acién Fernández, F G; Molina, E; Vieira-Costa, J A; Heaven, S

    2016-07-01

    Influence of CO2 composition and gas flow rate to control pH in a pilot-scale raceway producing Scenedesmus sp. was studied. Light and temperature determined the biomass productivity whereas neither the CO2 molar fraction nor the gas flow rate used influenced it; because pH was always controlled and carbon limitation did not take place. The CO2 molar fraction and the gas flow rate influenced carbon loss in the system. At low CO2 molar fraction (2-6%) or gas flow rate (75-100l·min(-1)) the carbon efficiency in the sump was higher than 95%, 85% of the injected carbon being transformed into biomass. Conversely, at high CO2 molar fraction (14%) or gas flow rate (150l·min(-1)) the carbon efficiency in the sump was lower than 67%, 32% of the carbon being fixed as biomass. Analysis here reported allows the pH control to be optimized and production costs to be reduced by optimizing CO2 efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Bubble velocity, diameter, and void fraction measurements in a multiphase flow using fiber optic reflectometer

    NASA Astrophysics Data System (ADS)

    Lim, Ho-Joon; Chang, Kuang-An; Su, Chin B.; Chen, Chi-Yueh

    2008-12-01

    A fiber optic reflectometer (FOR) technique featuring a single fiber probe is investigated for its feasibility of measuring the bubble velocity, diameter, and void fraction in a multiphase flow. The method is based on the interference of the scattered signal from the bubble surface with the Fresnel reflection signal from the tip of the optical fiber. Void fraction is obtained with a high accuracy if an appropriate correction is applied to compensate the underestimated measurement value. Velocity information is accurately obtained from the reflected signals before the fiber tip touches the bubble surface so that several factors affecting the traditional dual-tip probes such as blinding, crawling, and drifting effects due to the interaction between the probe and bubbles can be prevented. The coherent signals reflected from both the front and rear ends of a bubble can provide velocity information. Deceleration of rising bubbles and particles due to the presence of the fiber probe is observed when they are very close to the fiber tip. With the residence time obtained, the bubble chord length can be determined by analyzing the coherent signal for velocity determination before the deceleration starts. The bubble diameters are directly obtained from analyzing the signals of the bubbles that contain velocity information. The chord lengths of these bubbles measured by FOR represent the bubble diameters when the bubble shape is spherical or represent the minor axes when the bubble shape is ellipsoidal. The velocity and size of bubbles obtained from the FOR measurements are compared with those obtained simultaneously using a high speed camera.

  6. Particle characterization in centrifugal fields. Comparison between ultracentrifugation and sedimentation field-flow fractionation.

    PubMed

    Li, J M; Caldwell, K D; Mächtle, W

    1990-09-26

    A ten-component mixture of polystyrene latex particles in the 67-1220 nm size range was subjected to analysis by analytical ultracentrifugation (AUC) and sedimentation field-flow fractionation (SdFFF) using programmed and constant fields. The AUC analysis of the mixture yielded diameter values in good agreement with data determined on the separate components; the relative amounts of each component in the mixture were likewise closely reproducing the sample's known composition. Diameters determined by SdFFF, either in a constant- or programmed-field mode, were in good agreement with the AUC for particles smaller than about 500 nm. For the sample's larger components, however, particularly the programmed mode showed diameter values smaller than expected. In addition, field programming resulted in incomplete recoveries of the larger particles, leading to more or less distorted mass distributions for the complex sample. The observed discrepancies, which are thought to result from events at the analytical wall in the FFF channel, suggested a protocol for accurate sizing, as opposed to fingerprinting, of samples with broad size distribution. By tracking sizes and amounts of the different components at different but constant field strengths, and retaining as analytically valid only those data recorded in a retention range from five to about thirty column volumes, it was possible to determine sizes and amounts in good agreement with known parameters for the sample. Unlike the AUC procedure, SdFFF produces fractions of a high degree of uniformity, which lend themselves to a secondary analysis, e.g. by electron microscopy, as shown in the study.

  7. Bubble Formation in Yield Stress Fluids Using Flow-Focusing and T -Junction Devices

    NASA Astrophysics Data System (ADS)

    Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E.; Lorenceau, Elise

    2015-05-01

    We study the production of bubbles inside yield stress fluids (YSFs) in axisymmetric T -junction and flow-focusing devices. Taking advantage of yield stress over capillary stress, we exhibit a robust break-up mechanism reminiscent of the geometrical operating regime in 2D flow-focusing devices for Newtonian fluids. We report that when the gas is pressure driven, the dynamics is unsteady due to hydrodynamic feedback and YSF deposition on the walls of the channels. However, the present study also identifies pathways for potential steady-state production of bubbly YSFs at large scale.

  8. Comprehensive design and process flow configuration for micro and nano tech devices

    NASA Astrophysics Data System (ADS)

    Hahn, Kai; Schmidt, Thilo; Mielke, Matthias; Ortloff, Dirk; Popp, Jens; Brück, Rainer

    2010-04-01

    The development of micro and nano tech devices based on semiconductor manufacturing processes comprises the structural design as well as the definition of the manufacturing process flow. The approach is characterized by application specific fabrication flows, i.e. fabrication processes (built up by a large variety of process steps and materials) depending on the later product. Technology constraints have a great impact on the device design and vice-versa. In this paper we introduce a comprehensive methodology and based on that an environment for customer-oriented product engineering of MEMS products. The development is currently carried out in an international multi-site research project.

  9. Echocardiographic outflow pump ramp test in centrifugal-flow left ventricular assist device.

    PubMed

    Iacovoni, Attilio; Vittori, Claudia; Fontana, Alessandra; Carobbio, Alessandra; Fino, Carlo; D'Elia, Emilia; Terzi, Amedeo; Senni, Michele

    2017-04-18

    This study sought to develop a novel echocardiogram outflow ramp test to detect device malfunctions in centrifugal-flow left ventricular assist devices (LVADs). This new ramp pump test is based on the direct analyses of systolic and diastolic ratio (S/D) Doppler velocity in the outflow cannula in the HeartWare LVAD during progressive increases in speed. The results showed that in patients with normal pump function, the Doppler velocity S/D ratio gradually decreased during LVAD speed increases. This test is easily performed and seems promising to detect normal pump function in patients assisted by a centrifugal flow LVAD.

  10. Device for measuring the liquid portion of a two-phase flow of gas and liquid

    SciTech Connect

    Schleimann-Jensen, A.H.

    1986-09-02

    A device is described for measuring the liquid portion of a two-phase flow of gas and liquid, particularly in conveying a liquid by means of a gas, in which two-phase flow the ratio of mixture between gas and liquid is widely varying. The device consists of a tubular housing and a turbine wheel with axial throw-flow rotatably mounted therein, the turbine wheel being provided with at least one magnetic element at a radially outward portion thereof, the element having limited extent axially and peripherally of the turbine wheel. The device furthermore consists of magnetic pick-up means adapted to emit output signals responsive to the rotary speed of the turbine wheel, the wheel being mounted for axial movement in the direction of flow from an initial position against a biassing force, characterized in that pick-up means are arranged axially spaced along the housing for allowing a measuring of rotary speed of the turbine wheel at various positions of movement within the housing responsive to density as well as speed changes of the flow and hence a determination of the liquid portion thereof by means of a converting device connected to all of the pick-up means. The tubular housing preferably is mounted vertically with the turbine wheel in its initial position being located lowermost.

  11. Measurement and control of pressure driven flows in microfluidic devices using an optofluidic flow sensor.

    PubMed

    Cheri, Mohammad Sadegh; Shahraki, Hamidreza; Sadeghi, Jalal; Moghaddam, Mohammadreza Salehi; Latifi, Hamid

    2014-09-01

    Measurement and control of pressure-driven flow (PDF) has a great potential to enhance the performance of chemical and biological experiments in Lab on a Chip technology. In this paper, we present an optofluidic flow sensor for real-time measurement and control of PDF. The optofluidic flow sensor consists of an on-chip micro Venturi and two optical Fabry-Pérot (FP) interferometers. Flow rate was measured from the fringe shift of FP interferometers resulted from movement fluid in the on-chip micro Venturi. The experimental results show that the optofluidic flow sensor has a minimum detectable flow change of 5 nl/min that is suitable for real time monitoring and control of fluids in many chemical and biological experiments. A Finite Element Method is used to solve the three dimensional (3D) Navier-Stokes and continuity equations to validate the experimental results.

  12. Measurement and control of pressure driven flows in microfluidic devices using an optofluidic flow sensor

    PubMed Central

    Cheri, Mohammad Sadegh; Shahraki, Hamidreza; Sadeghi, Jalal; Moghaddam, Mohammadreza Salehi; Latifi, Hamid

    2014-01-01

    Measurement and control of pressure-driven flow (PDF) has a great potential to enhance the performance of chemical and biological experiments in Lab on a Chip technology. In this paper, we present an optofluidic flow sensor for real-time measurement and control of PDF. The optofluidic flow sensor consists of an on-chip micro Venturi and two optical Fabry-Pérot (FP) interferometers. Flow rate was measured from the fringe shift of FP interferometers resulted from movement fluid in the on-chip micro Venturi. The experimental results show that the optofluidic flow sensor has a minimum detectable flow change of 5 nl/min that is suitable for real time monitoring and control of fluids in many chemical and biological experiments. A Finite Element Method is used to solve the three dimensional (3D) Navier–Stokes and continuity equations to validate the experimental results. PMID:25584118

  13. A Novel Counter Sheet-flow Sandwich Cell Culture Device for Mammalian Cell Growth in Space

    NASA Astrophysics Data System (ADS)

    Sun, Shujin; Gao, Yuxin; Shu, Nanjiang; Tang, Zemei; Tao, Zulai; Long, Mian

    2008-08-01

    Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.

  14. Left ventricular end-diastolic pressure affects measurement of fractional flow reserve

    PubMed Central

    Leonardi, Robert A.; Townsend, Jacob C.; Patel, Chetan A.; Wolf, Bethany J.; Todoran, Thomas M.; Fernandes, Valerian L.; Nielsen, Christopher D.; Steinberg, Daniel H.; Powers, Eric R.

    2013-01-01

    Background Fractional flow reserve (FFR), the hyperemic ratio of distal (Pd) to proximal (Pa) coronary pressure, is used to identify the need for coronary revascularization. Changes in left ventricular end-diastolic pressure (LVEDP) might affect measurements of FFR. Methods and Materials LVEDP was recorded simultaneously with Pd and Pa during conventional FFR measurement as well as during additional infusion of nitroprusside. The relationship between LVEDP, Pa, and FFR was assessed using linear mixed models. Results Prospectively collected data for 528 cardiac cycles from 20 coronary arteries in 17 patients were analyzed. Baseline median Pa, Pd, FFR, and LVEDP were 73 mmHg, 49 mmHg, 0.69, and 18 mmHg, respectively. FFR < 0.80 was present in 14 arteries (70%). With nitroprusside median Pa, Pd, FFR, and LVEDP were 61 mmHg, 42 mmHg, 0.68, and 12 mmHg, respectively. In a multivariable model for the entire population LVEDP was positively associated with FFR such that FFR increased by 0.008 for every 1-mmHg increase in LVEDP (beta = 0.008; P < 0.001), an association that was greater in obstructed arteries with FFR < 0.80 (beta = 0.01; P < 0.001). Pa did not directly affect FFR in the multivariable model, but an interaction between LVEDP and Pa determined that LVEDP’s effect on FFR is greater at lower Pa. Conclusions LVEDP was positively associated with FFR. The association was greater in obstructive disease (FFR < 0.80) and at lower Pa. These findings have implications for the use of FFR to guide revascularization in patients with heart failure. Summary for Annotated Table of Contents The impact of left ventricular diastolic pressure on measurement of fractional flow reserve (FFR) is not well described. We present a hemodynamic study of the issue, concluding that increasing left ventricular diastolic pressure can increase measurements of FFR, particularly in patients with FFR < 0.80 and lower blood pressure. PMID:23886870

  15. A novel 1565 nm non-ablative fractional device for stretch marks: A preliminary report.

    PubMed

    Tretti Clementoni, Matteo; Lavagno, Rosalia

    2015-06-01

    Striae Distensae (SD) is a very common dermatologic condition. We evaluated the effectiveness and safety of a novel non-ablative fractional 1565 nm laser (ResurFX) on the appearance of SD. Twelve Caucasian subjects with various stages of SD received three non-ablative laser treatments. Each treatment consisted of two different laser settings, in order to achieve a demarcated dense impact together with a diffused deep impact. Three months after the last treatment, SD improvement was assessed by blinded and non-blinded reviewers using clinical images and 3D image analyses. Good clinical improvement (between 51% and 75%) was observed in all patients. Most patients showed improvement of > 50% in the volume of depressions and in lesion color (91.7% and 83.3% of patients, respectively). The average pain during treatment was generally defined as tolerable and the average downtime was 4 days. Transient erythema and severe edema were noted immediately after the procedure, but long-lasting or severe adverse effects were not observed. All patients noted a good improvement and were satisfied with the treatment and the results. The treatment with the 1565 nm ResurFX laser resulted in improved pigmentation, volume, and textural appearance of SD.

  16. Nasal fractional exhaled nitric oxide analysis with a novel hand-held device.

    PubMed

    Weschta, Michael; Deutschle, Tom; Riechelmann, Herbert

    2008-03-01

    To assess the performance of a novel hand-held nitric oxide (NO) analyzer in the measurement of nasal fractional exhaled NO (FE(NO)). In ten healthy subjects (controls) and ten patients with chronic rhinosinusitis (CRS), oral and nasal FENO were obtained with the NIOX MINO Airway Inflammation Monitor (Aerocrine AB, Solna, Sweden) on two consecutive days, complying with current standards. Intraclass correlation coefficient (ICC) of oral FENO was 0.91 and of nasal FE(NO) 0.79. In controls, mean (+/- SD) nasal FENO (40.3 +/- 23.6 ppb) was higher than oral FENO (15.6 +/- 2.7 ppb; p = 0.005). In CRS patients, mean oral FENO (23.9 +/- 12.2 ppb) was higher than in controls (15.6 +/- 2.7 ppb; p = 0.01). CRS patients with nasal polyps had lower nasal FE(NO) levels (19.7 +/- 5.9) than healthy controls (40.3 +/- 23.6 ppb; p = 0.01). The novel hand-held NO analyzer was found suitable for nasal FE(NO) measurements. It may be useful in differentiating hyperplasic eosinophil rhinosinusitis from chronic unspecific rhinosinusitis. Moreover, nasal FE(NO) may be used to monitor the clinical course of CRS with polyps.

  17. Influences on ionization fraction in an inductively coupled ionized physical vapor deposition device plasma

    NASA Astrophysics Data System (ADS)

    Juliano, Daniel R.; Ruzic, David N.; Allain, Monica M. C.; Hayden, Douglas B.

    2002-01-01

    A computer simulation was created to model the transport of sputtered atoms through an ionized physical vapor deposition (IPVD) system. The simulation combines Monte Carlo and fluid methods to track the metal atoms that are emitted from the target, interact with the IPVD plasma, and are eventually deposited somewhere in the system. Ground-state neutral, excited, and ionized metal atoms are tracked. The simulation requires plasma conditions to be specified by the user. Langmuir probe measurements were used to determine these parameters in an experimental system in order to compare simulation results with experiment. The primary product of the simulation is a prediction of the ionization fraction of the sputtered atom flux at the substrate under various conditions. This quantity was experimentally measured and the results compared to the simulation. Experiment and simulation differ significantly. It is hypothesized that heating of the background gas due to the intense sputtered atom flux at the target is primarily responsible for this difference. Heating of the background gas is not accounted for in the simulation. Difficulties in accurately measuring plasma parameters, especially electron temperature, are also significant.

  18. A novel 1565 nm non-ablative fractional device for stretch marks: A preliminary report

    PubMed Central

    Tretti Clementoni, Matteo; Lavagno, Rosalia

    2015-01-01

    Abstract Background: Striae Distensae (SD) is a very common dermatologic condition. We evaluated the effectiveness and safety of a novel non-ablative fractional 1565 nm laser (ResurFX) on the appearance of SD. Materials and methods: Twelve Caucasian subjects with various stages of SD received three non-ablative laser treatments. Each treatment consisted of two different laser settings, in order to achieve a demarcated dense impact together with a diffused deep impact. Three months after the last treatment, SD improvement was assessed by blinded and non-blinded reviewers using clinical images and 3D image analyses. Results: Good clinical improvement (between 51% and 75%) was observed in all patients. Most patients showed improvement of > 50% in the volume of depressions and in lesion color (91.7% and 83.3% of patients, respectively). The average pain during treatment was generally defined as tolerable and the average downtime was 4 days. Transient erythema and severe edema were noted immediately after the procedure, but long-lasting or severe adverse effects were not observed. All patients noted a good improvement and were satisfied with the treatment and the results. Conclusions: The treatment with the 1565 nm ResurFX laser resulted in improved pigmentation, volume, and textural appearance of SD. PMID:25633176

  19. Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi-elastic light scattering for characterization of polymersomes: comparison with classical techniques.

    PubMed

    Till, Ugo; Gaucher-Delmas, Mireille; Saint-Aguet, Pascale; Hamon, Glenn; Marty, Jean-Daniel; Chassenieux, Christophe; Payré, Bruno; Goudounèche, Dominique; Mingotaud, Anne-Françoise; Violleau, Frédéric

    2014-12-01

    Polymersomes formed from amphiphilic block copolymers, such as poly(ethyleneoxide-b-ε-caprolactone) (PEO-b-PCL) or poly(ethyleneoxide-b-methylmethacrylate), were characterized by asymmetrical flow field-flow fractionation coupled with quasi-elastic light scattering (QELS), multi-angle light scattering (MALS), and refractive index detection, leading to the determination of their size, shape, and molecular weight. The method was cross-examined with more classical ones, like batch dynamic and static light scattering, electron microscopy, and atomic force microscopy. The results show good complementarities between all the techniques; asymmetrical flow field-flow fractionation being the most pertinent one when the sample exhibits several different types of population.

