Elliptic Flow, Initial Eccentricity and Elliptic Flow Fluctuations in Heavy Ion Collisions at RHIC
NASA Astrophysics Data System (ADS)
Nouicer, Rachid; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holzman, B.; Iordanova, A.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.
2008-12-01
We present measurements of elliptic flow and event-by-event fluctuations established by the PHOBOS experiment. Elliptic flow scaled by participant eccentricity is found to be similar for both systems when collisions with the same number of participants or the same particle area density are compared. The agreement of elliptic flow between Au+Au and Cu+Cu collisions provides evidence that the matter is created in the initial stage of relativistic heavy ion collisions with transverse granularity similar to that of the participant nucleons. The event-by-event fluctuation results reveal that the initial collision geometry is translated into the final state azimuthal particle distribution, leading to an event-by-event proportionality between the observed elliptic flow and initial eccentricity.
NASA Astrophysics Data System (ADS)
Xiao, Kai; Liu, Feng; Wang, Fu-Qiang
2017-09-01
Sources of event-by-event elliptic flow fluctuations in relativistic heavy-ion collisions are investigated in a multiphase parton transport model (AMPT). Besides the well-known initial eccentricity fluctuations, several other sources of elliptic flow dynamical fluctuations are identified. One is fluctuations in initial parton configurations at a given eccentricity. Configuration fluctuations are found to be as important as eccentricity fluctuations in elliptic flow development. A second is quantum fluctuations in parton-parton interactions during system evolution. A third is fluctuations caused by hadronization and final-state hadronic scatterings. The magnitudes of these fluctuations are investigated relative to the eccentricity fluctuations and the average elliptic flow magnitude. The fluctuations from the latter two sources are found to be negative. The results may have important implications for the interpretation of elliptic flow data. Supported by MOST, China, under 973 Grant 2015CB856901, National Natural Science Foundation of China (11521064, 11547143, 11228513), U.S. Department of Energy (DE-FG02-88ER40412), Fundamental Research Funds for the Central Universities, South-Central University for Nationalities (CZQ15001) and Excellent Doctorial Dissertation Cultivation Grant from Central China Normal University (2013YBZD18)
Eccentricity fluctuation effects on elliptic flow in relativistic heavy ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Tetsufumi; Nara, Yasushi
2009-06-15
We study effects of eccentricity fluctuations on the elliptic flow coefficient v{sub 2} at midrapidity in both Au+Au and Cu+Cu collisions at {radical}(s{sub NN})=200 GeV by using a hybrid model that combines ideal hydrodynamics for space-time evolution of the quark gluon plasma phase and a hadronic transport model for the hadronic matter. For initial conditions in hydrodynamic simulations, both the Glauber model and the color glass condensate model are employed to demonstrate the effect of initial eccentricity fluctuations originating from the nucleon position inside a colliding nucleus. The effect of eccentricity fluctuations is modest in semicentral Au+Au collisions, but significantlymore » enhances v{sub 2} in Cu+Cu collisions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alver, B.; Ballintijn, M.; Busza, W.
2008-01-15
In relativistic heavy-ion collisions, anisotropic collective flow is driven, event by event, by the initial eccentricity of the matter created in the nuclear overlap zone. Interpretation of the anisotropic flow data thus requires a detailed understanding of the effective initial source eccentricity of the event sample. In this paper, we investigate various ways of defining this effective eccentricity using the Monte Carlo Glauber (MCG) approach. In particular, we examine the participant eccentricity, which quantifies the eccentricity of the initial source shape by the major axes of the ellipse formed by the interaction points of the participating nucleons. We show thatmore » reasonable variation of the density parameters in the Glauber calculation, as well as variations in how matter production is modeled, do not significantly modify the already established behavior of the participant eccentricity as a function of collision centrality. Focusing on event-by-event fluctuations and correlations of the distributions of participating nucleons, we demonstrate that, depending on the achieved event-plane resolution, fluctuations in the elliptic flow magnitude v{sub 2} lead to most measurements being sensitive to the root-mean-square rather than the mean of the v{sub 2} distribution. Neglecting correlations among participants, we derive analytical expressions for the participant eccentricity cumulants as a function of the number of participating nucleons, N{sub part}, keeping nonnegligible contributions up to O(1/N{sub part}{sup 3}). We find that the derived expressions yield the same results as obtained from mixed-event MCG calculations which remove the correlations stemming from the nuclear collision process. Most importantly, we conclude from the comparison with MCG calculations that the fourth-order participant eccentricity cumulant does not approach the spatial anisotropy obtained assuming a smooth nuclear matter distribution. In particular, for the Cu+Cu system, these quantities deviate from each other by almost a factor of 2 over a wide range in centrality. This deviation reflects the essential role of participant spatial correlations in the interaction of two nuclei.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhuri, A. K.
2010-04-15
In the Israel-Stewart theory of dissipative hydrodynamics, the scaling properties of elliptic flow in Au+Au collisions are studied. The initial energy density of the fluid was fixed to reproduce STAR data on phi-meson multiplicity in 0-5% Au+Au collisions such that, irrespective of fluid viscosity, entropy at the freeze-out is similar in ideal or in viscous evolution. The initial eccentricity or constituent quark number scaling is only approximate in ideal or minimally viscous (eta/s=1/4pi) fluid. Eccentricity scaling becomes nearly exact in more viscous fluid (eta/s>=0.12). However, in more viscous fluid, constituent quark number scaled elliptic flow for mesons and baryons splitsmore » into separate scaling functions. Simulated flows also do not exhibit 'universal scaling'; that is, elliptic flow scaled by the constituent quark number and charged particles v{sub 2} is not a single function of transverse kinetic energy scaled by the quark number. From a study of the violation of universal scaling, we obtain an estimate of quark-gluon plasma viscosity, eta/s=0.12+-0.03. The error is statistical only. The systematic error in eta/s could be as large.« less
Decomposition of fluctuating initial conditions and flow harmonics
NASA Astrophysics Data System (ADS)
Qian, Wei-Liang; Mota, Philipe; Andrade, Rone; Gardim, Fernando; Grassi, Frédérique; Hama, Yogiro; Kodama, Takeshi
2014-01-01
Collective flow observed in heavy-ion collisions is largely attributed to initial geometrical fluctuations, and it is the hydrodynamic evolution of the system that transforms those initial spatial irregularities into final state momentum anisotropies. Cumulant analysis provides a mathematical tool to decompose those initial fluctuations in terms of radial and azimuthal components. It is usually thought that a specified order of azimuthal cumulant, for the most part, linearly produces flow harmonics of the same order. In this work, by considering the most central collisions (0%-5%), we carry out a systematic study on the connection between cumulants and flow harmonics using a hydrodynamic code called NeXSPheRIO. We conduct three types of calculation, by explicitly decomposing the initial conditions into components corresponding to a given eccentricity and studying the out-coming flow through hydrodynamic evolution. It is found that for initial conditions deviating significantly from Gaussian, such as those from NeXuS, the linearity between eccentricities and flow harmonics partially breaks down. Combined with the effect of coupling between cumulants of different orders, it causes the production of extra flow harmonics of higher orders. We argue that these results can be seen as a natural consequence of the non-linear nature of hydrodynamics, and they can be understood intuitively in terms of the peripheral-tube model.
Initial eccentricity fluctuations and their relation to higher-order flow harmonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacey, R.; Wei,R.; Jia,J.
2011-06-01
Monte Carlo simulations are used to compute the centrality dependence of the participant eccentricities ({var_epsilon}{sub n}) in Au+Au collisions for the two primary models currently employed for eccentricity estimates - the Glauber and the factorized Kharzeev-Levin-Nardi (fKLN) models. They suggest specific testable predictions for the magnitude and centrality dependence of the flow coefficients v{sub n}, respectively measured relative to the event planes {Psi}{sub n}. They also indicate that the ratios of several of these coefficients may provide an additional constraint for distinguishing between the models. Such a constraint could be important for a more precise determination of the specific viscositymore » of the matter produced in heavy ion collisions.« less
Correlation between Reynolds number and eccentricity effect in stenosed artery models.
Javadzadegan, Ashkan; Shimizu, Yasutomo; Behnia, Masud; Ohta, Makoto
2013-01-01
Flow recirculation and shear strain are physiological processes within coronary arteries which are associated with pathogenic biological pathways. Distinct Quite apart from coronary stenosis severity, lesion eccentricity can cause flow recirculation and affect shear strain levels within human coronary arteries. The aim of this study is to analyse the effect of lesion eccentricity on the transient flow behaviour in a model of a coronary artery and also to investigate the correlation between Reynolds number (Re) and the eccentricity effect on flow behaviour. A transient particle image velocimetry (PIV) experiment was implemented in two silicone based models with 70% diameter stenosis, one with eccentric stenosis and one with concentric stenosis. At different times throughout the flow cycle, the eccentric model was always associated with a greater recirculation zone length, maximum shear strain rate and maximum axial velocity; however, the highest and lowest impacts of eccentricity were on the recirculation zone length and maximum shear strain rate, respectively. Analysis of the results revealed a negative correlation between the Reynolds number (Re) and the eccentricity effect on maximum axial velocity, maximum shear strain rate and recirculation zone length. As Re number increases the eccentricity effect on the flow behavior becomes negligible.
Orbital Eccentricity and the Stability of Planets in the Alpha Centauri System
NASA Technical Reports Server (NTRS)
Lissauer, Jack
2016-01-01
Planets on initially circular orbits are typically more dynamically stable than planets initially having nonzero eccentricities. However, the presence of a major perturber that forces periodic oscillations of planetary eccentricity can alter this situation. We investigate the dependance of system lifetime on initial eccentricity for planets orbiting one star within the alpha Centauri system. Our results show that initial conditions chosen to minimize free eccentricity can substantially increase stability compared to planets on circular orbits.
NASA Technical Reports Server (NTRS)
Nelson, C. C.; Nguyen, D. T.
1987-01-01
A new analysis procedure has been presented which solves for the flow variables of an annular pressure seal in which the rotor has a large static displacement (eccentricity) from the centered position. The present paper incorporates the solutions to investigate the effect of eccentricity on the rotordynamic coefficients. The analysis begins with a set of governing equations based on a turbulent bulk-flow model and Moody's friction factor equation. Perturbations of the flow variables yields a set of zeroth- and first-order equations. After integration of the zeroth-order equations, the resulting zeroth-order flow variables are used as input in the solution of the first-order equations. Further integration of the first order pressures yields the eccentric rotordynamic coefficients. The results from this procedure compare well with available experimental and theoretical data, with accuracy just as good or slightly better than the predictions based on a finite-element model.
Event-by-event elliptic flow fluctuations from PHOBOS
Wosiek, Barbara; Alver, B.; Back, B. B.; ...
2009-04-01
Recently PHOBOS has focused on the study of fluctuations and correlations in particle production in heavy-ion collisions at the highest energies delivered by the Relativistic Heavy Ion Collider (RHIC). In this report, we present results on event-by-event elliptic flow fluctuations in Au + Au collisions at √s NN =200 GeV. A data-driven method was used to estimate the dominant contribution from non-flow correlations. Over the broad range of collision centralities, the observed large elliptic flow fluctuations are in agreement with the fluctuations in the initial source eccentricity.
Event-by-Event Elliptic Flow Fluctuations from PHOBOS
NASA Astrophysics Data System (ADS)
Wosiek, B.; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.
2009-04-01
Recently PHOBOS has focused on the study of fluctuations and correlations in particle production in heavy-ion collisions at the highest energies delivered by the Relativistic Heavy Ion Collider (RHIC). In this report, we present results on event-by-event elliptic flow fluctuations in (Au+Au) collisions at sqrt {sNN}=200 GeV. A data-driven method was used to estimate the dominant contribution from non-flow correlations. Over the broad range of collision centralities, the observed large elliptic flow fluctuations are in agreement with the fluctuations in the initial source eccentricity.
Effects of initial-state nucleon shadowing on the elliptic flow of thermal photons
NASA Astrophysics Data System (ADS)
Dasgupta, Pingal; Chatterjee, Rupa; Singh, Sushant K.; Alam, Jan-e.
2018-03-01
Recently the effect of nucleon shadowing on the Monte Carlo-Glauber initial condition was studied and its role on the centrality dependence of elliptic flow (v2) and fluctuations in initial eccentricity for different colliding nuclei were explored. It was found that the results with shadowing effects are closer to the QCD-based dynamical model as well as to the experimental data. Inspired by this outcome, in this work we study the transverse momentum (pT) spectra and elliptic flow of thermal photons for Au +Au collisions at the BNL Relativisitic Heavy Ion Collider and Pb +Pb collisions at the CERN Large Hadron Collider by incorporating the shadowing effects in deducing the initial energy density profile required to solve the relativistic hydrodynamical equations. We find that the thermal photon spectra remain almost unaltered; however, the elliptic flow of photons is found to be enhanced significantly due to shadowing effects.
NASA Astrophysics Data System (ADS)
Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Aoki, K.; Aramaki, Y.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; David, G.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Garishvili, I.; Glenn, A.; Gong, H.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Gustafsson, H.-Å.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Hartouni, E. P.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Ikeda, Y.; Imai, K.; Inaba, M.; Isenhower, D.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Jacak, B. V.; Jia, J.; Jin, J.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kang, J. H.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, S. H.; Kim, Y.-J.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Leitch, M. J.; Leite, M. A. L.; Leitner, E.; Lenzi, B.; Li, X.; Liebing, P.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Malakhov, A.; Malik, M. D.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; Means, N.; Meredith, B.; Miake, Y.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Milov, A.; Mishra, M.; Mitchell, J. T.; Mizuno, S.; Mohanty, A. K.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, T.; Nakano, K.; Newby, J.; Nguyen, M.; Niida, T.; Nouicer, R.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J.; Park, S. K.; Park, W. J.; Pate, S. F.; Pei, H.; Peng, J.-C.; Pereira, H.; Peresedov, V.; Peressounko, D. Yu.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rukoyatkin, P.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Samsonov, V.; Sano, S.; Sato, T.; Sawada, S.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Sparks, N. A.; Stankus, P. W.; Stenlund, E.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sziklai, J.; Takagui, E. M.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Themann, H.; Thomas, T. L.; Todoroki, T.; Togawa, M.; Toia, A.; Tomášek, L.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Wei, F.; Wei, R.; Wessels, J.; White, S. N.; Winter, D.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xie, W.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zhang, C.; Zhou, S.; Zolin, L.; Phenix Collaboration
2016-05-01
Measurements of the anisotropic flow coefficients v2{Ψ2} ,v3{Ψ3} ,v4{Ψ4} , and v4{Ψ2} for identified particles (π±,K± , and p +p ¯ ) at midrapidity, obtained relative to the event planes Ψm at forward rapidities in Au + Au collisions at √{sNN}=200 GeV , are presented as a function of collision centrality and particle transverse momenta pT. The vn coefficients show characteristic patterns consistent with hydrodynamical expansion of the matter produced in the collisions. For each harmonic n , a modified valence quark-number Nq scaling [plotting vn{Ψm} /(Nq) n /2 versus transverse kinetic energies (KET) /Nq] is observed to yield a single curve for all the measured particle species for a broad range of KET. A simultaneous blast-wave model fit to the observed vn{Ψm} (pT) coefficients and published particle spectra identifies radial flow anisotropies ρn{Ψm} and spatial eccentricities sn{Ψm} at freeze-out. These are generally smaller than the initial-state participant-plane geometric eccentricities ɛn{ΨmPP} as also observed in the final eccentricity from quantum interferometry measurements with respect to the event plane.
Andersson, Magnus; Lantz, Jonas; Ebbers, Tino; Karlsson, Matts
2015-09-01
Turbulence and flow eccentricity can be measured by magnetic resonance imaging (MRI) and may play an important role in the pathogenesis of numerous cardiovascular diseases. In the present study, we propose quantitative techniques to assess turbulent kinetic energy (TKE) and flow eccentricity that could assist in the evaluation and treatment of stenotic severities. These hemodynamic parameters were studied in a pre-treated aortic coarctation (CoA) and after several virtual interventions using computational fluid dynamics (CFD), to demonstrate the effect of different dilatation options on the flow field. Patient-specific geometry and flow conditions were derived from MRI data. The unsteady pulsatile flow was resolved by large eddy simulation including non-Newtonian blood rheology. Results showed an inverse asymptotic relationship between the total amount of TKE and degree of dilatation of the stenosis, where turbulent flow proximal the constriction limits the possible improvement by treating the CoA alone. Spatiotemporal maps of TKE and flow eccentricity could be linked to the characteristics of the jet, where improved flow conditions were favored by an eccentric dilatation of the CoA. By including these flow markers into a combined MRI-CFD intervention framework, CoA therapy has not only the possibility to produce predictions via simulation, but can also be validated pre- and immediate post treatment, as well as during follow-up studies.
NASA Astrophysics Data System (ADS)
Luan, Deyu; Zhang, Shengfeng; Wei, Xing; Duan, Zhenya
The aim of this work is to investigate the effect of the shaft eccentricity on the flow field and mixing characteristics in a stirred tank with the novel stirrer composed of perturbed six-bent-bladed turbine (6PBT). The difference between coaxial and eccentric agitations is studied using computational fluid dynamics (CFD) simulations combined with standard k-ε turbulent equations, that offer a complete image of the three-dimensional flow field. In order to determine the capability of CFD to forecast the mixing process, particle image velocimetry (PIV), which provide an accurate representation of the time-averaged velocity, was used to measure fluid velocity. The test liquid used was 1.25% (wt) xanthan gum solution, a pseudoplastic fluid with a yield stress. The comparison of the experimental and simulated mean flow fields has demonstrated that calculations based on Reynolds-averaged Navier-Stokes equations are suitable for obtaining accurate results. The effects of the shaft eccentricity and the stirrer off-bottom distance on the flow model, mixing time and mixing efficiency were extensively analyzed. It is observed that the microstructure of the flow field has a significant effect on the tracer mixing process. The eccentric agitation can lead to the flow model change and the non-symmetric flow structure, which would possess an obvious superiority of mixing behavior. Moreover, the mixing rate and mixing efficiency are dependent on the shaft eccentricity and the stirrer off-bottom distance, showing the corresponding increase of the eccentricity with the off-bottom distance. The efficient mixing process of pseudoplastic fluid stirred by 6PBT impeller is obtained with the considerably low mixing energy per unit volume when the stirrer off-bottom distance, C, is T/3 and the eccentricity, e, is 0.2. The research results provide valuable references for the improvement of pseudoplastic fluid agitation technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Yuji; Kokubo, Eiichiro, E-mail: ymatsumoto@cfca.nao.ac.jp
Recent observations have revealed the eccentricity and inclination distributions of close-in super-Earths. These distributions have the potential to constrain their formation processes. In the in situ formation scenario, the eccentricities and inclinations of planets are determined by gravitational scattering and collisions between protoplanets on the giant impact stage. We investigate the effect of the initial eccentricities and inclinations of protoplanets on the formation of close-in super-Earths. We perform N -body simulations of protoplanets in gas-free disks, changing the initial eccentricities and inclinations systematically. We find that while the eccentricities of protoplanets are well relaxed through their evolution, the inclinations aremore » not. When the initial inclinations are small, they are not generally pumped up since scattering is less effective and collisions occur immediately after orbital crossing. On the other hand, when the initial inclinations are large, they tend to be kept large since collisional damping is less effective. Not only the resultant inclinations of planets, but also their number, eccentricities, angular momentum deficit, and orbital separations are affected by the initial inclinations of protoplanets.« less
Effects of radial direction and eccentricity on acceleration perception.
Mueller, Alexandra S; Timney, Brian
2014-01-01
Radial optic flow can elicit impressions of self-motion--vection--or of objects moving relative to the observer, but there is disagreement as to whether humans have greater sensitivity to expanding or to contracting optic flow. Although most studies agree there is an anisotropy in sensitivity to radial optic flow, it is unclear whether this asymmetry is a function of eccentricity. The issue is further complicated by the fact that few studies have examined how acceleration sensitivity is affected, even though observers and objects in the environment seldom move at a constant speed. To address these issues, we investigated the effects of direction and eccentricity on the ability to detect acceleration in radial optic flow. Our results indicate that observers are better at detecting acceleration when viewing contraction compared with expansion and that eccentricity has no effect on the ability to detect accelerating radial optic flow. Ecological interpretations are discussed.
Continuous description of fluctuating eccentricities
NASA Astrophysics Data System (ADS)
Blaizot, Jean-Paul; Broniowski, Wojciech; Ollitrault, Jean-Yves
2014-11-01
We consider the initial energy density in the transverse plane of a high energy nucleus-nucleus collision as a random field ρ (x), whose probability distribution P [ ρ ], the only ingredient of the present description, encodes all possible sources of fluctuations. We argue that it is a local Gaussian, with a short-range 2-point function, and that the fluctuations relevant for the calculation of the eccentricities that drive the anisotropic flow have small relative amplitudes. In fact, this 2-point function, together with the average density, contains all the information needed to calculate the eccentricities and their variances, and we derive general model independent expressions for these quantities. The short wavelength fluctuations are shown to play no role in these calculations, except for a renormalization of the short range part of the 2-point function. As an illustration, we compare to a commonly used model of independent sources, and recover the known results of this model.
Numerical black hole initial data with low eccentricity based on post-Newtonian orbital parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walther, Benny; Bruegmann, Bernd; Mueller, Doreen
2009-06-15
Black hole binaries on noneccentric orbits form an important subclass of gravitational wave sources, but it is a nontrivial issue to construct numerical initial data with minimal initial eccentricity for numerical simulations. We compute post-Newtonian orbital parameters for quasispherical orbits using the method of Buonanno, Chen and Damour, (2006) and examine the resulting eccentricity in numerical simulations. Four different methods are studied resulting from the choice of Taylor-expanded or effective-one-body Hamiltonians, and from two choices for the energy flux. For equal-mass, nonspinning binaries the approach succeeds in obtaining low-eccentricity numerical initial data with an eccentricity of about e=0.002 for rathermore » small initial separations of D > or approx. 10M. The eccentricity increases for unequal masses and for spinning black holes, but remains smaller than that obtained from previous post-Newtonian approaches. The effective-one-body Hamiltonian offers advantages for decreasing initial separation as expected, but in the context of this study also performs significantly better than the Taylor-expanded Hamiltonian for binaries with spin. For mass ratio 4 ratio 1 and vanishing spin, the eccentricity reaches e=0.004. For mass ratio 1 ratio 1 and aligned spins of size 0.85M{sup 2} the eccentricity is about e=0.07 for the Taylor method and e=0.014 for the effective-one-body method.« less
Adare, A.; Afanasiev, S.; Aidala, C.; ...
2016-05-31
Inmore » this paper, measurements of the anisotropic flow coefficients v 2{Ψ 2}, v 3{Ψ 3}, v 4{Ψ 4}, and v 4{Ψ 2} for identified particles (π ±, K ±, and p + ¯p) at midrapidity, obtained relative to the event planes Ψ m at forward rapidities in Au + Au collisions at s N N = 200 GeV , are presented as a function of collision centrality and particle transverse momenta p T. The v n coefficients show characteristic patterns consistent with hydrodynamical expansion of the matter produced in the collisions. For each harmonic n, a modified valence quark-number N q scaling [plotting v n{Ψ m}/(N q) n/2 versus transverse kinetic energies (KE T)/N q] is observed to yield a single curve for all the measured particle species for a broad range of KE T . A simultaneous blast-wave model fit to the observed v n{Ψ m}(p T) coefficients and published particle spectra identifies radial flow anisotropies ρ n{Ψ m} and spatial eccentricities s n{Ψ m} at freeze-out. Finally, these are generally smaller than the initial-state participant-plane geometric eccentricities ε n {Ψ PP m} as also observed in the final eccentricity from quantum interferometry measurements with respect to the event plane.« less
Initial Eccentricity in Deformed 197Au+197Au and 238U+238U Collisions at RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filip, Peter; Lednicky, Richard; Masui, Hiroshi
2010-07-07
Initial eccentricity and eccentricity fluctuations of the interaction volume created in relativistic collisions of deformed {sup 197}Au and {sup 238}U nuclei are studied using optical and Monte-Carlo (MC) Glauber simulations. It is found that the non-sphericity noticeably influences the average eccentricity in central collisions and eccentricity fluctuations are enhanced due to deformation. Quantitative results are obtained for Au+Au and U+U collisions at energy {radical}s{sub NN} = 200 GeV.
CFD modelling of liquid-solid transport in the horizontal eccentric annuli
NASA Astrophysics Data System (ADS)
Sayindla, Sneha; Challabotla, Niranjan Reddy
2017-11-01
In oil and gas drilling operations, different types of drilling fluids are used to transport the solid cuttings in an annulus between drill pipe and well casing. The inner pipe is often eccentric and flow inside the annulus can be laminar or turbulent regime. In the present work, Eulerian-Eulerian granular multiphase CFD model is developed to systematically investigate the effect of the rheology of the drilling fluid type (Newtonian and non-Newtonian), drill pipe eccentricity and inner pipe rotation on the efficiency of cuttings transport. Both laminar and turbulent flow regimes were considered. Frictional pressure drop is computed and compared with the flow loop experimental results reported in the literature. The results confirm that the annular frictional pressure loss in a fully eccentric annulus are significantly lesser than the concentric annulus. Inner pipe rotation improve the efficiency of the cuttings transport in laminar flow regime. Cuttings transport velocity and concentration distribution were analysed to predict the different flow patterns such as stationary bed, moving bed, heterogeneous and homogeneous bed formation.
Effect of Eccentricity in Compound Droplets Subject to a Simple Shear Flow
NASA Astrophysics Data System (ADS)
Kim, Sangkyu; Dabiri, Sadegh
2016-11-01
A double emulsion, or a compound droplet, is a system where two liquids are separated by an immiscible third liquid, thereby forming an emulsion inside an emulsion. Compound drops benefit from this separation in applications such food sciences, microfluidics, pharmaceutical engineering, and polymer sciences. While the subjects of double emulsion preparations, deformations, and breakup mechanisms are well-explored, the time-evolution of non-concentric compound drops has received far less analytical or computational scrutiny. In this work, we present computational results using finite volume method with front-tracking approach for initially spherical and non-concentric compound drops in a shear flow. Our findings for low Reynolds number flows show that: 1. The surrounding shear flow to the outer drop induces a rotational velocity field inside it, causing the inner drop to tumble with the flow, 2. the tumbling motion persists in time, and acts to increase the eccentricity of the compound drop, and 3. the hemisection-plane to the outer drop that is aligned with the plane of the simple shear defines an unstable equilibrium for inner drop's center, and the inner drop continuously drifts away from that plane. This work suggests a means of favorably configuring compound drops suitable for breakups, and helps to understand their migration in channel flows.
NASA Astrophysics Data System (ADS)
Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt
2018-03-01
Mergers of stellar-mass black holes on highly eccentric orbits are among the targets for ground-based gravitational-wave detectors, including LIGO, VIRGO, and KAGRA. These sources may commonly form through gravitational-wave emission in high-velocity dispersion systems or through the secular Kozai–Lidov mechanism in triple systems. Gravitational waves carry information about the binaries’ orbital parameters and source location. Using the Fisher matrix technique, we determine the measurement accuracy with which the LIGO–VIRGO–KAGRA network could measure the source parameters of eccentric binaries using a matched filtering search of the repeated burst and eccentric inspiral phases of the waveform. We account for general relativistic precession and the evolution of the orbital eccentricity and frequency during the inspiral. We find that the signal-to-noise ratio and the parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources. This increase is sensitive to the initial pericenter distance, the initial eccentricity, and the component masses. For instance, compared to a 30 {M}ȯ –30 {M}ȯ non-spinning circular binary, the chirp mass and sky-localization accuracy can improve by a factor of ∼129 (38) and ∼2 (11) for an initially highly eccentric binary assuming an initial pericenter distance of 20 M tot (10 M tot).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filip, Peter; Lednicky, Richard; Masui, Hiroshi
2009-11-15
Initial eccentricity and eccentricity fluctuations of the interaction volume created in relativistic collisions of deformed {sup 197}Au and {sup 238}U nuclei are studied using optical and Monte Carlo (MC) Glauber simulations. It is found that the nonsphericity noticeably influences the average eccentricity in central collisions, and eccentricity fluctuations are enhanced from deformation. Quantitative results are obtained for Au+Au and U+U collisions at energy {radical}(s{sub NN})=200 GeV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adare, A.; Afanasiev, S.; Aidala, C.
Inmore » this paper, measurements of the anisotropic flow coefficients v 2{Ψ 2}, v 3{Ψ 3}, v 4{Ψ 4}, and v 4{Ψ 2} for identified particles (π ±, K ±, and p + ¯p) at midrapidity, obtained relative to the event planes Ψ m at forward rapidities in Au + Au collisions at s N N = 200 GeV , are presented as a function of collision centrality and particle transverse momenta p T. The v n coefficients show characteristic patterns consistent with hydrodynamical expansion of the matter produced in the collisions. For each harmonic n, a modified valence quark-number N q scaling [plotting v n{Ψ m}/(N q) n/2 versus transverse kinetic energies (KE T)/N q] is observed to yield a single curve for all the measured particle species for a broad range of KE T . A simultaneous blast-wave model fit to the observed v n{Ψ m}(p T) coefficients and published particle spectra identifies radial flow anisotropies ρ n{Ψ m} and spatial eccentricities s n{Ψ m} at freeze-out. Finally, these are generally smaller than the initial-state participant-plane geometric eccentricities ε n {Ψ PP m} as also observed in the final eccentricity from quantum interferometry measurements with respect to the event plane.« less
Eccentricity Fluctuations Make Flow Measurable in High Multiplicity p-p Collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casalderrey-Solana, Jorge; Wiedemann, Urs Achim
2010-03-12
Elliptic flow is a hallmark of collectivity in hadronic collisions. Its measurement relies on analysis techniques which require high event multiplicity and so far can only be applied to heavy ion collisions. Here, we delineate the conditions under which elliptic flow becomes measurable in the samples of high-multiplicity (dN{sub ch}/dy>=50) p-p collisions, which will soon be collected at the LHC. We observe that fluctuations in the p-p interaction region can result in a sizable spatial eccentricity even for the most central p-p collisions. Under relatively mild assumptions on the nature of such fluctuations and on the eccentricity scaling of ellipticmore » flow, we find that the resulting elliptic flow signal in high-multiplicity p-p collisions at the LHC becomes measurable with standard techniques.« less
System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow
NASA Astrophysics Data System (ADS)
Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.
2007-06-01
This Letter presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider. The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system.
NASA Astrophysics Data System (ADS)
Fang, Pingping
1998-12-01
An extended numerical investigation of fully developed, forced convective laminar flows with heat transfer in eccentric annuli has been carried out. Both Newtonian and non-Newtonian (power-law or Ostwald-de Waele) fluids are studied, representing typical applications in petrochemical, bio-chemical, personal care products, polymer/plastic extrusion and food industries. For the heat transfer problem, with an insulated outer surface, two types of thermal boundary conditions have been considered: Constant wall temperature (T), and uniform axial heat flux with constant peripheral temperature (H1) on the inner surface of the annulus. The governing differential equations for momentum and energy conservation are solved by finite-difference methods. Velocity and temperature distributions in the flow cross section, the wall shear-stress distribution, and isothermal f Re, Nu i,T and Nu i,H1 values for different eccentric annuli (0/leɛ/*/le0.6,/ 0.2/le r/sp/*/le0.8) are presented. In Newtonian flows, the eccentricity is found to have a very strong influence on the flow and temperature fields. In an annulus with relatively large inner cylinder eccentricity, the flow tends to stagnate in the narrow section and has higher peak velocities in the wide section of the annulus. There is considerable flow maldistribution in the azimuthal direction, which in turn produces greater nonuniformity in the temperature field and a consequent degradation in the average heat transfer. Also, the H1 wall condition sustains higher heat transfer coefficients relative to the T boundary condition on the inner surface. For viscous, power-law type non-Newtonian flows, both shear thinning (n<1) and shear thickening (n>1) fluids are considered. Here, the non-linear shear behavior of the fluid is found to further aggravate the flow and temperature maldistribution, and once again the eccentricity is seen to exhibit a very strong influence on the friction and heat transfer behavior. Finally, the hydrodynamic characteristics of fully developed axial laminar flow of Newtonian fluids in eccentric annuli with a rotating inner cylinder are investigated. These are of significant importance to the design and operation of oil and gas drilling wells. Using finite-difference method to solve the governing flow equations in bipolar coordinates, computational results for a wide range of annulus geometry (0/le r/sp/*/le1,/ 0/le/varepsilon/sp/*/le0.8), and rotational Reynolds number (0/le Rer/le150) are presented, where the rotational speeds are restricted to the sub-critical Taylor number regime. The results delineate the effects of annuli r/sp/* and ɛsp/*, and inner cylinder rotation speed on the flow structure and frictional losses.
Chaotic micromixer utilizing electro-osmosis and induced charge electro-osmosis in eccentric annulus
NASA Astrophysics Data System (ADS)
Feng, Huicheng; Wong, Teck Neng; Che, Zhizhao; Marcos
2016-06-01
Efficient mixing is of significant importance in numerous chemical and biomedical applications but difficult to realize rapidly in microgeometries due to the lack of turbulence. We propose to enhance mixing by introducing Lagrangian chaos through electro-osmosis (EO) or induced charge electro-osmosis (ICEO) in an eccentric annulus. The analysis reveals that the created Lagrangian chaos can achieve a homogeneous mixing much more rapidly than either the pure EO or the pure ICEO. Our systematic investigations on the key parameters, ranging from the eccentricity, the alternating time period, the number of flow patterns in one time period, to the specific flow patterns utilized for the Lagrangian chaos creation, present that the Lagrangian chaos is considerably robust. The system can obtain a good mixing effect with wide ranges of eccentricity, alternating time period, and specific flow patterns utilized for the Lagrangian chaos creation as long as the number of flow patterns in one time period is two. As the electric field increases, the time consumption for homogenous mixing is reduced more remarkably for the Lagrangian chaos of the ICEO than that of the EO.
Elliptic flow from Coulomb interaction and low density elastic scattering
NASA Astrophysics Data System (ADS)
Sun, Yuliang; Li, Qingfeng; Wang, Fuqiang
2018-04-01
In high energy heavy ion collisions and interacting cold atom systems, large elliptic flow anisotropies have been observed. For the large opacity (ρ σ L ˜103 ) of the latter hydrodynamics is a natural consequence, but for the small opacity (ρ σ L ˜1 ) of the former the hydrodynamic description is questionable. To shed light onto the situation, we simulate the expansion of a low density argon ion (or atom) system, initially trapped in an elliptical region, under the Coulomb interaction (or elastic scattering). Significant elliptic anisotropy is found in both cases, and the anisotropy depends on the initial spatial eccentricity and the density of the system. The results may provide insights into the physics of anisotropic flow in high energy heavy ion collisions and its role in the study of quantum chromodynamics.
Simple method to set up low eccentricity initial data for moving puncture simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichy, Wolfgang; Marronetti, Pedro
2011-01-15
We introduce two new eccentricity measures to analyze numerical simulations. Unlike earlier definitions these eccentricity measures do not involve any free parameters which makes them easy to use. We show how relatively inexpensive grid setups can be used to estimate the eccentricity during the early inspiral phase. Furthermore, we compare standard puncture data and post-Newtonian data in ADMTT gauge. We find that both use different coordinates. Thus low eccentricity initial momentum parameters for a certain separation measured in ADMTT coordinates are hard to use in puncture data, because it is not known how the separation in puncture coordinates is relatedmore » to the separation in ADMTT coordinates. As a remedy we provide a simple approach which allows us to iterate the momentum parameters until our numerical simulations result in acceptably low eccentricities.« less
Low Lunar Orbit Design via Graphical Manipulation of Eccentricity Vector Evolution
NASA Technical Reports Server (NTRS)
Wallace, Mark S.; Sweetser, Theodore H.; Roncoli, Ralph B.
2012-01-01
Low lunar orbits, such as those used by GRAIL and LRO, experience predictable variations in the evolution of their eccentricity vectors. These variations are nearly invariant with respect to the initial eccentricity and argument of periapse and change only in the details with respect to the initial semi-major axis. These properties suggest that manipulating the eccentricity vector evolution directly can give insight into orbit maintenance designs and can reduce the number of propagations required. A trio of techniques for determining the desired maneuvers is presented in the context of the GRAIL extended mission.
Strength After Bouts of Eccentric or Concentric Actions
NASA Technical Reports Server (NTRS)
Golden, Catherine L.; Dudley, Gary A.
1992-01-01
This study examined the influence of an initial bout of eccentric or concentric actions and a subsequent bout of eccentric actions on muscular strength. Twenty-four healthy males, 24-45 yr old, were placed in three groups that performed eccentric actions in bouts 1 and 2 (ECC/ECC, N = 8), concentric actions in bout 1, and eccentric actions in bout 2 (CON/ECC, N = 8) or served as controls (N = 8). Bouts involved unilateral actions with the left and right quadriceps femoris. Ten sets of 10 repetitions with an initial resistance equal to 85% of the eccentric or concentric one repetition maximum (1 RM) were performed for each bout. Three minutes of rest were given between sets and 3 wk between bouts. Two weeks before bout 1 and 1, 4, 7, and 10 d after bouts 1 and 2, eccentric and concentric 1 RM were measured for the right quadriceps femoris and a speed-torque relation established for the left quadriceps femoris. Eccentric and concentric 1 RM decreased (P less than 0.05) 32% 1 d after bout 1 for group ECC/ECC. The speed-torque relation was down-shifted (P less than 0.05) 38%. Eccentric 1 RM and eccentric and isometric torque returned to normal 6 d later. Concentric 1 RM and torque at 3.14 rad-s(exp -1) had not recovered on day 10 (-7% for both, P less than 0.05). Decreases in strength after bout 2 for group ECC/ECC only occurred on day 1 (-9% for concentric 1 RM and 16% downshift of the speed- torque relation). Group CONIECC showed the opposite responses; marked decreases in strength after bout 2 but not bout 1. The results indicate that the initial decrease in strength after performance of a novel bout of eccentric exercise is comparable for eccentric, concentric and isometric muscle actions. Recovery of strength, however, appears to occur more rapidly for eccentric and isometric actions. They suggest that performance of a prior bout of eccentric but not concentric actions, as done in this study, can essentially eradicate decreases in strength after a subsequent bout of eccentric exercise. It is suggested that neural factors are, in part, responsible for adaptations to eccentric exercise.
ECCENTRICITY EVOLUTION THROUGH ACCRETION OF PROTOPLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Yuji; Nagasawa, Makiko; Ida, Shigeru, E-mail: yuji.matsumoto@nao.ac.jp, E-mail: nagasawa.m.ad@m.titech.ac.jp, E-mail: ida@elsi.jp
2015-09-10
Most super-Earths detected by the radial velocity (RV) method have significantly smaller eccentricities than the eccentricities corresponding to velocity dispersion equal to their surface escape velocity (“escape eccentricities”). If orbital instability followed by giant impacts among protoplanets that have migrated from outer regions is considered, it is usually considered that eccentricities of the merged bodies become comparable to those of orbital crossing bodies, which are excited up to their escape eccentricities by close scattering. However, the eccentricity evolution in the in situ accretion model has not been studied in detail. Here, we investigate the eccentricity evolution through N-body simulations. Wemore » have found that the merged planets tend to have much smaller eccentricities than escape eccentricities due to very efficient collision damping. If the protoplanet orbits are initially well separated and their eccentricities are securely increased, an inner protoplanet collides at its apocenter with an outer protoplanet at its pericenter. The eccentricity of the merged body is the smallest for such configurations. Orbital inclinations are also damped by this mechanism and planets tend to share a same orbital plane, which is consistent with Kepler data. Such efficient collision damping is not found when we start calculations from densely packed orbits of the protoplanets. If the protoplanets are initially in the mean-motion resonances, which corresponds to well separated orbits, the in situ accretion model well reproduces the features of eccentricities and inclinations of multiple super-Earths/Earth systems discovered by RV and Kepler surveys.« less
Chaotic micromixer utilizing electro-osmosis and induced charge electro-osmosis in eccentric annulus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Huicheng; Wong, Teck Neng, E-mail: mtnwong@ntu.edu.sg; Marcos
Efficient mixing is of significant importance in numerous chemical and biomedical applications but difficult to realize rapidly in microgeometries due to the lack of turbulence. We propose to enhance mixing by introducing Lagrangian chaos through electro-osmosis (EO) or induced charge electro-osmosis (ICEO) in an eccentric annulus. The analysis reveals that the created Lagrangian chaos can achieve a homogeneous mixing much more rapidly than either the pure EO or the pure ICEO. Our systematic investigations on the key parameters, ranging from the eccentricity, the alternating time period, the number of flow patterns in one time period, to the specific flow patternsmore » utilized for the Lagrangian chaos creation, present that the Lagrangian chaos is considerably robust. The system can obtain a good mixing effect with wide ranges of eccentricity, alternating time period, and specific flow patterns utilized for the Lagrangian chaos creation as long as the number of flow patterns in one time period is two. As the electric field increases, the time consumption for homogenous mixing is reduced more remarkably for the Lagrangian chaos of the ICEO than that of the EO.« less
Reducing orbital eccentricity of precessing black-hole binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buonanno, Alessandra; Taracchini, Andrea; Kidder, Lawrence E.
2011-05-15
Building initial conditions for generic binary black-hole evolutions which are not affected by initial spurious eccentricity remains a challenge for numerical-relativity simulations. This problem can be overcome by applying an eccentricity-removal procedure which consists of evolving the binary black hole for a couple of orbits, estimating the resulting eccentricity, and then restarting the simulation with corrected initial conditions. The presence of spins can complicate this procedure. As predicted by post-Newtonian theory, spin-spin interactions and precession prevent the binary from moving along an adiabatic sequence of spherical orbits, inducing oscillations in the radial separation and in the orbital frequency. For single-spinmore » binary black holes these oscillations are a direct consequence of monopole-quadrupole interactions. However, spin-induced oscillations occur at approximately twice the orbital frequency, and therefore can be distinguished and disentangled from the initial spurious eccentricity which occurs at approximately the orbital frequency. Taking this into account, we develop a new eccentricity-removal procedure based on the derivative of the orbital frequency and find that it is rather successful in reducing the eccentricity measured in the orbital frequency to values less than 10{sup -4} when moderate spins are present. We test this new procedure using numerical-relativity simulations of binary black holes with mass ratios 1.5 and 3, spin magnitude 0.5, and various spin orientations. The numerical simulations exhibit spin-induced oscillations in the dynamics at approximately twice the orbital frequency. Oscillations of similar frequency are also visible in the gravitational-wave phase and frequency of the dominant l=2, m=2 mode.« less
Stability of Multi-Planet Systems in the Alpha Centauri System
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.
2017-01-01
We evaluate the extent of the regions within the alpha Centauri AB star system where small planets are able to orbit for billion-year timescales (Quarles & Lissauer 2016, Astron. J. 151, 111), as well as how closely-spaced planetary orbits can be within those regions in which individual planets can survive. Although individual planets on low inclination, low eccentricity, orbits can survive throughout the habitable zones of both stars, perturbations from the companion star imply that the spacing of planets in multi-planet systems within the habitable zones of each star must be significantly larger than the spacing of similar multi-planet systems orbiting single stars in order to be long-lived. Because the binary companion induces a forced eccentricity upon the orbits of planets in orbit around either star, appropriately-aligned circumstellar orbits with small initial eccentricities are stable to slightly larger initial semimajor axes than are initially circular orbits. Initial eccentricities close to forced eccentricities can have a much larger affect on how closely planetary orbits can be spaced, and therefore on how many planets may remain in the habitable zones, although the required spacing remains significantly higher than for planets orbiting single stars.
The Rhic Azimuth Quadrupole:. "perfect Liquid" or Gluonic Radiation?
NASA Astrophysics Data System (ADS)
Trainor, Thomas A.
Large elliptic flow at RHIC seems to indicate that ideal hydrodynamics provides a good description of Au-Au collisions, at least at the maximum RHIC energy. The medium formed has been interpreted as a nearly perfect (low-viscosity) liquid, and connections have been made to gravitation through string theory. Recently, claimed observations of large flow fluctuations comparable to participant eccentricity fluctuations seem to confirm the ideal hydro scenario. However, determination of the azimuth quadrupole with 2D angular autocorrelations, which accurately distinguish "flow" (quadrupole) from "nonflow" (minijets), contradicts conventional interpretations. Centrality trends may depend only on the initial parton geometry, and methods used to isolate flow fluctuations are sensitive instead mainly to minijet correlations. The results presented in this paper suggest that the azimuth quadrupole may be a manifestation of gluonic multipole radiation.
Experimental Investigation of Eccentricity Ratio, Friction, and Oil Flow of Short Journal Bearings
NASA Technical Reports Server (NTRS)
Dubois, G B; Ocvirk, F W
1952-01-01
An experimental investigation was conducted to obtain performance data on bearings of length-diameter ratios of 1, 1/2, and 1/4 for comparison with theoretical curves. A 1.375-inch-diameter bearing was tested at speeds up to 6000 rpm and with unit loads from 0 to 900 pounds per square inch. Experimental data for eccentricity ratio and friction followed single lines when plotted against a theoretically derived capacity number, which is equal to Sommerfeld number times the square of the length-diameter ratio. The form of the capacity number indicates that under certain conditions the eccentricity ratio is theoretically independent of bearing diameter. A method of plotting oil flow data as a single line is shown. Methods are also discussed for approximating a maximum bearing temperature and evaluating the effect of deflection or misalignment on the eccentricity ratio at the ends of the bearings.
Stability of Multi-Planet Systems Orbiting in the Alpha Centauri AB System
NASA Astrophysics Data System (ADS)
Lissauer, Jack
2018-04-01
We evaluate how closely-spaced planetary orbits in multiple planet systems can be and still survive for billion-year timescales within the alpha Centauri AB system. Although individual planets on nearly circular, coplanar orbits can survive throughout the habitable zones of both stars, perturbations from the companion star imply that the spacing of such planets in multi-planet systems must be significantly larger than the spacing of similar systems orbiting single stars in order to be long-lived. Because the binary companion induces a forced eccentricity upon circumstellar planets, stable orbits with small initial eccentricities aligned with the binary orbit are possible to slightly larger initial semimajor axes than are initially circular orbits. Initial eccentricities close to the appropriate forced eccentricity can have a much larger affect on how closely planetary orbits can be spaced, on how many planets may remain in the habitable zones, although the required spacing remains significantly higher than for planets orbiting single stars.
Eccentricity evolution during planet-disc interaction
NASA Astrophysics Data System (ADS)
Ragusa, Enrico; Rosotti, Giovanni; Teyssandier, Jean; Booth, Richard; Clarke, Cathie J.; Lodato, Giuseppe
2018-03-01
During the process of planet formation, the planet-disc interactions might excite (or damp) the orbital eccentricity of the planet. In this paper, we present two long (t ˜ 3 × 105 orbits) numerical simulations: (a) one (with a relatively light disc, Md/Mp = 0.2), where the eccentricity initially stalls before growing at later times and (b) one (with a more massive disc, Md/Mp = 0.65) with fast growth and a late decrease of the eccentricity. We recover the well-known result that a more massive disc promotes a faster initial growth of the planet eccentricity. However, at late times the planet eccentricity decreases in the massive disc case, but increases in the light disc case. Both simulations show periodic eccentricity oscillations superimposed on a growing/decreasing trend and a rapid transition between fast and slow pericentre precession. The peculiar and contrasting evolution of the eccentricity of both planet and disc in the two simulations can be understood by invoking a simple toy model where the disc is treated as a second point-like gravitating body, subject to secular planet-planet interaction and eccentricity pumping/damping provided by the disc. We show how the counterintuitive result that the more massive simulation produces a lower planet eccentricity at late times can be understood in terms of the different ratios of the disc-to-planet angular momentum in the two simulations. In our interpretation, at late times the planet eccentricity can increase more in low-mass discs rather than in high-mass discs, contrary to previous claims in the literature.
NASA Astrophysics Data System (ADS)
Nagasawa, M.; Lin, D. N. C.; Ida, S.
2003-04-01
Most extrasolar planets are observed to have eccentricities much larger than those in the solar system. Some of these planets have sibling planets, with comparable masses, orbiting around the same host stars. In these multiple planetary systems, eccentricity is modulated by the planets' mutual secular interaction as a consequence of angular momentum exchange between them. For mature planets, the eigenfrequencies of this modulation are determined by their mass and semimajor axis ratios. However, prior to the disk depletion, self-gravity of the planets' nascent disks dominates the precession eigenfrequencies. We examine here the initial evolution of young planets' eccentricity due to the apsidal libration or circulation induced by both the secular interaction between them and the self-gravity of their nascent disks. We show that as the latter effect declines adiabatically with disk depletion, the modulation amplitude of the planets' relative phase of periapsis is approximately invariant despite the time-asymmetrical exchange of angular momentum between planets. However, as the young planets' orbits pass through a state of secular resonance, their mean eccentricities undergo systematic quantitative changes. For applications, we analyze the eccentricity evolution of planets around υ Andromedae and HD 168443 during the epoch of protostellar disk depletion. We find that the disk depletion can change the planets' eccentricity ratio. However, the relatively large amplitude of the planets' eccentricity cannot be excited if all the planets had small initial eccentricities.
Chondrule Formation in Bow Shocks around Eccentric Planetary Embryos
NASA Astrophysics Data System (ADS)
Morris, Melissa A.; Boley, Aaron C.; Desch, Steven J.; Athanassiadou, Themis
2012-06-01
Recent isotopic studies of Martian meteorites by Dauphas & Pourmand have established that large (~3000 km radius) planetary embryos existed in the solar nebula at the same time that chondrules—millimeter-sized igneous inclusions found in meteorites—were forming. We model the formation of chondrules by passage through bow shocks around such a planetary embryo on an eccentric orbit. We numerically model the hydrodynamics of the flow and find that such large bodies retain an atmosphere with Kelvin-Helmholtz instabilities allowing mixing of this atmosphere with the gas and particles flowing past the embryo. We calculate the trajectories of chondrules flowing past the body and find that they are not accreted by the protoplanet, but may instead flow through volatiles outgassed from the planet's magma ocean. In contrast, chondrules are accreted onto smaller planetesimals. We calculate the thermal histories of chondrules passing through the bow shock. We find that peak temperatures and cooling rates are consistent with the formation of the dominant, porphyritic texture of most chondrules, assuming a modest enhancement above the likely solar nebula average value of chondrule densities (by a factor of 10), attributable to settling of chondrule precursors to the midplane of the disk or turbulent concentration. We calculate the rate at which a planetary embryo's eccentricity is damped and conclude that a single planetary embryo scattered into an eccentric orbit can, over ~105 years, produce ~1024 g of chondrules. In principle, a small number (1-10) of eccentric planetary embryos can melt the observed mass of chondrules in a manner consistent with all known constraints.
NASA Astrophysics Data System (ADS)
Zhang, Fan; Szilágyi, Béla
2013-10-01
At the beginning of binary black hole simulations, there is a pulse of spurious radiation (or junk radiation) resulting from the initial data not matching astrophysical quasi-equilibrium inspiral exactly. One traditionally waits for the junk radiation to exit the computational domain before taking physical readings, at the expense of throwing away a segment of the evolution, and with the hope that junk radiation exits cleanly. We argue that this hope does not necessarily pan out, as junk radiation could excite long-lived constraint violation. Another complication with the initial data is that they contain orbital eccentricity that needs to be removed, usually by evolving the early part of the inspiral multiple times with gradually improved input parameters. We show that this procedure is also adversely impacted by junk radiation. In this paper, we do not attempt to eliminate junk radiation directly, but instead tackle the much simpler problem of ameliorating its long-lasting effects. We report on the success of a method that achieves this goal by combining the removal of junk radiation and eccentricity into a single procedure. Namely, we periodically stop a low resolution simulation; take the numerically evolved metric data and overlay it with eccentricity adjustments; run it through an initial data solver (i.e. the solver receives as free data the numerical output of the previous iteration); restart the simulation; repeat until eccentricity becomes sufficiently low; and then launch the high resolution “production run” simulation. This approach has the following benefits: (1) We do not have to contend with the influence of junk radiation on eccentricity measurements for later iterations of the eccentricity reduction procedure. (2) We reenforce constraints every time the initial data solver is invoked, removing the constraint violation excited by junk radiation previously. (3) The wasted simulation segment associated with the junk radiation’s evolution is absorbed into the eccentricity reduction iterations. Furthermore, (1) and (2) together allow us to carry out our joint-elimination procedure at low resolution, even when the subsequent “production run” is intended as a high resolution simulation.
Reducing junk radiation and eccentricity in binary-black-hole initial data
NASA Astrophysics Data System (ADS)
Lovelace, Geoffrey; Pfeiffer, Harald; Brown, Duncan; Lindblom, Lee; Scheel, Mark; Kidder, Lawrence
2007-04-01
Numerical simulations of binary-black-hole (BBH) collisions require initial data that satisfy the Einstein constraint equations. Several well-known methods generate constraint-satisfying BBH data, but the commonly-used simplifying assumptions lead to undesirable effects. BBH data typically assume a conformally flat spatial metric; this leads to an initial pulse of unphysical ``junk'' gravitational radiation. Also, the initial radial velocity of the holes is often neglected; this can lead to significant eccentricity in the holes' trajectories. This talk will discuss efforts to reduce these effects by constructing and evolving generalizations of the BBH initial data of Cook and Pfeiffer (2004). By giving the holes a small radial velocity, the eccentricity can be greatly reduced (although the emitted waves are largely unaffected). The junk radiation for flat and non-flat conformal metrics will also be compared.
Materials fatigue initiates eccentric contraction-induced injury in rat soleus muscle.
Warren, G L; Hayes, D A; Lowe, D A; Prior, B M; Armstrong, R B
1993-01-01
1. The initiation of exercise-induced muscle injury is thought to be the result of high tensile stresses produced in the muscle during eccentric contractions. Materials science theory suggests that high tensile stresses could initiate the injury during the first eccentric contraction (normal stress theory) or after multiple eccentric contractions (materials fatigue). It was the objective of this study to investigate the two possibilities. 2. Rat soleus muscles (n = 66; 11 protocols with 6 muscles per protocol) were isolated, placed in an oxygenated Krebs-Ringer buffer at 37 degrees C, and baseline measurements were made. The muscle then performed an injury protocol which consisted of between zero and ten eccentric contractions (muscle starting length = 0.90 soleus muscle length, L0; length change = 0.25 L0; velocity = 1.5 L0/s; peak force = 180% maximal isometric tetanic tension (P0); time between contractions = 4 min; total duration of the injury protocol = 40 min). At the end of the injury protocol, the muscle was incubated in buffer for 1 h; every 15 min, an isometric twitch and tetanus were performed and lactate dehydrogenase (LDH) release was measured. Total muscle [Ca2+] was measured at the end of the incubation. 3. Change-point regression analysis indicates that at 0 min into the incubation, declines in P0, maximal rate of tension development (+dP/dt), maximal rate of relaxation (-dP/dt), and muscle stiffness (dP/dx) became significantly greater after eight eccentric contractions (p < or = 0.05). No relation was found between the number of eccentric contractions performed and the LDH activity at 0 min into the incubation, although after 60 min of incubation, LDH activity in the buffer was linearly related to eccentric contraction number (p = 0.01). There was no relationship between total muscle [Ca2+] and eccentric contraction number. These findings support the materials fatigue hypothesis of exercise-induced muscle injury. PMID:8229814
Split Venturi, Axially-Rotated Valve
Walrath, David E.; Lindberg, William R.; Burgess, Robert K.
2000-08-29
The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane.
Experimental investigation of lateral forces induced by flow through model labyrinth glands
NASA Technical Reports Server (NTRS)
Leong, Y. M. M. S.; Brown, R. D.
1984-01-01
The lateral forces induced by flow through model labyrinth glands were investigated. Circumferential pressure distributions, lateral forces and stiffness coefficients data obtained are discussed. The force system is represented as a negative spring and a tangential force orthogonal to eccentricity. The magnitude of these forces are dependent on eccentricity, entry swirl, rotor peripheral velocity and seal size. A pressure equalization chamber at midgland tests should in significantly reduced forces and stiffness coefficients.
NASA Technical Reports Server (NTRS)
Childs, Dara W.; Alexander, Chis
1994-01-01
This viewgraph presentation presents the following results: (1) The analytical results overpredict the experimental results for the direct stiffness values and incorrectly predict increasing stiffness with decreasing pressure ratios. (2) Theory correctly predicts increasing cross-coupled stiffness, K(sub YX), with increasing eccentricity and inlet preswirl. (3) Direct damping, C(sub XX), underpredicts the experimental results, but the analytical results do correctly show that damping increases with increasing eccentricity. (4) The whirl frequency values predicted by theory are insensitive to changes in the static eccentricity ratio. Although these values match perfectly with the experimental results at 16,000 rpm, the results at the lower speed do not correspond. (5) Theoretical and experimental mass flow rates match at 5000 rpm, but at 16,000 rpm the theoretical results overpredict the experimental mass flow rates. (6) Theory correctly shows the linear pressure profiles and the associated entrance losses with the specified rotor positions.
A compact optical fiber positioner
NASA Astrophysics Data System (ADS)
Hu, Hongzhuan; Wang, Jianping; Liu, Zhigang; Zhou, Zengxiang; Zhai, Chao; Chu, Jiaru
2016-07-01
In this paper, a compact optical fiber positioner is proposed, which is especially suitable for small scale and high density optical fiber positioning. Based on the positioning principle of double rotation, positioner's center shaft depends on planetary gear drive principle, meshing with the fixed annular gear central motor gear driving device to rotate, and the eccentric shaft rotated driving by a coaxial eccentric motor, both center and the eccentric shaft are supported by a rolling bearings; center and eccentric shaft are both designed with electrical zero as a reference point, and both of them have position-limiting capability to ensure the safety of fiber positioning; both eccentric and center shaft are designed to eliminating clearance with spring structure, and can eliminate the influence of gear gap; both eccentric and center motor and their driving circuit can be installed in the positioner's body, and a favorable heat sink have designed, the heat bring by positioning operation can be effectively transmit to design a focal plane unit through the aluminum component, on sleeve cooling spiral airway have designed, when positioning, the cooling air flow is inlet into install hole on the focal plate, the cooling air flow can effectively take away the positioning's heat, to eliminate the impact of the focus seeing. By measuring position device's sample results show that: the unit accuracy reached 0.01mm, can meet the needs of fiber positioning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacey, R.; Wei, R.; Ajitanand, N.
2011-09-01
Monte Carlo simulations are used to compute the centrality dependence of the odd moments of the initial eccentricity {var_epsilon}{sub n+1}, relative to the even-order (n) participant planes {Psi}{sub n} in Au + Au collisions. The results obtained for two models of the eccentricity - the Glauber and the factorized Kharzeev-Levin-Nardi (fKLN) models - indicate magnitudes which are essentially zero. They suggest that a possible correlation between the orientations of the odd and even participant planes ({Psi}{sub n+1} and {Psi}{sub n}, respectively) does not have a significant influence on the calculated eccentricities. An experimental verification test for correlations between the orientationsmore » of the odd and even participant planes is also proposed.« less
NASA Astrophysics Data System (ADS)
Poepping, Tamie L.; Rankin, Richard N.; Holdsworth, David W.
2001-05-01
A unique in-vitro system has been developed that incorporates both realistic phantoms and flow. The anthropomorphic carotid phantoms are fabricated in agar with stenosis severity of 30% or 70% (by NASCET standards) and one of two geometric configurations- concentric or eccentric. The phantoms are perfused with a flow waveform that simulates normal common carotid flow. Pulsed Doppler ultrasound data are acquired at a 1 mm grid spacing throughout the lumen of the carotid bifurcation. To obtain a half-lumen volume, symmetric about the mid plane, requires a 13 hour acquisition over 3238 interrogation sites, producing 5.6 Gbytes of data. The spectral analysis produces estimates of parameters such as the peak velocity, mean velocity, spectral-broadening index, and turbulence intensity. Color-encoded or grayscale-encoded maps of these spectral parameters show distinctly different flow patterns resulting from stenoses of equal severity but different eccentricity. The most noticeable differences are seen in the volumes of the recirculation zones and the paths of the high-velocity jets. Elevated levels of turbulence intensity are also seen distal to the stenosis in the 70%-stenosed models.
Variability in Muscle Damage after Eccentric Exercise and the Repeated Bout Effect
ERIC Educational Resources Information Center
Chen, Trevor C.
2006-01-01
The first purpose of this study was to determine a possible explanation for the variability in the response to eccentric exercise by having participants repeat the same exercise 1 year apart. The second purpose was to examine whether initial injury in response to eccentric exercise was associated with the extent of the repeated bout effect (RBE).…
Numerical analysis of eccentric orifice plate using ANSYS Fluent software
NASA Astrophysics Data System (ADS)
Zahariea, D.
2016-11-01
In this paper the eccentric orifice plate is qualitative analysed as compared with the classical concentric orifice plate from the point of view of sedimentation tendency of solid particles in the fluid whose flow rate is measured. For this purpose, the numerical streamlines pattern will be compared for both orifice plates. The numerical analysis has been performed using ANSYS Fluent software. The methodology of CFD analysis is presented: creating the 3D solid model, fluid domain extraction, meshing, boundary condition, turbulence model, solving algorithm, convergence criterion, results and validation. Analysing the numerical streamlines, for the concentric orifice plate can be clearly observed two circumferential regions of separated flows, upstream and downstream of the orifice plate. The bottom part of these regions are the place where the solid particles could sediment. On the other hand, for the eccentric orifice plate, the streamlines pattern suggest that no sedimentation will occur because at the bottom area of the pipe there are no separated flows.
Flow Split Venturi, Axially-Rotated Valve
Walrath, David E.; Lindberg, William R.; Burgess, Robert K.; LaBelle, James
2000-02-22
The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. An axially aligned outlet may also increase the flow efficiency. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane. A seal separator may increase the useful life of the seal between the fixed and rotatable portions.
Electromyographic analysis of repeated bouts of eccentric exercise.
McHugh, M P; Connolly, D A; Eston, R G; Gartman, E J; Gleim, G W
2001-03-01
The repeated bout effect refers to the protective effect provided by a single bout of eccentric exercise against muscle damage from a similar subsequent bout. The aim of this study was to determine if the repeated bout was associated with an increase in motor unit activation relative to force production, an increased recruitment of slow-twitch motor units or increased motor unit synchronization. Surface electromyographic (EMG) signals were recorded from the hamstring muscles during two bouts of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions separated by 2 weeks. The EMG per unit torque and median frequency were analysed. The initial bout of eccentric exercise resulted in strength loss, pain and muscle tenderness, while the repeated eccentric bout resulted in a slight increase in strength, no pain and no muscle tenderness (bout x time effects, P < 0.05). Strength, pain and tenderness were unaffected by either bout of concentric exercise. The EMG per unit torque and median frequency were not different between the initial and repeated bouts of eccentric exercise. The EMG per unit torque and median frequency increased during both bouts of eccentric exercise (P < 0.01) but did not change during either concentric bout. In conclusion, there was no evidence that the repeated bout effect was due to a neural adaptation.
QUADRICEPS LOW FREQUENCY FATIGUE AND MUSCLE PAIN ARE CONTRACTION TYPE DEPENDENT
Iguchi, Masaki; Shields, Richard K.
2010-01-01
Introduction Eccentric contractions are thought to induce greater low frequency fatigue (LFF) and delayed onset muscle soreness (DOMS) than concentric contractions. This study induced a similar amount of eccentric quadriceps muscle fatigue during either a concentric or eccentric fatigue task to compare LFF and DOMS. Methods Subjects (n=22) performed concentric or eccentric fatigue tasks using 75% of the pre-fatigue maximal voluntary contraction (MVC) torque, and both tasks ended when the MVC eccentric torque decreased by 25% pre-fatigue. Results When subjects reached the failure criterion during the eccentric and concentric tasks, the concentric MVC was 78 ± 9.8% and 64 ± 8.4% of initial, respectively. LFF was greater after the concentric than the eccentric protocols (22 ± 12.4% and 15 ± 7.6% increase, respectively; p < 0.01). DOMS was over 100% greater for the eccentric protocol. Discussion These results indicate that DOMS is not dependent on the events that contribute to LFF. PMID:20544933
EXPLORING A 'FLOW' OF HIGHLY ECCENTRIC BINARIES WITH KEPLER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Subo; Katz, Boaz; Socrates, Aristotle
2013-01-20
With 16-month of Kepler data, 15 long-period (40-265 days) eclipsing binaries on highly eccentric orbits (minimum e between 0.5 and 0.85) are identified from their closely separated primary and secondary eclipses ({Delta}t{sub I,II} = 3-10 days). These systems confirm the existence of a previously hinted binary population situated near a constant angular momentum track at P(1 - e {sup 2}){sup 3/2} {approx} 15 days, close to the tidal circularization period P{sub circ}. They may be presently migrating due to tidal dissipation and form a steady-state 'flow' ({approx}1% of stars) feeding the close-binary population (few % of stars). If so, futuremore » Kepler data releases will reveal a growing number (dozens) of systems at longer periods, following dN/dlgP {proportional_to} P {sup 1/3} with increasing eccentricities reaching e {yields} 0.98 for P {yields} 1000 days. Radial-velocity follow-up of long-period eclipsing binaries with no secondary eclipses could offer a significantly larger sample. Orders of magnitude more (hundreds) may reveal their presence from periodic 'eccentricity pulses', such as tidal ellipsoidal variations near pericenter passages. Several new few-day-long eccentricity-pulse candidates with long periods (P = 25-80 days) are reported.« less
von Knobelsdorff-Brenkenhoff, Florian; Karunaharamoorthy, Achudhan; Trauzeddel, Ralf Felix; Barker, Alex J; Blaszczyk, Edyta; Markl, Michael; Schulz-Menger, Jeanette
2016-01-01
Background Aortic stenosis (AS) leads to variable stress for the left ventricle (LV) and consequently a broad range of LV remodeling. Study aim was to describe blood flow patterns in the ascending aorta of AS patients and determine their association with remodeling. Methods and Results Thirty-seven patients with AS (14 mild, 8 moderate, 15 severe; age 63±13 years) and 37 healthy controls (age 60±10 years) underwent 4D-flow MRI. Helical and vortical flow formations and flow eccentricity were assessed in the ascending aorta. Normalized flow displacement from the vessel center and peak systolic wall shear stress (WSSpeak) in the ascending aorta were quantified. LV remodeling was assessed based on LV mass index (LVMI-I) and the ratio of LV mass to enddiastolic volume (relative wall mass; RWM). Marked helical and vortical flow formation and eccentricity were more prevalent in patients with AS than in healthy subjects, and AS patients exhibited an asymmetric and elevated distribution of WSSpeak. In AS, aortic orifice area was strongly negatively associated with vortical flow formation (p=0.0274), eccentricity (p=0.0070) and flow displacement (p=0.0021). Bicuspid aortic valve was associated with more intense helical (p=0.0098) and vortical flow formation (p=0.0536), higher flow displacement (p=0.11) and higher WSSpeak (p=0.0926). LVM-I and RWM were significantly associated with aortic orifice area (p=0.0611, p=0.0058) and flow displacement (p=0.0058, p=0.0283). Conclusions In this pilot study, AS leads to abnormal blood flow pattern and WSSpeak in the ascending aorta. In addition to aortic orifice area, normalized flow displacement was significantly associated with LV remodeling. PMID:26917824
NASA Astrophysics Data System (ADS)
Šedivý, Dominik; Ferfecki, Petr; Fialová, Simona
2018-06-01
This article presents the evaluation of force effects on squeeze film damper rotor. The rotor is placed eccentrically and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were measured by using computational modeling. Damper was filled with magnetorheological fluid. Viscosity of this non-Newtonian fluid is given using Bingham rheology model. Yield stress is not constant and it is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width between rotor and stator. The simulations were made in finite volume method based solver. The motion of the inner ring of squeeze film damper was carried out by dynamic mesh. Numerical solution was solved for five different initial eccentricities and angular velocities of rotor motion.
Effect analysis of design variables on the disc in a double-eccentric butterfly valve.
Kang, Sangmo; Kim, Da-Eun; Kim, Kuk-Kyeom; Kim, Jun-Oh
2014-01-01
We have performed a shape optimization of the disc in an industrial double-eccentric butterfly valve using the effect analysis of design variables to enhance the valve performance. For the optimization, we select three performance quantities such as pressure drop, maximum stress, and mass (weight) as the responses and three dimensions regarding the disc shape as the design variables. Subsequently, we compose a layout of orthogonal array (L16) by performing numerical simulations on the flow and structure using a commercial package, ANSYS v13.0, and then make an effect analysis of the design variables on the responses using the design of experiments. Finally, we formulate a multiobjective function consisting of the three responses and then propose an optimal combination of the design variables to maximize the valve performance. Simulation results show that the disc thickness makes the most significant effect on the performance and the optimal design provides better performance than the initial design.
NASA Astrophysics Data System (ADS)
Li, De Z.; Wang, Wilson; Ismail, Fathy
2017-11-01
Induction motors (IMs) are commonly used in various industrial applications. To improve energy consumption efficiency, a reliable IM health condition monitoring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is proposed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are synthesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air-gap eccentricity diagnosis. The effectiveness of the proposed harmonic synthesis technique is examined experimentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection.
NASA Astrophysics Data System (ADS)
Castle, James R.; CMS Collaboration
2017-11-01
Flow harmonic fluctuations are studied for PbPb collisions at √{sNN} = 5.02 TeV using the CMS detector at the LHC. Flow harmonic probability distributions p(v2) are obtained by unfolding smearing effects from observed azimuthal anisotropy distributions using particles of 0.3
Revisiting directed flow in relativistic heavy-ion collisions from a multiphase transport model
NASA Astrophysics Data System (ADS)
Guo, Chong-Qiang; Zhang, Chun-Jian; Xu, Jun
2017-12-01
We have revisited several interesting questions on how the rapidity-odd directed flow is developed in relativistic 197Au+197Au collisions at √{s_{NN}} = 200 and 39 GeV based on a multiphase transport model. As the partonic phase evolves with time, the slope of the parton directed flow at midrapidity region changes from negative to positive as a result of the later dynamics at 200 GeV, while it remains negative at 39 GeV due to the shorter life time of the partonic phase. The directed flow splitting for various quark species due to their different initial eccentricities is observed at 39 GeV, while the splitting is very small at 200GeV. From a dynamical coalescence algorithm with Wigner functions, we found that the directed flow of hadrons is a result of competition between the coalescence in momentum and coordinate space as well as further modifications by the hadronic rescatterings.
NASA Astrophysics Data System (ADS)
Wienkers, A. F.; Ogilvie, G. I.
2018-07-01
Non-linear evolution of the parametric instability of inertial waves inherent to eccentric discs is studied by way of a new local numerical model. Mode coupling of tidal deformation with the disc eccentricity is known to produce exponentially growing eccentricities at certain mean-motion resonances. However, the details of an efficient saturation mechanism balancing this growth still are not fully understood. This paper develops a local numerical model for an eccentric quasi-axisymmetric shearing box which generalizes the often-used Cartesian shearing box model. The numerical method is an overall second-order well-balanced finite volume method which maintains the stratified and oscillatory steady-state solution by construction. This implementation is employed to study the non-linear outcome of the parametric instability in eccentric discs with vertical structure. Stratification is found to constrain the perturbation energy near the mid-plane and localize the effective region of inertial wave breaking that sources turbulence. A saturated marginally sonic turbulent state results from the non-linear breaking of inertial waves and is subsequently unstable to large-scale axisymmetric zonal flow structures. This resulting limit-cycle behaviour reduces access to the eccentric energy source and prevents substantial transport of angular momentum radially through the disc. Still, the saturation of this parametric instability of inertial waves is shown to damp eccentricity on a time-scale of a thousand orbital periods. It may thus be a promising mechanism for intermittently regaining balance with the exponential growth of eccentricity from the eccentric Lindblad resonances and may also help explain the occurrence of 'bursty' dynamics such as the superhump phenomenon.
Baker, Daniel G; Newton, Robert U
2009-10-01
It is theorized that the force and velocity profile of a repetition performed during a standard barbell exercise may be altered by substituting suspended chains for some portion of the total resistance. The purpose of this study was to document the alterations in lifting velocity that occur when the bench press exercise is performed as standard (BP) or with the substitution of resistance via chains draped over the barbell (BP+CH). Thirteen professional rugby league players participated in this study as part of their usual training program. Each subject performed 2 sets of 3 repetitions under the following conditions: The BP+CH condition, where the barbell resistance of 60% 1RM (repetition maximum) was supplemented by 17.5-kg in chains draped over the barbell (total resistance was about 75% 1RM), and the BP condition, where the total resistance was the same but was constituted in the form of standard barbell weights. The BP+CH condition resulted in increases in mean and peak concentric lifting velocities of around 10% in both sets as compared to both BP sets. Eccentric peak velocities were more varied in response, but generally the addition of chain resistance could be said to allow for increased velocities. The result may be partially explained by the eccentric unloading that occurs as the chain links furl upon the floor in the latter stages of the eccentric range. This eccentric unloading precipitates a more rapid stretch-shorten cycle (SSC) transition and possibly a within-repetition postactivation potentiation (PAP) that allows the subject to utilize faster lifting velocities in the initial concentric portion, which flow through to the remainder of the concentric phase. Therefore the use of chains appears warranted when athletes need to lift heavy resistances explosively.
NASA Astrophysics Data System (ADS)
Tanay, Sashwat; Haney, Maria; Gopakumar, Achamveedu
2016-03-01
Inspiraling compact binaries with non-negligible orbital eccentricities are plausible gravitational wave (GW) sources for the upcoming network of GW observatories. In this paper, we present two prescriptions to compute post-Newtonian (PN) accurate inspiral templates for such binaries. First, we adapt and extend the postcircular scheme of Yunes et al. [Phys. Rev. D 80, 084001 (2009)] to obtain a Fourier-domain inspiral approximant that incorporates the effects of PN-accurate orbital eccentricity evolution. This results in a fully analytic frequency-domain inspiral waveform with Newtonian amplitude and 2PN-order Fourier phase while incorporating eccentricity effects up to sixth order at each PN order. The importance of incorporating eccentricity evolution contributions to the Fourier phase in a PN-consistent manner is also demonstrated. Second, we present an accurate and efficient prescription to incorporate orbital eccentricity into the quasicircular time-domain TaylorT4 approximant at 2PN order. New features include the use of rational functions in orbital eccentricity to implement the 1.5PN-order tail contributions to the far-zone fluxes. This leads to closed form PN-accurate differential equations for evolving eccentric orbits, and the resulting time-domain approximant is accurate and efficient to handle initial orbital eccentricities ≤0.9 . Preliminary GW data analysis implications are probed using match estimates.
von Knobelsdorff-Brenkenhoff, Florian; Karunaharamoorthy, Achudhan; Trauzeddel, Ralf Felix; Barker, Alex J; Blaszczyk, Edyta; Markl, Michael; Schulz-Menger, Jeanette
2016-03-01
Aortic stenosis (AS) leads to variable stress for the left ventricle (LV) and consequently a broad range of LV remodeling. The aim of this study was to describe blood flow patterns in the ascending aorta of patients with AS and determine their association with remodeling. Thirty-seven patients with AS (14 mild, 8 moderate, 15 severe; age, 63±13 years) and 37 healthy controls (age, 60±10 years) underwent 4-dimensional-flow magnetic resonance imaging. Helical and vortical flow formations and flow eccentricity were assessed in the ascending aorta. Normalized flow displacement from the vessel center and peak systolic wall shear stress in the ascending aorta were quantified. LV remodeling was assessed based on LV mass index and the ratio of LV mass:end-diastolic volume (relative wall mass). Marked helical and vortical flow formation and eccentricity were more prevalent in patients with AS than in healthy subjects, and patients with AS exhibited an asymmetrical and elevated distribution of peak systolic wall shear stress. In AS, aortic orifice area was strongly negatively associated with vortical flow formation (P=0.0274), eccentricity (P=0.0070), and flow displacement (P=0.0021). Bicuspid aortic valve was associated with more intense helical (P=0.0098) and vortical flow formation (P=0.0536), higher flow displacement (P=0.11), and higher peak systolic wall shear stress (P=0.0926). LV mass index and relative wall mass were significantly associated with aortic orifice area (P=0.0611, P=0.0058) and flow displacement (P=0.0058, P=0.0283). In this pilot study, AS leads to abnormal blood flow pattern and peak systolic wall shear stress in the ascending aorta. In addition to aortic orifice area, normalized flow displacement was significantly associated with LV remodeling. © 2016 American Heart Association, Inc.
Forward-backward elliptic anisotropy correlations in parton cascades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, L. X.; Graduate School of the Chinese Academy of Sciences, Beijing 100080; Ma, G. L.
2011-04-15
A potential experimental probe, the forward-backward elliptic anisotropy correlation (C{sub FB}), has been proposed by Liao and Koch to distinguish the jet and true elliptic flow contribution to the measured elliptic flow (v{sub 2}) in relativistic heavy-ion collisions. The jet and flow fluctuation contribution to elliptic flow is investigated within the framework of a multiphase transport model using the C{sub FB} probe. We find that the C{sub FB} correlation is remarkably different from, and about two times that, proposed by Liao and Koch. It originates from the correlation between fluctuation of forward and that of backward elliptic flow at amore » low transverse momentum, which is mainly caused by the initial correlation between fluctuation of forward and that of backward eccentricity. This results in an amendment of the C{sub FB} by a term related to the correlation between fluctuation of forward and that of backward elliptic flow. Our results suggest that a suitable rapidity gap for C{sub FB} correlation studies is about {+-}3.5.« less
Pervasive orbital eccentricities dictate the habitability of extrasolar earths.
Kita, Ryosuke; Rasio, Frederic; Takeda, Genya
2010-09-01
The long-term habitability of Earth-like planets requires low orbital eccentricities. A secular perturbation from a distant stellar companion is a very important mechanism in exciting planetary eccentricities, as many of the extrasolar planetary systems are associated with stellar companions. Although the orbital evolution of an Earth-like planet in a stellar binary system is well understood, the effect of a binary perturbation on a more realistic system containing additional gas-giant planets has been very little studied. Here, we provide analytic criteria confirmed by a large ensemble of numerical integrations that identify the initial orbital parameters leading to eccentric orbits. We show that an extrasolar earth is likely to experience a broad range of orbital evolution dictated by the location of a gas-giant planet, which necessitates more focused studies on the effect of eccentricity on the potential for life.
Call, Jarrod A.; Lowe, Dawn A.
2018-01-01
In order to investigate the molecular and cellular mechanisms of muscle regeneration an experimental injury model is required. Advantages of eccentric contraction-induced injury are that it is a controllable, reproducible, and physiologically relevant model to cause muscle injury, with injury being defined as a loss of force generating capacity. While eccentric contractions can be incorporated into conscious animal study designs such as downhill treadmill running, electrophysiological approaches to elicit eccentric contractions and examine muscle contractility, for example before and after the injurious eccentric contractions, allows researchers to circumvent common issues in determining muscle function in a conscious animal (e.g., unwillingness to participate). Herein, we describe in vitro and in vivo methods that are reliable, repeatable, and truly maximal because the muscle contractions are evoked in a controlled, quantifiable manner independent of subject motivation. Both methods can be used to initiate eccentric contraction-induced injury and are suitable for monitoring functional muscle regeneration hours to days to weeks post-injury. PMID:27492161
Effect of vibration amplitude on vapor cavitation in journal bearings
NASA Astrophysics Data System (ADS)
Brewe, D. E.; Jacobson, B. O.
Computational movies were used to analyze the formation and collapse of vapor cavitation bubbles in a submerged journal bearing. The effect of vibration amplitude on vapor cavitation was studied for a journal undergoing circular whirl. The boundary conditions were implemented using Elrod's algorithm, which conserves mass flow through the cavitation bubble as well as through the oil-film region of the bearing. The vibration amplitudes for the different cases studied resulted in maximum eccentricity ratios ranging from 0.4 to 0.9. The minimum eccentricity ratio reached in each case was 0.1. For the least vibration amplitude studied in which the eccentricity ratio varied between 0.1 and 0.4, no vapor cavitation occurred. The largest vibration amplitude (i.e., eccentricity ratios of 0.1 to 0.9) resulted in vapor cavitation present 76 percent of one complete orbit.
Effect of vibration amplitude on vapor cavitation in journal bearings
NASA Technical Reports Server (NTRS)
Brewe, D. E.; Jacobson, B. O.
1986-01-01
Computational movies were used to analyze the formation and collapse of vapor cavitation bubbles in a submerged journal bearing. The effect of vibration amplitude on vapor cavitation was studied for a journal undergoing circular whirl. The boundary conditions were implemented using Elrod's algorithm, which conserves mass flow through the cavitation bubble as well as through the oil-film region of the bearing. The vibration amplitudes for the different cases studied resulted in maximum eccentricity ratios ranging from 0.4 to 0.9. The minimum eccentricity ratio reached in each case was 0.1. For the least vibration amplitude studied in which the eccentricity ratio varied between 0.1 and 0.4, no vapor cavitation occurred. The largest vibration amplitude (i.e., eccentricity ratios of 0.1 to 0.9) resulted in vapor cavitation present 76 percent of one complete orbit.
NASA Astrophysics Data System (ADS)
Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt
2018-06-01
Mergers of binary black holes on eccentric orbits are among the targets for second-generation ground-based gravitational-wave detectors. These sources may commonly form in galactic nuclei due to gravitational-wave emission during close flyby events of single objects. We determine the distributions of initial orbital parameters for a population of these gravitational-wave sources. Our results show that the initial dimensionless pericenter distance systematically decreases with the binary component masses and the mass of the central supermassive black hole, and its distribution depends sensitively on the highest possible black hole mass in the nuclear star cluster. For a multi-mass black hole population with masses between 5 {M}ȯ and 80 {M}ȯ , we find that between ∼43–69% (68–94%) of 30 {M}ȯ –30 {M}ȯ (10 M ⊙–10 M ⊙) sources have an eccentricity greater than 0.1 when the gravitational-wave signal reaches 10 Hz, but less than ∼10% of the sources with binary component masses less than 30 {M}ȯ remain eccentric at this level near the last stable orbit (LSO). The eccentricity at LSO is typically between 0.005–0.05 for the lower-mass BHs, and 0.1–0.2 for the highest-mass BHs. Thus, due to the limited low-frequency sensitivity, the six currently known quasicircular LIGO/Virgo sources could still be compatible with this originally highly eccentric source population. However, at the design sensitivity of these instruments, the measurement of the eccentricity and mass distribution of merger events may be a useful diagnostic to identify the fraction of GW sources formed in this channel.
Steerable sound transport in a 3D acoustic network
NASA Astrophysics Data System (ADS)
Xia, Bai-Zhan; Jiao, Jun-Rui; Dai, Hong-Qing; Yin, Sheng-Wen; Zheng, Sheng-Jie; Liu, Ting-Ting; Chen, Ning; Yu, De-Jie
2017-10-01
Quasi-lossless and asymmetric sound transports, which are exceedingly desirable in various modern physical systems, are almost always based on nonlinear or angular momentum biasing effects with extremely high power levels and complex modulation schemes. A practical route for the steerable sound transport along any arbitrary acoustic pathway, especially in a three-dimensional (3D) acoustic network, can revolutionize the sound power propagation and the sound communication. Here, we design an acoustic device containing a regular-tetrahedral cavity with four cylindrical waveguides. A smaller regular-tetrahedral solid in this cavity is eccentrically emplaced to break spatial symmetry of the acoustic device. The numerical and experimental results show that the sound power flow can unimpededly transport between two waveguides away from the eccentric solid within a wide frequency range. Based on the quasi-lossless and asymmetric transport characteristic of the single acoustic device, we construct a 3D acoustic network, in which the sound power flow can flexibly propagate along arbitrary sound pathways defined by our acoustic devices with eccentrically emplaced regular-tetrahedral solids.
Eccentricity effects upon the flow field inside a whirling annular seal
NASA Technical Reports Server (NTRS)
Morrison, Gerald L.; Deotte, Robert E., Jr.; Das, Purandar G.; Thames, H. Davis
1994-01-01
The flow field inside a whirling annular seal operating at a Reynolds number of 24,000 and a Taylor number of 6600 has been measured using a 3-D laser Doppler anemometer system. Two eccentricity ratios were considered, 0.10 and 0.50. The seal has a diameter of 164 mm, is 37.3 mm long, and has a clearance of 1.27 mm. The rotor was mounted eccentrically on the shaft such that the whirl ratio is 1.0 and the rotor follows a circular orbit. The mean axial velocity is not uniform around the circumference of the seal; near the inlet a region characterized by high velocity of the seal. By the exit, another region of high axial velocity is not uniform around the circumference of the seal; near the inlet a region characterized by high velocity of the seal. By the exit, another region of high axial velocity has developed, this time on the suction side of the seal. The magnitude and azimuthal distance of the migration increased with increasing whirl amplitude (eccentricity). Throughout the seal length, the azimuthal mean velocity varied inversely with the mean axial velocity. Increasing the whirl amplitude did not increase the magnitude of the azimuthal velocity at the seal exit.
NASA Astrophysics Data System (ADS)
Jin, Yan; Ye, Chen; Luo, Xiao; Yuan, Hui; Cheng, Changgui
2017-05-01
In order to improve the inclusion removal property of the tundish, the mathematic model for simulation of the flow field sourced from inner-swirl-type turbulence controller (ISTTC) was developed, in which there were six blades arranged with an eccentric angle (θ) counterclockwise. Based on the mathematical and water model, the effect of inclusion removal in the swirling flow field formed by ISTTC was analyzed. It was found that ISTTC had got the better effect of inhibiting turbulence in tundish than traditional turbulence inhibitor (TI). As the blades eccentric angle (θ) of ISTTC increasing, the intensity of swirling flow above it increased. The maximum rotate speed of fluid in swirling flow band driven by ISTTC (θ=45°) was equal to 25 rmp. Based on the force analysis of inclusion in swirling flow sourced from ISTTC, the removal effect of medium size inclusion by ISTTC was attributed to the centripetal force (Fct) of swirling flow, but removal effect of ISTTC to small size inclusion was more depend on its better turbulence depression behavior.
Cushman, Daniel; Rho, Monica E
2015-07-01
Case report. Proximal hamstring tendinopathy in runners is characterized by pain with passive hip flexion with the knee extended, active hip extension, and pain with sitting. Relatively little literature exists on the condition, and publications on nonsurgical treatment protocols are even more scarce. Surgical intervention, which comprises the majority of literature for treatment of this condition, is an option for cases that fail to respond to nonsurgical treatment. The patient was a 34-year-old, otherwise healthy male triathlete with unilateral proximal hamstring tendinopathy diagnosed by ultrasound, who had pain only with running and prolonged sitting. After he failed to respond to 4 weeks of eccentric knee flexion and lumbopelvic musculature strengthening exercises, an eccentric hip extensor strengthening program using a treadmill was initiated. This treadmill exercise was performed on a daily basis, in addition to a lumbopelvic musculature strengthening program. The patient noted a decrease in pain within 2 weeks of initiating the new exercise, and was able to return to gradual running after 4 weeks and to speed training after 12 weeks. He returned to competition shortly thereafter and had no recurrence for 12 months after the initiation of therapy. His score on the Victorian Institute of Sport Assessment-proximal hamstring tendons improved from 23 on initial presentation to 83 at 12 weeks after the initiation of therapy. We described the management of a triathlete with subacute proximal hamstring tendinopathy, who responded well to nonsurgical treatment using eccentric hip extension strengthening using a treadmill. Therapy, level 4.
CUSHMAN, DANIEL; RHO, MONICA E.
2015-01-01
STUDY DESIGN Case report. BACKGROUND Proximal hamstring tendinopathy in runners is characterized by pain with passive hip flexion with the knee extended, active hip extension, and pain with sitting. Relatively little literature exists on the condition, and publications on nonsurgical treatment protocols are even more scarce. Surgical intervention, which comprises the majority of literature for treatment of this condition, is an option for cases that fail to respond to nonsurgical treatment. CASE DESCRIPTION The patient was a 34-year-old, otherwise healthy male triathlete with unilateral proximal hamstring tendinopathy diagnosed by ultrasound, who had pain only with running and prolonged sitting. After he failed to respond to 4 weeks of eccentric knee flexion and lumbopelvic musculature strengthening exercises, an eccentric hip extensor strengthening program using a treadmill was initiated. This treadmill exercise was performed on a daily basis, in addition to a lumbopelvic musculature strengthening program. OUTCOMES The patient noted a decrease in pain within 2 weeks of initiating the new exercise, and was able to return to gradual running after 4 weeks and to speed training after 12 weeks. He returned to competition shortly thereafter and had no recurrence for 12 months after the initiation of therapy. His score on the Victorian Institute of Sport Assessment-proximal hamstring tendons improved from 23 on initial presentation to 83 at 12 weeks after the initiation of therapy. DISCUSSION We described the management of a triathlete with subacute proximal hamstring tendinopathy, who responded well to nonsurgical treatment using eccentric hip extension strengthening using a treadmill. LEVEL OF EVIDENCE Therapy, level 4. PMID:25996362
The orbital eccentricities of binary millisecond pulsars in globular clusters
NASA Technical Reports Server (NTRS)
Rasio, Frederic A.; Heggie, Douglas C.
1995-01-01
Low-mass binary millisecond pulsars (LMBPs) are born with very small orbital eccentricities, typically of order e(sub i) approximately 10(exp -6) to 10(exp -3). In globular clusters, however, higher eccentricities e(sub f) much greater than e(sub i) can be induced by dynamical interactions with passing stars. Here we show that the cross section for this process is much larger than previously estimated. This is becuse, even for initially circular binaries, the induced eccentricity e(sub f) for an encounter with pericenter separation r(sub p) beyond a few times the binary semimajor axis a declines only as a power law (e(sub f) varies as (r(sub p)/a)(exp -5/2), and not as an exponential. We find that all currently known LMBPs in clusters were probably affected by interactions, with their current eccentricities typically greater than at birth by an order of magnitude or more.
Coevolution of Binaries and Circumbinary Gaseous Disks
NASA Astrophysics Data System (ADS)
Fleming, David; Quinn, Thomas R.
2018-04-01
The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.
Possible Vascular Injury Due to Screw Eccentricity in Minimally Invasive Total Hip Arthroplasty.
Singh, Nishant Kumar; Rai, Sanjay Kumar; Rastogi, Amit
2017-01-01
Vascular injury during minimally invasive total hip arthroplasty (THA) is uncommon, yet a well-recognized and serious issue. It emerges because of non-visibility of vascular structures proximal to the pelvic bone during reaming, drilling holes, and fixing of screws. Numerous studies have found that screw fixation during cementless THA is beneficial for the initial stability of cup; yet, no anatomical guidelines support angular eccentric screw fixation. In this study, we obtained the pelvic arterial-phase computed tomographic data of thirty eight humans and reconstructed the three-dimensional models of osseous and vessel structures. We performed the surgical simulation to fix these structures with cementless cups and screws with angular eccentricities. The effect of screw eccentricities (angular eccentricities of ±17° and ±34°) on the vascular injury was determined. Measurement between screw and adjoining vessels was performed and analyzed statistically to ascertain a comparative risk study for blood vessels that are not visible during surgery. Authors similarly discussed the significant absence of appreciation of quadrant systems proposed by Wasielewski et al . on eccentric screws. Adjustment of quadrant systems provided by Wasielewski et al . is required for acetabular implants with eccentric holes for fixation of acetabular screws.
Effects of fluid inertia and turbulence on force coefficients for squeeze film dampers
NASA Technical Reports Server (NTRS)
Andres, L. S.; Vance, J. M.
1984-01-01
The effects of fluid inertia and turbulence on the force coefficients of squeeze film dampers are investigated analytically. Both the convective and the temporal terms are included in the analysis of inertia effects. The analysis of turbulence is based on friction coefficients currently found in the literature for Poiseuille flow. The effect of fluid inertia on the magnitude of the radial direct inertia coefficient (i.e., to produce an apparent added mass at small eccentricity ratios, due to the temporal terms) is found to be completely reversed at large eccentricity ratios. The reversal is due entirely to the inclusion of the convective inertia terms in the analysis. Turbulence is found to produce a large effect on the direct damping coefficient at high eccentricity ratios. For the long or sealed squeeze film damper at high eccentricity ratios, the damping prediction with turbulence included is an order of magnitude higher than the laminar solution.
Optimal four-impulse rendezvous between coplanar elliptical orbits
NASA Astrophysics Data System (ADS)
Wang, JianXia; Baoyin, HeXi; Li, JunFeng; Sun, FuChun
2011-04-01
Rendezvous in circular or near circular orbits has been investigated in great detail, while rendezvous in arbitrary eccentricity elliptical orbits is not sufficiently explored. Among the various optimization methods proposed for fuel optimal orbital rendezvous, Lawden's primer vector theory is favored by many researchers with its clear physical concept and simplicity in solution. Prussing has applied the primer vector optimization theory to minimum-fuel, multiple-impulse, time-fixed orbital rendezvous in a near circular orbit and achieved great success. Extending Prussing's work, this paper will employ the primer vector theory to study trajectory optimization problems of arbitrary eccentricity elliptical orbit rendezvous. Based on linearized equations of relative motion on elliptical reference orbit (referred to as T-H equations), the primer vector theory is used to deal with time-fixed multiple-impulse optimal rendezvous between two coplanar, coaxial elliptical orbits with arbitrary large eccentricity. A parameter adjustment method is developed for the prime vector to satisfy the Lawden's necessary condition for the optimal solution. Finally, the optimal multiple-impulse rendezvous solution including the time, direction and magnitudes of the impulse is obtained by solving the two-point boundary value problem. The rendezvous error of the linearized equation is also analyzed. The simulation results confirmed the analyzed results that the rendezvous error is small for the small eccentricity case and is large for the higher eccentricity. For better rendezvous accuracy of high eccentricity orbits, a combined method of multiplier penalty function with the simplex search method is used for local optimization. The simplex search method is sensitive to the initial values of optimization variables, but the simulation results show that initial values with the primer vector theory, and the local optimization algorithm can improve the rendezvous accuracy effectively with fast convergence, because the optimal results obtained by the primer vector theory are already very close to the actual optimal solution. If the initial values are taken randomly, it is difficult to converge to the optimal solution.
Magnetorotational Instability in Eccentric Disks
NASA Astrophysics Data System (ADS)
Chan, Chi-Ho; Krolik, Julian H.; Piran, Tsvi
2018-03-01
Eccentric disks arise in such astrophysical contexts as tidal disruption events, but it is unknown whether the magnetorotational instability (MRI), which powers accretion in circular disks, operates in eccentric disks as well. We examine the linear evolution of unstratified, incompressible MRI in an eccentric disk orbiting a point mass. We consider vertical modes of wavenumber k on a background flow with uniform eccentricity e and vertical Alfvén speed {v}{{A}} along an orbit with mean motion n. We find two mode families, one with dominant magnetic components, the other with dominant velocity components. The former is unstable at {(1-e)}3 {f}2≲ 3, where f\\equiv {{kv}}{{A}}/n, and the latter at e ≳ 0.8. For f 2 ≲ 3, MRI behaves much like in circular disks, but the growth per orbit declines slowly with increasing e; for f 2 ≳ 3, modes grow by parametric amplification, which is resonant for 0 < e ≪ 1. MRI growth and the attendant angular momentum and energy transport happen chiefly near pericenter, where orbital shear dominates magnetic tension.
FKBP12 deficiency reduces strength deficits after eccentric contraction-induced muscle injury
Corona, Benjamin T.; Rouviere, Clement; Hamilton, Susan L.; Ingalls, Christopher P.
2008-01-01
Strength deficits associated with eccentric contraction-induced muscle injury stem, in part, from excitation-contraction uncoupling. FKBP12 is a 12-kDa binding protein known to bind to the skeletal muscle sarcoplasmic reticulum Ca2+ release channel [ryanodine receptor (RyR1)] and plays an important role in excitation-contraction coupling. To assess the effects of FKBP12 deficiency on muscle injury and recovery, we measured anterior crural muscle (tibialis anterior and extensor digitorum longus muscles) strength in skeletal muscle-specific FKBP12-deficient and wild-type (WT) mice before and after a single bout of 150 eccentric contractions, as well as before and after the performance of six injury bouts. Histological damage of the tibialis anterior muscle was assessed after injury. Body weight and peak isometric and eccentric torques were lower in FKBP12-deficient mice compared with WT mice. There were no differences between FKBP12-deficient and WT mice in preinjury peak isometric and eccentric torques when normalized to body weight, and no differences in the relative decreases in eccentric torque with a single or multiple injury bouts. After a single injury bout, FKBP12-deficient mice had less initial strength deficits and recovered faster (especially females) than WT mice, despite no differences in the degree of histological damage. After multiple injury bouts, FKBP12-deficient mice recovered muscle strength faster than WT mice and exhibited significantly less histological muscle damage than WT mice. In summary, FKBP12 deficiency results in less initial strength deficits and enhanced recovery from single (especially females) and repeated bouts of injury than WT mice. PMID:18511525
NASA Technical Reports Server (NTRS)
Chambers, J. E.; Cassen, P.
2002-01-01
We present 32 N-body simulations of planetary accretion in the inner Solar System, examining the effect of nebula surface density profile and initial eccentricities of Jupiter and Saturn on the compositions and orbits of the inner planets. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Quarles, B.; Lissauer, Jack J.
2018-03-01
We perform long-term simulations, up to ten billion years, of closely spaced configurations of 2–6 planets, each as massive as the Earth, traveling on nested orbits about either stellar component in α Centauri AB. The innermost planet initially orbits at either the inner edge of its star’s empirical habitable zone (HZ) or the inner edge of its star’s conservative HZ. Although individual planets on low inclination, low eccentricity, orbits can survive throughout the HZs of both stars, perturbations from the companion star require that the minimum spacing of planets in multi-planet systems within the HZs of each star must be significantly larger than the spacing of similar multi-planet systems orbiting single stars in order to be long-lived. The binary companion induces a forced eccentricity upon the orbits of planets in orbit around either star. Planets on appropriately phased circumstellar orbits with initial eccentricities equal to their forced eccentricities can survive on more closely spaced orbits than those with initially circular orbits, although the required spacing remains higher than for planets orbiting single stars. A total of up to nine planets on nested prograde orbits can survive for the current age of the system within the empirical HZs of the two stars, with five of these orbiting α Centauri B and four orbiting α Centauri A.
Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Aoki, K; Aramaki, Y; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bickley, A A; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Connors, M; Constantin, P; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Hartouni, E P; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ide, J; Ikeda, Y; Imai, K; Inaba, M; Isenhower, D; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Jacak, B V; Jia, J; Jin, J; Johnson, B M; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kim, B I; Kim, D H; Kim, D J; Kim, E; Kim, E-J; Kim, S H; Kim, Y-J; Kinney, E; Kiriluk, K; Kiss, A; Kistenev, E; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K; Lee, K B; Lee, K S; Leitch, M J; Leite, M A L; Leitner, E; Lenzi, B; Li, X; Liebing, P; Linden Levy, L A; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Luechtenborg, R; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mignerey, A C; Mikeš, P; Miki, K; Milov, A; Mishra, M; Mitchell, J T; Mohanty, A K; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Niida, T; Nouicer, R; Nyanin, A S; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, J; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Sparks, N A; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarján, P; Themann, H; Thomas, T L; Todoroki, T; Togawa, M; Toia, A; Tomášek, L; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Wood, J P; Woody, C L; Wright, R M; Wysocki, M; Xie, W; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zolin, L
2014-06-06
Charged-pion-interferometry measurements were made with respect to the second- and third-order event plane for Au+Au collisions at sqrt[s_{NN}]=200 GeV. A strong azimuthal-angle dependence of the extracted Gaussian-source radii was observed with respect to both the second- and third-order event planes. The results for the second-order dependence indicate that the initial eccentricity is reduced during the medium evolution, which is consistent with previous results. In contrast, the results for the third-order dependence indicate that the initial triangular shape is significantly reduced and potentially reversed by the end of the medium evolution, and that the third-order oscillations are largely dominated by the dynamical effects from triangular flow.
An Impulse-Momentum Method for Calculating Landing-Gear Contact Conditions in Eccentric Landings
NASA Technical Reports Server (NTRS)
Yntema, Robert T; Milwitzky, Benjamin
1952-01-01
An impulse-momentum method for determining impact conditions for landing gears in eccentric landings is presented. The analysis is primarily concerned with the determination of contact velocities for impacts subsequent to initial touchdown in eccentric landings and with the determination of the effective mass acting on each landing gear. These parameters determine the energy-absorption requirements for the landing gear and, in conjunction with the particular characteristics of the landing gear, govern the magnitude of the ground loads. Changes in airplane angular and linear velocities and the magnitude of landing-gear vertical, drag, and side impulses resulting from a landing impact are determined by means of impulse-momentum relationships without the necessity for considering detailed force-time variations. The effective mass acting on each gear is also determined from the calculated landing-gear impulses. General equations applicable to any type of eccentric landing are written and solutions are obtained for the particular cases of an impact on one gear, a simultaneous impact on any two gears, and a symmetrical impact. In addition a solution is presented for a simplified two-degree-of-freedom system which allows rapid qualitative evaluation of the effects of certain principal parameters. The general analysis permits evaluation of the importance of such initial conditions at ground contact as vertical, horizontal, and side drift velocities, wing lift, roll and pitch angles, and rolling and pitching velocities, as well as the effects of such factors as landing gear location, airplane inertia, landing-gear length, energy-absorption efficiency, and wheel angular inertia on the severity of landing impacts. -A brief supplementary study which permits a limited evaluation of variable aerodynamic effects neglected in the analysis is presented in the appendix. Application of the analysis indicates that landing-gear impacts in eccentric landings can be appreciably more severe than impacts in symmetrical landings with the same sinking speed. The results also indicate the effects of landing-gear location, airplane inertia, initial wing lift, side drift velocity, attitude, and initial rolling velocity on the severity of both initial and subsequent landing-gear impacts. A comparison of the severity of impacts on auxiliary gears for tricycle and quadricycle configurations is also presented.
Moderate Load Eccentric Exercise; A Distinct Novel Training Modality
Hoppeler, Hans
2016-01-01
Over the last 20 years a number of studies have been published using progressive eccentric exercise protocols on motorized ergometers or similar devices that allow for controlled application of eccentric loads. Exercise protocols ramp eccentric loads over an initial 3 weeks period in order to prevent muscle damage and delayed onset muscle soreness. Final training loads reach 400–500 W in rehabilitative settings and over 1200 W in elite athletes. Training is typically carried out three times per week for durations of 20–30 min. This type of training has been characterizes as moderate load eccentric exercise. It has also been denoted RENEW (Resistance Exercise via Negative Eccentric Work by LaStayo et al., 2014). It is distinct from plyometric exercises (i.e., drop jumps) that impose muscle loads of several thousand Watts on muscles and tendons. It is also distinct from eccentric overload training whereby loads in a conventional strength training setting are increased in the eccentric phase of the movement to match concentric loads. Moderate load eccentric exercise (or RENEW) has been shown to be similarly effective as conventional strength training in increasing muscle strength and muscle volume. However, as carried out at higher angular velocities of joint movement, it reduces joint loads. A hallmark of moderate load eccentric exercise is the fact that the energy requirements are typically 4-fold smaller than in concentric exercise of the same load. This makes moderate load eccentric exercise training the tool of choice in medical conditions with limitations in muscle energy supply. The use and effectiveness of moderate load eccentric exercise has been demonstrated mostly in small scale studies for cardiorespiratory conditions, sarcopenia of old age, cancer, diabetes type 2, and neurological conditions. It has also been used effectively in the prevention and rehabilitation of injuries of the locomotor system in particular the rehabilitation after anterior cruciate ligament surgery. PMID:27899894
Possible Vascular Injury Due to Screw Eccentricity in Minimally Invasive Total Hip Arthroplasty
Singh, Nishant Kumar; Rai, Sanjay Kumar; Rastogi, Amit
2017-01-01
Background: Vascular injury during minimally invasive total hip arthroplasty (THA) is uncommon, yet a well-recognized and serious issue. It emerges because of non-visibility of vascular structures proximal to the pelvic bone during reaming, drilling holes, and fixing of screws. Numerous studies have found that screw fixation during cementless THA is beneficial for the initial stability of cup; yet, no anatomical guidelines support angular eccentric screw fixation. Materials and Methods: In this study, we obtained the pelvic arterial-phase computed tomographic data of thirty eight humans and reconstructed the three-dimensional models of osseous and vessel structures. We performed the surgical simulation to fix these structures with cementless cups and screws with angular eccentricities. Results: The effect of screw eccentricities (angular eccentricities of ±17° and ±34°) on the vascular injury was determined. Measurement between screw and adjoining vessels was performed and analyzed statistically to ascertain a comparative risk study for blood vessels that are not visible during surgery. Conclusion: Authors similarly discussed the significant absence of appreciation of quadrant systems proposed by Wasielewski et al. on eccentric screws. Adjustment of quadrant systems provided by Wasielewski et al. is required for acetabular implants with eccentric holes for fixation of acetabular screws. PMID:28790474
NASA Astrophysics Data System (ADS)
Powell, Janet L.; Poepping, Tamie L.
2011-03-01
An in vitro flow system has been used to assess the flow disturbances downstream of the stenosis in a family of seven carotid bifurcation phantoms modelling varying plaque build-up both axially symmetrically (concentrically) and asymmetrically (eccentrically). Radio frequency data were collected for 10 s at each of over 1000 sites within each model, and a sliding 1024-point FFT is applied to the data to extract the Doppler spectrum every 12 ms. From this, the ensemble average over 10 cardiac cycles of the spectral mean velocity, and the root mean square over these same 10 cardiac cycles - the turbulence intensity (TI), can be obtained as a function of an ensemble averaged cardiac cycle at each spatial point in all phantoms. TI was investigated by looking at the average over a 25 mm2 square region of interest in the ICA centered 2 cm distal to the apex of the bifurcation. TI in the region of interest increased with stenosis severity; at 23ms following peak systole, the time point when TI was maximal for the majority of models, this ranged from 2.4+/-0.1 cm/s in the non-diseased model to 6.6+/-0.3, 16.0+/-1.4 and 26.1+/-1.3 cm/s in the 30, 50 and 70% concentrically stenosed (by NASCET criteria) models, respectively. Similarly, TI was 8.3+/-0.7, 19.9+/-1.1, and 26.2+/-1.2 cm/s in the 30, 50 and 70% eccentrically stenosed models, respectively. Differences in TI between models, both in increasing stenosis severity and between eccentricities, were statistically different except between the 70% concentric and eccentric models.
Effect of pulse pressure on borehole stability during shear swirling flow vibration cementing.
Cui, Zhihua; Ai, Chi; Lv, Lei; Yin, Fangxian
2017-01-01
The shear swirling flow vibration cementing (SSFVC) technique rotates the downhole eccentric cascade by circulating cementing fluid. It makes the casing eccentrically revolve at high speed around the borehole axis. It produces strong agitation action to the annulus fluid, makes it in the state of shear turbulent flow, and results in the formation of pulse pressure which affects the surrounding rock stress. This study was focused on 1) the calculation of the pulse pressure in an annular turbulent flow field based on the finite volume method, and 2) the analysis of the effect of pulse pressure on borehole stability. On the upside, the pulse pressure is conducive to enhancing the liquidity of the annulus fluid, reducing the fluid gel strength, and preventing the formation of fluid from channeling. But greater pulse pressure may cause lost circulation and even formation fracturing. Therefore, in order to ensure smooth cementing during SSFVC, the effect of pulse pressure should be considered when cementing design.
Experiment measurement of Alford's force in axial-flow turbomachinery
NASA Technical Reports Server (NTRS)
Vance, J. M.; Laudadio, F. J.
1982-01-01
Results of experimental measurements made on a small high speed, axial flow test apparatus are presented to verify the existence of Alford's force (that circumferential variation of blade-tip clearances in axial-flow turbomachinery will produce cross-coupled (normal to the eccentricity) aerodynamic forces on the rotor) and to investigate the validity of his mathematical prediction model.
Secular Resonance Sweeping of the Main Asteroid Belt During Planet Migration
NASA Astrophysics Data System (ADS)
Minton, David A.; Malhotra, Renu
2011-05-01
We calculate the eccentricity excitation of asteroids produced by the sweeping ν6 secular resonance during the epoch of planetesimal-driven giant planet migration in the early history of the solar system. We derive analytical expressions for the magnitude of the eccentricity change and its dependence on the sweep rate and on planetary parameters; the ν6 sweeping leads to either an increase or a decrease of eccentricity depending on an asteroid's initial orbit. Based on the slowest rate of ν6 sweeping that allows a remnant asteroid belt to survive, we derive a lower limit on Saturn's migration speed of ~0.15 AU Myr-1 during the era that the ν6 resonance swept through the inner asteroid belt (semimajor axis range 2.1-2.8 AU). This rate limit is for Saturn's current eccentricity and scales with the square of its eccentricity; the limit on Saturn's migration rate could be lower if its eccentricity were lower during its migration. Applied to an ensemble of fictitious asteroids, our calculations show that a prior single-peaked distribution of asteroid eccentricities would be transformed into a double-peaked distribution due to the sweeping of the ν6 resonance. Examination of the orbital data of main belt asteroids reveals that the proper eccentricities of the known bright (H <= 10.8) asteroids may be consistent with a double-peaked distribution. If so, our theoretical analysis then yields two possible solutions for the migration rate of Saturn and for the dynamical states of the pre-migration asteroid belt: a dynamically cold state (single-peaked eccentricity distribution with mean of ~0.05) linked with Saturn's migration speed ~4 AU Myr-1 or a dynamically hot state (single-peaked eccentricity distribution with mean of ~0.3) linked with Saturn's migration speed ~0.8 AU Myr-1.
Compressible and incompressible fluid seals: Influence on rotordynamic response and stability
NASA Technical Reports Server (NTRS)
Thames, Howard D.
1992-01-01
The flow field inside a whirling annular seal operating a Reynolds numbers of 12,000 and 24,000 and a Taylor number of 6,600 was measured. The rotor was mounted eccentric (50 percent) upon the facilities shaft which resulted in a circular orbit at a whirl ratio of 1.0. Three papers which summarize the work were written and are presented. Addition measurements were performed for the annular seal operating at an eccentricity ratio of 10 percent for Re = 24,000 and Ta = 6,600. A labyrinth seal was also installed into the facility and operated at an eccentricity ratio of 50 percent at the same Reynolds and Taylor numbers. These data are currently being reduced and analyzed.
Pagiatakis, Catherine; Tardif, Jean-Claude; L'Allier, Philippe L; Mongrain, Rosaire
2017-12-01
Interventional cardiologists still rely heavily on angiography for the evaluation of coronary lesion severity, despite its poor correlation with the presence of ischemia. In order to improve the accuracy of the current diagnostic procedures, an understanding of the relative influence of geometric characteristics on the induction of ischemia is required. This idea is especially important for coronary bifurcation lesions (CBLs), whose treatment is complex and is associated with high rates of peri- and post-procedural clinical events. Overall, it is unclear which geometric and morphological parameters of CBLs influence the onset of ischemia. More specifically, the effect of stenosis eccentricity is unknown. Computational fluid dynamic simulations, under a geometric multiscale framework, were executed for seven CBL configurations within the left main coronary artery bifurcation. Both concentric and eccentric stenosis profiles of mild to severe constriction were considered. By using a geometric multiscale framework, the fractional flow reserve, which is the gold-standard clinical diagnostic index, could be calculated and was compared between the eccentric and concentric profiles for each case. The results suggested that for configurations where the supplying vessel is stenosed, eccentricity could have a notable effect on and therefore be an important factor that influences configuration functionality.
NASA Astrophysics Data System (ADS)
Laurin, Jiří; Meyers, Stephen R.; Galeotti, Simone; Lanci, Luca
2016-05-01
Major advances in our understanding of paleoclimate change derive from a precise reconstruction of the periods, amplitudes and phases of the 'Milankovitch cycles' of precession, obliquity and eccentricity. While numerous quantitative approaches exist for the identification of these astronomical cycles in stratigraphic data, limitations in radioisotopic dating, and instability of the theoretical astronomical solutions beyond ∼50 Myr ago, can challenge identification of the phase relationships needed to constrain climate response and anchor floating astrochronologies. Here we demonstrate that interference patterns accompanying frequency modulation (FM) of short eccentricity provide a robust basis for identifying the phase of long eccentricity forcing in stratigraphic data. One- and two-dimensional models of sedimentary distortion of the astronomical signal are used to evaluate the veracity of the FM method, and indicate that pristine eccentricity FM can be readily distinguished in paleo-records. Apart from paleoclimatic implications, the FM approach provides a quantitative technique for testing and calibrating theoretical astronomical solutions, and for refining chronologies for the deep past. We present two case studies that use the FM approach to evaluate major carbon-cycle perturbations of the Eocene and Late Cretaceous. Interference patterns in the short-eccentricity band reveal that Eocene hyperthermals ETM2 ('Elmo'), H2, I1 and ETM3 (X; ∼52-54 Myr ago) were associated with maxima in the 405-kyr cycle of orbital eccentricity. The same eccentricity configuration favored regional anoxic episodes in the Mediterranean during the Middle and Late Cenomanian (∼94.5-97 Myr ago). The initial phase of the global Oceanic Anoxic Event II (OAE II; ∼93.9-94.5 Myr ago) coincides with maximum and falling 405-kyr eccentricity, and the recovery phase occurs during minimum and rising 405-kyr eccentricity. On a Myr scale, the event overlaps with a node in eccentricity amplitudes. Both studies underscore the importance of seasonality in pacing major climatic perturbations during greenhouse times.
NASA Astrophysics Data System (ADS)
Reinaud, J. N.; Sokolovskiy, M. A.; Carton, X.
2017-03-01
We investigate equilibrium solutions for tripolar vortices in a two-layer quasi-geostrophic flow. Two of the vortices are like-signed and lie in one layer. An opposite-signed vortex lies in the other layer. The families of equilibria can be spanned by the distance (called separation) between the two like-signed vortices. Two equilibrium configurations are possible when the opposite-signed vortex lies between the two other vortices. In the first configuration (called ordinary roundabout), the opposite signed vortex is equidistant to the two other vortices. In the second configuration (eccentric roundabouts), the distances are unequal. We determine the equilibria numerically and describe their characteristics for various internal deformation radii. The two branches of equilibria can co-exist and intersect for small deformation radii. Then, the eccentric roundabouts are stable while unstable ordinary roundabouts can be found. Indeed, ordinary roundabouts exist at smaller separations than eccentric roundabouts do, thus inducing stronger vortex interactions. However, for larger deformation radii, eccentric roundabouts can also be unstable. Then, the two branches of equilibria do not cross. The branch of eccentric roundabouts only exists for large separations. Near the end of the branch of eccentric roundabouts (at the smallest separation), one of the like-signed vortices exhibits a sharp inner corner where instabilities can be triggered. Finally, we investigate the nonlinear evolution of a few selected cases of tripoles.
On the Early In Situ Formation of Pluto’s Small Satellites
NASA Astrophysics Data System (ADS)
Woo, Jason Man Yin; Lee, Man Hoi
2018-04-01
The formation of Pluto’s small satellites—Styx, Nix, Keberos, and Hydra—remains a mystery. Their orbits are nearly circular and are near mean-motion resonances and nearly coplanar with Charon’s orbit. One scenario suggests that they all formed close to their current locations from a disk of debris that was ejected from the Charon-forming impact before the tidal evolution of Charon. The validity of this scenario is tested by performing N-body simulations with the small satellites treated as test particles and Pluto–Charon evolving tidally from an initial orbit at a few Pluto radii with initial eccentricity e C = 0 or 0.2. After tidal evolution, the free eccentricities e free of the test particles are extracted by applying fast Fourier transformation to the distance between the test particles and the center of mass of the system and compared with the current eccentricities of the four small satellites. The only surviving test particles with e free matching the eccentricities of the current satellites are those not affected by mean-motion resonances during the tidal evolution in a model with Pluto’s effective tidal dissipation function Q = 100 and an initial e C = 0.2 that is damped down rapidly. However, these test particles do not have any preference to be in or near 4:1, 5:1, and 6:1 resonances with Charon. An alternative scenario may be needed to explain the formation of Pluto’s small satellites.
Aidala, C.; Akiba, Y.; Alfred, M.; ...
2017-03-24
Inmore » this paper, we present measurements of long-range angular correlations and the transverse momentum dependence of elliptic flow ν 2 in high-multiplicity p + Au collisions at s NN = 200 GeV. A comparison of these results to previous measurements in high-multiplicity d + Au and 3He + Au collisions demonstrates a relation between ν 2 and the initial collision eccentricity ε 2, suggesting that the observed momentum-space azimuthal anisotropies in these small systems have a collective origin and reflect the initial geometry. Good agreement is observed between the measured ν 2 and hydrodynamic calculations for all systems, and an argument disfavoring theoretical explanations based on initial momentum-space domain correlations is presented. Finally, the set of measurements presented here allows us to leverage the distinct intrinsic geometry of each of these systems to distinguish between different theoretical descriptions of the long-range correlations observed in small collision systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aidala, C.; Akiba, Y.; Alfred, M.
Inmore » this paper, we present measurements of long-range angular correlations and the transverse momentum dependence of elliptic flow ν 2 in high-multiplicity p + Au collisions at s NN = 200 GeV. A comparison of these results to previous measurements in high-multiplicity d + Au and 3He + Au collisions demonstrates a relation between ν 2 and the initial collision eccentricity ε 2, suggesting that the observed momentum-space azimuthal anisotropies in these small systems have a collective origin and reflect the initial geometry. Good agreement is observed between the measured ν 2 and hydrodynamic calculations for all systems, and an argument disfavoring theoretical explanations based on initial momentum-space domain correlations is presented. Finally, the set of measurements presented here allows us to leverage the distinct intrinsic geometry of each of these systems to distinguish between different theoretical descriptions of the long-range correlations observed in small collision systems.« less
NASA Astrophysics Data System (ADS)
Aidala, C.; Akiba, Y.; Alfred, M.; Andrieux, V.; Aoki, K.; Apadula, N.; Asano, H.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bandara, N. S.; Barish, K. N.; Bathe, S.; Bazilevsky, A.; Beaumier, M.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Blau, D. S.; Boer, M.; Bok, J. S.; Brooks, M. L.; Bryslawskyj, J.; Bumazhnov, V.; Butler, C.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Citron, Z.; Connors, M.; Cronin, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dion, A.; Dixit, D.; Do, J. H.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Elder, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukuda, Y.; Gal, C.; Gallus, P.; Garg, P.; Ge, H.; Giordano, F.; Goto, Y.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; He, X.; Hemmick, T. K.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Imai, K.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jezghani, M.; Ji, Z.; Jiang, X.; Johnson, B. M.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kang, J. H.; Kapukchyan, D.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Khachatryan, V.; Khanzadeev, A.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, M. H.; Kim, M.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kline, P.; Koblesky, T.; Kotov, D.; Kudo, S.; Kurita, K.; Kwon, Y.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, S.; Leitch, M. J.; Leung, Y. H.; Lewis, N. A.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Loggins, V.-R.; Lovasz, K.; Lynch, D.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Malaev, M.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Mendoza, M.; Mignerey, A. C.; Mihalik, D. E.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Murakami, T.; Murata, J.; Nagai, K.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakano, K.; Nattrass, C.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pantuev, V.; Papavassiliou, V.; Park, J. S.; Park, S.; Pate, S. F.; Patel, M.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richford, D.; Rinn, T.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Runchey, J.; Safonov, A. S.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Smith, K. L.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Syed, S.; Sziklai, J.; Takeda, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Tarnai, G.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Towell, C. L.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vazquez-Carson, S.; Velkovska, J.; Virius, M.; Vrba, V.; Vukman, N.; Wang, X. R.; Wang, Z.; Watanabe, Y.; Watanabe, Y. S.; Wong, C. P.; Woody, C. L.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yoo, J. H.; Yoon, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zou, L.; Phenix Collaboration
2017-03-01
We present measurements of long-range angular correlations and the transverse momentum dependence of elliptic flow v2 in high-multiplicity p +Au collisions at √{s NN}=200 GeV. A comparison of these results to previous measurements in high-multiplicity d +Au and 3He+Au collisions demonstrates a relation between v2 and the initial collision eccentricity ɛ2, suggesting that the observed momentum-space azimuthal anisotropies in these small systems have a collective origin and reflect the initial geometry. Good agreement is observed between the measured v2 and hydrodynamic calculations for all systems, and an argument disfavoring theoretical explanations based on initial momentum-space domain correlations is presented. The set of measurements presented here allows us to leverage the distinct intrinsic geometry of each of these systems to distinguish between different theoretical descriptions of the long-range correlations observed in small collision systems.
Nii, Kouhei; Tsutsumi, Masanori; Maeda, Hitoshi; Aikawa, Hiroshi; Inoue, Ritsuro; Eto, Ayumu; Sakamoto, Kimiya; Mitsutake, Takafumi; Hanada, Hayatsura; Kazekawa, Kiyoshi
2016-12-15
We investigated the angiographic findings and the clinical outcomes after carotid artery stenting (CAS) using two different, eccentric filter embolic protection devices (EPDs). Between July 2010 and August 2015, 175 CAS procedures were performed using a self-expandable closed-cell stent and a simple eccentric filter EPD (FilterWire EZ in 86 and Spider FX in 89 procedures). The angiographic findings (i.e., flow impairment and vasospasm) at the level of EPDs, neurologic events, and post-operative imaging results were compared between the FilterWire EZ and the Spider FX groups. The CAS was angiographically successful in all 175 procedures. However, the angiographs were obtained immediately after CAS-detected flow impairment in the distal internal carotid artery (ICA) in 11 (6.3%) and ICA spasms at the level of the EPD in 40 cases (22.9%). The incidence of these complications was higher with FilterWire EZ than Spider FX (ICA flow impairment of 10.5% vs. 2.2%, P = 0.03; vasospasm 30.2% vs. 15.7%, P = 0.03). There were nine neurologic events (5.1%); five patients were presented with transient ischemic attacks, three had minor strokes, and one had a major stroke. New MRI lesions were seen in 25 (29.1%) FilterWire-group and in 36 (40.4%) Spider-group patients. The neurologic events and new MRI lesions were not associated with the type of EPD used. Although the ICA flow impairment may result in neurologic events, there was no significant association between the FilterWire EZ and the Spider FX CAS with respect to the incidence of neurologic events by the prompt treatment such as catheter aspiration.
Dynamics of anisotropic particles under waves
NASA Astrophysics Data System (ADS)
Dibenedetto, Michelle; Ouellette, Nicholas; Koseff, Jeffrey
2017-11-01
We present results on anisotropic particles in wavy flows in order to gain insight into the transport and mixing of microplastic particles in the near-shore environment. From theory and numerical simulations, we find that the rate of alignment of the particles is not constant and depends strongly on their initial orientation; thus, variations in initial particle orientation result in dispersion of anisotropic-particle plumes. We find that this dispersion is a function of the particle's eccentricity and the ratio of the settling and wave time scales. Experiments in which non-spherical particles of various shapes are released under surface gravity waves were also performed. Our main goal is to explore the effects of particle shape under various wave scenarios. We vary the aspect ratio of the particle in our experiments while holding other variables constant. Our results demonstrate that particle shape can be important when predicting transport.
2009-09-15
in.) Tire pressure +7 kPa (+1 psig) Ambient or chamber temperature +2 °C (+3.6 °F) Relative humidity (RH) +1% reading Wind speed +1 kt Distance... eccentric ), and number of bridge crossings. (4) Vehicle stopping data including speed, position, and direction on the bridge. (5) Ambient...fashion for initial trials, and then loads should be applied eccentrically . The load configuration as it was applied to the raft will be documented
Mechanical mechanisms of the directional shift and inverse of the eccentric compound droplet
NASA Astrophysics Data System (ADS)
Wang, Jingtao; Xu, Shen; Huang, Yan; Guan, Jing
2018-04-01
Mechanical mechanisms of the directional movement and inverse of an eccentric compound droplet in a modest extensional flow are investigated in this paper by spectral boundary element methods. In this work, a phenomenon is revealed that the shift of a compound droplet is driven by the asymmetric interfacial curvature, not just the outer drag. The asymmetric layout of the daughter droplet leads to the asymmetric drags from the continuous phase and the asymmetric deformation of the compound droplet with different interface curvatures. As the inner droplet has both enhancing and suppressing effects on the globule deformation (during different stages), the interface curvatures will vary when the relative size and location of the inner droplet are changed. The curvature difference results in the asymmetric pressure distribution and circulation inside the compound droplet. Eventually, the interaction of the inner driving force (curvature difference) and the outer drags results in the directional shift and inverse of the compound droplet. The shift direction is affected by the structural asymmetry parameter ɛ (eccentricity) and some flow features such as the capillary number. The conclusion could enlighten potential applications for the movement of soft globules driven by the curvature difference.
Analysis and testing of axial compression in imperfect slender truss struts
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Georgiadis, Nicholas
1990-01-01
The axial compression of imperfect slender struts for large space structures is addressed. The load-shortening behavior of struts with initially imperfect shapes and eccentric compressive end loading is analyzed using linear beam-column theory and results are compared with geometrically nonlinear solutions to determine the applicability of linear analysis. A set of developmental aluminum clad graphite/epoxy struts sized for application to the Space Station Freedom truss are measured to determine their initial imperfection magnitude, load eccentricity, and cross sectional area and moment of inertia. Load-shortening curves are determined from axial compression tests of these specimens and are correlated with theoretical curves generated using linear analysis.
Secular Dynamical Anti-friction in Galactic Nuclei
NASA Astrophysics Data System (ADS)
Madigan, Ann-Marie; Levin, Yuri
2012-07-01
We identify a gravitational-dynamical process in near-Keplerian potentials of galactic nuclei that occurs when an intermediate-mass black hole (IMBH) is migrating on an eccentric orbit through the stellar cluster towards the central supermassive black hole. We find that, apart from conventional dynamical friction, the IMBH experiences an often much stronger systematic torque due to the secular (i.e., orbit-averaged) interactions with the cluster's stars. The force which results in this torque is applied, counterintuitively, in the same direction as the IMBH's precession and we refer to its action as "secular dynamical anti-friction" (SDAF). We argue that SDAF, and not the gravitational ejection of stars, is responsible for the IMBH's eccentricity increase seen in the initial stages of previous N-body simulations. Our numerical experiments, supported by qualitative arguments, demonstrate that (1) when the IMBH's precession direction is artificially reversed, the torque changes sign as well, which decreases the orbital eccentricity; (2) the rate of eccentricity growth is sensitive to the IMBH migration rate, with zero systematic eccentricity growth for an IMBH whose orbit is artificially prevented from inward migration; and (3) SDAF is the strongest when the central star cluster is rapidly rotating. This leads to eccentricity growth/decrease for the clusters rotating in the opposite/same direction relative to the IMBH's orbital motion.
Effect of eccentric exercise on the healing process of injured patellar tendon in rats.
Nakamura, Kenichi; Kitaoka, Katsuhiko; Tomita, Katsuro
2008-07-01
Earlier studies have reported positive results from eccentric training in patients with tendon disorders. The reasons for the beneficial clinical effects of eccentric training are not known. Vascularization followed by regression of the vasculature enhances the healing response of injured tendons. Eccentric exercise induces a more beneficial healing response than concentric exercise. Sixty rats with patellar tendon injuries were divided into three groups: nonexercise controls (group N; n = 20); concentric exercise group (group C; n = 20); eccentric exercise group (group E; n = 20). Each rat was taught to run uphill or downhill for 14 days. Patellar tendons were removed 1, 4, 7, 10, and 14 days following injury. Vascular endothelial growth factor (VEGF), angiopoietin-1, and angiopoietin-2 were measured by reverse transcription polymerase chain reaction. In group C, VEGF mRNA was increased 1 and 4 days following injury but was decreased on days 7, 10, and 14. In group E, VEGF mRNA was elevated only on day 1. In group N, VEGF mRNA remained at a low level throughout all 14 days. The angiopoietin-2/angiopoietin-1 ratio was higher for group C than for group E. In the presence of VEGF, angiopoietin-1 promotes vessel stability, whereas angiopoietin-2 has the opposite effect. Eccentric exercise contributes to stabilized angiogenesis during the early phase of tendon injury. Conversely, concentric exercise, which induces destabilized angiogenesis, leads to a delayed healing response. Initiation of eccentric exercise immediately after tendon injury may help improve healing by reducing vascularity.
Kim, Nam-Gyoon
2015-01-01
The present study explored whether the optic flow deficit in Alzheimer's disease (AD) reported in the literature transfers to different types of optic flow, in particular, one that specifies collision impacts with upcoming surfaces, with a special focus on the effect of retinal eccentricity. Displays simulated observer movement over a ground plane toward obstacles lying in the observer's path. Optical expansion was modulated by varying [Formula: see text]. The visual field was masked either centrally (peripheral vision) or peripherally (central vision) using masks ranging from 10° to 30° in diameter in steps of 10°. Participants were asked to indicate whether their approach would result in "collision" or "no collision" with the obstacles. Results showed that AD patients' sensitivity to [Formula: see text] was severely compromised, not only for central vision but also for peripheral vision, compared to age- and education-matched elderly controls. The results demonstrated that AD patients' optic flow deficit is not limited to radial optic flow but includes also the optical pattern engendered by [Formula: see text]. Further deterioration in the capacity to extract [Formula: see text] to determine potential collisions in conjunction with the inability to extract heading information from radial optic flow would exacerbate AD patients' difficulties in navigation and visuospatial orientation.
McHugh, Malachy P
2003-04-01
The repeated bout effect refers to the adaptation whereby a single bout of eccentric exercise protects against muscle damage from subsequent eccentric bouts. While the mechanism for this adaptation is poorly understood there have been significant recent advances in the understanding of this phenomenon. The purpose of this review is to provide an update on previously proposed theories and address new theories that have been advanced. The potential adaptations have been categorized as neural, mechanical and cellular. There is some evidence to suggest that the repeated bout effect is associated with a shift toward greater recruitment of slow twitch motor units. However, the repeated bout effect has been demonstrated with electrically stimulated contractions, indicating that a peripheral, non-neural adaptation predominates. With respect to mechanical adaptations there is evidence that both dynamic and passive muscle stiffness increase with eccentric training but there are no studies on passive or dynamic stiffness adaptations to a single eccentric bout. The role of the cytoskeleton in regulating dynamic stiffness is a possible area for future research. With respect to cellular adaptations there is evidence of longitudinal addition of sarcomeres and adaptations in the inflammatory response following an initial bout of eccentric exercise. Addition of sarcomeres is thought to reduce sarcomere strain during eccentric contractions thereby avoiding sarcomere disruption. Inflammatory adaptations are thought to limit the proliferation of damage that typically occurs in the days following eccentric exercise. In conclusion, there have been significant advances in the understanding of the repeated bout effect, however, a unified theory explaining the mechanism or mechanisms for this protective adaptation remains elusive.
Effect of eccentric exercise program for early tibialis posterior tendinopathy.
Kulig, Kornelia; Lederhaus, Eric S; Reischl, Steve; Arya, Shruti; Bashford, Greg
2009-09-01
Morphology and vascularization of painful tibialis posterior (TP) tendons before and after an intervention targeting the degenerated tendon were examined. Functional status and pain level were also assessed. A10-week twice daily, progressive eccentric tendon loading, calf stretching program with orthoses was implemented with ten, early stage TP tendinopathy subjects. TP tendons were imaged by grayscale and Doppler ultrasound at INITIAL and POST evaluations to assess the tendon's morphology and signs of neovascularization. The Foot Functional Index (FFI), Physical Activity Scale (PAS), 5-Minute Walk Test, and single heel raise (SHR) test were completed at INITIAL and POST evaluations. The Global Rating Scale (GRS) was completed at 6 months followup. One-way ANOVA was used to compare the FFI at INITIAL, POST, and 6-MONTH time points. Paired t-tests were used to compare means between the remaining variables. The level of significance was p = 0.05. There was a significant difference in FFI total, pain, and disability at the three time-points. Post-hoc paired t-tests revealed that the FFI scores were lower for the total score and pain and disability subcategories when comparing from INITIAL to POST and INITIAL to 6-MONTH evaluations (p < 0.05 for all). The number of SHR increased significantly on the involved side from INITIAL to POST evaluation (p = 0.041). The GRS demonstrated minimum clinically important differences for improvements in symptoms at 6-MONTH. Tendon morphology and vascularization remained abnormal following the intervention. A 10-week tendon specific eccentric program resulted in improvements in symptoms and function without changes in tendon morphology or neovascularization.
Eccentricity growth and orbit flip in near-coplanar hierarchical three-body systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Gongjie; Naoz, Smadar; Kocsis, Bence
2014-04-20
The secular dynamical evolution of a hierarchical three-body system in which a distant third object orbits around a binary has been studied extensively, demonstrating that the inner orbit can undergo large eccentricity and inclination oscillations. It was shown before that starting with a circular inner orbit, large mutual inclination (40°-140°) can produce long timescale modulations that drive the eccentricity to extremely large values and can flip the orbit. Here, we demonstrate that starting with an almost coplanar configuration, for eccentric inner and outer orbits, the eccentricity of the inner orbit can still be excited to high values, and the orbitmore » can flip by ∼180°, rolling over its major axis. The ∼180° flip criterion and the flip timescale are described by simple analytic expressions that depend on the initial orbital parameters. With tidal dissipation, this mechanism can produce counter-orbiting exoplanetary systems. In addition, we also show that this mechanism has the potential to enhance the tidal disruption or collision rates for different systems. Furthermore, we explore the entire e {sub 1} and i {sub 0} parameter space that can produce flips.« less
Adams, Nicola
2014-01-01
Objectives: To conduct a feasibility study to compare concentric and eccentric rotator cuff strengthening exercises for rotator cuff tendinopathy. Methods: A total of 11 patients with rotator cuff tendinopathy who were on the waiting list for arthroscopic subacromial decompression surgery were randomised to perform eccentric rotator cuff strengthening exercises, concentric strengthening exercises or no exercises. Patients were evaluated in terms of levels of pain and function using the Oxford Shoulder Score and a Visual Analogue Scale initially, at 4 weeks and at 8 weeks. Results: The study design was found to be acceptable to patients and achieved a high level of 86% compliance. The drop-out rate was 0%. Two patients performing eccentric strengthening exercises improved sufficiently to cancel their planned surgery. Conclusion: Further research in this area is recommended. The study design was feasible and power calculations have been conducted to aid future research planning. PMID:26770702
Miners, Andrew L.; Bougie, Tracy L.
2011-01-01
Objective To describe the subjective pain and functional improvements of a patient with chronic Achilles tendinopathy following a treatment plan incorporating active and passive tissue warm-up, followed respectively by soft tissue mobilization utilizing both Graston Technique® and Active Release Techniques®, eccentric exercise, and static stretching in combination with cryotherapy. Background The primary characterization of chronic Achilles tendinopathy is gradual onset of pain and dysfunction focused in one or both Achilles tendons arising secondary to a history of repetitive use or excessive overload. Intervention and Outcome Conservative treatment is commonly the initial strategy for patient management. Tissue heating, soft tissue mobilization, eccentric training, and static stretching with cryotherapy were implemented to reduce pain and improve function. Summary A specific protocol of heat, soft tissue mobilization, eccentric exercise, stretching, and cryotherapy appeared to facilitate a rapid and complete recovery from chronic Achilles tendinopathy. PMID:22131563
NASA Technical Reports Server (NTRS)
Goodykoontz, J.; Vonglahn, U.
1980-01-01
An inverted velocity profile coaxial nozzle for use with supersonic cruise aircraft produces less jet noise than an equivalent conical nozzle. Furthermore, decreasing the annulus height (increasing radius ratio with constant flow) results in further noise reduction benefits. The annulus shape (height) was varied by an eccentric mounting of the annular nozzle with respect to a conical core nozzle. Acoustic measurements were made in the flyover plane below the narrowest portion of the annulus and at 90 deg and 180 deg from this point. The model-scale spectra are scaled up to engine size (1.07 m diameter) and the perceived noise levels for the eccentric and baseline concentric inverted velocity profile coaxial nozzles are compared over a range of operating conditions. The implications of the acoustic benefits derived with the eccentric nozzle to practical applications are discussed.
Effect of Eccentricity on the Static and Dynamic Performance of a Turbulent Hybrid Bearing
NASA Technical Reports Server (NTRS)
Sanandres, Luis A.
1991-01-01
The effect of journal eccentricity on the static and dynamic performance of a water lubricated, 5-recess hybrid bearing is presented in detail. The hydrostatic bearing has been designed to operate at a high speed and with a large level of external pressurization. The operating conditions determine the flow in the bearing to be highly turbulent and strongly dominated by fluid inertia effects. The analysis covers the spectrum of journal center displacements directed towards the middle of a recess and towards the mid-land portion between two consecutive recesses. Predicted dynamic force coefficients are uniform for small to moderate eccentricities. For large journal center displacements, fluid cavitation and recess position determine large changes in the bearing dynamic performance. The effect of fluid inertia force coefficients on the threshold speed of instability and whirl ratio of a single mass flexible rotor is discussed.
The effect of eccentric and concentric calf muscle training on Achilles tendon stiffness.
Morrissey, Dylan; Roskilly, Anna; Twycross-Lewis, Richard; Isinkaye, Tomide; Screen, Hazel; Woledge, Roger; Bader, Dan
2011-03-01
To compare in vivo effects of eccentric and concentric calf muscle training on Achilles tendon stiffness, in subjects without tendinopathy. Thirty-eight recreational athletes completed 6 weeks eccentric (6 males, 13 females, 21.6 ± 2.2 years) or concentric training (8 males, 11 females, 21.1 ± 2.0 years). Achilles tendon stiffness, tendon modulus and single-leg jump height were measured before and after intervention. Exercise adherence was recorded using a diary. All data are reported as mean ± SD. Groups were matched for height and weight but the eccentric training group were more active at baseline (P < 0.05). Tendon stiffness was higher in the eccentrically trained group at baseline compared to the concentrically trained group (20.9 ± 7.3 N/mm v 13.38 ± 4.66 N/mm; P = 0.001) and decreased significantly after eccentric training (to 17.2 ( ± 5.9) N/mm (P = 0.035)). There was no stiffness change in the concentric group (P = 0.405). Stiffness modulus showed similar changes to stiffness. An inverse correlation was found between initial, and subsequent, reduction in stiffness (r = -0.66). Jump height did not change and no correlation between stiffness change and adherence was observed in either group (r = 0.01). Six weeks of eccentric training can alter Achilles tendon stiffness while a matched concentric programme shows no similar effects. Studies in patients with Achilles tendinopathy are warranted.
NASA Astrophysics Data System (ADS)
Moutou, C.; Vigan, A.; Mesa, D.; Desidera, S.; Thébault, P.; Zurlo, A.; Salter, G.
2017-06-01
We explore the multiplicity of exoplanet host stars with high-resolution images obtained with VLT/SPHERE. Two different samples of systems were observed: one containing low-eccentricity outer planets, and the other containing high-eccentricity outer planets. We find that 10 out of 34 stars in the high-eccentricity systems are members of a binary, while the proportion is 3 out of 27 for circular systems. Eccentric-exoplanet hosts are, therefore, significantly more likely to have a stellar companion than circular-exoplanet hosts. The median magnitude contrast over the 68 data sets is 11.26 and 9.25, in H and K, respectively, at 0.30 arcsec. The derived detection limits reveal that binaries with separations of less than 50 au are rarer for exoplanet hosts than for field stars. Our results also imply that the majority of high-eccentricity planets are not embedded in multiple stellar systems (24 out of 34), since our detection limits exclude the presence of a stellar companion. We detect the low-mass stellar companions of HD 7449 and HD 211847, both members of our high-eccentricity sample. HD 7449B was already detected and our independent observation is in agreement with this earlier work. HD 211847's substellar companion, previously detected by the radial velocity method, is actually a low-mass star seen face-on. The role of stellar multiplicity in shaping planetary systems is confirmed by this work, although it does not appear as the only source of dynamical excitation. Based on observations collected with SPHERE on the Very Large Telescope (ESO, Chile).
Blood Flow After Exercise-Induced Muscle Damage
Selkow, Noelle M.; Herman, Daniel C.; Liu, Zhenqi; Hertel, Jay; Hart, Joseph M.; Saliba, Susan A.