  20. An experimental study of on-line measurement of water fraction in gas-oil-water three-phase flow

    NASA Astrophysics Data System (ADS)

    Chen, K.; Guo, L. J.; Ye, J.

    2012-03-01

    Gas-oil-water two-or three-phase flow is widely encountered in industry, such as petroleum chemical industry, bio-chemicals, food chemicals, and mineral engineering and energy projects. Two kinds of on-line measurement technique, which are double-ring conductance sensor and double-helical capacitance sensor, for water fraction in oil-water two-phase flow and gas-oil-water three-phase flow were developed in this paper. The calibration results shows that the responses of the two sensors are good enough as the variation of water fraction. And on the other hand, it is possible that the oil and the gas regard as one phase in gas-oil-water three-phase flow by using double-helical capacitance sensor, and the ratio between water and gas has no effect with the output signal. The range of water fraction which can be measured becomes bigger and bigger because of the using of new circuit. So the capacitance sensor is better enough to measure water fraction in the three phases flow. During dynamic experiment, because of phase inversion phenomenon between oil and water, the conductance sensor outputs poorly, however the capacitance sensor performs somewhat fine. The reason for the error using capacitance sensor is the edge effect of the capacitance. The experiment results show that the edge effect of the double-helical capacitance sensor causes that the output is smaller so that the measuring water fraction is a litter larger than the actual value. And when the variation of water fraction is above 10%, the edge effect of capacitance sensor can be almost neglected. On the contrary, when the variation of water fraction is below 10%, the edge effect is so lager than the results above that it cannot be ignored. Consequently, the double-helical capacitance probe is more suitable for measuring water fraction in slug flow and oil-water emulsion, in which the results agree better with static calibration than that in bubble flow.

  1. Trauma in patients with continuous-flow left ventricular assist devices.

    PubMed

    Sarsam, Sinan H; Meyers, Deborah E; Civitello, Andrew B; Agunanne, Enoch E; Odegaard, Peggy; Cohn, William E; Frazier, O H

    2013-11-01

    Trauma-related failure of a continuous-flow left ventricular assist device (LVAD) has not previously been reported. We present 4 cases in which LVAD complications were likely caused by external trauma and led to failure of a HeartMate II device. In 1 case, the onset of symptoms was delayed and the patient did not seek medical attention until months after the traumatic event. All 4 patients required surgical intervention, and 1 patient died of respiratory complications several months postoperatively. In conclusion, a history of external trauma should be considered as a possible etiologic factor when LVAD-supported patients in previously stable condition present with device malfunction.

  2. Increasing the transmitted flow pulse in a rotary left ventricular assist device.

    PubMed

    Gaddum, Nicholas Richard; Fraser, John F; Timms, Daniel Lee

    2012-10-01

    Long-term rotary left ventricular assist devices (LVADs) are increasingly employed to bridge patients with end-stage heart failure to transplant or as a destination therapy. Significant recent device development has increased patient support times, shifting further development focus toward physiologically sensitive control of the pump operation. Sensorless control of these devices would benefit from increased observability of the ventricular volume/preload to the pump, in order to regulate flow based on preload, imitating the native Frank-Starling flow control. Monitoring the transmitted flow pulse through the pump has been used as a surrogate for preload, although means of maximizing its transmission are not clear. However, it is known that a flat hydraulic performance curve of the rotary pump induces high changes in flow for a given change in pressure head. The aim of this study was to determine geometric pump parameters responsible for increasing this flow pulse transmission and to demonstrate this increase in vitro. The sensitivity of the performance gradient to blade angles, blade heights, blade clearance, and channel areas were studied. Resulting pressure head, flow, and hydraulic efficiency were analyzed with respect to textbook designed procedures. Then pumps with comparably "flat" and "steep" performance curves were used to simulate LVAD support in vitro over a range of pump flow rates to observe the transmitted flow pulsatility. It was found that an outlet blade angle of 90°, inlet blade angle between 25 and 45°, and large throat area generated a "flatter" performance curve. The transmitted flow pulsatility through a pump with a flat performance curve was 68% higher than that of a steep performance curve at a flow rate of 5 L/min. Substantial gains in the observability of LVAD preload/resident blood volume in the ventricle exist through the careful selection of specific pump geometries.

  3. Magnetic resonance flow velocity and temperature mapping of a shape memory polymer foam device

    PubMed Central

    2009-01-01

    Background Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. Methods A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Results Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Conclusions Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated. PMID:20043833

  4. Discharge flow of a granular media from a silo: effect of the packing fraction and of the hopper angle

    NASA Astrophysics Data System (ADS)

    Benyamine, Mebirika; Aussillous, Pascale; Dalloz-Dubrujeaud, Blanche

    2017-06-01

    Silos are widely used in the industry. While empirical predictions of the flow rate, based on scaling laws, have existed for more than a century (Hagen 1852, translated in [1] - Beverloo et al. [2]), recent advances have be made on the understanding of the control parameters of the flow. In particular, using continuous modeling together with a mu(I) granular rheology seem to be successful in predicting the flow rate for large numbers of beads at the aperture (Staron et al.[3], [4]). Moreover Janda et al.[5] have shown that the packing fraction at the outlet plays an important role when the number of beads at the apeture decreases. Based on these considerations, we have studied experimentally the discharge flow of a granular media from a rectangular silo. We have varied two main parameters: the angle of the hopper, and the bulk packing fraction of the granular material by using bidisperse mixtures. We propose a simple physical model to describe the effect of these parameters, considering a continuous granular media with a dilatancy law at the outlet. This model predicts well the dependance of the flow rate on the hopper angle as well as the dependance of the flow rate on the fine mass fraction of a bidisperse mixture.

  5. Diagnostic Performance of a Lattice Boltzmann-Based Method for Fast CT-Fractional Flow Reserve.

    PubMed

    Giannopoulos, Andreas; Tang, Anji; Ge, Yin; Cheezum, Michael; Steigner, Michael; Fujimoto, Shinichiro; Kumamaru, Kanako; Chiappino, Dante; Della Latta, Daniele; Berti, Sergio; Chiappino, Sara; Rybicki, Frank; Melchionna, Simone; Mitsouras, Dimitrios

    2017-06-27

    Fractional flow reserve (FFR) estimated from coronary computed tomography angiography (CT-FFR) offers non-invasive detection of lesion-specific ischemia. We developed and validated a fast CT-FFR algorithm utilizing the Lattice-Boltzmann Method for blood flow simulation (LBM CT-FFR). 64 patients from 3 institutions with clinically-indicated CTA and invasive FFR measurement were retrospectively analyzed. CT-FFR was performed using an on-site tool interfacing with a commercial Lattice-Boltzmann fluid dynamics cloud-based platform. Diagnostic accuracy of LBM CT-FFR≤0.8 and percent diameter stenosis >50% by CTA to detect invasive FFR≤0.8 were compared using area under the receiver operating characteristic curve (AUC). 60 patients successfully underwent LBM CT-FFR analysis; 29 of 73 lesions in 69 vessels had invasive FFR≤0.8. Total time to perform LBM CT-FFR was 40±10 min. Compared to invasive FFR, LBM CT-FFR had good correlation (r=0.64), small bias (0.009) and good limits of agreement (-0.223 to 0.206). The AUC of LBM CT-FFR (AUC=0.894, 95% confidence interval [CI]: 0.792- 0.996) was significantly higher than CTA (AUC=0.685, 95% CI: 0.576-0.794) to detect FFR≤0.8 (p=0.0021). Per-lesion specificity, sensitivity, accuracy of LBM CT-FFR were 97.7%, 79.3%, and 90.4%, respectively. LBM CT-FFR has very good diagnostic accuracy to detect lesion-specific ischemia (FFR≤0.8) and can be performed in less than 1 hour.

  6. Dusty Plasma Experimental (DPEx) device for complex plasma experiments with flow

    NASA Astrophysics Data System (ADS)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2015-11-01

    A versatile table-top dusty plasma experimental device to study flow induced excitations of linear and nonlinear waves/structures in a complex plasma is presented. In this Π-shaped apparatus, a DC glow discharge plasma is produced between a disc shaped anode and a grounded long cathode tray by applying a high voltage DC in the background of a neutral gas (argon) and subsequently a dusty plasma is created by introducing micron sized dust particles that get charged and levitated in the sheath region. A flow of the dust particles is induced in a controlled manner by adjusting the pumping speed and the gas flow rate into the device. A full characterisation of the plasma, using Langmuir and emissive probe data, and that of the dusty plasma using particle tracking data with the help of an idl based (super) Particle Identification and Tracking (sPIT) code is reported. Experimental results on the variation of the dust flow velocity as a function of the neutral pressure and the gas flow rate are given. The neutral drag force acting on the particles and the Epstein coefficient are estimated from the initial acceleration of the particles. The potential experimental capabilities of the device for conducting fundamental studies of flow induced instabilities are discussed.

  7. Multiple stirred-flow chamber assembly for simultaneous automatic fractionation of trace elements in fly ash samples using a multisyringe-based flow system

    SciTech Connect

    Boonjob, W.; Miro, M.; Cerda, V.

    2008-10-01

    There is a current trend in automation of leaching tests for trace elements in solid matrixes by use of flow injection based column approaches. However, as a result of the downscaled dimensions of the analytical manifold and execution of a single extraction at a time, miniaturized flow-through column approaches have merely found applications for periodic investigations of trace element mobility in highly homogeneous environmental solids. A novel flow-based configuration capitalized on stirred-flow cell extraction is proposed in this work for simultaneous fractionation of trace elements in three solid wastes with no limitation of sample amount up to 1.0 g. A two-step sequential extraction scheme involving water and acetic acid (or acetic acid/acetate buffer) is utilized for accurate assessment of readily mobilizable fractions of trace elements in fly ash samples. The W automated extraction system features high tolerance to flow rates ({<=} 6 mL min{sup -1}) and, as opposed to operationally defined batchwise methods, the solid to liquid ratio is not a critical parameter for, determination of overall readily leachable trace elements provided that exhaustive extraction is ensured. Analytical performance of the dynamic extractor is evaluated for fractionation analysis of a real coal fly ash and BCR-176R fly ash certified reference material. No significant differences were found at the 0.05 significance level between summation of leached concentrations in each fraction plus residue and concentration values of BCR-176R, thus revealing the accuracy of the automated method. Overall extractable pools of trace metals in three samples are separated in less than 115 min, even for highly contaminated ashes, versus 18-24 h per fraction in equilibrium leaching tests. The multiple stirred-flow cell assembly is thus suitable for routine risk assessment studies of industrial solid byproduct.

  8. The in situ permeable flow sensor: A device for measuring groundwater flow velocity

    SciTech Connect

    Ballard, S.; Barker, G.T.; Nichols, R.L.

    1994-03-01

    A new technology called the In Situ Permeable Flow Sensor has been developed at Sandia National Laboratories. These sensors use a thermal perturbation technique to directly measure the direction and magnitude of the full three dimensional groundwater flow velocity vector in unconsolidated, saturated, porous media. The velocity measured is an average value characteristic of an approximately 1 cubic meter volume of the subsurface. During a test at the Savannah River Site in South Carolina, two flow sensors were deployed in a confined aquifer in close proximity to a well which was screened over the entire vertical extent of the aquifer and the well was pumped at four different pumping rates. In this situation horizontal flow which is radially directed toward the pumping well is expected. The flow sensors measured horizontal flow which was directed toward the pumping well, within the uncertainty in the measurements. The observed magnitude of the horizontal component of the flow velocity increased linearly with pumping rate, as predicted by theoretical considerations. The measured horizontal component of the flow velocity differed from the predicted flow velocity, which was calculated with the assumptions that the hydraulic properties of the aquifer were radially homogeneous and isotropic, by less than a factor of two. Drawdown data obtained from other wells near the pumping well during the pump test indicate that the hydraulic properties of the aquifer are probably not radially homogeneous but the effect of the inhomogeneity on the flow velocity field around the pumping well was not modeled because the degree and distribution of the inhomogeneity are unknown. Grain size analysis of core samples from wells in the area were used to estimate the vertical distribution of hydraulic conductivity.

  9. Zeta-potential Analyses using Micro Electrical Field Flow Fractionation with Fluorescent Nanoparticles

    PubMed Central

    Chang, Moon-Hwan; Dosev, Dosi; Kennedy, Ian M.

    2007-01-01

    Increasingly growing application of nanoparticles in biotechnology requires fast and accessible tools for their manipulation and for characterization of their colloidal properties. In this work we determine the zeta-potentials for polystyrene nanoparticles using micro electrical field flow fractionation (μ–EFFF) which is an efficient method for sorting of particles by size. The data obtained by μ–EFFF were compared to zeta potentials determined by standard capillary electrophoresis. For proof of concept, we used polystyrene nanoparticles of two different sizes, impregnated with two different fluorescent dyes. Fluorescent emission spectra were used to evaluate the particle separation in both systems. Using the theory of electrophoresis, we estimated the zeta-potentials as a function of size, dielectric permittivity, viscosity and electrophoretic mobility. The results obtained by the μ–EFFF technique were confirmed by the conventional capillary electrophoresis measurements. These results demonstrate the applicability of the μ–EFFF method not only for particle size separation but also as a simple and inexpensive tool for measurements of nanoparticles zeta potentials. PMID:18542710

  10. Hypertension as a predictor of adverse cardiac events in patients with borderline fractional flow reserve.

    PubMed

    Arslan, Fatih; Kaya, Mehmet G; van der Heijden, Geert; Timurkaynak, Timur; Cengel, Atiye

    2007-08-01

    The cut-off value myocardial fractional flow reserve (FFRmyo) < 0.75 identifies patients with clinically significant coronary stenosis. Normally PCI is deferred with a FFRmyo > or = 0.75. Other clinical characteristics may affect such treatment decision. Therefore, we studied the association between baseline characteristics and clinical outcomes in an unselected patient cohort with coronary artery disease, with intermediate coronary stenosis, initially referred for PCI, but in whom the intervention was deferred on the basis of FFRmyo > or = 0.75. Angiographic analysis and follow-up were performed in 152 patients with stable or unstable angina pectoris with intermediate coronary stenosis severity and normal left ventricular function. A major adverse cardiac event (MACE) was defined as postprocedural acute myocardial infarction (AMI), target vessel revascularization (TVR) and verified cardiac death. More adverse cardiac events occurred in patients with 0.75 < or = FFRmyo < 0.80 (24/30) compared with FFRmyo > or = 0.80 (9/97) (P < 0.001). Hypertension, diabetes and hyperlipidaemia were significantly associated with the occurrence of MACE in the univariate analyses. Logistic regression analyses showed that only hypertension remained as a significant independent predictor of MACE for patients with 0.75 < or = FFRmyo < 0.80 (P < 0.10). In an unselected patient population with coronary artery disease, a FFRmyo cut-off value of 0.8 should be used in hypertensive patients to discriminate between clinically significant coronary stenosis.

  11. Dynamic damping of the aortic pressure trace during hyperemia: the impact on fractional flow reserve measurement.

    PubMed

    Lockie, Tim; Rolandi, M Cristina; Piek, Jan J

    2013-10-01

    We report on two cases that illustrate an important caveat in the measurement of fractional flow reserve (FFR) in coronary arteries. To obtain accurate FFR measurements, two fundamental requirements must be fulfilled. One is to minimize microvascular resistance; the other is that there is no damping of the proximal aortic pressure trace. A problem with either of these requirements can be a source of serious error in the measurement of FFR. In each case we present here, despite a good aortic pressure trace at the start of the procedure, there is dynamic damping of the pressure trace during hyperemia, secondary to axial migration of the guiding catheter into the left main stem (LMS). In both cases, a normal aortic pressure trace (Pa) is present at baseline. After intracoronary adenosine injection, there was a fall in both mean Pa and distal coronary pressure (Pd) concomitant with damping of Pa, evidenced by loss of the dicrotic notch and ventricularization of the pressure trace. The resultant FFR value is underestimated. As hyperemia wears off, both pressure traces return to normal with good articulation of the dicrotic notch. When the procedure was repeated taking care to ensure that the guide did not move into the LMS during hyperemia, the Pa trace remained stable following intracoronary adenosine, while mean Pd decreased as before. In both cases, hemodynamically significant lesions were demonstrated that had been masked by the artifactual drop in Pa during the first attempt.

  12. Clinical Relevance of Coronary Fractional Flow Reserve: Art-of-state.

    PubMed

    Adiputra, Yohanes; Chen, Shao-Liang

    2015-05-20

    The objective was to delineate the current knowledge of fractional flow reserve (FFR) in terms of definition, features, clinical applications, and pitfalls of measurement of FFR. We searched database for primary studies published in English. The database of National Library of Medicine (NLM), MEDLINE, and PubMed up to July 2014 was used to conduct a search using the keyword term "FFR". The articles about the definition, features, clinical application, and pitfalls of measurement of FFR were identified, retrieved, and reviewed. Coronary pressure-derived FFR rapidly assesses the hemodynamic significance of individual coronary artery lesions and can readily be performed in the catheterization laboratory. The use of FFR has been shown to effectively guide coronary revascularization procedures leading to improved patient outcomes. FFR is a valuable tool to determine the functional significance of coronary stenosis. It combines physiological and anatomical information, and can be followed immediately by percutaneous coronary intervention (PCI) if necessary. The technique of FFR measurement can be performed easily, rapidly, and safely in the catheterization laboratory. By systematic use of FFR in dubious stenosis and multi-vessel disease, PCI can be made an even more effective and better treatment than it is currently. The current clinical evidence for FFR should encourage cardiologists to use this tool in the catheterization laboratory.