2015-01-01
Context: The most common modality used to address acute inflammation is cryotherapy. Whereas pain decreases with cryotherapy, evidence that changes occur in perfusion of skeletal muscle is limited. We do not know whether ice attenuates the increases in perfusion associated with acute inflammation. Objective: To examine the effects of repeated applications of ice bags on perfusion of the gastrocnemius muscle after an eccentric exercise protocol. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: Eighteen healthy participants (3 men, 15 women; age = 22.2 ± 2.2 years, height = 166.0 ± 11.9 cm, mass = 69.4 ± 25.0 kg). Intervention(s): To induce eccentric muscle damage, participants performed 100 unilateral heel-lowering exercises off a step to the beat of a metronome. A randomized intervention (cryotherapy, sham, control) was applied to the exercised lower extremity immediately after the protocol and again at 10, 24, and 34 hours after the protocol. Main Outcome Measure(s): Baseline perfusion measurements (blood volume, blood flow, and blood flow velocity) were taken using contrast-enhanced ultrasound of the exercised leg. Perfusion was reassessed after the first intervention and 48 hours after the protocol as percentage change scores. Pain was measured with a visual analog scale at baseline and at 10, 24, 34, and 48 hours after the protocol. Separate repeated-measures analyses of variance were used to assess each dependent variable. Results: We found no interactions among interventions for microvascular perfusion. Blood volume and blood flow, however, increased in all conditions at 48 hours after exercise (P < .001), and blood flow velocity decreased postintervention from baseline (P = .041). We found a time-by-intervention interaction for pain (P = .009). Visual analog scale scores were lower for the cryotherapy group than for the control group at 34 and 48 hours after exercise. Conclusions: Whereas eccentric muscle damage resulted in increased blood flow, ice did not decrease muscle perfusion 48 hours after exercise. Therefore, ice does not seem to decrease muscle perfusion when blood flow is elevated, as it would be during inflammation. PMID:25658816
Dynamical Circularization of the Martian Orbit
NASA Astrophysics Data System (ADS)
Bierbaum, Quinn Patrick; Brown, Cole; Williams, Darren M.
2018-06-01
As part of an investigation into the history of the orbital characteristics of the planet Mars, in conjunction with research being performed by Cole Brown and Dr. Darren Williams, I have run dynamical computer simulations of the solar system placing the eccentricity of the Martian orbit between 0.2 and 0.4 in order to discern the viability of eccentricity damping due to long-range planetary interactions as well as interactions with swarms of asteroids placed randomly between 0.5-2.0 AU. This research is one component of a hypothesis intended to explain the geological evidence of flowing water on the primordial Martian surface.
DYNAMIC STABILITY OF THE SOLAR SYSTEM: STATISTICALLY INCONCLUSIVE RESULTS FROM ENSEMBLE INTEGRATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeebe, Richard E., E-mail: zeebe@soest.hawaii.edu
Due to the chaotic nature of the solar system, the question of its long-term stability can only be answered in a statistical sense, for instance, based on numerical ensemble integrations of nearby orbits. Destabilization of the inner planets, leading to close encounters and/or collisions can be initiated through a large increase in Mercury's eccentricity, with a currently assumed likelihood of ∼1%. However, little is known at present about the robustness of this number. Here I report ensemble integrations of the full equations of motion of the eight planets and Pluto over 5 Gyr, including contributions from general relativity. The resultsmore » show that different numerical algorithms lead to statistically different results for the evolution of Mercury's eccentricity (e{sub M}). For instance, starting at present initial conditions (e{sub M}≃0.21), Mercury's maximum eccentricity achieved over 5 Gyr is, on average, significantly higher in symplectic ensemble integrations using heliocentric rather than Jacobi coordinates and stricter error control. In contrast, starting at a possible future configuration (e{sub M}≃0.53), Mercury's maximum eccentricity achieved over the subsequent 500 Myr is, on average, significantly lower using heliocentric rather than Jacobi coordinates. For example, the probability for e{sub M} to increase beyond 0.53 over 500 Myr is >90% (Jacobi) versus only 40%-55% (heliocentric). This poses a dilemma because the physical evolution of the real system—and its probabilistic behavior—cannot depend on the coordinate system or the numerical algorithm chosen to describe it. Some tests of the numerical algorithms suggest that symplectic integrators using heliocentric coordinates underestimate the odds for destabilization of Mercury's orbit at high initial e{sub M}.« less
Eccentricity effects on leakage of a brush seal at low speeds
NASA Technical Reports Server (NTRS)
Schlumberger, Julie A.; Proctor, Margaret P.; Hendricks, Robert C.
1991-01-01
The effects of eccentricity on brush seal leakage at low rotational speeds were investigated. Included are the leakage results for ambient temperature air and nearly saturated streams at three different rotor eccentricities at both 0 and 400 rpm. A brush seal with a nominal bore diameter of 13.647 cm. (5.3730 in.) was used. It had a radial concentric interference of 0.071 cm (0.0028 in.) and a fence height of 0.0927 cm (0.0365 in.). There were 1060 bristles per centimeter of circumference (2690 bristles per inch of circumference). Rotor eccentricities of 0.003, 0.010, 0.038, and 0.043 cm (0.001, 0.004, 0.015, and 0.017 in.) were achieved by using bushings with different offsets. The results were compared with an annular seal model (FLOWCAL) for air and to a standard labyrinth seal model for steam. The annular seal model was also compared with a bulk flow model of a concentric brush seal in air. Large eccentricities did not damage the brush seals or their Haynes 25 bristles. However, the 304 stainless steel rotor did not show wear, indicating a harder surface is needed. Only the stream data showed hysteresis and were affected by shaft rotation. The brush seal had lower leakage rates than those predicted for comparable annular and labyrinth seals (conventional) because of the large clearances those seals require to accommodate large shaft excursions.
Malm, Christer; Nyberg, Pernilla; Engström, Marianne; Sjödin, Bertil; Lenkei, Rodica; Ekblom, Björn; Lundberg, Ingrid
2000-01-01
A role of the immune system in muscular adaptation to physical exercise has been suggested but data from controlled human studies are scarce. The present study investigated immunological events in human blood and skeletal muscle by immunohistochemistry and flow cytometry after eccentric cycling exercise and multiple biopsies. Immunohistochemical detection of neutrophil- (CD11b, CD15), macrophage- (CD163), satellite cell- (CD56) and IL-1β-specific antigens increased similarly in human skeletal muscle after eccentric cycling exercise together with multiple muscle biopsies, or multiple biopsies only. Changes in immunological variables in blood and muscle were related, and monocytes and natural killer (NK) cells appeared to have governing functions over immunological events in human skeletal muscle. Delayed onset muscle soreness, serum creatine kinase activity and C-reactive protein concentration were not related to leukocyte infiltration in human skeletal muscle. Eccentric cycling and/or muscle biopsies did not result in T cell infiltration in human skeletal muscle. Modes of stress other than eccentric cycling should therefore be evaluated as a myositis model in human. Based on results from the present study, and in the light of previously published data, it appears plausible that muscular adaptation to physical exercise occurs without preceding muscle inflammation. Nevertheless, leukocytes seem important for repair, regeneration and adaptation of human skeletal muscle. PMID:11080266
NASA Astrophysics Data System (ADS)
Poon, Eric; Thondapu, Vikas; Barlis, Peter; Ooi, Andrew
2017-11-01
Coronary artery disease remains a major cause of mortality in developed countries, and is most often due to a localized flow-limiting stenosis, or narrowing, of coronary arteries. Patients often undergo invasive procedures such as X-ray angiography and fractional flow reserve to diagnose flow-limiting lesions. Even though such diagnostic techniques are well-developed, the effects of diseased coronary segments on local flow are still poorly understood. Therefore, this study investigated the effect of irregular geometries of diseased coronary segments on the macro-recirculation and local pressure minimum regions. We employed an idealized coronary artery model with a diameter of stenosis of 75%. By systematically adjusting the eccentricity and the asymmetry of the coronary stenosis, we uncovered an increase in macro-recirculation size. Most importantly, the presence of this macro-recirculation signifies a local pressure minimum (identified by λ2 vortex identification method). This local pressure minimum has a profound effect on the pressure drops in both longitudinal and planar directions, which has implications for diagnosis and treatment of coronary artery disease. Supported by Australian Research Council LP150100233 and National Computational Infrastructure m45.
Experimental Investigations of Exciting Forces Caused by Flow in Labyrinth Seals
NASA Technical Reports Server (NTRS)
Thieleke, G.; Stetter, H.
1991-01-01
The interaction of the flow through the labyrinth seals with the shaft of the rotor can have an effect on the stability of turbomachines. Thus, the excited forces, so-called cross forces or nonconservative forces, arise, which act perpendicular to the rotor eccentricity. This effect is caused by an unsymmetrical pressure distribution within the labyrinth cavities. Experimental studies were carried out for different types of labyrinth geometries: two staggered labyrinths with teeth on the stator and grooved rotor as well as a full and a convergent stepped labyrinth. These labyrinths can be found on the tip shrouding of bladings in steam or gas turbines. The following parameters were varied in the test facility: geometry of the labyrinth seals (number of cavities, inlet region), shaft rotation, pressure difference on the seal, entry swirl and eccentricity of the rotor. The results are presented for stiffness coefficients of the labyrinth seals, leakage flow and circumferential flow in each cavity which was measured with special probes. Generally, the inlet swirl has the greatest influence on the coefficients of the seals. The experimental results were compared with theoretical results and were in good agreement.
Topology of the Relative Motion: Circular and Eccentric Reference Orbit Cases
NASA Technical Reports Server (NTRS)
FontdecabaiBaig, Jordi; Metris, Gilles; Exertier, Pierre
2007-01-01
This paper deals with the topology of the relative trajectories in flight formations. The purpose is to study the different types of relative trajectories, their degrees of freedom, and to give an adapted parameterization. The paper also deals with the research of local circular motions. Even if they exist only when the reference orbit is circular, we extrapolate initial conditions to the eccentric reference orbit case.This alternative approach is complementary with traditional approaches in terms of cartesian coordinates or differences of orbital elements.
NASA Astrophysics Data System (ADS)
Monakhov, A. A.; Chernyavski, V. M.; Shtemler, Yu.
2013-09-01
Bounds of cavitation inception are experimentally determined in a creeping flow between eccentric cylinders, the inner one being static and the outer rotating at a constant angular velocity, Ω. The geometric configuration is additionally specified by a small minimum gap between cylinders, H, as compared with the radii of the inner and outer cylinders. For some values H and Ω, cavitation bubbles are observed, which are collected on the surface of the inner cylinder and equally distributed over the line parallel to its axis near the downstream minimum gap position. Cavitation occurs for the parameters {H,Ω} within a region bounded on the right by the cavitation inception curve that passes through the plane origin and cannot exceed the asymptotic threshold value of the minimum gap, Ha, in whose vicinity cavitation may occur at H < Ha only for high angular rotation velocities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortes, Adriano M.; Dalcin, Lisandro; Sarmiento, Adel F.
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf–sup stable and pointwise divergence-free. When applied to the discretized Stokes problem, these spaces generate a symmetric and indefinite saddle-point linear system. The iterative method of choice to solve such system is the Generalized Minimum Residual Method. This method lacks robustness, and one remedy is to use preconditioners. For linear systems of saddle-point type, a large family of preconditioners can be obtained by using a block factorization of the system. In this paper, we show howmore » the nesting of “black-box” solvers and preconditioners can be put together in a block triangular strategy to build a scalable block preconditioner for the Stokes system discretized by divergence-conforming B-splines. Lastly, besides the known cavity flow problem, we used for benchmark flows defined on complex geometries: an eccentric annulus and hollow torus of an eccentric annular cross-section.« less
Cortes, Adriano M.; Dalcin, Lisandro; Sarmiento, Adel F.; ...
2016-10-19
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf–sup stable and pointwise divergence-free. When applied to the discretized Stokes problem, these spaces generate a symmetric and indefinite saddle-point linear system. The iterative method of choice to solve such system is the Generalized Minimum Residual Method. This method lacks robustness, and one remedy is to use preconditioners. For linear systems of saddle-point type, a large family of preconditioners can be obtained by using a block factorization of the system. In this paper, we show howmore » the nesting of “black-box” solvers and preconditioners can be put together in a block triangular strategy to build a scalable block preconditioner for the Stokes system discretized by divergence-conforming B-splines. Lastly, besides the known cavity flow problem, we used for benchmark flows defined on complex geometries: an eccentric annulus and hollow torus of an eccentric annular cross-section.« less
Van Toen, C; Melnyk, A D; Street, J; Oxland, T R; Cripton, P A
2014-03-21
Current neck injury criteria do not include limits for lateral bending combined with axial compression and this has been observed as a clinically relevant mechanism, particularly for rollover motor vehicle crashes. The primary objectives of this study were to evaluate the effects of lateral eccentricity (the perpendicular distance from the axial force to the centre of the spine) on peak loads, kinematics, and spinal canal occlusions of subaxial cervical spine specimens tested in dynamic axial compression (0.5 m/s). Twelve 3-vertebra human cadaver cervical spine specimens were tested in two groups: low and high eccentricity with initial eccentricities of 1 and 150% of the lateral diameter of the vertebral body. Six-axis loads inferior to the specimen, kinematics of the superior-most vertebra, and spinal canal occlusions were measured. High speed video was collected and acoustic emission (AE) sensors were used to define the time of injury. The effects of eccentricity on peak loads, kinematics, and canal occlusions were evaluated using unpaired Student t-tests. The high eccentricity group had lower peak axial forces (1544 ± 629 vs. 4296 ± 1693 N), inferior displacements (0.2 ± 1.0 vs. 6.6 ± 2.0 mm), and canal occlusions (27 ± 5 vs. 53 ± 15%) and higher peak ipsilateral bending moments (53 ± 17 vs. 3 ± 18 Nm), ipsilateral bending rotations (22 ± 3 vs. 1 ± 2°), and ipsilateral displacements (4.5 ± 1.4 vs. -1.0 ± 1.3 mm, p<0.05 for all comparisons). These results provide new insights to develop prevention, recognition, and treatment strategies for compressive cervical spine injuries with lateral eccentricities. © 2013 Published by Elsevier Ltd.
Eccentricity and misalignment effects on the performance of high-pressure annular seals
NASA Technical Reports Server (NTRS)
Chen, W. C.; Jackson, E. D.
1985-01-01
Annular pressure seals act as powerful hydrostatic bearings and influence the dynamic characteristics of rotating machinery. This work, using the existing concentric seal theories, provides a simple approximate method for calculation of both seal leakage and the dynamic coefficients for short seals with large eccentricity and/or misalignment of the shaft. Rotation and surface roughness effects are included for leakage and dynamic force calculation. The leakage calculations for both laminar and turbulent flow are compared with experimental results. The dynamic coefficients are compared with analytical results. Excellent agreement between the present work and published results have been observed up to the eccentricitiy ratio of 0.8.
NASA Astrophysics Data System (ADS)
Vinsard, G.; Dufour, S.; Saatdjian, E.; Mota, J. P. B.
2016-03-01
Chaotic advection can effectively enhance the heat transfer rate between a boundary and fluids with high Prandtl number. These fluids are usually highly viscous and thus turbulent agitation is not a viable solution since the energy required to mix the fluid would be prohibitive. Here, we analyze previously obtained results on chaotic advection and heat transfer in two similar 2-D periodic flows and on their corresponding 3-D periodic flows when an axial velocity component is superposed. The two flows studied are the flow between eccentric rotating cylinders and the flow between confocal ellipses. For both of these flows the analysis is simplified because the Stokes equations can be solved analytically to obtain a closed form solution. For both 2-D periodic flows, we show that chaotic heat transfer is enhanced by the displacement of the saddle point location during one period. Furthermore, the enhancement by chaotic advection in the elliptical geometry is approximately double that obtained in the cylindrical geometry because there are two saddle points instead of one. We also explain why, for high eccentricity ratios, there is no heat transfer enhancement in the cylindrical geometry. When an axial velocity component is added to both of these flows so that they become 3-D, previous work has shown that there is an optimum modulation frequency for which chaotic advection and heat transfer enhancement is a maximum. Here we show that the optimum modulation frequency can be derived from results without an axial flow. We also explain by physical arguments other previously unanswered questions in the published data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Yan-Xiang, E-mail: yxgong@sina.com
A hydrodynamical simulation shows that a circumbinary planet will migrate inward to the edge of the disk cavity. If multiple planets form in a circumbinary disk, successive migration will lead to planet–planet scattering (PPS). PPS of Kepler -like circumbinary planets is discussed in this paper. The aim of this paper is to answer how PPS affects the formation of these planets. We find that a close binary has a significant influence on the scattering process. If PPS occurs near the unstable boundary of a binary, about 10% of the systems can be completely destroyed after PPS. In more than 90%more » of the systems, there is only one planet left. Unlike the eccentricity distribution produced by PPS in a single star system, the surviving planets generally have low eccentricities if PPS take place near the location of the currently found circumbinary planets. In addition, the ejected planets are generally the innermost of two initial planets. The above results depend on the initial positions of the two planets. If the initial positions of the planets are moved away from the binary, the evolution tends toward statistics similar to those around single stars. In this process, the competition between the planet–planet force and the planet-binary force makes the eccentricity distribution of surviving planets diverse. These new features of P-type PPS will deepen our understanding of the formation of these circumbinary planets.« less
Kefayati, Sarah; Holdsworth, David W; Poepping, Tamie L
2014-01-03
Clinical decision-making for the treatment of patients with diseased carotid artery is mainly based on the severity of the stenosis. However, stenosis severity alone is not a sensitive indicator, and other local factors for the assessment of stroke risk are required. Flow disturbance is of particular interest due to its proven association with increased thromboembolic activities. The objective of this study was to investigate the level of turbulence intensity (TI) with regards to certain geometrical features of the plaque - namely stenosis severity, eccentricity, and ulceration. A family of eight carotid-artery bifurcation models was examined using particle image velocimetry. Results showed a marked difference in turbulence intensity among these models; increasing degree of stenosis severity resulted in increased turbulence intensity, going from 0.12 m/s for mild stenosis to 0.37 m/s for severe stenosis (with concentric geometry). Moreover, independent of stenosis severity, eccentricity led to further elevations in turbulence intensity, increasing TI by 0.05-0.10 m/s over the counterpart concentric plaque. The presence of ulceration (in a 50% eccentric plaque) produced a larger portion of moderate turbulence intensity (~0.10 m/s) compared to the non-ulcerated model, more proximal to the bifurcation apex in the post-stenotic recirculation zone. The effect of plaque eccentricity and ulceration in enhancing the downstream turbulence has potential clinical implications for a more sensitive assessment of stroke risk beyond stenosis severity alone. © 2013 Elsevier Ltd. All rights reserved.
THE INFLUENCE OF ORBITAL ECCENTRICITY ON TIDAL RADII OF STAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Jeremy J.; Harris, William E.; Sills, Alison
2013-02-20
We have performed N-body simulations of star clusters orbiting in a spherically symmetric smooth galactic potential. The model clusters cover a range of initial half-mass radii and orbital eccentricities in order to test the historical assumption that the tidal radius of a cluster is imposed at perigalacticon. The traditional assumption for globular clusters is that since the internal relaxation time is larger than its orbital period, the cluster is tidally stripped at perigalacticon. Instead, our simulations show that a cluster with an eccentric orbit does not need to fully relax in order to expand. After a perigalactic pass, a clustermore » recaptures previously unbound stars, and the tidal shock at perigalacticon has the effect of energizing inner region stars to larger orbits. Therefore, instead of the limiting radius being imposed at perigalacticon, it more nearly traces the instantaneous tidal radius of the cluster at any point in the orbit. We present a numerical correction factor to theoretical tidal radii calculated at perigalacticon which takes into consideration both the orbital eccentricity and current orbital phase of the cluster.« less
Influence of periodic orbits on the formation of giant planetary systems
NASA Astrophysics Data System (ADS)
Libert, Anne-Sophie; Sotiriadis, Sotiris; Antoniadou, Kyriaki I.
2018-02-01
The late-stage formation of giant planetary systems is rich in interesting dynamical mechanisms. Previous simulations of three giant planets initially on quasi-circular and quasi-coplanar orbits in the gas disc have shown that highly mutually inclined configurations can be formed, despite the strong eccentricity and inclination damping exerted by the disc. Much attention has been directed to inclination-type resonance, asking for large eccentricities to be acquired during the migration of the planets. Here we show that inclination excitation is also present at small to moderate eccentricities in two-planet systems that have previously experienced an ejection or a merging and are close to resonant commensurabilities at the end of the gas phase. We perform a dynamical analysis of these planetary systems, guided by the computation of planar families of periodic orbits and the bifurcation of families of spatial periodic orbits. We show that inclination excitation at small to moderate eccentricities can be produced by (temporary) capture in inclination-type resonance and the possible proximity of the non-coplanar systems to spatial periodic orbits contributes to maintaining their mutual inclination over long periods of time.
Star formation around supermassive black holes.
Bonnell, I A; Rice, W K M
2008-08-22
The presence of young massive stars orbiting on eccentric rings within a few tenths of a parsec of the supermassive black hole in the galactic center is challenging for theories of star formation. The high tidal shear from the black hole should tear apart the molecular clouds that form stars elsewhere in the Galaxy, and transport of stars to the galactic center also appears unlikely during their lifetimes. We conducted numerical simulations of the infall of a giant molecular cloud that interacts with the black hole. The transfer of energy during closest approach allows part of the cloud to become bound to the black hole, forming an eccentric disk that quickly fragments to form stars. Compressional heating due to the black hole raises the temperature of the gas up to several hundred to several thousand kelvin, ensuring that the fragmentation produces relatively high stellar masses. These stars retain the eccentricity of the disk and, for a sufficiently massive initial cloud, produce an extremely top-heavy distribution of stellar masses. This potentially repetitive process may explain the presence of multiple eccentric rings of young stars in the presence of a supermassive black hole.
Automatic control of oscillatory penetration apparatus
Lucon, Peter A
2015-01-06
A system and method for controlling an oscillatory penetration apparatus. An embodiment is a system and method for controlling a sonic drill having a displacement and an operating range and operating at a phase difference, said sonic drill comprising a push-pull piston and eccentrics, said method comprising: operating the push-pull piston at an initial push-pull force while the eccentrics are operated at a plurality of different operating frequencies within the operating range of the sonic drill and measuring the displacement at each operating frequency; determining an efficient operating frequency for the material being drilled and operating the eccentrics at said efficient operating frequency; determining the phase difference at which the sonic drill is operating; and if the phase difference is not substantially equal to minus ninety degrees, operating the push-pull piston at another push-pull force.
The disruption of multiplanet systems through resonance with a binary orbit.
Touma, Jihad R; Sridhar, S
2015-08-27
Most exoplanetary systems in binary stars are of S-type, and consist of one or more planets orbiting a primary star with a wide binary stellar companion. Planetary eccentricities and mutual inclinations can be large, perhaps forced gravitationally by the binary companion. Earlier work on single planet systems appealed to the Kozai-Lidov instability wherein a sufficiently inclined binary orbit excites large-amplitude oscillations in the planet's eccentricity and inclination. The instability, however, can be quenched by many agents that induce fast orbital precession, including mutual gravitational forces in a multiplanet system. Here we report that orbital precession, which inhibits Kozai-Lidov cycling in a multiplanet system, can become fast enough to resonate with the orbital motion of a distant binary companion. Resonant binary forcing results in dramatic outcomes ranging from the excitation of large planetary eccentricities and mutual inclinations to total disruption. Processes such as planetary migration can bring an initially non-resonant system into resonance. As it does not require special physical or initial conditions, binary resonant driving is generic and may have altered the architecture of many multiplanet systems. It can also weaken the multiplanet occurrence rate in wide binaries, and affect planet formation in close binaries.
Dynamics of thermographic skin temperature response during squat exercise at two different speeds.
Formenti, Damiano; Ludwig, Nicola; Trecroci, Athos; Gargano, Marco; Michielon, Giovanni; Caumo, Andrea; Alberti, Giampietro
2016-07-01
Low intensity resistance training with slow movement and tonic force generation has been shown to create blood flow restriction within muscles that may affect thermoregulation through the skin. We aimed to investigate the influence of two speeds of exercise execution on skin temperature dynamics using infrared thermography. Thirteen active males performed randomly two sessions of squat exercise (normal speed, 1s eccentric/1s concentric phase, 1s; slow speed, 5s eccentric/5s concentric phase, 5s), using ~50% of 1 maximal repetition. Thermal images of ST above muscles quadriceps were recorded at a rate of 0.05Hz before the exercise (to determine basal ST) and for 480s following the initiation of the exercise (to determine the nonsteady-state time course of ST). Results showed that ST changed more slowly during the 5s exercise (p=0.002), whereas the delta (with respect to basal) excursions were similar for the two exercises (p>0.05). In summary, our data provided a detailed nonsteady-state portrait of ST changes following squat exercises executed at two different speeds. These results lay the basis for further investigations entailing the joint use of infrared thermography and Doppler flowmetry to study the events taking place both at the skin and the muscle level during exercises executed at slow speed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lattice Boltzmann simulation of viscoelastic flow past a confined free rotating cylinder
NASA Astrophysics Data System (ADS)
Xia, Yi; Zhang, Peijie; Lin, Jianzhong; Ku, Xiaoke; Nie, Deming
2018-05-01
To study the dynamics of rigid body immersed in viscoelastic fluid, an Oldroyd-B fluid flow past an eccentrically situated, free rotating cylinder in a two-dimensional (2D) channel is simulated by a novel lattice Boltzmann method. Two distribution functions are employed, one of which is aimed to solve Navier-Stokes equation and the other to the constitutive equation, respectively. The unified interpolation bounce-back scheme is adopted to treat the moving curved boundary of cylinder, and the novel Galilean invariant momentum exchange method is utilized to obtain the hydrodynamic force and torque exerted on the cylinder. Results show that the center-fixed cylinder rotates inversely in the direction where a cylinder immersed in Newtonian fluid do, which generates a centerline-oriented lift force according to Magnus effect. The cylinder’s eccentricity, flow inertia, fluid elasticity and viscosity would affect the rotation of cylinder in different ways. The cylinder rotates more rapidly when located farther away from the centerline, and slows down when it is too close to the wall. The rotation frequency decreases with increasing Reynolds number, and larger rotation frequency responds to larger Weissenberg number and smaller viscosity ratio, indicating that the fluid elasticity and low solvent viscosity accelerates the flow-induced rotation of cylinder.
Towards an initial mass function for giant planets
NASA Astrophysics Data System (ADS)
Carrera, Daniel; Davies, Melvyn B.; Johansen, Anders
2018-07-01
The distribution of exoplanet masses is not primordial. After the initial stage of planet formation, gravitational interactions between planets can lead to the physical collision of two planets, or the ejection of one or more planets from the system. When this occurs, the remaining planets are typically left in more eccentric orbits. In this report we demonstrate how the present-day eccentricities of the observed exoplanet population can be used to reconstruct the initial mass function of exoplanets before the onset of dynamical instability. We developed a Bayesian framework that combines data from N-body simulations with present-day observations to compute a probability distribution for the mass of the planets that were ejected or collided in the past. Integrating across the exoplanet population, one can estimate the initial mass function of exoplanets. We find that the ejected planets are primarily sub-Saturn-type planets. While the present-day distribution appears to be bimodal, with peaks around ˜1MJ and ˜20M⊕, this bimodality does not seem to be primordial. Instead, planets around ˜60M⊕ appear to be preferentially removed by dynamical instabilities. Attempts to reproduce exoplanet populations using population synthesis codes should be mindful of the fact that the present population may have been depleted of sub-Saturn-mass planets. Future observations may reveal that young giant planets have a more continuous size distribution with lower eccentricities and more sub-Saturn-type planets. Lastly, there is a need for additional data and for more research on how the system architecture and multiplicity might alter our results.
Toward an initial mass function for giant planets
NASA Astrophysics Data System (ADS)
Carrera, Daniel; Davies, Melvyn B.; Johansen, Anders
2018-05-01
The distribution of exoplanet masses is not primordial. After the initial stage of planet formation, gravitational interactions between planets can lead to the physical collision of two planets, or the ejection of one or more planets from the system. When this occurs, the remaining planets are typically left in more eccentric orbits. In this report we demonstrate how the present-day eccentricities of the observed exoplanet population can be used to reconstruct the initial mass function of exoplanets before the onset of dynamical instability. We developed a Bayesian framework that combines data from N-body simulations with present-day observations to compute a probability distribution for the mass of the planets that were ejected or collided in the past. Integrating across the exoplanet population, one can estimate the initial mass function of exoplanets. We find that the ejected planets are primarily sub-Saturn type planets. While the present-day distribution appears to be bimodal, with peaks around ˜1MJ and ˜20M⊕, this bimodality does not seem to be primordial. Instead, planets around ˜60M⊕ appear to be preferentially removed by dynamical instabilities. Attempts to reproduce exoplanet populations using population synthesis codes should be mindful of the fact that the present population may have been been depleted of sub-Saturn-mass planets. Future observations may reveal that young giant planets have a more continuous size distribution with lower eccentricities and more sub-Saturn type planets. Lastly, there is a need for additional data and for more research on how the system architecture and multiplicity might alter our results.
NASA Astrophysics Data System (ADS)
Xia, Yi; Lin, Jianzhong; Ku, Xiaoke; Chan, Tatleung
2018-04-01
Flow past a center-pinned freely rotatable cylinder asymmetrically confined in a two-dimensional channel is simulated with the lattice Boltzmann method for a range of Reynolds number 0.1 ≤ Re ≤ 200, eccentricity ratio 0/8 ≤ ɛ ≤ 7/8, and blockage ratio 0.1 ≤ β ≤ 0.5. It is found that the inertia tends to facilitate the anomalous clockwise rotation of the cylinder. As the eccentricity ratio increases, the cylinder rotates faster in the counterclockwise direction and then slows down at a range of Re < 10. At a range of Re > 40, there exists an anomalous clockwise rotation for the cylinder at a low eccentricity ratio and the domain where the cylinder rotates anomalously becomes larger with the increase in the Reynolds number. In a channel with a higher blockage ratio, the rotation of the cylinder is more sensitive to the change of cylinder lateral position, and the separatrix at which the cylinder remains a state of rest moves upward generally. The cylinder is more likely to rotate counterclockwise and the rotating velocity is larger. At a lower blockage ratio, the anomalous clockwise rotation is more likely to occur, and the largest rotating velocity occurs when the blockage ratio is equal to 0.3. The mechanism of distinct rotational behavior of the cylinder is attributed to the transformation of distribution of shear stress which is resulted from the variation of pressure drop, the shift of maximum or minimum pressure zones along the upper and lower semi-cylinder surface, and the movement of stagnant point and separate point. Finally, the effects of the cylinder rotation on the flow structure and hydrodynamic force exerted on the cylinder surface are analyzed as well.
Agujetas, R; González-Fernández, M R; Nogales-Asensio, J M; Montanero, J M
2018-05-30
Fractional flow reverse (FFR) is the gold standard assessment of the hemodynamic significance of coronary stenoses. However, it requires the catheterization of the coronary artery to determine the pressure waveforms proximal and distal to the stenosis. On the contrary, computational fluid dynamics enables the calculation of the FFR value from relatively non-invasive computed tomography angiography (CTA). We analyze the flow across idealized highly-eccentric coronary stenoses by solving the Navier-Stokes equations. We examine the influence of several aspects (approximations) of the simulation method on the calculation of the FFR value. We study the effects on the FFR value of errors made in the segmentation of clinical images. For this purpose, we compare the FFR value for the nominal geometry with that calculated for other shapes that slightly deviate from that geometry. This analysis is conducted for a range of stenosis severities and different inlet velocity and pressure waveforms. The errors made in assuming a uniform velocity profile in front of the stenosis, as well as those due to the Newtonian and laminar approximations, are negligible for stenosis severities leading to FFR values around the threshold 0.8. The limited resolution of the stenosis geometry reconstruction is the major source of error when predicting the FFR value. Both systematic errors in the contour detection of just 1-pixel size in the CTA images and a low-quality representation of the stenosis surface (coarse faceted geometry) may yield wrong outcomes of the FFR assessment for an important set of eccentric stenoses. On the contrary, the spatial resolution of images acquired with optical coherence tomography may be sufficient to ensure accurate predictions for the FFR value.
Flow throughout the Earth's core inverted from geomagnetic observations and numerical dynamo models
NASA Astrophysics Data System (ADS)
Aubert, Julien
2013-02-01
This paper introduces inverse geodynamo modelling, a framework imaging flow throughout the Earth's core from observations of the geomagnetic field and its secular variation. The necessary prior information is provided by statistics from 3-D and self-consistent numerical simulations of the geodynamo. The core method is a linear estimation (or Kalman filtering) procedure, combined with standard frozen-flux core surface flow inversions in order to handle the non-linearity of the problem. The inversion scheme is successfully validated using synthetic test experiments. A set of four numerical dynamo models of increasing physical complexity and similarity to the geomagnetic field is then used to invert for flows at single epochs within the period 1970-2010, using data from the geomagnetic field models CM4 and gufm-sat-Q3. The resulting core surface flows generally provide satisfactory fits to the secular variation within the level of modelled errors, and robustly reproduce the most commonly observed patterns while additionally presenting a high degree of equatorial symmetry. The corresponding deep flows present a robust, highly columnar structure once rotational constraints are enforced to a high level in the prior models, with patterns strikingly similar to the results of quasi-geostrophic inversions. In particular, the presence of a persistent planetary scale, eccentric westward columnar gyre circling around the inner core is confirmed. The strength of the approach is to uniquely determine the trade-off between fit to the data and complexity of the solution by clearly connecting it to first principle physics; statistical deviations observed between the inverted flows and the standard model behaviour can then be used to quantitatively assess the shortcomings of the physical modelling. Such deviations include the (i) westwards and (ii) hemispherical character of the eccentric gyre. A prior model with angular momentum conservation of the core-mantle inner-core system, and gravitational coupling of reasonable strength between the mantle and the inner core, is shown to produce enough westward drift to resolve statistical deviation (i). Deviation (ii) is resolved by a prior with an hemispherical buoyancy release at the inner-core boundary, with excess buoyancy below Asia. This latter result suggests that the recently proposed inner-core translational instability presently transports the solid inner-core material westwards, opposite to the seismologically inferred long-term trend but consistently with the eccentricity of the geomagnetic dipole in recent times.
Docosahexaenoic acid affects markers of inflammation and muscle damage after eccentric exercise.
DiLorenzo, Frank M; Drager, Christopher J; Rankin, Janet W
2014-10-01
The effect of docosahexaenoic acid (DHA) on inflammatory and muscle damage response to acute eccentric exercise and to the subsequent initiation of a resistance training program was studied in 41 untrained men. Subjects consumed either 2 g·d of either DHA or placebo (PL) for 28 days before a 17-day exercise phase (day 1 to day 17) that began with an eccentric exercise bout of the elbow flexors (day 1). For analysis, the exercise period was further divided into an acute response phase (day 1-4). Isometric muscle strength (STR), range of motion (ROM), and delayed onset muscle soreness (DOMS) were measured on days 1, 2, 3, 4, 7, 12, and 17. Fasted blood was measured for interleukin 6 (IL-6), interleukin 1 receptor antagonist, C-reactive protein (CRP), and creatine kinase (CK) on days 1, 2, and 4. Serum CK and CRP were also measured in blood collected on days 7, 12, and 17. In the acute phase, DHA significantly reduced the serum CK (12.5%) and the IL-6 response (32%) but did not affect STR or DOMS. Over the entire 17-day resistance exercise period, DOMS area under the curve was 183.2 ± 96.2 for DHA and 203.2 ± 120.9 for PL (p = 0.054) and the CK response was numerically lower for DHA (p = 0.093). Docosahexaenoic acid supplementation reduced some but not all indicators of muscle damage and inflammation in the 4 days after an acute eccentric exercise bout but did not significantly affect the response to initiation of resistance exercise.
Noise suppression due to annulus shaping of conventional coaxial nozzle
NASA Technical Reports Server (NTRS)
Vonglahn, U.; Goodykoontz, J.
1980-01-01
A method which shows that increasing the annulus width of a conventional coaxial nozzle with constant bypass velocity will lower the noise level is described. The method entails modifying a concentric coaxial nozzle to provide an eccentric outer stream annulus while maintaining approximately the same through flow as that for the original concentric bypass nozzle. Acoustical tests to determine the noise generating characteristics of the nozzle over a range of flow conditions are described. The tests involved sequentially analyzing the noise signals and digitally recording the 1/3 octave band sound pressure levels. The measurements were made in a plane passing through the minimum and maximum annulus width points, as well as at 90 degrees in this plane, by rotating the outer nozzle about its axis. Representative measured spectral data in the flyover plane for the concentric nozzle obtained at model scale are discussed. Representative spectra for several engine cycles are presented for both the eccentric and concentric nozzles at engine size.
Stability considerations of packed multi-planet systems
NASA Astrophysics Data System (ADS)
Gratia, Pierre; Lissauer, Jack
2018-04-01
I will present our first results of the outcomes of five packed, Earth-mass planetary simulations around a Sun-like star, whose initial separations in terms of their semi-major axes is determined by a multiple of their mutual Hill radius, the parameter beta. In our simulations, we will vary beta between 3.5 and and 9, with a special emphasis on the region around 8.5, where stability times are wildly different for small increments of beta. While the zero initial eccentricity case has been investigated before, we expand on it by allowing for initial nonzero eccentricities of one or more planets. Furthermore, we increase the simulated time by up to one order of magnitude reaching billions of orbits. This of course will determine more accurately the fate of systems that take a long time to go unstable. Both of these investigations have not been done before, thus our findings improve our understanding of the stabilities of closely-spaced planetary systems.
Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions
Barnes, R.
2015-01-01
Abstract The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the “tidal zone,” where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life. Key Words: Tidal dissipation—Thermal history—Planetary interiors—Magnetic field. Astrobiology 15, 739–760. PMID:26393398
Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.
Driscoll, P E; Barnes, R
2015-09-01
The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.
Langberg, H; Ellingsgaard, H; Madsen, T; Jansson, J; Magnusson, S P; Aagaard, P; Kjaer, M
2007-02-01
It has been shown that 12 weeks of eccentric heavy resistance training can reduce pain in runners suffering from chronic Achilles tendinosis, but the mechanism behind the effectiveness of this treatment is unknown. The present study investigates the local effect of an eccentric training regime on elite soccer players suffering from chronic Achilles tendinosis on the turnover of the peritendinous connective tissue. Twelve elite male soccer players, of whom six suffered from unilateral tendinosis and six were healthy controls, participated in this study. All participants performed 12 weeks of heavy-resistance eccentric training apart from their regular training and soccer activity. Before and after the training period the tissue concentration of indicators of collagen turnover was measured by the use of the microdialysis technique. After training, collagen synthesis was increased in the initially injured tendon (n=6; carboxyterminal propeptide of type I collagen (PICP): pre 3.9+/-2.5 microg/L to post 19.7+/-5.4 microg/L, P<0.05). The collagen synthesis was unchanged in healthy tendons in response to training (n=6; PICP: pre 8.3+/-5.2 microg/L to post 11.5+/-5.0 microg/L, P>0.05). Collagen degradation, measured as carboxyterminal telopeptide region of type I collagen (ICTP), was not affected by training neither in the injured nor in the healthy tendons. The clinical effect of the 12 weeks of eccentric training was determined by using a standardized loading procedure of the Achilles tendons showing a decrease in pain in all the chronic injured tendons (VAS before 44+/-9, after 13+/-9; P<0.05), and all subjects were back playing soccer following the eccentric training regime. The present study demonstrates that chronically injured Achilles tendons respond to 12 weeks of eccentric training by increasing collagen synthesis rate. In contrast, the collagen metabolism in healthy control tendons seems not to be affected by eccentric training. These findings could indicate a relation between collagen metabolism and recovery from injury in human tendons.
Dual capacity compressor with reversible motor and controls arrangement therefor
Sisk, Francis J.
1980-12-02
A hermetic reciprocating compressor such as may be used in heat pump applications is provided for dual capacity operation by providing the crankpin of the crankshaft with an eccentric ring rotatably mounted thereon, and with the end of the connecting rod opposite the piston encompassing the outer circumference of the eccentric ring, with means limiting the rotation of the eccentric ring upon the crankpin between one end point and an opposite angularly displaced end point to provide different values of eccentricity depending upon which end point the eccentric ring is rotated to upon the crankpin, and a reversible motor in the hermetic shell of the compressor for rotating the crankshaft, the motor operating in one direction effecting the angular displacement of the eccentric ring relative to the crankpin to the one end point, and in the opposite direction effecting the angular displacement of the eccentric ring relative to the crankpin to the opposite end point, this arrangement automatically giving different stroke lengths depending upon the direction of motor rotation. The mechanical structure of the arrangement may take various forms including at least one in which any impact of reversal is reduced by utilizing lubricant passages and chambers at the interface area of the crankpin and eccentric ring to provide a dashpot effect. In the main intended application of the arrangement according to the invention, that is, in a refrigerating or air conditioning system, it is desirable to insure a delay during reversal of the direction of compressor operation. A control arrangement is provided in which the control system controls the direction of motor operation in accordance with temperature conditions, the system including control means for effecting operation in a low capacity direction or alternatively in a high capacity direction in response to one set, and another set, respectively, of temperature conditions and with timer means delaying a restart of the compressor motor for at least a predetermined time in response to a condition of the control means operative to initiate a change in the operating direction of the compressor when it restarts.
a Permanent Magnet Hall Thruster for Orbit Control of Lunar Polar Satellites
NASA Astrophysics Data System (ADS)
Ferreira, Jose Leonardo; Silva Moraes, Bruno; Soares Ferreira, Ivan; Cardozo Mour, Decio; Winter, Othon
Future moon missions devoted to lunar surface remote sensing and to many others scientific exploration topics will require more fine and higher precision orbit control. It is well known that, lunar satellites in polar orbits will suffer a high increase on the eccentricity due to the gravitational perturbation of the Earth. Without proper orbit correction the satellite life time will decrease and end up in a collision with the moon surface. It is pointed out by many authors that this effect is a natural consequence of the Lidov-Kozai resonance. In the present work, we propose a precise method of orbit eccentricity control based on the use of a low thrust Hall plasma thruster. The proposed method is based on an approach intended to keep the orbital eccentricity of the satellite at low values. A previous work on this subject was made using numerical integration considering two systems: the 3-body problem, Moon-Earth-satellite and the 4-body problem, Moon-Earth-Sun-satellite (??). In such simulation it is possible to follow the evolution of the satellite's eccentricity and find empirical expressions for the length of time needed to occur the collision with the moon. In this work, a satellite orbit eccentricity control maneuvering is proposed. It is based on working parameters of a low thrust propulsion permanent magnet Hall plasma thruster (PMHT), which is been developed at University of Brasilia, Brazil. We studied different arcs of active lunar satellite propulsion in order to be able to introduce a correction of the eccentricity at each cycle. The calculations were made considering a set of different thrust values, from 0.1N up to 0.4N which can be obtained by using the PMHT. In each calculation procedure we measured the length of eccentricity correction provided by active propulsion. From these results we obtained empirical expressions of the time needed for the corrections as a function of the initial altitude and as a function of the thrust value. 1. Winter, O. C. et all in Controlling the Eccentricity of Polar Lunar Orbits with Low Thrust Propulsion, Mathematical Problems in Engineering, vol. on Space Dynamics, 2009.
Philips, Ryan T; Chakravarthy, V Srinivasa
2015-01-01
Primate vision research has shown that in the retinotopic map of the primary visual cortex, eccentricity and meridional angle are mapped onto two orthogonal axes: whereas the eccentricity is mapped onto the nasotemporal axis, the meridional angle is mapped onto the dorsoventral axis. Theoretically such a map has been approximated by a complex log map. Neural models with correlational learning have explained the development of other visual maps like orientation maps and ocular-dominance maps. In this paper it is demonstrated that activity based mechanisms can drive a self-organizing map (SOM) into such a configuration that dilations and rotations of a particular image (in this case a rectangular bar) are mapped onto orthogonal axes. We further demonstrate using the Laterally Interconnected Synergetically Self Organizing Map (LISSOM) model, with an appropriate boundary and realistic initial conditions, that a retinotopic map which maps eccentricity and meridional angle to the horizontal and vertical axes respectively can be developed. This developed map bears a strong resemblance to the complex log map. We also simulated lesion studies which indicate that the lateral excitatory connections play a crucial role in development of the retinotopic map.
Optimal reentry prediction of space objects from LEO using RSM and GA
NASA Astrophysics Data System (ADS)
Mutyalarao, M.; Raj, M. Xavier James
2012-07-01
The accurate estimation of the orbital life time (OLT) of decaying near-Earth objects is of considerable importance for the prediction of risk object re-entry time and hazard assessment as well as for mitigation strategies. Recently, due to the reentries of large number of risk objects, which poses threat to the human life and property, a great concern is developed in the space scientific community all over the World. The evolution of objects in Low Earth Orbit (LEO) is determined by a complex interplay of the perturbing forces, mainly due to atmospheric drag and Earth gravity. These orbits are mostly in low eccentric (eccentricity < 0.2) and have variations in perigee and apogee altitudes due to perturbations during a revolution. The changes in the perigee and apogee altitudes of these orbits are mainly due to the gravitational perturbations of the Earth and the atmospheric density. It has become necessary to use extremely complex force models to match with the present operational requirements and observational techniques. Further the re-entry time of the objects in such orbits is sensitive to the initial conditions. In this paper the problem of predicting re-entry time is attempted as an optimal estimation problem. It is known that the errors are more in eccentricity for the observations based on two line elements (TLEs). Thus two parameters, initial eccentricity and ballistic coefficient, are chosen for optimal estimation. These two parameters are computed with response surface method (RSM) using a genetic algorithm (GA) for the selected time zones, based on rough linear variation of response parameter, the mean semi-major axis during orbit evolution. Error minimization between the observed and predicted mean Semi-major axis is achieved by the application of an optimization algorithm such as Genetic Algorithm (GA). The basic feature of the present approach is that the model and measurement errors are accountable in terms of adjusting the ballistic coefficient and eccentricity. The methodology is tested with the recently reentered objects ROSAT and PHOBOS GRUNT satellites. The study reveals a good agreement with the actual reentry time of these objects. It is also observed that the absolute percentage error in re-entry prediction time for all the two objects is found to be very less. Keywords: low eccentric, Response surface method, Genetic algorithm, apogee altitude, Ballistic coefficient
Diana, Alessia; Guglielmini, Carlo; Pivetta, Mauro; Sanacore, Antonina; Di Tommaso, Morena; Lord, Peter F; Cipone, Mario
2009-11-01
To evaluate radiographic distribution of pulmonary edema (PE) in dogs with mitral regurgitation (MR) and investigate the association between location of radiographic findings and direction of the mitral regurgitant jet (MRJ). Retrospective case series. 61 dogs with cardiogenic PE and MR resulting from mitral valve disease (MVD; 51 dogs), dilated cardiomyopathy (9), and hypertrophic cardiomyopathy (1). Thoracic radiographs of dogs with Doppler echocardiographic evidence of MR were reviewed for location (diffuse, perihilar, or focal) of PE. Also, direction (central or eccentric) of the MRJ, as evaluated by Doppler color flow mapping (DCFM), and distribution (symmetric or asymmetric) of radiographic findings were evaluated. Diffuse, perihilar, and focal increases in pulmonary opacity were observed in 11 (18.0%), 7 (11.5%), and 43 (70.5%) of 61 dogs, respectively. Radiographic evidence of asymmetric PE in a single lung lobe or 2 ipsilateral lobes was found in 21 dogs, with involvement of only the right caudal lung lobe in 17 dogs. Doppler color flow mapping of the MRJ was available for 46 dogs. Of 31 dogs with a central MRJ, 28 had radiographic findings indicative of symmetric PE. Of 15 dogs with eccentric MRJ, 11 had radiographic evidence of asymmetric PE, and all of these dogs had MVD. In dogs with cardiogenic PE, a symmetric radiographic distribution of increased pulmonary opacity was predominantly associated with a central MRJ, whereas an asymmetric radiographic distribution was usually associated with eccentric MRJ, especially in dogs with MVD.
Flow Dynamics In Eccentrically Rotating Flasks Used For Dispersant Effectiveness Testing
The evaluation of dispersant effectiveness used for oil spills is commonly done using tests conducted in laboratory flasks. We used a Hot Wire Anemometer (HWA) to characterize mixing dynamics in the Swirling Flask (SF) and the Baffled Flask (BF), the latter is being considered b...
Agrawal, M; Pardasani, K R; Adlakha, N
2014-08-01
The investigators in the past have developed some models of temperature distribution in the human limb assuming it as a regular circular or elliptical tapered cylinder. But in reality the limb is not of regular tapered cylindrical shape. The radius and eccentricity are not same throughout the limb. In view of above a model of temperature distribution in the irregular tapered elliptical shaped human limb is proposed for a three dimensional steady state case in this paper. The limb is assumed to be composed of multiple cylindrical substructures with variable radius and eccentricity. The mathematical model incorporates the effect of blood mass flow rate, metabolic activity and thermal conductivity. The outer surface is exposed to the environment and appropriate boundary conditions have been framed. The finite element method has been employed to obtain the solution. The temperature profiles have been computed in the dermal layers of a human limb and used to study the effect of shape, microstructure and biophysical parameters on temperature distribution in human limbs. The proposed model is one of the most realistic model as compared to conventional models as this can be effectively employed to every regular and nonregular structures of the body with variable radius and eccentricity to study the thermal behaviour. Copyright © 2014 Elsevier Ltd. All rights reserved.
Enhancement of Buckling Load with the Use of Active Materials
NASA Technical Reports Server (NTRS)
Yuan, F. G.
2002-01-01
In this paper, active buckling control of a beam using piezoelectric materials is investigated. Under small deformation, mathematical models are developed to describe the behavior of the beams subjected to an axial compressive load with geometric imperfections and load eccentricities under piezoelectric force. Two types of supports, simply supported and clamped, of the beam with a partially bonded piezoelectric actuator are used to illustrate the concept. For the beam with load eccentricities and initial geometric imperfections, the load- carrying capacity can be significantly enhanced by counteracting moments from the piezoelectric actuator. For the single piezoelectric actuator, using static feedback closed-loop control, the first buckling load can be eliminated. In the case of initially straight beams, analytical solutions of the enhanced first critical buckling load due to the increase of bending stiffness by piezoelectric actuators are derived based on linearized buckling analysis.
Ultimate Longitudinal Strength of Composite Ship Hulls
NASA Astrophysics Data System (ADS)
Zhang, Xiangming; Huang, Lingkai; Zhu, Libao; Tang, Yuhang; Wang, Anwen
2017-01-01
A simple analytical model to estimate the longitudinal strength of ship hulls in composite materials under buckling, material failure and ultimate collapse is presented in this paper. Ship hulls are regarded as assemblies of stiffened panels which idealized as group of plate-stiffener combinations. Ultimate strain of the plate-stiffener combination is predicted under buckling or material failure with composite beam-column theory. The effects of initial imperfection of ship hull and eccentricity of load are included. Corresponding longitudinal strengths of ship hull are derived in a straightforward method. A longitudinally framed ship hull made of symmetrically stacked unidirectional plies under sagging is analyzed. The results indicate that present analytical results have a good agreement with FEM method. The initial deflection of ship hull and eccentricity of load can dramatically reduce the bending capacity of ship hull. The proposed formulations provide a simple but useful tool for the longitudinal strength estimation in practical design.
Azimuthal Angle Dependence of HBT Radii in Au+Au Collisions at RHIC-PHENIX
NASA Astrophysics Data System (ADS)
Niida, Takafumi
Measurement of Hanbury-Brown and Twiss (HBT) interferometry with respect to the event plane have been performed in Au+Au collisions at √{sNN} = 200 GeV at PHENIX, which is a unique tool to study the spatial extent of the created matter at final state in heavy ion collisions and the detailed picture of the space-time evolution from the initial state to the final state. The Gaussian source radii was measured for charged pions and kaons with respect to 2nd-order event plane. There was a difference in final eccentricity between both species, which may imply the different freeze-out mechanism by the particle species. The pion source radii was also measured relative to 3rd-order event plane, and the azimuthal angle dependence of the radii was observed, which qualitatively agrees with the recent hydrodynamic calculation and the oscillation may be driven from the triangular flow.
NASA Astrophysics Data System (ADS)
Wang, Bo; Zheng, Jun; Si, Shuaishuai; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang
2016-07-01
Off-centre operation of high-temperature superconducting (HTS) maglev systems caused by inevitable conditions such as the misregistration of vehicle, crosswind and curve negotiation, may change the distribution of the trapped flux in the HTS bulks and the magnetic interaction between HTS bulks and the PMG. It impacts on the performance of HTS maglev, and more seriously makes the maglev vehicle overturned. Therefore, understanding the performance of the HTS maglev in off-center operation is very important. In this paper, the dynamic response characteristics of a cryostat with twenty-four onboard YBaCuO superconductor bulks were experimentally investigated at different eccentric distances under loads before the initial FC process. Parameters such as vibration accelerations, displacement, natural frequency and dynamic stiffness were acquired and analyzed via the B&K vibration analyzer and laser displacement sensors. Results suggest that the natural frequency and dynamic stiffness of the maglev vehicle would be obviously reduced with the eccentric distance, posing negative effects on the stability of HTS maglev.
McCreesh, Karen M; Riley, Sara J; Crotty, James M
2013-12-01
This report describes the case of an amateur soccer player with chronic patellar tendinopathy who underwent ultrasound imaging before and after engaging in an 8-week programme of eccentric exercise. On initial assessment, greyscale ultrasound imaging demonstrated tendon thickening and reduced echogenicity, while Power Doppler imaging demonstrated a large amount of neovascularity. After 8 weeks of an eccentric loading programme, the patient reported significantly improved symptoms and functional scores, while follow-up imaging demonstrated improvement in the echo appearance of the tendon and complete resolution of the neovascularity. The association between neovascularity and symptoms in tendinopathy research is conflicting, with a paucity of research in the area of patellar tendinopathy. While further research is needed to clarify the significance of greyscale and Power Doppler ultrasound changes in relation to symptoms in patellar tendinopathy, ultrasound imaging was shown to be a useful adjunct to diagnosis and outcome assessment in this case. Copyright © 2012 Elsevier Ltd. All rights reserved.
Origin of the orbital architecture of the giant planets of the Solar System.
Tsiganis, K; Gomes, R; Morbidelli, A; Levison, H F
2005-05-26
Planetary formation theories suggest that the giant planets formed on circular and coplanar orbits. The eccentricities of Jupiter, Saturn and Uranus, however, reach values of 6 per cent, 9 per cent and 8 per cent, respectively. In addition, the inclinations of the orbital planes of Saturn, Uranus and Neptune take maximum values of approximately 2 degrees with respect to the mean orbital plane of Jupiter. Existing models for the excitation of the eccentricity of extrasolar giant planets have not been successfully applied to the Solar System. Here we show that a planetary system with initial quasi-circular, coplanar orbits would have evolved to the current orbital configuration, provided that Jupiter and Saturn crossed their 1:2 orbital resonance. We show that this resonance crossing could have occurred as the giant planets migrated owing to their interaction with a disk of planetesimals. Our model reproduces all the important characteristics of the giant planets' orbits, namely their final semimajor axes, eccentricities and mutual inclinations.
Linear analysis of the evolution of nearly polar low-mass circumbinary discs
NASA Astrophysics Data System (ADS)
Lubow, Stephen H.; Martin, Rebecca G.
2018-01-01
In a recent paper Martin & Lubow showed through simulations that an initially tilted disc around an eccentric binary can evolve to polar alignment in which the disc lies perpendicular to the binary orbital plane. We apply linear theory to show both analytically and numerically that a nearly polar aligned low-mass circumbinary disc evolves to polar alignment and determine the alignment time-scale. Significant disc evolution towards the polar state around moderately eccentric binaries can occur for typical protostellar disc parameters in less than a typical disc lifetime for binaries with orbital periods of order 100 yr or less. Resonant torques are much less effective at truncating the inner parts of circumbinary polar discs than the inner parts of coplanar discs. For polar discs, they vanish for a binary eccentricity of unity. The results agree with the simulations in showing that discs can evolve to a polar state. Circumbinary planets may then form in such discs and reside on polar orbits.
Existence of collisional trajectories of Mercury, Mars and Venus with the Earth.
Laskar, J; Gastineau, M
2009-06-11
It has been established that, owing to the proximity of a resonance with Jupiter, Mercury's eccentricity can be pumped to values large enough to allow collision with Venus within 5 Gyr (refs 1-3). This conclusion, however, was established either with averaged equations that are not appropriate near the collisions or with non-relativistic models in which the resonance effect is greatly enhanced by a decrease of the perihelion velocity of Mercury. In these previous studies, the Earth's orbit was essentially unaffected. Here we report numerical simulations of the evolution of the Solar System over 5 Gyr, including contributions from the Moon and general relativity. In a set of 2,501 orbits with initial conditions that are in agreement with our present knowledge of the parameters of the Solar System, we found, as in previous studies, that one per cent of the solutions lead to a large increase in Mercury's eccentricity-an increase large enough to allow collisions with Venus or the Sun. More surprisingly, in one of these high-eccentricity solutions, a subsequent decrease in Mercury's eccentricity induces a transfer of angular momentum from the giant planets that destabilizes all the terrestrial planets approximately 3.34 Gyr from now, with possible collisions of Mercury, Mars or Venus with the Earth.
Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.
Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard
2017-01-01
Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.
Novel approaches for the management of tendinopathy.
Maffulli, Nicola; Longo, Umile Giuseppe; Denaro, Vincenzo
2010-11-03
Tendinopathy is a failed healing response of the tendon. Despite an abundance of therapeutic options, very few randomized prospective, placebo-controlled trials have been carried out to assist physicians in choosing the best evidence-based management. Eccentric exercises have been proposed to promote collagen fiber cross-link formation within the tendon, thereby facilitating tendon remodeling. Overall results suggest a trend for a positive effect of eccentric exercises, with no reported adverse effects. Combining eccentric training and shock wave therapy produces higher success rates compared with eccentric loading alone or shock wave therapy alone. The use of injectable substances such as platelet-rich plasma, autologous blood, polidocanol, corticosteroids, and aprotinin in and around tendons is popular, but there is minimal clinical evidence to support their use. The aim of operative treatment is to excise fibrotic adhesions, remove areas of failed healing, and make multiple longitudinal incisions in the tendon to detect intratendinous lesions and to restore vascularity and possibly stimulate the remaining viable cells to initiate cell matrix response and healing. New operative procedures include endoscopy, electrocoagulation, and minimally invasive stripping. The aim of these techniques is to disrupt the abnormal neoinnervation to interfere with the pain sensation caused by tendinopathy. Randomized controlled trials are necessary to better clarify the best therapeutic options for the management of tendinopathy.
Triple-layer configuration for stable high-speed lubricated pipeline transport
NASA Astrophysics Data System (ADS)
Sarmadi, Parisa; Hormozi, Sarah; Frigaard, Ian A.
2017-04-01
Lubricated transport of heavy viscous oils is a popular technology in the pipelining industry, where pumping pressures can be reduced significantly by concentrating the strain rate in a lubricating layer. However, the interface between the lubricating layer and heavy oil is vulnerable to any perturbations in the system as well as transients due to start up, shut down, temperature change, etc. We present a method in which we purposefully position an unyielded skin of a viscoplastic fluid between the oil and the lubricating fluid. The objective is to reduce the frictional pressure gradient while avoiding interfacial instability. We study this methodology in both concentric and eccentric configurations and show its feasibility for a wide range of geometric and flow parameters found in oil pipelining. The eccentric configuration benefits the transport process via generating lift forces to balance the density differences among the layers. We use classical lubrication theory to estimate the leading order pressure distribution in the lubricating layer and calculate the net force on the skin. We explore the effects of skin shape, viscosity ratio, and geometry on the pressure drop, the flow rates of skin and lubricant fluids, and the net force on the skin. We show that the viscosity ratio and the radius of the core fluid are the main parameters that control the pressure drop and consumptions of outer fluids, respectively. The shape of the skin and the eccentricity mainly affect the lubrication pressure. These predictions are essential in designing a stable transport process. Finally, we estimate the yield stress required in order that the skin remain unyielded and ensure interfacial stability.
Einstein@Home Discovery of a PALFA Millisecond Pulsar in an Eccentric Binary Orbit
NASA Astrophysics Data System (ADS)
Knispel, B.; Lyne, A. G.; Stappers, B. W.; Freire, P. C. C.; Lazarus, P.; Allen, B.; Aulbert, C.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Cardoso, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Eggenstein, H.-B.; Fehrmann, H.; Ferdman, R.; Hessels, J. W. T.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; van Leeuwen, J.; Lorimer, D. R.; Lynch, R.; Machenschalk, B.; Madsen, E.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Scholz, P.; Siemens, X.; Spitler, L. G.; Stairs, I. H.; Stovall, K.; Swiggum, J. K.; Venkataraman, A.; Wharton, R. S.; Zhu, W. W.
2015-06-01
We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M⊙ and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities e < 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 < e < 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.
Tyler, Timothy F; Schmitt, Brandon M; Nicholas, Stephen J; McHugh, Malachy P
2017-04-01
Hamstring-strain injuries have a high recurrence rate. To determine if a protocol emphasizing eccentric strength training with the hamstrings in a lengthened position resulted in a low recurrence rate. Longitudinal cohort study. Sports-medicine physical therapy clinic. Fifty athletes with hamstring-strain injury (age 36 ± 16 y; 30 men, 20 women; 3 G1, 43 G2, 4 G3; 25 recurrent injuries) followed a 3-phase rehabilitation protocol emphasizing eccentric strengthening with the hamstrings in a lengthened position. Injury recurrence; isometric hamstring strength at 80°, 60°, 40°, and 20° knee flexion in sitting with the thigh flexed to 40° above the horizontal and the seat back at 90° to the horizontal (strength tested before return to sport). Four of the 50 athletes sustained reinjuries between 3 and 12 mo after return to sport (8% recurrence rate). The other 42 athletes had not sustained a reinjury at an average of 24 ± 12 mo after return to sport. Eight noncompliant athletes did not complete the rehabilitation and returned to sport before initiating eccentric strengthening in the lengthened state. All 4 reinjuries occurred in these noncompliant athletes. At time of return to sport, compliant athletes had full restoration of strength while noncompliant athletes had significant hamstring weakness, which was progressively worse at longer muscle lengths (compliance × side × angle P = .006; involved vs noninvolved at 20°, compliant 7% stronger, noncompliant 43% weaker). Compliance with rehabilitation emphasizing eccentric strengthening with the hamstrings in a lengthened position resulted in no reinjuries.
NASA Astrophysics Data System (ADS)
Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel
2010-03-01
We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ("planetesimals"). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M ⊕ from 10 to 20 AU. For large planet masses (M >~ M Sat), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a <~ 3 AU) is consistent with isolated planet-planet scattering. We explain the observed mass dependence—which is in the opposite sense from that predicted by the simplest scattering models—as a consequence of strong correlations between planet masses in the same system. At somewhat larger radii, initial planetary mass correlations and disk effects can yield similar modest changes to the eccentricity distribution. Nonetheless, strong damping of eccentricity for low-mass planets at large radii appears to be a secure signature of the dynamical influence of disks. Radial velocity measurements capable of detecting planets with K ≈ 5 m s-1 and periods in excess of 10 years will provide constraints on this regime. Finally, we present an analysis of the predicted separation of planets in two-planet systems, and of the population of planets in mean-motion resonances (MMRs). We show that, if there are systems with ~ Jupiter-mass planets that avoid close encounters, the planetesimal disk acts as a damping mechanism and populates MMRs at a very high rate (50%-80%). In many cases, resonant chains (in particular the 4:2:1 Laplace resonance) are set up among all three planets. We expect such resonant chains to be common among massive planets in outer planetary systems.
Curved butterfly bileaflet prosthetic cardiac valve
McQueen, David M.; Peskin, Charles S.
1991-06-25
An annular valve body having a central passageway for the flow of blood therethrough with two curved leaflets each of which is pivotally supported on an accentric positioned axis in the central passageway for moving between a closed position and an open position. The leaflets are curved in a plane normal to the eccentric axis and positioned with the convex side of the leaflets facing each other when the leaflets are in the open position. Various parameters such as the curvature of the leaflets, the location of the eccentric axis, and the maximum opening angle of the leaflets are optimized according to the following performance criteria: maximize the minimum peak velocity through the valve, maximize the net stroke volume, and minimize the mean forward pressure difference, thereby reducing thrombosis and improving the hemodynamic performance.
Chaotic Mixing in Magmatic Systems: a new experiment
NASA Astrophysics Data System (ADS)
de Campos, C. P.; Perugini, D.; Dingwell, D. B.; Poli, G.; Ertel-Ingrisch, W.; Hess, K.
2007-12-01
Previous studies on magma mixing systems have evidenced that mixing processes could be controlled by chaotic dynamics. These processes are thought to be the source of fractal structures propagating within natural magmatic systems, from meter to the micrometer length scale (Perugini et al., 2006. EPSL, 234: 669-680 and references therein). We have developed a device for experimental studies of chaotic mixing dynamics in silicate melts at high temperatures (up to 1700°C). This device has been inspired by the journal bearing or eccentric cylinder geometry for viscous fluids for the study of chaotic mixing in slow flows (Swanson and Ottino, 1990. J. Fluid Mech., 213:227-249). This geometry is thought to be an ideal system for chaotic studies because a) it is experimentally accessible/feasible for silicate rheologies and b) it is subject to an analytical solution for the stream function. In the journal bearing system the flow region, is confined in the torus between the centers of the two cylinders. Their central axes are parallel but not coincident, i. e. the cylinders are eccentric. In order to generate chaos in a flow, the streamlines must be time dependent, resulting in alternating movements between the two cylinders. This means that at least one of the cylinders has alternating rotation directions. The dimension of this new experimental device follows the required main dimensionless numbers for a chaotic flow. Our first experimental goal is to characterize the mixing process in a prototypical system (haplogranite-haplobasalt)under variable mixing protocols. muenchen.de/
Large eccentric laser angioplasty catheter
NASA Astrophysics Data System (ADS)
Taylor, Kevin D.; Reiser, Christopher
1997-05-01
In response to recent demand for increased debulking of large diameter coronary vascular segments, a large eccentric catheter for excimer laser coronary angioplasty has been developed. The outer tip diameter is 2.0 mm and incorporates approximately 300 fibers of 50 micron diameter in a monorail- type percutaneous catheter. The basic function of the device is to ablate a coronary atherosclerotic lesion with 308 nm excimer laser pulses, while passing the tip of the catheter through the lesion. By employing multiple passes through the lesion, rotating the catheter 90 degrees after each pass, we expect to create luminal diameters close to 3 mm with this device. Design characteristics, in-vitro testing, and initial clinical experience is presented.
Fast prediction and evaluation of eccentric inspirals using reduced-order models
NASA Astrophysics Data System (ADS)
Barta, Dániel; Vasúth, Mátyás
2018-06-01
A large number of theoretically predicted waveforms are required by matched-filtering searches for the gravitational-wave signals produced by compact binary coalescence. In order to substantially alleviate the computational burden in gravitational-wave searches and parameter estimation without degrading the signal detectability, we propose a novel reduced-order-model (ROM) approach with applications to adiabatic 3PN-accurate inspiral waveforms of nonspinning sources that evolve on either highly or slightly eccentric orbits. We provide a singular-value decomposition-based reduced-basis method in the frequency domain to generate reduced-order approximations of any gravitational waves with acceptable accuracy and precision within the parameter range of the model. We construct efficient reduced bases comprised of a relatively small number of the most relevant waveforms over three-dimensional parameter-space covered by the template bank (total mass 2.15 M⊙≤M ≤215 M⊙ , mass ratio 0.01 ≤q ≤1 , and initial orbital eccentricity 0 ≤e0≤0.95 ). The ROM is designed to predict signals in the frequency band from 10 Hz to 2 kHz for aLIGO and aVirgo design sensitivity. Beside moderating the data reduction, finer sampling of fiducial templates improves the accuracy of surrogates. Considerable increase in the speedup from several hundreds to thousands can be achieved by evaluating surrogates for low-mass systems especially when combined with high-eccentricity.
The origin and evolution of a differentiated Mimas
NASA Astrophysics Data System (ADS)
Neveu, M.; Rhoden, A. R.
2017-11-01
In stark contrast with its neighbor moon Enceladus, Mimas is surprisingly geologically quiet, despite an eccentric orbit and distance to Saturn prone to levels of tidal dissipation 30 times higher. While Mimas' lack of geological activity could be due to a stiff, frigid interior, libration data acquired using the Cassini spacecraft suggest that its interior is not homogeneous. Here, we present one-dimensional models of the thermal, structural, and orbital evolution of Mimas under two accretion scenarios: primordial, undifferentiated formation in the Saturnian sub-nebula, and late, layered formation from a debris ring created by the disruption of one or more previous moons. We find it difficult to reproduce a differentiated, eccentric Mimas under a primordial accretion scenario: either Mimas never differentiates, or the internal warming that leads to differentiation increases tidal dissipation, yielding runaway heating that produces a persistent ocean, thereby circularizing Mimas' orbit. Only if Mimas accretes very early (so that the decay of short-lived radionuclides initiates differentiation) but its rheology is not highly dissipative (in order to stop runaway tidal heating even if the eccentricity is not negligible) can the simulations match the observational constraints. Alternatively, a late, layered accretion scenario yields a present-day Mimas that matches observational constraints, independently of the magnitude of tidal dissipation. Consistent with previous findings, these models do not produce an ocean on Enceladus unless its orbital eccentricity is higher than today's value.
The weaker effects of First-order mean motion resonances in intermediate inclinations
NASA Astrophysics Data System (ADS)
Chen, YuanYuan; Quillen, Alice C.; Ma, Yuehua; Chinese Scholar Council, the National Natural Science Foundation of China, the Natural Science Foundation of Jiangsu Province, the Minor Planet Foundation of the Purple Mountain Observatory
2017-10-01
During planetary migration, a planet or planetesimal can be captured into a low-order mean motion resonance with another planet. Using a second-order expansion of the disturbing function in eccentricity and inclination, we explore the sensitivity of the capture probability of first-order mean motion resonances to orbital inclination. We find that second-order inclination contributions affect the resonance strengths, reducing them at intermediate inclinations of around 10-40° for major first-order resonances. We also integrated the Hamilton's equations with arbitrary initial arguments, and provided the varying tendencies of resonance capture probabilities versus orbital inclinations for different resonances and different particle or planetary eccentricities. Resonance-weaker ranges in inclinations generally appear at the places where resonance strengths are low, around 10-40° in general. The weaker ranges disappear with a higher particle eccentricity (≳0.05) or planetary eccentricity (≳0.05). These resonance-weaker ranges in inclinations implies that intermediate-inclination objects are less likely to be disturbed or captured into the first-order resonances, which would make them entering into the chaotic area around Neptune with a larger fraction than those with low inclinations, during the epoch of Neptune's outward migration. The privilege of high-inclination particles leave them to be more likely captured into Neptune Trojans, which might be responsible for the unexpected high fraction of high-inclination Neptune Trojans.
THE KOZAI–LIDOV MECHANISM IN HYDRODYNAMICAL DISKS. II. EFFECTS OF BINARY AND DISK PARAMETERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G., E-mail: wf5@rice.edu
2015-07-01
Martin et al. showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binarymore » mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less
The Kozai-Lidov mechanism in hydrodynamical disks. II. Effects of binary and disk parameters
Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.
2015-07-01
Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions,more » binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less
Lifetime Estimation of the Upper Stage of GSAT-14 in Geostationary Transfer Orbit.
Jeyakodi David, Jim Fletcher; Sharma, Ram Krishan
2014-01-01
The combination of atmospheric drag and lunar and solar perturbations in addition to Earth's oblateness influences the orbital lifetime of an upper stage in geostationary transfer orbit (GTO). These high eccentric orbits undergo fluctuations in both perturbations and velocity and are very sensitive to the initial conditions. The main objective of this paper is to predict the reentry time of the upper stage of the Indian geosynchronous satellite launch vehicle, GSLV-D5, which inserted the satellite GSAT-14 into a GTO on January 05, 2014, with mean perigee and apogee altitudes of 170 km and 35975 km. Four intervals of near linear variation of the mean apogee altitude observed were used in predicting the orbital lifetime. For these four intervals, optimal values of the initial osculating eccentricity and ballistic coefficient for matching the mean apogee altitudes were estimated with the response surface methodology using a genetic algorithm. It was found that the orbital lifetime from these four time spans was between 144 and 148 days.
Lifetime Estimation of the Upper Stage of GSAT-14 in Geostationary Transfer Orbit
Jeyakodi David, Jim Fletcher; Sharma, Ram Krishan
2014-01-01
The combination of atmospheric drag and lunar and solar perturbations in addition to Earth's oblateness influences the orbital lifetime of an upper stage in geostationary transfer orbit (GTO). These high eccentric orbits undergo fluctuations in both perturbations and velocity and are very sensitive to the initial conditions. The main objective of this paper is to predict the reentry time of the upper stage of the Indian geosynchronous satellite launch vehicle, GSLV-D5, which inserted the satellite GSAT-14 into a GTO on January 05, 2014, with mean perigee and apogee altitudes of 170 km and 35975 km. Four intervals of near linear variation of the mean apogee altitude observed were used in predicting the orbital lifetime. For these four intervals, optimal values of the initial osculating eccentricity and ballistic coefficient for matching the mean apogee altitudes were estimated with the response surface methodology using a genetic algorithm. It was found that the orbital lifetime from these four time spans was between 144 and 148 days. PMID:27437491
Einstein@Home DISCOVERY OF A PALFA MILLISECOND PULSAR IN AN ECCENTRIC BINARY ORBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knispel, B.; Allen, B.; Lyne, A. G.
2015-06-10
We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M{sub ⊙} and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbitalmore » eccentricities e < 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 < e < 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.« less
The Stability of Resonant Chains of Moons
NASA Astrophysics Data System (ADS)
Rimlinger, Thomas; Hamilton, Douglas
2018-04-01
Unlike other giant planets, Saturn has a satellite system that is dominated by a single massive body, Titan, which features an unusually large inclination and eccentricity. Its origin has yet to be satisfactorily explained; neither in situ formation nor capture from heliocentric orbit can easily produce all of its measured properties. We argue that dynamical instability and subsequent mergers within a resonant chain of satellites analogous to the Galilean moons could be responsible for Titan’s unusual features.To explore this idea, we perform simulations in which we vary a wide range of parameters, including the number of satellites, their masses, their spacings, and their tidal migration and eccentricity damping rates. In our preliminary modeling, we initialize our simulations with three moons in the 1:2:4 mean-motion resonance (currently occupied by Io, Europa, and Ganymede at Jupiter) and study how varying each parameter affects the resonant stability. We find that in some cases, the satellites do indeed escape from this three-body resonance, while in others, the bodies’ period ratios remain locked. We study the evolution of these systems and seek a deeper understanding of the competing mechanisms responsible for resonant capture and escape.Accordingly, we investigate the role that specific two-body eccentricity and inclination resonances play in determining stability conditions. For three satellites in a 1:2:4 resonance, there exist four nearby first-order eccentricity resonances along with many other weaker eccentricity and inclination resonances. In our simulations, we track entrance into and exit from these resonances to provide a more cohesive picture of how the system evolves and find that this evolution depends sensitively on the masses and damping rates. We will report further details of our findings and will discuss their implications for the stability of resonant chains of moons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naoz, Smadar; Stephan, Alexander P.; Fragos, Tassos
The formation of black hole (BH) low-mass X-ray binaries (LMXB) poses a theoretical challenge, as low-mass companions are not expected to survive the common-envelope scenario with the BH progenitor. Here we propose a formation mechanism that skips the common-envelope scenario and relies on triple-body dynamics. We study the evolution of hierarchical triples following the secular dynamical evolution up to the octupole-level of approximation, including general relativity, tidal effects, and post-main-sequence evolution such as mass loss, changes to stellar radii, and supernovae. During the dynamical evolution of the triple system the “eccentric Kozai-Lidov” mechanism can cause large eccentricity excitations in themore » LMXB progenitor, resulting in three main BH-LMXB formation channels. Here we define BH-LMXB candidates as systems where the inner BH-companion star crosses its Roche limit. In the “eccentric” channel (∼81% of the LMXBs in our simulations) the donor star crosses its Roche limit during an extreme eccentricity excitation while still on a wide orbit. Second, we find a “giant” LMXB channel (∼11%), where a system undergoes only moderate eccentricity excitations but the donor star fills its Roche-lobe after evolving toward the giant branch. Third, we identify a “classical” channel (∼8%), where tidal forces and magnetic braking shrink and circularize the orbit to short periods, triggering mass-transfer. Finally, for the giant channel we predict an eccentric (∼0.3–0.6) preferably inclined (∼40°, ∼140°) tertiary, typically on a wide enough orbit (∼10{sup 4} au) to potentially become unbound later in the triple evolution. While this initial study considers only one representative system and neglects BH natal kicks, we expect our scenario to apply across a broad region of parameter space for triple-star systems.« less
Xin, Ling; Hyldahl, Robert D; Chipkin, Stuart R; Clarkson, Priscilla M
2014-06-01
We investigated the existence of contralateral repeated bout effect and tested if the attenuation of nuclear factor-kappa B (NF-κB; an important regulator of muscle inflammation) induction following eccentric exercise is a potential mechanism. Thirty-one healthy men performed two bouts of knee extension eccentric exercise, initially with one leg and then with the opposite leg 4 wk later. Vastus lateralis muscle biopsies of both exercised and control legs were taken 3 h postexercise. Knee extension isometric and isokinetic strength (60°/sec and 180°/sec) were measured at baseline, pre-exercise, immediately postexercise, and 1/day for 5 days postexercise. Serum creatine kinase (CK) activity and muscle soreness were assessed at baseline and 1/day for 5 days postexercise. NF-κB (p65) DNA-binding activity was measured in the muscle biopsies. Isometric strength loss was lower in bout 2 than in bout 1 at 24, 72, and 96 h postexercise (P < 0.05). Isokinetic strength (60°/s and 180°/s) was reduced less in bout 2 than in bout 1 at 72 h postexercise (P < 0.01). There were no significant differences between bouts for postexercise CK activity or muscle soreness. p65 DNA-binding activity was increased following eccentric exercise (compared with the control leg) in bout 1 (122.9% ± 2.6%; P < 0.001) and bout 2 (109.1% ± 3.0%; P < 0.05). Compared with bout 1, the increase in NF-κB DNA-binding activity postexercise was attenuated after bout 2 (P = 0.0008). Repeated eccentric exercise results in a contralateral repeated bout effect, which could be due to the attenuated increase in NF-κB activity postexercise. Copyright © 2014 the American Physiological Society.
Anastasopoulos, D; Mandellos, D; Kostadima, V; Pettorossi, V E
2002-08-01
We studied the amplitude, latency, and probability of occurrence of fast phases (FP) in darkness to unpredictable vestibular and/or cervical yaw stimulation in normal human subjects. The rotational stimuli were smoothed trapezoidal motion transients of 14 degrees amplitude and 1.25 s duration. Eye position before stimulus application (initial eye position, IEP) was introduced as a variable by asking the subjects to fixate a spot appearing either straight ahead or at 7 degrees eccentric positions. The recordings demonstrated that the generation of FP during vestibular stimulation was facilitated when the whole-body rotation was directed opposite the eccentric IEP. Conversely, FP were attenuated if the whole-body rotation was directed toward the eccentric IEP; i.e., the FP attenuated if they were made to further eccentric positions. Cervical stimulation-induced FP were small and variable in direction when IEP was directed straight ahead before stimulus onset. Eccentric IEPs resulted in large FP, the direction of which was essentially independent of the neck-proprioceptive stimulus. They tended to move the eye toward the primary position, both when the trunk motion under the stationary head was directed toward or away from the IEP. FP dependence on IEP was evident also during head-on-trunk rotations. No consistent interaction between vestibularly and cervically induced FP was found. We conclude that extraretinal eye position signals are able to modify vestibularly evoked reflexive FP in darkness, aiming at minimizing excursions of the eyes away from the primary position. However, neck-induced FP do not relate to specific tasks of stabilization or visual search. By keeping the eyes near the primary position, FP may permit flexibility of orienting responses to incoming stimuli. This recentering bias for both vestibularly and cervically generated FP may represent a visuomotor optimizing strategy.
Distinct Effects of Trial-Driven and Task Set-Related Control in Primary Visual Cortex
Vaden, Ryan J.; Visscher, Kristina M.
2015-01-01
Task sets are task-specific configurations of cognitive processes that facilitate task-appropriate reactions to stimuli. While it is established that the trial-by-trial deployment of visual attention to expected stimuli influences neural responses in primary visual cortex (V1) in a retinotopically specific manner, it is not clear whether the mechanisms that help maintain a task set over many trials also operate with similar retinotopic specificity. Here, we address this question by using BOLD fMRI to characterize how portions of V1 that are specialized for different eccentricities respond during distinct components of an attention-demanding discrimination task: cue-driven preparation for a trial, trial-driven processing, task-initiation at the beginning of a block of trials, and task-maintenance throughout a block of trials. Tasks required either unimodal attention to an auditory or a visual stimulus or selective intermodal attention to the visual or auditory component of simultaneously presented visual and auditory stimuli. We found that while the retinotopic patterns of trial-driven and cue-driven activity depended on the attended stimulus, the retinotopic patterns of task-initiation and task-maintenance activity did not. Further, only the retinotopic patterns of trial-driven activity were found to depend on the presence of intermodal distraction. Participants who performed well on the intermodal selective attention tasks showed strong task-specific modulations of both trial-driven and task-maintenance activity. Importantly, task-related modulations of trial-driven and task-maintenance activity were in opposite directions. Together, these results confirm that there are (at least) two different processes for top-down control of V1: One, working trial-by-trial, differently modulates activity across different eccentricity sectors—portions of V1 corresponding to different visual eccentricities. The second process works across longer epochs of task performance, and does not differ among eccentricity sectors. These results are discussed in the context of previous literature examining top-down control of visual cortical areas. PMID:26163806
NASA Astrophysics Data System (ADS)
Silsbee, Kedron; Rafikov, Roman
2017-06-01
The existence of planets in tight binary systems presents an interesting puzzle. It is thought that cores of giant planets form via agglomeration of planetesimals in mutual collisions. However, in tight binary systems, one would naïvely expect the collision velocities between planetesimals to be so high that even 100 km bodies would be destroyed, rather than growing in mutual collisions. In these systems, planetesimals are perturbed by gravity from the companion star, and gravity and gas drag from a massive eccentric gas disk. There is a damaging secular resonance that occurs due to the combination of disk gravity and gravity from the binary companion, however the disk gravity can also create locations of low relative eccentricity between planetesimals of different sizes that would not exist if the disk gravity were ignored. Because the gas drag acts more strongly on smaller planetesimals, orbital eccentricity and apsidal angle depend on planetesimal size. Consequently, planetesimal collision velocities depend on the sizes of the collision partners. Same-size bodies collide at low velocity because their orbits are apsidally aligned. Therefore, often in a given environment some collisions will lead to planetesimal growth, and some to erosion or destruction. This variety of collisional outcomes makes it difficult to determine whether any planetesimals can grow to large sizes. We run a multi-annulus coagulation/fragmentation simulation that also includes the effect of size-dependent radial drift of planetesimals to determine the minimum size of initial planetesimal necessary for growth to large sizes in collisions. The minimum initial size of planetesimal necessary for growth depends greatly on the disk mass, eccentricity and the degree of apsidal alignment with the binary. We find that in a wide variety of situations, it is a reasonable approximation that growth occurs as long as there are no collisions capable of completely destroying a planetesimal, but erosion by moderately damaging collisions can also prevent growth from occurring.
Abbas, Amr E; Franey, Laura M; Lester, Steven; Raff, Gilbert; Gallagher, Michael J; Hanzel, George; Safian, Robert D; Pibarot, Philippe
2015-02-01
In patients with aortic stenosis (AS) and eccentric transaortic flow, greater pressure loss occurs as the jet collides with the aortic wall together with delayed and diminished pressure recovery. This leads to the elevated transaortic valve pressure gradients noted on both Doppler and cardiac catheterization. Such situations may present a diagnostic dilemma where traditional measures of stenosis severity indicate severe AS, while imaging modalities of the aortic valve geometric aortic valve area (GOA) suggest less than severe stenosis. In this study, we present a series of cases exemplifying this clinical dilemma and demonstrate how color M-mode, 2D and 3D transthoracic (TTE) and transesophageal (TEE) echocardiography, cardiac computed tomography angiography (CTA), and magnetic resonance imaging (MRI), may be used to resolve such discrepancies. © 2014, Wiley Periodicals, Inc.
Van Toen, Carolyn; Carter, Jarrod W; Oxland, Thomas R; Cripton, Peter A
2014-12-01
The tolerance of the spine to bending moments, used for evaluation of injury prevention devices, is often determined through eccentric axial compression experiments using segments of the cadaver spine. Preliminary experiments in our laboratory demonstrated that eccentric axial compression resulted in "unexpected" (artifact) moments. The aim of this study was to evaluate the static and dynamic effects of test configuration on bending moments during eccentric axial compression typical in cadaver spine segment testing. Specific objectives were to create dynamic equilibrium equations for the loads measured inferior to the specimen, experimentally verify these equations, and compare moment responses from various test configurations using synthetic (rubber) and human cadaver specimens. The equilibrium equations were verified by performing quasi-static (5 mm/s) and dynamic experiments (0.4 m/s) on a rubber specimen and comparing calculated shear forces and bending moments to those measured using a six-axis load cell. Moment responses were compared for hinge joint, linear slider and hinge joint, and roller joint configurations tested at quasi-static and dynamic rates. Calculated shear force and bending moment curves had similar shapes to those measured. Calculated values in the first local minima differed from those measured by 3% and 15%, respectively, in the dynamic test, and these occurred within 1.5 ms of those measured. In the rubber specimen experiments, for the hinge joint (translation constrained), quasi-static and dynamic posterior eccentric compression resulted in flexion (unexpected) moments. For the slider and hinge joints and the roller joints (translation unconstrained), extension ("expected") moments were measured quasi-statically and initial flexion (unexpected) moments were measured dynamically. In the cadaver experiments with roller joints, anterior and posterior eccentricities resulted in extension moments, which were unexpected and expected, for those configurations, respectively. The unexpected moments were due to the inertia of the superior mounting structures. This study has shown that eccentric axial compression produces unexpected moments due to translation constraints at all loading rates and due to the inertia of the superior mounting structures in dynamic experiments. It may be incorrect to assume that bending moments are equal to the product of compression force and eccentricity, particularly where the test configuration involves translational constraints and where the experiments are dynamic. In order to reduce inertial moment artifacts, the mass, and moment of inertia of any loading jig structures that rotate with the specimen should be minimized. Also, the distance between these structures and the load cell should be reduced.
Jang, Jeong Yoon; Kang, Joon-Won; Yang, Dong Hyun; Lee, Sahmin; Sun, Byung Joo; Kim, Dae-Hee; Song, Jong-Min; Kang, Duk-Hyun; Song, Jae-Kwan
2018-03-01
Overestimation of the severity of mitral regurgitation (MR) by the proximal isovelocity surface area (PISA) method has been reported. We sought to test whether angle correction (AC) of the constrained flow field is helpful to eliminate overestimation in patients with eccentric MR. In a total of 33 patients with MR due to prolapse or flail mitral valve, both echocardiography and cardiac magnetic resonance image (CMR) were performed to calculate regurgitant volume (RV). In addition to RV by conventional PISA (RV PISA ), convergence angle (α) was measured from 2-dimensional Doppler color flow maps and RV was corrected by multiplying by α/180 (RV AC ). RV measured by CMR (RV CMR ) was used as a gold standard, which was calculated by the difference between total stroke volume measured by planimetry of the short axis slices and aortic stroke volume by phase-contrast image. The correlation between RV CMR and RV by echocardiography was modest [RV CMR vs. RV PISA (r = 0.712, p < 0.001) and RV CMR vs. RV AC (r = 0.766, p < 0.001)]. However, RV PISA showed significant overestimation (RV PISA - RV CMR = 50.6 ± 40.6 mL vs. RV AC - RV CMR = 7.7 ± 23.4 mL, p < 0.001). The overall accuracy of RV PISA for diagnosis of severe MR, defined as RV ≥ 60 mL, was 57.6% (19/33), whereas it increased to 84.8% (28/33) by using RV AC ( p = 0.028). Conventional PISA method tends to provide falsely large RV in patients with eccentric MR and a simple geometric AC of the proximal constraint flow largely eliminates overestimation.
Numerical model of the evolution of asteroid orbits at the 2:5 resonance
NASA Astrophysics Data System (ADS)
Ipatov, S. I.
1992-12-01
The interrelations of the variations in the orbital elements of asteroids at the 2:5 resonance and in its vicinity are investigated.. These investigations are based on the numerical integration of the complete equations of motion of the three-body problem (sun-Jupiter-asteroid) for 500 model asteroids. The time interval under consideration for most versions of the calculations equaled 10(4) orbital periods of Jupiter. The limits of the variations in the orbital elements and the regions of initial data corresponding to different types of interrelations of the variations in the eccentricity and longitude of perihelion are examined. It is shown that thr 2:5 gap may play a larger role than other gaps in the replenishment of the Apollo and Amor groups. The time over which the argument of perihelion changed by 360 degrees was usually equal to two periods of variation in the orbital inclination. When this interrelation was not found, the time over which the longitude of the ascending node changed by 360 degrees was equal, as a rule, to one period of variation in this inclination. For some asteroids moving along orbits of small eccentricity and inclination, interrelations were found between the periods of variation in four orbital elements: eccentricity, inclination, argument of perihelion, and longitude of the ascending node. For initial inclinations i° = 40° of asteroid orbits, the maximum values of inclinations of some model asteroids reached 160 degrees. Such asteroids could reach the sun or nearly parabolic orbits.
Exciting an Initially Cold Asteroid Belt Through a Planetary Instability
NASA Astrophysics Data System (ADS)
Deienno, Rogerio; Izidoro, Andre; Morbidelli, Alessandro; Gomes, Rodney; Nesvorny, David; Raymond, Sean N.
2018-04-01
The main asteroid belt (MB) is low in mass but dynamically excited, with much larger eccentricities and inclinations than the planets. In recent years, the Grand Tack model has been the predominant model capable of reconciling the formation of the terrestrial planets with a depleted but excited MB. Despite this success, the Grand Tack is still not generally accepted because of uncertainties in orbital migration. It was recently proposed that chaotic early evolution of Jupiter and Saturn could excite the initially cold MB. However, hydrodynamical simulations predict that the giant planets should generally emerge from the gas disk phase on orbits characterized by resonant and regular motion. Here we propose a new mechanism to excite the MB during the giant planets' ('Nice model') instability, which is expected to have included repeated close encounters between Jupiter and one or more ice giants ('Jumping Jupiter' -- JJ). We show that when Jupiter temporarily reaches a high enough level of excitation, both in eccentricity and inclination, it induces strong forced vectors of eccentricity and inclination within the MB region. Because during the JJ instability Jupiter's orbit 'jumps' around, forced vectors keep changing both in magnitude and phase throughout the whole MB region. The entire cold primordial MB can thus be excited as a natural outcome of the JJ instability. Furthermore, we show that the subsequent evolution of the Solar System is capable of reshaping the resultant MB to its present day orbital state, and that a strong mass depletion is always associated to the JJ instability phase.
NASA Astrophysics Data System (ADS)
Prashantha, B.; Anish, S.
2017-04-01
The aim of the present study is to numerically evaluate the hemodynamic factors which affect the formation of atherosclerosis and plaque rupture in the human artery. An increase of atherosclerosis in the artery causes geometry changes, which results in hemodynamic changes such as flow separation, reattachment and adhesion of new cells (chemotactic) in the artery. Hence, geometry plays an important role in the determining the nature of hemodynamic patterns. Influence of stenosis in the non-bifurcating artery, under pulsatile flow condition has been studied on an idealized geometry. Analysis of flow through symmetric and asymmetric stenosis in the artery revealed the significance of oscillating shear index (OSI), flow separation, low wall shear stress (WSS) zones and secondary flow patterns on plaque formation. The observed characteristic of flow in the post-stenotic region highlight the importance of plaque eccentricity on the formation of secondary stenosis on the arterial wall.
Research on Annular Frictional Pressure Loss of Hydraulic-Fracturing in Buckling Coiled Tubing
NASA Astrophysics Data System (ADS)
Liu, Bin; Cai, Meng; Li, Junliang; Xu, Yongquan; Wang, Peng
2018-01-01
Compared with conventional hydraulic fracturing, coiled tubing (CT) annular delivery sand fracturing technology is a new method to enhance the recovery ratio of low permeability reservoir. Friction pressure loss through CT has been a concern in fracturing. The small diameter of CT limits the cross-sectional area open to flow, therefore, to meet large discharge capacity, annular delivery sand technology has been gradually developed in oilfield. Friction pressure is useful for determining the required pump horsepower and fracturing construction design programs. Coiled tubing can buckle when the axial compressive load acting on the tubing is greater than critical buckling load, then the geometry shape of annular will change. Annular friction pressure loss elevates dramatically with increasing of discharge capacity, especially eccentricity and CT buckling. Despite the frequency occurrence of CT buckling in oilfield operations, traditionally annular flow frictional pressure loss considered concentric and eccentric annuli, not discussing the effects of for discharge capacity and sand ratio varying degree of CT buckling. The measured data shows that the factors mentioned above cannot be ignored in the prediction of annular pressure loss. It is necessary to carry out analysis of annulus flow pressure drop loss in coiled tubing annular with the methods of theoretical analysis and numerical simulation. Coiled tubing buckling has great influence on pressure loss of fracturing fluid. Therefore, the correlations have been developed for turbulent flow of Newtonian fluids and Two-phase flow (sand-liquid), and that improve the friction pressure loss estimation in coiled tubing operations involving a considerable level of buckling. Quartz sand evidently increases pressure loss in buckling annular, rising as high as 40%-60% more than fresh water. Meanwhile, annulus flow wetted perimeter increases with decreasing helical buckling pitch of coiled tubing, therefore, the annulus flow frictional pressure loss rapidly increases with decreasing helical buckling pitch. The research achievement provides theoretical guidance for coiled tubing annular delivery sand fracturing operation and design.
Semaan, Edouard; Markl, Michael; Chris Malaisrie, S.; Barker, Alex; Allen, Bradley; McCarthy, Patrick; Carr, James C.; Collins, Jeremy D.
2014-01-01
OBJECTIVE To provide a more complete characterization of aortic blood flow in patients following valve-sparing aortic root replacement (VSARR) compared with presurgical cohorts matched by tricuspid and bicuspid valve morphology, age and presurgical aorta size. METHODS Four-dimensional (4D) flow magnetic resonance imaging (MRI) was performed to analyse three-dimensional (3D) blood flow in the thoracic aorta of n = 13 patients after VSARR with reimplantation of native tricuspid aortic valve (TAV, n = 6) and bicuspid aortic valve (BAV, n = 7). Results were compared with presurgical age and aortic size-matched control cohorts with TAV (n = 10) and BAV (n = 10). Pre- and post-surgical aortic flow was evaluated using time-resolved 3D pathlines using a blinded grading system (0–2, 0 = small, 1 = moderate and 2 = prominent) analysing ascending aortic (AAo) helical flow. Systolic flow profile uniformity in the aortic root, proximal and mid-AAo was evaluated using a four-quadrant model. Further analysis in nine analysis planes distributed along the thoracic aorta quantified peak systolic velocity, retrograde fraction and peak systolic flow acceleration. RESULTS Pronounced AAo helical flow in presurgical control subjects (both BAV and TAV: helix grading = 1.8 ± 0.4) was significantly reduced (0.2 ± 0.4, P < 0.001) in cohorts after VSARR independent of aortic valve morphology. Presurgical AAo flow was highly eccentric for BAV patients but more uniform for TAV. VSARR resulted in less eccentric flow profiles. Systolic peak velocities were significantly (P < 0.05) increased in post-root repair BAV patients throughout the aorta (six of nine analysis planes) and to a lesser extent in TAV patients (three of nine analysis planes). BAV reimplantation resulted in significantly increased peak velocities in the proximal AAo compared with root repair with TAV (2.3 ± 0.6 vs 1.6 ± 0.4 m/s, P = 0.017). Post-surgical patients showed a non-significant trend towards higher systolic flow acceleration as a surrogate measure of reduced aortic compliance. CONCLUSIONS VSARR restored a cohesive flow pattern independent of native valve morphology but resulted in increased peak velocities throughout the aorta. 4D flow MRI methods can assess the clinical implications of altered aortic flow dynamics in patients undergoing VSARR. PMID:24317086
Dynamics and Origin of the 2:1 Orbital Resonances of the GJ 876 Planets
NASA Astrophysics Data System (ADS)
Lee, Man Hoi; Peale, S. J.
2002-03-01
The discovery by Marcy and coworkers of two planets in 2:1 orbital resonance about the star GJ 876 has been supplemented by a dynamical fit to the data by Laughlin & Chambers, which places the planets in coplanar orbits deep in three resonances at the 2:1 mean-motion commensurability. The selection of this almost singular state by the dynamical fit means that the resonances are almost certainly real, and with the small amplitudes of libration of the resonance variables, indefinitely stable. Several unusual properties of the 2:1 resonances are revealed by the GJ 876 system. The libration of both lowest order mean-motion resonance variables and the secular resonance variable, θ1=λ1- 2λ2+ϖ1, θ2=λ1- 2λ2+ϖ2, and θ3=ϖ1-ϖ2, about 0° (where λ1,2 are the mean longitudes of the inner and outer planet and ϖ1,2 are the longitudes of periapse) differs from the familiar geometry of the Io-Europa pair, where θ2 and θ3 librate about 180°. By considering the condition that ϖ1=ϖ2 for stable simultaneous librations of θ1 and θ2, we show that the GJ 876 geometry results from the large orbital eccentricities ei, whereas the very small eccentricities in the Io-Europa system lead to the latter's geometry. Surprisingly, the GJ 876 configuration, with θ1, θ2, and θ3 all librating, remains stable for e1 up to 0.86 and for amplitude of libration of θ1 approaching 45° with the current eccentricities-further supporting the indefinite stability of the existing system. Any process that drives originally widely separated orbits toward each other could result in capture into the observed resonances at the 2:1 commensurability. We find that forced inward migration of the outer planet of the GJ 876 system results in certain capture into the observed resonances if initially e1<~0.06 and e2<~0.03 and the migration rate |a2/a2|<~3×10- 2(a2/AU)-3/2yr-1. Larger eccentricities lead to likely capture into higher order resonances before the 2:1 commensurability is reached. The planets are sufficiently massive to open gaps in the nebular disk surrounding the young GJ 876 and to clear the disk material between them, and the resulting planet-nebular interaction typically forces the outer planet to migrate inward on the disk viscous timescale, whose inverse is about 3 orders of magnitude less than the above upper bound on |a2/a2| for certain capture. If there is no eccentricity damping, eccentricity growth is rapid with continued migration within the resonance, with ei exceeding the observed values after a further reduction in the semimajor axes ai of only 7%. With eccentricity damping ei/ei=-K|ai/ai|, the eccentricities reach equilibrium values that remain constant for arbitrarily long migration within the resonances. The equilibrium eccentricities are close to the observed eccentricities for K~100 if there is migration and damping of the outer planet only, but for K~10 if there is also migration and damping of the inner planet. This result is independent of the magnitude or functional form of the migration rate ai as long as ei/ei=-K|ai/ai|. Although existing analytic estimates of the effects of planet-nebula interaction are consistent with this form of eccentricity damping for certain disk parameter values, it is as yet unclear that such interaction can produce the large value of K required to obtain the observed eccentricities. The alternative eccentricity damping by tidal dissipation within the star or the planets is completely negligible, so the observed dynamical properties of the GJ 876 system may require an unlikely fine-tuning of the time of resonance capture to be near the end of the nebula lifetime.
Dynamical Models of the Solar System Formation and Evolution
NASA Technical Reports Server (NTRS)
Stewart, Glen R.
2002-01-01
Mark Lewis has extended his them is work by completing a series of N-body simulations of a narrow ring that: is in the location of Saturn's F-ring and is perturbed by a single satellite comparable to Prometheus, but on a circular orbit. We had previously shown how the satellite perturbations can cause a broadly distributed sparse population of ring particles to become concentrated into narrow rings that can be maintained outside of any resonance location. For low optical depths, the collisions between ring particles are highly localized in the peaks of the satellite wakes. The inelastic collisions therefore occur at a particular orbital phase angle so as to damp the azimuthal component of the relative velocities. Since particle positions are not changed by collisions, the semimajor axes of the particles are shifted toward the actual particle positions where the collisions occur. Thus, negative radial diffusion can occur while conserving orbital angular momentum so long as the forced eccentricity is continually re-excited by the satellite. We speculated that the separation between the final ringlets was largely determined by the magnitude of the forced eccentricities induced by the satellite at closest approach. We carried out a series of simulations with a variety of different satellite masses in order to vary the magnitude of the forced eccentricity. We found that indeed the final spacing of the ringlets does increase with the magnitude of the forced eccentricity (Lewis and Stewart 2002). This occurs because neighboring eccentric ringlets drift out of phase with one another due to Keplerian shear and eventually collide with one another, leading to a smaller number of more widely spaced ringlets, The time scale required to form narrow ringlets in these simulations is much shorter than one would expect from standard theories based upon the orbit-averaged torque produced by multiple passes by the satellite. We find that the initial ringlets form in less than two synodic periods and the final state is typically reached in 10 to 20 synodic periods. These studies move us closer to understanding the significantly more complex system of Saturn's F ring, where the perturbation magnitude varies over short temporal and spatial time scales due to the orbital eccentricities of the perturbing satellite. We are currently extending the simulation to allow for an eccentric orbit of the satellite.
Towe, Eric; Sharma, Saurabh; Geske, Jeffrey; Ackerman, Michael J
2015-01-01
A woman in her late 50s experienced a witnessed, sudden out of hospital cardiac arrest. Initial workup included coronary angiography, transthoracic echocardiogram and a CT scan of the chest to rule out pulmonary embolus. She was subsequently discharged home without an implantable cardioverter defibrillator (ICD) or a life vest. On follow-up at another facility, an ICD was placed and a Holter monitor showed no ventricular ectopy. Further transthoracic echocardiographic images were obtained, which were suggestive of apical hypertrophic cardiomyopathy. A limited transthoracic echocardiogram with contrast was performed, which did not elucidate the hypertrophy. However, eccentric left ventricular apical wall hypertrophy was visualised by a coronary CT scan. PMID:26153133
ECCENTRIC JUPITERS VIA DISK–PLANET INTERACTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffell, Paul C.; Chiang, Eugene, E-mail: duffell@berkeley.edu, E-mail: echiang@astro.berkeley.edu
2015-10-20
Numerical hydrodynamics calculations are performed to determine the conditions under which giant planet eccentricities can be excited by parent gas disks. Unlike in other studies, Jupiter-mass planets are found to have their eccentricities amplified—provided their orbits start off as eccentric. We disentangle the web of co-rotation, co-orbital, and external resonances to show that this finite-amplitude instability is consistent with that predicted analytically. Ellipticities can grow until they reach of order of the disk's aspect ratio, beyond which the external Lindblad resonances that excite eccentricity are weakened by the planet's increasingly supersonic epicyclic motion. Forcing the planet to still larger eccentricitiesmore » causes catastrophic eccentricity damping as the planet collides into gap walls. For standard parameters, the range of eccentricities for instability is modest; the threshold eccentricity for growth (∼0.04) is not much smaller than the final eccentricity to which orbits grow (∼0.07). If this threshold eccentricity can be lowered (perhaps by non-barotropic effects), and if the eccentricity driving documented here survives in 3D, it may robustly explain the low-to-moderate eccentricities ≲0.1 exhibited by many giant planets (including Jupiter and Saturn), especially those without planetary or stellar companions.« less
BIRTH LOCATIONS OF THE KEPLER CIRCUMBINARY PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silsbee, Kedron; Rafikov, Roman R., E-mail: ksilsbee@astro.princeton.edu
2015-07-20
The Kepler mission has discovered about a dozen circumbinary planetary systems, all containing planets on ∼1 AU orbits. We place bounds on the locations in the circumbinary protoplanetary disk, where these planets could have formed through collisional agglomeration starting from small (kilometer-sized or less) planetesimals. We first present a model of secular planetesimal dynamics that accounts for the (1) perturbation due to the eccentric precessing binary, as well as the (2) gravity and (3) gas drag from a precessing eccentric disk. Their simultaneous action leads to rich dynamics, with (multiple) secular resonances emerging in the disk. We derive analytic resultsmore » for size-dependent planetesimal eccentricity and demonstrate the key role of the disk gravity for circumbinary dynamics. We then combine these results with a simple model for collisional outcomes and find that in systems like Kepler-16, planetesimal growth starting with 10–100 m planetesimals is possible outside a few AU. The exact location exterior to which this happens is sensitive to disk eccentricity, density, and precession rate, as well as to the size of the first generation of planetesimals. Strong perturbations from the binary in the inner part of the disk, combined with a secular resonance at a few AU, inhibit the growth of kilometer-sized planetesimals within 2–4 AU of the binary. In situ planetesimal growth in the Kepler circumbinary systems is possible only starting from large initial planetesimals (few-kilometer-sized even assuming favorable disk properties, i.e., low surface density)« less
The eccentric collective BFKL pomeron
McLerran, Larry; Skokov, Vladimir V.
2015-08-01
In this study, we apply the flow analysis for multi-particle correlations used in heavy-ion collisions to multi-particle production from a Pomeron. We show that the nth order angular harmonic arising from an m particle correlation v n[m] satisfies v n[m] ≈ v n[p] for n ≥ 1. We discuss some implications of this for the Color Glass Condensate description of high energy hadronic collisions.
NASA Technical Reports Server (NTRS)
Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)
2007-01-01
A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.
NASA Technical Reports Server (NTRS)
Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)
2007-01-01
A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.
Reiman, Michael
2011-01-01
The benefits and proposed physiological mechanisms of eccentric exercise have previously been elucidated and eccentric exercise has been used for well over seventy years. Traditionally, eccentric exercise has been used as a regular component of strength training. However, in recent years, eccentric exercise has been used in rehabilitation to manage a host of conditions. Of note, there is evidence in the literature supporting eccentric exercise for the rehabilitation of tendinopathies, muscle strains, and in anterior cruciate ligament (ACL) rehabilitation. The purpose of this Clinical Commentary is to discuss the physiologic mechanism of eccentric exercise as well as to review the literature regarding the utilization of eccentric training during rehabilitation. A secondary purpose of this commentary is to provide the reader with a framework for the implementation of eccentric training during rehabilitation of tendinopathies, muscle strains, and after ACL reconstruction. PMID:21655455
The Effect of Viewing Eccentricity on Enumeration
Palomares, Melanie; Smith, Paul R.; Pitts, Carole Holley; Carter, Breana M.
2011-01-01
Visual acuity and contrast sensitivity progressively diminish with increasing viewing eccentricity. Here we evaluated how visual enumeration is affected by visual eccentricity, and whether subitizing capacity, the accurate enumeration of a small number (∼3) of items, decreases with more eccentric viewing. Participants enumerated gratings whose (1) stimulus size was constant across eccentricity, and (2) whose stimulus size scaled by a cortical magnification factor across eccentricity. While we found that enumeration accuracy and precision decreased with increasing eccentricity, cortical magnification scaling of size neutralized the deleterious effects of increasing eccentricity. We found that size scaling did not affect subitizing capacities, which were nearly constant across all eccentricities. We also found that size scaling modulated the variation coefficients, a normalized metric of enumeration precision, defined as the standard deviation divided by the mean response. Our results show that the inaccuracy and imprecision associated with increasing viewing eccentricity is due to limitations in spatial resolution. Moreover, our results also support the notion that the precise number system is restricted to small numerosities (represented by the subitizing limit), while the approximate number system extends across both small and large numerosities (indexed by variation coefficients) at large eccentricities. PMID:21695212
The effect of viewing eccentricity on enumeration.
Palomares, Melanie; Smith, Paul R; Pitts, Carole Holley; Carter, Breana M
2011-01-01
Visual acuity and contrast sensitivity progressively diminish with increasing viewing eccentricity. Here we evaluated how visual enumeration is affected by visual eccentricity, and whether subitizing capacity, the accurate enumeration of a small number (∼3) of items, decreases with more eccentric viewing. Participants enumerated gratings whose (1) stimulus size was constant across eccentricity, and (2) whose stimulus size scaled by a cortical magnification factor across eccentricity. While we found that enumeration accuracy and precision decreased with increasing eccentricity, cortical magnification scaling of size neutralized the deleterious effects of increasing eccentricity. We found that size scaling did not affect subitizing capacities, which were nearly constant across all eccentricities. We also found that size scaling modulated the variation coefficients, a normalized metric of enumeration precision, defined as the standard deviation divided by the mean response. Our results show that the inaccuracy and imprecision associated with increasing viewing eccentricity is due to limitations in spatial resolution. Moreover, our results also support the notion that the precise number system is restricted to small numerosities (represented by the subitizing limit), while the approximate number system extends across both small and large numerosities (indexed by variation coefficients) at large eccentricities.
Wang, Bin; Zhao, Jingjing; Wu, Zheng; Shang, Wei; Xiang, Jie; Cao, Rui; Li, Haifang; Chen, Junjie; Zhang, Hui; Yan, Ting
2016-07-05
The effects of eccentricity on the attentional modulation of visual discrimination have been widely studied; however, the substrate of this complex phenomenon is poorly understood. Here, we provided a measure of the effects of eccentricity on three attentional networks: alerting, orienting, and executive attention. Participants (N = 63) were tested with a modified attention network test that included an additional eccentricity variation; this test allowed us to investigate the efficiency of the attentional networks at near and far eccentricities. Compared with targets at the near eccentricity, targets at the far eccentricity generally elicited significantly longer reaction times. We also found the far eccentricity was associated with smaller orienting effect scores and larger executive control scores than the near eccentricity. Interestingly, at the near eccentricity, executive control scores were larger when the spatial information was neutral (no cue, center cue, and double cue), but at the far eccentricity, the scores were larger when the spatial information was valid (spatial cue). We propose that the allocation of attentional resources differed among these cue conditions and influenced the interference caused by conflicting information. © The Author(s) 2016.
Virtual Proprioception for eccentric training.
LeMoyne, Robert; Mastroianni, Timothy
2017-07-01
Wireless inertial sensors enable quantified feedback, which can be applied to evaluate the efficacy of therapy and rehabilitation. In particular eccentric training promotes a beneficial rehabilitation and strength training strategy. Virtual Proprioception for eccentric training applies real-time feedback from a wireless gyroscope platform enabled through a software application for a smartphone. Virtual Proprioception for eccentric training is applied to the eccentric phase of a biceps brachii strength training and contrasted to a biceps brachii strength training scenario without feedback. During the operation of Virtual Proprioception for eccentric training the intent is to not exceed a prescribed gyroscope signal threshold based on the real-time presentation of the gyroscope signal, in order to promote the eccentric aspect of the strength training endeavor. The experimental trial data is transmitted wireless through connectivity to the Internet as an email attachment for remote post-processing. A feature set is derived from the gyroscope signal for machine learning classification of the two scenarios of Virtual Proprioception real-time feedback for eccentric training and eccentric training without feedback. Considerable classification accuracy is achieved through the application of a multilayer perceptron neural network for distinguishing between the Virtual Proprioception real-time feedback for eccentric training and eccentric training without feedback.
Seals Research at Texas A/M University
NASA Technical Reports Server (NTRS)
Morrison, Gerald L.
1991-01-01
The Turbomachinery Laboratory at Texas A&M has been providing experimental data and computational codes for the design seals for many years. The program began with the development of a Halon based seal test rig. This facility provided information about the effective stiffness and damping in whirling seals. The Halon effectively simulated cryogenic fluids. Another test facility was developed (using air as the working fluid) where the stiffness and damping matrices can be determined. This data was used to develop bulk flow models of the seal's effect upon rotating machinery; in conjunction with this research, a bulk flow model for calculation of performance and rotordynamic coefficients of annular pressure seals of arbitrary non-uniform clearance for barotropic fluids such as LH2, LOX, LN2, and CH4 was developed. This program is very efficient (fast) and converges for very large eccentricities. Currently, work is being performed on a bulk flow analysis of the effects of the impeller-shroud interaction upon the stability of pumps. The data was used along with data from other researchers to develop an empirical leakage prediction code for MSFC. Presently, the flow field inside labyrinth and annular seals are being studied in detail. An advanced 3-D Doppler anemometer system is being used to measure the mean velocity and entire Reynolds stress tensor distribution throughout the seals. Concentric and statically eccentric seals were studied; presently, whirling seals are being studied. The data obtained are providing valuable information about the flow phenomena occurring inside the seals, as well as a data base for comparison with numerical predictions and for turbulence model development. A finite difference computer code was developed for solving the Reynolds averaged Navier Stokes equation inside labyrinth seals. A multi-scale k-epsilon turbulence model is currently being evaluated. A new seal geometry was designed and patented using a computer code. A large scale, 2-D seal flow visualization facility is also being developed.
NASA Astrophysics Data System (ADS)
Huerta, E. A.; Moore, C. J.; Kumar, Prayush; George, Daniel; Chua, Alvin J. K.; Haas, Roland; Wessel, Erik; Johnson, Daniel; Glennon, Derek; Rebei, Adam; Holgado, A. Miguel; Gair, Jonathan R.; Pfeiffer, Harald P.
2018-01-01
We present ENIGMA, a time domain, inspiral-merger-ringdown waveform model that describes nonspinning binary black holes systems that evolve on moderately eccentric orbits. The inspiral evolution is described using a consistent combination of post-Newtonian theory, self-force and black hole perturbation theory. Assuming eccentric binaries that circularize prior to coalescence, we smoothly match the eccentric inspiral with a stand-alone, quasicircular merger, which is constructed using machine learning algorithms that are trained with quasicircular numerical relativity waveforms. We show that ENIGMA reproduces with excellent accuracy the dynamics of quasicircular compact binaries. We validate ENIGMA using a set of Einstein Toolkit eccentric numerical relativity waveforms, which describe eccentric binary black hole mergers with mass-ratios between 1 ≤q ≤5.5 , and eccentricities e0≲0.2 ten orbits before merger. We use this model to explore in detail the physics that can be extracted with moderately eccentric, nonspinning binary black hole mergers. In particular, we use ENIGMA to show that the gravitational wave transients GW150914, GW151226, GW170104, GW170814 and GW170608 can be effectively recovered with spinning, quasicircular templates if the eccentricity of these events at a gravitational wave frequency of 10 Hz satisfies e0≤{0.175 ,0.125 ,0.175 ,0.175 ,0.125 }, respectively. We show that if these systems have eccentricities e0˜0.1 at a gravitational wave frequency of 10 Hz, they can be misclassified as quasicircular binaries due to parameter space degeneracies between eccentricity and spin corrections. Using our catalog of eccentric numerical relativity simulations, we discuss the importance of including higher-order waveform multipoles in gravitational wave searches of eccentric binary black hole mergers.
The Eccentric Behavior of Nearly Frozen Orbits
NASA Technical Reports Server (NTRS)
Sweetser, Theodore H.; Vincent, Mark A.
2013-01-01
Frozen orbits are orbits which have only short-period changes in their mean eccentricity and argument of periapse, so that they basically keep a fixed orientation within their plane of motion. Nearly frozen orbits are those whose eccentricity and argument of periapse have values close to those of a frozen orbit. We call them "nearly" frozen because their eccentricity vector (a vector whose polar coordinates are eccentricity and argument of periapse) will stay within a bounded distance from the frozen orbit eccentricity vector, circulating around it over time. For highly inclined orbits around the Earth, this distance is effectively constant over time. Furthermore, frozen orbit eccentricity values are low enough that these orbits are essentially eccentric (i.e., off center) circles, so that nearly frozen orbits around Earth are bounded above and below by frozen orbits.
Eccentric exercise testing and training
NASA Technical Reports Server (NTRS)
Clarkson, Priscilla M.
1994-01-01
Some researchers and practitioners have touted the benefits of including eccentric exercise in strength training programs. However, others have challenged its use because they believe that eccentric actions are dangerous and lead to injuries. Much of the controversy may be based on a lack of understanding of the physiology of eccentric actions. This review will present data concerning eccentric exercise in strength training, the physiological characteristics of eccentric exercise, and the possible stimulus for strength development. Also a discussion of strength needs for extended exposure to microgravity will be presented. Not only is the use of eccentric exercise controversial, but the name itself is fraught with problems. The correct pronunciation is with a hard 'c' so that the word sounds like ekscentric. The confusion in pronunciation may have been prevented if the spelling that Asmussen used in 1953, excentric, had been adopted. Another problem concerns the expressions used to describe eccentric exercise. Commonly used expressions are negatives, eccentric contractions, lengthening contractions, resisted muscle lengthenings, muscle lengthening actions, and eccentric actions. Some of these terms are cumbersome (i.e., resisted muscle lengthenings), one is slang (negatives), and another is an oxymoron (lengthening contractions). Only eccentric action is appropriate and adoption of this term has been recommended by Cavanagh. Despite the controversy that surrounds eccentric exercise, it is important to note that these types of actions play an integral role in normal daily activities. Eccentric actions are used during most forms of movement, for example, in walking when the foot touches the ground and the center of mass is decelerated and in lowering objects, such as placing a bag of groceries in the car.
The Rings Around the Egg Nebula
NASA Technical Reports Server (NTRS)
Harpaz, Amos; Rappaport, Saul; Soker, Noam
1997-01-01
We present an eccentric binary model for the formation of the proto-planetary nebula CRL 2688 (the Egg Nebula) that exhibits multiple concentric shells. Given the apparent regularity of the structure in the Egg Nebula, we postulate that the shells are caused by the periodic passages of a companion star. Such an orbital period would have to lie in the range of 100-500 yr, the apparent time that corresponds to the spacing between the rings. We assume, in this model, that an asymptotic giant branch (AGB) star, which is the origin of the matter within the planetary nebula, loses mass in a spherically symmetric wind. We further suppose that the AGB star has an extended atmosphere (out to approximately 10 stellar radii) in which the outflow speed is less than the escape speed; still farther out, grains form and radiation pressure accelerates the grains along with the trapped gas to the escape speed. Once escape speed has been attained, the presence of a companion star will not significantly affect the trajectories of the matter leaving in the wind and the mass loss will be approximately spherically symmetric. On the other hand, if the companion star is sufficiently close that the Roche lobe of the AGB star moves inside the extended atmosphere, then the slowly moving material will be forced to flow approximately along the critical potential surface (i.e., the Roche lobe) until it flows into the potential lobe of the companion star. Therefore, in our model, the shells are caused by periodic cessations of the isotropic wind rather than by any periodic enhancement in the mass-loss process. We carry out detailed binary evolution calculations within the context of this scenario, taking into account the nuclear evolution and stellar wind losses of the giant as well as the effects of mass loss and mass transfer on the evolution of the eccentric binary orbit. From the initial binary parameters that we find are required to produce a multiple concentric shell nebula and the known properties of primordial binaries, we conclude that approximately 0.3% of all planetaries should go through a phase with multiple concentric shells.
Stability of hierarchical triples - I. Dependence on inner eccentricity and inclination
NASA Astrophysics Data System (ADS)
Mylläri, A.; Valtonen, M.; Pasechnik, A.; Mikkola, S.
2018-05-01
In simulations it is often important to decide if a given hierarchical triple star system is stable over an extended period of time. We introduce a stability criterion, modified from earlier work, where we use the closest approach ratio Q of the third star to the inner binary centre of mass in their initial osculating orbits. We study by numerical integration the orbits of over 1000 000 triple systems of the fixed masses and outer eccentricities eout, but varying inner eccentricities ein and inclinations i. 12 primary combinations of masses have been tried, representing the range encountered in stellar systems. The definition of the instability is either the escape of one of the bodies, or the exchange of the members between the inner and outer systems. An analytical approximation is derived using the energy change in a single close encounter between the inner and outer systems, assuming that the orbital phases in subsequent encounters occur randomly. The theory provides a fairly good description of the typical Qst, the smallest Q value that allows the system to be stable over N = 10 000 revolutions of the initial outer orbit. The final stability limit formula is Qst = 101/3A[( f g)2/(1 - eout)]1/6, where the coefficient A ˜ 1 should be used in N-body experiments, and A = 2.4 when the absolute long-term stability is required. The functions f (ein, cos i) and g(m1, m2, m3) are derived in the paper. At the limit of ein = i = m3 = 0, f g = 1.
The time course of short-term hypertrophy in the absence of eccentric muscle damage.
Stock, Matt S; Mota, Jacob A; DeFranco, Ryan N; Grue, Katherine A; Jacobo, A Unique; Chung, Eunhee; Moon, Jordan R; DeFreitas, Jason M; Beck, Travis W
2017-05-01
It has been proposed that the increase in skeletal muscle mass observed during the initial weeks of initiating a resistance training program is concomitant with eccentric muscle damage and edema. We examined the time course of muscle hypertrophy during 4 weeks of concentric-only resistance training. Thirteen untrained men performed unilateral concentric-only dumbbell curls and shoulder presses twice per week for 4 weeks. Sets of 8-12 repetitions were performed to failure, and training loads were increased during each session. Subjects consumed 500 ml of whole milk during training. Assessments of soreness, lean mass, echo intensity, muscle thickness, relaxed and flexed arm circumference, and isokinetic strength were performed every 72 or 96 h. Soreness, echo intensity, relaxed circumference, and peak torque data did not significantly change. Significant increases in lean mass, muscle thickness, and flexed circumference were observed within seven training sessions. Lean mass was elevated at tests #7 (+109.3 g, p = .002) and #8 (+116.1 g, p = .035), with eight different subjects showing changes above the minimal difference of 139.1 g. Muscle thickness was elevated at tests #6 (+0.23 cm, p = .004), #7 (+0.31 cm, p < .001), and #8 (+0.27 cm, p < .001), with ten subjects exceeding the minimal difference of 0.24 cm. There were no changes for the control arm. In individuals beginning a resistance training program, small but detectable increases in hypertrophy may occur in the absence of eccentric muscle damage within seven training sessions.
The Scattering Outcomes of Kepler Circumbinary Planets: Planet Mass Ratio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Yan-Xiang; Ji, Jianghui, E-mail: yxgong@pmo.ac.cn, E-mail: jijh@pmo.ac.cn
Recent studies reveal that the free eccentricities of Kepler-34b and Kepler-413b are much larger than their forced eccentricities, implying that scattering events may take place in their formation. The observed orbital configuration of Kepler-34b cannot be well reproduced in disk-driven migration models, whereas a two-planet scattering scenario can play a significant role of shaping the planetary configuration. These studies indicate that circumbinary planets discovered by Kepler may have experienced scattering process. In this work, we extensively investigate the scattering outcomes of circumbinary planets focusing on the effects of planet mass ratio . We find that the planetary mass ratio andmore » the the initial relative locations of planets act as two important parameters that affect the eccentricity distribution of the surviving planets. As an application of our model, we discuss the observed orbital configurations of Kepler-34b and Kepler-413b. We first adopt the results from the disk-driven models as the initial conditions, then simulate the scattering process that occurs in the late evolution stage of circumbinary planets. We show that the present orbital configurations of Kepler-34b and Kepler-413b can be well reproduced when considering a two unequal-mass planet ejection model. Our work further suggests that some of the currently discovered circumbinary single-planet systems may be survivors of original multiple-planet systems. The disk-driven migration and scattering events occurring in the late stage both play an irreplaceable role in sculpting the final systems.« less
Influence of Off-Centre Operation on the Performance of HTS Maglev
NASA Astrophysics Data System (ADS)
Gou, Y.; He, D.; Zheng, J.; Ye, C.; Xu, Y.; Sun, R.; Che, T.; Deng, Z.
2014-03-01
Owing to instinctive self-stable levitation characteristics, high-temperature superconducting (HTS) maglev using bulk high-temperature superconductors attracts more and more attention from scientists and engineers around the world. In this paper, the levitation force relaxation and guidance force characteristics of a Y-Ba-Cu-O levitation unit with different eccentric distances (EDs) off the center of the permanent magnet guideway were experimentally investigated under field-cooling (FC) conditions. Experimental results indicate that the levitation force slightly increases at small EDs firstly, but degrades with further increasing of EDs. However, the maximum guidance force and its stiffness exhibit enhancement in moderate ED range. The results demonstrate that a properly designed initial FC eccentric distance is important for the practical applications of HTS maglev according to specific requirements like running in curve lines.
Accretion rates of protoplanets 2: Gaussian distribution of planestesimal velocities
NASA Technical Reports Server (NTRS)
Greenzweig, Yuval; Lissauer, Jack J.
1991-01-01
The growth rate of a protoplanet embedded in a uniform surface density disk of planetesimals having a triaxial Gaussian velocity distribution was calculated. The longitudes of the aspses and nodes of the planetesimals are uniformly distributed, and the protoplanet is on a circular orbit. The accretion rate in the two body approximation is enhanced by a factor of approximately 3, compared to the case where all planetesimals have eccentricity and inclination equal to the root mean square (RMS) values of those variables in the Gaussian distribution disk. Numerical three body integrations show comparable enhancements, except when the RMS initial planetesimal eccentricities are extremely small. This enhancement in accretion rate should be incorporated by all models, analytical or numerical, which assume a single random velocity for all planetesimals, in lieu of a Gaussian distribution.
Hydrodynamic Simulations of Unevenly Irradiated Jovian Planets
NASA Astrophysics Data System (ADS)
Langton, Jonathan; Laughlin, Gregory
2008-02-01
We employ a two-dimensional, grid-based hydrodynamic model to simulate upper atmospheric dynamics on extrasolar giant planets. The hydrodynamic equations of motion are integrated on a rotating, irradiated sphere using a pseudospectral algorithm. We use a two-frequency, two-stream approximation of radiative transfer to model the temperature forcing. This model is well suited to simulate the dynamics of the atmospheres of planets with high orbital eccentricity, which are subject to widely varying irradiation conditions. We identify six such planets, with eccentricities between e = 0.28 and e = 0.93 and semimajor axes from a = 0.0508 AU to a = 0.432 AU, as particularly interesting. For each, we determine the temperature profile and resulting infrared light curves in the 8 μm Spitzer band. Especially notable are the results for HD 80606b, which has the largest eccentricity (e = 0.9321) of any known planet, and HAT-P-2b, which transits its parent star, so that its physical properties are well constrained. Despite the varied orbital parameters, the atmospheric dynamics of these planets display a number of interesting common properties. In all cases, the atmospheric response is primarily driven by the intense irradiation at periastron. The resulting expansion of heated air produces high-velocity turbulent flow, including long-lived circumpolar vortices. In addition, a superrotating acoustic front develops on some planets; the strength of this disturbance depends on both the eccentricity and the temperature gradient from uneven heating. The specifics of the resulting infrared light curves depend strongly on the orbital geometry. We show, however, that the variations on HD 80606b and HAT-P-2b should be readily detectable at 4.5 and 8 μm using Spitzer. These two objects present the most attractive observational targets of all known high-e exoplanets.
INFERRING THE ECCENTRICITY DISTRIBUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogg, David W.; Bovy, Jo; Myers, Adam D., E-mail: david.hogg@nyu.ed
2010-12-20
Standard maximum-likelihood estimators for binary-star and exoplanet eccentricities are biased high, in the sense that the estimated eccentricity tends to be larger than the true eccentricity. As with most non-trivial observables, a simple histogram of estimated eccentricities is not a good estimate of the true eccentricity distribution. Here, we develop and test a hierarchical probabilistic method for performing the relevant meta-analysis, that is, inferring the true eccentricity distribution, taking as input the likelihood functions for the individual star eccentricities, or samplings of the posterior probability distributions for the eccentricities (under a given, uninformative prior). The method is a simple implementationmore » of a hierarchical Bayesian model; it can also be seen as a kind of heteroscedastic deconvolution. It can be applied to any quantity measured with finite precision-other orbital parameters, or indeed any astronomical measurements of any kind, including magnitudes, distances, or photometric redshifts-so long as the measurements have been communicated as a likelihood function or a posterior sampling.« less
Ist Merkur auf einer chaotischen, instabilen Bahn ?
NASA Astrophysics Data System (ADS)
Dvorak, R.; Freistetter, F.
2001-08-01
From different approaches we believe in the stability of our planetary system over time scales of billions of years. Since the pioneering work of J. Laskar concerning the dynamics of the inner planetary system we know that it is chaotic; this does not mean that it is unstable, but it let opened these question. It was again J. Laskar who published a study on the long term dynamics of the whole planetary system over billions of years. There he found in fact that Mercury's orbit - after some minor ``corrections'' of the initial conditions - could achieve an eccentricity of almost 1! He concludes, that this could lead - after a close approach to Venus - to an escape of the innermost planet. The results were derived with the aid of numerical integrations of the secular system, where the right hand sides were developed up to the 5(th) order in the small parameters eccentricities and inclinations. Test calculations of the equations of motions (taking into account all the Newtonian perturbations with the planets as mass points) could confirm the results partly. It is shown, that Venus cannot really throw Mercury out, but a different effect could lead to very eccentric Venus crossing orbits, where even collisions may happen.
Independently variable phase and stroke control for a double acting Stirling engine
Berchowitz, David M.
1983-01-01
A phase and stroke control apparatus for the pistons of a Stirling engine includes a ring on the end of each piston rod in which a pair of eccentrics is arranged in series, torque transmitting relationship. The outer eccentric is rotatably mounted in the ring and is rotated by the orbiting ring; the inner eccentric is mounted on an output shaft. The two eccentrics are mounted for rotation together within the ring during normal operation. A device is provided for rotating one eccentric with respect to another to change the effective eccentricity of the pair of eccentrics. A separately controlled phase adjustment is provided to null the phase change introduced by the change in the orientation of the outer eccentric, and also to enable the phase of the pistons to be changed independently of the stroke change.
Secular evolution of eccentricity in protoplanetary discs with gap-opening planets
NASA Astrophysics Data System (ADS)
Teyssandier, Jean; Ogilvie, Gordon I.
2017-06-01
We explore the evolution of the eccentricity of an accretion disc perturbed by an embedded planet whose mass is sufficient to open a large gap in the disc. Various methods for representing the orbit-averaged motion of an eccentric disc are discussed. We characterize the linear instability that leads to the growth of eccentricity by means of hydrodynamical simulations. We numerically recover the known result that eccentricity growth in the disc is possible when the planet-to-star mass ratio exceeds 3 × 10-3. For mass ratios larger than this threshold, the precession rates and growth rates derived from simulations, as well as the shape of the eccentric mode, compare well with the predictions of a linear theory of eccentric discs. We study mechanisms by which the eccentricity growth eventually saturates into a non-linear regime.
Effects of Retinal Eccentricity on Human Manual Control
NASA Technical Reports Server (NTRS)
Popovici, Alexandru; Zaal, Peter M. T.
2017-01-01
This study investigated the effects of viewing a primary flight display at different retinal eccentricities on human manual control behavior and performance. Ten participants performed a pitch tracking task while looking at a simplified primary flight display at different horizontal and vertical retinal eccentricities, and with two different controlled dynamics. Tracking performance declined at higher eccentricity angles and participants behaved more nonlinearly. The visual error rate gain increased with eccentricity for single-integrator-like controlled dynamics, but decreased for double-integrator-like dynamics. Participants' visual time delay was up to 100 ms higher at the highest horizontal eccentricity compared to foveal viewing. Overall, vertical eccentricity had a larger impact than horizontal eccentricity on most of the human manual control parameters and performance. Results might be useful in the design of displays and procedures for critical flight conditions such as in an aerodynamic stall.
Electromyographic analysis of exercise resulting in symptoms of muscle damage.
McHugh, M P; Connolly, D A; Eston, R G; Gleim, G W
2000-03-01
Surface electromyographic (EMG) signals were recorded from the hamstring muscles during six sets of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions. The EMG per unit torque increased during eccentric (P < 0.01) but not during concentric exercise. Similarly, the median frequency increased during eccentric (P < 0.01) but not during concentric exercise. The EMG per unit torque was lower for submaximal eccentric than maximum isometric contractions (P < 0.001), and lower for submaximal concentric than maximum isometric contractions (P < 0.01). The EMG per unit torque was lower for eccentric than concentric contractions (P < 0.05). The median frequency was higher for submaximal eccentric than maximum isometric contractions (P < 0.001); it was similar, however, between submaximal concentric and maximum isometric contractions (P = 0.07). Eccentric exercise resulted in significant isometric strength loss (P < 0.01), pain (P < 0.01) and muscle tenderness (P < 0.05). The greatest strength loss was seen 1 day after eccentric exercise, while the most severe pain and muscle tenderness occurred 2 days after eccentric exercise. A lower EMG per unit torque is consistent with the selective recruitment of a small number of motor units during eccentric exercise. A higher median frequency during eccentric contractions may be explained by selective recruitment of fast-twitch motor units. The present results are consistent with the theory that muscle damage results from excessive stress on a small number of active fibres during eccentric contractions.
Hill, Ethan C; Housh, Terry J; Camic, Clayton L; Smith, Cory M; Cochrane, Kristen C; Jenkins, Nathaniel D M; Cramer, Joel T; Schmidt, Richard J; Johnson, Glen O
2016-06-01
The purposes of this study were to examine the effects of the velocity of repeated eccentric muscle actions on the torque and neuromuscular responses during maximal isometric and eccentric muscle actions. Twelve resistance-trained men performed 30 repeated, maximal, eccentric, isokinetic muscle actions at randomly ordered velocities of 60, 120, or 180°·s on separate days. Maximal voluntary isometric contractions (MVICs) were performed before (pretest) and after (posttest) the repeated eccentric muscle actions on each day. Eccentric isokinetic peak torque (EIPT) values were the averages of the first 3 and last 3 repetitions of the 30 repeated eccentric muscle actions. During the EIPT and MVIC muscle actions, electromyographic (EMG) and mechanomyographic (MMG) amplitude (EMG AMP and MMG AMP) and mean power frequency (EMG MPF and MMG MPF) values were assessed. These results indicated that the repeated eccentric muscle actions had no effects on EIPT, or the EMG AMP, EMG MPF, or MMG MPF values assessed during the EIPT muscle actions, but decreased MMG AMP. The repeated eccentric muscle actions, however, decreased MVIC torque, and also the EMG AMP and MMG MPF values assessed during the MVIC muscle actions, but increased MMG AMP. The results indicated that the velocity of the repeated eccentric muscle actions affected the MVIC torque responses, but not EIPT or any of the neuromuscular parameters. Furthermore, there are differences in the torque and neuromuscular responses for isometric vs. eccentric muscle actions after repeated eccentric muscle actions.
Conditioning of material properties by micro rotary swaging
NASA Astrophysics Data System (ADS)
Ishkina, Svetlana; Schenck, Christian; Kuhfuss, Bernd
2018-05-01
Cold forming initiates a change of the material properties like flow stress and hardness. Due to work hardening and the accompanied loss of formability some intermediate heat treatment may become necessary in multi-stage forming processes. One possibility to avoid this heat treatment is to adjust the forming characteristics in terms of flow stress and formability by rotary swaging. This process is particularly suitable not only for producing of the target geometry but also for modifying of the material properties during the process and thus, rotary swaging can prepare the parts for further forming, such as extrusion. In this contribution, the process chain "rotary swaging - extrusion" for austenite stainless steel AISI304 was investigated. The forming characteristics of the semi-finished products for the extrusion were influenced by the previous swaging process. The conditioning by changing of the microstructure, the work hardening and the geometry of the processed wires was achieved by the process design. For this purpose, the geometry of the swaging dies, the feeding velocity as well as the process kinematics (eccentric swaging) and a stroke following angle Δɸ were varied. In particular, the novel geometry of the swaging dies with extraordinary sloped faces generated a non-symmetric material flow with severe shear deformation and thus an extreme change of the microstructure. The required forming force of the following extrusion process reflected the range of achievable conditioning. The micro rotary swaging process positively improved the formability of AISI304 by work softening.
Three-step cylindrical seal for high-performance turbomachines
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.
1987-01-01
A three-step cylindrical seal configuration representing the seal for a high performance turbopump (e.g., the space shuttle main engine fuel pump) was tested under static (nonrotating) conditions. The test data included critical mass flux and pressure profiles over a wide range of inlet temperatures and pressures for fluid nitrogen and fluid hydrogen with the seal in concentric and fully eccentric positions. The critical mass flux (leakage rate) was 70% that of an equivalent straight cylindrical seal with a correspondingly higher pressure drop based on the same flow areas of 0.3569 sq cm but 85% that of the straight seal based on the third-step flow area of 0.3044 sq cm. The mass flow rates for the three step cylindrical seal in the fully eccentric and concentric positions were essentially the same, and the trends in flow coefficient followed those of a simple axisymmetric inlet configuration. However, for inlet stagnation temperatures less than the thermodynamic critical temperature the pressure profiles exhibited a flat region throughout the third step of the seal, with the pressure magnitude dependent on the inlet stagnation temperature. Such profiles represent an extreme positive direct stiffness. These conditions engendered a crossover in the pressure profile upstream of the postulated choke that resulted in a local negative stiffness. Flat and crossover profiles resulting from choking within the seal are practically unknown to the seal designer. However, they are of critical importance to turbomachine stability and must be integrated into any dynamic analysis of a seal of this configuration. In addition, choking is highly dependent on geometry, inlet-to-backpressure ratio, and inlet temperature and can occur within the seal even though the backpressure is above the critical pressure.
The influence of geometry on jet plume development
NASA Astrophysics Data System (ADS)
Xia, H.; Tucker, P. G.; Eastwood, S.; Mahak, M.
2012-07-01
Our recent efforts of using large-eddy simulation (LES) type methods to study complex and realistic geometry single stream and co-flow nozzle jets and acoustics are summarized in this paper. For the LES, since the solver being used tends towards having dissipative qualities, the subgrid scale (SGS) model is omitted, giving a numerical type LES (NLES). To overcome near wall streak resolution problems a near wall RANS (Reynolds averaged Navier-Stokes) model is smoothly blended in the LES making a hybrid RANS-NLES approach. Several complex nozzle geometries including the serrated (chevron) nozzle, realistic co-axial nozzles with eccentricity, pylon and wing-flap are discussed. The hybrid RANS-NLES simulations show encouraging predictions for the chevron jets. The chevrons are known to increase the high frequency noise at high polar angles, but decrease the low frequency noise at lower angles. The deflection effect of the potential core has an important mechanism of noise reduction. As for co-axial nozzles, the eccentricity, the pylon and the deployed wing-flap are shown to influence the flow development, especially the former to the length of potential core and the latter two having a significant impact on peak turbulence levels and spreading rates. The studies suggest that complex and real geometry effects are influential and should be taken into count when moving towards real engine simulations.
Rapid heating of the atmosphere of an extrasolar planet.
Laughlin, Gregory; Deming, Drake; Langton, Jonathan; Kasen, Daniel; Vogt, Steve; Butler, Paul; Rivera, Eugenio; Meschiari, Stefano
2009-01-29
Near-infrared observations of more than a dozen 'hot-Jupiter' extrasolar planets have now been reported. These planets display a wide diversity of properties, yet all are believed to have had their spin periods tidally spin-synchronized with their orbital periods, resulting in permanent star-facing hemispheres and surface flow patterns that are most likely in equilibrium. Planets in significantly eccentric orbits can enable direct measurements of global heating that are largely independent of the details of the hydrodynamic flow. Here we report 8-microm photometric observations of the planet HD 80606b during a 30-hour interval bracketing the periastron passage of its extremely eccentric 111.4-day orbit. As the planet received its strongest irradiation (828 times larger than the flux received at apastron) its maximum 8-microm brightness temperature increased from approximately 800 K to approximately 1,500 K over a six-hour period. We also detected a secondary eclipse for the planet, which implies an orbital inclination of i approximately 90 degrees , fixes the planetary mass at four times the mass of Jupiter, and constrains the planet's tidal luminosity. Our measurement of the global heating rate indicates that the radiative time constant at the planet's 8-microm photosphere is approximately 4.5 h, in comparison with 3-5 days in Earth's stratosphere.
NASA Technical Reports Server (NTRS)
Zhuang, Fei
1989-01-01
Fluid-induced forces acting on a rotating impeller are known to cause rotor-dynamic problems in turbomachines. The forces generated by leakage flow along the front shroud surface of a centrifugal turbomachine impeller play an important role among these fluid-induced forces. The present research was aimed to gain a better understanding of these shroud forces. An experimental apparatus was designed and constructed to simulate the impeller shroud leakage flow. Hydrodynamic forces and steady and unsteady pressure distributions on the rotating shroud were measured as functions of eccentricity, width of shroud clearance, face seal clearance and shaft rotating speed. The forces measured from the dynamometer and manometers agreed well. The hydrodynamic force matrices were found skew-symmetric and statically unstable. This is qualitatively similar to the result of previous hydrodynamic volute force measurements. Nondimensionalized normal and tangential forces decrease slightly as Reynolds number increases. As the width of the shroud clearance decreases and/or the eccentricity increases, the hydrodynamic forces increase nonlinearly. There was some evidence found that increased front seal clearance could reduce the radial shroud forces and the relative magnitude of the destabilizing tangential force. Subharmonic pressure fluctuations were also observed which may adversely affect the behavior of the rotor system.
Hydrodynamic outcomes of planet scattering in transitional discs
NASA Astrophysics Data System (ADS)
Moeckel, Nickolas; Armitage, Philip J.