  13. A comparison of artificial compressibility and fractional step methods for incompressible flow computations

    NASA Technical Reports Server (NTRS)

    Chan, Daniel C.; Darian, Armen; Sindir, Munir

    1992-01-01

    We have applied and compared the efficiency and accuracy of two commonly used numerical methods for the solution of Navier-Stokes equations. The artificial compressibility method augments the continuity equation with a transient pressure term and allows one to solve the modified equations as a coupled system. Due to its implicit nature, one can have the luxury of taking a large temporal integration step at the expense of higher memory requirement and larger operation counts per step. Meanwhile, the fractional step method splits the Navier-Stokes equations into a sequence of differential operators and integrates them in multiple steps. The memory requirement and operation count per time step are low, however, the restriction on the size of time marching step is more severe. To explore the strengths and weaknesses of these two methods, we used them for the computation of a two-dimensional driven cavity flow with Reynolds number of 100 and 1000, respectively. Three grid sizes, 41 x 41, 81 x 81, and 161 x 161 were used. The computations were considered after the L2-norm of the change of the dependent variables in two consecutive time steps has fallen below 10(exp -5).

  14. Clinical Relevance of Coronary Fractional Flow Reserve: Art-of-state

    PubMed Central

    Adiputra, Yohanes; Chen, Shao-Liang

    2015-01-01

    Objective: The objective was to delineate the current knowledge of fractional flow reserve (FFR) in terms of definition, features, clinical applications, and pitfalls of measurement of FFR. Data Sources: We searched database for primary studies published in English. The database of National Library of Medicine (NLM), MEDLINE, and PubMed up to July 2014 was used to conduct a search using the keyword term “FFR”. Study Selection: The articles about the definition, features, clinical application, and pitfalls of measurement of FFR were identified, retrieved, and reviewed. Results: Coronary pressure-derived FFR rapidly assesses the hemodynamic significance of individual coronary artery lesions and can readily be performed in the catheterization laboratory. The use of FFR has been shown to effectively guide coronary revascularization procedures leading to improved patient outcomes. Conclusions: FFR is a valuable tool to determine the functional significance of coronary stenosis. It combines physiological and anatomical information, and can be followed immediately by percutaneous coronary intervention (PCI) if necessary. The technique of FFR measurement can be performed easily, rapidly, and safely in the catheterization laboratory. By systematic use of FFR in dubious stenosis and multi-vessel disease, PCI can be made an even more effective and better treatment than it is currently. The current clinical evidence for FFR should encourage cardiologists to use this tool in the catheterization laboratory. PMID:25963364

  15. Use of fluorescent probes for determination of yeast cell viability by gravitational field-flow fractionation.

    PubMed

    Garcia, M T; Sanz, R; Galceran, M T; Puignou, L

    2006-01-01

    The quality of wine greatly depends on the features of the yeast used in its production, and yeast cell viability is one of the most important quality control issues to consider in this regard. In the first steps of winemaking, the use of a low-cost and simple methodology for monitoring the cell viability of yeast inoculates is of paramount importance. Gravitational field-flow fractionation is a useful technique for the determination of cell viability because it provides gentle experimental conditions, although the proper use of fluorophore probes as biomass indicators is required. In this paper the use of different fluorescent probes such as carboxyfluorescein diacetate (cFDA), calcein-AM, and SYTO-13 were considered as viability biomarkers. Calceina-AM allowed the establishment of a direct GrFFF method to determine cell viability, with a limit of detection of 5.0 x 10(4) viable cell/mL. SYTO-13 could be used as biomass indicator with a limit of detection of 3.5 x 10(4) total cells/mL. The suitability of the procedure was tested with three commercial yeast samples, and the results were compared with those obtained using standard techniques.

  16. Monitoring of barley starch amylolysis by gravitational field flow fractionation and MALDI-TOF MS.

    PubMed

    Mazanec, Karel; Dycka, Filip; Bobalova, Janette

    2011-12-01

    In barley, starch occurs in the form of granules with bimodal size distribution. Enzymatic hydrolysis of the starch granule is one of the most important reactions occurring during malting and mashing. Previous studies revealed the discrepancies in the assumption that barley varieties with better malting qualities should have a higher A/B (large/small starch granules) ratio. This led us to focus our attention on detailed analysis of two barley varieties, Jersey and Tolar, both with high malting quality but significantly differing in A/B (1.28 and 0.66, respectively), were chosen for more detailed analysis in the actual work. In this study, the capacity of gravitational field flow fractionation (GFFF) to monitor amylolysis of the starch granules was investigated. Isolated starch granules from these two barley cultivars were treated with amylases. The changes in starch granule size and bimodal distribution were studied by GFFF. Simultaneously, free sugars released during enzymatic digestion were observed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The changes in the fractogram and in the mass spectra reflect a correlation with the progress of enzymatic hydrolysis. The results show the interest in utilization of GFFF as a simple and cheap method for monitoring changes in the distribution of the starch granule size during amylolysis. Copyright © 2011 Society of Chemical Industry.

  17. [Computed tomography in patients with chronic stable angina : Fractional flow reserve measurement].

    PubMed

    Renker, M; Schoepf, U J; Becher, T; Krampulz, N; Kim, W; Rolf, A; Möllmann, H; Hamm, C W; Henzler, T; Borggrefe, M; Akin, I; Baumann, S

    2017-02-01

    Coronary computed tomography angiography (cCTA) has been established for the non-invasive diagnosis of coronary artery disease (CAD). Previous studies demonstrated the high diagnostic accuracy of cCTA, particularly for ruling out CAD. As a known limitation of cCTA a large number of visually significant coronary stenoses are found to be hemodynamically not relevant by invasive fractional flow reserve (FFR). CT-based FFR (CT-FFR) builds on recent advances in computational fluid dynamics and image simulation techniques. Along with CT myocardial perfusion imaging, CT-FFR is a promising approach towards a more accurate estimation of the hemodynamic relevance of coronary artery stenoses. CT-FFR is derived from regular CT datasets without additional image acquisitions, contrast material, or medication. Two CT-FFR techniques can be differentiated. The initial method requires external use of supercomputers and has gained approval for clinical use in the USA. Furthermore, a prototype-software has been introduced which is less computationally demanding via integration of reduced-order models for on-site calculation of CT-FFR. The present article reviews these methods in the context of available study results and meta-analyses. Furthermore, limitations and future concepts of CT-FFR are discussed.

  18. Visual-Functional Mismatch Between Coronary Angiography, Fractional Flow Reserve, and Quantitative Coronary Angiography.

    PubMed

    Safi, Morteza; Eslami, Vahid; Namazi, Mohammad Hasan; Vakili, Hossain; Saadat, Habib; Alipourparsa, Saeid; Adibi, Ali; Movahed, Mohammad Reza

    2016-12-01

    Anatomical and functional mismatches are not uncommon in the assessment of coronary lesions. The aim of this study was to identify clinical and lesion-specific factors affecting angiographic, anatomical, and functional mismatch in intermediate coronary lesions. In patients who underwent coronary angiography for clinical reasons, fractional flow reserve (FFR), and quantitative coronary angiography (QCA) analyses for intermediate stenotic lesions were performed simultaneously. Mismatches between the measured values were analyzed. A total of 95 intermediate lesions were assessed simultaneously by visual angiography, FFR, and QCA. The visual-FFR mismatch was found in 40% of the lesions while reverse visual-FFR mismatch was determined in nearly 14% of the lesions. Mismatch and reverse mismatch between FFR and QCA parameters were observed in 10 and 23% of the lesions. FFR value was significant in 32% of the lesions while visually significant stenosis was shown in 61% of the lesions. Among the visual-FFR reverse mismatch group, the prevalence of culprit lesions within the left anterior descending (LAD) was significantly higher than other vessels (p value < 0.02). There were high frequencies of angiographic, QCA, and functional mismatches in analyses of intermediate coronary lesions. LAD lesions showed the highest mismatch. Angiographic or QCA estimation of lesion severity has consistently resulted in inappropriate stenting of functionally nonsignificant lesions or undertreatment of significant lesions based on FFR.

  19. A comparison of artificial compressibility and fractional step methods for incompressible flow computations

    NASA Technical Reports Server (NTRS)

    Chan, Daniel C.; Darian, Armen; Sindir, Munir

    1992-01-01

    We have applied and compared the efficiency and accuracy of two commonly used numerical methods for the solution of Navier-Stokes equations. The artificial compressibility method augments the continuity equation with a transient pressure term and allows one to solve the modified equations as a coupled system. Due to its implicit nature, one can have the luxury of taking a large temporal integration step at the expense of higher memory requirement and larger operation counts per step. Meanwhile, the fractional step method splits the Navier-Stokes equations into a sequence of differential operators and integrates them in multiple steps. The memory requirement and operation count per time step are low, however, the restriction on the size of time marching step is more severe. To explore the strengths and weaknesses of these two methods, we used them for the computation of a two-dimensional driven cavity flow with Reynolds number of 100 and 1000, respectively. Three grid sizes, 41 x 41, 81 x 81, and 161 x 161 were used. The computations were considered after the L2-norm of the change of the dependent variables in two consecutive time steps has fallen below 10(exp -5).

  20. Dynamic physical properties of dissociated tumor cells revealed by dielectrophoretic field-flow fractionation

    PubMed Central

    Shim, Sangjo; Gascoyne, Peter; Noshari, Jamileh; Stemke Hale, Katherine

    2013-01-01

    Metastatic disease results from the shedding of cancer cells from a solid primary tumor, their transport through the cardiovascular system as circulating tumor cells (CTCs) and their engraftment and growth at distant sites. Little is known about the properties and fate of tumor cells as they leave their growth site and travel as single cells. We applied analytical dielectrophoretic field-flow fractionation (dFFF) to study the membrane capacitance, density and hydrodynamic properties together with the size and morphology of cultured tumor cells after they were harvested and placed into single cell suspensions. After detachment, the tumor cells exhibited biophysical properties that changed with time through a process of cytoplasmic shedding whereby membrane and cytoplasm were lost. This process appeared to be distinct from the cell death mechanisms of apoptosis, anoikis and necrosis and it may explain why multiple phenotypes are seen among CTCs isolated from patients and among the tumor cells obtained from ascitic fluid of patients. The implications of dynamic biophysical properties and cytoplasmic loss for CTC migration into small blood vessels in the circulatory system, survival and gene expression are discussed. Because the total capacitance of tumor cells remained higher than blood cells even after they had shed cytoplasm, dFFF offers a compelling, antibody-independent technology for isolating viable CTCs from blood even when they are no larger than peripheral blood mononuclear cells. PMID:21691666

  1. Biased cyclical electrical field-flow fractionation for separation of submicron particles.

    PubMed

    Ornthai, Mathuros; Siripinyanond, Atitaya; Gale, Bruce K

    2016-01-01

    The potential of biased cyclical electrical field-flow fractionation (BCyElFFF), which applies the positive cycle voltage longer than the negative cycle voltage, for characterization of submicron particles, was investigated. Parameters affecting separation and retention such as voltage, frequency, and duty cycle were examined. The results suggest that the separation mechanism in BCyElFFF in many cases is more related to the size of particles, as is the case with normal ElFFF, in the studied conditions, than the electrophoretic mobility, which is what the theory predicts for CyElFFF. However, better resolution was obtained when separating using BCyElFFF mode than when using normal CyElFFF. BCyElFFF was able to demonstrate simultaneous baseline separations of a mixture of 0.04-, 0.1-, and 0.2-μm particles and near separation of 0.5-μm particles. This study has shown the applicability of BCyElFFF for separation and characterization of submicron particles greater than 0.1-μm in size, which had not been demonstrated previously. The separation and retention results suggest that for particles of this size, retention is based more on particle size than on electrophoretic mobility, which is contrary to existing theory for CyElFFF.

  2. Size sorting of citrate reduced gold nanoparticles by sedimentation field-flow fractionation.

    PubMed

    Contado, Catia; Argazzi, Roberto

    2009-12-25

    Gold nanoparticles (GNPs) have been synthesized through the citrate reduction method; the citrate/gold(III) ratio was changed from 1:1 up to 10:1 and the size of the resulting nanoparticles was measured by sedimentation field-flow fractionation (SdFFF). Experimental data showed that the GNPs size decreases in the ratio range 1:1-3:1 and then increases from 5:1 to 10:1 passing through a plateau region in between, and is almost independent of the precursor solution concentrations. In the zone of minimum diameters the synthetic process does not produce monodispersed GNPs but often multiple distributions, very close in size, are observed as evidenced by the particle size distributions (PSDs) derived from the SdFFF fractograms. UV-vis spectrophotometry, being the most common technique employed in the optical characterization of nanoparticles suspensions, was used throughout this work. A confirmation of the nucleation-aggregation-fragmentation mechanism was inferred from the cross-correlation between UV-vis and SdFFF results.

  3. Sedimentation field flow fractionation and optical absorption spectroscopy for a quantitative size characterization of silver nanoparticles.

    PubMed

    Contado, Catia; Argazzi, Roberto; Amendola, Vincenzo

    2016-11-04

    Many advanced industrial and biomedical applications that use silver nanoparticles (AgNPs), require that particles are not only nano-sized, but also well dispersed, not aggregated and not agglomerated. This study presents two methods able to give rapidly sizes of monodispersed AgNPs suspensions in the dimensional range of 20-100nm. The first method, based on the application of Mie's theory, determines the particle sizes from the values of the surface plasmon resonance wavelength (SPRMAX), read from the optical absorption spectra, recorded between 190nm and 800nm. The computed sizes were compared with those determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and resulted in agreement with the nominal values in a range between 13% (for 20nm NPs) and 1% (for 100nm NPs), The second method is based on the masterly combination of the Sedimentation Field Flow Fractionation (SdFFF - now sold as Centrifugal FFF-CFFF) and the Optical Absorption Spectroscopy (OAS) techniques to accomplish sizes and quantitative particle size distributions for monodispersed, non-aggregated AgNPs suspensions. The SdFFF separation abilities, well exploited to size NPs, greatly benefits from the application of Mie's theory to the UV-vis signal elaboration, producing quantitative mass-based particle size distributions, from which trusted number-sized particle size distributions can be derived. The silver mass distributions were verified and supported by detecting off-line the Ag concentration with the graphite furnace atomic absorption spectrometry (GF-AAS).

  4. A novel patient-specific model to compute coronary fractional flow reserve.

    PubMed

    Kwon, Soon-Sung; Chung, Eui-Chul; Park, Jin-Seo; Kim, Gook-Tae; Kim, Jun-Woo; Kim, Keun-Hong; Shin, Eun-Seok; Shim, Eun Bo

    2014-09-01

    The fractional flow reserve (FFR) is a widely used clinical index to evaluate the functional severity of coronary stenosis. A computer simulation method based on patients' computed tomography (CT) data is a plausible non-invasive approach for computing the FFR. This method can provide a detailed solution for the stenosed coronary hemodynamics by coupling computational fluid dynamics (CFD) with the lumped parameter model (LPM) of the cardiovascular system. In this work, we have implemented a simple computational method to compute the FFR. As this method uses only coronary arteries for the CFD model and includes only the LPM of the coronary vascular system, it provides simpler boundary conditions for the coronary geometry and is computationally more efficient than existing approaches. To test the efficacy of this method, we simulated a three-dimensional straight vessel using CFD coupled with the LPM. The computed results were compared with those of the LPM. To validate this method in terms of clinically realistic geometry, a patient-specific model of stenosed coronary arteries was constructed from CT images, and the computed FFR was compared with clinically measured results. We evaluated the effect of a model aorta on the computed FFR and compared this with a model without the aorta. Computationally, the model without the aorta was more efficient than that with the aorta, reducing the CPU time required for computing a cardiac cycle to 43.4%.

  5. Comparison of on-line detectors for field flow fractionation analysis of nanomaterials.

    PubMed

    Bednar, A J; Poda, A R; Mitrano, D M; Kennedy, A J; Gray, E P; Ranville, J F; Hayes, C A; Crocker, F H; Steevens, J A

    2013-01-30

    Characterization of nanomaterials must include analysis of both size and chemical composition. Many analytical techniques, such as dynamic light scattering (DLS), are capable of measuring the size of suspended nanometer-sized particles, yet provide no information on the composition of the particle. While field flow fractionation (FFF) is a powerful nanoparticle sizing technique, common detectors used in conjunction with the size separation, including UV, light-scattering, and fluorescence spectroscopy, do not provide the needed particle compositional information. Further, these detectors do not respond directly to the mass concentration of nanoparticles. The present work describes the advantages achieved when interfacing sensitive and elemental specific detectors, such as inductively coupled plasma atomic emission spectroscopy and mass spectrometry, to FFF separation analysis to provide high resolution nanoparticle sizing and compositional analysis at the μg/L concentration level, a detection at least 10-100-fold lower than DLS or FFF-UV techniques. The full benefits are only achieved by utilization of all detector capabilities, such as dynamic reaction cell (DRC) ICP-MS. Such low-level detection and characterization capability is critical to nanomaterial investigations at biologically and environmentally relevant concentrations. The techniques have been modified and applied to characterization of all four elemental constituents of cadmium selenide-zinc sulfide core-shell quantum dots, and silver nanoparticles with gold seed cores. Additionally, sulfide coatings on silver nanoparticles can be detected as a potential means to determine environmental aging of nanoparticles.