2012-01-01
A significant fraction of unstable multiple planet systems are likely to scatter during the transitional disc phase as gas damping becomes ineffectual. Using a large ensemble of FARGO hydrodynamic simulations and MERCURY N-body integrations, we directly follow the dynamics of planet-disc and planet-planet interactions through the clearing phase and through 50 Myr of planetary system evolution. Disc clearing is assumed to occur as a result of X-ray-driven photoevaporation. We find that the hydrodynamic evolution of individual scattering systems is complex, and can involve phases in which massive planets orbit within eccentric gaps, or accrete directly from the disc without a gap. Comparing the results to a reference gas-free model, we find that the N-body dynamics and hydrodynamics of scattering into one- and two-planet final states are almost identical. The eccentricity distributions in these channels are almost unaltered by the presence of gas. The hydrodynamic simulations, however, also form a population of low-eccentricity three-planet systems in long-term stable configurations, which are not found in N-body runs. The admixture of these systems results in modestly lower eccentricities in hydrodynamic as opposed to gas-free simulations. The precise incidence of these three-planet systems is likely a function of the initial conditions; different planet set-ups (number or spacing) may change the quantitative character of this result. We analyse the properties of surviving multiple planet systems, and show that only a small fraction (a few per cent) enter mean motion resonances after scattering, while a larger fraction form stable resonant chains and avoid scattering entirely. Our results remain consistent with the hypothesis that exoplanet eccentricity results from scattering, though the detailed agreement between observations and gas-free simulation results is likely coincidental. We discuss the prospects for further tests of scattering models by observing planets or non-axisymmetric gas structure in transitional discs.
The dynamics of the outer edge of Saturn's A ring disturbed by Janus-Epimetheus
NASA Astrophysics Data System (ADS)
Renner, Stéfan; Santos Araujo, Nilton Carlos; Cooper, Nicholas; El Moutamid, Maryame; Murray, Carl; Sicardy, Bruno
2016-10-01
We developed an analytical model to study the dynamics of the outer edge of Saturn's A ring. The latter is influenced by 7:6 mean motion resonances with Janus and Epimetheus. Because of the horseshoe motion of the two co-orbital moons, the location of the resonances shift inwards or outwards every four years, making the ring edge particles alternately trapped in a corotation eccentricity resonance (CER) or a Lindblad eccentricity resonance (LER). However, the oscillation periods of the resonances are longer than the four-year interval between the switches in the orbits of Janus and Epimetheus.Averaged equations of motion are used, and our model is numerically integrated to describe the effects of the periodic sweeping of the 7:6 CER and LER over the ring edge region.We show that four radial zones (ranges 136715-136723, 136738-136749, 136756-136768, 136783-136791 km) are chaotic on decadal timescales, within which particle semimajor axes have periodic changes due to partial libration motions around the CER fixed points. After a few decades, the maximum variation of semimajor axis is about eleven (resp. three) kilometers in the case of the CER with Janus (resp. Epimetheus).Similarly, particle eccentricities have partial oscillations forced by the LERs every four years, and are in good agreement with the observed eccentricities (Spitale and Porco 2009, El Moutamid et al. 2015). For initially circular orbits, the maximum eccentricity reached (~0.001) corresponds to the value obtained from the classical theory of resonance (proportional to the cube root of the satellite-to-planet mass ratio).We notice that the fitted semimajor axes for the object recently discovered at the ring edge (Murray et al. 2014) are just outside the chaotic zone of radial range 136756-136768 km.We compare our results to Cassini observations, and discuss how the periodic LER/CER perturbations by Janus/Epimetheus may help to aggregate ring edge particles into clumps, as seen in high-resolution images.
Eccentric exercise: mechanisms and effects when used as training regime or training adjunct.
Vogt, Michael; Hoppeler, Hans H
2014-06-01
The aim of the current review is to discuss applications and mechanism of eccentric exercise in training regimes of competitive sports. Eccentric muscle work is important in most sports. Eccentric muscle contractions enhance the performance during the concentric phase of stretch-shortening cycles, which is important in disciplines like sprinting, jumping, throwing, and running. Muscles activated during lengthening movements can also function as shock absorbers, to decelerate during landing tasks or to precisely deal with high external loading in sports like alpine skiing. The few studies available on trained subjects reveal that eccentric training can further enhance maximal muscle strength and power. It can further optimize muscle length for maximal tension development at a greater degree of extension, and has potential to improve muscle coordination during eccentric tasks. In skeletal muscles, these functional adaptations are based on increases in muscle mass, fascicle length, number of sarcomeres, and cross-sectional area of type II fibers. Identified modalities for eccentric loading in athletic populations involve classical isotonic exercises, accentuated jumping exercises, eccentric overloading exercises, and eccentric cycle ergometry. We conclude that eccentric exercise offers a promising training modality to enhance performance and to prevent injuries in athletes. However, further research is necessary to better understand how the neuromuscular system adapts to eccentric loading in athletes. Copyright © 2014 the American Physiological Society.
On the observability of resonant structures in planetesimal disks due to planetary migration
NASA Astrophysics Data System (ADS)
Reche, R.; Beust, H.; Augereau, J.-C.; Absil, O.
2008-03-01
Context: The observed clumpy structures in debris disks are commonly interpreted as particles trapped in mean-motion resonances with an unseen exo-planet. Populating the resonances requires a migrating process of either the particles (spiraling inward due to drag forces) or the planet (moving outward). Because the drag time-scale in resolved debris disks is generally long compared to the collisional time-scale, the planet migration scenario might be more likely, but this model has so far only been investigated for planets on circular orbits. Aims: We present a thorough study of the impact of a migrating planet on a planetesimal disk, by exploring a broad range of masses and eccentricities for the planet. We discuss the sensitivity of the structures generated in debris disks to the basic planet parameters. Methods: We perform many N-body numerical simulations, using the symplectic integrator SWIFT, taking into account the gravitational influence of the star and the planet on massless test particles. A constant migration rate is assumed for the planet. Results: The effect of planetary migration on the trapping of particles in mean motion resonances is found to be very sensitive to the initial eccentricity of the planet and of the planetesimals. A planetary eccentricity as low as 0.05 is enough to smear out all the resonant structures, except for the most massive planets. The planetesimals also initially have to be on orbits with a mean eccentricity of less than than 0.1 in order to keep the resonant clumps visible. Conclusions: This numerical work extends previous analytical studies and provides a collection of disk images that may help in interpreting the observations of structures in debris disks. Overall, it shows that stringent conditions must be fulfilled to obtain observable resonant structures in debris disks. Theoretical models of the origin of planetary migration will therefore have to explain how planetary systems remain in a suitable configuration to reproduce the observed structures. Figures 4-7 and Tables 2-4 are only available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Silsbee, Kedron; Rafikov, Roman R.
2015-01-01
Detections of planets in eccentric, close (separations of ~20 AU) binary systems such as α Cen or γ Cep provide an important test of planet formation theories. Gravitational perturbations from the companion are expected to excite high planetesimal eccentricities, resulting in destruction rather than growth of objects with sizes of up to several hundred kilometers in collisions of similar-sized bodies. It was recently suggested that the gravity of a massive axisymmetric gaseous disk in which planetesimals are embedded drives rapid precession of their orbits, suppressing eccentricity excitation. However, disks in binaries are themselves expected to be eccentric, leading to additional planetesimal excitation. Here we develop a secular theory of eccentricity evolution for planetesimals perturbed by the gravity of an elliptical protoplanetary disk (neglecting gas drag) and the companion. For the first time, we derive an expression for the disturbing function due to an eccentric disk, which can be used for a variety of other astrophysical problems. We obtain explicit analytical solutions for planetesimal eccentricity evolution neglecting gas drag and delineate four different regimes of dynamical excitation. We show that in systems with massive (gsim 10-2 M ⊙) disks, planetesimal eccentricity is usually determined by the gravity of the eccentric disk alone, and is comparable to the disk eccentricity. As a result, the latter imposes a lower limit on collisional velocities of solids, making their growth problematic. In the absence of gas drag, this fragmentation barrier can be alleviated if the gaseous disk rapidly precesses or if its own self-gravity is efficient at lowering disk eccentricity.
NASA Technical Reports Server (NTRS)
Faramaz, V.; Beust, H.; Thebault, P.; Augereau, J.-C.; Bonsor, A.; delBurgo, C.; Ertel, S.; Marshall, J. P.; Milli, J.; Montesinos, B.;
2014-01-01
Context. Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that they provide evidence for massive perturbers, for example, planets or binary companions, which sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around Zeta2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is several Gyr old. Aims. We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around Zeta2 Reticuli might be evidence of such a scenario. If so, we are able to constrain the mass and orbit of a potential perturber, either a giant planet or a binary companion. Methods. Analytical techniques were used to predict the effects of a perturber on a debris disk. Numerical N-body simulations were used to verify these results and further investigate the observable structures that may be produced by eccentric perturbers. The long-term evolution of the disk geometry was examined, with particular application to the Zeta2 Reticuli system. In addition, synthetic images of the disk were produced for direct comparison with Herschel observations. Results. We show that an eccentric companion can produce both the observed offsets and eccentric disks. These effects are not immediate, and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For Zeta2 Reticuli, we derive limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around Zeta2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux and extent). Conclusions. We conclude that eccentric planets or stellar companions can induce long-lived eccentric structures in debris disks. Observations of such eccentric structures thus provide potential evidence of the presence of such a companion in a planetary system. We considered the specific example of Zeta2 Reticuli, whose observed eccentric disk can be explained by a distant companion (at tens of AU) on an eccentric orbit (ep greater than approx. 0.3).
Circumbinary discs: Numerical and physical behaviour
NASA Astrophysics Data System (ADS)
Thun, Daniel; Kley, Wilhelm; Picogna, Giovanni
2017-08-01
Aims: Discs around a central binary system play an important role in star and planet formation and in the evolution of galactic discs. These circumbinary discs are strongly disturbed by the time varying potential of the binary system and display a complex dynamical evolution that is not well understood. Our goal is to investigate the impact of disc and binary parameters on the dynamical aspects of the disc. Methods: We study the evolution of circumbinary discs under the gravitational influence of the binary using two-dimensional hydrodynamical simulations. To distinguish between physical and numerical effects we apply three hydrodynamical codes. First we analyse in detail numerical issues concerning the conditions at the boundaries and grid resolution. We then perform a series of simulations with different binary parameters (eccentricity, mass ratio) and disc parameters (viscosity, aspect ratio) starting from a reference model with Kepler-16 parameters. Results: Concerning the numerical aspects we find that the length of the inner grid radius and the binary semi-major axis must be comparable, with free outflow conditions applied such that mass can flow onto the central binary. A closed inner boundary leads to unstable evolutions. We find that the inner disc turns eccentric and precesses for all investigated physical parameters. The precession rate is slow with periods (Tprec) starting at around 500 binary orbits (Tbin) for high viscosity and a high aspect ratio H/R where the inner hole is smaller and more circular. Reducing α and H/R increases the gap size and Tprec reaches 2500 Tbin. For varying binary mass ratios qbin the gap size remains constant, whereas Tprec decreases with increasing qbin. For varying binary eccentricities ebin we find two separate branches in the gap size and eccentricity diagram. The bifurcation occurs at around ecrit ≈ 0.18 where the gap is smallest with the shortest Tprec. For ebin lower and higher than ecrit, the gap size and Tprec increase. Circular binaries create the most eccentric discs. Movies associated to Figs. 1 and 8 are available at http://www.aanda.org
Driving With Hemianopia: III. Detection of Stationary and Approaching Pedestrians in a Simulator
Alberti, Concetta F.; Peli, Eli; Bowers, Alex R.
2014-01-01
Purpose. To compare blind-side detection performance of drivers with homonymous hemianopia (HH) for stationary and approaching pedestrians, initially appearing at small (4°) or large (14°) eccentricities in a driving simulator. While the stationary pedestrians did not represent an imminent threat, as their eccentricity increased rapidly as the vehicle advanced, the approaching pedestrians maintained a collision course with approximately constant eccentricity, walking or running, toward the travel lane as if to cross. Methods. Twelve participants with complete HH and without spatial neglect pressed the horn whenever they detected a pedestrian while driving along predetermined routes in two driving simulator sessions. Miss rates and reaction times were analyzed for 52 stationary and 52 approaching pedestrians. Results. Miss rates were higher and reaction times longer on the blind than the seeing side (P < 0.01). On the blind side, miss rates were lower for approaching than stationary pedestrians (16% vs. 29%, P = 0.01), especially at larger eccentricities (20% vs. 54%, P = 0.005), but reaction times for approaching pedestrians were longer (1.72 vs. 1.41 seconds; P = 0.03). Overall, the proportion of potential blind-side collisions (missed and late responses) was not different for the two paradigms (41% vs. 35%, P = 0.48), and significantly higher than for the seeing side (3%, P = 0.002). Conclusions. In a realistic pedestrian detection task, drivers with HH exhibited significant blind-side detection deficits. Even when approaching pedestrians were detected, responses were often too late to avoid a potential collision. PMID:24346175
Diffusive Tidal Evolution for Migrating Hot Jupiters
NASA Astrophysics Data System (ADS)
Wu, Yanqin
2018-03-01
I consider a Jovian planet on a highly eccentric orbit around its host star, a situation produced by secular interactions with its planetary or stellar companions. The tidal interactions at every periastron passage exchange energy between the orbit and the planet’s degree-2 fundamental-mode. Starting from zero energy, the f-mode can diffusively grow to large amplitudes if its one-kick energy gain is ≥10‑5 of the orbital energy. This requires a pericenter distance of ≤4 tidal radii (or 1.6 Roche radii). If the f-mode has a non-negligible initial energy, diffusive evolution can occur at a lower threshold. The first effect can stall the secular migration as the f-mode can absorb orbital energy and decouple the planet from its secular perturbers, parking all migrating jupiters safely outside the zone of tidal disruption. The second effect leads to rapid orbit circularization as it allows an excited f-mode to continuously absorb orbital energy as the orbit eccentricity decreases. So without any explicit dissipation, other than the fact that the f-mode will damp nonlinearly when its amplitude reaches unity, the planet can be transported from a few au to ∼0.2 au in ∼104 years. Such a rapid circularization is equivalent to a dissipation factor Q ∼ 1, and it explains the observed deficit of super-eccentric Jovian planets. Lastly, the repeated f-mode breaking likely deposits energy and angular momentum in the outer envelope and avoids thermally ablating the planet. Overall, this work boosts the case for hot Jupiter formation through high-eccentricity secular migration.
Neuromuscular changes and the rapid adaptation following a bout of damaging eccentric exercise.
Goodall, S; Thomas, K; Barwood, M; Keane, K; Gonzalez, J T; St Clair Gibson, A; Howatson, G
2017-08-01
An initial bout of eccentric exercise is known to protect against muscle damage following a repeated bout of the same exercise; however, the neuromuscular adaptations owing to this phenomenon are unknown. To determine whether neuromuscular disturbances are modulated following a repeated bout of eccentric exercise. Following eccentric exercise performed with the elbow flexors, we measured maximal voluntary force, resting twitch force, muscle soreness, creatine kinase (CK) and voluntary activation (VA) using motor point and motor cortex stimulation at baseline, immediately post-exercise and at 1, 2, 3, 4 and 7 days post-exercise on two occasions, separated by 3 weeks. Significant muscle damage and fatigue were evident following the first exercise bout; maximal voluntary contraction (MVC) was reduced immediately by 35% and remained depressed at 7 days post-exercise. Soreness and CK release peaked at 3 and 4 days post-exercise respectively. Resting twitch force remained significantly reduced at 7 days (-48%), whilst VA measured with motor point and motor cortex stimulation was reduced until 2 and 3 days respectively. A repeated bout effect (RBE) was observed with attenuated soreness and CK release and a quicker recovery of MVC and resting twitch force. A similar decrement in VA was observed following both bouts; however, following the repeated bout there was a significantly smaller reduction in, and a faster recovery of, VA measured using motor cortical stimulation. Our data suggest that the RBE may be explained, partly, by a modification in motor corticospinal drive. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
On disk-planet interactions and orbital eccentricities
NASA Technical Reports Server (NTRS)
Ward, William R.
1988-01-01
While Lindblad resonances both within and without a perturber's orbit excite its eccentricity, the present study of the eccentricity evolution due to the density wave interaction between a planetesimal and a Keplerian disk notes that coronation resonances in these regions lose their eccentricity damping effectiveness if the object is embedded in a continuous disk without a gap. Attention is given to another class of Lindblad resonances which, under these conditions, operates on disk material coorbiting with the perturber; these resonances thereby become the most important source of eccentricity damping. A model problem indicates that eccentricity ultimately undergoes decay.
NASA Technical Reports Server (NTRS)
Rouvas, C.; Childs, D. W.
1993-01-01
In identifying the rotordynamic coefficients of a high-Reynolds-number hydrostatic bearing, fluid-flow induced forces present a unique problem, in that they provide an unmeasureable and uncontrollable excitation to the bearing. An analysis method is developed that effectively eliminates the effects of fluid-flow induced excitation on the estimation of the bearing rotordynamic coefficients, by using power spectral densities. In addition to the theoretical development, the method is verified experimentally by single-frequency testing, and repeatability tests. Results obtained for a bearing are the twelve rotordynamic coefficients (stiffness, damping, and inertia coefficients) as functions of eccentricity ratio, speed, and supply pressure.
NASA Technical Reports Server (NTRS)
Urlichs, K.
1983-01-01
Self-excited rotor whirl represents a serious hazard in the operation of turbomachines. The reported investigation has, therefore, the objective to measure the lateral forces acting on the rotor and to determine the characteristic pressure distribution in the rotor clearance area. A description is presented of an approach for calculating the leakage flow in the case of an eccentric rotor position on the basis of empirical loss coefficients. The results are reported of an experimental investigation with a turbine stage, taking into account a variation of the clearance characteristics. The pressure data measured are consistent with the theoretical considerations.
Eccentric knee flexor torque following anterior cruciate ligament surgery.
Osternig, L R; James, C R; Bercades, D T
1996-10-01
The purposes of this study were to compare eccentric knee flexor torque and muscle activation in the limbs of normal (NOR) subjects and in subjects who had undergone unilateral ACI, autograft surgical reconstruction (INJ) and to assess the effect of movement speed on EMG/ torque ratios and eccentric-concentric actions. Fourteen subjects (7 NOR and 7 INJ) were tested for knee eccentric flexor torque and EMG activity at four isokinetic speeds (15 degrees, 30 degrees, 45 degrees and 60 degrees.s-1). Results revealed that post-surgical limbs (ACL) produced significantly less (P < 0.05) eccentric torque and flexor EMG activity at 60 degrees.s-1 than uninjured (UNI) contralateral limbs. Eccentric torque rose significantly as speed increased from 45 degrees to 60 degrees.s-1 for surgical group uninjured limbs and NOR group left and right limbs. Eccentric flexor torque increased with speed for both groups and approximated equality with concentric extensor torque at 60 degrees.s-1 for INJ group ACL and UNI limbs. Concentric flexor muscle EMG/torque ratios were 30-191% greater than eccentric muscle actions across groups and speeds. The results suggest that ACL dysfunction may result in reduced eccentric flexor torque at rapid movement speeds, that eccentric flexor torque increases with movement speed and may have the capacity to counter forceful extensor concentric torque, and that eccentric muscle actions produce less muscle activation per unit force than concentric actions which may reflect reduced energy cost.
Brain activation associated with eccentric movement: A narrative review of the literature.
Perrey, Stéphane
2018-02-01
The movement occurring when a muscle exerts tension while lengthening is known as eccentric muscle action. Literature contains limited evidence on how our brain controls eccentric movement. However, how the cortical regions in the motor network are activated during eccentric muscle actions may be critical for understanding the underlying control mechanism of eccentric movements encountered in daily tasks. This is a novel topic that has only recently begun to be investigated through advancements in neuroimaging methods (electroencephalography, EEG; functional magnetic resonance imaging, fMRI). This review summarizes a selection of seven studies indicating mainly: longer time and higher cortical signal amplitude (EEG) for eccentric movement preparation and execution, greater magnitude of cortical signals with wider activated brain area (EEG, fMRI), and weaker brain functional connectivity (fMRI) between primary motor cortex (M1) and other cortical areas involved in the motor network during eccentric muscle actions. Only some differences among studies due to the forms of movement with overload were observed in the contralateral (to the active hand) M1 activity during eccentric movement. Altogether, the findings indicate an important challenge to the brain for controlling the eccentric movement. However, our understanding remains limited regarding the acute effects of eccentric exercise on cortical regions and their cooperation as functional networks that support motor functions. Further analysis and standardized protocols will provide deeper insights into how different cortical regions of the underlying motor network interplay with each other in increasingly demanding muscle exertions in eccentric mode.
NASA Astrophysics Data System (ADS)
Cao, Zhoujian; Han, Wen-Biao
2017-08-01
Binary black hole systems are among the most important sources for gravitational wave detection. They are also good objects for theoretical research for general relativity. A gravitational waveform template is important to data analysis. An effective-one-body-numerical-relativity (EOBNR) model has played an essential role in the LIGO data analysis. For future space-based gravitational wave detection, many binary systems will admit a somewhat orbit eccentricity. At the same time, the eccentric binary is also an interesting topic for theoretical study in general relativity. In this paper, we construct the first eccentric binary waveform model based on an effective-one-body-numerical-relativity framework. Our basic assumption in the model construction is that the involved eccentricity is small. We have compared our eccentric EOBNR model to the circular one used in the LIGO data analysis. We have also tested our eccentric EOBNR model against another recently proposed eccentric binary waveform model; against numerical relativity simulation results; and against perturbation approximation results for extreme mass ratio binary systems. Compared to numerical relativity simulations with an eccentricity as large as about 0.2, the overlap factor for our eccentric EOBNR model is better than 0.98 for all tested cases, including spinless binary and spinning binary, equal mass binary, and unequal mass binary. Hopefully, our eccentric model can be the starting point to develop a faithful template for future space-based gravitational wave detectors.
The origin of the eccentricities of the rings of Uranus
NASA Technical Reports Server (NTRS)
Goldreich, P.; Tremaine, S.
1981-01-01
The effect of gravitational perturbations from a nearby satellite on the eccentricity e of a narrow particulate ring is considered. The perturbations near a resonance in an eccentric ring may be divided into corotation and Lindblad terms. For small e, the corotation terms damp e, whereas the Lindblad terms excite e. In the absence of saturation the corotation terms win by a small margin, and e damps. However, if the perturbations open gaps at the strongest resonances, then the Lindblad terms win, and e grows. This result offers an explanation for the existence of both circular and eccentric rings around Uranus. It is also shown that eccentricity changes induced by circular rings on eccentric satellite orbits are similar to those induced by satellites with circular orbits on eccentric rings.
McCormack, Joshua R.; Underwood, Frank B.; Slaven, Emily J.; Cappaert, Thomas A.
2016-01-01
Background: Eccentric exercise is commonly used in the management of Achilles tendinopathy (AT) but its effectiveness for insertional AT has been questioned. Soft tissue treatment (Astym) combined with eccentric exercise could result in better outcomes than eccentric exercise alone. Hypothesis: Soft tissue treatment (Astym) plus eccentric exercise will be more effective than eccentric exercise alone for subjects with insertional AT. Study Design: Prospective randomized controlled trial. Level of Evidence: Level 2. Methods: Sixteen subjects were randomly assigned to either a soft tissue treatment (Astym) and eccentric exercise group or an eccentric exercise–only group. Intervention was completed over a 12-week period, with outcomes assessed at baseline, 4, 8, 12, 26, and 52 weeks. Outcomes included the Victorian Institute of Sport Assessment Achilles-Specific Questionnaire (VISA-A), the numeric pain rating scale (NPRS), and the global rating of change (GROC). Results: Significantly greater improvements on the VISA-A were noted in the soft tissue treatment (Astym) group over the 12-week intervention period, and these differences were maintained at the 26- and 52-week follow-ups. Both groups experienced a similar statistically significant improvement in pain over the short and long term. A significantly greater number of subjects in the soft tissue treatment (Astym) group achieved a successful outcome at 12 weeks. Conclusion: Soft tissue treatment (Astym) plus eccentric exercise was more effective than eccentric exercise only at improving function during both short- and long-term follow-up periods. Clinical Relevance: Soft tissue treatment (Astym) plus eccentric exercise appears to be a beneficial treatment program that clinicians should consider incorporating into the management of their patients with insertional AT. PMID:26893309
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silsbee, Kedron; Rafikov, Roman R., E-mail: ksilsbee@astro.princeton.edu
2015-01-10
Detections of planets in eccentric, close (separations of ∼20 AU) binary systems such as α Cen or γ Cep provide an important test of planet formation theories. Gravitational perturbations from the companion are expected to excite high planetesimal eccentricities, resulting in destruction rather than growth of objects with sizes of up to several hundred kilometers in collisions of similar-sized bodies. It was recently suggested that the gravity of a massive axisymmetric gaseous disk in which planetesimals are embedded drives rapid precession of their orbits, suppressing eccentricity excitation. However, disks in binaries are themselves expected to be eccentric, leading to additionalmore » planetesimal excitation. Here we develop a secular theory of eccentricity evolution for planetesimals perturbed by the gravity of an elliptical protoplanetary disk (neglecting gas drag) and the companion. For the first time, we derive an expression for the disturbing function due to an eccentric disk, which can be used for a variety of other astrophysical problems. We obtain explicit analytical solutions for planetesimal eccentricity evolution neglecting gas drag and delineate four different regimes of dynamical excitation. We show that in systems with massive (≳ 10{sup –2} M {sub ☉}) disks, planetesimal eccentricity is usually determined by the gravity of the eccentric disk alone, and is comparable to the disk eccentricity. As a result, the latter imposes a lower limit on collisional velocities of solids, making their growth problematic. In the absence of gas drag, this fragmentation barrier can be alleviated if the gaseous disk rapidly precesses or if its own self-gravity is efficient at lowering disk eccentricity.« less
Measurement and evaluation of swirl-type flow in labyrinth seals of conventional turbine stages
NASA Technical Reports Server (NTRS)
Hauck, L.
1982-01-01
The effects of load factor and rotor eccentricity were determined on flow conditions in test series for two stages. The results indicate that swirl-type entry flow follows the rules of potential swirl. Within the labyrinth cavities two spatial separated flow areas are considered. A dominating flow in periphera direction nearly fills the space between the sealing strips and the ceiling of the cavity. Below this flow, an area of axial mass transport is situated, with a slight peripheral component, limited on the nearest surroundings of the seals gap and the rotor surface. Between both flows, an exchange of energy takes place. Within the gaps, flow direction depends on axial velocity and therefore on variable flow contraction. A balance of energy within the seal and the cavities interprets the results of lateral force measurements as an influence of friction at the sealing strips surface and the rotating shaft surface. Stages with their blades put together in buckets by means of shrouding segments are particularly influenced by the rotating speed of the shrouding.
Hill, Ethan C; Housh, Terry J; Keller, Joshua L; Smith, Cory M; Schmidt, Richard J; Johnson, Glen O
2018-06-22
Low-intensity venous blood flow restriction (vBFR) resistance training has been shown to promote increases in muscle strength and size. Eccentric-only muscle actions are typically a more potent stimulus to increase muscle strength and size than concentric-only muscle actions performed at the same relative intensities. Therefore, the purpose of this investigation was to examine the time-course of changes in muscle strength, hypertrophy, and neuromuscular adaptations following 4 weeks of unilateral forearm flexion low-intensity eccentric vBFR (Ecc-vBFR) vs. low-intensity concentric vBFR (Con-vBFR) resistance training performed at the same relative intensity. Thirty-six women were randomly assigned to either Ecc-vBFR (n = 12), Con-vBFR (n = 12) or control (no intervention, n = 12) group. Ecc-vBFR trained at 30% of eccentric peak torque and Con-vBFR trained at 30% of concentric peak torque. All training and testing procedures were performed at an isokinetic velocity of 120° s - ¹. Muscle strength increased similarly from 0 to 2 and 4 weeks of training as a result of Ecc-vBFR (13.9 and 35.0%) and Con-vBFR (13.4 and 31.2%), but there were no changes in muscle strength for the control group. Muscle thickness increased similarly from 0 to 2 and 4 weeks of training as a result of Ecc-vBFR (11.4 and 12.8%) and Con-vBFR (9.1 and 9.9%), but there were no changes for the control group. In addition, there were no changes in any of the neuromuscular responses. The Ecc-vBFR and Con-vBFR low-intensity training induced comparable increases in muscle strength and size. The increases in muscle strength, however, were not associated with neuromuscular adaptations.
NASA Astrophysics Data System (ADS)
da Silva Fernandes, S.; das Chagas Carvalho, F.; Bateli Romão, J. V.
2018-04-01
A numerical-analytical procedure based on infinitesimal canonical transformations is developed for computing optimal time-fixed low-thrust limited power transfers (no rendezvous) between coplanar orbits with small eccentricities in an inverse-square force field. The optimization problem is formulated as a Mayer problem with a set of non-singular orbital elements as state variables. Second order terms in eccentricity are considered in the development of the maximum Hamiltonian describing the optimal trajectories. The two-point boundary value problem of going from an initial orbit to a final orbit is solved by means of a two-stage Newton-Raphson algorithm which uses an infinitesimal canonical transformation. Numerical results are presented for some transfers between circular orbits with moderate radius ratio, including a preliminary analysis of Earth-Mars and Earth-Venus missions.
Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonini, Fabio; Toonen, Silvia; Hamers, Adrian S.
We consider the formation of binary black hole (BH) mergers through the evolution of field massive triple stars. In this scenario, favorable conditions for the inspiral of a BH binary are initiated by its gravitational interaction with a distant companion, rather than by a common-envelope phase invoked in standard binary evolution models. We use a code that follows self-consistently the evolution of massive triple stars, combining the secular triple dynamics (Lidov–Kozai cycles) with stellar evolution. After a BH triple is formed, its dynamical evolution is computed using either the orbit-averaged equations of motion, or a high-precision direct integrator for triplesmore » with weaker hierarchies for which the secular perturbation theory breaks down. Most BH mergers in our models are produced in the latter non-secular dynamical regime. We derive the properties of the merging binaries and compute a BH merger rate in the range (0.3–1.3) Gpc{sup −3} yr{sup −1}, or up to ≈2.5 Gpc{sup −3} yr{sup −1} if the BH orbital planes have initially random orientation. Finally, we show that BH mergers from the triple channel have significantly higher eccentricities than those formed through the evolution of massive binaries or in dense star clusters. Measured eccentricities could therefore be used to uniquely identify binary mergers formed through the evolution of triple stars. While our results suggest up to ≈10 detections per year with Advanced-LIGO, the high eccentricities could render the merging binaries harder to detect with planned space based interferometers such as LISA.« less
NASA Astrophysics Data System (ADS)
Faramaz, V.; Beust, H.; Thébault, P.; Augereau, J.-C.; Bonsor, A.; del Burgo, C.; Ertel, S.; Marshall, J. P.; Milli, J.; Montesinos, B.; Mora, A.; Bryden, G.; Danchi, W.; Eiroa, C.; White, G. J.; Wolf, S.
2014-03-01
Context. Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that they provide evidence for massive perturbers, for example, planets or binary companions, which sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around ζ2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is several Gyr old. Aims: We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around ζ2 Reticuli might be evidence of such a scenario. If so, we are able to constrain the mass and orbit of a potential perturber, either a giant planet or a binary companion. Methods: Analytical techniques were used to predict the effects of a perturber on a debris disk. Numerical N-body simulations were used to verify these results and further investigate the observable structures that may be produced by eccentric perturbers. The long-term evolution of the disk geometry was examined, with particular application to the ζ2 Reticuli system. In addition, synthetic images of the disk were produced for direct comparison with Herschel observations. Results: We show that an eccentric companion can produce both the observed offsets and eccentric disks. These effects are not immediate, and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For ζ2 Reticuli, we derive limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around ζ2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux and extent). Conclusions: We conclude that eccentric planets or stellar companions can induce long-lived eccentric structures in debris disks. Observations of such eccentric structures thus provide potential evidence of the presence of such a companion in a planetary system. We considered the specific example of ζ2 Reticuli, whose observed eccentric disk can be explained by a distant companion (at tens of AU) on an eccentric orbit (ep ≳ 0.3). Appendices are available in electronic form at http://www.aanda.orgHerschel Space Observatory is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Classification of Tidal Disruption Events Based on Stellar Orbital Properties
NASA Astrophysics Data System (ADS)
Hayasaki, Kimitake; Zhong, Shiyan; Li, Shuo; Berczik, Peter; Spurzem, Rainer
2018-03-01
We study the rates of tidal disruption of stars on bound to unbound orbits by intermediate-mass to supermassive black holes using high-accuracy direct N-body experiments. Stars from the star cluster approaching the black hole can have three types of orbit: eccentric, parabolic, and hyperbolic. Since the mass fallback rate shows different variabilities depending on the orbital type, we can classify tidal disruption events (TDEs) into three main categories: eccentric, parabolic, and hyperbolic. The respective TDEs are characterized by two critical values of the orbital eccentricity: the lower critical eccentricity is the one below which stars on eccentric orbits cause finite, intense accretion, and the upper critical eccentricity is the one above which stars on hyperbolic orbits cause no accretion. Moreover, we find that parabolic TDEs can be divided into three subclasses: precisely parabolic, marginally eccentric, and marginally hyperbolic. We analytically derive that the mass fallback rate of marginally eccentric TDEs can be flatter and slightly higher than the standard fallback rate proportional to t ‑5/3, whereas it can be flatter and lower for marginally hyperbolic TDEs. We confirm using N-body experiments that only a few eccentric, precisely parabolic, and hyperbolic TDEs can occur in a spherical stellar system with a single intermediate-mass to supermassive black hole. A substantial fraction of the stars approaching the black hole would cause marginally eccentric or marginally hyperbolic TDEs.
The eccentricity effect: target eccentricity affects performance on conjunction searches.
Carrasco, M; Evert, D L; Chang, I; Katz, S M
1995-11-01
The serial pattern found for conjunction visual-search tasks has been attributed to covert attentional shifts, even though the possible contributions of target location have not been considered. To investigate the effect of target location on orientation x color conjunction searches, the target's duration and its position in the display were manipulated. The display was present either until observers responded (Experiment 1), for 104 msec (Experiment 2), or for 62 msec (Experiment 3). Target eccentricity critically affected performance: A pronounced eccentricity effect was very similar for all three experiments; as eccentricity increased, reaction times and errors increased gradually. Furthermore, the set-size effect became more pronounced as target eccentricity increased, and the extent of the eccentricity effect increased for larger set sizes. In addition, according to stepwise regressions, target eccentricity as well as its interaction with set size were good predictors of performance. We suggest that these findings could be explained by spatial-resolution and lateral-inhibition factors. The serial self-terminating hypothesis for orientation x color conjunction searches was evaluated and rejected. We compared the eccentricity effect as well as the extent of the orientation asymmetry in these three conjunction experiments with those found in feature experiments (Carrasco & Katz, 1992). The roles of eye movements, spatial resolution, and covert attention in the eccentricity effect, as well as their implications, are discussed.
Quasi-eccentricity error modeling and compensation in vision metrology
NASA Astrophysics Data System (ADS)
Shen, Yijun; Zhang, Xu; Cheng, Wei; Zhu, Limin
2018-04-01
Circular targets are commonly used in vision applications for its detection accuracy and robustness. The eccentricity error of the circular target caused by perspective projection is one of the main factors of measurement error which needs to be compensated in high-accuracy measurement. In this study, the impact of the lens distortion on the eccentricity error is comprehensively investigated. The traditional eccentricity error turns to a quasi-eccentricity error in the non-linear camera model. The quasi-eccentricity error model is established by comparing the quasi-center of the distorted ellipse with the true projection of the object circle center. Then, an eccentricity error compensation framework is proposed which compensates the error by iteratively refining the image point to the true projection of the circle center. Both simulation and real experiment confirm the effectiveness of the proposed method in several vision applications.
Hays, Allison G; Iantorno, Micaela; Schär, Michael; Mukherjee, Monica; Stuber, Matthias; Gerstenblith, Gary; Weiss, Robert G
2017-07-06
Coronary endothelial function (CEF) in patients with coronary artery disease (CAD) varies among coronary segments in a given patient. Because both coronary vessel wall eccentricity and coronary endothelial dysfunction are predictors of adverse outcomes, we hypothesized that local coronary endothelial dysfunction is associated with local coronary artery eccentricity. We used 3 T coronary CMR to measure CEF as changes in coronary cross-sectional area (CSA) and coronary blood flow (CBF) during isometric handgrip exercise (IHE), a known endothelial-dependent stressor, in 29 patients with known CAD and 16 healthy subjects. Black-blood MRI quantified mean coronary wall thickness (CWT) and coronary eccentricity index (EI) and CEF was determined in the same segments. IHE-induced changes in CSA and CBF in healthy subjects (10.6 ± 6.6% and 38.3 ± 29%, respectively) were greater than in CAD patients 1.3 ± 7.7% and 6.5 ± 19.6%, respectively, p < 0.001 vs. healthy for both measures), as expected. Mean CWT and EI in healthy subjects (1.1 ± 0.3 mm 1.9 ± 0.5, respectively) were less than those in CAD patients (1.6 ± 0.4 mm, p < 0.0001; and 2.6 ± 0.6, p = 0.006 vs. healthy). In CAD patients, we observed a significant inverse relationship between stress-induced %CSA change and both EI (r = -0.60, p = 0.0002), and CWT (r = -0.54, p = 0.001). Coronary EI was independently and significantly related to %CSA change with IHE even after controlling for mean CWT (adjusted r = -0.69, p = 0.0001). For every unit increase in EI, coronary CSA during IHE is expected to change by -6.7 ± 9.4% (95% confidence interval: -10.3 to -3.0, p = 0.001). There is a significant inverse and independent relationship between coronary endothelial macrovascular function and the degree of local coronary wall eccentricity in CAD patients. Thus anatomic and physiologic indicators of high-risk coronary vascular pathology are closely related. The noninvasive identification of coronary eccentricity and its relationship with underlying coronary endothelial function, a marker of vascular health, may be useful in identifying high-risk patients and culprit lesions.
Two-phase flows within systems with ambient pressure
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.
1985-01-01
In systems where the design inlet and outlet pressures are maintained above the thermodynamic critical pressure, it is often assumed that two phase flows within the system cannot occur. Designers rely on this simple rule of thumb to circumvent problems associated with a highly compressible two phase flow occurring within the supercritical pressure system along with the uncertainties in rotordynamics, load capacity, heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low power designs but is inadequate for high performance turbomachines and linear systems, where two phase regions can exist even though outlet pressure is greater than critical pressure. Rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two phase zone can differ significantly from those for a single-phase zone. Using the Reynolds equation the angular velocity, eccentricity, geometry, and ambient conditions are varied to determine the point of two phase flow incipience.
Numerical Study on the Improvement of Oil Return Structure in Aero-Engine Bearing Chambers
NASA Astrophysics Data System (ADS)
Jingyu, Zhao; Yaguo, Lyv; Zhenxia, Liu; Guozhe, Ren
2018-03-01
Numerical study has been carried out to improve the unreasonable oil film accumulation and oil return effect of the bearing chamber. Ramp sump and eccentricity sump offtake structures are designed and improved, and oil-gas two-phase flow calculation model based on CLSVOF (coupled level set and volume of fluid) method is proposed. Based on the grid-independent analysis and verifying the rationality of numerical data, oil-gas movement mechanism and oil return characteristics for different scavenge offtakes are calculated and analyzed. Results show that both the ramp sump and eccentricity sump offtake structures have favorable effects on improving the local oil distribution such as recirculation and stripping, etc. at low rotation speeds and alleviating the rapid decline of scavenge efficiency at high rotation speeds. Meanwhile, the air shear force is the main reason for the rapid decline of scavenge efficiency, while the design of oil return sump makes for the oil discharge from the scavenge offtake, and the deeper the sump depth is, the better.
Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise.
Hyldahl, Robert D; Hubal, Monica J
2014-02-01
The response of skeletal muscle to unaccustomed eccentric exercise has been studied widely, yet it is incompletely understood. This review is intended to provide an up-to-date overview of our understanding of how skeletal muscle responds to eccentric actions, with particular emphasis on the underlying molecular and cellular mechanisms of damage and recovery. This review begins by addressing the question of whether eccentric actions result in physical damage to muscle fibers and/or connective tissue. We next review the symptomatic manifestations of eccentric exercise (i.e., indirect damage markers, such as delayed onset muscle soreness), with emphasis on their relatively poorly understood molecular underpinnings. We then highlight factors that potentially modify the muscle damage response following eccentric exercise. Finally, we explore the utility of using eccentric training to improve muscle function in populations of healthy and aging individuals, as well as those living with neuromuscular disorders. Copyright © 2013 Wiley Periodicals, Inc.
Enhancement of convective heat transfer in internal flows using an electrically-induced corona jet
NASA Astrophysics Data System (ADS)
Baghaei Lakeh, Reza
The enhancement of heat transfer by active and passive methods has been the subject of many academic and industrial research studies. Internal flows play a major role in many applications and different methods have been utilized to augment the heat transfer to internal flows. Secondary flows consume part of the kinetic energy of the flow and disturb the boundary layer. Inducing secondary flows is known as mechanism for heat transfer enhancement. Secondary flows may be generated by corona discharge and ion-driven flows. When a high electric potential is applied to a conductor, a high electric field will be generated. The high electric field may exceed the partial break-down of the neutral molecules of surrounding gas (air) and generate a low-temperature plasma in the vicinity of the conductor. The generated plasma acts as a source of ions that accelerate under the influence of the electric field and escape beyond the plasma region and move toward the grounded electrode. The accelerating ions collide with neutral particles of the surrounding gas and impose a dragging effect which is interpreted as a body-force to the air particles. The shape and configuration of the emitting and receiving electrodes has a significant impact on the distribution of the electric body-force and the resulting electrically-induced flow field. It turned out that the certain configurations of longitudinal electrodes may cause a jet-like secondary flow field on the cross section of the flow passage in internal flows. The impingement effect of the corona jet on the walls of the channel disturbs the boundary layer, enhances the convective heat transfer, and generates targeted cooling along the centerline of the jet. The results of the current study show that the concentric configuration of a suspended wire-electrode in a circular tube leads to a hydrostatic condition and do not develop any electrically-induced secondary flow; however, the eccentric wire-electrode configuration generates a corona jet along the eccentricity direction. The generated corona jet exhibits interesting specifications similar to conventional inertia-driven air jets which are among common techniques for cooling and heat transfer enhancement. On the other hand, wall-mounted flat electrode pairs along the parallel walls of a rectangular mini-channel develop a similar jet-like flow pattern. The impingement of the corona jet to the receiving wall causes excessive heat transfer enhancement and cooling effect. The flat electrode pairs were also utilized to study the effect of corona discharge on the heat transfer specifications of the internal flow between parallel plates in fully-developed condition. It turned out that the electrically-induced secondary flow along with a pressure-driven main flow generates a swirling effect which can enhance the heat transfer significantly in fully-developed condition.
[Eccentricity-dependent influence of amodal completion on visual search].
Shirama, Aya; Ishiguchi, Akira
2009-06-01
Does amodal completion occur homogeneously across the visual field? Rensink and Enns (1998) found that visual search for efficiently-detected fragments became inefficient when observers perceived the fragments as a partially-occluded version of a distractor due to a rapid completion process. We examined the effect of target eccentricity in Rensink and Enns's tasks and a few additional tasks by magnifying the stimuli in the peripheral visual field to compensate for the loss of spatial resolution (M-scaling; Rovamo & Virsu, 1979). We found that amodal completion disrupted the efficient search for the salient fragments (i.e., target) even when the target was presented at high eccentricity (within 17 deg). In addition, the configuration effect of the fragments, which produced amodal completion, increased with eccentricity while the same target was detected efficiently at the lowest eccentricity. This eccentricity effect is different from a previously-reported eccentricity effect where M-scaling was effective (Carrasco & Frieder, 1997). These findings indicate that the visual system has a basis for rapid completion across the visual field, but the stimulus representations constructed through amodal completion have eccentricity-dependent properties.
An alternative approach for computing seismic response with accidental eccentricity
NASA Astrophysics Data System (ADS)
Fan, Xuanhua; Yin, Jiacong; Sun, Shuli; Chen, Pu
2014-09-01
Accidental eccentricity is a non-standard assumption for seismic design of tall buildings. Taking it into consideration requires reanalysis of seismic resistance, which requires either time consuming computation of natural vibration of eccentric structures or finding a static displacement solution by applying an approximated equivalent torsional moment for each eccentric case. This study proposes an alternative modal response spectrum analysis (MRSA) approach to calculate seismic responses with accidental eccentricity. The proposed approach, called the Rayleigh Ritz Projection-MRSA (RRP-MRSA), is developed based on MRSA and two strategies: (a) a RRP method to obtain a fast calculation of approximate modes of eccentric structures; and (b) an approach to assemble mass matrices of eccentric structures. The efficiency of RRP-MRSA is tested via engineering examples and compared with the standard MRSA (ST-MRSA) and one approximate method, i.e., the equivalent torsional moment hybrid MRSA (ETM-MRSA). Numerical results show that RRP-MRSA not only achieves almost the same precision as ST-MRSA, and is much better than ETM-MRSA, but is also more economical. Thus, RRP-MRSA can be in place of current accidental eccentricity computations in seismic design.
Muscle changes with eccentric exercise: Implications on earth and in space
NASA Technical Reports Server (NTRS)
Hargens, Alan R.; Parazynski, Scott; Aratow, Michael; Friden, Jan
1989-01-01
Recent investigations of fluid pressure, morpholo gy, and enzyme activities of skeletal muscle exercised eccentrically or concentrically in normal human subjects are reviewed. Intramuscular pressures were measured before, during, and after submaximal exercise and correlated with subjective muscle soreness, fiber size, water content, and blood indices of muscle enzymes. High intensity eccentric exercise is characterized by post exercise pain, elevated intramuscular pressures, and swelling of both type 1 and 2 fibers as compared to concentric exercise. Thus, long periods of unaccustomed, high level eccentric contraction may cause muscle injury, fiber swelling, fluid accumulation, elevated intramuscular pressure, and delayed muscle soreness. Training regimens of progressively increasing eccentric exercise, however, cause less soreness and are extremely efficacious in increasing muscle mass and strength. It is proposed that on Earth, postural muscles are uniquely adapted to low levels of prolonged eccentric contraction that are absent during weightlessness. The almost complete absence of eccentric exercise in space may be an important contributor to muscle atrophy and therefore equipment should be designed to integrate eccentric contractions into exercise protocols for long-term spaceflight.
NASA Astrophysics Data System (ADS)
Stow, C. D.; Hadfield, M. G.
1981-01-01
The flow of fluid associated with the impact of water drops of radius R at a speed V onto unyielding dry metal surfaces of known roughness R_a is described. Spatial dimensions of the deforming drop are normalized by transformations of the kind x' = x/R, and time scales are normalized according to t' = tV/R, to permit comparison of events where R or V differ. It is shown that the primary influence of the surface roughness parameter R_a is the determination of the condition for the ejection of secondary droplets by the excitation of an instability in the developing watersheet; provided R_a ~= R, it is possible to evaluate the condition to a high degree of accuracy, and for R_a = 0.84 μ m it is found to be α4/3RV1.69 > 7.4, where α is the eccentricity of the drop at the moment of impact. Deceleration of the drop apex does not commence until t' > 0.6, contrary to the prediction of Engel (1955) but in good agreement with that of Savic & Boult (1957). Close examination of the very early stages of impact suggests strongly that the so-called watersheet originates at a moment t' = 0.01 after first contact, regardless of the absolute values of R, V or R_a; the initial normalized watersheet velocity is of order 5. Where there is ejected material, its normalized velocity at the moment of ejection is of the order of 20% greater than that of the watersheet substrate. Simple calculations also suggest that initial fluid velocities greater than 10V are required immediately before the initiation of the watersheet (t' < 0.01). Impacts at speeds considerably greater than the appropriate terminal fall speed in air show no deviations in character from those investigated at much lower speeds. A simple subsidiary experiment also suggests that greater impact velocities are required to produce splashing on inclined targets.
Eccentric figure-eight coils for transcranial magnetic stimulation.
Sekino, Masaki; Ohsaki, Hiroyuki; Takiyama, Yoshihiro; Yamamoto, Keita; Matsuzaki, Taiga; Yasumuro, Yoshihiro; Nishikawa, Atsushi; Maruo, Tomoyuki; Hosomi, Koichi; Saitoh, Youichi
2015-01-01
Previously we proposed an eccentric figure-eight coil that can cause threshold stimulation in the brain at lower driving currents. In this study, we performed numerical simulations and magnetic stimulations to healthy subjects for evaluating the advantages of the eccentric coil. The simulations were performed using a simplified spherical brain model and a realistic human brain model. We found that the eccentric coil required a driving current intensity of approximately 18% less than that required by the concentric coil to cause comparable eddy current densities within the brain. The eddy current localization of the eccentric coil was slightly higher than that of the concentric coil. A prototype eccentric coil was designed and fabricated. Instead of winding a wire around a bobbin, we cut eccentric-spiral slits on the insulator cases, and a wire was woven through the slits. The coils were used to deliver magnetic stimulation to healthy subjects; among our results, we found that the current slew rate corresponding to motor threshold values for the concentric and eccentric coils were 86 and 78 A/µs, respectively. The results indicate that the eccentric coil consistently requires a lower driving current to reach the motor threshold than the concentric coil. Future development of compact magnetic stimulators will enable the treatment of some intractable neurological diseases at home. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Van Laerhoven, Christa L.
2015-05-01
Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods. Using this catalog of secular character, I will discuss the prevalence of dynamically grouped planets ('groupies') versus dynamically uncoupled planets ('loners') and how this relates to the exoplanets' long-term eccentricity and inclination behavior. I will also touch on the distribution of the secular eigenfreqiencies.
NASA Astrophysics Data System (ADS)
Madigan, Ann-Marie; Halle, Andrew; Moody, Mackenzie; McCourt, Michael; Nixon, Chris; Wernke, Heather
2018-02-01
In some galaxies, the stars orbiting the supermassive black hole take the form of an eccentric nuclear disk, in which every star is on a coherent, apsidally aligned orbit. The most famous example of an eccentric nuclear disk is the double nucleus of Andromeda, and there is strong evidence for many more in the local universe. Despite their apparent ubiquity, however, a dynamical explanation for their longevity has remained a mystery: differential precession should wipe out large-scale apsidal-alignment on a short timescale. Here we identify a new dynamical mechanism which stabilizes eccentric nuclear disks, and explain for the first time the negative eccentricity gradient seen in the Andromeda nucleus. The stabilizing mechanism drives oscillations of the eccentricity vectors of individual orbits, both in direction (about the mean body of the disk) and in magnitude. Combined with the negative eccentricity gradient, the eccentricity oscillations push some stars near the inner edge of the disk extremely close to the black hole, potentially leading to tidal disruption events (TDEs). Order of magnitude calculations predict extremely high rates in recently formed eccentric nuclear disks (∼0.1–1 {{yr}}-1 {{gal}}-1). Unless the stellar disks are replenished, these rates should decrease with time as the disk depletes in mass. If eccentric nuclear disks form during gas-rich major mergers, this may explain the preferential occurrence of TDEs in recently merged and post-merger (E+A/K+A) galaxies.
Chen, Trevor Chung-Ching; Tseng, Wei-Chin; Huang, Guan-Ling; Chen, Hsin-Lian; Tseng, Kuo-Wei; Nosaka, Kazunori
2017-01-01
It has been reported that eccentric training of knee extensors is effective for improving blood insulin sensitivity and lipid profiles to a greater extent than concentric training in young women. However, it is not known whether this is also the case for elderly individuals. Thus, the present study tested the hypothesis that eccentric training of the knee extensors would improve physical function and health parameters (e.g., blood lipid profiles) of older adults better than concentric training. Healthy elderly men (60–76 years) were assigned to either eccentric training or concentric training group (n = 13/group), and performed 30–60 eccentric or concentric contractions of knee extensors once a week. The intensity was progressively increased over 12 weeks from 10 to 100% of maximal concentric strength for eccentric training and from 50 to 100% for concentric training. Outcome measures were taken before and 4 days after the training period. The results showed that no sings of muscle damage were observed after any sessions. Functional physical fitness (e.g., 30-s chair stand) and maximal concentric contraction strength of the knee extensors increased greater (P ≤ 0.05) after eccentric training than concentric training. Homeostasis model assessment, oral glucose tolerance test and whole blood glycosylated hemoglobin showed improvement of insulin sensitivity only after eccentric training (P ≤ 0.05). Greater (P ≤ 0.05) decreases in fasting triacylglycerols, total, and low-density lipoprotein cholesterols were evident after eccentric training than concentric training, and high-density lipoprotein cholesterols increased only after eccentric training. These results support the hypothesis and suggest that it is better to focus on eccentric contractions in exercise medicine. PMID:28443029
Poirier, Frédéric J A M; Gurnsey, Rick
2005-08-01
Eccentricity-dependent resolution losses are sometimes compensated for in psychophysical experiments by magnifying (scaling) stimuli at each eccentricity. The use of either pre-selected scaling factors or unscaled stimuli sometimes leads to non-monotonic changes in performance as a function of eccentricity. We argue that such non-monotonic changes arise when performance is limited by more than one type of constraint at each eccentricity. Building on current methods developed to investigate peripheral perception [e.g., Watson, A. B. (1987). Estimation of local spatial scale. Journal of the Optical Society of America A, 4 (8), 1579-1582; Poirier, F. J. A. M., & Gurnsey, R. (2002). Two eccentricity dependent limitations on subjective contour discrimination. Vision Research, 42, 227-238; Strasburger, H., Rentschler, I., & Harvey Jr., L. O. (1994). Cortical magnification theory fails to predict visual recognition. European Journal of Neuroscience, 6, 1583-1588], we show how measured scaling can deviate from a linear function of eccentricity in a grating acuity task [Thibos, L. N., Still, D. L., & Bradley, A. (1996). Characterization of spatial aliasing and contrast sensitivity in peripheral vision. Vision Research, 36(2), 249-258]. This framework can also explain the central performance drop [Kehrer, L. (1989). Central performance drop on perceptual segregation tasks. Spatial Vision, 4, 45-62] and a case of "reverse scaling" of the integration window in symmetry [Tyler, C. W. (1999). Human symmetry detection exhibits reverse eccentricity scaling. Visual Neuroscience, 16, 919-922]. These cases of non-monotonic performance are shown to be consistent with multiple sources of resolution loss, each of which increases linearly with eccentricity. We conclude that most eccentricity research, including "oddities", can be explained by multiple-scaling theory as extended here, where the receptive field properties of all underlying mechanisms in a task increase in size with eccentricity, but not necessarily at the same rate.
Yu, JaeHo; Lee, GyuChang
2012-01-01
This study compares the changes in pathway and center of gravity (COG) on the calcaneus of non-involved and involved sides according to eccentric and concentric strengthening in patients with unilateral Achilles tendinopathy. The goal was to define the biomechanical changes according to eccentric strengthening for the development of clinical guidelines. Eighteen patients with Achilles tendinopathy were recruited at the K Rehabilitation Hospital in Seoul. The subjects were instructed to perform 5 sessions of concentric strengthening. The calcaneal pathway was measured using a three-dimensional (3D) motion analyzer, and COG was measured by a force plate. Subsequently, eccentric strengthening was implemented, and identical variables were measured. Concentric and eccentric strengthening was carried out on both the involved and non-involved sides. There was no significant difference in the calcaneal pathway in patients with Achilles tendinopathy during concentric and eccentric strengthening. However, during eccentric strengthening, the calcaneal pathway significantly increased on the involved side compared to the non-involved side for all variables excluding the z-axis. COG significantly decreased on the involved side when compared to the non-involved side in patients with Achilles tendinopathy during eccentric and concentric strengthening. During concentric strengthening, all variables of the COG significantly increased on the involved side compared to the non-involved side. Compared with eccentric strengthening, concentric strengthening decreased the stability of ankle joints and increased the movement distance of the calcaneus in patients with Achilles tendinopathy. Furthermore, eccentric strengthening was verified to be an effective exercise method for prevention of Achilles tendinopathy through the reduction of forward and backward path length of foot pressure. The regular application of eccentric strengthening was found to be effective in the secondary prevention of Achilles tendinopathy in a clinical setting. Key point Compared with eccentric strengthening, concentric strengthening decreased the stability of ankle joints, increasing movement of the calcaneus in patients with Achilles tendinopathy. Eccentric strengthening was shown to be an effective exercise method for preventing Achilles tendinopathy through the reduction of forward and backward path length of foot pressure. It was verified that regular application of eccentric strengthening is effective in secondary prevention of Achilles tendinopathy in the clinical setting. PMID:24149129
Walker, Simon; Blazevich, Anthony J.; Haff, G. Gregory; Tufano, James J.; Newton, Robert U.; Häkkinen, Keijo
2016-01-01
As training experience increases it becomes more challenging to induce further neuromuscular adaptation. Consequently, strength trainers seek alternative training methods in order to further increase strength and muscle mass. One method is to utilize accentuated eccentric loading, which applies a greater external load during the eccentric phase of the lift as compared to the concentric phase. Based upon this practice, the purpose of this study was to determine the effects of 10 weeks of accentuated eccentric loading vs. traditional isoinertial resistance training in strength-trained men. Young (22 ± 3 years, 177 ± 6 cm, 76 ± 10 kg, n = 28) strength-trained men (2.6 ± 2.2 years experience) were allocated to concentric-eccentric resistance training in the form of accentuated eccentric load (eccentric load = concentric load + 40%) or traditional resistance training, while the control group continued their normal unsupervised training program. Both intervention groups performed three sets of 6-RM (session 1) and three sets of 10-RM (session 2) bilateral leg press and unilateral knee extension exercises per week. Maximum force production was measured by unilateral isometric (110° knee angle) and isokinetic (concentric and eccentric 30°.s−1) knee extension tests, and work capacity was measured by a knee extension repetition-to-failure test. Muscle mass was assessed using panoramic ultrasonography and dual-energy x-ray absorptiometry. Surface electromyogram amplitude normalized to maximum M-wave and the twitch interpolation technique were used to examine maximal muscle activation. After training, maximum isometric torque increased significantly more in the accentuated eccentric load group than control (18 ± 10 vs. 1 ± 5%, p < 0.01), which was accompanied by an increase in voluntary activation (3.5 ± 5%, p < 0.05). Isokinetic eccentric torque increased significantly after accentuated eccentric load training only (10 ± 9%, p < 0.05), whereas concentric torque increased equally in both the accentuated eccentric load (10 ± 9%, p < 0.01) and traditional (9 ± 6%, p < 0.01) resistance training groups; however, the increase in the accentuated eccentric load group was significantly greater (p < 0.05) than control (1 ± 7%). Knee extension repetition-to-failure improved in the accentuated eccentric load group only (28%, p < 0.05). Similar increases in muscle mass occurred in both intervention groups. In summary, accentuated eccentric load training led to greater increases in maximum force production, work capacity and muscle activation, but not muscle hypertrophy, in strength-trained individuals. PMID:27199764
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spurzem, R.; Giersz, M.; Heggie, D. C.
At least 10%-15% of nearby Sunlike stars have known Jupiter-mass planets. In contrast, very few planets are found in mature open and globular clusters such as the Hyades and 47 Tuc. We explore here the possibility that this dichotomy is due to the postformation disruption of planetary systems associated with the stellar encounters in long-lived clusters. One supporting piece of evidence for this scenario is the discovery of freely floating low-mass objects in star forming regions. We use two independent numerical approaches, a hybrid Monte Carlo and a direct N-body method, to simulate the impact of the encounters. We showmore » that the results of numerical simulations are in reasonable agreement with analytical determinations in the adiabatic and impulsive limits. They indicate that distant stellar encounters generally do not significantly modify the compact and nearly circular orbits. However, moderately close stellar encounters, which are likely to occur in dense clusters, can excite planets' orbital eccentricity and induce dynamical instability in systems that are closely packed with multiple planets. The disruption of planetary systems occurs primarily through occasional nearly parabolic, nonadiabatic encounters, though eccentricity of the planets evolves through repeated hyperbolic adiabatic encounters that accumulate small-amplitude changes. The detached planets are generally retained by the potential of their host clusters as free floaters in young stellar clusters such as {sigma} Orionis. We compute effective cross sections for the dissolution of planetary systems and show that, for all initial eccentricities, dissolution occurs on timescales that are longer than the dispersion of small stellar associations, but shorter than the age of typical open and globular clusters. Although it is much more difficult to disrupt short-period planets, close encounters can excite modest eccentricity among them, such that subsequent tidal dissipation leads to orbital decay, tidal inflation, and even disruption of the close-in planets.« less
The eccentric Kozai-Lidov effect as a resonance phenomenon
NASA Astrophysics Data System (ADS)
Sidorenko, Vladislav V.
2018-01-01
Exploring weakly perturbed Keplerian motion within the restricted three-body problem, Lidov (Planet Space Sci 9:719-759, 1962) and, independently, Kozai (Astron J 67:591-598, 1962) discovered coupled oscillations of eccentricity and inclination (the KL cycles). Their classical studies were based on an integrable model of the secular evolution, obtained by double averaging of the disturbing function approximated with its first non-trivial term. This was the quadrupole term in the series expansion with respect to the ratio of the semimajor axis of the disturbed body to that of the disturbing body. If the next (octupole) term is kept in the expression for the disturbing function, long-term modulation of the KL cycles can be established (Ford et al. in Astrophys J 535:385-401, 2000; Naoz et al. in Nature 473:187-189, 2011; Katz et al. in Phys Rev Lett 107:181101, 2011). Specifically, flips between the prograde and retrograde orbits become possible. Since such flips are observed only when the perturber has a nonzero eccentricity, the term "eccentric Kozai-Lidov effect" (or EKL effect) was proposed by Lithwick and Naoz (Astrophys J 742:94, 2011) to specify such behavior. We demonstrate that the EKL effect can be interpreted as a resonance phenomenon. To this end, we write down the equations of motion in terms of "action-angle" variables emerging in the integrable Kozai-Lidov model. It turns out that for some initial values the resonance is degenerate and the usual "pendulum" approximation is insufficient to describe the evolution of the resonance phase. Analysis of the related bifurcations allows us to estimate the typical time between the successive flips for different parts of the phase space.
ON THE ORBIT OF EXOPLANET WASP-12b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campo, Christopher J.; Harrington, Joseph; Hardy, Ryan A.
We observed two secondary eclipses of the exoplanet WASP-12b using the Infrared Array Camera on the Spitzer Space Telescope. The close proximity of WASP-12b to its G-type star results in extreme tidal forces capable of inducing apsidal precession with a period as short as a few decades. This precession would be measurable if the orbit had a significant eccentricity, leading to an estimate of the tidal Love number and an assessment of the degree of central concentration in the planetary interior. An initial ground-based secondary-eclipse phase reported by Lopez-Morales et al. (0.510 {+-} 0.002) implied eccentricity at the 4.5{sigma} level.more » The spectroscopic orbit of Hebb et al. has eccentricity 0.049 {+-} 0.015, a 3{sigma} result, implying an eclipse phase of 0.509 {+-} 0.007. However, there is a well-documented tendency of spectroscopic data to overestimate small eccentricities. Our eclipse phases are 0.5010 {+-} 0.0006 (3.6 and 5.8 {mu}m) and 0.5006 {+-} 0.0007 (4.5 and 8.0 {mu}m). An unlikely orbital precession scenario invoking an alignment of the orbit during the Spitzer observations could have explained this apparent discrepancy, but the final eclipse phase of Lopez-Morales et al. (0.510 {+-}{sup +0.007}{sub -0.006}) is consistent with a circular orbit at better than 2{sigma}. An orbit fit to all the available transit, eclipse, and radial-velocity data indicates precession at <1{sigma}; a non-precessing solution fits better. We also comment on analysis and reporting for Spitzer exoplanet data in light of recent re-analyses.« less
NASA Astrophysics Data System (ADS)
Maslin, M. A.; Brierley, C. M.
2015-12-01
The Early-Middle Pleistocene Transition (EMPT) is the term used to describe the prolongation and intensification of glacial-interglacial climate cycles that initiated after 900,000 years ago. During the transition glacial-interglacial cycles shift from lasting 41,000 years to an average of 100,000 years. The structure of these glacial-interglacial cycles shifts from smooth to more abrupt 'saw-toothed' like transitions. In fact we argue there is shift from a bimodal climate to a tripartite climate system (see Figure). Despite eccentricity having by far the weakest influence on insolation received at the Earth's surface of any of the orbital parameters; it is often assumed to be the primary driver of the post-EMPT 100,000 years climate cycles because of the similarity in duration. The traditional solution to this is to call for a highly nonlinear response by the global climate system to eccentricity. This 'eccentricity myth' is due to an artefact of spectral analysis which means that the last 8 glacial-interglacial average out at about 100,000 years in length despite ranging from 80,000 to 120,000 years. With the realisation that eccentricity is not the major driving force a debate has emerged as to whether precession or obliquity controlled the timing of the most recent glacial-interglacial cycles. Some argue that post-EMPT deglaciations occurred every four or five precessional cycle while others argue it is every second or third obliquity cycle. We review these current theories and suggest that though phase-locking between orbital forcing and global ice volume may occur and seem to primarily driven by the timing of precession; the chaotic nature of the climate system response means the relationship is not consistent through the last 900,000 years.
PUMPING THE ECCENTRICITY OF EXOPLANETS BY TIDAL EFFECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correia, Alexandre C. M.; Boue, Gwenaeel; Laskar, Jacques, E-mail: correia@ua.pt
2012-01-10
Planets close to their host stars are believed to undergo significant tidal interactions, leading to a progressive damping of the orbital eccentricity. Here we show that when the orbit of the planet is excited by an outer companion, tidal effects combined with gravitational interactions may give rise to a secular increasing drift on the eccentricity. As long as this secular drift counterbalances the damping effect, the eccentricity can increase to high values. This mechanism may explain why some of the moderate close-in exoplanets are observed with substantial eccentricity values.
Heo, Hye-Young; Wemmie, John A; Johnson, Casey P; Thedens, Daniel R; Magnotta, Vincent A
2015-07-01
Recent experiments suggest that T1 relaxation in the rotating frame (T(1ρ)) is sensitive to metabolism and can detect localized activity-dependent changes in the human visual cortex. Current functional magnetic resonance imaging (fMRI) methods have poor temporal resolution due to delays in the hemodynamic response resulting from neurovascular coupling. Because T(1ρ) is sensitive to factors that can be derived from tissue metabolism, such as pH and glucose concentration via proton exchange, we hypothesized that activity-evoked T(1ρ) changes in visual cortex may occur before the hemodynamic response measured by blood oxygenation level-dependent (BOLD) and arterial spin labeling (ASL) contrast. To test this hypothesis, functional imaging was performed using T(1ρ), BOLD, and ASL in human participants viewing an expanding ring stimulus. We calculated eccentricity phase maps across the occipital cortex for each functional signal and compared the temporal dynamics of T(1ρ) versus BOLD and ASL. The results suggest that T(1ρ) changes precede changes in the two blood flow-dependent measures. These observations indicate that T(1ρ) detects a signal distinct from traditional fMRI contrast methods. In addition, these findings support previous evidence that T(1ρ) is sensitive to factors other than blood flow, volume, or oxygenation. Furthermore, they suggest that tissue metabolism may be driving activity-evoked T(1ρ) changes.
Elliptical Accretion and Low Luminosity from High Accretion Rate Stellar Tidal Disruption Events
NASA Astrophysics Data System (ADS)
Svirski, Gilad; Piran, Tsvi; Krolik, Julian
2017-05-01
Models for tidal disruption events (TDEs) in which a supermassive black hole disrupts a star commonly assume that the highly eccentric streams of bound stellar debris promptly form a circular accretion disc at the pericentre scale. However, the bolometric peak luminosity of most TDE candidates, ˜ 1044 erg s- 1, implies that we observe only ˜1 per cent of the energy expected from radiatively efficient accretion. Even the energy that must be lost to circularize the returning tidal flow is larger than the observed energy. Recently, Piran et al. suggested that the observed optical TDE emission is powered by shocks at the apocentre between freshly infalling material and earlier arriving matter. This model explains the small radiated energy, the low temperature and the large radius implied by the observations as well as the t-5/3 light curve. However the question of the system's low bolometric efficiency remains unanswered. We suggest that the high orbital energy and low angular momentum of the flow make it possible for magnetic stresses to reduce the matter's already small angular momentum to the point at which it can fall ballistically into the supermassive black hole before circularization. As a result, the efficiency is only ˜1-10 per cent of a standard accretion disc's efficiency. Thus, the intrinsically high eccentricity of the tidal debris naturally explains why most TDE candidates are fainter than expected.
Non-numeric computation for high eccentricity orbits. [Earth satellite orbit perturbation
NASA Technical Reports Server (NTRS)
Sridharan, R.; Renard, M. L.
1975-01-01
Geocentric orbits of large eccentricity (e = 0.9 to 0.95) are significantly perturbed in cislunar space by the sun and moon. The time-history of the height of perigee, subsequent to launch, is particularly critical. The determination of 'launch windows' is mostly concerned with preventing the height of perigee from falling below its low initial value before the mission lifetime has elapsed. Between the extremes of high accuracy digital integration of the equations of motion and of using an approximate, but very fast, stability criteria method, this paper is concerned with the developement of a method of intermediate complexity using non-numeric computation. The computer is used as the theory generator to generalize Lidov's theory using six osculating elements. Symbolic integration is completely automatized and the output is a set of condensed formulae well suited for repeated applications in launch window analysis. Examples of applications are given.
Eccentricity and argument of perigee control for orbits with repeat ground tracks
NASA Technical Reports Server (NTRS)
Vincent, Mark A.
1992-01-01
In order to gain an understanding into the problem of eccentricity (e) and argument of perigee (omega) control for TOPEX/Poseidon, the two cases where the highest latitude crossing time and one of the equator crossings are held constant are investigated. Variations in e and omega cause a significant effect on the satellite's ground-track repeatability. Maintaining e and omega near their frozen values will minimize this variation. Analytical expressions are found to express this relationship while keeping an arbitrary point of the ground track fixed. The initial offset of the ground track from its nominal path determines the subsequent evolution of e and omega about their frozen values. This long-term behavior is numerically determined using an earth gravitational field including the first 17 zonal harmonics. The numerical results are plotted together with the analytical constraints to see if the later values of e and omega cause unacceptable deviation in the ground track.
Force effects on rotor of squeeze film damper using Newtonian and non-Newtonian fluid
NASA Astrophysics Data System (ADS)
Dominik, Šedivý; Petr, Ferfecki; Simona, Fialová
2017-09-01
This article presents the evaluation of force effects on rotor of squeeze film damper. Rotor is eccentric placed and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were gained by using computational modeling. Two types of fluid were considered as filling of damper. First type of fluid is Newtonian (has constant viscosity) and second type is magnetorheological fluid (does not have constant viscosity). Viscosity of non-Newtonian fluid is given using Bingham rheology model. Yield stress is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width which is between rotor and stator. Comparison of application two given types of fluids is shown in results.
POSTOP: Postbuckled open-stiffener optimum panels, user's manual
NASA Technical Reports Server (NTRS)
Biggers, S. B.; Dickson, J. N.
1984-01-01
The computer program POSTOP developed to serve as an aid in the analysis and sizing of stiffened composite panels that may be loaded in the postbuckling regime, is intended for the preliminary design of metal or composite panels with open-section stiffeners, subjected to multiple combined biaxial compression (or tension), shear and normal pressure load cases. Longitudinal compression, however, is assumed to be the dominant loading. Temperature, initial bow eccentricity and load eccentricity effects are included. The panel geometry is assumed to be repetitive over several bays in the longitudinal (stiffener) direction as well as in the transverse direction. Analytical routines are included to compute panel stiffnesses, strains, local and panel buckling loads, and skin/stiffener interface stresses. The resulting program is applicable to stiffened panels as commonly used in fuselage, wing, or empennage structures. The capabilities and limitations of the code are described. Instructions required to use the program and several example problems are included.
Dust grain resonant capture: A statistical study
NASA Technical Reports Server (NTRS)
Marzari, F.; Vanzani, V.; Weidenschilling, S. J.
1993-01-01
A statistical approach, based on a large number of simultaneous numerical integrations, is adopted to study the capture in external mean motion resonances with the Earth of micron size dust grains perturbed by solar radiation and wind forces. We explore the dependence of the resonant capture phenomenon on the initial eccentricity e(sub 0) and perihelion argument w(sub 0) of the dust particle orbit. The intensity of both the resonant and dissipative (Poynting-Robertson and wind drag) perturbations strongly depends on the eccentricity of the particle while the perihelion argument determines, for low inclination, the mutual geometrical configuration of the particle's orbit with respect to the Earth's orbit. We present results for three j:j+1 commensurabilities (2:3, 4:5 and 6:7) and also for particle sizes s = 15, 30 microns. This study extends our previous work on the long term orbital evolution of single dust particles trapped into resonances with the Earth.
New quasi-geostrophic flow estimations for the Earth's core
NASA Astrophysics Data System (ADS)
Pais, M. Alexandra
2014-05-01
Quasi-geostrophic (QG) flows have been reported in numerical dynamo studies that simulate Boussinesq convection of an electrical conducting fluid inside a rapidly rotating spherical shell. In these cases, the required condition for columnar convection seems to be that inertial waves should propagate much faster in the medium than Alfvén waves. QG models are particularly appealing for studies where Earth's liquid core flows are assessed from information contained in geomagnetic data obtained at and above the Earth's surface. Here, they make the whole difference between perceiving only the core surface expression of the geodynamo or else assessing the whole interior core flow. The QG approximation has now been used in different studies to invert geomagnetic field models, providing a different kinematic interpretation of the observed geomagnetic field secular variation (SV). Under this new perspective, a large eccentric jet flowing westward under the Atlantic Hemisphere and a cyclonic column under the Pacific were pointed out as interesting features of the flow. A large eccentric jet with similar characteristics has been explained in recent numerical geodynamo simulations in terms of dynamical coupling between the solid core, the liquid core and the mantle. Nonetheless, it requires an inner core crystallization on the eastern hemisphere, contrary to what has been proposed in recent dynamical models for the inner core. Some doubts remain, as we see, concerning the dynamics that can explain the radial outward flow in the eastern core hemisphere, actually seen in inverted core flow models. This and other puzzling features justify a new assessment of core flows, taking full advantage of the recent geomagnetic field model COV-OBS and of experience, accumulated over the years, on flow inversion. Assuming the QG approximation already eliminates a large part of non-uniqueness in the inversion. Some important non-uniqueness still remains, inherent to the physical model, given our present inability to distinguish the small length scales of the internal geomagnetic field when measuring it at the Earth's surface and above. This can be dealt with in the form of a parameterization error. We recalculated flow models for the whole 1840-2010 period of COV-OBS, using the covariance matrices provided by the authors and an iterative estimation of the parameterization error. Results are compared with previous estimations. We then apply standard tools of Empirical Orthogonal Functions/ Principal Components Analysis to sort out variability modes that, hopefully, can also be identified with dynamical modes.
Simulations of blood flow through a stenosed carotid artery
NASA Astrophysics Data System (ADS)
Lundin, Staffan; Meder, Samuel; Metcalfe, Ralph
2000-11-01
The human carotid artery is often the site of the formation of atherosclerotic lesions that can lead to severe reduction of blood flow to the brain, frequently resulting in a stroke. There is strong evidence that hemodynamic variables such as the wall shear stress and its spatial and temporal derivatives play a role in fostering atherosclerosis. To investigate the potential of these effects, we have performed unsteady, three-dimensional numerical simulations of blood flow through the carotid bifurcation in the presence of stenoses of varying degrees and eccentricities. The simulations indicate that regions of low maximum and minimum shear stress correlate better with lesion prone sites than low average wall shear stress. As the degree of stenosis increases, it is found that the downstream flow changes drastically for stenoses greater than about 25Downstream eddies are generated during systole that create local shear stress peaks on the internal carotid artery wall, resulting in significant reduction in flow rates through the internal carotid artery. Large secondary flows develop, and there are also periods of flow reversal during the systolic/diastolic cycle.
Li, Feiyu; McDermott, Mary McGrae; Li, Debiao; Carroll, Timothy J; Hippe, Daniel S; Kramer, Christopher M; Fan, Zhaoyang; Zhao, Xihai; Hatsukami, Thomas S; Chu, Baocheng; Wang, Jinnan; Yuan, Chun
2010-07-01
Atherosclerotic plaque morphology and components are predictors of subsequent cardiovascular events. However, associations of plaque eccentricity with plaque morphology and plaque composition are unclear. This study investigated associations of plaque eccentricity with plaque components and morphology in the proximal superficial femoral artery using cardiovascular magnetic resonance (CMR). Twenty-eight subjects with an ankle-brachial index less than 1.00 were examined with 1.5 T high-spatial-resolution, multi-contrast weighted CMR. One hundred and eighty diseased locations of the proximal superficial femoral artery (about 40 mm) were analyzed. The eccentric lesion was defined as [(Maximum wall thickness- Minimum wall thickness)/Maximum wall thickness] >or= 0.5. The arterial morphology and plaque components were measured using semi-automatic image analysis software. One hundred and fifteen locations were identified as eccentric lesions and sixty-five as concentric lesions. The eccentric lesions had larger wall but similar lumen areas, larger mean and maximum wall thicknesses, and more calcification and lipid rich necrotic core, compared to concentric lesions. For lesions with the same lumen area, the degree of eccentricity was associated with an increased wall area. Eccentricity (dichotomous as eccentric or concentric) was independently correlated with the prevalence of calcification (odds ratio 3.78, 95% CI 1.47-9.70) after adjustment for atherosclerotic risk factors and wall area. Plaque eccentricity is associated with preserved lumen size and advanced plaque features such as larger plaque burden, more lipid content, and increased calcification in the superficial femoral artery.
Di Martino, Luigi F M; Soliman, Osama I I; van Gils, Lennart; Vletter, Wim B; Van Mieghem, Nicolas M; Ren, Ben; Galema, Tjebbe W; Schultz, Carl; de Jaegere, Peter P T; Di Biase, Matteo; Geleijnse, Marcel L
2017-06-01
Paravalvular aortic leakage (PVL) after transcatheter aortic valve implantation (TAVI) is a complication with potentially severe consequences. The relation between native aortic root calcium burden, stent frame eccentricity and PVL was not studied before. Two-hundred-and-twenty-three consecutive patients with severe aortic stenosis who underwent TAVI with a Medtronic CoreValve System© and who had available pre-discharge transthoracic echocardiography were studied. Echocardiographic stent inflow frame eccentricity was defined as major-minor diameter in a short-axis view >2 mm. PVL was scored according to the updated Valve Academic Research Consortium (VARC-2) recommendations. In a subgroup of 162 (73%) patients, the calcium Agatston score was available. Stent frame eccentricity was seen in 77 (35%) of patients. The correlation between the Agatston score and stent frame eccentricity was significant (ρ = 0.241, P = 0.003). Paravalvular leakage was absent in 91 cases (41%), mild in 67 (30%), moderate in 51 (23%), and severe in 14 (6%) cases. The correlation between stent frame eccentricity and PVL severity was significant (ρ = 0.525, P < 0.0001). There was a relation between particular eccentric stent frame shapes and the site of PVL. Calcification of the aortic annulus is associated with a subsequent eccentric shape of the CoreValve prosthesis. This eccentric shape results in more PVL, with the localization of PVL related to the shape of stent frame eccentricity. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Key, Joey Shapiro; Cornish, Neil J.
The Laser Interferometer Space Antenna (LISA) is designed to detect gravitational wave signals from astrophysical sources, including those from coalescing binary systems of compact objects such as black holes. Colliding galaxies have central black holes that sink to the center of the merged galaxy and begin to orbit one another and emit gravitational waves. Some galaxy evolution models predict that the binary black hole system will enter the LISA band with significant orbital eccentricity, while other models suggest that the orbits will already have circularized. Using a full 17 parameter waveform model that includes the effects of orbital eccentricity, spinmore » precession, and higher harmonics, we investigate how well the source parameters can be inferred from simulated LISA data. Defining the reference eccentricity as the value one year before merger, we find that for typical LISA sources, it will be possible to measure the eccentricity to an accuracy of parts in a thousand. The accuracy with which the eccentricity can be measured depends only very weakly on the eccentricity, making it possible to distinguish circular orbits from those with very small eccentricities. LISA measurements of the orbital eccentricity can help constraints theories of galaxy mergers in the early universe. Failing to account for the eccentricity in the waveform modeling can lead to a loss of signal power and bias the estimation of parameters such as the black hole masses and spins.« less
Chain hexagonal cacti with the extremal eccentric distance sum.
Qu, Hui; Yu, Guihai
2014-01-01
Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti.
Design and jump phenomenon analysis of an eccentric ring energy harvester
NASA Astrophysics Data System (ADS)
Wang, Yu-Jen; Chen, Chung-De
2013-10-01
This paper presents the development of a wheel-mounted eccentric ring energy harvester that is driven by centripetal and gravitational forces during wheel rotation. The natural frequency of the eccentric ring matches the wheel rotation frequency at any car speed because its character length is designed equal to the wheel radius. Consequently, the eccentric ring oscillates with a relatively large swing angle at the wheel speed to generate high levels of power. The nonlinear dynamic behavior of the eccentric ring is investigated to ensure that the proposed design produces steady swing angles, especially at high wheel speeds. Herein, the jump phenomenon of the dynamic motion of the eccentric ring is analyzed by using the Duffing equation and the linearization process. The discriminant value obtained from the analysis confirms that no jump phenomenon occurs at all wheel speeds if the eccentric ring is properly designed. In the experiment, the eccentric ring is integrated with magnets and a coil set to generate 318-442 μW at constant wheel speeds between 300 and 500 rpm. This shows that the proposed device is a potential power source for low-power wheel-mounted electronics, such as pressure sensors, accelerometers, and thermometers.
Bao, Yan; Lei, Quan; Fang, Yuan; Tong, Yu; Schill, Kerstin; Pöppel, Ernst; Strasburger, Hans
2013-01-01
Inhibition of return (IOR) as an indicator of attentional control is characterized by an eccentricity effect, that is, the more peripheral visual field shows a stronger IOR magnitude relative to the perifoveal visual field. However, it could be argued that this eccentricity effect may not be an attention effect, but due to cortical magnification. To test this possibility, we examined this eccentricity effect in two conditions: the same-size condition in which identical stimuli were used at different eccentricities, and the size-scaling condition in which stimuli were scaled according to the cortical magnification factor (M-scaling), thus stimuli being larger at the more peripheral locations. The results showed that the magnitude of IOR was significantly stronger in the peripheral relative to the perifoveal visual field, and this eccentricity effect was independent of the manipulation of stimulus size (same-size or size-scaling). These results suggest a robust eccentricity effect of IOR which cannot be eliminated by M-scaling. Underlying neural mechanisms of the eccentricity effect of IOR are discussed with respect to both cortical and subcortical structures mediating attentional control in the perifoveal and peripheral visual field.
The effect of face eccentricity on the perception of gaze direction.
Todorović, Dejan
2009-01-01
The perception of a looker's gaze direction depends not only on iris eccentricity (the position of the looker's irises within the sclera) but also on the orientation of the lookers' head. One among several potential cues of head orientation is face eccentricity, the position of the inner features of the face (eyes, nose, mouth) within the head contour, as viewed by the observer. For natural faces this cue is confounded with many other head-orientation cues, but in schematic faces it can be studied in isolation. Salient novel illustrations of the effectiveness of face eccentricity are 'Necker faces', which involve equal iris eccentricities but multiple perceived gaze directions. In four experiments, iris and face eccentricity in schematic faces were manipulated, revealing strong and consistent effects of face eccentricity on perceived gaze direction, with different types of tasks. An additional experiment confirmed the 'Mona Lisa' effect with this type of stimuli. Face eccentricity most likely acted as a simple but robust cue of head turn. A simple computational account of combined effects of cues of eye and head turn on perceived gaze direction is presented, including a formal condition for the perception of direct gaze. An account of the 'Mona Lisa' effect is presented.
Visual learning with reduced adaptation is eccentricity-specific.
Harris, Hila; Sagi, Dov
2018-01-12
Visual learning is known to be specific to the trained target location, showing little transfer to untrained locations. Recently, learning was shown to transfer across equal-eccentricity retinal-locations when sensory adaptation due to repetitive stimulation was minimized. It was suggested that learning transfers to previously untrained locations when the learned representation is location invariant, with sensory adaptation introducing location-dependent representations, thus preventing transfer. Spatial invariance may also fail when the trained and tested locations are at different distance from the center of gaze (different retinal eccentricities), due to differences in the corresponding low-level cortical representations (e.g. allocated cortical area decreases with eccentricity). Thus, if learning improves performance by better classifying target-dependent early visual representations, generalization is predicted to fail when locations of different retinal eccentricities are trained and tested in the absence sensory adaptation. Here, using the texture discrimination task, we show specificity of learning across different retinal eccentricities (4-8°) using reduced adaptation training. The existence of generalization across equal-eccentricity locations but not across different eccentricities demonstrates that learning accesses visual representations preceding location independent representations, with specificity of learning explained by inhomogeneous sensory representation.
[Numerical simulation of the effect of virtual stent release pose on the expansion results].
Li, Jing; Peng, Kun; Cui, Xinyang; Fu, Wenyu; Qiao, Aike
2018-04-01
The current finite element analysis of vascular stent expansion does not take into account the effect of the stent release pose on the expansion results. In this study, stent and vessel model were established by Pro/E. Five kinds of finite element assembly models were constructed by ABAQUS, including 0 degree without eccentricity model, 3 degree without eccentricity model, 5 degree without eccentricity model, 0 degree axial eccentricity model and 0 degree radial eccentricity model. These models were divided into two groups of experiments for numerical simulation with respect to angle and eccentricity. The mechanical parameters such as foreshortening rate, radial recoil rate and dog boning rate were calculated. The influence of angle and eccentricity on the numerical simulation was obtained by comparative analysis. Calculation results showed that the residual stenosis rates were 38.3%, 38.4%, 38.4%, 35.7% and 38.2% respectively for the 5 models. The results indicate that the pose has less effect on the numerical simulation results so that it can be neglected when the accuracy of the result is not highly required, and the basic model as 0 degree without eccentricity model is feasible for numerical simulation.
Inferred Eccentricity and Period Distributions of Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Prsa, Andrej; Matijevic, G.
2014-01-01
Determining the underlying eccentricity and orbital period distributions from an observed sample of eclipsing binary stars is not a trivial task. Shen and Turner (2008) have shown that the commonly used maximum likelihood estimators are biased to larger eccentricities and they do not describe the underlying distribution correctly; orbital periods suffer from a similar bias. Hogg, Myers and Bovy (2010) proposed a hierarchical probabilistic method for inferring the true eccentricity distribution of exoplanet orbits that uses the likelihood functions for individual star eccentricities. The authors show that proper inference outperforms the simple histogramming of the best-fit eccentricity values. We apply this method to the complete sample of eclipsing binary stars observed by the Kepler mission (Prsa et al. 2011) to derive the unbiased underlying eccentricity and orbital period distributions. These distributions can be used for the studies of multiple star formation, dynamical evolution, and they can serve as a drop-in replacement to prior, ad-hoc distributions used in the exoplanet field for determining false positive occurrence rates.
Li, Shaobai; Wang, Yun; Wang, Qi; Ma, Xianxian; Wang, Longxiao; Zhao, Weiqian; Zhang, Xusheng
2018-05-10
In this paper, we propose a new measurement and compensation method for the eccentricity of the inertial confinement fusion (ICF) capsule, which combines computer vision and the laser differential confocal method to align the capsule in rotation measurement. This technique measures the eccentricity of the capsule by obtaining the sub-pixel profile with a moment-based algorithm, then performs the preliminary alignment by the two-dimensional adjustment. Next, we use the laser differential confocal sensor to measure the height data of the equatorial surface of the capsule by turning it around, then obtain and compensate the remaining eccentricity ultimately. This method is a non-contact, automatic, rapid, high-precision measurement and compensation technique of eccentricity for the capsule. Theoretical analyses and preliminary experiments indicate that the maximum measurement range of eccentricity of this proposed method is 1.8 mm for the capsule with a diameter of 1 mm, and it could eliminate the eccentricity to less than 0.5 μm in 30 s.
Why I-Love-Q: Explaining why universality emerges in compact objects
NASA Astrophysics Data System (ADS)
Yagi, Kent; Stein, Leo C.; Pappas, George; Yunes, Nicolás; Apostolatos, Theocharis A.
2014-09-01
Black holes are said to have no hair because all of their multipole moments can be expressed in terms of just their mass, charge and spin angular momentum. The recent discovery of approximately equation-of-state-independent relations among certain multipole moments in neutron stars suggests that they are also approximately bald. We here explore the yet unknown origin for this universality. First, we investigate which region of the neutron star's interior and of the equation of state is most responsible for the universality. We find that the universal relation between the moment of inertia and the quadrupole moment is dominated by the star's outer core, a shell of width 50%-95% of the total radius, which corresponds to the density range 1014-1015 g/cm3. In this range, realistic neutron star equations of state are not sufficiently similar to each other to explain the universality observed. Second, we study the impact on the universality of approximating stellar isodensity contours as self-similar ellipsoids. An analytical calculation in the nonrelativistic limit reveals that the shape of the ellipsoids per se does not affect the universal relations much, but relaxing the self-similarity assumption can completely destroy it. Third, we investigate the eccentricity profiles of rotating relativistic stars and find that the stellar eccentricity is roughly constant, with variations of roughly 20%-30% in the region that matters to the universal relations. Fourth, we repeat the above analysis for differentially rotating, noncompact, regular stars and find that this time the eccentricity is not constant, with variations that easily exceed 100%, and moreover universality is lost. These findings suggest that universality arises as an emergent approximate symmetry: as one flows in the stellar-structure phase space from noncompact star region to the relativistic star region, the eccentricity variation inside stars decreases, leading to approximate self-similarity in their isodensity contours, which then leads to the universal behavior observed in their exterior multipole moments.
Grinding Method and Error Analysis of Eccentric Shaft Parts
NASA Astrophysics Data System (ADS)
Wang, Zhiming; Han, Qiushi; Li, Qiguang; Peng, Baoying; Li, Weihua
2017-12-01
RV reducer and various mechanical transmission parts are widely used in eccentric shaft parts, The demand of precision grinding technology for eccentric shaft parts now, In this paper, the model of X-C linkage relation of eccentric shaft grinding is studied; By inversion method, the contour curve of the wheel envelope is deduced, and the distance from the center of eccentric circle is constant. The simulation software of eccentric shaft grinding is developed, the correctness of the model is proved, the influence of the X-axis feed error, the C-axis feed error and the wheel radius error on the grinding process is analyzed, and the corresponding error calculation model is proposed. The simulation analysis is carried out to provide the basis for the contour error compensation.
Eston, R G; Mickleborough, J; Baltzopoulos, V
1995-01-01
An eccentric muscle activation is the controlled lengthening of the muscle under tension. Functionally, most leg muscles work eccentrically for some part of a normal gait cycle, to support the weight of the body against gravity and to absorb shock. During downhill running the role of eccentric work of the 'anti-gravity' muscles--knee extensors, muscles of the anterior and posterior tibial compartments and hip extensors--is accentuated. The purpose of this paper is to review the relationship between eccentric muscle activation and muscle damage, particularly as it relates to running, and specifically, downhill running. PMID:7551767
Effects of retinal eccentricity and acuity on global motion processing
Bower, Jeffrey D.; Bian, Zheng; Andersen, George J.
2012-01-01
The present study assessed direction discrimination of moving random dot cinematograms (RDCs) at retinal eccentricities of 0, 8, 22 and 40 deg. In addition, Landolt C acuity was assessed at these eccentricities to determine whether changes in motion discrimination performance covaried with acuity in the retinal periphery. The results of the experiment indicated that discrimination thresholds increased with retinal eccentricity and directional variance (noise) independent of acuity. Psychophysical modeling indicated that the results of eccentricity and noise could be explained by an increase in channel bandwidth and an increase in internal multiplicative noise. PMID:22382583
Directional Attenuation of Jet Noise With Eccentric Coannular Nozzle Investigated
NASA Technical Reports Server (NTRS)
Zaman, Khairul B.
2005-01-01
Jet noise and flow field were measured to follow up on observations made by Professor D. Papamoschou of the University of California at Irvine (NASA Grant NAG3-2345). When a dual-stream coannular nozzle was arranged non-concentrically, noise was attenuated significantly on the side where the annulus was thicker. A similar observation was also made in reference 2. The practical significance is obvious. If the bypass flow of a jet exhaust in flight could be diverted to form a thicker layer underneath, then less noise would be heard by an observer on the ground. In view of the current emphasis on jet noise abatement, researchers felt that the effect deserved further attention. This prompted an experiment to confirm the phenomenon in a larger facility and to obtain flow-field data to advance understanding of the mechanism.
Duplex scanning diagnosis of internal carotid artery dissections. A case control study.
Alecu, C; Fortrat, J O; Ducrocq, X; Vespignani, H; de Bray, J M
2007-01-01
The reliability of duplex scanning (DS) for the diagnosis of internal carotid artery dissections (ICAD) is not clear. Nine DS signs known to be suggestive for the diagnosis of ICAD were compared between 70 patients with ICAD and 70 matched patients without dissection. Visible internal tapering occlusion, regular eccentric narrowing channel, ectasia beyond the carotid bulb, resistive index asymmetry, blood flow slowdown, ophthalmic artery blood flow inversion, and biphasic flow are more frequent in cases than in controls (p < 0.001). Atheroma plaques were absent in 80% of ICAD. When DS direct signs and hemodynamic signs were studied, sensitivity was 90% and specificity 60%. Diagnosis of ICAD by DS could be improved if direct signs were combined with hemodynamic signs, giving a high sensitivity and a rather good specificity. Copyright 2007 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Maione, F.; De Pietri, R.; Feo, A.; Löffler, F.
2016-09-01
We present results from three-dimensional general relativistic simulations of binary neutron star coalescences and mergers using public codes. We considered equal mass models where the baryon mass of the two neutron stars is 1.4{M}⊙ , described by four different equations of state (EOS) for the cold nuclear matter (APR4, SLy, H4, and MS1; all parametrized as piecewise polytropes). We started the simulations from four different initial interbinary distances (40,44.3,50, and 60 km), including up to the last 16 orbits before merger. That allows us to show the effects on the gravitational wave (GW) phase evolution, radiated energy and angular momentum due to: the use of different EOS, the orbital eccentricity present in the initial data and the initial separation (in the simulation) between the two stars. Our results show that eccentricity has a major role in the discrepancy between numerical and analytical waveforms until the very last few orbits, where ‘tidal’ effects and missing high-order post-Newtonian coefficients also play a significant role. We test different methods for extrapolating the GW signal extracted at finite radii to null infinity. We show that an effective procedure for integrating the Newman-Penrose {\\psi }4 signal to obtain the GW strain h is to apply a simple high-pass digital filter to h after a time domain integration, where only the two physical motivated integration constants are introduced. That should be preferred to the more common procedures of introducing additional integration constants, integrating in the frequency domain or filtering {\\psi }4 before integration.
DYNAMICS OF TIDALLY CAPTURED PLANETS IN THE GALACTIC CENTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trani, Alessandro A.; Bressan, Alessandro; Mapelli, Michela
2016-11-01
Recent observations suggest ongoing planet formation in the innermost parsec of the Galactic center. The supermassive black hole (SMBH) might strip planets or planetary embryos from their parent star, bringing them close enough to be tidally disrupted. Photoevaporation by the ultraviolet field of young stars, combined with ongoing tidal disruption, could enhance the near-infrared luminosity of such starless planets, making their detection possible even with current facilities. In this paper, we investigate the chance of planet tidal captures by means of high-accuracy N -body simulations exploiting Mikkola's algorithmic regularization. We consider both planets lying in the clockwise (CW) disk andmore » planets initially bound to the S-stars. We show that tidally captured planets remain on orbits close to those of their parent star. Moreover, the semimajor axis of the planetary orbit can be predicted by simple analytic assumptions in the case of prograde orbits. We find that starless planets that were initially bound to CW disk stars have mild eccentricities and tend to remain in the CW disk. However, we speculate that angular momentum diffusion and scattering by other young stars in the CW disk might bring starless planets into orbits with low angular momentum. In contrast, planets initially bound to S-stars are captured by the SMBH on highly eccentric orbits, matching the orbital properties of the clouds G1 and G2. Our predictions apply not only to planets but also to low-mass stars initially bound to the S-stars and tidally captured by the SMBH.« less
NASA Astrophysics Data System (ADS)
Balaguru, Uma Maheswari; Sundaresan, Lakshmikirupa; Manivannan, Jeganathan; Majunathan, Reji; Mani, Krishnapriya; Swaminathan, Akila; Venkatesan, Saravanakumar; Kasiviswanathan, Dharanibalan; Chatterjee, Suvro
2016-06-01
Disturbed fluid flow or modulated shear stress is associated with vascular conditions such as atherosclerosis, thrombosis, and aneurysm. In vitro simulation of the fluid flow around the plaque micro-environment remains a challenging approach. Currently available models have limitations such as complications in protocols, high cost, incompetence of co-culture and not being suitable for massive expression studies. Hence, the present study aimed to develop a simple, versatile model based on Computational Fluid Dynamics (CFD) simulation. Current observations of CFD have shown the regions of modulated shear stress by the disturbed fluid flow. To execute and validate the model in real sense, cell morphology, cytoskeletal arrangement, cell death, reactive oxygen species (ROS) profile, nitric oxide production and disturbed flow markers under the above condition were assessed. Endothelium at disturbed flow region which had been exposed to low shear stress and swirling flow pattern showed morphological and expression similarities with the pathological disturbed flow environment reported previously. Altogether, the proposed model can serve as a platform to simulate the real time micro-environment of disturbed flow associated with eccentric plaque shapes and the possibilities of studying its downstream events.
Apostolopoulos, Nikos C; Lahart, Ian M; Plyley, Michael J; Taunton, Jack; Nevill, Alan M; Koutedakis, Yiannis; Wyon, Matthew; Metsios, George S
2018-03-12
Effects of passive static stretching intensity on recovery from unaccustomed eccentric exercise of right knee extensors was investigated in 30 recreationally active males randomly allocated into three groups: high-intensity (70-80% maximum perceived stretch), low-intensity (30-40% maximum perceived stretch), and control. Both stretching groups performed 3 sets of passive static stretching exercises of 60s each for hamstrings, hip flexors, and quadriceps, over 3 consecutive days, post-unaccustomed eccentric exercise. Muscle function (eccentric and isometric peak torque) and blood biomarkers (CK and CRP) were measured before (baseline) and after (24, 48, and 72h) unaccustomed eccentric exercise. Perceived muscle soreness scores were collected immediately (time 0), and after 24, 48, and 72h post-exercise. Statistical time x condition interactions observed only for eccentric peak torque (p=.008). Magnitude-based inference analyses revealed low-intensity stretching had most likely, very likely, or likely beneficial effects on perceived muscle soreness (48-72h and 0-72h) and eccentric peak torque (baseline-24h and baseline-72h), compared with high-intensity stretching. Compared with control, low-intensity stretching had very likely or likely beneficial effects on perceived muscle soreness (0-24h and 0-72h), eccentric peak torque (baseline-48h and baseline-72h), and isometric peak torque (baseline-72h). High-intensity stretching had likely beneficial effects on eccentric peak torque (baseline-48h), but likely harmful effects eccentric peak torque (baseline-24h) and CK (baseline-48h and baseline-72h), compared with control. Therefore, low-intensity stretching is likely to result in small-to-moderate beneficial effects on perceived muscle soreness and recovery of muscle function post-unaccustomed eccentric exercise, but not markers of muscle damage and inflammation, compared with high-intensity or no stretching.
Wasielewski, Noah J; Kotsko, Kevin M
2007-01-01
Objective: To critically review evidence for the effectiveness of eccentric exercise to treat lower extremity tendinoses. Data Sources: Databases used to locate randomized controlled trials (RCTs) included PubMed (1980–2006), CINAHL (1982–2006), Web of Science (1995–2006), SPORT Discus (1980–2006), Physiotherapy Evidence Database (PEDro), and the Cochrane Collaboration Database. Key words included tendon, tendonitis, tendinosis, tendinopathy, exercise, eccentric, rehabilitation, and therapy. Study Selection: The criteria for trial selection were (1) the literature was written in English, (2) the research design was an RCT, (3) the study participants were adults with a clinical diagnosis of tendinosis, (4) the outcome measures included pain or strength, and (5) eccentric exercise was used to treat lower extremity tendinosis. Data Extraction: Specific data were abstracted from the RCTs, including eccentric exercise protocol, adjunctive treatments, concurrent physical activity, and treatment outcome. Data Synthesis: The calculated post hoc statistical power of the selected studies (n = 11) was low, and the average methodologic score was 5.3/10 based on PEDro criteria. Eccentric exercise was compared with no treatment (n = 1), concentric exercise (n = 5), an alternative eccentric exercise protocol (n = 1), stretching (n = 2), night splinting (n = 1), and physical agents (n = 1). In most trials, tendinosis-related pain was reduced with eccentric exercise over time, but only in 3 studies did eccentric exercise decrease pain relative to the control treatment. Similarly, the RCTs demonstrated that strength-related measures improved over time, but none revealed significant differences relative to the control treatment. Based on the best evidence available, it appears that eccentric exercise may reduce pain and improve strength in lower extremity tendinoses, but whether eccentric exercise is more effective than other forms of therapeutic exercise for the resolution of tendinosis symptoms remains questionable. PMID:18059998
Vulnerability to dysfunction and muscle injury after unloading
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, L. L.; Tesch, P. A.; Hather, B. M.; Dudley, G. A.
1996-01-01
OBJECTIVE: To test whether unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury. DESIGN: Before-after trial. SETTING: General community. PATIENTS OR OTHER PARTICIPANTS: Two women and 5 men (73 +/- 3kg [mean +/- SE]) who were active college students but were not trained in lower body resistance exercise volunteered. INTERVENTION: Five weeks of unilateral lower limb suspension (ULLS), which has been shown to decrease strength and size of the unloaded, left, but not load-bearing, right quadriceps femoris muscle group (QF) by 20% and 14%, respectively; performance of 10 sets of ten eccentric actions with each QF immediately after the ULLS strength tests with a load equivalent to 65% of the post-ULLS eccentric 1-repetition maximum. MAIN OUTCOME MEASURE(S): Concentric and eccentric 1-repetition maximum for the left, unloaded and the right, load-bearing QF measured immediately after ULLS and 1,4,7,9, and 11 days later; cross-sectional area and spin-spin relaxation time (T2) of each QF as determined by magnetic resonance imaging and measured the last day of ULLS and 3 days later. RESULTS: The mean load used for eccentric exercise was 23 +/- 2 and 30 +/- 3kg for the left, unloaded and right, load-bearing QF, respectively. The concentric and eccentric 1-repetition maximum for the unloaded and already weakened left QF was further decreased by 18% (p = .000) and 27% (p = .000), respectively, 1 day after eccentric exercise. Strength did not return to post-ULLS levels until 7 days of recovery. The right, load-bearing QF showed a 4% decrease (p = .002) in the eccentric 1-repetition maximum 1 day after eccentric exercise. The left, unloaded QF showed an increase in T2 (p = .002) in 18% of its cross-sectional area 3 days after the eccentric exercise, thus indicating muscle injury. The right, load-bearing QF showed no elevation in T2 (p = .280). CONCLUSION: Unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury, even at relatively light loads.
Yu, Jaeho; Lee, Gyuchang
2012-01-01
This study compares the changes in pathway and center of gravity (COG) on the calcaneus of non-involved and involved sides according to eccentric and concentric strengthening in patients with unilateral Achilles tendinopathy. The goal was to define the biomechanical changes according to eccentric strengthening for the development of clinical guidelines. Eighteen patients with Achilles tendinopathy were recruited at the K Rehabilitation Hospital in Seoul. The subjects were instructed to perform 5 sessions of concentric strengthening. The calcaneal pathway was measured using a three-dimensional (3D) motion analyzer, and COG was measured by a force plate. Subsequently, eccentric strengthening was implemented, and identical variables were measured. Concentric and eccentric strengthening was carried out on both the involved and non-involved sides. There was no significant difference in the calcaneal pathway in patients with Achilles tendinopathy during concentric and eccentric strengthening. However, during eccentric strengthening, the calcaneal pathway significantly increased on the involved side compared to the non-involved side for all variables excluding the z-axis. COG significantly decreased on the involved side when compared to the non-involved side in patients with Achilles tendinopathy during eccentric and concentric strengthening. During concentric strengthening, all variables of the COG significantly increased on the involved side compared to the non-involved side. Compared with eccentric strengthening, concentric strengthening decreased the stability of ankle joints and increased the movement distance of the calcaneus in patients with Achilles tendinopathy. Furthermore, eccentric strengthening was verified to be an effective exercise method for prevention of Achilles tendinopathy through the reduction of forward and backward path length of foot pressure. The regular application of eccentric strengthening was found to be effective in the secondary prevention of Achilles tendinopathy in a clinical setting.
Tidally-induced thermal runaway on extrasolar Earth: Impact on habitability
NASA Astrophysics Data System (ADS)
Behounkova, M.; Tobie, G.; Choblet, G.; Cadek, O.
2010-12-01
Low mass extrasolar bodies start to be discovered owing to the increased precision of detection surveys. As the detection probability decreases with the star-body distance, these planets (and the numerous candidates already announced for the coming years) are likely to orbit their parent stars in a close distance. These short-period planets undergo a strong tidal forcing and their orbits are tidally locked. The associated heat production may influence the internal thermal evolution of these bodies: it has even been suggested that the habitable zone could be influenced by tidal heating (Barnes et al. 2008; Henning et al. 2009). In this study, we further investigate the effect of tidal heating on thermal evolution of tidally locked Earth-like planets. Owing to the strong temperature dependence of the mechanical properties of both the long-term evolution and the tidal deformations, the two processes are coupled. Nevertheless, the tidal deformation has no direct effect on the convective flow and only the dissipative part is included as a heat source for mantle dynamics since the time scales of the two processes strongly differs. For significant tidal dissipation rates, the strong positive feedback leads, in some cases, to thermal runaways. We focus here on the susceptibility of Earth-like planets to tidal dissipation for fixed orbital parameters (eccentricity, orbital period and the spin-orbit resonance type) and on the associated timescales for runaway (if any). In order to describe this behavior and the three dimensional nature of both the tidal forcing and the temperature anomalies, a fully three-dimensional approach solving the two processes simultaneously is employed (Běhounková et al., JGR, in press). We consider an extrasolar planet having the internal properties similar to the Earth. Two modes for heat transfer are modeled through the choice of convective parameters (Rayleigh number and temperature dependence of viscosity, amount of radiogenic heating): a relatively effective plate-tectonics-like regime and a one-plate (stagnant lid) regime. For all numerical experiments sharing the same initial temperature conditions, the reciprocal value of the runaway timescale depends linearly on the initial tidal dissipation. Moreover, the occurrence of tidally driven runaways is associated to large scale melting of the interior having an impact on the habitability of the planet. In the case of runaway timescales between 0.1 and 1Gy and for the plate-tectonics-like heat transfer, the habitable zone is affected by the thermal runaway only for high eccentricities (e≳0.2) for 0.1M sun stars and 1:1 resonance. In the case of the 3:2 orbital resonance, whatever the eccentricity is, the runaway affects the habitable zone for orbital periods lower than 7-12 days. The impact on the habitable zone is even higher for one-plate planets due to the ineffective heat transfer. For more massive stars (>0.5M sun), tidal heating in the habitable zone is not significant and has no impact on the internal evolution.
Cook, Christian J; Beaven, C Martyn; Kilduff, Liam P
2013-05-01
Eccentric and overspeed training modalities are effective in improving components of muscular power. Eccentric training induces specific training adaptations relating to muscular force, whereas overspeed stimuli target the velocity component of power expression. We aimed to compare the effects of traditional or eccentric training with volume-matched training that incorporated overspeed exercises. Twenty team-sport athletes performed 4 counterbalanced 3-week training blocks consecutively as part of a preseason training period: (1) traditional resistance training; (2) eccentric-only resistance training; (3) traditional resistance training with overspeed exercises; and (4) eccentric resistance training with overspeed exercises. The overspeed exercises performed were assisted countermovement jumps and downhill running. Improvements in bench press (15.0 ± 5.1 kg; effect size [ES]: 1.52), squat (19.5 ± 9.1 kg; ES: 1.12), and peak power in the countermovement jump (447 ± 248 W; ES: 0.94) were observed following the 12-week training period. Greater strength increases were observed as a result of the eccentric training modalities (ES: 0.72-1.09) with no effect of the overspeed stimuli on these measures (p > 0.05). Eccentric training with overspeed stimuli was more effective than traditional resistance training in increasing peak power in the countermovement jump (94 ± 55 W; ES: 0.95). Eccentric training induced no beneficial training response in maximal running speed (p > 0.05); however, the addition of overspeed exercises salvaged this relatively negative effect when compared with eccentric training alone (0.03 ± 0.01 seconds; ES: 1.33). These training results achieved in 3-week training blocks suggest that it is important to target-specific aspects of both force and movement velocity to enhance functional measures of power expression.
Muscle-Tendon Unit Properties during Eccentric Exercise Correlate with the Creatine Kinase Response
Hicks, Kirsty M.; Onambele-Pearson, Gladys L.; Winwood, Keith; Morse, Christopher I.
2017-01-01
Aim: The aim of this paper was to determine whether; (1) patella tendon stiffness, (2) the magnitude of vastus lateralis fascicle lengthening, and (3) eccentric torque correlate with markers of exercise induced muscle damage. Method: Combining dynamometry and ultrasonography, patella tendon properties and vastus lateralis architectural properties were measured pre and during the first of six sets of 12 maximal voluntary eccentric knee extensions. Maximal isometric torque loss and creatine kinase activity were measured pre-damage (−48 h), 48, 96, and 168 h post-damage as markers of exercise-induced muscle damage. Results: A significant increase in creatine kinase (883 ± 667 UL) and a significant reduction in maximal isometric torque loss (21%) was reported post-eccentric contractions. Change in creatine kinase from pre to peak significantly correlated with the relative change in vastus lateralis fascicle length during eccentric contractions (r = 0.53, p = 0.02) and with eccentric torque (r = 0.50, p = 0.02). Additionally, creatine kinase tended to correlate with estimated patella tendon lengthening during eccentric contractions (p < 0.10). However, creatine kinase did not correlate with resting measures of patella tendon properties or vastus lateralis properties. Similarly, torque loss did not correlate with any patella tendon or vastus lateralis properties at rest or during eccentric contractions. Conclusion: The current study demonstrates that the extent of fascicle strain during eccentric contractions correlates with the magnitude of the creatine kinase response. Although at rest, there is no relationship between patella tendon properties and markers of muscle damage; during eccentric contractions however, the patella tendon may play a role in the creatine kinase response following EIMD. PMID:28974931
EXTRACTING PLANET MASS AND ECCENTRICITY FROM TTV DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lithwick, Yoram; Xie Jiwei; Wu Yanqin
2012-12-20
Most planet pairs in the Kepler data that have measured transit time variations (TTVs) are near first-order mean-motion resonances. We derive analytical formulae for their TTV signals. We separate planet eccentricity into free and forced parts, where the forced part is purely due to the planets' proximity to resonance. This separation yields simple analytical formulae. The phase of the TTV depends sensitively on the presence of free eccentricity: if the free eccentricity vanishes, the TTV will be in phase with the longitude of conjunctions. This effect is easily detectable in current TTV data. The amplitude of the TTV depends onmore » planet mass and free eccentricity, and it determines planet mass uniquely only when the free eccentricity is sufficiently small. We analyze the TTV signals of six short-period Kepler pairs. We find that three of these pairs (Kepler 18, 24, 25) have a TTV phase consistent with zero. The other three (Kepler 23, 28, 32) have small TTV phases, but ones that are distinctly non-zero. We deduce that the free eccentricities of the planets are small, {approx}< 0.01, but not always vanishing. Furthermore, as a consequence of this, we deduce that the true masses of the planets are fairly accurately determined by the TTV amplitudes, within a factor of {approx}< 2. The smallness of the free eccentricities suggests that the planets have experienced substantial dissipation. This is consistent with the hypothesis that the observed pile-up of Kepler pairs near mean-motion resonances is caused by resonant repulsion. But the fact that some of the planets have non-vanishing free eccentricity suggests that after resonant repulsion occurred there was a subsequent phase in the planets' evolution when their eccentricities were modestly excited, perhaps by interplanetary interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moorhead, Althea V.; Ford, Eric B.; Morehead, Robert C.
Doppler planet searches have discovered that giant planets follow orbits with a wide range of orbital eccentricities, revolutionizing theories of planet formation. The discovery of hundreds of exoplanet candidates by NASA's Kepler mission enables astronomers to characterize the eccentricity distribution of small exoplanets. Measuring the eccentricity of individual planets is only practical in favorable cases that are amenable to complementary techniques (e.g., radial velocities, transit timing variations, occultation photometry). Yet even in the absence of individual eccentricities, it is possible to study the distribution of eccentricities based on the distribution of transit durations (relative to the maximum transit duration formore » a circular orbit). We analyze the transit duration distribution of Kepler planet candidates. We find that for host stars with T{sub eff} > 5100 K we cannot invert this to infer the eccentricity distribution at this time due to uncertainties and possible systematics in the host star densities. With this limitation in mind, we compare the observed transit duration distribution with models to rule out extreme distributions. If we assume a Rayleigh eccentricity distribution for Kepler planet candidates, then we find best fits with a mean eccentricity of 0.1-0.25 for host stars with T{sub eff} {<=} 5100 K. We compare the transit duration distribution for different subsets of Kepler planet candidates and discuss tentative trends with planetary radius and multiplicity. High-precision spectroscopic follow-up observations for a large sample of host stars will be required to confirm which trends are real and which are the results of systematic errors in stellar radii. Finally, we identify planet candidates that must be eccentric or have a significantly underestimated stellar radius.« less
Chandra, Sonal; Salgo, Ivan S; Sugeng, Lissa; Weinert, Lynn; Settlemier, Scott H; Mor-Avi, Victor; Lang, Roberto M
2011-09-01
Mitral effective regurgitant orifice area (EROA) using the flow convergence (FC) method is used to quantify the severity of mitral regurgitation (MR). However, it is challenging and prone to interobserver variability in complex valvular pathology. We hypothesized that real-time three-dimensional (3D) transesophageal echocardiography (RT3D TEE) derived anatomic regurgitant orifice area (AROA) can be a reasonable adjunct, irrespective of valvular geometry. Our goals were to 1) to determine the regurgitant orifice morphology and distance suitable for FC measurement using 3D computational flow dynamics and finite element analysis (FEA), and (2) to measure AROA from RT3D TEE and compare it with 2D FC derived EROA measurements. We studied 61 patients. EROA was calculated from 2D TEE images using the 2D-FC technique, and AROA was obtained from zoomed RT3DE TEE acquisitions using prototype software. 3D computational fluid dynamics by FEA were applied to 3D TEE images to determine the effects of mitral valve (MV) orifice geometry on FC pattern. 3D FEA analysis revealed that a central regurgitant orifice is suitable for FC measurements at an optimal distance from the orifice but complex MV orifice resulting in eccentric jets yielded nonaxisymmetric isovelocity contours close to the orifice where the assumptions underlying FC are problematic. EROA and AROA measurements correlated well (r = 0.81) with a nonsignificant bias. However, in patients with eccentric MR, the bias was larger than in central MR. Intermeasurement variability was higher for the 2D FC technique than for RT3DE-based measurements. With its superior reproducibility, 3D analysis of the AROA is a useful alternative to quantify MR when 2D FC measurements are challenging.
Dimitrios, Stasinopoulos; Pantelis, Manias; Kalliopi, Stasinopoulou
2012-05-01
The aim of the present study was to investigate the effectiveness of eccentric training and eccentric training with static stretching exercises in the management of patellar tendinopathy. Controlled clinical trial. Rheumatology and rehabilitation centre. Forty-three patients who had patellar tendinopathy for at least three months. They were allocated to two groups by alternative allocation. Group A (n = 22) was treated with eccentric training of patellar tendon and static stretching exercises of quadriceps and hamstrings and Group B (n = 21) received eccentric training of patellar tendon. All patients received five treatments per week for four weeks. Pain and function were evaluated using the VISA-P score at baseline, at the end of treatment (week 4), and six months (week 24) after the end of treatment. At the end of treatment, there was a rise in VISA-P score in both groups compared with baseline (P<0.0005, paired t test). There were significant differences in the VISA-P score between the groups at the end of treatment (+14; 10 to 18) and at the six-month follow-up (+19; 13 to 24); eccentric training and static stretching exercises produced the largest effect (P<0.0005, one-way ANOVA). Eccentric training and static stretching exercises is superior to eccentric training alone to reduce pain and improve function in patients with patellar tendinopathy at the end of the treatment and at follow-up.
Motor unit activity after eccentric exercise and muscle damage in humans.
Semmler, J G
2014-04-01
It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.
Media Effects on Electronic Systems in the High Latitude Region
1988-09-01
oval and auroral electron densities. Essentially the ICED model is still based on a set of coefficients, but these are modified by other inputs. There...and larger. At the distance of the Earth’s orbit the speed of the solar wind is usually between 200 and 700 or 800 km s -1 , on which is superimposed a...magnetometer on IMP-I (the Interplanetary Monitoring Platform), an eccentric orbit satellite with apogee at 32 RE Although the solar wind flows out almost
PUMP FOR GASEOUS WORKING FLUIDS
Lipscomb, R.
1948-12-14
A gas pump having a substantially constant rate of flow and a relatively efficient punnping action is described. A number of flexible plates disposed longitudinally in and in contact with a duct are caused to oscillate transversly so as to produce wave-llke deformations of the plates. These deformations are mechanically produced by pushrods and an eccentric gearing arrangement, and are so synchronized that the waves travel from the inlet to the outlet of the duct, and, in so doing, move the gas by positive displacement.
Rees, J D; Lichtwark, G A; Wolman, R L; Wilson, A M
2008-10-01
Degenerative disorders of tendons present an enormous clinical challenge. They are extremely common, prone to recur and existing medical and surgical treatments are generally unsatisfactory. Recently eccentric, but not concentric, exercises have been shown to be highly effective in managing tendinopathy of the Achilles (and other) tendons. The mechanism for the efficacy of these exercises is unknown although it has been speculated that forces generated during eccentric loading are of a greater magnitude. Our objective was to determine the mechanism for the beneficial effect of eccentric exercise in Achilles tendinopathy. Seven healthy volunteers performed eccentric and concentric loading exercises for the Achilles tendon. Tendon force and length changes were determined using a combination of motion analysis, force plate data and real-time ultrasound. There was no significant difference in peak tendon force or tendon length change when comparing eccentric with concentric exercises. However, high-frequency oscillations in tendon force occurred in all subjects during eccentric exercises but were rare in concentric exercises (P < 0.0001). These oscillations provide a mechanism to explain the therapeutic benefit of eccentric loading in Achilles tendinopathy and parallels recent evidence from bone remodelling, where the frequency of the loading cycles is of more significance than the absolute magnitude of the force.
Eccentricity effect of micropatterned surface on contact angle.
Kashaninejad, Navid; Chan, Weng Kong; Nguyen, Nam-Trung
2012-03-13
This article experimentally shows that the wetting property of a micropatterned surface is a function of the center-to-center offset distance between successive pillars in a column, referred to here as eccentricity. Studies were conducted on square micropatterns which were fabricated on a silicon wafer with pillar eccentricity ranging from 0 to 6 μm for two different pillar diameters and spacing. Measurement results of the static as well as the dynamic contact angles on these surfaces revealed that the contact angle decreases with increasing eccentricity and increasing relative spacing between the pillars. Furthermore, quantification of the contact angle hysteresis (CAH) shows that, for the case of lower pillar spacing, CAH could increase up to 41%, whereas for the case of higher pillar spacing, this increment was up to 35%, both corresponding to the maximum eccentricity of 6 μm. In general, the maximum obtainable hydrophobicity corresponds to micropillars with zero eccentricity. As the pillar relative spacing decreases, the effect of eccentricity on hydrophobicity becomes more pronounced. The dependence of the wettability conditions of the micropatterned surface on the pillar eccentricity is attributed to the contact line deformation resulting from the changed orientation of the pillars. This finding provides additional insights in design and fabrication of efficient micropatterned surfaces with controlled wetting properties.
Eccentric training as a new approach for rotator cuff tendinopathy: Review and perspectives
Camargo, Paula R; Alburquerque-Sendín, Francisco; Salvini, Tania F
2014-01-01
Excessive mechanical loading is considered the major cause of rotator cuff tendinopathy. Although tendon problems are very common, they are not always easy to treat. Eccentric training has been proposed as an effective conservative treatment for the Achilles and patellar tendinopathies, but less evidence exists about its effectiveness for the rotator cuff tendinopathy. The mechanotransduction process associated with an adequate dose of mechanical load might explain the beneficial results of applying the eccentric training to the tendons. An adequate load increases healing and an inadequate (over or underuse) load can deteriorate the tendon structure. Different eccentric training protocols have been used in the few studies conducted for people with rotator cuff tendinopathy. Further, the effects of the eccentric training for rotator cuff tendinopathy were only evaluated on pain, function and strength. Future studies should assess the effects of the eccentric training also on shoulder kinematics and muscle activity. Individualization of the exercise prescription, comprehension and motivation of the patients, and the establishment of specific goals, practice and efforts should all be considered when prescribing the eccentric training. In conclusion, eccentric training should be used aiming improvement of the tendon degeneration, but more evidence is necessary to establish the adequate dose-response and to determine long-term follow-up effects. PMID:25405092
NASA Astrophysics Data System (ADS)
Cui, Zhihua; Ai, Chi; Feng, Fuping
2017-01-01
When shear swirling flow vibration cementing, the casing is revolving periodically and eccentrically, which leads to the annulus fluid in turbulent swirling flow state. The wall shear stress is more than that in laminar flow field when conventional cementing. The paper mainly studied the wall shear stress distribution on the borehole wall when shear swirling flow vibration cementing based on the finite volume method. At the same time, the wall roughness affected and changed the turbulent flow near the borehole wall and the wall shear stress. Based on the wall function method, the paper established boundary conditions considering the wall roughness and derived the formula of the wall shear stress. The results showed that the wall roughness significantly increases the wall shear stress. However, the larger the wall roughness, the greater the thickness of mud cake, which weakening the cementing strength. Considering the effects in a comprehensive way, it is discovered that the particle size of solid phase in drilling fluid is about 0.1 mm to get better cementing quality.
Orbital dynamics of multi-planet systems with eccentricity diversity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, Stephen R.; Raymond, Sean N., E-mail: skane@sfsu.edu
2014-04-01
Since exoplanets were detected using the radial velocity method, they have revealed a diverse distribution of orbital configurations. Among these are planets in highly eccentric orbits (e > 0.5). Most of these systems consist of a single planet but several have been found to also contain a longer period planet in a near-circular orbit. Here we use the latest Keplerian orbital solutions to investigate four known systems which exhibit this extreme eccentricity diversity; HD 37605, HD 74156, HD 163607, and HD 168443. We place limits on the presence of additional planets in these systems based on the radial velocity residuals.more » We show that the two known planets in each system exchange angular momentum through secular oscillations of their eccentricities. We calculate the amplitude and timescale for these eccentricity oscillations and associated periastron precession. We further demonstrate the effect of mutual orbital inclinations on the amplitude of high-frequency eccentricity oscillations. Finally, we discuss the implications of these oscillations in the context of possible origin scenarios for unequal eccentricities.« less
Inhibition of Return in the Visual Field
Bao, Yan; Lei, Quan; Fang, Yuan; Tong, Yu; Schill, Kerstin; Pöppel, Ernst; Strasburger, Hans
2013-01-01
Inhibition of return (IOR) as an indicator of attentional control is characterized by an eccentricity effect, that is, the more peripheral visual field shows a stronger IOR magnitude relative to the perifoveal visual field. However, it could be argued that this eccentricity effect may not be an attention effect, but due to cortical magnification. To test this possibility, we examined this eccentricity effect in two conditions: the same-size condition in which identical stimuli were used at different eccentricities, and the size-scaling condition in which stimuli were scaled according to the cortical magnification factor (M-scaling), thus stimuli being larger at the more peripheral locations. The results showed that the magnitude of IOR was significantly stronger in the peripheral relative to the perifoveal visual field, and this eccentricity effect was independent of the manipulation of stimulus size (same-size or size-scaling). These results suggest a robust eccentricity effect of IOR which cannot be eliminated by M-scaling. Underlying neural mechanisms of the eccentricity effect of IOR are discussed with respect to both cortical and subcortical structures mediating attentional control in the perifoveal and peripheral visual field. PMID:23820946
Dance as an eccentric form of exercise: practical implications.
Paschalis, Vassilis; Nikolaidis, Michalis G; Jamurtas, Athanasios Z; Owolabi, Emmanuel O; Kitas, George D; Wyon, Matthew A; Koutedakis, Yiannis
2012-06-01
The eccentric action is an integral part of the stretch-shortening (or eccentric-concentric) cycle of muscle movement, especially when repositioning of the centre of gravity is required. Jumps and landing tasks are examples of this cycle and are incorporated in most dance activities. However, unaccustomed eccentric muscle action can cause muscle damage, which is characterised by the development of delayed-onset muscle soreness and swelling, decline of pain-free range of motion, as well as sustained loss of muscle force and range of motion. Furthermore, unaccustomed eccentric muscle action can induce disturbances in movement economy and energy expenditure, so dancers spend more energy during a routine than usual. Such negative effects are gradually reduced and eventually disappear due to physiological adaptations to this form of muscular activity. Given that eccentric exercises also appear to induce greater muscle performance improvements than other forms of muscle conditioning, it is advised that they should be integrated into dancers' weekly schedules. The purpose of the present review is to examine the possible effects of the eccentric component of dance on the performance and health status of dancers.
CoRoT-7b: SUPER-EARTH OR SUPER-Io?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Rory; Kaib, Nathan A.; Raymond, Sean N.
2010-02-01
CoRoT-7b, a planet about 70% larger than the Earth orbiting a Sun-like star, is the first-discovered rocky exoplanet, and hence has been dubbed a 'super-Earth'. Some initial studies suggested that since the planet is so close to its host star, it receives enough insolation to partially melt its surface. However, these past studies failed to take into consideration the role that tides may play in this system. Even if the planet's eccentricity has always been zero, we show that tidal decay of the semimajor axis could have been large enough that the planet formed on a wider orbit which receivedmore » less insolation. Moreover, CoRoT-7b could be tidally heated at a rate that dominates its geophysics and drives extreme volcanism. In this case, CoRoT-7b is a 'super-Io' that, like Jupiter's volcanic moon, is dominated by volcanism and rapid resurfacing. Such heating could occur with an eccentricity of just 10{sup -5}. This small value could be driven by CoRoT-7c if its own eccentricity is larger than {approx}10{sup -4}. CoRoT-7b may be the first of a class of planetary super-Ios likely to be revealed by the CoRoT and Kepler spacecraft.« less
Complete tidal evolution of Pluto-Charon
NASA Astrophysics Data System (ADS)
Cheng, W. H.; Lee, Man Hoi; Peale, S. J.
2014-05-01
Both Pluto and its satellite Charon have rotation rates synchronous with their orbital mean motion. This is the theoretical end point of tidal evolution where transfer of angular momentum has ceased. Here we follow Pluto’s tidal evolution from an initial state having the current total angular momentum of the system but with Charon in an eccentric orbit with semimajor axis a≈4RP (where RP is the radius of Pluto), consistent with its impact origin. Two tidal models are used, where the tidal dissipation function Q∝1/frequency and Q = constant, where details of the evolution are strongly model dependent. The inclusion of the gravitational harmonic coefficient C22 of both bodies in the analysis allows smooth, self consistent evolution to the dual synchronous state, whereas its omission frustrates successful evolution in some cases. The zonal harmonic J2 can also be included, but does not cause a significant effect on the overall evolution. The ratio of dissipation in Charon to that in Pluto controls the behavior of the orbital eccentricity, where a judicious choice leads to a nearly constant eccentricity until the final approach to dual synchronous rotation. The tidal models are complete in the sense that every nuance of tidal evolution is realized while conserving total angular momentum-including temporary capture into spin-orbit resonances as Charon’s spin decreases and damped librations about the same.
Eccentric correction for off-axis vision in central visual field loss.
Gustafsson, Jörgen; Unsbo, Peter
2003-07-01
Subjects with absolute central visual field loss use eccentric fixation and magnifying devices to utilize their residual vision. This preliminary study investigated the importance of an accurate eccentric correction of off-axis refractive errors to optimize the residual visual function for these subjects. Photorefraction using the PowerRefractor instrument was used to evaluate the ametropia in eccentric fixation angles. Methods were adapted for measuring visual acuity outside the macula using filtered optotypes from high-pass resolution perimetry. Optical corrections were implemented, and the visual function of subjects with central visual field loss was measured with and without eccentric correction. Of the seven cases reported, five experienced an improvement in visual function in their preferred retinal locus with eccentric refraction. The main result was that optical correction for better image quality on the peripheral retina is important for the vision of subjects with central visual field loss, objectively as well as subjectively.
Eccentric exercise training as a countermeasure to non-weight-bearing soleus muscle atrophy
NASA Technical Reports Server (NTRS)
Kirby, Christopher R.; Ryan, Mirelle J.; Booth, Frank W.
1992-01-01
This investigation tested whether eccentric resistance training could prevent soleus muscle atrophy during non-weight bearing. Adult female rats were randomly assigned to either weight bearing +/- intramuscular electrodes or non-weight bearing +/- intramuscular electrodes groups. Electrically stimulated maximal eccentric contractions were performed on anesthetized animals at 48-h intervals during the 10-day experiment. Non-weight bearing significantly reduced soleus muscle wet weight (28-31 percent) and noncollagenous protein content (30-31 percent) compared with controls. Eccentric exercise training during non-weight bearing attenuated but did not prevent the loss of soleus muscle wet weight and noncollagenous protein by 77 and 44 percent, respectively. The potential of eccentric exercise training as an effective and highly efficient counter-measure to non-weight-bearing atrophy is demonstrated in the 44 percent attenuation of soleus muscle noncollagenous protein loss by eccentric exercise during only 0.035 percent of the total non-weight-bearing time period.
Exoplanet orbital eccentricity: multiplicity relation and the Solar System.
Limbach, Mary Anne; Turner, Edwin L
2015-01-06
The known population of exoplanets exhibits a much wider range of orbital eccentricities than Solar System planets and has a much higher average eccentricity. These facts have been widely interpreted to indicate that the Solar System is an atypical member of the overall population of planetary systems. We report here on a strong anticorrelation of orbital eccentricity with multiplicity (number of planets in the system) among cataloged radial velocity (RV) systems. The mean, median, and rough distribution of eccentricities of Solar System planets fits an extrapolation of this anticorrelation to the eight-planet case rather precisely despite the fact that no more than two Solar System planets would be detectable with RV data comparable to that in the exoplanet sample. Moreover, even if regarded as a single or double planetary system, the Solar System lies in a reasonably heavily populated region of eccentricity-multiplicity space. Thus, the Solar System is not anomalous among known exoplanetary systems with respect to eccentricities when its multiplicity is taken into account. Specifically, as the multiplicity of a system increases, the eccentricity decreases roughly as a power law of index -1.20. A simple and plausible but ad hoc and model-dependent interpretation of this relationship implies that ∼ 80% of the one-planet and 25% of the two-planet systems in our sample have additional, as yet undiscovered, members but that systems of higher observed multiplicity are largely complete (i.e., relatively rarely contain additional undiscovered planets). If low eccentricities indeed favor high multiplicities, habitability may be more common in systems with a larger number of planets.
Kwon, Yong-Hyun; Park, Ji-Won
2011-01-01
Concentric and eccentric muscle contractions have distinct differences in their neuromuscular and neurophysiologic characteristics. However, although many evidences regarding the features of these types of muscle contraction have emerged, there have been few neuroimaging studies to compare the two types of contractions. Therefore, we investigated whether cortical activity associated with eccentric contraction of the wrist extensors differed from that of concentric contraction, using functional MRI (fMRI). Fifteen right-handed healthy subjects were enrolled in this study. During 4 repeating blocks of eccentric and concentric muscle contraction paradigms, the brain was scanned with fMRI. The differences in the BOLD signal intensities during the performance of eccentric and concentric exercise were compared in the predetermined regions of interest. Our findings revealed that many cortical areas associated with motor performance were activated, including the primary motor area, the inferior parietal lobe, the pre-supplementary area (pre-SMA), the anterior cingulate cortex, the prefrontal area, and the cerebellum. In addition, lower signal intensities were seen in the right primary motor cortex and right cerebellum during eccentric contractions compared with concentric contractions, whereas higher signal intensities were detected in other cortical areas during eccentric contractions. In the study, we demonstrated that eccentric and concentric muscle contractions induced quite different patterns of cortical activity respectively. These findings might be attributed to different strategy of neuro-motor processing and a higher level of cognitive demand for the performance of motor task with a higher degree of difficulty such as that required during eccentric contractions in comparison of concentric contractions.
Frozen orbit realization using LQR analogy
NASA Astrophysics Data System (ADS)
Nagarajan, N.; Rayan, H. Reno
In the case of remote sensing orbits, the Frozen Orbit concept minimizes altitude variations over a given region using passive means. This is achieved by establishing the mean eccentricity vector at the orbital poles i.e., by fixing the mean argument of perigee at 90 deg with an appropriate eccentricity to balance the perturbations due to zonal harmonics J2 and J3 of the Earth's potential. Eccentricity vector is a vector whose magnitude is the eccentricity and direction is the argument of perigee. The launcher dispersions result in an eccentricity vector which is away from the frozen orbit values. The objective is then to formulate an orbit maneuver strategy to optimize the fuel required to achieve the frozen orbit in the presence of visibility and impulse constraints. It is shown that the motion of the eccentricity vector around the frozen perigee can be approximated as a circle. Combining the circular motion of the eccentricity vector around the frozen point and the maneuver equation, the following discrete equation is obtained. X(k+1) = AX(k) + Bu(k), where X is the state (i.e. eccentricity vector components), A the state transition matrix, u the scalar control force (i.e. dV in this case) and B the control matrix which transforms dV into eccentricity vector change. Based on this, it is shown that the problem of optimizing the fuel can be treated as a Linear Quadratic Regulator (LQR) problem in which the maneuver can be solved by using control system design tools like MATLAB by deriving an analogy LQR design.
Changes in passive tension of muscle in humans and animals after eccentric exercise
Whitehead, N P; Weerakkody, N S; Gregory, J E; Morgan, D L; Proske, U
2001-01-01
This is a report of experiments on ankle extensor muscles of human subjects and a parallel series on the medial gastrocnemius of the anaesthetised cat, investigating the origin of the rise in passive tension after a period of eccentric exercise. Subjects exercised their triceps surae of one leg eccentrically by walking backwards on an inclined, forward-moving treadmill. Concentric exercise required walking forwards on a backwards-moving treadmill. For all subjects the other leg acted as a control. Immediately after both eccentric and concentric exercise there was a significant drop in peak active torque, but only after eccentric exercise was this accompanied by a shift in optimum angle for torque generation and a rise in passive torque. In the eccentrically exercised group some swelling and soreness developed but not until 24 h post-exercise. In the animal experiments the contracting muscle was stretched by 6 mm at 50 mm s−1 over a length range symmetrical about the optimum length for tension generation. Measurements of passive tension were made before and after the eccentric contractions, using small stretches to a range of muscle lengths, or with large stretches covering the full physiological range. After 150 eccentric contractions, passive tension was significantly elevated over most of the range of lengths. Measurements of work absorption during stretch-release cycles showed significant increases after the contractions. It is suggested that the rise in passive tension in both human and animal muscles after eccentric contractions is the result of development of injury contractures in damaged muscle fibres. PMID:11389215
NEPTUNE'S WILD DAYS: CONSTRAINTS FROM THE ECCENTRICITY DISTRIBUTION OF THE CLASSICAL KUIPER BELT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Rebekah I.; Murray-Clay, Ruth, E-mail: rdawson@cfa.harvard.edu
2012-05-01
Neptune's dynamical history shaped the current orbits of Kuiper Belt objects (KBOs), leaving clues to the planet's orbital evolution. In the 'classical' region, a population of dynamically 'hot' high-inclination KBOs overlies a flat 'cold' population with distinct physical properties. Simulations of qualitatively different histories for Neptune, including smooth migration on a circular orbit or scattering by other planets to a high eccentricity, have not simultaneously produced both populations. We explore a general Kuiper Belt assembly model that forms hot classical KBOs interior to Neptune and delivers them to the classical region, where the cold population forms in situ. First, wemore » present evidence that the cold population is confined to eccentricities well below the limit dictated by long-term survival. Therefore, Neptune must deliver hot KBOs into the long-term survival region without excessively exciting the eccentricities of the cold population. Imposing this constraint, we explore the parameter space of Neptune's eccentricity and eccentricity damping, migration, and apsidal precession. We rule out much of parameter space, except where Neptune is scattered to a moderately eccentric orbit (e > 0.15) and subsequently migrates a distance {Delta}a{sub N} = 1-6 AU. Neptune's moderate eccentricity must either damp quickly or be accompanied by fast apsidal precession. We find that Neptune's high eccentricity alone does not generate a chaotic sea in the classical region. Chaos can result from Neptune's interactions with Uranus, exciting the cold KBOs and placing additional constraints. Finally, we discuss how to interpret our constraints in the context of the full, complex dynamical history of the solar system.« less
Decline eccentric squats increases patellar tendon loading compared to standard eccentric squats.
Kongsgaard, M; Aagaard, P; Roikjaer, S; Olsen, D; Jensen, M; Langberg, H; Magnusson, S P
2006-08-01
Recent studies have shown excellent clinical results using eccentric squat training on a 25 degrees decline board to treat patellar tendinopathy. It remains unknown why therapeutic management of patellar tendinopathy using decline eccentric squats offer superior clinical efficacy compared to standard horizontal eccentric squats. This study aimed to compare electromyography activity, patellar tendon strain and joint angle kinematics during standard and decline eccentric squats. Thirteen subjects performed unilateral eccentric squats on flat-and a 25 degrees decline surface. During the squats, electromyography activity was obtained in eight representative muscles. Also, ankle, knee and hip joint goniometry was obtained. Additionally, patellar tendon strain was measured in vivo using ultrasonography as subjects maintained a unilateral isometric 90 degrees knee angle squat position on either flat or 25 degrees decline surface. Patellar tendon strain was significantly greater (P<0.05) during the squat position on the decline surface compared to the standard surface. The stop angles of the ankle and hip joints were significantly smaller during the decline compared to the standard squats (P<0.001, P<0.05). Normalized mean electromyography amplitudes of the knee extensor muscles were significantly greater during the decline compared to the standard squats (P<0.05). Hamstring and calf muscle mean electromyography did not differ, respectively, between standard and decline squats. The use of a 25 degrees decline board increases the load and the strain of the patellar tendon during unilateral eccentric squats. This finding likely explains previous reports of superior clinical efficacy of decline eccentric squats in the rehabilitative management of patellar tendinopathy.
Behaviour of square FRP-Confined High-Strength Concrete Columns under Eccentric Compression
NASA Astrophysics Data System (ADS)
Fallah Pour, Ali; Gholampour, Aliakbar; Zheng, Junai; Ozbakkaloglu, Togay
2018-01-01
This paper presents the results of an experimental study on the effect of load eccentricity on the axial compressive behaviour of carbon fibre-reinforced polymer (CFRP)- confined high-strength concrete (HSC) columns with a square cross-section. The axial loading was applied to the specimens at six different load eccentricities ranging from zero to 50 mm. The results show that the load eccentricity significantly influences the axial load-displacement and axial stress-strain behaviour of FRP-confined HSC. Increasing the load eccentricity leads to an increase in the ultimate axial strain but a decrease in the ultimate axial stress and second branch slope of the axial stress-strain curve.
On the coplanar eccentric non-restricted co-orbital dynamics
NASA Astrophysics Data System (ADS)
Leleu, A.; Robutel, P.; Correia, A. C. M.
2018-03-01
We study the phase space of eccentric coplanar co-orbitals in the non-restricted case. Departing from the quasi-circular case, we describe the evolution of the phase space as the eccentricities increase. We find that over a given value of the eccentricity, around 0.5 for equal mass co-orbitals, important topological changes occur in the phase space. These changes lead to the emergence of new co-orbital configurations and open a continuous path between the previously distinct trojan domains near the L_4 and L_5 eccentric Lagrangian equilibria. These topological changes are shown to be linked with the reconnection of families of quasi-periodic orbits of non-maximal dimension.
Connecting HL Tau to the observed exoplanet sample
NASA Astrophysics Data System (ADS)
Simbulan, Christopher; Tamayo, Daniel; Petrovich, Cristobal; Rein, Hanno; Murray, Norman
2017-08-01
The Atacama Large Millimeter/submilimeter Array (ALMA) recently revealed a set of nearly concentric gaps in the protoplanetary disc surrounding the young star HL Tauri (HL Tau). If these are carved by forming gas giants, this provides the first set of orbital initial conditions for planets as they emerge from their birth discs. Using N-body integrations, we have followed the evolution of the system for 5 Gyr to explore the possible outcomes. We find that HL Tau initial conditions scaled down to the size of typically observed exoplanet orbits naturally produce several populations in the observed exoplanet sample. First, for a plausible range of planetary masses, we can match the observed eccentricity distribution of dynamically excited radial velocity giant planets with eccentricities >0.2. Secondly, we roughly obtain the observed rate of hot Jupiters around FGK stars. Finally, we obtain a large efficiency of planetary ejections of ≈2 per HL Tau-like system, but the small fraction of stars observed to host giant planets makes it hard to match the rate of free-floating planets inferred from microlensing observations. In view of upcoming Gaia results, we also provide predictions for the expected mutual inclination distribution, which is significantly broader than the absolute inclination distributions typically considered by previous studies.