  6. Physiological assessment of coronary lesion severity: fractional flow reserve versus nonhyperaemic indices.

    PubMed

    Robertson, Keith E; Hennigan, Barry; Berry, Colin; Oldroyd, Keith G

    2015-08-01

    Coronary angiography alone cannot accurately identify the haemodynamic impact of a coronary artery stenosis. Current international guidelines for myocardial revascularization recommend that inducible ischaemia should be demonstrated before the consideration of percutaneous coronary intervention. Invasive physiological assessment of coronary stenosis severity has increasingly been utilized for this purpose and use of the best validated technique, fractional flow reserve (FFR), has been shown to improve clinical outcomes in patients with stable and unstable coronary artery disease. This has led to the use of FFR being recommended in international revascularization guidelines, despite which, clinical uptake has been limited. One potential reason for slow adoption has been the requirement for maximal hyperaemia at the time of FFR measurement, usually achieved by the administration of pharmacological vasodilators such as adenosine. In some healthcare systems, adenosine is expensive and, in addition, its use can be associated with significant, albeit transient, adverse effects that patients (and some operators) find uncomfortable. Consequently, several methods of nonhyperaemic lesion assessment and their potential role in decision making have been reported. In this review we will review and discuss the current evidence for hyperaemic and nonhyperaemic methods of lesion assessment. We will also look at hybrid strategies that utilize both hyperaemic and nonhyperaemic methods as a means of potentially maintaining diagnostic accuracy while minimizing the requirement for adenosine administration and discuss whether or not they represent viable clinical alternatives.

  7. Adenosine-induced torsade de pointes complicating a fractional flow reserve measurement in a right coronary artery intermediate stenosis.

    PubMed

    Piccolo, Raffaele; Niglio, Tullio; Di Gioia, Giuseppe; D'Anna, Carolina; De Rosa, Roberta; Strisciuglio, Teresa; Trimarco, Bruno; Piscione, Federico; Galasso, Gennaro

    2013-01-01

    We present the case of a 57 year-old patient that presented to our Institution with a positive treadmill stress test. Coronary angiography revealed an intermediate stenosis of the right coronary artery evaluated with a fractional flow reserve (FFR), complicated by torsade de pointes. Despite this being a very rare arrhythmic complication during FFR, its prompt recognition and treatment are of utmost importance.

  8. Association of advanced airway device with chest compression fraction during out-of-hospital cardiopulmonary arrest.

    PubMed

    Kurz, Michael Christopher; Prince, David K; Christenson, James; Carlson, Jestin; Stub, Dion; Cheskes, Sheldon; Lin, Steve; Aziz, Michael; Austin, Michael; Vaillancourt, Christian; Colvin, Justin; Wang, Henry E

    2016-01-01

    Select Emergency Medical Services (EMS) practitioners substitute endotracheal intubation (ETI) with supraglottic airway (SGA) insertion to minimize CPR chest compression interruptions, but the resulting effects upon chest compression fraction (CCF) are unknown. We sought to determine the differences in CCF between adult out-of-hospital cardiac arrest (OHCA) receiving ETI and those receiving SGA. We studied adult, non-traumatic OHCA patients enrolled in the Resuscitation Outcomes Consortium (ROC) Prehospital Resuscitation using an Impedance valve and an Early vs. Delayed analysis (PRIMED) trial. Chest compressions were measured using compression or thoracic impedance sensors. We limited the analysis to those receiving ETI or SGA (Combitube, King Laryngeal Tube, or Laryngeal Mask Airway) and >2min of chest compression data before and after airway insertion. We compared CCF between ETI and SGA before and after airway insertion, adjusting for age, sex, witnessed arrest, bystander CPR, shockable initial rhythm, public location, PRIMED trial arm, and regional ROC center. We also compared the change in CCF for each airway technique. Of 14,955 patients enrolled in the ROC PRIMED trial, we analyzed 2767 cases, including 2051 ETI, 671 SGA, and 45 both. Among subjects in this investigation the mean age was 66.4 years with a male predominace, 46% with witnessed event, 37% receiving bystander CPR, and 22% presenting with an initially shockable rhythm. Pre- and post-airway CCF was higher for SGA than ETI (SGA pre-airway CCF 73.2% [95%CI: 71.6-74.7%] vs. ETI 70.6% [95%CI: 69.7-71.5%]; post-airway 76.7% [95%CI: 75.2-78.1%] vs. 72.4% [95%CI: 71.5-73.3%]). After adjusting for potential confounders, these significant changes persisted (pre-airway difference 2.2% favoring SGA, p-value=0.046; post-airway 3.4% favoring SGA, p=0.001). In patients with OHCA, we detected a slightly higher rate of CCF in patients for whom a SGA was inserted, both before and after insertion. However, the

  9. Automated 2D-HPLC method for characterization of protein aggregation with in-line fraction collection device.

    PubMed

    Williams, Abasha; Read, Erik K; Agarabi, Cyrus D; Lute, Scott; Brorson, Kurt A

    2017-03-01

    Monoclonal antibodies are mainly produced by mammalian cell culture, which due to its complexity, results in a wide range of product variants/isoforms. With the growing implementation of Quality by Design (QbD) and Process Analytical Technology (PAT) in drug manufacturing, monitoring and controlling quality attributes within a predefined range during manufacturing may provide added consistency to product quality. To implement these concepts, more robust analytical tools could reduce the time needed for monitoring quality attributes during upstream processing. The formation of protein aggregates is one such quality attribute that can lead to safety and efficacy issues in the final drug product. Described in this study is a fully automated two-dimensional high performance liquid chromatography (2D-HPLC) method for characterizing protein aggregation of crude in-process bioreactor samples. It combines protein A purification and separation by size exclusion into a single analytical module that has the potential to be employed at-line within a bioprocessing system. This method utilizes a novel in-line fraction collection device allowing for the collection of up to twelve fractions from a single sample or peak which facilitates the subsequent linked analysis of multiple protein peaks of interest in one chromatography module. Published by Elsevier B.V.

  10. Extensional flow of hyaluronic acid solutions in an optimized microfluidic cross-slot device.

    PubMed

    Haward, S J; Jaishankar, A; Oliveira, M S N; Alves, M A; McKinley, G H

    2013-07-01

    We utilize a recently developed microfluidic device, the Optimized Shape Cross-slot Extensional Rheometer (OSCER), to study the elongational flow behavior and rheological properties of hyaluronic acid (HA) solutions representative of the synovial fluid (SF) found in the knee joint. The OSCER geometry is a stagnation point device that imposes a planar extensional flow with a homogenous extension rate over a significant length of the inlet and outlet channel axes. Due to the compressive nature of the flow generated along the inlet channels, and the planar elongational flow along the outlet channels, the flow field in the OSCER device can also be considered as representative of the flow field that arises between compressing articular cartilage layers of the knee joints during running or jumping movements. Full-field birefringence microscopy measurements demonstrate a high degree of localized macromolecular orientation along streamlines passing close to the stagnation point of the OSCER device, while micro-particle image velocimetry is used to quantify the flow kinematics. The stress-optical rule is used to assess the local extensional viscosity in the elongating fluid elements as a function of the measured deformation rate. The large limiting values of the dimensionless Trouton ratio, Tr ∼ O(50), demonstrate that these fluids are highly extensional-thickening, providing a clear mechanism for the load-dampening properties of SF. The results also indicate the potential for utilizing the OSCER in screening of physiological SF samples, which will lead to improved understanding of, and therapies for, disease progression in arthritis sufferers.

  11. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.

    PubMed

    Yang, Zhaochu; Dong, Tao; Halvorsen, Einar

    2014-01-01

    This work describes a capacitive sensor for identification of microfluidic two-phase flow in lab-on-chip devices. With interdigital electrodes and thin insulation layer utilized, this sensor is capable of being integrated with the microsystems easily. Transducing principle and design considerations are presented with respect to the microfluidic gas/liquid flow patterns. Numerical simulation results verify the operational principle. And the factors affecting the performance of the sensor are discussed. Besides, a feasible process flow for the fabrication is also proposed.

  12. Sampling device for withdrawing a representative sample from single and multi-phase flows

    DOEpatents

    Apley, Walter J.; Cliff, William C.; Creer, James M.

    1984-01-01

    A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.

  13. The performance characteristics of lateral flow devices with 2 strains of highly pathogenic avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Lateral flow devices (LFD) are commercially available and provide a fast, highly specific, on-site test for avian influenza. Because of the low analytic sensitivity of LFD tests at low virus concentrations, targeted sampling of sick and dead birds has been proposed in order to increase detection pr...

  14. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.

    PubMed

    Cole, Russell H; Tran, Tuan M; Abate, Adam R

    2015-12-25

    Double emulsions are useful in a number of biological and industrial applications in which it is important to have an aqueous carrier fluid. This paper presents a polydimethylsiloxane (PDMS) microfluidic device capable of generating water/oil/water double emulsions using a coaxial flow focusing geometry that can be fabricated entirely using soft lithography. Similar to emulsion devices using glass capillaries, double emulsions can be formed in channels with uniform wettability and with dimensions much smaller than the channel sizes. Three dimensional flow focusing geometry is achieved by casting a pair of PDMS slabs using two layer soft lithography, then mating the slabs together in a clamshell configuration. Complementary locking features molded into the PDMS slabs enable the accurate registration of features on each of the slab surfaces. Device testing demonstrates formation of double emulsions from 14 µm to 50 µm in diameter while using large channels that are robust against fouling and clogging.

  15. Experimental Investigation of Turbulent-driven Sheared Parallel Flows in the CSDX Plasma Device

    NASA Astrophysics Data System (ADS)

    Tynan, George; Hong, Rongjie; Li, Jiacong; Thakur, Saikat; Diamond, Patrick

    2016-10-01

    Parallel velocity and its radial shear is a key element for both accessing improved confinement regimes and controlling the impurity transport in tokamak devices. In this study, the development of radially sheared parallel plasma flows in plasmas without magnetic shear is investigated using laser induced fluorescence, multi-tip Langmuir and Mach probes in the CSDX helicon linear plasma device. Results show that a mean parallel velocity shear grows as the radial gradient of plasma density increased. The sheared flow onset corresponds to the onset of a finite parallel Reynolds stress that acts to reinforce the flow. As a result, the mean parallel flow gains energy from the turbulence that, in turn, is driven by the density gradient. This results in a flow away from the plasma source in the central region of the plasma and a reverse flow in far-peripheral region of the plasma column. The results motivate a model of negative viscosity induced by the turbulent stress which may help explain the origin of intrinsic parallel flow in systems without magnetic shear.

  16. Acoustic Characterization of Axial Flow Left Ventricular Assist Device Operation In Vitro and In Vivo.

    PubMed

    Yost, Gardner L; Royston, Thomas J; Bhat, Geetha; Tatooles, Antone J

    2016-01-01

    The use of left ventricular assist devices (LVADs), implantable pumps used to supplement cardiac output, has become an increasingly common and effective treatment for advanced heart failure. Although modern continuous-flow LVADs improve quality of life and survival more than medical management of heart failure, device malfunction remains a common concern. Improved noninvasive methods for assessment of LVAD function are needed to detect device complications. An electronic stethoscope was used to record sounds from the HeartMate II axial flow pump in vitro and in vivo. The data were then uploaded to a computer and analyzed using two types of acoustic analysis software. Left ventricular assist device acoustics were quantified and were related to pump speed, acoustic environment, and inflow and outflow graft patency. Peak frequency values measured in vivo were found to correlate strongly with both predicted values and in vitro measurements (r > 0.999). Plots of the area under the acoustic spectrum curve, obtained by integrating over 50 Hz increments, showed strong correlations between in vivo and in vitro measurements (r > 0.966). Device thrombosis was found to be associated with reduced LVAD acoustic amplitude in two patients who underwent surgical device exchange.

  17. A simple and highly stable free-flow electrophoresis device with thermoelectric cooling system.

    PubMed

    Yan, Jian; Guo, Cheng-Gang; Liu, Xiao-Ping; Kong, Fan-Zhi; Shen, Qiao-Yi; Yang, Cheng-Zhang; Li, Jun; Cao, Cheng-Xi; Jin, Xin-Qiao

    2013-12-20

    Complex assembly, inconvenient operations, poor control of Joule heating and leakage of solution are still fundamental issues greatly hindering application of free-flow electrophoresis (FFE) for preparative purpose in bio-separation. To address these issues, a novel FFE device was developed based on our previous work. Firstly, a new mechanical structure was designed for compact assembly of separation chamber, fast removal of air bubble, and good anti-leakage performance. Secondly, a highly efficient thermoelectric cooling system was used for dispersing Joule heating for the first time. The systemic experiments revealed the three merits: (i) 3min assembly without any liquid leakage, 80 times faster than pervious FFE device designed by us or commercial device (4h); (ii) 5s removing of air bubble in chamber, 1000-fold faster than a normal one (2h or more) and (iii) good control of Joule heating by the cooling system. These merits endowed the device high stable thermo- and hydro-dynamic flow for long-term separation even under high electric field of 63V/cm. Finally, the developed device was used for up to 8h continuous separation of 5mg/mL fuchsin acid and purification of three model proteins of phycocyanin, myoglobin and cytochrome C, demonstrating the applicability of FFE. The developed FFE device has evident significance to the studies on stem cell, cell or organelle proteomics, and protein complex as well as micro- or nano-particles.

  18. Rheological Characterisation of the Flow Behaviour of Wood Plastic Composites in Consideration of Different Volume Fractions of Wood

    NASA Astrophysics Data System (ADS)

    Laufer, N.; Hansmann, H.; Koch, M.

    2017-01-01

    In this study, the rheological properties of wood plastic composites (WPC) with different polymeric matrices (LDPE, low-density polyethylene and PP, polypropylene) and with different types of wood filler (hardwood flour and softwood flour) have been investigated by means of high pressure capillary rheometry. The volume fraction of wood was varied between 0 and 60 %. The shear thinning behaviour of the WPC melts can be well described by the Ostwald - de Waele power law relationship. The flow consistency index K of the power law shows a good correlation with the volume fraction of wood. Interparticular interaction effects of wood particles can be mathematically taken into account by implementation of an interaction exponent (defined as the ratio between flow exponent of WPC and flow exponent of polymeric matrix). The interaction exponent shows a good correlation with the flow consistency index. On the basis of these relationships the concept of shear-stress-equivalent inner shear rate has been modified. Thus, the flow behaviour of the investigated wood filled polymer melts could be well described mathematically by the modified concept of shear-stress-equivalent inner shear rate. On this basis, the shear thinning behaviour of WPC can now be estimated with good accuracy, taking into account the volume fraction of wood.

  19. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.

    1992-01-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  20. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. Stephen; Nyland, Ted W.; Saiyed, Naseem H.

    1992-01-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomas devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1 - X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  1. Flow reproducibility of whole blood and other bodily fluids in simplified no reaction lateral flow assay devices.

    PubMed

    Li, H; Han, D; Hegener, M A; Pauletti, G M; Steckl, A J

    2017-03-01

    The "no reaction" lateral flow assay (nrLFA) uses a simplified LFA structure with no conjugate pad and no stored reagents. In the nrLFA, the capillary-based transport time or distance is the key indicator, rather than the outcome of a biochemical reaction. Hence, the calibration and reproducibility of the nrLFA device are critical. The capillary flow properties of several membrane types (nitrocellulose, nylon, cellulose acetate, polyethersulfone, and polyvinylidene difluoride) are evaluated. Flow rate evaluations of MilliporeSigma Hi-Flow™ Plus (HF075, HF135 and HF180) nitrocellulose membranes on nrLFA are performed using bodily fluids (whole blood, blood plasma, and artificial sweat). The results demonstrate that fluids with lower viscosity travel faster, and membranes with slower flow rate exhibit higher capability to distinguish fluids with different viscosities. Reproducibility tests of nrLFA are performed on HF075, demonstrating excellent reproducibility. The coefficient of variation for blood coagulation tests performed with the nrLFA using induced coagulation was 5% for the plasma front and 2% for the RBC front. The effects of variation in blood hematocrit and sample volume are also reported. The overall results indicate that the nrLFA approach has a high potential to be commercially developed as a blood monitoring point-of-care device with simple calibration capability and excellent reproducibility.

  2. Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli

    2012-01-01

    A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.

  3. High flow rate microfluidic device for blood plasma separation using a range of temperatures.

    PubMed

    Rodríguez-Villarreal, Angeles Ivón; Arundell, Martin; Carmona, Manuel; Samitier, Josep

    2010-01-21

    A hybrid microfluidic device that uses hydrodynamic forces to separate human plasma from blood cells has been designed and fabricated and the advantageous effects of temperature and flow rates are investigated in this paper. The blood separating device includes an inlet which is reduced by approximately 20 times to a small constrictor channel, which then opens out to a larger output channel with a small lateral channel for the collection of plasma. When tested the device separated plasma from whole blood using a wide range of flow rates, between 50 microl min(-1) and 200 microl min(-1), at the higher flow rates injected by hand and at temperatures ranging from 23 degrees C to 50 degrees C, the latter resulting in an increase in the cell-free layer of up to 250%. It was also tested continuously using between 5% and 40% erythrocytes in plasma and whole blood without blocking the channels or hemolysis of the cells. The mean percentage of plasma collected after separation was 3.47% from a sample of 1 ml. The percentage of cells removed from the plasma varied depending on the flow rate used, but at 37 degrees C ranged between 95.4 +/- 1% and 97.05 +/- 05% at 100 microl min(-1) and 200 microl min(-1), respectively. The change in temperature also had an effect on the number of cells removed from the plasma which was between 93.5 +/- 0.65% and 97.01 +/- 0.3% at 26.9 degrees C and 37 degrees C, respectively, using a flow rate of 100 microl min(-1). Due to its ability to operate in a wide range of conditions, it is envisaged that this device can be used in in vitro 'lab on a chip' applications, as well as a hand-held point of care (POC) device.

  4. Large-eddy simulation of a turbulent flow over a heavy vehicle with drag reduction devices

    NASA Astrophysics Data System (ADS)

    Lee, Sangseung; Kim, Myeongkyun; You, Donghyun

    2015-11-01

    Aerodynamic drag contributes to a considerable amount of energy loss of heavy vehicles. To reduce the energy loss, drag reduction devices such as side skirts and boat tails, are often installed to the side and the rear of a heavy vehicle. In the present study, turbulent flow around a heavy vehicle with realistic geometric details is simulated using large-eddy simulation (LES), which is capable of providing unsteady flow physics responsible for aerodynamic in sufficient detail. Flow over a heavy vehicle with and without a boat tail and side skirts as drag reduction devices is simulated. The simulation results are validated against accompanying in-house experimental measurements. Effects of a boat tail and side skirts on drag reduction are discussed in detail. Supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) Grant NTIS 1615007940.

  5. A nanopore membrane regulator device for laser modulated flow after glaucoma surgery.

    PubMed

    Olson, Jeffrey L; Bhandari, Ramanath; Groman-Lupa, Sergio; Velez-Montoya, Raul

    2015-10-01

    Glaucoma, the second most common cause of blindness in the world, is a multifactorial disease with several risk factors, of which intraocular pressure (IOP) is a primary contributing factor. Filtration surgery is one of the most effective means to significantly lower IOP compared to medical or laser treatments, and it is typically reserved for advanced disease. However, there are high rates of postoperative complications associated with the procedure, often from over- or under-filtration. To address these problems, the glaucoma drainage device regulator (GDDR) implant was developed to allow post-operative control of aqueous flow and IOP. The device, a tube with a nanopore membrane, is placed beneath the scleral flap. Postoperatively, the membrane surface can be ruptured with a laser to augment flow through the system. This feature allows adjustable control of aqueous flow and diminishes the risk of hypotony in the early postoperative period.

  6. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOEpatents

    Ortiz, Marcos German; Boucher, Timothy J

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  7. Polysaccharide characterization by hollow-fiber flow field-flow fractionation with on-line multi-angle static light scattering and differential refractometry.

    PubMed

    Pitkänen, Leena; Striegel, André M

    2015-02-06

    Accurate characterization of the molar mass and size of polysaccharides is an ongoing challenge, oftentimes due to architectural diversity but also to the broad molar mass (M) range over which a single polysaccharide can exist and to the ultra-high M of many polysaccharides. Because of the latter, many of these biomacromolecules experience on-column, flow-induced degradation during analysis by size-exclusion and, even, hydrodynamic chromatography (SEC and HDC, respectively). The necessity for gentler fractionation methods has, to date, been addressed employing asymmetric flow field-flow fractionation (AF4). Here, we introduce the coupling of hollow-fiber flow field-flow fractionation (HF5) to multi-angle static light scattering (MALS) and differential refractometry (DRI) detection for the analysis of polysaccharides. In HF5, less stresses are placed on the macromolecules during separation than in SEC or HDC, and HF5 can offer a higher sensitivity, with less propensity for system overloading and analyte aggregation, than generally found in AF4. The coupling to MALS and DRI affords the determination of absolute, calibration-curve-independent molar mass averages and dispersities. Results from the present HF5/MALS/DRI experiments with dextrans, pullulans, and larch arabinogalactan were augmented with hydrodynamic radius (RH) measurements from off-line quasi-elastic light scattering (QELS) and by RH distribution calculations and fractogram simulations obtained via a finite element analysis implementation of field-flow fractionation theory by commercially available software. As part of this study, we have investigated analyte recovery in HF5 and also possible reasons for discrepancies between calculated and simulated results vis-à-vis experimentally determined data. Published by Elsevier B.V.

  8. Single-layer microfluidic device to realize hydrodynamic 3D flow focusing.

    PubMed

    Eluru, Gangadhar; Julius, Lourdes Albina Nirupa; Gorthi, Sai Siva

    2016-10-18

    The recent rapid growth of microfluidic applications has witnessed the emergence of several particle flow focusing techniques for analysis and/or further processing. The majority of flow focusing techniques employ an external sheath fluid to achieve sample flow focusing independent of the flow rate, in contrast to sheath-free techniques. However, the introduction of a sheath fluid to surround the sample fluid has complicated the device design and fabrication, generally involving multi-layer fabrication and bonding of multiple polydimethylsiloxane (PDMS) layers. Several promising efforts have been made to reduce the complexity of fabrication. However, most of these methods involved the use of inertial/Dean effects, which in turn demanded the use of higher sample flow rates. In this paper, we report a method of flow focusing that uses a sheath fluid to enclose the sample in a single layer of PDMS, and that possesses applicability for a wide range of sample flow rates. This method of flow focusing uses abrupt channel depth variation and a shift of one of the sample-sheath junctions (termed as 'junction-shift') against the direction of the sample flow. This configuration serves to manipulate the sample fluid with respect to the sheath fluid and achieve the desired flow focusing. This design facilitates the attainment of 3D flow focusing in two sequential steps (depth-wise and then along the lateral direction) and in distinct regions, hence enabling the regions to be used in imaging and non-imaging flow cytometric applications, respectively. Simulations were performed to characterize and determine the optimum set of design parameters. Experimental demonstrations of this technique were carried out by focusing fluorescein dye and blood cells in flow.

  9. Correlation Between Quantitative Angiography-Derived Translesional Pressure and Fractional Flow Reserve.

    PubMed

    Seike, Fumiyasu; Uetani, Teruyoshi; Nishimura, Kazuhisa; Iio, Chiharuko; Kawakami, Hiroshi; Fujimoto, Kaori; Higashi, Haruhiko; Kono, Tamami; Aono, Jun; Nagai, Takayuki; Inoue, Katsuji; Suzuki, Jun; Ogimoto, Akiyoshi; Okura, Takafumi; Yasuda, Kazunori; Higaki, Jitsuo; Ikeda, Shuntaro

    2016-10-15

    Fractional flow reserve (FFR) is widely used for the assessment of myocardial ischemia. However, it has the disadvantage of cost and invasive complication risks. We investigated the usefulness of quantitative coronary angiography-derived translesional pressure (QCA-TP) for predicting functional myocardial ischemia, using FFR as the gold standard. We retrospectively analyzed 152 coronary narrowings (98 left anterior descending arteries, 28 left circumflex arteries, and 26 right) in 132 patients with mild-severe coronary stenosis who underwent coronary angiography and FFR measurements simultaneously. QCA-TP was calculated using software implemented in the QCA software. Coronary morphology was calculated using both densitometry and lumen edges. Functional myocardial ischemia was defined as an FFR of 0.8 or less. The mean values of diameter stenosis by QCA and FFR were 48.9% ± 14.9 and 0.76 ± 0.14, respectively. QCA-TP was significantly correlated with FFR (r = 0.76, p <0.01). The cut-off values of QCA-TP for predicting functional myocardial ischemia based on FFR were 72.8 mm Hg for the left anterior descending arteries (accuracy, 86.7%; area under the curve [AUC], 0.93), 60.5 mm Hg for the left circumflex arteries (accuracy, 89.3%; AUC, 0.88), and 64.4 mm Hg for the right (accuracy, 88.5%; AUC, 0.94). Therefore, our data suggest that QCA-TP can predict myocardial ischemia with high diagnostic accuracy. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Discrepancy between fractional flow reserve and instantaneous wave-free ratio: Clinical and angiographic characteristics.

    PubMed

    Lee, Joo Myung; Shin, Eun-Seok; Nam, Chang-Wook; Doh, Joon-Hyung; Hwang, Doyeon; Park, Jonghanne; Kim, Kyung-Jin; Zhang, Jinlong; Koo, Bon-Kwon

    2017-10-15

    The invasive physiologic index such as fractional flow reserve (FFR) or instantaneous wave-free ratio (iFR) is used in clinical practice to identify ischemia-causing stenosis and to guide treatment strategy. We investigated clinical and angiographic characteristics of lesions with discrepancy between FFR and iFR. From the 3V FFR-FRIENDS study, 975 vessels (393 patients) with available pre-intervention FFR and iFR were included in this study. The vessels were classified according to FFR and iFR into: concordant normal (Group 1 [n=724]: FFR>0.80 and iFR≥0.90); high FFR and low iFR (Group 2 [n=33]: FFR>0.80 and iFR<0.90); low FFR and high iFR (Group 3 [n=82]: FFR≤0.80 and iFR≥0.90); and concordant abnormal (Group 4 [n=136]: FFR≤0.80 and iFR<0.90). Angiographic stenosis severity assessed by percent diameter stenosis, minimum lumen diameter and lesion length was increased from Group 1 to Group 4 (all p<0.001). SYNTAX score increased and FFR decreased proportionally from Group 1 to Group 4 (all p<0.001). In multivariable GEE model, female, diabetes mellitus, smaller reference vessel diameter, and higher %DS were significantly associated with low iFR among high FFR groups (Group 2 discordance). Conversely, males, absence of diabetes mellitus and lower %DS were significantly associated with high iFR among low FFR groups (Group 3 discordance). Four groups classified according to FFR and iFR were different in clinical and angiographic characteristics, SYNTAX score, and predictors of discordance. The lesions with discordant FFR and iFR may need to be interpreted as a different clinical entity. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Simplified Models of Non-Invasive Fractional Flow Reserve Based on CT Images

    PubMed Central

    Zhang, Jun-Mei; Zhong, Liang; Luo, Tong; Lomarda, Aileen Mae; Huo, Yunlong; Yap, Jonathan; Lim, Soo Teik; Tan, Ru San; Wong, Aaron Sung Lung; Tan, Jack Wei Chieh; Yeo, Khung Keong; Fam, Jiang Ming; Keng, Felix Yung Jih; Wan, Min; Su, Boyang; Zhao, Xiaodan; Allen, John Carson; Kassab, Ghassan S.; Chua, Terrance Siang Jin; Tan, Swee Yaw

    2016-01-01

    Invasive fractional flow reserve (FFR) is the gold standard to assess the functional coronary stenosis. The non-invasive assessment of diameter stenosis (DS) using coronary computed tomography angiography (CTA) has high false positive rate in contrast to FFR. Combining CTA with computational fluid dynamics (CFD), recent studies have shown promising predictions of FFRCT for superior assessment of lesion severity over CTA alone. The CFD models tend to be computationally expensive, however, and require several hours for completing analysis. Here, we introduce simplified models to predict noninvasive FFR at substantially less computational time. In this retrospective pilot study, 21 patients received coronary CTA. Subsequently a total of 32 vessels underwent invasive FFR measurement. For each vessel, FFR based on steady-state and analytical models (FFRSS and FFRAM, respectively) were calculated non-invasively based on CTA and compared with FFR. The accuracy, sensitivity, specificity, positive predictive value and negative predictive value were 90.6% (87.5%), 80.0% (80.0%), 95.5% (90.9%), 88.9% (80.0%) and 91.3% (90.9%) respectively for FFRSS (and FFRAM) on a per-vessel basis, and were 75.0%, 50.0%, 86.4%, 62.5% and 79.2% respectively for DS. The area under the receiver operating characteristic curve (AUC) was 0.963, 0.954 and 0.741 for FFRSS, FFRAM and DS respectively, on a per-patient level. The results suggest that the CTA-derived FFRSS performed well in contrast to invasive FFR and they had better diagnostic performance than DS from CTA in the identification of functionally significant lesions. In contrast to FFRCT, FFRSS requires much less computational time. PMID:27187726

  12. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography.

    PubMed

    Itu, Lucian; Rapaka, Saikiran; Passerini, Tiziano; Georgescu, Bogdan; Schwemmer, Chris; Schoebinger, Max; Flohr, Thomas; Sharma, Puneet; Comaniciu, Dorin

    2016-07-01

    Fractional flow reserve (FFR) is a functional index quantifying the severity of coronary artery lesions and is clinically obtained using an invasive, catheter-based measurement. Recently, physics-based models have shown great promise in being able to noninvasively estimate FFR from patient-specific anatomical information, e.g., obtained from computed tomography scans of the heart and the coronary arteries. However, these models have high computational demand, limiting their clinical adoption. In this paper, we present a machine-learning-based model for predicting FFR as an alternative to physics-based approaches. The model is trained on a large database of synthetically generated coronary anatomies, where the target values are computed using the physics-based model. The trained model predicts FFR at each point along the centerline of the coronary tree, and its performance was assessed by comparing the predictions against physics-based computations and against invasively measured FFR for 87 patients and 125 lesions in total. Correlation between machine-learning and physics-based predictions was excellent (0.9994, P < 0.001), and no systematic bias was found in Bland-Altman analysis: mean difference was -0.00081 ± 0.0039. Invasive FFR ≤ 0.80 was found in 38 lesions out of 125 and was predicted by the machine-learning algorithm with a sensitivity of 81.6%, a specificity of 83.9%, and an accuracy of 83.2%. The correlation was 0.729 (P < 0.001). Compared with the physics-based computation, average execution time was reduced by more than 80 times, leading to near real-time assessment of FFR. Average execution time went down from 196.3 ± 78.5 s for the CFD model to ∼2.4 ± 0.44 s for the machine-learning model on a workstation with 3.4-GHz Intel i7 8-core processor.

  13. Fractional Flow Reserve and Coronary Computed Tomographic Angiography: A Review and Critical Analysis.

    PubMed

    Hecht, Harvey S; Narula, Jagat; Fearon, William F

    2016-07-08

    Invasive fractional flow reserve (FFR) is now the gold standard for intervention. Noninvasive functional imaging analyses derived from coronary computed tomographic angiography (CTA) offer alternatives for evaluating lesion-specific ischemia. CT-FFR, CT myocardial perfusion imaging, and transluminal attenuation gradient/corrected contrast opacification have been studied using invasive FFR as the gold standard. CT-FFR has demonstrated significant improvement in specificity and positive predictive value compared with CTA alone for predicting FFR of ≤0.80, as well as decreasing the frequency of nonobstructive invasive coronary angiography. High-risk plaque characteristics have also been strongly implicated in abnormal FFR. Myocardial computed tomographic perfusion is an alternative method with promising results; it involves more radiation and contrast. Transluminal attenuation gradient/corrected contrast opacification is more controversial and may be more related to vessel diameter than stenosis. Important considerations remain: (1) improvement of CTA quality to decrease unevaluable studies, (2) is the diagnostic accuracy of CT-FFR sufficient? (3) can CT-FFR guide intervention without invasive FFR confirmation? (4) what are the long-term outcomes of CT-FFR-guided treatment and how do they compare with other functional imaging-guided paradigms? (5) what degree of stenosis on CTA warrants CT-FFR? (6) how should high-risk plaque be incorporated into treatment decisions? (7) how will CT-FFR influence other functional imaging test utilization, and what will be the effect on the practice of cardiology? (8) will a workstation-based CT-FFR be mandatory? Rapid progress to date suggests that CTA-based lesion-specific ischemia will be the gatekeeper to the cardiac catheterization laboratory and will transform the world of intervention. © 2016 American Heart Association, Inc.

  14. Outcomes of coronary stenoses deferred revascularization for borderline versus nonborderline fractional flow reserve values.

    PubMed

    Depta, Jeremiah P; Patel, Jayendrakumar S; Novak, Eric; Masrani, Shriti K; Raymer, David; Facey, Gabrielle; Patel, Yogesh; Zajarias, Alan; Lasala, John M; Singh, Jasvindar; Bach, Richard G; Kurz, Howard I

    2014-06-01

    Current evidence supports deferral of revascularization for lesions with fractional flow reserve (FFR) values >0.80. The natural history after deferral of revascularization of lesions with borderline FFR values is unknown. This study evaluated the outcomes of patients after deferred revascularization of coronary stenoses based on a borderline FFR value. We retrospectively studied 720 patients with 881 intermediate-severity coronary stenoses who underwent FFR assessment from October 2002 to July 2010 and were deferred revascularization. Patients were divided into gray zone (0.75 to 0.80), borderline (0.81 to 0.85), and nonborderline (>0.85) FFR groups. Any subsequent percutaneous coronary intervention or coronary artery bypass grafting of a deferred stenosis during follow-up was classified as a deferred lesion intervention (DLI). Patient and/or lesion characteristics and clinical outcomes were compared between the FFR groups using univariate and propensity score-adjusted inverse probability of weighting Cox proportional hazards analyses. During a mean follow-up of 4.5 ± 2.1 years, 157 deferred lesions (18%) underwent DLI by percutaneous coronary intervention (n = 117) or coronary artery bypass grafting (n = 40). No statistically significant differences were observed in clinical outcomes between the gray zone and borderline FFR groups. Lesions with a borderline FFR were associated with a significantly higher risk of DLI compared with lesions with nonborderline FFR values (hazard ratio 1.63, 95% confidence interval 1.14 to 2.33, p = 0.007). Lesions deferred revascularization because of a borderline FFR (0.81 to 0.85) were associated with a higher risk of DLI compared with lesions with a nonborderline FFR (>0.85). Further study is needed to determine the optimal management of coronary stenoses with a borderline FFR value. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Dual-energy-X-ray imaging to measure phase volume fractions in a transient multiphase flow

    NASA Astrophysics Data System (ADS)

    Loewen, Eric Paul

    1999-12-01

    The objective of this research was to visualize the pre-mixing phase of a fuel-coolant interaction (FCI) by using combinations of high-speed cinematography and dual energy X-ray imaging to identify and quantify the spatial and temporal characteristics of the three FCI phases---metal (fuel), liquid (coolant water), and voids (generated steam). (1) The high-speed cinematography imaging subsystem and the low-energy X-ray imaging subsystem provided visual photographs and distinguished generated voids from water. (2) The high-energy X-Ray imaging subsystem provided additional discernment of metal from water and vapor. This is the first time that dynamic dual X-ray images have been provided with quantitative results. The data provide new information concerning the melt fractions, melt jet configuration, melt jet velocity, and qualitative spatial and temporal quantification of the pre-mixing event. This information provides new insight into the FCI phenomenon that could not have been deduced from visible-light imaging or other instrumentation such as thermocouples, void sensors, or pressure transmitters. Significant findings include: (1) the fuel column (molten Pb jet) penetrated deeply (<7 cm) into the coolant (water) while maintaining its columnar shape. (2) Energetic FCIs occurred (and were imaged) below the melt-coolant interface temperature equal to the homogenous nucleation temperature (310°C). (3) The molten jet breakup was observed to be caused by hydrodynamic forces. (4) The Pb/water thermal interaction zone was imaged over melt temperatures from 330°C to 640°C and coolant subcooling of 4°C to 80°C. (5) The interface regions between the molten Pb and coolant was observed to grow with decreasing coolant subcooling. This imaging process can be applied to further study of the FCI phenomena at other test facilities. It can also be applied for observation of other two- or three-phase flow phenomena previously opaque to conventional imaging systems.