Analytical solution for the wind-driven circulation in a lake containing an island
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Gedney, R. T.
1971-01-01
An analysis was carried out to determine analytically the effect of an island on the wind driven currents in a shallow lake (or sea). A general analysis is developed that can be applied to a large class of lake and island geometries and bottom topographies. Detailed numerical results are obtained for a circular island located eccentrically or concentrically in a circular lake with a logarithmic bottom topography. It is shown that an island can produce volume flow (vertically integrated velocities) gyres that are completely different from those produced by a normal basin without an island. These gyres in the neighborhood of the island will produce different velocity patterns, which include the acceleration of flow near the island shore.
NASA Technical Reports Server (NTRS)
Murphy, J. P.
1972-01-01
Analytical prediction of expected eccentricity perturbations for the RAE 2 lunar orbit shows that the eccentricity will grow linearly in time. Parametric inclination studies and analysis of perturbation equations establish a critical retrograde inclination of 116.565 at which the positive perturbation slope vanishes for a circular orbit about 1100 m above the lunar surface with an eccentricity constraint of less than 0.005 during a period of about one year.
Haynes, Andrew; Linden, Matthew D; Chasland, Lauren C; Nosaka, Kazunori; Maiorana, Andrew; Dawson, Ellen A; Dembo, Lawrence H; Naylor, Louise H; Green, Daniel J
2017-06-01
Evidence-based guidelines recommend exercise therapy for patients with chronic heart failure (CHF). Such patients have increased atherothrombotic risk. Exercise can transiently increase platelet activation and reactivity and decrease vascular function in healthy participants, although data in CHF are scant. Eccentric (ECC) cycling is a novel exercise modality that may be particularly suited to patients with CHF, but the acute impacts of ECC cycling on platelet and vascular function are currently unknown. Our null hypothesis was that ECC and concentric (CON) cycling, performed at matched external workloads, would not induce changes in platelet or vascular function in patients with CHF. Eleven patients with heart failure with reduced ejection fraction (HFrEF) took part in discrete bouts of ECC and CON cycling. Before and immediately after exercise, vascular function was assessed by measuring diameter and flow-mediated dilation (FMD) of the brachial artery. Platelet function was measured by the flow cytometric determination of glycoprotein IIb/IIIa activation and granule exocytosis in the presence and absence of platelet agonists. ECC cycling increased baseline artery diameter (pre: 4.0 ± 0.8 mm vs. post: 4.2 ± 0.7 mm; P = 0.04) and decreased FMD%. When changes in baseline artery diameter were accounted for, the decrease in FMD post-ECC cycling was no longer significant. No changes were apparent after CON. Neither ECC nor CON cycling resulted in changes to any platelet-function measures (all P > 0.05). These results suggest that both ECC and CON cycling, at a moderate intensity and short duration, can be performed by patients with HFrEF without detrimental impacts on vascular or platelet function. NEW & NOTEWORTHY This is the first evidence to indicate that eccentric (ECC) cycling can be performed relatively safely by patients with chronic heart failure (CHF), as it did not result in impaired vascular or platelet function compared with conventional cycling. This is important, as acute exercise can transiently increase atherothrombotic risk, and ECC cycling is a novel exercise modality that may be particularly suited to patients with CHF. Copyright © 2017 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, David; Cumming, Andrew; Turner, Neal J., E-mail: dtsang@physics.mcgill.ca
2014-02-20
We show that the first order (non-co-orbital) corotation torques are significantly modified by entropy gradients in a non-barotropic protoplanetary disk. Such non-barotropic torques can dramatically alter the balance that, for barotropic cases, results in the net eccentricity damping for giant gap-clearing planets embedded in the disk. We demonstrate that stellar illumination can heat the gap enough for the planet's orbital eccentricity to instead be excited. We also discuss the 'Eccentricity Valley' noted in the known exoplanet population, where low-metallicity stars have a deficit of eccentric planets between ∼0.1 and ∼1 AU compared to metal-rich systems. We show that this featuremore » in the planet distribution may be due to the self-shadowing of the disk by a rim located at the dust sublimation radius ∼0.1 AU, which is known to exist for several T Tauri systems. In the shadowed region between ∼0.1 and ∼1 AU, lack of gap insolation allows disk interactions to damp eccentricity. Outside such shadowed regions stellar illumination can heat the planetary gaps and drive eccentricity growth for giant planets. We suggest that the self-shadowing does not arise at higher metallicity due to the increased optical depth of the gas interior to the dust sublimation radius.« less
Relationships between eccentric hip isokinetic torque and functional performance.
Baldon, Rodrigo de Marche; Lobato D, Ferreira Moreira; Carvalho, Lívia Pinheiro; Wun P, Yan Lam; Presotti, Cátia Valéria; Serrão, Fábio Viadanna
2012-02-01
Recently, attention in sports has been given to eccentric hip-muscle function, both in preventing musculoskeletal injuries and improving performance. To determine the key isokinetic variables of eccentric hip torque that predict the functional performance of women in the single-leg triple long jump (TLJ) and the timed 6-m single-leg hop (TH). Within-subject correlational study. Musculoskeletal laboratory. 32 healthy women age 18-25 y. The participants performed 2 sets of 5 eccentric hip-abductor/adductor and lateral/medial-rotator isokinetic contractions (30°/s) and 3 attempts in the TLJ and TH. The independent variables were the eccentric hip-abductor and -adductor and medial- and lateral-rotator isokinetic peak torque, normalized according to body mass (Nm/kg). The dependent variables were the longest distance achieved in the TLJ normalized according to body height and the shortest time spent during the execution of the TH. The forward-stepwise-regression analysis showed that the combination of the eccentric hip lateral-rotator and -abductor isokinetic peak torque provided the most efficient estimate of both functional tests, explaining 65% of the TLJ variance (P < .001) and 55% of the TH variance (P < .001). Higher values for eccentric hip lateral-rotator and hip-abductor torques reflected better performance. Thus, the eccentric action of these muscles should be considered in the development of physical training programs that aim to increase functional performance.
Exercise metabolism in human skeletal muscle exposed to prior eccentric exercise
Asp, Sven; Daugaard, Jens R; Kristiansen, Søren; Kiens, Bente; Richter, Erik A
1998-01-01
The effects of unaccustomed eccentric exercise on exercise metabolism during a subsequent bout of graded concentric exercise were investigated in seven healthy male subjects. Arterial and bilateral femoral venous catheters were inserted 2 days after eccentric exercise of one thigh (eccentric thigh) and blood samples were taken before and during graded two-legged concentric knee-extensor exercise. Muscle biopsies were obtained from the eccentric and control vastus lateralis before (rest) and after (post) the concentric exercise bout. Maximal knee-extensor concentric exercise capacity was decreased by an average of 23 % (P < 0.05) in the eccentric compared with the control thigh. The resting muscle glycogen content was lower in the eccentric thigh than in the control thigh (402 ± 30 mmol (kg dry wt)−1vs. 515 ± 26 mmol (kg dry wt)−1, means ± s.e.m., P < 0.05), and following the two-legged concentric exercise this difference substantially increased (190 ± 46 mmol (kg dry wt)−1vs. 379 ± 58 mmol (kg dry wt)−1, P < 0.05) despite identical power and duration of exercise with the two thighs. There was no measurable difference in glucose uptake between the eccentric and control thigh before or during the graded two-legged concentric exercise. Lactate release was higher from the eccentric thigh at rest and, just before termination of the exercise bout, release of lactate decreased from this thigh (suggesting decreased glycogenolysis), whereas no decrease was found from the contralateral control thigh. Lower glycerol release from the eccentric thigh during the first, lighter part of the exercise (P < 0.05) suggested impaired triacylglycerol breakdown. At rest, sarcolemmal GLUT4 glucose transporter content and glucose transport were similar in the two thighs, and concentric exercise increased sarcolemmal GLUT4 content and glucose transport capacity similarly in the two thighs. It is concluded that in muscle exposed to prior eccentric contractions, exercise at a given power output requires a higher relative workload than in undamaged muscle. This increases utilization of the decreased muscle glycogen stores, contributing to decreased endurance. PMID:9547403
Hybrid Black-Hole Binary Initial Data
NASA Technical Reports Server (NTRS)
Mundim, Bruno C.; Kelly, Bernard J.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela
2010-01-01
"Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features."
Non-classical adhesive-bonded joints in practical aerospace construction
NASA Technical Reports Server (NTRS)
Hart-Smith, L. J.
1973-01-01
Solutions are derived for adhesive-bonded joints of non-classical geometries. Particular attention is given to bonded doublers and to selective reinforcement by unidirectional composites. Non-dimensionalized charts are presented for the efficiency limit imposed on the skin as the result of the eccentricity in the load path through the doubler. It is desirable to employ a relativly large doubler to minimize the effective eccentricity in the load path. The transfer stresses associated with selective reinforcement of metal structures by advanced composites are analyzed. Reinforcement of bolt holes in composites by bonded metal doublers is covered quantitatively. Also included is the adhesive joint analysis for shear flow in a multi-cell torque box, in which the bond on one angle becomes more critical sooner than those on the others, thereby restricting the strength to less than the total of each maximum strength when acting alone. Adhesive plasticity and adherend stiffness and thermal imbalances are included. A simple analysis/design technique of solution in terms of upper and lower bounds on an all-plastic adhesive analysis is introduced.
Mike, Jonathan N; Cole, Nathan; Herrera, Chris; VanDusseldorp, Trisha; Kravitz, Len; Kerksick, Chad M
2017-03-01
Mike, JN, Cole, N, Herrera, C, VanDusseldorp, T, Kravitz, L, and Kerksick, CM. The effects of eccentric contraction duration on muscle strength, power production, vertical jump, and soreness. J Strength Cond Res 31(3): 773-786, 2017-Previous research has investigated the effects of either eccentric-only training or comparing eccentric and concentric exercise on changes related to strength and power expression, but no research to date has investigated the impact of altering the duration of either the concentric or the eccentric component on these parameters. Therefore, the purpose of this study was to assess the duration of eccentric (i.e., 2-second, 4-second vs. 6-second) muscle contractions and their effect on muscle strength, power production, vertical jump, and soreness using a plate-loaded barbell Smith squat exercise. Thirty college-aged men (23 ± 3.5 years, 178 ± 6.8 cm, 82 ± 12 kg, and 11.6 ± 5.1% fat) with 3.0 ± 1.0 years of resistance training experience and training frequency of 4.3 ± 0.9 days per week were randomized and assigned to 1 of 3 eccentric training groups that incorporated different patterns of contraction. For every repetition, all 3 groups used 2-second concentric contractions and paused for 1 second between the concentric and eccentric phases. The control group (2S) used 2-second eccentric contractions, whereas the 4S group performed 4-second eccentric contractions and the 6S group performed 6-second eccentric contractions. All repetitions were completed using the barbell Smith squat exercise. All participants completed a 4-week training protocol that required them to complete 2 workouts per week using their prescribed contraction routine for 4 sets of 6 repetitions at an intensity of 80-85% one repetition maximum (1RM). For all performance data, significant group × time (G × T) interaction effects were found for average power production across all 3 sets of a squat jump protocol (p = 0.04) while vertical jump did not reach significance but there was a trend toward a difference (G × T, p = 0.07). No other significant (p > 0.05) G × T interaction effects were found for the performance variables. All groups showed significant main effects for time in 1RM (p < 0.001), vertical jump (p = 0.004), peak power (p < 0.001), and average power (p < 0.001). Peak velocity data indicated that the 6S group experienced a significant reduction in peak velocity during the squat jump protocol as a result of the 4-week training program (p = 0.03). Soreness data revealed significant increases across time in all groups at both week 0 and week 4. Paired sample t-tests revealed greater differences in soreness values across time in the 2S group. The results provide further evidence that resistance training with eccentrically dominated movement patterns can be an effective method to acutely increase maximal strength and power expression in trained college age men. Furthermore, longer eccentric contractions may negatively impact explosive movements such as the vertical jump, whereas shorter eccentric contractions may instigate greater amounts of soreness. These are important considerations for the strength and conditioning professional to more fully understand that expressions of strength and power through eccentric training and varying durations of eccentric activity can have a significant impact for populations ranging from athletes desiring peak performance.
A Comparison of Experimental and Theoretical Results for Labyrinth Gas Seals. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Scharrer, Joseph Kirk
1987-01-01
The basic equations are derived for a two control volume model for compressible flow in a labyrinth seal. The flow is assumed to be completely turbulent and isoenergetic. The wall friction factors are determined using the Blasius formula. Jet flow theory is used for the calculation of the recirculation velocity in the cavity. Linearized zeroth and first order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth order pressure distribution is found by satisfying the leakage equation. The circumferential velocity distribution is determined by satisfying the momentum equations. The first order equations are solved by a separation of variable solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients. The results of this analysis are compared to experimental test results.
Origins of hydrodynamic forces on centrifugal pump impellers
NASA Technical Reports Server (NTRS)
Adkins, Douglas R.; Brennen, Christopher E.
1987-01-01
Hydrodynamic interactions that occur between a centrifugal pump impeller and volute are experimentally and theoretically investigated. The theoretical analysis considers the inability of the blades to perfectly guide the flow through the impeller, and also includes a quasi-one dimensional treatment of the flow in the volute. The disturbance at the impeller discharge and the resulting forces are determined by the theoretical model. The model is then extended to obtain the hydrodynamic force perturbations that are caused by the impeller whirling eccentrically in the volute. Under many operating conditions, these force perturbations were found to be destablizing. Comparisons are made between the theoretical model and the experimental measurements of pressure distributions and radial forces on the impeller. The theoretical model yields fairly accurate predictions of the radial forces caused by the flow through the impeller. However, it was found that the pressure acting on the front shroud of the impeller has a substantial effect on the destablizing hydrodynamic forces.
Eccentric Training for Tendon Healing After Acute Lesion: A Rat Model.
Kaux, Jean-François; Libertiaux, Vincent; Leprince, Pierre; Fillet, Marianne; Denoel, Vincent; Wyss, Clémence; Lecut, Christelle; Gothot, André; Le Goff, Caroline; Croisier, Jean-Louis; Crielaard, Jean-Michel; Drion, Pierre
2017-05-01
The tendon is a dynamic entity that remodels permanently. Platelet-rich plasma (PRP) injection has been shown to have a beneficial effect on tendon healing after lesion in rats. Furthermore, eccentric exercise seems to improve the mechanical quality of the tendon. A combination of PRP injection and eccentric training might be more effective than either treatment alone. Controlled laboratory study. Adult male rats were anesthetized, an incision was performed in the middle of their left patellar tendon and an injection of physiological fluid (PF) or homologous PRP was randomly made at the lesion level. The rats were then divided into 2 groups: the eccentric group, undergoing eccentric training 3 times a week, and the untrained group, without any training. Thus, 4 groups were compared. After 5 weeks, the tendons were removed and their ultimate tensile strength and energy were measured. Tendons were frozen for proteomic analyses when all biomechanical tests were completed. Statistical analysis was performed with linear mixed effect models. No significant difference was found between the treatments using PF injection or PRP injection alone. However, the value of the ultimate tensile force at rupture was increased by 4.5 N (108% of control, P = .006) when eccentric training was performed. An intragroup analysis revealed that eccentric training significantly improved the ultimate force values for the PRP group. Proteomic analysis revealed that eccentric training led to an increase in abundance of several cytoskeletal proteins in the PF group, while a decrease in abundance of enzymes of the glycolytic pathway occurred in the PRP-treated groups, indicating that this treatment might redirect the exercise-driven metabolic plasticity of the tendon. Eccentric training altered the metabolic plasticity of tendon and led to an improvement of injured tendon resistance regardless of the treatment injected (PF or PRP). This study demonstrates the necessity of eccentric rehabilitation and training in cases of tendon lesion regardless of the treatment carried out.
The Effect of Estrogen Usage on Eccentric Exercise-Induced Damage in Rat Testes
Can, Serpil; Selli, Jale; Buyuk, Basak; Aydin, Sergulen; Kocaaslan, Ramazan; Guvendi, Gulname Findik
2015-01-01
Background: Recent years, lots of scientific studies are focused on the possible mechanism of inflammatory response and oxidative stress which are the mechanism related with tissue damage and exercise fatigue. It is well-known that free oxygen radicals may be induced under invitro conditions as well as oxidative stress by exhaustive physical exercise. Objectives: The aim of this study was to investigate the effects of anabolic steroids in conjunction with exercise in the process of spermatogenesis in the testes, using histological and stereological methods. Materials and Methods: Thirty-six male Sprague Dawley rats were divided to six groups, including the control group, the eccentric exercise administered group, the estrogen applied group, the estrogen applied and dissected one hour after eccentric exercise group, the no estrogen applied and dissected 48 hours after eccentric exercise group and the estrogen applied and dissected 48 hours after eccentric exercise group. Eccentric exercise was performed on a motorized rodent treadmill and the estrogen applied groups received daily physiological doses by subcutaneous injections. Testicular tissues were examined using specific histopathological, immunohistochemical and stereological methods. Sections of the testes tissue were stained using the TUNEL method to identify apoptotic cells. Apoptosis was calculated as the percentage of positive cells, using stereological analysis. A statistical analysis of the data was carried out with one-way analysis of variance (ANOVA) for the data obtained from stereological analysis. Results: Conventional light microscopic results revealed that testes tissues of the eccentric exercise administered group and the estrogen supplemented group exhibited slight impairment. In groups that were both eccentrically exercised and estrogen supplemented, more deterioration was detected in testes tissues. Likewise, immunohistochemistry findings were also more prominent in the eccentrically exercised and estrogen supplemented groups. Conclusions: The findings suggest that estrogen supplementation increases damage in testicular tissue due to eccentric exercise. PMID:26023337
Marri, Kiran; Swaminathan, Ramakrishnan
2016-06-23
Muscle contractions can be categorized into isometric, isotonic (concentric and eccentric) and isokinetic contractions. The eccentric contractions are very effective for promoting muscle hypertrophy and produce larger forces when compared to the concentric or isometric contractions. Surface electromyography signals are widely used for analyzing muscle activities. These signals are nonstationary, nonlinear and exhibit self-similar multifractal behavior. The research on surface electromyography signals using multifractal analysis is not well established for concentric and eccentric contractions. In this study, an attempt has been made to analyze the concentric and eccentric contractions associated with biceps brachii muscles using surface electromyography signals and multifractal detrended moving average algorithm. Surface electromyography signals were recorded from 20 healthy individuals while performing a single curl exercise. The preprocessed signals were divided into concentric and eccentric cycles and in turn divided into phases based on range of motion: lower (0°-90°) and upper (>90°). The segments of surface electromyography signal were subjected to multifractal detrended moving average algorithm, and multifractal features such as strength of multifractality, peak exponent value, maximum exponent and exponent index were extracted in addition to conventional linear features such as root mean square and median frequency. The results show that surface electromyography signals exhibit multifractal behavior in both concentric and eccentric cycles. The mean strength of multifractality increased by 15% in eccentric contraction compared to concentric contraction. The lowest and highest exponent index values are observed in the upper concentric and lower eccentric contractions, respectively. The multifractal features are observed to be helpful in differentiating surface electromyography signals along the range of motion as compared to root mean square and median frequency. It appears that these multifractal features extracted from the concentric and eccentric contractions can be useful in the assessment of surface electromyography signals in sports medicine and training and also in rehabilitation programs. © IMechE 2016.
NASA Astrophysics Data System (ADS)
Nasri, Djillali
2018-07-01
Using the plane wave expansion in the frame of the effective mass approximation, a straightforward method is presented to calculate the energy levels and the corresponding wavefunctions in a two dimensional GaAs/AlxGa1-xAs eccentric quantum rings (QRs) with and without donor impurity. The transition energy and their related optical absorption coefficients are calculated. The obtained results show that the transition energy between the ground state and the first two excited states and their related optical matrix are strongly influenced by the eccentricity and the donor position. The resonant peaks of the absorption coefficients for electron are blueshifted, while for QRs with an off center impurity the resonant peaks are red or blueshifted depending on the donor positions and eccentricity. In addition, we have found that a small eccentricity acts on the QRs qualitatively as a weak radial electric field. Moreover, an electric field is no longer able to reproduce perfectly the eccentricity effect when the eccentricity becomes relatively strong. Finally, our results are qualitatively similar to those reported in recent works dealing with concentric QRs under a radial electric field.
D'Souza, Dany V; Auer, Tibor; Frahm, Jens; Strasburger, Hans; Lee, Barry B
2016-03-01
Psychophysical sensitivity to red-green chromatic modulation decreases with visual eccentricity, compared to sensitivity to luminance modulation, even after appropriate stimulus scaling. This is likely to occur at a central, rather than a retinal, site. Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to stimuli designed to separately stimulate different afferent channels' [red-green, luminance, and short-wavelength (S)-cone] circular gratings were recorded as a function of visual eccentricity (±10 deg) and spatial frequency (SF) in human primary visual cortex (V1) and further visual areas (V2v, V3v). In V1, the SF tuning of BOLD fMRI responses became coarser with eccentricity. For red-green and luminance gratings, similar SF tuning curves were found at all eccentricities. The pattern for S-cone modulation differed, with SF tuning changing more slowly with eccentricity than for the other two modalities. This may be due to the different retinal distribution with eccentricity of this receptor type. A similar pattern held in V2v and V3v. This would suggest that transformation or spatial filtering of the chromatic (red-green) signal occurs beyond these areas.
Impact of Eccentricity on East-west Stationkeeping for GPS Class of Orbits
NASA Technical Reports Server (NTRS)
Ely, Todd A.
1999-01-01
There exists a strong relationship between eccentricity and the potential for a repeating groundtrack orbit to exhibit chaotic motion. This is true at all values of eccentricity, but, perhaps most dramatic, is that it is true even for orbits that are nearly circular. These complex motions can have a significant impact on the east-west stationkeeping process for maintaining the repeating groundtrack property of a commensurate orbit. Ely and Howell have shown that traditional stationkeeping (SK) methods are unable to maintain a repeating groundtrack in the presence of complex dynamics, such as with chaotic motion. They developed an alternate SK method that is able to maintain a repeating groundtrack for eccentric, commensurate orbits. The focus of the current study is to investigate orbits with characteristics that are similar to GPS satellites except with modestly larger eccentricities. It will be shown that at eccentricities larger than approx. .01 the chaotic regions become significant, and the need arises for a robust stationkeeping approach, such as developed in. FurtheRmore, the investigation will reveal that the influence of luni-solar perturbations contributes to the growth of eccentricity, thus increasing the probability of encountering chaotic motion during a typical satellite lifetime.
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1978-01-01
Finite element analyses were performed to investigate theoretically the effects of in-plane and out-of-plane eccentricities, bending or twisting, and thickness nonuniformity on the axial stress and strain variations across the width of off-axis specimens. The results are compared with measured data and are also used to assess the effects of these eccentricities on the fracture stress of off-axis fiber composites. Guidelines for detecting and minimizing the presence of eccentricities are described.
The effects of eccentricities on the fracture of off-axis fiber composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1978-01-01
Finite element analyses were performed to investigate theoretically the effects of in-plane and out-of plane eccentricities, bending or twisting, and thickness nonuniformity on the axial stress and strain variations across the width of off-axis specimens. The results are compared with measured data and are also used to access the effects of these eccentricities on the fracture stress of off-axis fiber composites. Guidelines for detecting and minimizing the presence of eccentricities are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aad, G.
2015-09-14
Correlations between the elliptic or triangular flow coefficients v m (m=2 or 3) and other flow harmonics v n (n=2 to 5) are measured using √s NN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb -1. The v m-v n correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v 3 is found to be anticorrelatedmore » with v 2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε 2 and ε 3. However, it is observed that v 4 increases strongly with v 2, and v 5 increases strongly with both v 2 and v 3. The trend and strength of the vm-vn correlations for n=4 and 5 are found to disagree with ε m-ε n correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v 2 2 or of v 2v 3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v 4 and v 5 are found to be consistent with previously measured event-plane correlations.« less
Achilles tendinopathy modulates force frequency characteristics of eccentric exercise.
Grigg, Nicole L; Wearing, Scott C; O'Toole, John M; Smeathers, James E
2013-03-01
Previous research has demonstrated that ground reaction force (GRF) recorded during eccentric ankle exercise is characterized by greater power in the 8- to 12-Hz bandwidth when compared with that recorded during concentric ankle exercise. Subsequently, it was suggested that vibrations in this bandwidth may underpin the beneficial effect of eccentric loading in tendon repair. However, this observation has been made only in individuals without Achilles tendinopathy. This research compared the force frequency characteristics of eccentric and concentric exercises in individuals with and without Achilles tendinopathy. Eleven male adults with unilateral midportion Achilles tendinopathy and nine control male adults without tendinopathy participated in the research. Kinematics and GRF were recorded while the participants performed a common eccentric rehabilitation exercise protocol and a concentric equivalent. Ankle joint kinematics and the frequency power spectrum of the resultant GRF were calculated. Eccentric exercise was characterized by a significantly greater proportion of spectral power between 4.5 and 11.5 Hz when compared with concentric exercise. There were no significant differences between limbs in the force frequency characteristics of concentric exercise. Eccentric exercise, in contrast, was defined by a shift in the power spectrum of the symptomatic limb, resulting in a second spectral peak at 9 Hz, rather than 10 Hz in the control limb. Compared with healthy tendon, Achilles tendinopathy was characterized by lower frequency vibrations during eccentric rehabilitation exercises. This finding may be associated with changes in neuromuscular activation and tendon stiffness that have been shown to occur with tendinopathy and provides a possible rationale for the previous observation of a different biochemical response to eccentric exercise in healthy and injured Achilles tendons.
Gunning, Paul S.; Saikrishnan, Neelakantan; Yoganathan, Ajit P.; McNamara, Laoise M.
2015-01-01
Transcatheter aortic valve replacements (TAVRs) are a percutaneous alternative to surgical aortic valve replacements and are used to treat patients with aortic valve stenosis. This minimally invasive procedure relies on expansion of the TAVR stent to radially displace calcified aortic valve leaflets against the aortic root wall. However, these calcium deposits can impede the expansion of the device causing distortion of the valve stent and pericardial tissue leaflets. The objective of this study was to elucidate the impact of eccentric TAVR stent distortion on the dynamic deformation of the tissue leaflets of the prosthesis in vitro. Dual-camera stereophotogrammetry was used to measure the regional variation in strain in a leaflet of a TAVR deployed in nominal circular and eccentric (eccentricity index = 28%) orifices, representative of deployed TAVRs in vivo. It was observed that (i) eccentric stent distortion caused incorrect coaptation of the leaflets at peak diastole resulting in a ‘peel-back’ leaflet geometry that was not present in the circular valve and (ii) adverse bending of the leaflet, arising in the eccentric valve at peak diastole, caused significantly higher commissure strains compared with the circular valve in both normotensive and hypertensive pressure conditions (normotension: eccentric = 13.76 ± 2.04% versus circular = 11.77 ± 1.61%, p = 0.0014, hypertension: eccentric = 15.07 ± 1.13% versus circular = 13.56 ± 0.87%, p = 0.0042). This study reveals that eccentric distortion of a TAVR stent can have a considerable impact on dynamic leaflet deformation, inducing deleterious bending of the leaflet and increasing commissures strains, which might expedite leaflet structural failure compared to leaflets in a circular deployed valve. PMID:26674192
Hernández-Davó, J L; Sabido, R; Behm, D G; Blazevich, A J
2018-02-01
The aims of this study were to compare both eccentric- and concentric-phase adaptations in highly trained handball players to 4 weeks of twice-weekly rebound bench press throw training with varying loads (30%, 50% and 70% of one-repetition maximum [1-RM]) using either known (KL) or unknown (UL) loads and to examine the relationship between changes in eccentric- and concentric-phase performance. Twenty-eight junior team handball players were divided into two experimental groups (KL or UL) and a control group. KL subjects were told the load prior each repetition, while UL were blinded. For each repetition, the load was dropped and then a rebound bench press at maximum velocity was immediately performed. Both concentric and eccentric velocity as well as eccentric kinetic energy and musculo-articular stiffness prior to the eccentric-concentric transition were measured. Results showed similar increases in both eccentric velocity and kinetic energy under the 30% 1-RM but greater improvements under 50% and 70% 1-RM loads for UL than KL. UL increased stiffness under all loads (with greater magnitude of changes). KL improved concentric velocity only under the 30% 1-RM load while UL also improved under 50% and 70% 1-RM loads. Improvements in concentric movement velocity were moderately explained by changes in eccentric velocity (R 2 =.23-.62). Thus, UL led to greater improvements in concentric velocity, and the improvement is potentially explained by increases in the speed (as well as stiffness and kinetic energy) of the eccentric phase. Unknown load training appears to have significant practical use for the improvement of multijoint stretch-shortening cycle movements. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
[Systematic review about eccentric training in chronic achilles tendinopathy].
Krämer, R; Lorenzen, J; Vogt, P M; Knobloch, K
2010-12-01
Throughout the recent decade, eccentric training has become a widely accepted therapy option in the conservative treatment of chronic Achilles tendinopathy. Nevertheless, current recommendations are missing regarding dosage and duration of eccentric training as well as standardized training protocols. Is eccentric training as a conservative treatment in chronic Achilles tendinopathy of beneficial effect versus other conservative treatments? According to the current scientific data, is it possible to recommend dosages and duration of training time of eccentric training? Systematic review of the current scientific literature on eccentric training as a conservative treatment in chronic Achilles tendinopathy according to the PRISMA-guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). National library of Medicine (NLM) between the years 1950 and 2010. Prospective randomised controlled trials (RCT). 8 RCTs included 416 subjects with a median number of 42 subjects and a range of 17 to 116 subjects per trial. Median follow-up duration was 12 weeks with a range from 12 to 54 weeks. 124 papers met the eligibility criteria in the NLM, whereas only eight randomised controlled trials were included in this review after screening titles, abstracts and full texts. All included trials demonstrated an improvement in pain after performing equivalent training protocols of eccentric training in chronic Achilles tendinopathy. A pooled statistical evaluation of the included trials could not be performed due to different study designs as well as limited documentation of subjects' compliance. In spite of different compliance, effects of eccentric training in conservative treatment of chronic mid-portion-Achilles tendinopathy are promising. Because of the heterogeneous outcome variables (ordinal scale, VAS, FAOS, AOFAS, VISA-A) and the methodological limitations of the trials, no definite recommendation can be published concerning dosage and duration of eccentric training in chronic Achilles tendinopathy. © Georg Thieme Verlag KG Stuttgart · New York.
Effect of eccentric training on the plantar flexor muscle-tendon tissue properties.
Mahieu, Nele Nathalie; McNair, Peter; Cools, Ann; D'Haen, Caroline; Vandermeulen, Katrien; Witvrouw, Erik
2008-01-01
It has been shown that eccentric training can be effective in the rehabilitation of patients with Achilles tendonopathy. The mechanism behind these results is not clear. However, there is evidence that tendons are able to respond to repeated forces by altering their structure and composition, and, thus, their mechanical properties change. In this regard, the objective of the present study was to investigate whether eccentric training affects the mechanical properties of the plantar flexor's muscle-tendon tissue properties. Seventy-four healthy subjects were randomized into two groups: an eccentric training group and a control group. The eccentric training group performed a 6-wk eccentric training program for the calf muscles. Before and after this period, all subjects were evaluated for dorsiflexion range of motion using universal goniometry, passive resistive torque of the plantar flexors, and stiffness of the Achilles tendon. Passive resistive torque was measured during ankle dorsiflexion on an isokinetic dynamometer. Stiffness of the Achilles tendon was assessed using a dynamometer, in combination with ultrasonography. The results of the study reveal that the dorsiflexion range of motion was significantly increased only in the eccentric training group. The eccentric heel drop program also resulted in a significant decrease of the passive resistive torque of the plantar flexors (from 16.423 +/- 0.827 to 12.651 +/- 0.617 N.m). The stiffness of the Achilles tendon did not change significantly as a result of training. These findings provide evidence that an eccentric training program results in changes to some of the mechanical properties of the plantar flexor muscles. These changes were thought to be associated with modifications to structure rather than to stretch tolerance.
Leslie, Andrew W; Lanovaz, Joel L; Andrushko, Justin W; Farthing, Jonathan P
2017-10-01
Both the repeated-bout effect and increased flexibility have been linked to reduced muscle damage, fatigue, and strength loss after intense eccentric exercise. Our purpose was to compare the eccentric-training (ECC) response after first priming the muscles with either static flexibility training or a single intense bout of eccentric exercise. Twenty-five participants were randomly assigned to flexibility training (n = 8; 3×/week; 30 min/day), a single bout of intense eccentric exercise (n = 9), or no intervention (control; n = 8) during a 4-week priming phase, prior to completing a subsequent 4-week period of eccentric training of the knee flexors. Testing was completed prior to the priming phase, before ECC, during acute ECC (0 h, 24 h, and 48 h after bouts 1 and 4), and after ECC. Measures included muscle thickness (MT; via ultrasound); isometric, concentric, and eccentric strength; muscle power (dynamometer); electromyography; range of motion; optimal angle of peak torque; and soreness (visual analog scale). Flexibility training and single-bout groups had 47% less soreness at 48 h after the first bout of ECC compared with control (p < 0.05). The flexibility training group had 10% less soreness at 48 h after the fourth ECC bout compared with both the single-bout and control groups (p < 0.05). Isometric strength loss was attenuated for the flexibility training group (-9%) after the fourth ECC bout compared with control (-19%; p < 0.05). All groups had similar increases in strength, MT, and power after ECC (p < 0.05). Prior flexibility training may be more effective than a single session of eccentric exercise in reducing adverse symptoms during the acute stages of eccentric training; however, these benefits did not translate into greater performance after training.
Lee, Wei-Shiun; Linz, Shang-Chih; Shih, Kao-Shang; Chao, Ching-Kong; Chen, Yeung-Jen; Fan, Chang-Yuan
2012-10-01
Stiffness and contracture of the periarticular tissues are common complications of a post-traumatic elbow. Arthrodiatasis is a surgical technique that uses an external fixator for initial immobilization and subsequent distraction. The two prerequisites for an ideal arthrodiatasis are concentric distraction (avoiding bony contact) and hinge alignment (reducing internal stress). This study used the finite element (FE) method to clarify the relationship between these two prerequisites and the initial conditions (pin placement, elbow angle, and distraction mode). A total of 12 variations of the initial conditions were symmetrically arranged to evaluate their biomechanical influence on concentric distraction and hinge alignment. The humeroulnar surface was hypothesized to be ideally distracted orthogonal to the line joining the tips of the olecranon and the coronoid. The eccentric separation of the humeroulnar surfaces is a response to the non-orthogonality of the distracting force and joining line. Pin placement significantly affects the effective moment arm of the fixing pins to distract the bridged elbow. Both elbow angle and distraction mode directly alter the direction of the distracting force at the elbow center. In general, the hinges misalignment occurs in a direction opposite to the distraction-activated site. After joint distraction, the elastic deflection of the fixing pins inevitably makes both elbow and fixator hinges to misalign. This indicates that both joint distraction and hinge alignment are the interactive mechanisms. The humeroulnar separation is more concentric in the situation of the 120 degrees humeral distraction by using stiffer pins with convergent placement. Even so, the eccentric displacement of the elbow hinge is a crucial consideration in the initial placement of the guiding pin to compensate for hinge misalignment.
Vane segment support and alignment device
McLaurin, L.D.; Sizemore, J.D.
1999-07-13
A support and alignment assembly for supporting and aligning a vane segment is provided. The support and alignment assembly comprises a torque plate which defines an opening for receiving an eccentric pin and a locking end member for receiving a lock socket member. An eccentric pin adjustably supported by the torque plate opening for supporting and aligning a vane segment is provided. A lock socket member adapted to securely receive the eccentric pin and rotated therewith, and adjustably engage the torque plate locking end is provided. The lock socket member receives the eccentric pin, such that when the eccentric pin is adjusted to align the vane segment, the lock socket member engages the torque plate locking end to secure the vane segment in the desired position. 5 figs.
Vane segment support and alignment device
McLaurin, Leroy Dixon; Sizemore, John Derek
1999-01-01
A support and alignment assembly for supporting and aligning a vane segment is provided. The support and alignment assembly comprises a torque plate which defines an opening for receiving an eccentric pin and a locking end member for receiving a lock socket member. An eccentric pin adjustably supported by the torque plate opening for supporting and aligning a vane segment is provided. A lock socket member adapted to securely receive the eccentric pin and rotated therewith, and adjustably engage the torque plate locking end is provided. The lock socket member receives the eccentric pin, such that when the eccentric pin is adjusted to align the vane segment, the lock socket member engages the torque plate locking end to secure the vane segment in the desired position.
Scalise, J; Jaczynski, A; Jacofsky, M
2016-02-01
The eccentric glenosphere was principally introduced into reverse shoulder arthroplasty to reduce the incidence of scapular notching. There is only limited information about the influence of its design on deltoid power and joint reaction forces. The aim of our study was to investigate how the diameter and eccentricity of the glenosphere affect the biomechanics of the deltoid and the resultant joint reaction forces. Different sizes of glenosphere and eccentricity were serially tested in ten cadaveric shoulders using a custom shoulder movement simulator. Increasing the diameter of the glenosphere alone did not alter the deltoid moment arm. However, using an eccentric glenosphere increased the moment arm of the deltoid, lowered the joint reaction force and required less deltoid force to generate movement. Eccentricity is an independent variable which increases deltoid efficiency and lowers joint reaction forces in a reverse shoulder arthroplasty. Cite this article: Bone Joint J 2016;98-B:218-23. ©2016 The British Editorial Society of Bone & Joint Surgery.
Perceptual grouping across eccentricity.
Tannazzo, Teresa; Kurylo, Daniel D; Bukhari, Farhan
2014-10-01
Across the visual field, progressive differences exist in neural processing as well as perceptual abilities. Expansion of stimulus scale across eccentricity compensates for some basic visual capacities, but not for high-order functions. It was hypothesized that as with many higher-order functions, perceptual grouping ability should decline across eccentricity. To test this prediction, psychophysical measurements of grouping were made across eccentricity. Participants indicated the dominant grouping of dot grids in which grouping was based upon luminance, motion, orientation, or proximity. Across trials, the organization of stimuli was systematically decreased until perceived grouping became ambiguous. For all stimulus features, grouping ability remained relatively stable until 40°, beyond which thresholds significantly elevated. The pattern of change across eccentricity varied across stimulus feature, in which stimulus scale, dot size, or stimulus size interacted with eccentricity effects. These results demonstrate that perceptual grouping of such stimuli is not reliant upon foveal viewing, and suggest that selection of dominant grouping patterns from ambiguous displays operates similarly across much of the visual field. Copyright © 2014 Elsevier Ltd. All rights reserved.
The origin of the eccentricity of the hot Jupiter in CI Tau
NASA Astrophysics Data System (ADS)
Rosotti, G. P.; Booth, R. A.; Clarke, C. J.; Teyssandier, J.; Facchini, S.; Mustill, A. J.
2017-01-01
Following the recent discovery of the first radial velocity planet in a star still possessing a protoplanetary disc (CI Tau), we examine the origin of the planet's eccentricity (e ˜0.3). We show through long time-scale (105 orbits) simulations that the planetary eccentricity can be pumped by the disc, even when its local surface density is well below the threshold previously derived from short time-scale integrations. We show that the disc may be able to excite the planet's orbital eccentricity in <1 Myr for the system parameters of CI Tau. We also perform two-planet scattering experiments and show that alternatively the observed planet may plausibly have acquired its eccentricity through dynamical scattering of a migrating lower mass planet, which has either been ejected from the system or swallowed by the central star. In the latter case the present location and eccentricity of the observed planet can be recovered if it was previously stalled within the disc's magnetospheric cavity.
Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye
NASA Astrophysics Data System (ADS)
Roorda, Austin; Campbell, Melanie C. W.; Bobier, W. R.
1995-08-01
In eccentric photorefraction, light returning from the retina of the eye is photographed by a camera focused on the eye's pupil. We use a geometrical model of eccentric photorefraction to generate intensity profiles across the pupil image. The intensity profiles for three different monochromatic aberration functions induced in a single eye are predicted and show good agreement with the measured eccentric photorefraction intensity profiles. A directional reflection from the retina is incorporated into the calculation. Intensity profiles for symmetric and asymmetric aberrations are generated and measured. The latter profile shows a dependency on the source position and the meridian. The magnitude of the effect of thresholding on measured pattern extents is predicted. Monochromatic aberrations in human eyes will cause deviations in the eccentric photorefraction measurements from traditional crescents caused by defocus and may cause misdiagnoses of ametropia or anisometropia. Our results suggest that measuring refraction along the vertical meridian is preferred for screening studies with the eccentric photorefractor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Duncan A.; Zimmerman, Peter J.
2010-01-15
Inspiralling compact binaries are expected to circularize before their gravitational-wave signals reach the sensitive frequency band of ground-based detectors. Current searches for gravitational waves from compact binaries using the LIGO and Virgo detectors therefore use circular templates to construct matched filters. Binary formation models have been proposed which suggest that some systems detectable by the LIGO-Virgo network may have non-negligible eccentricity. We investigate the ability of the restricted 3.5 post-Newtonian order TaylorF2 template bank, used by LIGO and Virgo to search for gravitational waves from compact binaries with masses M{<=}35M{sub {center_dot},} to detect binaries with nonzero eccentricity. We model themore » gravitational waves from eccentric binaries using the x-model post-Newtonian formalism proposed by Hinder et al.[I. Hinder, F. Hermann, P. Laguna, and D. Shoemaker, arXiv:0806.1037v1]. We find that small residual eccentricities (e{sub 0} < or approx. 0.05 at 40 Hz) do not significantly affect the ability of current LIGO searches to detect gravitational waves from coalescing compact binaries with total mass 2M{sub {center_dot}<}M<15M{sub {center_dot}.} For eccentricities e{sub 0} > or approx. 0.1, the loss in matched filter signal-to-noise ratio due to eccentricity can be significant and so templates which include eccentric effects will be required to perform optimal searches for such systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafikov, Roman R., E-mail: rrr@astro.princeton.edu
2014-10-10
We explore secular dynamics of a recently discovered hierarchical triple system consisting of the radio pulsar PSR J0337+1715 and two white dwarfs (WDs). We show that three-body interactions endow the inner binary with a large forced eccentricity and suppress its apsidal precession, to about 24% of the rate due to the general relativity. However, precession rate is still quite sensitive to the non-Newtonian effects and may be used to constrain gravity theories if measured accurately. A small value of the free eccentricity of the inner binary e{sub i}{sup free}≈2.6×10{sup −5} and vanishing forced eccentricity of the outer, relatively eccentric binarymore » naturally result in their apsidal near-alignment. In addition, this triple system provides a unique opportunity to explore excitation of both eccentricity and inclination in neutron star-WD binaries, e.g., due to random torques caused by convective eddies in the WD progenitor. We show this process to be highly anisotropic and more effective at driving eccentricity rather than inclination. The outer binary eccentricity and e{sub i}{sup free} exceed by more than an order of magnitude the predictions of the eccentricity-period relation of Phinney, which is not uncommon. We also argue that the non-zero mutual inclination of the two binaries emerges at the end of the Roche lobe overflow of the outer (rather than the inner) binary.« less
RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naoz, Smadar; Kocsis, Bence; Loeb, Abraham
2013-08-20
We study the secular, hierarchical three-body problem to first-order in a post-Newtonian expansion of general relativity (GR). We expand the first-order post-Newtonian Hamiltonian to leading-order in the ratio of the semi-major axis of the two orbits. In addition to the well-known terms that correspond to the GR precession of the inner and outer orbits, we find a new secular post-Newtonian interaction term that can affect the long-term evolution of the triple. We explore the parameter space for highly inclined and eccentric systems, where the Kozai-Lidov mechanism can produce large-amplitude oscillations in the eccentricities. The standard lore, i.e., that GR effectsmore » suppress eccentricity, is only consistent with the parts of phase space where the GR timescales are several orders of magnitude shorter than the secular Newtonian one. In other parts of phase space, however, post-Newtonian corrections combined with the three-body ones can excite eccentricities. In particular, for systems where the GR timescale is comparable to the secular Newtonian timescales, the three-body interactions give rise to a resonant-like eccentricity excitation. Furthermore, for triples with a comparable-mass inner binary, where the eccentric Kozai-Lidov mechanism is suppressed, post-Newtonian corrections can further increase the eccentricity and lead to orbital flips even when the timescale of the former is much longer than the timescale of the secular Kozai-Lidov quadrupole perturbations.« less
Lin, Hsin-Fu; Chou, Chun-Chung; Chao, Hsiao-Han; Tanaka, Hirofumi
2016-12-01
Muscle damage induced by an acute bout of eccentric exercise results in transient arterial stiffening. In this study, we sought to determine the effects of progressive eccentric resistance exercise training on vascular functions, and whether herb supplementation would enhance training adaptation by ameliorating the arterial stiffening effects. By using a double-blinded randomized placebo-controlled design, older adults were randomly assigned to either the Panax ginseng and Salvia miltiorrhiza supplementation group (N=12) or the placebo group (N=11). After pre-training testing, all subjects underwent 12 weeks of unilateral eccentric-only exercise training on knee extensor. Maximal leg strength and muscle quality increased in both groups (P<0.05). Relative increases in muscle mass were significantly greater in the placebo group than in the herb supplement group. Eccentric exercise training did not elicit any significant changes in muscle damage, oxidative and inflammatory biomarkers. There were no significant changes in blood pressure or endothelium-dependent vasodilation. None of the measures of arterial stiffness changed significantly with eccentric resistance training in both groups. These results suggest that Chinese herb supplementation does not appear to modulate vascular, and inflammatory adaptations to eccentric exercise training in middle-aged and older adults. However, Chinese herb supplementation abolished the increase in muscle mass induced by eccentric resistance training. (Trial registration: ClinicalTrials.gov: NCT02007304. Registered Dec. 5, 2013). Copyright © 2016 Elsevier Ltd. All rights reserved.
CORRELATIONS BETWEEN COMPOSITIONS AND ORBITS ESTABLISHED BY THE GIANT IMPACT ERA OF PLANET FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Rebekah I.; Lee, Eve J.; Chiang, Eugene, E-mail: rdawson@psu.edu
The giant impact phase of terrestrial planet formation establishes connections between super-Earths’ orbital properties (semimajor axis spacings, eccentricities, mutual inclinations) and interior compositions (the presence or absence of gaseous envelopes). Using N -body simulations and analytic arguments, we show that spacings derive not only from eccentricities, but also from inclinations. Flatter systems attain tighter spacings, a consequence of an eccentricity equilibrium between gravitational scatterings, which increase eccentricities, and mergers, which damp them. Dynamical friction by residual disk gas plays a critical role in regulating mergers and in damping inclinations and eccentricities. Systems with moderate gas damping and high solid surfacemore » density spawn gas-enveloped super-Earths with tight spacings, small eccentricities, and small inclinations. Systems in which super-Earths coagulate without as much ambient gas, in disks with low solid surface density, produce rocky planets with wider spacings, larger eccentricities, and larger mutual inclinations. A combination of both populations can reproduce the observed distributions of spacings, period ratios, transiting planet multiplicities, and transit duration ratios exhibited by Kepler super-Earths. The two populations, both formed in situ, also help to explain observed trends of eccentricity versus planet size, and bulk density versus method of mass measurement (radial velocities versus transit timing variations). Simplifications made in this study—including the limited time span of the simulations, and the approximate treatments of gas dynamical friction and gas depletion history—should be improved on in future work to enable a detailed quantitative comparison to the observations.« less
POSTOP: Postbuckled open-stiffener optimum panels-theory and capability
NASA Technical Reports Server (NTRS)
Dickson, J. N.; Biggers, S. B.
1984-01-01
The computer program POSTOP was developed to serve as an aid in the analysis and sizing of stiffened composite panels that are loaded in the postbuckling regime. A comprehensive set of analysis routines was coupled to a widely used optimization program to produce this sizing code. POSTOP is intended for the preliminary design of metal or composite panels with open-section stiffeners, subjected to multiple combined biaxial compression (or tension), shear and normal pressure load cases. Longitudinal compression, however, is assumed to be the dominant loading. Temperature, initial bow eccentricity and load eccentricity effects are included. The panel geometry is assumed to be repetitive over several bays in the longitudinal (stiffener) direction as well as in the transverse direction. Analytical routines are included to compute panel stiffnesses, strains, local and panel buckling loads, and skin/stiffener interface stresses. The resulting program is applicable to stiffened panels as commonly used in fuselage, wing, or empennage structures. The analysis procedures and rationale for the assumptions used therein are described in detail.
NASA Astrophysics Data System (ADS)
Pichierri, Gabriele; Morbidelli, Alessandro; Lai, Dong
2017-09-01
Context. It is well known that asteroids and comets fall into the Sun. Metal pollution of white dwarfs and transient spectroscopic signatures of young stars like β-Pic provide growing evidence that extra solar planetesimals can attain extreme orbital eccentricities and fall into their parent stars. Aims: We aim to develop a general, implementable, semi-analytical theory of secular eccentricity excitation of small bodies (planetesimals) in mean motion resonances with an eccentric planet valid for arbitrary values of the eccentricities and including the short-range force due to General Relativity. Methods: Our semi-analytic model for the restricted planar three-body problem does not make use of series expansion and therefore is valid for any eccentricity value and semi-major axis ratio. The model is based on the application of the adiabatic principle, which is valid when the precession period of the longitude of pericentre of the planetesimal is much longer than the libration period in the mean motion resonance. In resonances of order larger than 1 this is true except for vanishingly small eccentricities. We provide prospective users with a Mathematica notebook with implementation of the model allowing direct use. Results: We confirm that the 4:1 mean motion resonance with a moderately eccentric (e' ≲ 0.1) planet is the most powerful one to lift the eccentricity of planetesimals from nearly circular orbits to star-grazing ones. However, if the planet is too eccentric, we find that this resonance is unable to pump the planetesimal's eccentricity to a very high value. The inclusion of the General Relativity effect imposes a condition on the mass of the planet to drive the planetesimals into star-grazing orbits. For a planetesimal at 1 AU around a solar mass star (or white dwarf), we find a threshold planetary mass of about 17 Earth masses. We finally derive an analytical formula for this critical mass. Conclusions: Planetesimals can easily fall into the central star even in the presence of a single moderately eccentric planet, but only from the vicinity of the 4:1 mean motion resonance. For sufficiently high planetary masses the General Relativity effect does not prevent the achievement of star-grazing orbits. The Mathematica notebook is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A23
Physical Modeling Techniques for Missile and Other Protective Structures
1983-06-29
uniaxial load only. In general , axial thrust was applied with an: initial eccentricity of zero on the specimen end. Sixteen different combinations of Pa...conditioning electronics and cabling schemes is included. The techniques described generally represent current approaches at the Civil Engineering Research...at T- zero and stopping when a pulse is generated by the pi-ezoelectric disc on arrival of! the detonation wave front. All elapsed time data is stored
The Effect of Smoking on Muscle Adaptation to Exercise Stress
2011-12-01
adaptation in smokers: protein synthesis and degradation, regeneration, inflammation, and angiogenesis. We used a knee extension eccentric exercise...PDPK1 (PDK1) and PPP3CA, a subunit of calcineurin. PDPK1 is an upstream regulator of the AKT protein synthesis pathway that is activated during muscle...increasing muscle pain, cramping, and swelling of the leg. The subject reported no change in urine color. The subject was initially advised to attempt
[Initial experience with a new blood pump].
Margreiter, R; Schwab, W; Klima, G; Koller, J; Baum, M; Dietrich, H; Hager, J; Königsrainer, A
1990-12-01
A new type of blood pump was tested in calves for 6 hours. The pump consists of a rigid housing with a trochoidal internal surface, an inlet and outlet, and two lateral walls. A two-corner piston rotating on an eccentric shaft, describes a trochoidal path, thus creating a gap seal, the gap measuring a constant 10-35 microns. The pump is driven by a watercooled DC motor. For right ventricular assist, a cannula is inserted into the right ventricle through the right atrium, and into the left ventricle for left ventricular assists. From a total of 10 experiments, two left ventricular assists, two right ventricular assists, and three biventricular assists were evaluated. The pump produced a pulsatile flow of 31 at 70 rpm. Energy requirements were 2.19 watts for left, 2.06 for right, and 7.26 for biventricular assists. Plasma hemoglobin remained as low as 10 mg/dl during monoventricular, and increased during biventricular assists to 20 mg/dl after 3 hours, and returned to 16 mg/dl after 6 hours. From these preliminary results it is concluded that this new rotary blood pump may be suitable as a circulatory assist device.
Introducing the Moon's Orbital Eccentricity
ERIC Educational Resources Information Center
Oostra, Benjamin
2014-01-01
I present a novel way to introduce the lunar orbital eccentricity in introductory astronomy courses. The Moon is perhaps the clearest illustration of the general orbital elements such as inclination, ascending node, eccentricity, perigee, and so on. Furthermore, I like the students to discover astronomical phenomena for themselves, by means of a…
Vane segment support and alignment device
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaurin, L.D.; Sizemore, J.D.
1999-07-13
A support and alignment assembly for supporting and aligning a vane segment is provided. The support and alignment assembly comprises a torque plate which defines an opening for receiving an eccentric pin and a locking end member for receiving a lock socket member. An eccentric pin adjustably supported by the torque plate opening for supporting and aligning a vane segment is provided. A lock socket member adapted to securely receive the eccentric pin and rotated therewith, and adjustably engage the torque plate locking end is provided. The lock socket member receives the eccentric pin, such that when the eccentric pinmore » is adjusted to align the vane segment, the lock socket member engages the torque plate locking end to secure the vane segment in the desired position. 5 figs.« less
Arias-Buría, José L.; Truyols-Domínguez, Sebastián; Valero-Alcaide, Raquel; Salom-Moreno, Jaime; Atín-Arratibel, María A.; Fernández-de-las-Peñas, César
2015-01-01
Objective. To compare effects of ultrasound- (US-) guided percutaneous electrolysis combined with an eccentric exercise program of the rotator cuff muscles in subacromial pain syndrome. Methods. Thirty-six patients were randomized and assigned into US-guided percutaneous electrolysis (n = 17) group or exercise (n = 19) group. Patients were asked to perform an eccentric exercise program of the rotator cuff muscles twice every day for 4 weeks. Participants assigned to US-guided percutaneous electrolysis group also received the application of galvanic current through acupuncture needle on each session once a week (total 4 sessions). Shoulder pain (NPRS) and disability (DASH) were assessed at baseline, after 2 sessions, and 1 week after the last session. Results. The ANOVA revealed significant Group∗Time interactions for shoulder pain and disability (all, P < 0.01): individuals receiving US-guided percutaneous electrolysis combined with the eccentric exercises experienced greater improvement than those receiving eccentric exercise alone. Conclusions. US-guided percutaneous electrolysis combined with eccentric exercises resulted in small better outcomes at short term compared to when only eccentric exercises were applied in subacromial pain syndrome. The effect was statistically and clinically significant for shoulder pain but below minimal clinical difference for function. Future studies should investigate the long-term effects and potential placebo effect of this intervention. PMID:26649058
Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise.
Guilhem, G; Cornu, C; Guével, A
2010-06-01
To present the properties of an eccentric contraction and compare neuromuscular and muscle-tendon system adaptations induced by isotonic and isokinetic eccentric trainings. An eccentric muscle contraction is characterized by the production of muscle force associated to a lengthening of the muscle-tendon system. This muscle solicitation can cause micro lesions followed by a regeneration process of the muscle-tendon system. Eccentric exercise is commonly used in functional rehabilitation for its positive effect on collagen synthesis but also for resistance training to increase muscle strength and muscle mass in athletes. Indeed, eccentric training stimulates muscle hypertrophy, increases the fascicle pennation angle, fascicles length and neural activation, thus inducing greater strength gains than concentric or isometric training programs. Eccentric exercise is commonly performed either against a constant external load (isotonic) or at constant velocity (isokinetic), inducing different mechanical constraints. These different mechanical constraints could induce structural and neural adaptive strategies specific to each type of exercise. The literature tends to show that isotonic mode leads to a greater strength gain than isokinetic mode. This observation could be explained by a greater neuromuscular activation after IT training. However, the specific muscle adaptations induced by each mode remain difficult to determine due to the lack of standardized, comparative studies. 2010 Elsevier Masson SAS. All rights reserved.
Timmins, R G; Opar, D A; Williams, M D; Schache, A G; Dear, N M; Shield, A J
2014-08-01
The aim of this study was to determine whether declines in knee flexor strength following overground repeat sprints were related to changes in hamstrings myoelectrical activity. Seventeen recreationally active men completed maximal isokinetic concentric and eccentric knee flexor strength assessments at 180°/s before and after repeat sprint running. Myoelectrical activity of the biceps femoris (BF) and medial hamstrings (MHs) was measured during all isokinetic contractions. Repeated measures mixed model [fixed factors = time (pre- and post-repeat sprint) and leg (dominant and nondominant), random factor = participants] design was fitted with the restricted maximal likelihood method. Repeat sprint running resulted in significant declines in eccentric, and concentric, knee flexor strength (eccentric = 26 ± 4 Nm, 15% P < 0.001; concentric 11 ± 2 Nm, 10% P < 0.001). Eccentric BF myoelectrical activity was significantly reduced (10%; P = 0.035). Concentric BF and all MH myoelectrical activity were not altered. The declines in maximal eccentric torque were associated with the change in eccentric BF myoelectrical activity (P = 0.013). Following repeat sprint running, there were preferential declines in the myoelectrical activity of the BF, which explained declines in eccentric knee flexor strength. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Van Hooren, Bas; Bosch, Frans
2017-12-01
We have previously argued that there may actually be no significant eccentric, but rather predominantly an isometric action of the hamstring muscle fibres during the swing phase of high-speed running when the attachment points of the hamstrings are moving apart. Based on this we suggested that isometric rather than eccentric exercises are a more specific way of conditioning the hamstrings for high-speed running. In this review we argue that some of the presumed beneficial adaptations following eccentric training may actually not be related to the eccentric muscle fibre action, but to other factors such as exercise intensity. Furthermore, we discuss several disadvantages associated with commonly used eccentric hamstring exercises. Subsequently, we argue that high-intensity isometric exercises in which the series elastic element stretches and recoils may be equally or even more effective at conditioning the hamstrings for high-speed running, since they also avoid some of the negative side effects associated with eccentric training. We provide several criteria that exercises should fulfil to effectively condition the hamstrings for high-speed running. Adherence to these criteria will guarantee specificity with regards to hamstrings functioning during running. Practical examples of isometric exercises that likely meet several criteria are provided.
How to Make Eccentricity Cycles in Stratigraphy: the Role of Compaction
NASA Astrophysics Data System (ADS)
Liu, W.; Hinnov, L.; Wu, H.; Pas, D.
2017-12-01
Milankovitch cycles from astronomically driven climate variations have been demonstrated as preserved in cyclostratigraphy throughout geologic time. These stratigraphic cycles have been identified in many types of proxies, e.g., gamma ray, magnetic susceptibility, oxygen isotopes, carbonate content, grayscale, etc. However, the commonly prominent spectral power of orbital eccentricity cycles in stratigraphy is paradoxical to insolation, which is dominated by precession index power. How is the spectral power transferred from precession to eccentricity in stratigraphy? Nonlinear sedimentation and bioturbation have long been identified as players in this transference. Here, we propose that in the absence of bioturbation differential compaction can generate the transference. Using insolation time series, we trace the steps by which insolation is transformed into stratigraphy, and how differential compaction of lithology acts to transfer spectral power from precession to eccentricity. Differential compaction is applied to unique values of insolation, which is assumed to control the type of deposited sediment. High compaction is applied to muds, and progressively lower compaction is applied to silts and sands, or carbonate. Linear differential compaction promotes eccentricity spectral power, but nonlinear differential compaction elevates eccentricity spectral power to dominance and precession spectral power to near collapse as is often observed in real stratigraphy. Keywords: differential compaction, cyclostratigraphy, insolation, eccentricity
[Systematic review about eccentric training in chronic patella tendinopathy].
Lorenzen, J; Krämer, R; Vogt, P M; Knobloch, K
2010-12-01
Eccentric training has become a popular treatment for patellar tendinopathy. Aim of this review is to display different exercise prescriptions for patellar tendinopathy, to help clinicians make appropriate choices and identify areas needing further research. Is eccentric training as a conservative treatment in chronic patellar tendinopathy of beneficial effect versus other conservative treatments? According to the current scientific data, is it possible to recommend dosages and duration of training time of eccentric training? Systematic review of the current scientific literature on eccentric training as a conservative treatment in chronic Achilles tendinopathy according to the PRISMA-guidelines [Preferred Reporting Items for Systematic Reviews and Meta-Analyses]. National library of Medicine [NLM] between the years 1950 and 2010. Prospective randomised controlled trials (RCT). 7 articles with a total of 165 patients and in which eccentric training was one of the interventions, all published after 2000, were included. The median cohort study size was 20 subjects with a range from 15 to 35 subjects. Median follow-up duration was 12 weeks with a range from 4 to 12 weeks. Encouraging results, but variable study quality, with small numbers or short follow-up periods. The content of the different training programmes varied, but most were home-based programmes with twice daily training for 12 weeks. A number of potentially significant differences were identified in the eccentric programmes used: drop squats or slow eccentric movement, squatting on a 25° decline board or level ground, exercising into tendon pain or short of pain, loading the eccentric phase only or both phases, and progressing with speed then loading or simply loading. A pooled statistical evaluation of the included trials could not be performed due to different study designs as well as limited documentation of subjects' compliance. Most studies suggest that eccentric training may have a positive effect, but our ability to recommend a specific protocol is limited. The studies available indicate that the treatment programme should include a 25° decline board and should be performed with some level of discomfort, and that athletes should be removed from sports activity. However, these aspects need further study. Because of the heterogeneous outcome variables (ordinal scale, VAS, VISA-P) and the methodological limitations of the trials, no definite recommendation can be published concerning dosage and duration of eccentric training in chronic Patellar tendinopathy. © Georg Thieme Verlag KG Stuttgart · New York.
A high-fidelity satellite ephemeris program for Earth satellites in eccentric orbits
NASA Technical Reports Server (NTRS)
Simmons, David R.
1990-01-01
A program for mission planning called the Analytic Satellite Ephemeris Program (ASEP), produces projected data for orbits that remain fairly close to the Earth. ASEP does not take into account lunar and solar perturbations. These perturbations are accounted for in another program called GRAVE, which incorporates more flexible means of input for initial data, provides additional kinds of output information, and makes use of structural programming techniques to make the program more understandable and reliable. GRAVE was revised, and a new program called ORBIT was developed. It is divided into three major phases: initialization, integration, and output. Results of the program development are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Long; Berczik, Peter; Spurzem, Rainer
2014-01-10
The hierarchical galaxy formation picture suggests that supermassive black holes (SMBHs) observed in galactic nuclei today have grown from coalescence of massive black hole binaries (MBHB) after galaxy merging. Once the components of an MBHB become gravitationally bound, strong three-body encounters between the MBHB and stars dominate its evolution in a 'dry' gas-free environment and change the MBHB's energy and angular momentum (semimajor axis, eccentricity, and orientation). Here we present high-accuracy direct N-body simulations of spherical and axisymmetric (rotating) galactic nuclei with order of 10{sup 6} stars and two MBHs that are initially unbound. We analyze the properties of themore » ejected stars due to slingshot effects from three-body encounters with the MBHB in detail. Previous studies have investigated the eccentricity and energy changes of MBHs using approximate models or Monte Carlo three-body scatterings. We find general agreement with the average results of previous semi-analytic models for spherical galactic nuclei, but our results show a large statistical variation. Our new results show many more phase space details of how the process works, and also show the influence of stellar system rotation on the process. We detect that the angle between the orbital plane of the MBHBs and that of the stellar system (when it rotates) influences the phase-space properties of the ejected stars. We also find that MBHBs tend to switch stars with counter-rotating orbits into corotating orbits during their interactions.« less
Remote distractor effects and saccadic inhibition: spatial and temporal modulation.
Walker, Robin; Benson, Valerie
2013-09-12
The onset of a visual distractor remote from a saccade target is known to increase saccade latency (the remote distractor effect [RDE]). In addition, distractors may also selectively inhibit saccades that would be initiated about 90 ms after distractor onset (termed saccadic inhibition [SI]). Recently, it has been proposed that the transitory inhibition of saccades (SI) may underlie the increase in mean latency (RDE). In a first experiment, the distractor eccentricity was manipulated, and a robust RDE that was strongly modulated by distractor eccentricity was observed. However, the underlying latency distributions did not reveal clear evidence of SI. A second experiment manipulated distractor spatial location and the timing of the distractor onset in relation to the target. An RDE was again observed with remote distractors away from the target axis and under conditions with early-onset distractors that would be unlikely to produce SI, whereas later distractor onsets produced an RDE along with some evidence of an SI effect. A third experiment using a mixed block of target-distractor stimulus-onset asynchronies (SOAs) revealed an RDE that varied with both distractor eccentricity and SOA and changes to latency distributions consistent with the timing of SI. We argue that the notion that SI underpins the RDE is similar to the earlier argument that express saccades underlie the fixation offset (gap) effect and that changes in mean latency and to the shape of the underlying latency distributions following a visual onset may involve more than one inhibitory process.
Peripheral refraction in normal infant rhesus monkeys
Hung, Li-Fang; Ramamirtham, Ramkumar; Huang, Juan; Qiao-Grider, Ying; Smith, Earl L.
2008-01-01
Purpose To characterize peripheral refractions in infant monkeys. Methods Cross-sectional data for horizontal refractions were obtained from 58 normal rhesus monkeys at 3 weeks of age. Longitudinal data were obtained for both the vertical and horizontal meridians from 17 monkeys. Refractive errors were measured by retinoscopy along the pupillary axis and at eccentricities of 15, 30, and 45 degrees. Axial dimensions and corneal power were measured by ultrasonography and keratometry, respectively. Results In infant monkeys, the degree of radial astigmatism increased symmetrically with eccentricity in all meridians. There were, however, initial nasal-temporal and superior-inferior asymmetries in the spherical-equivalent refractive errors. Specifically, the refractions in the temporal and superior fields were similar to the central ametropia, but the refractions in the nasal and inferior fields were more myopic than the central ametropia and the relative nasal field myopia increased with the degree of central hyperopia. With age, the degree of radial astigmatism decreased in all meridians and the refractions became more symmetrical along both the horizontal and vertical meridians; small degrees of relative myopia were evident in all fields. Conclusions As in adult humans, refractive error varied as a function of eccentricity in infant monkeys and the pattern of peripheral refraction varied with the central refractive error. With age, emmetropization occurred for both central and peripheral refractive errors resulting in similar refractions across the central 45 degrees of the visual field, which may reflect the actions of vision-dependent, growth-control mechanisms operating over a wide area of the posterior globe. PMID:18487366
DOE Office of Scientific and Technical Information (OSTI.GOV)
Šubr, Ladislav; Haas, Jaroslav, E-mail: subr@sirrah.troja.mff.cuni.cz, E-mail: haas@sirrah.troja.mff.cuni.cz
2016-09-01
Hypervelocity stars (HVSs), which are observed in the Galactic halo, are believed to be accelerated to large velocities by a process of tidal disruption of binary stars passing close to the supermassive black hole (SMBH) which resides in the center of the Galaxy. It is, however, still unclear where these relatively young stars were born and what dynamical process pushed them to nearly radial orbits around the SMBH. In this paper we investigate the possibility that the young binaries originated from a thin eccentric disk, similar to the one currently observed in the Galactic center. By means of direct Nmore » -body simulations, we follow the dynamical evolution of an initially thin and eccentric disk of stars with a 100% binary fraction orbiting around the SMBH. Such a configuration leads to Kozai–Lidov oscillations of orbital elements, bringing a considerable number of binaries to the close vicinity of the black hole. Subsequent tidal disruption of these binaries accelerates one of their components to velocities well above the escape velocity from the SMBH, while the second component becomes tightly bound to the SMBH. We describe the main kinematic properties of the escaping and tightly bound stars within our model, and compare them qualitatively to the properties of the observed HVSs and S-stars, respectively. The most prominent feature is strong anisotropy in the directions of the escaping stars, which is observed for Galactic HVSs but has not yet been explained.« less
Dancing with the stars: formation of the Fomalhaut triple system and its effect on the debris discs
NASA Astrophysics Data System (ADS)
Shannon, Andrew; Clarke, Cathie; Wyatt, Mark
2014-07-01
Fomalhaut is a triple system, with all components widely separated (˜105 au). Such widely separated binaries are thought to form during cluster dissolution, but that process is unlikely to form such a triple system. We explore an alternative scenario, where A and C form as a tighter binary from a single molecular cloud core (with semimajor axis ˜104 au), and B is captured during cluster dispersal. We use N-body simulations augmented with the Galactic tidal forces to show that such a system naturally evolves into a Fomalhaut-like system in about half of cases, on a time-scale compatible with the age of Fomalhaut. From initial non-interacting orbits, Galactic tides drive cycles in B's eccentricity that lead to a close encounter with C. After several close encounters, typically lasting tens of millions of years, one of the stars is ejected. The Fomalhaut-like case with both components at large separations is almost invariably a precursor to the ejection of one component, most commonly Fomalhaut C. By including circumstellar debris in a subset of the simulations, we also show that such an evolution usually does not disrupt the coherently eccentric debris disc around Fomalhaut A, and in some cases can even produce such a disc. We also find that the final eccentricity of the disc around A and the disc around C are correlated, which may indicate that the dynamics of the three stars stirred C's disc, explaining its unusual brightness.
Evolution of Binary Supermassive Black Holes in Rotating Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasskazov, Alexander; Merritt, David
The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analyticmore » approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.« less
Hessel, Anthony L.; Lindstedt, Stan L.; Nishikawa, Kiisa C.