  16. Effects of caffeine on fractional flow reserve values measured using intravenous adenosine triphosphate.

    PubMed

    Nakayama, Masafumi; Chikamori, Taishiro; Uchiyama, Takashi; Kimura, Yo; Hijikata, Nobuhiro; Ito, Ryosuke; Yuhara, Mikio; Sato, Hideaki; Kobori, Yuichi; Yamashina, Akira

    2017-01-21

    We investigated the effects of caffeine intake on fractional flow reserve (FFR) values measured using intravenous adenosine triphosphate (ATP) before cardiac catheterization. Caffeine is a competitive antagonist for adenosine receptors; however, it is unclear whether this antagonism affects FFR values. Patients were evenly randomized into 2 groups preceding the FFR study. In the caffeine group (n = 15), participants were given coffee containing 222 mg of caffeine 2 h before the catheterization. In the non-caffeine group (n = 15), participants were instructed not to take any caffeine-containing drinks or foods for at least 12 h before the catheterization. FFR was performed in patients with more than intermediate coronary stenosis using the intravenous infusion of ATP at 140 μg/kg/min (normal dose) and 170 μg/kg/min (high dose), and the intracoronary infusion of papaverine. FFR was followed for 30 s after maximal hyperemia. In the non-caffeine group, the FFR values measured with ATP infusion were not significantly different from those measured with papaverine infusion. However, in the caffeine group, the FFR values were significantly higher after ATP infusion than after papaverine infusion (P = 0.002 and P = 0.007, at normal and high dose ATP vs. papaverine, respectively). FFR values with ATP infusion were significantly increased 30 s after maximal hyperemia (P = 0.001 and P < 0.001 for normal and high dose ATP, respectively). The stability of the FFR values using papaverine showed no significant difference between the 2 groups. Caffeine intake before the FFR study affected FFR values and their stability. These effects could not be reversed by an increased ATP dose.

  17. Three-dimensional modeling and numerical analysis of fractional flow reserve in human coronary arteries

    PubMed Central

    Dai, Neng; Lv, Hui-Jie; Xiang, Ya-Fei; Fan, Bing

    2016-01-01

    Introduction Noninvasive fractional flow reserve (FFR) computed from CT (FFRCT) is a novel method for determining the physiologic significance of coronary artery disease (CAD). Several clinical trials have been conducted, but its diagnostic performance varied among different trials. Aim To determine the cut-off value of FFRCT and its correlation with the gold standard used to diagnose CAD in clinical practice. Material and methods Forty patients with single vessel disease were included in our study. Computed tomography scan and coronary angiography with FFR were conducted for these patients. Three-dimensional geometric reconstruction and numerical analysis based on the computed tomographic angiogram (CTA) of coronary arteries were applied to obtain the values of FFRCT. The correlation between FFRCT and the gold standard used in clinical practice was tested. Results For FFRCT, the best cut-off value was 0.76, with the sensitivity, specificity, positive predictive value and negative predictive values of 84.6%, 92.9%, 88% and 73.3%, respectively. The area under the receiver-operator characteristics curve was 0.945 (p < 0.0001). There was a good correlation of FFRCT values with FFR values (r = 0.94, p < 0.0001), with a slight overestimation of FFRCT as compared with measured FFR (mean difference 0.01 ±0.11, p < 0.05). For inter-observer agreement, the mean κ value was 0.69 (0.61 to 0.78) and for intra-observer agreement the mean κ value was 0.61 (0.50 to 0.72). Conclusions FFRCT derived from CT of the coronary artery is a reliable non-invasive way providing reliable functional information of coronary artery stenosis. PMID:26966446

  18. Influence of routine assessment of fractional flow reserve on decision making during coronary interventions.

    PubMed

    Sant'Anna, Fernando M; Silva, Expedito E R; Batista, Leonardo Alves; Ventura, Fábio Machado; Barrozo, Carlos Alberto Mussel; Pijls, Nico H J

    2007-02-15

    In complex coronary artery disease, it is sometimes difficult to determine which lesions are associated with reversible ischemia and should be stented. Fractional flow reserve (FFR) is an established objective methodology to indicate which lesions produce ischemia. Despite this, the selection of lesions to be stented is often based on the subjectively interpreted angiogram alone. The aim of this study in patients admitted for elective percutaneous intervention (PCI) was to evaluate the change in strategy if the decision to intervene was based on FFR measurement rather than on angiographic assessment. Two hundred fifty consecutive patients (471 arteries) scheduled for PCI were included in this study. All stenoses >or=50% by visual estimation and initially selected to be stented by 3 independent reviewers were assessed by FFR measurements. If FFR was <0.75, stenting was performed; if FFR was >or=0.75, no interventional treatment was given. Optimal pressure measurements were obtained in 452 lesions (96%). Diameter stenosis was 62 +/- 12%, and FFR was 0.67 +/- 0.17 for the entire group. In 68% of the stenoses, initial strategy as assessed from the angiogram was followed, and in 32%, there was a change in the planned approach based on FFR. In 48% of the patients, there was >or=1 lesion in which the treatment decision was changed after physiologic measurements. In conclusion, in this prospective, nonselective, but complete study representing the real world of PCI, 32% of the coronary stenoses and 48% of patients would have received a different treatment if the decision had been based on angiography only, stressing the utility of physiologic assessment in refining decision making during PCI.

  19. Effects of intracoronary sodium nitroprusside compared with adenosine on fractional flow reserve measurement.

    PubMed

    Wang, Xiaozeng; Li, Shaosheng; Zhao, Xin; Deng, Jie; Han, Yaling

    2014-03-01

    The purpose of this study was to compare the efficacy and safety of intracoronary (IC) sodium nitroprusside (SNP) and IC adenosine (AD) for fractional flow reserve (FFR) measurement. We compared the FFR response and side effect profiles of IC AD and IC SNP in 40 patients with a combined total of 53 moderate coronary stenoses. Boluses of AD at doses of 40 μg (A1) and 60 μg (A2), and SNP at doses of 0.3 μg/kg (S1), 0.6 μg/kg (S2), and 0.9 μg/kg (S3) were used to achieve coronary hyperemia. The mean FFR value decreased significantly by 7.96% (A1), 10.51% (A2), 8.74% (S1), 10.58% (S2), and 10.73% (S3) compared with the baseline distal coronary pressure/aortic pressure. IC SNP delayed the mean time to peak value of FFR by 87.5%, 79.0%, and 88.6% in S1, S2, and S3, respectively, compared with A2 (P<.001). The mean duration of the plateau phase was longer in S1 (50.47 ± 14.25 s), S2 (51.33 ± 16.41 s) and S3 (57.60 ± 18.07 s) compared with A2 (27.93 ± 11.90 s; P<.01). IC AD caused shortness of breath in 11 patients (27.5%), flushing in 4 patients (10%), headache in 8 patients (20%), and transient second-degree atrioventricular block (AVB) in 6 patients (15%). IC SNP may be used as a hyperemic agent in FFR measurements. It may be preferable to IC AD as a routine clinical stimulus and has the additional advantage of showing a longer plateau phase.

  20. Effect of Ionic and Nonionic Carriers in Electrical Field-Flow Fractionation.

    PubMed

    Ornthai, Mathuros; Siripinyanond, Atitaya; Gale, Bruce K

    2016-02-02

    A major limitation of electrical field-flow fractionation (ElFFF) is the polarization of the electrodes that occurs when using an ionic carrier liquid. As there is great interest in using ElFFF with biological materials and biological materials typically have high ionic strengths and high osmotic concentrations, we explore the effect of concentration for phosphate buffered saline (PBS), a typical ionic medium for biological samples, and for two nonionic materials common in bioparticle analysis: isopropanol (IPA) and sucrose. Their effect on retention and separations in ElFFF for increasing concentrations was observed. The results suggest that modifying the carrier solution with PBS, sucrose, and/or IPA would enable characterization and separation of biological samples in ElFFF. Specifically, changes of elution time and electrical parameters such as current, conductivity, and bulk channel resistance were observed as functions of carrier ionic and osmotic strength for the different carrier additives. PBS can be used in the micromolar range, equivalent to about 0.1% 1× PBS (150 μM). These concentrations are far from the isotonic condition of PBS (∼ 150 mM) that is normally used with biological samples. However, the nonionic additive carriers IPA and sucrose show quality retention even when added in high concentrations. The results show that IPA could be used in ratios up to 60% and that sucrose can be used in concentrations up to 0.3 M. Concentrations of 2% IPA (0.26 M) and 0.30 M sucrose are biologically isotonic conditions (275-299 mOsm/kg), and retention was readily obtained in these conditions using both DC ElFFF and cyclical ElFFF (CyE1FFF). Carriers of this type may make it possible to use ElFFF with biological samples.

  1. Efficacy of coronary fractional flow reserve using contrast medium compared to adenosine

    PubMed Central

    Tanboğa, Ibrahim Halil; Aksakal, Enbiya; Aksu, Uğur; Gulcu, Oktay; Birdal, Oğuzhan; Arısoy, Arif; Kalaycı, Arzu; Ulusoy, Fatih Rifat; Sevimli, Serdar

    2016-01-01

    Introduction Coronary fractional flow reserve (FFR) is recommended as the gold standard method in evaluating intermediate coronary stenoses. However, there are significant debates concerning the agents and the timing of the measurement. Aim To compare the contrast medium induced Pd/Pa ratio (CMR) with the FFR. Material and methods We enrolled 28 consecutive patients with 34 intermediate lesions who underwent coronary FFR measurement by intracoronary (i.c.) adenosine. After baseline Pd/Pa was calculated, a single contrast medium (Iomeron) injection of 6 ml (3 ml/s) was performed manually. Within 10 s after the contrast medium injection, the CMR was calculated. Bolus injection of i.c. adenosine was performed to induce maximal hyperemia (from 60 µg to 600 µg), and when it was ≤ 0.80, the intermediate lesion was considered as significant. Results After bolus i.c. adenosine, 12 lesions of 34 (35.3%) were identified as significant. The CMR value was 0.86 ±0.06 (range: 0.71–0.97). There were no significant differences between FFR and CMR values (p = 0.108). A substantial positive correlation between adenosine and contrast values was detected (0.886 and p < 0.001). Good agreement in Bland-Altman analysis was revealed (mean bias was 0.027, 95% confidence interval 0.038–0.092). Receiver operating characteristics curve analysis showed 90.9% sensitivity and 91.7% specificity for a cut-off value of 0.85 for the CMR compared to FFR (≤ 0.80). Conclusions Our study showed that measuring the CMR is a feasible method compared to FFR. The CMR may be used in situations where adenosine cannot be administered. PMID:27625683

  2. Flow study on a newly developed impeller for a left ventricular assist device.

    PubMed

    Hsu, Cheung-Hwa

    2003-01-01

    Nowadays, left ventricular assist devices are usually designed as high-speed, electric, rotary blood pumps. The pump drains blood from the left ventricular apex via an inlet cannula and ejects into the aortic root via an outlet conduit. To develop a high-performance pump, the present study utilizes partial differential equations to generate a surface representation of the impeller of the blood pump. Flow analysis around the impeller is performed by using the finite volume method to solve the fully incompressible three-dimensional Navier-Stokes equations along with the k-epsilon turbulence model. The numerical results highlight flow features in the end-wall region of the pump, namely the clearance leakage cross-flow, and the vortex associated with this leakage. These secondary flows induce major energy losses in the pumping device. On the test study, a test loop was proposed to measure the performance characteristics. It was shown that the design would provide a flow rate of 4.4 l/min with a pressure head of 122 mmHg. The DC motor power under these conditions was about 6 W and the rotational speed was 4500 rpm. Both the flow rate and head can satisfy the demand for the left artificial heart to work normally.

  3. New device for high-throughput viability screening of flow biofilms.

    PubMed

    Benoit, Michael R; Conant, Carolyn G; Ionescu-Zanetti, Cristian; Schwartz, Michael; Matin, A

    2010-07-01

    Control of biofilms requires rapid methods to identify compounds effective against them and to isolate resistance-compromised mutants for identifying genes involved in enhanced biofilm resistance. While rapid screening methods for microtiter plate well ("static") biofilms are available, there are no methods for such screening of continuous flow biofilms ("flow biofilms"). Since the latter biofilms more closely approximate natural biofilms, development of a high-throughput (HTP) method for screening them is desirable. We describe here a new method using a device comprised of microfluidic channels and a distributed pneumatic pump (BioFlux) that provides fluid flow to 96 individual biofilms. This device allows fine control of continuous or intermittent fluid flow over a broad range of flow rates, and the use of a standard well plate format provides compatibility with plate readers. We show that use of green fluorescent protein (GFP)-expressing bacteria, staining with propidium iodide, and measurement of fluorescence with a plate reader permit rapid and accurate determination of biofilm viability. The biofilm viability measured with the plate reader agreed with that determined using plate counts, as well as with the results of fluorescence microscope image analysis. Using BioFlux and the plate reader, we were able to rapidly screen the effects of several antimicrobials on the viability of Pseudomonas aeruginosa PAO1 flow biofilms.

  4. Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device.

    PubMed

    Xu, Ke; Tostado, Chris P; Xu, Jian-Hong; Lu, Yang-Cheng; Luo, Guang-Sheng

    2014-04-07

    In this study, we developed a new method for the direct measurement of differential pressures in a co-flow junction microfluidic device using a Capillary Laplace Gauge (CLG). The CLG - used inside the microchannel device--was designed using a tapered glass-capillary set up in co-flow junction architecture with a three-phase liquid-liquid-gas system with two flowing liquid phases and an entrained gas phase. By taking advantage of the Laplace equation, basic geometric relations and an integrated image analysis program, the movement of the entrained gas phase with the flow of the liquid-phases is tracked and monitored, allowing the gauge to function as an ultra-sensitive, integrated, differential pressure sensor measuring fluctuations in the liquid-dispersed phase channel pressure as small as tens of Pascals caused by droplet formation. The gauge was used to monitor the drop formation and breakup process in a co-flow junction microfluidic device under different flow conditions across a large range (1 × 10(-3) to 2.0 × 10(-1)) of capillary numbers. In addition to being able to monitor short and long term dispersed phase pressure fluctuation trends for both single drop and large droplet populations, the gauge was also used to clearly identify a transition between the dripping and jetting flow regimes. Overall, the combination of a unique, integrated image analysis program with this new type of sensor serves as a powerful tool with great potential for a variety of different research and industrial applications requiring sensitive microchannel pressure measurements.

  5. Two-phase flow pattern recognition in a varying section based on void fraction and pressure measurements

    NASA Astrophysics Data System (ADS)

    de Kerret, F.; Benito, I.; Béguin, C.; Pelletier, D.; Etienne, S.

    2016-11-01

    In a hydroelectric turbine, the air injected during operation has an impact on the yield of the machine leading to important losses of energy. To understand those losses and be able to reduce them, a first step is to understand the pattern of the two-phase flows and describe their characteristics in the turbine. Those two-phase flows can be bubbly, intermittent, or annular, with different types of intermittent flow possible. Two-phase flow patterns are well defined in classical geometries such as cylinders with reliable descriptions available [5]. But, there is a critical lack of knowledge for flow patterns in other geometries. In our present work we take interest into a geometry that is a pipe with periodical changes of the section and realize a flow pattern map. To realize this map, we measure the pressure variations and void fraction fluctuations while changing the flow rates of water and air in our test section. We then use our physical understanding of the phenomena to analyze data and identify different flow patterns, characterize them, and build a new flow pattern map.

  6. Dryout-type critical heat flux in vertical upward annular flow: effects of entrainment rate, initial entrained fraction and diameter

    NASA Astrophysics Data System (ADS)

    Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt

    2017-07-01

    This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.

  7. 30 CFR 57.22314 - Flow-control devices (V-A and V-B mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Flow-control devices (V-A and V-B mines). 57... MINES Safety Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22314 Flow-control devices (V-A and V-B mines). Oil recovery drill holes that penetrate oil bearing formations shall...

  8. 30 CFR 57.22314 - Flow-control devices (V-A and V-B mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Flow-control devices (V-A and V-B mines). 57... MINES Safety Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22314 Flow-control devices (V-A and V-B mines). Oil recovery drill holes that penetrate oil bearing formations shall...

  9. Fractionation of Sb and As in soil and sludge samples using different continuous-flow extraction techniques.

    PubMed

    Savonina, E Yu; Fedotov, P S; Wennrich, R

    2012-05-01

    The fractionation of Sb and As in soil and sludge samples had been comparably studied using two continuous-flow systems: a microcolumn (MC) and a rotating coiled column (RCC). The leachants were applied in correspondence with a five-step sequential extraction scheme addressing water-soluble, non-specifically sorbed, specifically sorbed, and bound to amorphous and crystalline Fe/Al oxide fractions of Sb and As. Inductively coupled plasma atomic emission spectroscopy was applied to determine antimony, arsenic, and major elements in the effluent and in the residual fractions after their digestion. Resemblances and discrepancies of the two methods were evaluated by the fractionation of Sb and As in forest soil, river sludge, and dumped waste (soil) samples. For the forest soil sample, which is very poor in organic matter, RCC and MC extractions yielded similar quantitative values of As and Sb contents in individual leachable fractions. However, for the river sludge sample with a moderate concentration of C (org) (3.3 %), the results obtained by both continuous-flow methods are in satisfactory agreement. RCC extraction enabled water-soluble and non-specifically sorbed As fractions to be recovered, whereas after MC leaching, these environmentally relevant forms of As were not detected. For the soil rich in organic matter (C(org) = 11.5 %), the discrepancy between the data of RCC and MC fractionations is significant. RCC extraction provides about six times higher recoveries of As and Sb bound to amorphous Fe/Al oxides. More efficient leaching of As and Sb in RCC may be attributed to the migration of organic-rich particles with low density inside the column that might enhance the mixing of the solid and liquid phases.

  10. Flow characterization and patch clamp dose responses using jet microfluidics in a tubeless microfluidic device.

    PubMed

    Resto, Pedro J; Bhat, Abhishek; Stava, Eric; Lor, Chong; Merriam, Elliot; Diaz-Rivera, Ruben E; Pearce, Robert; Blick, Robert; Williams, Justin C

    2017-08-23

    Surface tension passive pumping is a way to actuate flow without the need for pumps, tubing or valves by using the pressure inside small drop to move liquid via a microfluidic channel. These types of tubeless devices have typically been used in cell biology. Herein we present the use of tubeless devices as a fluid exchange platform for patch clamp electrophysiology. Inertia from high-speed droplets and jets is used to create flow and perform on-the-fly mixing of solutions. These are then flowed over GABA transfected HEK cells under patch in order to perform a dose response analysis. TIRF imaging and electrical recordings are used to study the fluid exchange properties of the microfluidic device, resulting in 0-90% fluid exchange times of hundreds of milliseconds. COMSOL is used to model flow and fluid exchange within the device. Patch-clamping experiments show the ability to use high-speed passive pumping and its derivatives for studying peak dose responses, but not for studying ion channel kinetics. Our system results in fluid exchange times slower than when using a standard 12-barrel application system and is not as stable as traditional methods, but it offers a new platform with added functionality. Surface tension passive pumping and tubeless devices can be used in a limited fashion for electrophysiology. Users may obtain peak dose responses but the system, in its current form, is not capable of fluid exchange fast enough to study the kinetics of most ion channels. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A disposable, continuous-flow polymerase chain reaction device: design, fabrication and evaluation.

    PubMed

    Ragsdale, Victoria; Li, Huizhong; Sant, Himanshu; Ameel, Tim; Gale, Bruce K

    2016-08-01

    Polymerase Chain Reaction (PCR) is used to amplify a specific segment of DNA through a thermal cycling protocol. The PCR industry is shifting its focus away from macro-scale systems and towards micro-scale devices because: micro-scale sample sizes require less blood from patients, total reaction times are on the order of minutes opposed to hours, and there are cost advantages as many microfluidic devices are manufactured from inexpensive polymers. Some of the fastest PCR devices use continuous flow, but they have all been built of silicon or glass to allow sufficient heat transfer. This article presents a disposable polycarbonate (PC) device that is capable of achieving real-time, continuous flow PCR in a completely disposable polymer device in less than 13 minutes by thermally cycling the sample through an established temperature gradient in a serpentine channel. The desired temperature gradient was determined through simulations and validated by experiments which showed that PCR was achieved. Practical demonstration included amplification of foot-and-mouth disease virus (FMDV) derived cDNA.

  12. Multiplexed Fluid Flow Device to Study Cellular Response to Tunable Shear Stress Gradients.

    PubMed

    Ostrowski, Maggie A; Huang, Eva Y; Surya, Vinay N; Poplawski, Charlotte; Barakat, Joseph M; Lin, Gigi L; Fuller, Gerald G; Dunn, Alexander R

    2016-07-01

    Endothelial cells (ECs) line the interior of blood and lymphatic vessels and experience spatially varying wall shear stress (WSS) as an intrinsic part of their physiological function. How ECs, and mammalian cells generally, sense spatially varying WSS remains poorly understood, due in part to a lack of convenient tools for exposing cells to spatially varying flow patterns. We built a multiplexed device, termed a 6-well impinging flow chamber, that imparts controlled WSS gradients to a six-well tissue culture plate. Using this device, we investigated the migratory response of lymphatic microvascular ECs, umbilical vein ECs, primary fibroblasts, and epithelial cells to WSS gradients on hours to days timescales. We observed that lymphatic microvascular ECs migrate upstream, against the direction of flow, a response that was unique among all the cells types investigated here. Time-lapse, live cell imaging revealed that the microtubule organizing center relocated to the upstream side of the nucleus in response to the applied WSS gradient. To further demonstrate the utility of our device, we screened for the involvement of canonical signaling pathways in mediating this upstream migratory response. These data highlight the importance of WSS magnitude and WSS spatial gradients in dictating the cellular response to fluid flow.

  13. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System.

    PubMed

    Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.

  14. Structure of Turbulent Flow in Subchannel of Rod Bundle Downstream of Spacer Grid With Hybrid Flow Mixing Device

    SciTech Connect

    Dong Seok Oh; Wang Kee In; Tae Hyun Chun

    2002-07-01

    An experiment was performed in a wind tunnel to investigate the flow structure in a rod bundle with a hybrid vane grid. The hybrid vane is a flow-mixing device, which consists of two pairs of primary and secondary vanes in a cell. The test section is a rectangular channel (300 mm x 300 mm x 2400 mm) including 3 x 3 rod (75 mm diameter) array with a spacer grid. The pitch to diameter ratio of the rod array is 1.33. The flow structures downstream the grid are measured at Reynolds number of 1.2 X 105 for 35-degree deflecting angle of the hybrid flow-mixing vane. The data are obtained for the distributions of the time mean axial velocity, lateral velocity, and turbulent intensities in 3 component directions over a center subchannel along axial locations and compared with the previous results of split vane grid that has two vanes in a cell. The results show that the mixing efficiency of the hybrid vane grid could be similar with that of the split vane grid because swirl factor of the hybrid vane grid is higher than that of split vane grid and the magnitude of axial turbulent intensity, turbulent diffusion coefficient, and cross flow factor is similar to each other in spite of differences of the vane numbers and shape in a cell between hybrid and split vane grids. (authors)

  15. One-heater flow-through polymerase chain reaction device by heat pipes cooling.

    PubMed

    Chen, Jyh Jian; Liao, Ming Huei; Li, Kun Tze; Shen, Chia Ming

    2015-01-01

    This study describes a novel microfluidic reactor capable of flow-through polymerase chain reactions (PCR). For one-heater PCR devices in previous studies, comprehensive simulations and experiments for the chip geometry and the heater arrangement were usually needed before the fabrication of the device. In order to improve the flexibility of the one-heater PCR device, two heat pipes with one fan are used to create the requisite temperature regions in our device. With the integration of one heater onto the chip, the high temperature required for the denaturation stage can be generated at the chip center. By arranging the heat pipes on the opposite sides of the chip, the low temperature needed for the annealing stage is easy to regulate. Numerical calculations and thermal measurements have shown that the temperature distribution in the five-temperature-region PCR chip would be suitable for DNA amplification. In order to ensure temperature uniformity at specific reaction regions, the Re of the sample flow is less than 1. When the microchannel width increases and then decreases gradually between the denaturation and annealing regions, the extension region located in the enlarged part of the channel can be observed numerically and experimentally. From the simulations, the residence time at the extension region with the enlarged channel is 4.25 times longer than that without an enlarged channel at a flow rate of 2 μl/min. The treated surfaces of the flow-through microchannel are characterized using the water contact angle, while the effects of the hydrophilicity of the treated polydimethylsiloxane (PDMS) microchannels on PCR efficiency are determined using gel electrophoresis. By increasing the hydrophilicity of the channel surface after immersing the PDMS substrates into Tween 20 (20%) or BSA (1 mg/ml) solutions, efficient amplifications of DNA segments were proved to occur in our chip device. To our knowledge, our group is the first to introduce heat pipes into

  16. One-heater flow-through polymerase chain reaction device by heat pipes cooling

    PubMed Central

    Chen, Jyh Jian; Liao, Ming Huei; Li, Kun Tze; Shen, Chia Ming

    2015-01-01

    This study describes a novel microfluidic reactor capable of flow-through polymerase chain reactions (PCR). For one-heater PCR devices in previous studies, comprehensive simulations and experiments for the chip geometry and the heater arrangement were usually needed before the fabrication of the device. In order to improve the flexibility of the one-heater PCR device, two heat pipes with one fan are used to create the requisite temperature regions in our device. With the integration of one heater onto the chip, the high temperature required for the denaturation stage can be generated at the chip center. By arranging the heat pipes on the opposite sides of the chip, the low temperature needed for the annealing stage is easy to regulate. Numerical calculations and thermal measurements have shown that the temperature distribution in the five-temperature-region PCR chip would be suitable for DNA amplification. In order to ensure temperature uniformity at specific reaction regions, the Re of the sample flow is less than 1. When the microchannel width increases and then decreases gradually between the denaturation and annealing regions, the extension region located in the enlarged part of the channel can be observed numerically and experimentally. From the simulations, the residence time at the extension region with the enlarged channel is 4.25 times longer than that without an enlarged channel at a flow rate of 2 μl/min. The treated surfaces of the flow-through microchannel are characterized using the water contact angle, while the effects of the hydrophilicity of the treated polydimethylsiloxane (PDMS) microchannels on PCR efficiency are determined using gel electrophoresis. By increasing the hydrophilicity of the channel surface after immersing the PDMS substrates into Tween 20 (20%) or BSA (1 mg/ml) solutions, efficient amplifications of DNA segments were proved to occur in our chip device. To our knowledge, our group is the first to introduce heat pipes into

  17. Characteristics of heat flow in optical fiber devices that use integrated thin-film heaters.

    PubMed

    Rogers, J A; Kuo, P; Ahuja, A; Eggleton, B J; Jackman, R J

    2000-10-01

    We describe the analysis of heat flow in a type of tunable optical fiber grating that uses thin-film resistive heaters microfabricated on the surface of the fiber. The high rate of heat loss from these microstructures and the relatively low thermal diffusivity of the glass yield unusual thermal properties. Approximate one-dimensional analytical calculations capture important aspects of the thermal characteristics of these systems. Comparison with experimental results that we obtained from devices with established designs validates certain features of the computations. This modeling also establishes the suitability of integrated thin-film heaters for several new types of tunable fiber grating devices.

  18. Automatic device for indirect measurement of leakage flow rate in compressed air pipeline

    NASA Astrophysics Data System (ADS)

    Dindorf, R.; Wos, P.; Pawelec, K.

    2017-08-01

    The new measurement method of compressed air leakage flow rate in compressed air pipeline is proposed. In this method, the automatic measuring device is connected to a branch of the pipeline. The measuring device can be used to measure compressed air leakage in any place of compressed air pipeline: in main line, distribution line and connection line. The proposed measurement methods of compressed air leakage in pipeline are independent of receiver and compressor parameters, which is not the case with traditional method measuring leaks by emptying the receiver.

  19. Plasma flow in peripheral region of detached plasma in linear plasma device

    SciTech Connect

    Hayashi, Y. Ohno, N.; Kajita, S.; Tanaka, H.

    2016-01-15

    A plasma flow structure is investigated using a Mach probe under detached plasma condition in a linear plasma device NAGDIS-II. A reverse flow along the magnetic field is observed in a steady-state at far-peripheral region of the plasma column in the upstream side from the recombination front. These experimental results indicate that plasma near the recombination front should strongly diffuse across the magnetic field, and it should be transported along the magnetic field in the reverse flow direction. Furthermore, bursty plasma density fluctuations associated with intermittent convective plasma transport are observed in the far-peripheral region of the plasma column in both upstream and downstream sides from the recombination front. Such a nondiffusive transport can contribute to the intermittent reverse plasma flow, and the experimental results indicate that intermittent transports are frequently produced near the recombination front.

  20. Visualization and void fraction measurement of gas-liquid two-phase flow in plate heat exchanger.

    PubMed

    Asano, H; Takenaka, N; Fujii, T; Maeda, N

    2004-10-01

    Adiabatic and boiling gas-liquid two-phase flows in a simulated plate heat exchanger with a single-ribbed channel were visualized by a thermal neutron radiography method. In the experiments under adiabatic condition, the air-water two-phase flows in an aluminum test section were visualized. In the boiling two-phase flow experiments, chlorofluorocarbon R141b was used as the working fluid. Two-dimensional distributions of void fraction were measured from visualized images via some image processing techniques. As a result, it was shown that both the phases tended to flow straight in the ribbed channel, and mixing of gas and liquid phases was weak. Moreover, when working fluids flew into the test section as a gas-liquid mixture, the phase distributions were strongly affected by a liquid pool at the test section inlet.

  1. Longitudinal structural, functional, and cellular myocardial alterations with chronic centrifugal continuous-flow left ventricular assist device support.

    PubMed

    Muthiah, Kavitha; Humphreys, David T; Robson, Desiree; Dhital, Kumud; Spratt, Phillip; Jansz, Paul; Macdonald, Peter S; Hayward, Christopher S

    2017-07-01

    Left ventricular assist device (LVAD) support triggers adaptations within failing hearts. The HeartWare (HeartWare International, Inc., Framingham, MA) LVAD exhibits different flow profiles and afterload dependence compared with previous-generation devices, which may alter remodelling patterns. We sought to characterize myocardial adaptation to third-generation centrifugal-flow LVADs at a functional, hemodynamic, and structural level in addition to profiling transcriptomal changes using next-generation sequencing platforms. We studied 37 patients supported with the HeartWare device with paired measurements of invasive hemodynamics, serial longitudinal left ventricular (LV) and right ventricular (RV) 3-dimensional echocardiography, and N-terminal of the prohormone brain natriuretic peptide (NT-proBNP) measurements. Paired samples for comparison of histologic myocardial cellular size and transcriptomal profiling were performed on specimens taken at pump implant and transplantation. The mean support duration was 280 ± 163 days. Mechanical unloading after HeartWare support resulted in reduced filling pressures (mean pulmonary capillary wedge pressure 27.1 ± 6.6 to 14.8 ± 5.1 mm Hg, p < 0.0001). Mean LV cardiomyocyte cell size decreased from 2,789.7 ± 671.8 to 2,290.8 ± 494.2 μm(2) (p = 0.02). LV and RV ejection fractions improved significantly (24% ± 8% to 35% ± 9% [p < 0.001] and 35% ± 11% to 40% ± 8% [p < 0.02], respectively). NT-proBNP levels fell 4.8-fold by Day 90 after support, consistent with a decrease in LV wall stress. Despite these concordant beneficial findings, the microRNA transcriptome did not change significantly across the group. Reverse remodelling is evident at multiple levels with chronic HeartWare support in the absence of changes in the microRNA transcriptome. Successful myocardial unloading is associated with a decrease in wall stress, regression of cardiomyocyte hypertrophy, and an improvement in LV and RV ejection fractions. Crown

  2. Characterization of acoustic droplet formation in a microfluidic flow-focusing device.

    PubMed

    Cheung, Yin Nee; Qiu, Huihe

    2011-12-01

    Local control of droplet formation with acoustic actuation in a microfluidic flow-focusing device is investigated, and the effects of acoustic voltage, frequency, flow-rate ratio, fluid viscosity, and flow vorticity are characterized. Acoustic actuation is provided to affect droplet breakup in the squeezing regime by imposing periodic oscillation to the fluid-fluid interface and, therefore, a periodic change in its curvature at the cross-junction of the device. Time reduction is observed for the three key stages of droplet breakup in the squeezing regime: dispersed phase flow-front advancement into the orifice, pressure buildup upstream and within the orifice together with liquid inflation downstream, and finally the thinning and pinch-off of the liquid thread. It is found that acoustic actuation has less of an effect on droplet size for the continuous phase with a higher viscosity due to the restrained interfacial vibration under a high shear stress environment. Periodic velocity flow fields within the dispersed phase at different phases of one oscillation cycle are calculated based on the results from phase-averaged microresolution-particle-image velocimetry (μPIV). The oscillation paths for the points of maximum vorticities of phase-averaged velocity components are traced, which reveals that the motion is mainly along the y direction.

  3. Crankcase ventilating system, flow control device therefor and method of making the same

    SciTech Connect

    Otto, J.A.; Weaver, M.P.

    1986-12-02

    This patent describes a flow control device for a crankcase ventilating system of an internal combustion engine, the device comprising a valve housing means having an inlet and an outlet and an annular valve seat means therein intermediate the inlet and the outlet. A movable valve member is disposed in the housing means. A body portion is disposed in the inlet side of the valve seat means and there is a generally frusto-conical flow metering portion for cooperating with the valve seat means to control fluid flow therethrough. A spring means is disposed in the housing means and is operatively associated with the housing means and the valve member to tend to urge the body portion of the valve member away from the valve seat means. The improvement described here is wherein the valve member has fin means adjacent the metering portion and on the outlet side of the valve seat means that cooperates with the housing means to tend to prevent vibration of the valve member during the fluid flow through the valve seat means. The fin means extends outwardly from the valve member, the fin means comprising spaced apart fins disposed in a circular array thereof and radiating outwardly from the valve member, the fin means comprising a separate part having an opening passing centrally therethrough. The valve member has a stem extending from the flow metering portion thereof and being disposed in the opening whereby the part is carried by the valve member.

  4. The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels

    SciTech Connect

    Saisorn, Sira; Wongwises, Somchai

    2010-05-15

    Two-phase air-water flow characteristics are experimentally investigated in horizontal circular micro-channels. Test sections are made of fused silica. The experiments are conducted based on three different inner diameters of 0.53, 0.22 and 0.15 mm with the corresponding lengths of 320, 120 and 104 mm, respectively. The test runs are done at superficial velocities of gas and liquid ranging between 0.37-42.36 and 0.005-3.04 m/s, respectively. The flow visualisation is facilitated by systems mainly including stereozoom microscope and high-speed camera. The flow regime maps developed from the observed flow patterns are presented. The void fractions are determined based on image analysis. New correlation for two-phase frictional multiplier is also proposed for practical applications. (author)

  5. sedFlow - a tool for simulating fractional bedload transport and longitudinal profile evolution in mountain streams

    NASA Astrophysics Data System (ADS)

    Heimann, F. U. M.; Rickenmann, D.; Turowski, J. M.; Kirchner, J. W.

    2015-01-01

    Especially in mountainous environments, the prediction of sediment dynamics is important for managing natural hazards, assessing in-stream habitats and understanding geomorphic evolution. We present the new modelling tool {sedFlow} for simulating fractional bedload transport dynamics in mountain streams. sedFlow is a one-dimensional model that aims to realistically reproduce the total transport volumes and overall morphodynamic changes resulting from sediment transport events such as major floods. The model is intended for temporal scales from the individual event (several hours to few days) up to longer-term evolution of stream channels (several years). The envisaged spatial scale covers complete catchments at a spatial discretisation of several tens of metres to a few hundreds of metres. sedFlow can deal with the effects of streambeds that slope uphill in a downstream direction and uses recently proposed and tested approaches for quantifying macro-roughness effects in steep channels. sedFlow offers different options for bedload transport equations, flow-resistance relationships and other elements which can be selected to fit the current application in a particular catchment. Local grain-size distributions are dynamically adjusted according to the transport dynamics of each grain-size fraction. sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The high simulation speed allows for simulations of several years, which can be used, e.g., to assess the long-term impact of river engineering works or climate change effects. In combination with the straightforward pre- and postprocessing, the fast calculations facilitate efficient workflows for the simulation of individual flood events, because the modeller gets the immediate results as direct feedback to the selected parameter inputs. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (GPL) (www.wsl.ch/sedFlow

  6. Fractional boundary layer flow and radiation heat transfer of MHD viscoelastic fluid over an unsteady stretching surface

    SciTech Connect

    Shen, Bingyu; Zheng, Liancun Chen, Shengting

    2015-10-15

    This paper presents an investigation for magnetohydrodynamic (MHD) viscoelastic fluid boundary layer flow and radiation heat transfer over an unsteady stretching sheet in presence of heat source. Time dependent fractional derivative is first introduced in formulating the boundary layer equations. Numerical solutions are obtained by using the finite difference scheme and L1-algorithm approximation. Results indicate that the proposed model describes a basic delaying times framework for viscoelastic flow and radiation heat transfer. The effects of involved parameters on velocity and temperature fields are shown graphically and analyzed in detail.

  7. Hybrid stent device of flow-diverting effect and stent-assisted coil embolization formed by fractal structure.

    PubMed

    Kojima, Masahiro; Irie, Keiko; Masunaga, Kouhei; Sakai, Yasuhiko; Nakajima, Masahiro; Takeuchi, Masaru; Fukuda, Toshio; Arai, Fumihito; Negoro, Makoto

    2016-05-01

    This paper presents a novel hybrid medical stent device. This hybrid stent device formed by fractal mesh structures provides a flow-diverting effect and stent-assisted coil embolization. Flow-diverter stents decrease blood flow into an aneurysm to prevent its rupture. In general, the mesh size of a flow-diverter stent needs to be small enough to prevent blood flow into the aneurysm. Conventional flow-diverter stents are not available for stent-assisted coil embolization, which is an effective method for aneurysm occlusion, because the mesh size is too small to insert a micro-catheter for coil embolization. The proposed hybrid stent device is capable of stent-assisted coil embolization while simultaneously providing a flow-diverting effect. The fractal stent device is composed of mesh structures with fine and rough mesh areas. The rough mesh area can be used to insert a micro-catheter for stent-assisted coil embolization. Flow-diverting effects of two fractal stent designs were composed to three commercially available stent designs. Flow-diverting effects were analyzed using computational fluid dynamics (CFD) analysis and particle image velocimetry (PIV) experiment. Based on the CFD and PIV results, the fractal stent devices reduce the flow velocity inside an aneurism just as much as the commercially available flow-diverting stents while allowing stent-assisted coil embolization.

  8. Electrophoresis device

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S. (Inventor)

    1982-01-01

    A device for separating cellular particles of a sample substance into fractionated streams of different cellular species includes a casing having a distribution chamber, a separation chamber, and a collection chamber. The electrode chambers are separated from the separation chamber interior by means of passages such that flow variations and membrane variations around the slotted portion of the electrode chamber do not enduce flow perturbations into the laminar buffer curtain flowing in the separation chamber. The cellular particles of the sample are separated under the influence of the electrical field and the separation chamber into streams of different cellular species. The streams of separated cells enter a partition array in the collection chamber where they are fractionated and collected.

  9. Fractional Flow Reserve-Guided Deferred Versus Complete Revascularization in Patients With Diabetes Mellitus.

    PubMed

    Kennedy, Mark W; Hermanides, Rik S; Kaplan, Emel; Hemradj, Veemal; Fabris, Enrico; Koopmans, Petra C; Dambrink, Jan-Henk E; Gosselink, A T Marcel; Van't Hof, Arnoud W J; Ottervanger, Jan Paul; Roolvink, Vincent; Remkes, Wouter S; van der Sluis, Aize; Suryapranata, Harry; Kedhi, Elvin

    2016-11-01

    To assess the safety and efficacy of deferred versus complete revascularization using a fractional flow reserve (FFR)-guided strategy in patients with diabetes mellitus (DM), we analyzed all DM patients who underwent FFR-guided revascularization from January 1, 2010, to December 12, 2013. Patients were divided into 2 groups: those with ≥1 remaining FFR-negative (>0.80) medically treated lesions [FFR(-)MT] and those with only FFR-positive lesions (≤0.80) who underwent complete revascularization [FFR(+)CR] and were followed until July 1, 2015. The primary end point was the incidence of major adverse cardiovascular events (MACE), a composite of death, myocardial infarction (MI), target lesion (FFR assessed) revascularization, and rehospitalization for acute coronary syndrome. A total of 294 patients, 205 (69.7%) versus 89 (30.3%) in FFR(-)MT and FFR(+)CR, respectively, were analyzed. At a mean follow-up of 32.6 ± 18.1 months, FFR(-)MT was associated with higher MACE rate 44.0% versus 26.6% (log-rank p = 0.02, Cox regression-adjusted hazard ratio [HR] 2.01, 95% confidence interval [CI] 1.21 to 3.33, p <0.01), and driven by both safety and efficacy end points: death/MI (HR 2.02, 95% CI 1.06 to 3.86, p = 0.03), rehospitalization for acute coronary syndrome (HR 2.06, 95% CI 1.03 to 4.10, p = 0.04), and target lesion revascularization (HR 3.38, 95% CI 1.19 to 9.64, p = 0.02). Previous MI was a strong effect modifier within the FFR(-)MT group (HR 1.98, 95% CI 1.26 to 3.13, p <0.01), whereas this was not the case in the FFR(+)CR group (HR 0.66, 95% CI 0.27 to 1.62, p = 0.37). Significant interaction for MACE was present between FFR groups and previous MI (p = 0.03). In conclusion, in patients with DM, particularly those with previous MI, deferred revascularization is associated with poor medium-term outcomes. Combining FFR with imaging techniques may be required to guide our treatment strategy in these patients with high-risk, fast-progressing atherosclerosis.

  10. Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI.

    PubMed

    Davies, Justin E; Sen, Sayan; Dehbi, Hakim-Moulay; Al-Lamee, Rasha; Petraco, Ricardo; Nijjer, Sukhjinder S; Bhindi, Ravinay; Lehman, Sam J; Walters, Darren; Sapontis, James; Janssens, Luc; Vrints, Christiaan J; Khashaba, Ahmed; Laine, Mika; Van Belle, Eric; Krackhardt, Florian; Bojara, Waldemar; Going, Olaf; Härle, Tobias; Indolfi, Ciro; Niccoli, Giampaolo; Ribichini, Flavo; Tanaka, Nobuhiro; Yokoi, Hiroyoshi; Takashima, Hiroaki; Kikuta, Yuetsu; Erglis, Andrejs; Vinhas, Hugo; Canas Silva, Pedro; Baptista, Sérgio B; Alghamdi, Ali; Hellig, Farrel; Koo, Bon-Kwon; Nam, Chang-Wook; Shin, Eun-Seok; Doh, Joon-Hyung; Brugaletta, Salvatore; Alegria-Barrero, Eduardo; Meuwissen, Martijin; Piek, Jan J; van Royen, Niels; Sezer, Murat; Di Mario, Carlo; Gerber, Robert T; Malik, Iqbal S; Sharp, Andrew S P; Talwar, Suneel; Tang, Kare; Samady, Habib; Altman, John; Seto, Arnold H; Singh, Jasvindar; Jeremias, Allen; Matsuo, Hitoshi; Kharbanda, Rajesh K; Patel, Manesh R; Serruys, Patrick; Escaned, Javier

    2017-03-18

    Background Coronary revascularization guided by fractional flow reserve (FFR) is associated with better patient outcomes after the procedure than revascularization guided by angiography alone. It is unknown whether the instantaneous wave-free ratio (iFR), an alternative measure that does not require the administration of adenosine, will offer benefits similar to those of FFR. Methods We randomly assigned 2492 patients with coronary artery disease, in a 1:1 ratio, to undergo either iFR-guided or FFR-guided coronary revascularization. The primary end point was the 1-year risk of major adverse cardiac events, which were a composite of death from any cause, nonfatal myocardial infarction, or unplanned revascularization. The trial was designed to show the noninferiority of iFR to FFR, with a margin of 3.4 percentage points for the difference in risk. Results At 1 year, the primary end point had occurred in 78 of 1148 patients (6.8%) in the iFR group and in 83 of 1182 patients (7.0%) in the FFR group (difference in risk, -0.2 percentage points; 95% confidence interval [CI], -2.3 to 1.8; P<0.001 for noninferiority; hazard ratio, 0.95; 95% CI, 0.68 to 1.33; P=0.78). The risk of each component of the primary end point and of death from cardiovascular or noncardiovascular causes did not differ significantly between the groups. The number of patients who had adverse procedural symptoms and clinical signs was significantly lower in the iFR group than in the FFR group (39 patients [3.1%] vs. 385 patients [30.8%], P<0.001), and the median procedural time was significantly shorter (40.5 minutes vs. 45.0 minutes, P=0.001). Conclusions Coronary revascularization guided by iFR was noninferior to revascularization guided by FFR with respect to the risk of major adverse cardiac events at 1 year. The rate of adverse procedural signs and symptoms was lower and the procedural time was shorter with iFR than with FFR. (Funded by Philips Volcano; DEFINE-FLAIR ClinicalTrials.gov number, NCT

  11. Instantaneous Wave-free Ratio versus Fractional Flow Reserve to Guide PCI.

    PubMed

    Götberg, Matthias; Christiansen, Evald H; Gudmundsdottir, Ingibjörg J; Sandhall, Lennart; Danielewicz, Mikael; Jakobsen, Lars; Olsson, Sven-Erik; Öhagen, Patrik; Olsson, Hans; Omerovic, Elmir; Calais, Fredrik; Lindroos, Pontus; Maeng, Michael; Tödt, Tim; Venetsanos, Dimitrios; James, Stefan K; Kåregren, Amra; Nilsson, Margareta; Carlsson, Jörg; Hauer, Dario; Jensen, Jens; Karlsson, Ann-Charlotte; Panayi, Georgios; Erlinge, David; Fröbert, Ole

    2017-03-18

    Background The instantaneous wave-free ratio (iFR) is an index used to assess the severity of coronary-artery stenosis. The index has been tested against fractional flow reserve (FFR) in small trials, and the two measures have been found to have similar diagnostic accuracy. However, studies of clinical outcomes associated with the use of iFR are lacking. We aimed to evaluate whether iFR is noninferior to FFR with respect to the rate of subsequent major adverse cardiac events. Methods We conducted a multicenter, randomized, controlled, open-label clinical trial using the Swedish Coronary Angiography and Angioplasty Registry for enrollment. A total of 2037 participants with stable angina or an acute coronary syndrome who had an indication for physiologically guided assessment of coronary-artery stenosis were randomly assigned to undergo revascularization guided by either iFR or FFR. The primary end point was the rate of a composite of death from any cause, nonfatal myocardial infarction, or unplanned revascularization within 12 months after the procedure. Results A primary end-point event occurred in 68 of 1012 patients (6.7%) in the iFR group and in 61 of 1007 (6.1%) in the FFR group (difference in event rates, 0.7 percentage points; 95% confidence interval [CI], -1.5 to 2.8%; P=0.007 for noninferiority; hazard ratio, 1.12; 95% CI, 0.79 to 1.58; P=0.53); the upper limit of the 95% confidence interval for the difference in event rates fell within the prespecified noninferiority margin of 3.2 percentage points. The results were similar among major subgroups. The rates of myocardial infarction, target-lesion revascularization, restenosis, and stent thrombosis did not differ significantly between the two groups. A significantly higher proportion of patients in the FFR group than in the iFR group reported chest discomfort during the procedure. Conclusions Among patients with stable angina or an acute coronary syndrome, an iFR-guided revascularization strategy was

  12. Study of liquid and vapor flow into a Centaur capillary device

    NASA Technical Reports Server (NTRS)

    Blatt, M. H.; Risberg, J. A.

    1979-01-01

    The following areas of liquid and vapor flow were analyzed and experimentally evaluated; 1) the refilling of capillary devices with settled liquid, and 2) vapor flow across wetted screens. These investigations resulted in: 1) the development of a versatile computer program that was successfully correlated with test data and used to predict Centaur D-1S LO2 and LH2 start basket refilling; 2) the development of a semi-empirical model that was only partially correlated with data due to difficulties in obtaining repeatable test results. Also, a comparison was made to determine the best propellant management system for the Centaur D-1S vehicle. The comparison identified the basline Centaur D-1S system (using pressurization, boost pumps and propellant settling) as the best candidate based on payload weight penalty. However, other comparison criteria and advanced mission condition were identified where pressure fed systems, thermally subcooled boost pumps and capillary devices would be selected as attractive alternatives.

  13. Assessment of left anterior descending artery stenosis of intermediate severity by fractional flow reserve, instantaneous wave-free ratio and non-invasive coronary flow reserve.

    PubMed

    Meimoun, P; Clerc, J; Ardourel, D; Martis, S; Djou, U; Botoro, T; Boulanger, J; Elmkies, F; Zemir, H

    2016-11-01

    Assessment of the functional significance of left anterior descending coronary artery (LAD) stenosis of intermediate severity is challenging and often based on fractional flow reserve (FFR). The instantaneous wave-free ratio (IFR), a new vasodilator-free index of coronary stenosis severity, and non-invasive coronary flow reserve (CFR) by transthoracic Doppler echocardiography are also potentially useful. A direct comparison of FFR, IFR, and non-invasive CFR has never been performed. Our objective was to test the usefulness of non-invasive CFR by comparison to invasive FFR and IFR in patients with LAD stenosis of angiographic intermediate severity and stable coronary artery disease.

  14. Characterization and optimization of low cost microfluidic thread based electroanalytical device for micro flow injection analysis.

    PubMed

    Agustini, Deonir; Bergamini, Márcio F; Marcolino-Junior, Luiz Humberto

    2017-01-25

    The micro flow injection analysis (μFIA) is a powerful technique that uses the principles of traditional flow analysis in a microfluidic device and brings a number of improvements related to the consumption of reagents and samples, speed of analysis and portability. However, the complexity and cost of manufacturing processes, difficulty in integrating micropumps and the limited performance of systems employing passive pumps are challenges that must be overcome. Here, we present the characterization and optimization of a low cost device based on cotton threads as microfluidic channel to perform μFIA based on passive pumps with good analytical performance in a simple, easy and inexpensive way. The transport of solutions is made through cotton threads by capillary force facilitated by gravity. After studying and optimizing several features related to the device, were obtained a flow rate of 2.2 ± 0.1 μL s(-1), an analytical frequency of 208 injections per hour, a sample injection volume of 2.0 μL and a waste volume of approximately 40 μL per analysis. For chronoamperometric determination of naproxen, a detection limit of 0.29 μmol L(-1) was reached, with a relative standard deviation (RSD) of 1.69% between injections and a RSD of 3.79% with five different devices. Thus, based on the performance presented by proposed microfluidic device, it is possible to overcome some limitations of the μFIA systems based on passive pumps and allow expansion in the use of this technique.

  15. Thermoelectric Devices, Being Blown Through with a Substance in the Direction of Heat Flow

    DTIC Science & Technology

    1974-04-06

    thermoelectric devices being blown through with a substance in the direction of heat flow are described. A battery of this kind of thermoelements can be use in...capillaries. A battery of these thermoelements can serve for utilizing the heat of combustion products produced in some heat-using facility. Tne...consumption of the heat carrier and its temperature ahead of the battery will be specified. If we know the geometrical characteristics of thermoelements

  16. Advanced heat transfer devices based on mass forces in coiled flows

    NASA Astrophysics Data System (ADS)

    Fedorovich, Evgeny D.; Tarasevich, Sergei S.; Repnikova, Elena A.

    2002-01-01

    Advanced heat transfer devices in the form of different channels where artificial mass forces influence on hydrodynamics stability in low gravity area and argumentation of heat transfer is considered. Experiments are fulfilled with large variety of geometrical forms of channels (inserts in straight tubes, fluted tubes, annular channels with rotation of flow, spiral coils, twisted tubes etc.) and different heat transfer media and their vapor (liquid metals, water, cryogenic liquids). .

  17. In vitro characterization of a magnetically suspended continuous flow ventricular assist device.

    PubMed

    Kim, H C; Bearnson, G