2017-01-01
When active muscles are stretched, our understanding of muscle function is stretched as well. Our understanding of the molecular mechanisms of concentric contraction has advanced considerably since the advent of the sliding filament theory, whereas mechanisms for increased force production during eccentric contraction are only now becoming clearer. Eccentric contractions play an important role in everyday human movements, including mobility, stability, and muscle strength. Shortly after the sliding filament theory of muscle contraction was introduced, there was a reluctant recognition that muscle behaved as if it contained an “elastic” filament. Jean Hanson and Hugh Huxley referred to this structure as the “S-filament,” though their concept gained little traction. This additional filament, the giant titin protein, was identified several decades later, and its roles in muscle contraction are still being discovered. Recent research has demonstrated that, like activation of thin filaments by calcium, titin is also activated in muscle sarcomeres by mechanisms only now being elucidated. The mdm mutation in mice appears to prevent activation of titin, and is a promising model system for investigating mechanisms of titin activation. Titin stiffness appears to increase with muscle force production, providing a mechanism that explains two fundamental properties of eccentric contractions: their high force and low energetic cost. The high force and low energy cost of eccentric contractions makes them particularly well suited for athletic training and rehabilitation. Eccentric exercise is commonly prescribed for treatment of a variety of conditions including sarcopenia, osteoporosis, and tendinosis. Use of eccentric exercise in rehabilitation and athletic training has exploded to include treatment for the elderly, as well as muscle and bone density maintenance for astronauts during long-term space travel. For exercise intolerance and many types of sports injuries, experimental evidence suggests that interventions involving eccentric exercise are demonstrably superior to conventional concentric interventions. Future work promises to advance our understanding of the molecular mechanisms that confer high force and low energy cost to eccentric contraction, as well as signaling mechanisms responsible for the beneficial effects of eccentric exercise in athletic training and rehabilitation. PMID:28232805
PLANETARY MIGRATION AND ECCENTRICITY AND INCLINATION RESONANCES IN EXTRASOLAR PLANETARY SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Man Hoi; Thommes, Edward W.
2009-09-10
The differential migration of two planets due to planet-disk interaction can result in capture into the 2:1 eccentricity-type mean-motion resonances. Both the sequence of 2:1 eccentricity resonances that the system is driven through by continued migration and the possibility of a subsequent capture into the 4:2 inclination resonances are sensitive to the migration rate within the range expected for type II migration due to planet-disk interaction. If the migration rate is fast, the resonant pair can evolve into a family of 2:1 eccentricity resonances different from those found by Lee. This new family has outer orbital eccentricity e {sub 2}more » {approx}> 0.4-0.5, asymmetric librations of both eccentricity resonance variables, and orbits that intersect if they are exactly coplanar. Although this family exists for an inner-to-outer planet mass ratio m {sub 1}/m {sub 2} {approx}> 0.2, it is possible to evolve into this family by fast migration only for m {sub 1}/m {sub 2} {approx}> 2. Thommes and Lissauer have found that a capture into the 4:2 inclination resonances is possible only for m {sub 1}/m {sub 2} {approx}< 2. We show that this capture is also possible for m {sub 1}/m {sub 2} {approx}> 2 if the migration rate is slightly slower than that adopted by Thommes and Lissauer. There is significant theoretical uncertainty in both the sign and the magnitude of the net effect of planet-disk interaction on the orbital eccentricity of a planet. If the eccentricity is damped on a timescale comparable to or shorter than the migration timescale, e {sub 2} may not be able to reach the values needed to enter either the new 2:1 eccentricity resonances or the 4:2 inclination resonances. Thus, if future observations of extrasolar planetary systems were to reveal certain combinations of mass ratio and resonant configuration, they would place a constraint on the strength of eccentricity damping during migration, as well as on the rate of the migration itself.« less
Exoplanet orbital eccentricity: Multiplicity relation and the Solar System
Limbach, Mary Anne; Turner, Edwin L.
2015-01-01
The known population of exoplanets exhibits a much wider range of orbital eccentricities than Solar System planets and has a much higher average eccentricity. These facts have been widely interpreted to indicate that the Solar System is an atypical member of the overall population of planetary systems. We report here on a strong anticorrelation of orbital eccentricity with multiplicity (number of planets in the system) among cataloged radial velocity (RV) systems. The mean, median, and rough distribution of eccentricities of Solar System planets fits an extrapolation of this anticorrelation to the eight-planet case rather precisely despite the fact that no more than two Solar System planets would be detectable with RV data comparable to that in the exoplanet sample. Moreover, even if regarded as a single or double planetary system, the Solar System lies in a reasonably heavily populated region of eccentricity−multiplicity space. Thus, the Solar System is not anomalous among known exoplanetary systems with respect to eccentricities when its multiplicity is taken into account. Specifically, as the multiplicity of a system increases, the eccentricity decreases roughly as a power law of index –1.20. A simple and plausible but ad hoc and model-dependent interpretation of this relationship implies that ∼80% of the one-planet and 25% of the two-planet systems in our sample have additional, as yet undiscovered, members but that systems of higher observed multiplicity are largely complete (i.e., relatively rarely contain additional undiscovered planets). If low eccentricities indeed favor high multiplicities, habitability may be more common in systems with a larger number of planets. PMID:25512527
Chalker, Wade J.; Shield, Anthony J.; Opar, David A.
2016-01-01
Background. There has been a continual increase in injury rates in cricket, with hamstring strain injuries (HSIs) being the most prominent. Eccentric knee flexor weakness and bilateral asymmetries are major modifiable risk factors for future HSIs. However, there is a lack of data relating to eccentric hamstring strength in cricket at any skill level. The objective of this study was to compare eccentric knee flexor strength and bilateral asymmetries in elite, sub-elite and school level cricket players; and to determine if playing position and limb role influenced these eccentric knee flexor strength indices. Methods. Seventy four male cricket players of three distinct skill levels performed three repetitions of the Nordic hamstring exercise on the experimental device. Strength was assessed as the absolute and relative mean peak force output for both limbs, with bilateral asymmetries. Differences in mean peak force outputs between skill level and playing positions were measured. Results. There were no significant differences between elite, sub-elite and school level athletes for mean peak force and bilateral asymmetries of the knee flexors. There were no significant differences observed between bowler’s and batter’s mean peak force and bilateral asymmetries. There were no significant differences between front and back limb mean peak force outputs. Discussion. Skill level, playing position and limb role appeared to have no significant effect on eccentric knee flexor strength and bilateral asymmetries. Future research should seek to determine whether eccentric knee flexor strength thresholds are predictive of HSIs in cricket and if specific eccentric knee flexor strengthening can reduce these injuries. PMID:26925310
Shadle, Ian B; Cacolice, Paul A
2017-11-01
Clinical Scenario: Hamstring strains are a common sport-related injury, which may limit athletic performance for an extended period of time. These injuries are common in the soccer setting. As such, it is important to determine an appropriate prevention program to minimize the risk of such an injury for these athletes. Eccentric hamstring training may be an effective and practical hamstring strain prevention strategy. What is the effect of eccentric exercises on hamstring strain prevention in adult male soccer players? Summary of Key Findings: Current literature was searched for studies of level 2 evidence or higher that investigated the effect of eccentric exercises in preventing hamstring strains in adult male soccer players. Three articles returned from the literature search met the inclusion criteria. A fourth article looked at differences in strength gains between eccentric and concentric hamstring strengthening exercises, but did not record hamstring strain incidence. A fifth article, a systematic review, met all the criteria except for the correct population. Of the 3 studies, 2 were randomized control trails and 1 was a cohort study. Clinical Bottom Line: There is robust supportive evidence that eccentric hamstring exercises can prevent a hamstring injury to an elite adult male soccer player. Therefore, it is recommended that athletic trainers and other sports medicine providers evaluate current practices relating to reducing hamstring strains and consider implementing eccentric exercise based prevention programs. Strength of Recommendation: All evidence was attained from articles with a level of evidence 2b or higher, based on the Center for Evidence-Based Medicine (CEBM) criteria, stating that eccentric exercises can decrease hamstring strains.
Calixto, Rd; Verlengia, R; Crisp, Ah; Carvalho, Tb; Crepaldi, Md; Pereira, Aa; Yamada, Ak; da Mota, Gr; Lopes, Cr
2014-12-01
This study aimed to compare the effects of different velocities of eccentric muscle actions on acute blood lactate and serum growth hormone (GH) concentrations following free weight bench press exercises performed by resistance-trained men. Sixteen healthy men were divided into two groups: slow eccentric velocity (SEV; n = 8) and fast eccentric velocity (FEV; n = 8). Both groups performed four sets of eight eccentric repetitions at an intensity of 70% of their one repetition maximum eccentric (1RMecc) test, with 2-minute rest intervals between sets. The eccentric velocity was controlled to 3 seconds per range of motion for SEV and 0.5 seconds for the FEV group. There was a significant difference (P < 0.001) in the kinetics of blood lactate removal (at 3, 6, 9, 15, and 20 min) and higher mean values for peak blood lactate (P = 0.001) for the SEV group (9.1 ± 0.5 mM) compared to the FEV group (6.1 ± 0.4 mM). Additionally, serum GH concentrations were significantly higher (P < 0.001) at 15 minutes after bench press exercise in the SEV group (1.7 ± 0.6 ng · mL(-1)) relative to the FEV group (0.1 ± 0.0 ng · mL(-1)). In conclusion, the velocity of eccentric muscle action influences acute responses following bench press exercises performed by resistance-trained men using a slow velocity resulting in a greater metabolic stress and hormone response.
Calixto, RD; Crisp, AH; Carvalho, TB; Crepaldi, MD; Pereira, AA; Yamada, AK; da Mota, GR; Lopes, CR
2014-01-01
This study aimed to compare the effects of different velocities of eccentric muscle actions on acute blood lactate and serum growth hormone (GH) concentrations following free weight bench press exercises performed by resistance-trained men. Sixteen healthy men were divided into two groups: slow eccentric velocity (SEV; n = 8) and fast eccentric velocity (FEV; n = 8). Both groups performed four sets of eight eccentric repetitions at an intensity of 70% of their one repetition maximum eccentric (1RMecc) test, with 2-minute rest intervals between sets. The eccentric velocity was controlled to 3 seconds per range of motion for SEV and 0.5 seconds for the FEV group. There was a significant difference (P < 0.001) in the kinetics of blood lactate removal (at 3, 6, 9, 15, and 20 min) and higher mean values for peak blood lactate (P = 0.001) for the SEV group (9.1 ± 0.5 mM) compared to the FEV group (6.1 ± 0.4 mM). Additionally, serum GH concentrations were significantly higher (P < 0.001) at 15 minutes after bench press exercise in the SEV group (1.7 ± 0.6 ng · mL−1) relative to the FEV group (0.1 ± 0.0 ng · mL−1). In conclusion, the velocity of eccentric muscle action influences acute responses following bench press exercises performed by resistance-trained men using a slow velocity resulting in a greater metabolic stress and hormone response. PMID:25609886
Chalker, Wade J; Shield, Anthony J; Opar, David A; Keogh, Justin W L
2016-01-01
Background. There has been a continual increase in injury rates in cricket, with hamstring strain injuries (HSIs) being the most prominent. Eccentric knee flexor weakness and bilateral asymmetries are major modifiable risk factors for future HSIs. However, there is a lack of data relating to eccentric hamstring strength in cricket at any skill level. The objective of this study was to compare eccentric knee flexor strength and bilateral asymmetries in elite, sub-elite and school level cricket players; and to determine if playing position and limb role influenced these eccentric knee flexor strength indices. Methods. Seventy four male cricket players of three distinct skill levels performed three repetitions of the Nordic hamstring exercise on the experimental device. Strength was assessed as the absolute and relative mean peak force output for both limbs, with bilateral asymmetries. Differences in mean peak force outputs between skill level and playing positions were measured. Results. There were no significant differences between elite, sub-elite and school level athletes for mean peak force and bilateral asymmetries of the knee flexors. There were no significant differences observed between bowler's and batter's mean peak force and bilateral asymmetries. There were no significant differences between front and back limb mean peak force outputs. Discussion. Skill level, playing position and limb role appeared to have no significant effect on eccentric knee flexor strength and bilateral asymmetries. Future research should seek to determine whether eccentric knee flexor strength thresholds are predictive of HSIs in cricket and if specific eccentric knee flexor strengthening can reduce these injuries.
NASA Astrophysics Data System (ADS)
Wang, Ying; Zhou, Ji-lin; hui-gen, Liu; Meng, Zeyang
2017-10-01
Exoplanets discovered over the past decades have provided a new sample of giant exoplanets: hot Jupiters. For lack of enough materials in the current locations of hot Jupiters, they are perceived to form outside the snowline. Then, they migrate to the locations observed through interactions with gas disks or high-eccentricity mechanisms. We examined the efficiencies of different high-eccentricity mechanisms for forming hot Jupiters in near-coplanar multi-planet systems. These mechanisms include planet-planet scattering, the Kozai-Lidov mechanism, coplanar high-eccentricity migration, and secular chaos, as well as other two new mechanisms that we present in this work, which can produce hot Jupiters with high inclinations even in retrograde. We find that the Kozai-Lidov mechanism plays the most important role in producing hot Jupiters among these mechanisms. Secular chaos is not the usual channel for the formation of hot Jupiters due to the lack of an angular momentum deficit within {10}7{T}{in} (periods of the inner orbit). According to comparisons between the observations and simulations, we speculate that there are at least two populations of hot Jupiters. One population migrates into the boundary of tidal effects due to interactions with the gas disk, such as ups And b, WASP-47 b, and HIP 14810 b. These systems usually have at least two planets with lower eccentricities, and remain dynamically stable in compact orbital configurations. Another population forms through high-eccentricity mechanisms after the excitation of eccentricity due to dynamical instability. These kinds of hot Jupiters usually have Jupiter-like companions in distant orbits with moderate or high eccentricities.
An iwatsubo-based solution for labyrinth seals - comparison with experimental results
NASA Technical Reports Server (NTRS)
Childs, D. W.; Scharrer, J. K.
1984-01-01
The basic equations are derived for compressible flow in a labyrinth seal. The flow is assumed to be completely turbulent in the circumferential direction where the friction factor is determined by the Blasius relation. Linearized zeroth and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth-order pressure distribution is found by satisfying the leakage equation while the circumferential velocity distribution is determined by satisfying the momentum equation. The first-order equations are solved by a separation of variables solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients. The results of this analysis are compared to published test results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haro-Corzo, Sinhue A. R.; Velazquez, Pablo F.; Raga, Alejandro C.
We present three-dimensional hydrodynamical simulations of a jet launched from the secondary star of a binary system inside a protoplanetary nebula. The secondary star moves around the primary in a close eccentric orbit. From the gasdynamic simulations we compute synthetic [N II] lambda 6583 emission maps. Different jet axis inclinations with respect to the orbital plane, as well as different orientations of the flow with respect to the observer, are considered. For some parameter combinations, we obtain structures that show point- or mirror-symmetric morphologies depending on the orientation of the flow with respect to the observer. Furthermore, our models canmore » explain some of the emission distribution asymmetries that are summarized in the classification given by Soker and Hadar.« less
NASA Technical Reports Server (NTRS)
Charlton, Jane C.; Laguna, Pablo
1995-01-01
The globular clusters that we observe in galaxies may be only a fraction of the initial population. Among the evolutionary influences on the population is the destruction of globular clusters by tidal forces as the cluster moves through the field of influence of a disk, a bulge, and/or a putative nuclear component (black hole). We have conducted a series of N-body simulations of globular clusters on bound and marginally bound orbits through poetentials that include black hole and speroidal components. The degree of concentration of the spheroidal component can have a considerable impact on the extent to which a globular cluster is disrupted. If half the mass of a 10(exp 10) solar mass spheroid is concentrated within 800 pc, then only black holes with masses greater than 10(exp 9) solar mass can have a significant tidal influence over that already exerted by the bulge. However, if the matter in the spheroidal component is not so strongly concentrated toward the center of the galaxy, a more modest central black hole (down to 10(exp 8) solar mass) could have a dominant influence on the globular cluster distribution, particularly if many of the clusters were initially on highly radial orbits. Our simulations show that the stars that are stripped from a globular cluster follow orbits with roughly the same eccentricity as the initial cluster orbit, spreading out along the orbit like a 'string of pearls.' Since only clusters on close to radial orbits will suffer substantial disruption, the population of stripped stars will be on orbits of high eccentricity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De la Fuente Marcos, R.; De la Fuente Marcos, C., E-mail: raul@galaxy.suffolk.e
2010-08-10
The properties of the candidate binary star cluster population in the Magellanic Clouds and Milky Way are similar. The fraction of candidate binaries is {approx}10% and the pair separation histogram exhibits a bimodal distribution commonly attributed to their transient nature. However, if primordial pairs cannot survive for long as recognizable bound systems, how are they ending up? Here, we use simulations to confirm that merging, extreme tidal distortion, and ionization are possible depending on the initial orbital elements and mass ratio of the cluster pair. Merging is observed for initially close pairs but also for wider systems in nearly parabolicmore » orbits. Its characteristic timescale depends on the initial orbital semi-major axis, eccentricity, and cluster pair mass ratio, becoming shorter for closer, more eccentric equal mass pairs. Shredding of the less massive cluster and subsequent separation is observed in all pairs with appreciably different masses. Wide pairs evolve into separated twins characterized by the presence of tidal bridges and separations of 200-500 pc after one Galactic orbit. Most observed binary candidates appear to be following this evolutionary path which translates into the dominant peak (25-30 pc) in the observed pair separation distribution. The secondary peak at smaller separations (10-15 pc) can be explained as due to close pairs in almost circular orbits and/or undergoing merging. Merged clusters exhibit both peculiar radial density and velocity dispersion profiles shaped by synchronization and gravogyro instabilities. Simulations and observations show that long-term binary open cluster stability is unlikely.« less
Introducing Earth's Orbital Eccentricity
ERIC Educational Resources Information Center
Oostra, Benjamin
2015-01-01
Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…
Effects of Movement Velocity and Maximal Concentric and Eccentric Actions on the Bilateral Deficit
ERIC Educational Resources Information Center
Dickin, D. Clark; Too, Danny
2006-01-01
This study was performed to examine the effects of movement velocity and maximal concentric and eccentric actions on the bilateral deficit. Eighteen female participants performed maximal unilateral and bilateral knee extensions concentrically and eccentrically across six movement velocities (30, 60, 90, 120, 150, and 180[degrees]/s). Repeated…
NASA Astrophysics Data System (ADS)
Oumaamar, Mohamed El Kamel; Maouche, Yassine; Boucherma, Mohamed; Khezzar, Abdelmalek
2017-02-01
The mixed eccentricity fault detection in a squirrel cage induction motor has been thoroughly investigated. However, a few papers have been related to pure static eccentricity fault and the authors focused on the RSH harmonics presented in stator current. The main objective of this paper is to present an alternative method based on the analysis of line neutral voltage taking place between the supply and the stator neutrals in order to detect air-gap static eccentricity, and to highlight the classification of all RSH harmonics in line neutral voltage. The model of squirrel cage induction machine relies on the rotor geometry and winding layout. Such developed model is used to analyze the impact of the pure static air-gap eccentricity by predicting the related frequencies in the line neutral voltage spectrum. The results show that the line neutral voltage spectrum are more sensitive to the air-gap static eccentricity fault compared to stator current one. The theoretical analysis and simulated results are confirmed by experiments.
Analysis and optimization of dynamic model of eccentric shaft grinder
NASA Astrophysics Data System (ADS)
Gao, Yangjie; Han, Qiushi; Li, Qiguang; Peng, Baoying
2018-04-01
Eccentric shaft servo grinder is the core equipment in the process chain of machining eccentric shaft. The establishment of the movement model and the determination of the kinematic relation of the-axis in the grinding process directly affect the quality of the grinding process, and there are many error factors in grinding, and it is very important to analyze the influence of these factors on the work piece quality. The three-dimensional model of eccentric shaft grinder is drawn by Pro/E three-dimensional drawing software, the model is imported into ANSYS Workbench Finite element analysis software, and the finite element analysis is carried out, and then the variation and parameters of each component of the bed are obtained by the modal analysis result. The natural frequencies and formations of the first six steps of the eccentric shaft grinder are obtained by modal analysis, and the weak links of the parts of the grinder are found out, and a reference improvement method is proposed for the design of the eccentric shaft grinder in the future.
Effects of age and eccentricity on visual target detection.
Gruber, Nicole; Müri, René M; Mosimann, Urs P; Bieri, Rahel; Aeschimann, Andrea; Zito, Giuseppe A; Urwyler, Prabitha; Nyffeler, Thomas; Nef, Tobias
2013-01-01
The aim of this study was to examine the effects of aging and target eccentricity on a visual search task comprising 30 images of everyday life projected into a hemisphere, realizing a ±90° visual field. The task performed binocularly allowed participants to freely move their eyes to scan images for an appearing target or distractor stimulus (presented at 10°; 30°, and 50° eccentricity). The distractor stimulus required no response, while the target stimulus required acknowledgment by pressing the response button. One hundred and seventeen healthy subjects (mean age = 49.63 years, SD = 17.40 years, age range 20-78 years) were studied. The results show that target detection performance decreases with age as well as with increasing eccentricity, especially for older subjects. Reaction time also increases with age and eccentricity, but in contrast to target detection, there is no interaction between age and eccentricity. Eye movement analysis showed that younger subjects exhibited a passive search strategy while older subjects exhibited an active search strategy probably as a compensation for their reduced peripheral detection performance.
Effects of Peripheral Eccentricity and Head Orientation on Gaze Discrimination.
Palanica, Adam; Itier, Roxane J
2014-01-01
Visual search tasks support a special role for direct gaze in human cognition, while classic gaze judgment tasks suggest the congruency between head orientation and gaze direction plays a central role in gaze perception. Moreover, whether gaze direction can be accurately discriminated in the periphery using covert attention is unknown. In the present study, individual faces in frontal and in deviated head orientations with a direct or an averted gaze were flashed for 150 ms across the visual field; participants focused on a centred fixation while judging the gaze direction. Gaze discrimination speed and accuracy varied with head orientation and eccentricity. The limit of accurate gaze discrimination was less than ±6° eccentricity. Response times suggested a processing facilitation for direct gaze in fovea, irrespective of head orientation, however, by ±3° eccentricity, head orientation started biasing gaze judgments, and this bias increased with eccentricity. Results also suggested a special processing of frontal heads with direct gaze in central vision, rather than a general congruency effect between eye and head cues. Thus, while both head and eye cues contribute to gaze discrimination, their role differs with eccentricity.
Densities and eccentricities of 139 Kepler planets from transit time variations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadden, Sam; Lithwick, Yoram
2014-05-20
We extract densities and eccentricities of 139 sub-Jovian planets by analyzing transit time variations (TTVs) obtained by the Kepler mission through Quarter 12. We partially circumvent the degeneracies that plague TTV inversion with the help of an analytical formula for the TTV. From the observed TTV phases, we find that most of these planets have eccentricities of the order of a few percent. More precisely, the rms eccentricity is 0.018{sub −0.004}{sup +0.005}, and planets smaller than 2.5 R {sub ⊕} are around twice as eccentric as those bigger than 2.5 R {sub ⊕}. We also find a best-fit density-radius relationshipmore » ρ ≈ 3 g cm{sup –3} × (R/3 R {sub ⊕}){sup –2.3} for the 56 planets that likely have small eccentricity and hence small statistical correction to their masses. Many planets larger than 2.5 R {sub ⊕} are less dense than water, implying that their radii are largely set by a massive hydrogen atmosphere.« less
Garnavou-Xirou, Christina; Xirou, Tina; Kabanarou, Stamatina; Gkizis, Ilias; Velissaris, Stavros; Chatziralli, Irini
2017-12-01
Postoperative eccentric macular hole formation is an uncommon complication after pars plana vitrectomy (PPV) without internal limiting membrane (ILM) peeling for the treatment of epiretinal membrane (ERM). We present a case of eccentric macular hole formation after PPV for ERM without ILM peeling. A 68-year-old male patient presented with ERM and visual acuity of 6/24 in his left eye. He underwent 23-gauge PPV without ILM peeling for treatment of ERM. One week postoperatively the retina was attached and the epiretinal membrane was successfully removed, while visual acuity was 6/9. One month after PPV, a single eccentric retinal hole below the macula was detected using fundoscopy and subsequently confirmed by optical coherence tomography. At this time the visual acuity was 6/9 and the patient reported no symptoms. No further intervention was attempted and at the 9-month follow-up, the visual acuity and the size of the eccentric macular hole remained stable. Eccentric macular holes can be developed after PPV even without ILM peeling and are usually managed conservatively by observation.
Eccentric black hole mergers forming in globular clusters
NASA Astrophysics Data System (ADS)
Samsing, Johan
2018-05-01
We derive the probability for a newly formed binary black hole (BBH) to undergo an eccentric gravitational wave (GW) merger during binary-single interactions inside a stellar cluster. By integrating over the hardening interactions such a BBH must undergo before ejection, we find that the observable rate of BBH mergers with eccentricity >0.1 at 10 Hz relative to the rate of circular mergers can be as high as ˜5 % for a typical globular cluster (GC). This further suggests that BBH mergers forming through GW captures in binary-single interactions, eccentric or not, are likely to constitute ˜10 % of the total BBH merger rate from GCs. Such GW capture mergers can only be probed with an N -body code that includes general relativistic corrections, which explains why recent Newtonian cluster studies have not been able to resolve this population. Finally, we show that the relative rate of eccentric BBH mergers depends on the compactness of their host cluster, suggesting that an observed eccentricity distribution can be used to probe the origin of BBH mergers.
Why are there eccentricity effects in visual search? Visual and attentional hypotheses.
Wolfe, J M; O'Neill, P; Bennett, S C
1998-01-01
In standard visual search experiments, observers search for a target item among distracting items. The locations of target items are generally random within the display and ignored as a factor in data analysis. Previous work has shown that targets presented near fixation are, in fact, found more efficiently than are targets presented at more peripheral locations. This paper proposes that the primary cause of this "eccentricity effect" (Carrasco, Evert, Chang, & Katz, 1995) is an attentional bias that allocates attention preferentially to central items. The first four experiments dealt with the possibility that visual, and not attentional, factors underlie the eccentricity effect. They showed that the eccentricity effect cannot be accounted for by the peripheral reduction in visual sensitivity, peripheral crowding, or cortical magnification. Experiment 5 tested the attention allocation model and also showed that RT x set size effects can be independent of eccentricity effects. Experiment 6 showed that the effective set size in a search task depends, in part, on the eccentricity of the target because observers search from fixation outward.
Forever Alone? Testing Single Eccentric Planetary Systems for Multiple Companions
NASA Astrophysics Data System (ADS)
Wittenmyer, Robert A.; Wang, Songhu; Horner, Jonathan; Tinney, C. G.; Butler, R. P.; Jones, H. R. A.; O'Toole, S. J.; Bailey, J.; Carter, B. D.; Salter, G. S.; Wright, D.; Zhou, Ji-Lin
2013-09-01
Determining the orbital eccentricity of an extrasolar planet is critically important for understanding the system's dynamical environment and history. However, eccentricity is often poorly determined or entirely mischaracterized due to poor observational sampling, low signal-to-noise, and/or degeneracies with other planetary signals. Some systems previously thought to contain a single, moderate-eccentricity planet have been shown, after further monitoring, to host two planets on nearly circular orbits. We investigate published apparent single-planet systems to see if the available data can be better fit by two lower-eccentricity planets. We identify nine promising candidate systems and perform detailed dynamical tests to confirm the stability of the potential new multiple-planet systems. Finally, we compare the expected orbits of the single- and double-planet scenarios to better inform future observations of these interesting systems.
Planet Formation in Stellar Binaries: How Disk Gravity Can Lower theFragmentation Barrier
NASA Astrophysics Data System (ADS)
Silsbee, Kedron; Rafikov, Roman R.
2014-11-01
Binary star systems present a challenge to current theories of planet formation. Perturbations from the companion star dynamically excite the protoplanetary disk, which can lead to destructive collisions between planetesimals, and prevent growth from 1 km to 100 km sized planetesimals. Despite this apparent barrier to coagulation, planets have been discovered within several small-separation (<20 AU), eccentric (eb 0.4) binaries, such as alpha Cen and gamma Cep. We address this problem by analytically exploring planetesimal dynamics under the simultaneous action of (1) binary perturbation, (2) gas drag (which tends to align planetesimal orbits), and (3), the gravity of an eccentric protoplanetary disk. We then use our dynamical solutions to assess the outcomes of planetesimal collisions (growth, destruction, erosion) for a variety of disk models. We find that planets in small-separation binaries can form at their present locations if the primordial protoplanetary disks were massive (>0.01M⊙) and not very eccentric (eccentricity of order several per cent at the location of planet). This constraint on the disk mass is compatible with the high masses of the giant planets in known gamma Cep-like binaries, which require a large mass reservoir for their formation. We show that for these massive disks, disk gravity is dominant over the gravity of the binary companion at the location of the observed planets. Therefore, planetesimal growth is highly sensitive to disk properties. The requirement of low disk eccentricity is in line with the recent hydrodynamic simulations that tend to show gaseous disks in eccentric binaries developing very low eccentricity, at the level of a few percent. A massive purely axisymmetric disk makes for a friendlier environment for planetesimal growth by driving rapid apsidal precession of planetesimals, and averaging out the eccentricity excitation from the binary companion. When the protoplanetary disk is eccentric we find that the most favorable conditions for planetesimal growth emerge when the disk is non-precessing and is apsidally aligned with the orbit of the binary.
Muscle damage and repeated bout effect induced by enhanced eccentric squats.
Coratella, Giuseppe; Chemello, Alessandro; Schena, Federico
2016-12-01
Muscle damage and repeated bout effect have been studied after pure eccentric-only exercise. The aim of this study was to evaluate muscle damage and repeated bout effect induced by enhanced eccentric squat exercise using flywheel device. Thirteen healthy males volunteered for this study. Creatine kinase blood activity (CK), quadriceps isometric peak torque and muscle soreness were used as markers of muscle damage. The dependent parameters were measured at baseline, immediately after and each day up to 96 hours after the exercise session. The intervention consisted of 100 repetitions of enhanced eccentric squat exercise using flywheel device. The same protocol was repeated after 4 weeks. After the first bout, CK and muscle soreness were significantly greater (P<0.05) than baseline respectively up to 72 and 96 hours. Isometric peak torque was significantly lower (P<0.05) up to 72 hours. After the second bout, CK showed no significant increase (P>0.05), while isometric peak torque and muscle soreness returned to values similar to baseline after respectively 48 and 72 hours. All muscle damage markers were significantly lower after second compared to first bout. The enhanced eccentric exercise induced symptoms of muscle damage up to 96 hours. However, it provided muscle protection after the second bout, performed four weeks later. Although it was not eccentric-only exercise, the enhancement of eccentric phase provided muscle protection.
Hamstrings strength imbalance in professional football (soccer) players in Australia.
Ardern, Clare L; Pizzari, Tania; Wollin, Martin R; Webster, Kate E
2015-04-01
The aim of this study was to describe the isokinetic thigh muscle strength profile of professional male football players in Australia. Concentric (60° and 240°·s(-1)) and eccentric (30° and 120°·s(-1)) hamstrings and quadriceps isokinetic strength was measured with a HUMAC NORM dynamometer. The primary variables were bilateral concentric and eccentric hamstring and quadriceps peak torque ratios, concentric hamstring-quadriceps peak torque ratios, and mixed ratios (eccentric hamstring 30°·s(-1) ÷ concentric quadriceps 240°·s(-1)). Hamstring strength imbalance was defined as deficits in any 2 of: bilateral concentric hamstring peak torque ratio <0.86, bilateral eccentric hamstring peak torque ratio <0.86, concentric hamstring-quadriceps ratio <0.47, and mixed ratio <0.80. Fifty-five strength tests involving 42 players were conducted. Ten players (24%) were identified as having hamstring strength imbalance. Athletes with strength imbalance had significantly reduced concentric and eccentric bilateral hamstring peak torque ratios at all angular velocities tested; and reduced eccentric quadriceps peak torque (30°·s(-1)) in their stance leg, compared with those without strength imbalance. Approximately, 1 in 4 players had preseason hamstring strength imbalance; and all strength deficits were observed in the stance leg. Concentric and eccentric hamstrings strength imbalance may impact in-season football performance and could have implications for the future risk of injury.
Stretch-activated ion channel blockade attenuates adaptations to eccentric exercise.
Butterfield, Timothy A; Best, Thomas M
2009-02-01
The purpose of this study was to test the hypothesis that stretch-activated ion channel (SAC) function is essential for the repeated bout effect (RBE) in skeletal muscle. Specifically, we investigated if daily injections of streptomycin (a known SAC blocker) would abrogate the muscle's adaptive resistance to the damaging effects of eccentric exercise over a 4-wk period. Furthermore, we hypothesized that the lack of an RBE would be due to the lack of functional adaptations that typically result from repeated bouts of eccentric exercise, including increased peak isometric torque, muscle hypertrophy, and rightward shift of the torque-angle relationship. Twelve New Zealand white rabbits were each subjected to 12 bouts of eccentric exercise over a 4-wk period while receiving either daily injections of streptomycin or sham injections. Although blocking the SAC function completely eliminated the expected adaptive response in biomechanical parameters during the exercise regimen, there remained evidence of an acquired RBE, albeit with an attenuated response when compared with the muscles with intact SAC function. Blocking sarcolemmal SAC eliminates functional adaptations of muscle after eccentric exercise. In the absence of SAC function, muscles subjected to chronic eccentric exercise still exhibit some degree of the RBE. As such, it appears that the signaling cascade that results in functional, biomechanical adaptations associated with the RBE during eccentric exercise is dependent upon intact SAC function.
Eccentric Training and Static Stretching Improve Hamstring Flexibility of High School Males
Bandy, William D.
2004-01-01
Objective: To determine if the flexibility of high-school-aged males would improve after a 6-week eccentric exercise program. In addition, the changes in hamstring flexibility that occurred after the eccentric program were compared with a 6-week program of static stretching and with a control group (no stretching). Design and Setting: We used a test-retest control group design in a laboratory setting. Subjects were assigned randomly to 1 of 3 groups: eccentric training, static stretching, or control. Subjects: A total of 69 subjects, with a mean age of 16.45 ± 0.96 years and with limited hamstring flexibility (defined as 20° loss of knee extension measured with the thigh held at 90° of hip flexion) were recruited for this study. Measurements: Hamstring flexibility was measured using the passive 90/90 test before and after the 6-week program. Results: Differences were significant for test and for the test-by-group interaction. Follow-up analysis indicated significant differences between the control group (gain = 1.67°) and both the eccentric-training (gain = 12.79°) and static-stretching (gain = 12.05°) groups. No difference was found between the eccentric and static-stretching groups. Conclusions: The gains achieved in range of motion of knee extension (indicating improvement in hamstring flexibility) with eccentric training were equal to those made by statically stretching the hamstring muscles. PMID:15496995
Eccentric Training and Static Stretching Improve Hamstring Flexibility of High School Males.
Nelson, Russell T; Bandy, William D
2004-09-01
OBJECTIVE: To determine if the flexibility of high-school-aged males would improve after a 6-week eccentric exercise program. In addition, the changes in hamstring flexibility that occurred after the eccentric program were compared with a 6-week program of static stretching and with a control group (no stretching). DESIGN AND SETTING: We used a test-retest control group design in a laboratory setting. Subjects were assigned randomly to 1 of 3 groups: eccentric training, static stretching, or control. SUBJECTS: A total of 69 subjects, with a mean age of 16.45 +/- 0.96 years and with limited hamstring flexibility (defined as 20 degrees loss of knee extension measured with the thigh held at 90 degrees of hip flexion) were recruited for this study. MEASUREMENTS: Hamstring flexibility was measured using the passive 90/90 test before and after the 6-week program. RESULTS: Differences were significant for test and for the test-by-group interaction. Follow-up analysis indicated significant differences between the control group (gain = 1.67 degrees ) and both the eccentric-training (gain = 12.79 degrees ) and static-stretching (gain = 12.05 degrees ) groups. No difference was found between the eccentric and static-stretching groups. CONCLUSIONS: The gains achieved in range of motion of knee extension (indicating improvement in hamstring flexibility) with eccentric training were equal to those made by statically stretching the hamstring muscles.
Knee Extensor and Flexor Torque Development with Concentric and Eccentric Isokinetic Training
ERIC Educational Resources Information Center
Miller, Larry E.; Pierson, Lee M.; Nickols-Richardson, Sharon M.; Wootten, David F.; Selmon, Serah E.; Ramp, Warren K.; Herbert, William G.
2006-01-01
This study assessed muscular torque and rate of torque development following concentric (CON) or eccentric (ECC) isokinetic training. Thirty-eight women were randomly assigned to either CON or ECC training groups. Training consisted of knee extension and flexion of the nondominant leg three times per week for 20 weeks (SD = 1). Eccentric training…
Mouse Plantar Flexor Muscle Size and Strength After Inactivity and Training
2010-07-01
suspension. Keywords: eccentric contraction , microgravity , exercise . SPACEFLIGHT CAUSES atrophy and strength loss in antigravity skeletal muscles...isometric, concentric, and eccentric contractions pre- served muscle mass in the rat medial gastrocnemius ( 2 ), the use of isometric resistance exercise ...Adams GR , Haddad F , Bodell PW , Tran PD , Baldwin KM . Com- bined isometric, concentric, and eccentric resistance exercise prevents
Massive stars, disks, and clustered star formation
NASA Astrophysics Data System (ADS)
Moeckel, Nickolas Barry
The formation of an isolated massive star is inherently more complex than the relatively well-understood collapse of an isolated, low-mass star. The dense, clustered environment where massive stars are predominantly found further complicates the picture, and suggests that interactions with other stars may play an important role in the early life of these objects. In this thesis we present the results of numerical hydrodynamic experiments investigating interactions between a massive protostar and its lower-mass cluster siblings. We explore the impact of these interactions on the orientation of disks and outflows, which are potentially observable indications of encounters during the formation of a star. We show that these encounters efficiently form eccentric binary systems, and in clusters similar to Orion they occur frequently enough to contribute to the high multiplicity of massive stars. We suggest that the massive protostar in Cepheus A is currently undergoing a series of interactions, and present simulations tailored to that system. We also apply the numerical techniques used in the massive star investigations to a much lower-mass regime, the formation of planetary systems around Solar- mass stars. We perform a small number of illustrative planet-planet scattering experiments, which have been used to explain the eccentricity distribution of extrasolar planets. We add the complication of a remnant gas disk, and show that this feature has the potential to stabilize the system against strong encounters between planets. We present preliminary simulations of Bondi-Hoyle accretion onto a protoplanetary disk, and consider the impact of the flow on the disk properties as well as the impact of the disk on the accretion flow.
Predicting Precession Rates from Secular Dynamics for Extra-solar Multi-planet Systems
NASA Astrophysics Data System (ADS)
Van Laerhoven, Christa L.
2015-11-01
Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods. Using this catalog, and assuming a Gausian distribution for the eigenmode amplitudes and a uniform distribution for the eigenmode phases, I have predicted what range of precession rates the planets may have. Generally, planets that have more than one eigenmode significantly contribute to their eccentricity ('groupies') can have a wide range of possible precession rates, while planets that are 'loners' have a narrow range of possible precession rates. One might have assumed that in any given system, the planets with shorter periods would have faster precession rates. However, I show that in systems where the planets suffer strong secular interactions this is not necessarily the case.
Exoplanet orbital eccentricities derived from LAMOST-Kepler analysis
NASA Astrophysics Data System (ADS)
Xie, Ji-Wei; Dong, Subo; Zhu, Zhaohuan; Huber, Daniel; Zheng, Zheng; De Cat, Peter; Fu, Jianning; Liu, Hui-Gen; Luo, Ali; Wu, Yue; Zhang, Haotong; Zhang, Hui; Zhou, Ji-Lin; Cao, Zihuang; Hou, Yonghui; Wang, Yuefei; Zhang, Yong
2016-10-01
The nearly circular (mean eccentricity e¯≈0.06) and coplanar (mean mutual inclination i¯≈3°) orbits of the solar system planets motivated Kant and Laplace to hypothesize that planets are formed in disks, which has developed into the widely accepted theory of planet formation. The first several hundred extrasolar planets (mostly Jovian) discovered using the radial velocity (RV) technique are commonly on eccentric orbits (e¯≈0.3). This raises a fundamental question: Are the solar system and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), whereas the other half are multiple transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with e¯≈0.3, whereas the multiples are on nearly circular (e¯=0.04-0.04+0.03) and coplanar (i¯=1.4-1.1+0.8 degree) orbits similar to those of the solar system planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation [×i¯] between mean eccentricities and mutual inclinations. The prevalence of circular orbits and the common relation may imply that the solar system is not so atypical in the galaxy after all.
Cervical spine injuries and flexibilities following axial impact with lateral eccentricity.
Van Toen, C; Street, J; Oxland, T R; Cripton, Peter A
2015-01-01
Determine the effects of dynamic injurious axial compression applied at various lateral eccentricities (lateral distance to the centre of the spine) on mechanical flexibilities and structural injury patterns of the cervical spine. 13 three-vertebra human cadaver cervical spine specimens (6 C3-5, 3 C4-6, 2 C5-7, 2 C6-T1) were subjected to pure moment flexibility tests (±1.5 Nm) before and after impact trauma was applied in two groups: low and high lateral eccentricity (1 and 150 % of the lateral diameter of the vertebral body, respectively). Relative range of motion (ROM) and relative neutral zone (NZ) were calculated as the ratio of post and pre-trauma values. Injuries were diagnosed by a spine surgeon and scored. Classification functions were developed using discriminant analysis. Low and high eccentric loading resulted in primarily bony fractures and soft tissue injuries, respectively. Axial impacts with high lateral eccentricities resulted in greater spinal motion in lateral bending [median relative ROM 3.5 (interquartile range, IQR 2.3) vs. 1.4 (IQR 0.5) and median relative NZ 4.7 (IQR 3.7) vs. 2.3 (IQR 1.1)] and in axial rotation [median relative ROM 5.3 (IQR 13.7) vs. 1.3 (IQR 0.5), p < 0.05 for all comparisons] than those that resulted from low eccentricity impacts. The developed classification functions had 92 % classification accuracy. Dynamic axial compression loading of the cervical spine with high lateral eccentricities produced primarily soft tissue injuries resulting in more post-injury spinal flexibility in lateral bending and axial rotation than that associated with the bony fractures resulting from low eccentricity impacts.
Exoplanet orbital eccentricities derived from LAMOST–Kepler analysis
Xie, Ji-Wei; Dong, Subo; Zhu, Zhaohuan; Huber, Daniel; Zheng, Zheng; De Cat, Peter; Fu, Jianning; Liu, Hui-Gen; Luo, Ali; Wu, Yue; Zhang, Haotong; Zhang, Hui; Zhou, Ji-Lin; Cao, Zihuang; Hou, Yonghui; Wang, Yuefei; Zhang, Yong
2016-01-01
The nearly circular (mean eccentricity e¯≈0.06) and coplanar (mean mutual inclination i¯≈3°) orbits of the solar system planets motivated Kant and Laplace to hypothesize that planets are formed in disks, which has developed into the widely accepted theory of planet formation. The first several hundred extrasolar planets (mostly Jovian) discovered using the radial velocity (RV) technique are commonly on eccentric orbits (e¯≈0.3). This raises a fundamental question: Are the solar system and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), whereas the other half are multiple transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with e¯≈ 0.3, whereas the multiples are on nearly circular (e¯=0.04−0.04+0.03) and coplanar (i¯=1.4−1.1+0.8 degree) orbits similar to those of the solar system planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation [e¯≈(1–2)×i¯] between mean eccentricities and mutual inclinations. The prevalence of circular orbits and the common relation may imply that the solar system is not so atypical in the galaxy after all. PMID:27671635
Wong, Dennis T L; Bertaso, Angela G; Liew, Gary Y H; Thomson, Viji S; Cunnington, Michael S; Richardson, James D; Gooley, Robert; Lockwood, Siobhan; Meredith, Ian T; Worthley, Matthew I; Worthley, Stephen G
2013-04-01
Significant paravalvular aortic regurgitation (PAR) after transcatheter aortic valve implantation (TAVI) is associated with negative clinical consequences. We hypothesize that increased eccentricity of the aortic annulus is associated with greater PAR. Patients with severe aortic stenosis underwent multidetector computed tomography (MDCT) before successful TAVI with the Medtronic CoreValve bioprosthesis. The smallest (D(min)) and largest (D(max)) orthogonal diameters in the basal ring of the aortic annulus were determined. We defined circularity of aortic annulus using the eccentricity index (1 - D(min)/D(max)). The primary endpoint was early occurrence of significant PAR, defined as > grade II PAR by postprocedural aortography. Eighty-four patients, mean age 83 ± 4 years with a mean aortic valve area of 0.7 ± 0.2 cm² were included. Twenty patients had postprocedural PAR > grade II. Using a receiver operating characteristic (ROC) analysis, eccentricity index correlated with significant PAR (AUC = 0.834; P=.034). A retrospectively determined eccentricity index cut-off of >0.25 was related to significant PAR with a sensitivity of 80%, specificity of 86%, and negative predictive value of 95% (P<.001). On univariate logistic regression, eccentricity index of >0.25 (P<.001) and device implantation depth (P=.015) correlated with significant PAR, while other parameters such as annular calcification and cover index did not. On multivariate analysis including only parameters with P<.1 on univariate analysis, eccentricity index >0.25 was the sole independent predictor of significant PAR. Eccentricity index is related to significant PAR after TAVI with Medtronic CoreValve. Further larger studies are required to determine the utility of this novel index in screening suitable patients for this procedure.
Kefayati, Sarah; Milner, Jaques S; Holdsworth, David W; Poepping, Tamie L
2014-01-01
Atherosclerotic disease, and the subsequent complications of thrombosis and plaque rupture, has been associated with local shear stress. In the diseased carotid artery, local variations in shear stress are induced by various geometrical features of the stenotic plaque. Greater stenosis severity, plaque eccentricity (symmetry) and plaque ulceration have been associated with increased risk of cerebrovascular events based on clinical trial studies. Using particle image velocimetry, the levels and patterns of shear stress (derived from both laminar and turbulent phases) were studied for a family of eight matched-geometry models incorporating independently varied plaque features - i.e. stenosis severity up to 70%, one of two forms of plaque eccentricity, and the presence of plaque ulceration). The level of laminar (ensemble-averaged) shear stress increased with increasing stenosis severity resulting in 2-16 Pa for free shear stress (FSS) and approximately double (4-36 Pa) for wall shear stress (WSS). Independent of stenosis severity, marked differences were found in the distribution and extent of shear stress between the concentric and eccentric plaque formations. The maximum WSS, found at the apex of the stenosis, decayed significantly steeper along the outer wall of an eccentric model compared to the concentric counterpart, with a 70% eccentric stenosis having 249% steeper decay coinciding with the large outer-wall recirculation zone. The presence of ulceration (in a 50% eccentric plaque) resulted in both elevated FSS and WSS levels that were sustained longer (∼20 ms) through the systolic phase compared to the non-ulcerated counterpart model, among other notable differences. Reynolds (turbulent) shear stress, elevated around the point of distal jet detachment, became prominent during the systolic deceleration phase and was widely distributed over the large recirculation zone in the eccentric stenoses.
Timmins, Ryan G; Bourne, Matthew N; Shield, Anthony J; Williams, Morgan D; Lorenzen, Christian; Opar, David A
2016-12-01
To investigate the role of eccentric knee flexor strength, between-limb imbalance and biceps femoris long head (BFlh) fascicle length on the risk of future hamstring strain injury (HSI). Elite soccer players (n=152) from eight different teams participated. Eccentric knee flexor strength during the Nordic hamstring exercise and BFlh fascicle length were assessed at the beginning of preseason. The occurrences of HSIs following this were recorded by the team medical staff. Relative risk (RR) was determined for univariate data, and logistic regression was employed for multivariate data. Twenty seven new HSIs were reported. Eccentric knee flexor strength below 337 N (RR=4.4; 95% CI 1.1 to 17.5) and possessing BFlh fascicles shorter than 10.56 cm (RR=4.1; 95% CI 1.9 to 8.7) significantly increased the risk of a HSI. Multivariate logistic regression revealed significant effects when combinations of age, history of HSI, eccentric knee flexor strength and BFlh fascicle length were explored. From these analyses the likelihood of a future HSI in older athletes or those with a HSI history was reduced if high levels of eccentric knee flexor strength and longer BFlh fascicles were present. The presence of short BFlh fascicles and low levels of eccentric knee flexor strength in elite soccer players increases the risk of future HSI. The greater risk of a future HSI in older players or those with a previous HSI is reduced when they have longer BFlh fascicles and high levels of eccentric strength. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Vangsgaard, Steffen; Taylor, Janet L; Hansen, Ernst A; Madeleine, Pascal
2014-06-15
Trapezius muscle Hoffman (H) reflexes were obtained to investigate the neural adaptations induced by a 5-wk strength training regimen, based solely on eccentric contractions of the shoulder muscles. Twenty-nine healthy subjects were randomized into an eccentric training group (n = 15) and a reference group (n = 14). The eccentric training program consisted of nine training sessions of eccentric exercise performed over a 5-wk period. H-reflex recruitment curves, the maximal M wave (Mmax), maximal voluntary contraction (MVC) force, rate of force development (RFD), and electromyographic (EMG) voluntary activity were recorded before and after training. H reflexes were recorded from the middle part of the trapezius muscle by electrical stimulation of the C3/4 cervical nerves; Mmax was measured by electrical stimulation of the accessory nerve. Eccentric strength training resulted in significant increases in the maximal trapezius muscle H reflex (Hmax) (21.4% [5.5-37.3]; P = 0.01), MVC force (26.4% [15.0-37.7]; P < 0.01), and RFD (24.6% [3.2-46.0]; P = 0.025), while no significant changes were observed in the reference group. Mmax remained unchanged in both groups. A significant positive correlation was found between the change in MVC force and the change in EMG voluntary activity in the training group (r = 0.57; P = 0.03). These results indicate that the net excitability of the trapezius muscle H-reflex pathway increased after 5 wk of eccentric training. This is the first study to investigate and document changes in the trapezius muscle H reflex following eccentric strength training. Copyright © 2014 the American Physiological Society.
Duhig, Steven J; Williams, Morgan D; Minett, Geoffrey M; Opar, David; Shield, Anthony J
2017-06-01
To examine the effect of 100 drop punt kicks on isokinetic knee flexor strength and surface electromyographic activity of bicep femoris and medial hamstrings. Randomized control study. Thirty-six recreational footballers were randomly assigned to kicking or control groups. Dynamometry was conducted immediately before and after the kicking or 10min of sitting (control). Eccentric strength declined more in the kicking than the control group (p<0.001; d=1.60), with greater reductions in eccentric than concentric strength after kicking (p=0.001; d=0.92). No significant between group differences in concentric strength change were observed (p=0.089; d=0.60). The decline in normalized eccentric hamstring surface electromyographic activity (bicep femoris and medial hamstrings combined) was greater in the kicking than the control group (p<0.001; d=1.78), while changes in concentric hamstring surface electromyographic activity did not differ between groups (p=0.863; d=0.04). Post-kicking reductions in surface electromyographic activity were greater in eccentric than concentric actions for both bicep femoris (p=0.008; d=0.77) and medial hamstrings (p<0.001; d=1.11). In contrast, the control group exhibited smaller reductions in eccentric than concentric hamstring surface electromyographic activity for bicep femoris (p=0.026; d=0.64) and medial hamstrings (p=0.032; d=0.53). Reductions in bicep femoris surface electromyographic activity were correlated with eccentric strength decline (R=0.645; p=0.007). Reductions in knee flexor strength and hamstring surface electromyographic activity are largely limited to eccentric contractions and this should be considered when planning training loads in Australian Football. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Bridgeman, Lee A; McGuigan, Michael R; Gill, Nicholas D; Dulson, Deborah K
2018-01-01
Bridgeman, LA, McGuigan, MR, Gill, ND, and Dulson, DK. Relationships between concentric and eccentric strength and countermovement jump performance in resistance trained men. J Strength Cond Res 32(1): 255-260, 2018-The purpose of this study was to investigate the relationships between concentric and eccentric peak force (PF) and countermovement jump (CMJ) performance in resistance trained men. Subjects were 12 men (mean ± SD; age: 25.4 ± 3.5 years; height: 177.2 ± 4.5 cm; mass: 84.0 ± 10.1 kg). The men were tested for concentric and eccentric PF using the Exerbotics squat device. Subjects then completed 3 CMJs to allow for the calculation of peak power (PP), peak ground reaction force, and jump height (JH). Correlations between the variables of interest were calculated using Pearson product-moment correlation coefficients. A large relationship was found between absolute concentric PF and absolute CMJ PP (r = 0.66, p ≤ 0.05). Absolute eccentric PF had a very large relationship with absolute CMJ PP and CMJ JH (r = 0.74, p < 0.01 and r = 0.74, p < 0.001, respectively). In addition, absolute eccentric PF was found to have a moderate relationship with relative CMJ PP (r = 0.58, p ≤ 0.05). Relative eccentric PF was had a very large relationship with relative CMJ PP and CMJ JH (r = 0.73, p < 0.001 and r = 0.79, p < 0.001, respectively). Based on these findings, strength and conditioning coaches and athletes who wish to enhance CMJ performance may wish to include exercises, which enhance lower-body eccentric strength within their training.
NASA Astrophysics Data System (ADS)
Rashidi, Azida; Majid, Taksiah A.; Fadzli, M. N.; Faisal, Ade; Noor, Suhaila M.
2017-10-01
All buildings are subjected to some degree of torsion which in turn changes the member torsional demands from that of translation only. Torsional effects on buildings subjected to earthquakes are not found directly in structural analysis unless full three-dimensional inelastic dynamic time history analysis is conducted. Since design is often conducted using two-dimensional analysis, these effects are not directly considered. There is currently an understanding on how different factors may influence torsion, however, the degree to which these factors influence torsion is relatively unknown. Slab rotation effect is considered a major response parameter to represent the severity of the torsional response of eccentric systems; hence, it is considered in this study. The centre of strength (CR) and centre of stiffness (CS) are the two main factors under considerations. A comprehensive analysis on eighty different CR and CS conditions are applied to a three-dimensional, asymmetric building and their influences to slab rotation are observed. The CR/CS conditions are applied by varying strength eccentricities (er) and stiffness eccentricities (es) using two condition models. Then, earthquake ground motions are applied in z-direction under elastic and inelastic conditions. The results interpreted using a simple approach shows important slab rotation behaviour that forms interesting findings from this study. The slab rotation demand is found to reduce as strength eccentricity moves away from the Centre of Mass (CoM) but is independent of the stiffness eccentricity. The study also confirms finding of previous works which states that stiffness eccentricity plays a minor role when assessing the torsional behaviour of a ductile systems. Results from inelastic analysis shows slab rotation demand increases as strength eccentricity is closer to the CoM but it remains constant for elastic analysis.
Intratester Reliability and Construct Validity of a Hip Abductor Eccentric Strength Test.
Brindle, Richard A; Ebaugh, David; Milner, Clare E
2018-06-06
Side-lying hip abductor strength tests are commonly used to evaluate muscle strength. In a "break" test, the tester applies sufficient force to lower the limb to the table while the patient resists. The peak force is postulated to occur while the leg is lowering, thus representing the participant's eccentric muscle strength. However, it is unclear whether peak force occurs before or after the leg begins to lower. To determine intrarater reliability and construct validity of a hip abductor eccentric strength test. Intrarater reliability and construct validity study. Twenty healthy adults (26 [6] y; 1.66 [0.06] m; 62.2 [8.0] kg) made 2 visits to the laboratory at least 1 week apart. During the hip abductor eccentric strength test, a handheld dynamometer recorded peak force and time to peak force, and limb position was recorded via a motion capture system. Intrarater reliability was determined using intraclass correlation, SEM, and minimal detectable difference. Construct validity was assessed by determining if peak force occurred after the start of the lowering phase using a 1-sample t test. The hip abductor eccentric strength test had substantial intrarater reliability (intraclass correlation (3,3) = .88; 95% confidence interval, .65-.95), SEM of 0.9 %BWh, and a minimal detectable difference of 2.5 %BWh. Construct validity was established as peak force occurred 2.1 (0.6) seconds (range: 0.7-3.7 s) after the start of the lowering phase of the test (P ≤ .001). The hip abductor eccentric strength test is a valid and reliable measure of eccentric muscle strength. This test may be used clinically to assess changes in eccentric muscle strength over time.
Eccentric Torque-Producing Capacity is Influenced by Muscle Length in Older Healthy Adults.
Melo, Ruth C; Takahashi, Anielle C M; Quitério, Robison J; Salvini, Tânia F; Catai, Aparecida M
2016-01-01
Considering the importance of muscle strength to functional capacity in the elderly, the study investigated the effects of age on isokinetic performance and torque production as a function of muscle length. Eleven younger (24.2 ± 2.9 years) and 16 older men (62.7 ± 2.5 years) were subjected to concentric and eccentric isokinetic knee extension/flexion at 60 and 120° · s(-1) through a functional range of motion. The older group presented lower peak torque (in newton-meters) than the young group for both isokinetic contraction types (age effect, p < 0.001). Peak torque deficits in the older group were near 30 and 29% for concentric and eccentric contraction, respectively. Concentric peak torque was lower at 120° · s(-1) than at 60° · s(-1) for both groups (angular velocity effect, p < 0.001). Eccentric knee extension torque was the only exercise tested that showed an interaction effect between age and muscle length (p < 0.001), which suggested different torque responses to the muscle length between groups. Compared with the young group, the eccentric knee extension torque was 22-56% lower in the older group, with the deficits being lower in the shortened muscle length (22-27%) and higher (33-56%) in the stretched muscle length. In older men, the production of eccentric knee strength seems to be dependent on the muscle length. At more stretched positions, older subjects lose the capacity to generate eccentric knee extension torque. More studies are needed to assess the mechanisms involved in eccentric strength preservation with aging and its relationship with muscle length.
NASA Astrophysics Data System (ADS)
Martin, Rebecca G.; Lubow, Stephen H.
2018-06-01
In a recent paper Martin & Lubow showed that a circumbinary disc around an eccentric binary can undergo damped nodal oscillations that lead to the polar (perpendicular) alignment of the disc relative to the binary orbit. The disc angular momentum vector aligns to the eccentricity vector of the binary. We explore the robustness of this mechanism for a low mass disc (0.001 of the binary mass) and its dependence on system parameters by means of hydrodynamic disc simulations. We describe how the evolution depends upon the disc viscosity, temperature, size, binary mass ratio, orbital eccentricity and inclination. We compare results with predictions of linear theory. We show that polar alignment of a low mass disc may occur over a wide range of binary-disc parameters. We discuss the application of our results to the formation of planetary systems around eccentric binary stars.
Ultrasonic guided waves in eccentric annular pipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu
2014-02-18
This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modesmore » in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection.« less
Perceived duration decreases with increasing eccentricity.
Kliegl, Katrin M; Huckauf, Anke
2014-07-01
Previous studies examining the influence of stimulus location on temporal perception yield inhomogeneous and contradicting results. Therefore, the aim of the present study is to soundly examine the effect of stimulus eccentricity. In a series of five experiments, subjects compared the duration of foveal disks to disks presented at different retinal eccentricities on the horizontal meridian. The results show that the perceived duration of a visual stimulus declines with increasing eccentricity. The effect was replicated with various stimulus orders (Experiments 1-3), as well as with cortically magnified stimuli (Experiments 4-5), ruling out that the effect was merely caused by different cortical representation sizes. The apparent decreasing duration of stimuli with increasing eccentricity is discussed with respect to current models of time perception, the possible influence of visual attention and respective underlying physiological characteristics of the visual system. Copyright © 2014 Elsevier B.V. All rights reserved.
Eccentricity error identification and compensation for high-accuracy 3D optical measurement
He, Dong; Liu, Xiaoli; Peng, Xiang; Ding, Yabin; Gao, Bruce Z
2016-01-01
The circular target has been widely used in various three-dimensional optical measurements, such as camera calibration, photogrammetry and structured light projection measurement system. The identification and compensation of the circular target systematic eccentricity error caused by perspective projection is an important issue for ensuring accurate measurement. This paper introduces a novel approach for identifying and correcting the eccentricity error with the help of a concentric circles target. Compared with previous eccentricity error correction methods, our approach does not require taking care of the geometric parameters of the measurement system regarding target and camera. Therefore, the proposed approach is very flexible in practical applications, and in particular, it is also applicable in the case of only one image with a single target available. The experimental results are presented to prove the efficiency and stability of the proposed approach for eccentricity error compensation. PMID:26900265
Eccentricity error identification and compensation for high-accuracy 3D optical measurement.
He, Dong; Liu, Xiaoli; Peng, Xiang; Ding, Yabin; Gao, Bruce Z
2013-07-01
The circular target has been widely used in various three-dimensional optical measurements, such as camera calibration, photogrammetry and structured light projection measurement system. The identification and compensation of the circular target systematic eccentricity error caused by perspective projection is an important issue for ensuring accurate measurement. This paper introduces a novel approach for identifying and correcting the eccentricity error with the help of a concentric circles target. Compared with previous eccentricity error correction methods, our approach does not require taking care of the geometric parameters of the measurement system regarding target and camera. Therefore, the proposed approach is very flexible in practical applications, and in particular, it is also applicable in the case of only one image with a single target available. The experimental results are presented to prove the efficiency and stability of the proposed approach for eccentricity error compensation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrovich, Cristobal; Rafikov, Roman; Tremaine, Scott, E-mail: cpetrovi@princeton.edu
Many exoplanets in close-in orbits are observed to have relatively high eccentricities and large stellar obliquities. We explore the possibility that these result from planet-planet scattering by studying the dynamical outcomes from a large number of orbit integrations in systems with two and three gas-giant planets in close-in orbits (0.05 AU < a < 0.15 AU). We find that at these orbital separations, unstable systems starting with low eccentricities and mutual inclinations (e ≲ 0.1, i ≲ 0.1) generally lead to planet-planet collisions in which the collision product is a planet on a low-eccentricity, low-inclination orbit. This result is inconsistentmore » with the observations. We conclude that eccentricity and inclination excitation from planet-planet scattering must precede migration of planets into short-period orbits. This result constrains theories of planet migration: the semi-major axis must shrink by 1-2 orders of magnitude without damping the eccentricity and inclination.« less
A generalized theory for eccentric and misalignment effects in high-pressure annular seals
NASA Technical Reports Server (NTRS)
Chen, W. C.; Jackson, E. D.
1986-01-01
High-pressure annular seal leakage and dynamic coefficients vary with eccentricity and misalignment. Recent seal leakage data with both concentric and fully eccentric alignments support the seal leakage model with surface roughness and eccentricity effects included. In this paper, the seal dynamic coefficient calculation has been generalized and allows direct calculation of the seal dynamic coefficients at any circumferential location. The generalized solution agrees with the results obtained by using the calculated values of an earlier paper and performing a coordinate transformation. The analysis results coincide with the measured data in showing that the stiffness and damping matrices of seal coefficients are not skew symmetric, and the main diagonal seal coefficients are not equal. The measured direct stiffnesses were found higher than predicted by the concentric seal theory, but this may be explained by the presence of eccentricity in the test operating mode.
Gilaie-Dotan, Sharon; Doron, Ravid
2017-06-01
Visual categories are associated with eccentricity biases in high-order visual cortex: Faces and reading with foveally-biased regions, while common objects and space with mid- and peripherally-biased regions. As face perception and reading are among the most challenging human visual skills, and are often regarded as the peak achievements of a distributed neural network supporting common objects perception, it is unclear why objects, which also rely on foveal vision to be processed, are associated with mid-peripheral rather than with a foveal bias. Here, we studied BN, a 9 y.o. boy who has normal basic-level vision, abnormal (limited) oculomotor pursuit and saccades, and shows developmental object and contour integration deficits but with no indication of prosopagnosia. Although we cannot infer causation from the data presented here, we suggest that normal pursuit and saccades could be critical for the development of contour integration and object perception. While faces and perhaps reading, when fixated upon, take up a small portion of central visual field and require only small eye movements to be properly processed, common objects typically prevail in mid-peripheral visual field and rely on longer-distance voluntary eye movements as saccades to be brought to fixation. While retinal information feeds into early visual cortex in an eccentricity orderly manner, we hypothesize that propagation of non-foveal information to mid and high-order visual cortex critically relies on circuitry involving eye movements. Limited or atypical eye movements, as in the case of BN, may hinder normal information flow to mid-eccentricity biased high-order visual cortex, adversely affecting its development and consequently inducing visual perceptual deficits predominantly for categories associated with these regions. Copyright © 2017 Elsevier Ltd. All rights reserved.
CFD determination of flow perturbation boundary conditions for seal rotordynamic modeling
NASA Astrophysics Data System (ADS)
Venkatesan, Ganesh
2002-09-01
A new approach has been developed and utilized to determine the flow field perturbations (i.e. disturbance due to rotor eccentricity and/or motion) upstream of and within a non-contacting seal. The results are proposed for use with bulk-flow perturbation and CFD-perturbation seal rotordynamic models, as well as in fully 3-D CFD models, to specify approximate boundary conditions for the first-order variables at the computational domain inlet. The perturbation quantities were evaluated by subtracting the numerical flow field solutions corresponding to the concentric rotor position from that for an eccentric rotor position. The disturbance pressure quantities predicted from the numerical solutions were validated by comparing with previous pressure measurements. A parametric study was performed to understand the influence of upstream chamber height, seal clearance, shaft speed, whirl speed, zeroth-order streamwise and swirl velocities, and downstream pressure on the distribution of the first-order quantities in the upstream chamber, seal inlet and seal exit regions. Radially bulk-averaged first-order quantities were evaluated in the upstream chamber, as well as at the seal inlet and exit. The results were finally presented in the form of generalized dimensionless boundary condition correlations so that they can be applied to seal rotordynamic models over a wide range of operating conditions and geometries. To examine the effect of the proposed, approximate first-order boundary conditions on the solutions of the fully 3-D CFD rotordynamic models, the first-order boundary condition correlations for the upstream chamber were used to adjust the circumferential distribution of domain inlet values. The benefit of the boundary condition expressions was assessed for two previously measured test cases, one for a gas seal and the other for a liquid seal. For the gas seal case, a significant improvement in the prediction of the cross-coupled stiffness, when including the proposed first-order inlet boundary values, was found. In the case of liquid seals the tangential impedance values obtained with boundary condition adjustments showed a very slight improvement for a range of whirl speeds over those obtained without them. The radial impedance values obtained with the new adjustments showed a significant improvement over those obtained without them.
NASA Astrophysics Data System (ADS)
Taylor, Stuart F.
2013-01-01
The most unexpected planet finding is arguably the number of those with shorter periods than theorists had expected, because most such close planets had been expected to migrate into the star in shorter timescales than the ages of the stars. Subsequent effort has been made to show how tidal dissipation in stars due to planets could be weaker than expected, but we show how the occurrence distribution of differently-sized planets is more consistent with the explanation that these planets have more recently arrived as a flow of inwardly migrating planets, with giant planets more likely to be found while gradually going through a short period stage. This continual ``flow'' of new planets arriving from further out is presumably supplied by the flow likely responsible for the short period pileup of giant planets (Socrates+ 2011). We have previously shown that the shortest period region of the exoplanet occurrence distribution has a fall-off shaped by inward tidal migration due to stellar tides, that is, tides on the star caused by the planets (Taylor 2011, 2012). The power index of the fall-off of giant and intermediate radius planet candidates found from Kepler data (Howard+ 2011) is close to the index of 13/3 which is expected for planets in circular orbits undergoing tidal migration. However, there is a discrepancy of the strength of the tidal migration determined using fits to the giant and medium planets distributions. This discrepancy is best resolved by the explanation that more giant than medium radii planets migrate through these short period orbits. We also present a correlation between higher eccentricity of planetary orbits with higher Fe/H of host stars, which could be explained by high eccentricity planets being associated with recent episodes of other planets into stars. By the time these planets migrate to become hot Jupiters, the pollution may be mixed into the star. The clearing of other planets by migrating hot giant planets may result in hot Jupiters being anti-correlated with additional planets. We present results from our study of inward migration.
Resistance characteristics of innovative eco-fitness equipment: a water buoyancy muscular machine.
Chen, Wei-Han; Liu, Ya-Chen; Tai, Hsing-Hao; Liu, Chiang
2018-03-01
This paper propose innovative eco-fitness equipment-a water buoyancy muscular machine (WBM machine) in which resistance is generated by buoyancy and fluid resistance. The resistance characteristics during resistance adjustment and under isometric, concentric, eccentric and isokinetic conditions were investigated and compared to a conventional machine with metal weight plates. The results indicated that the isometric, concentric and eccentric resistances could be adjusted by varying the water volume; the maximum resistances under isometric, concentric and eccentric conditions were 163.8, 338.5 and 140.9 N, respectively. The isometric resistances at different positions remained constant in both machines; however the isometric resistance was lower for WBM machine when at a position corresponding to a 5% total displacement. The WBM machine has lower resistance under eccentric conditions and higher resistance under concentric conditions. Although the conventional machine has an identical trend, the variation was minor (within 4 N). In the WBM machine, the eccentric resistance was approximately 30-45% of the concentric resistance. Concentric resistances increased with an increase in velocity in both machines; however, the eccentric resistances decreased with an increase in velocity. In summary, the WBM machine, a piece of innovative eco-fitness equipment, has unique resistance characteristics and expansibility.
Differences in force normalising procedures during submaximal anisometric contractions.
Škarabot, Jakob; Ansdell, Paul; Brownstein, Callum; Howatson, Glyn; Goodall, Stuart; Durbaba, Rade
2018-05-26
Eccentric contractions are thought to require a unique neural activation strategy. However, due to greater intrinsic force generating capacity of muscle fibres during eccentric contraction, the understanding of neural modulation of different contraction types during submaximal contractions may be impeded by the force normalisation procedure employed. In the present experiment, subjects performed maximal isometric dorsiflexion at shorter (80°), intermediate (90°) and longer (100°) muscle lengths, and maximal concentric and eccentric contractions. Thereafter, submaximal concentric and eccentric contractions were performed normalised to either isometric maximum at 90° (ISO), contraction type specific maximum (CTS) or muscle length specific maximum (MLS). When using ISO or MLS for normalisation, mean submaximal eccentric torque levels were significantly lower when compared to CTS normalisation (11 and 7% lower compared to CTS; p = 0.003 and p = 0.018 for ISO and MLS, respectively). These experimentally observed differences closely matched those expected from the predictive model. During submaximal concentric contraction, mean torque levels were similar between ISO and CTS normalisation with similar discrepancies noted in EMG activity. These findings suggest that normalising to ISO and MLS might not be accurate for assessment and prescription of submaximal eccentric contractions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Why do shape aftereffects increase with eccentricity?
Gheorghiu, Elena; Kingdom, Frederick A A; Bell, Jason; Gurnsey, Rick
2011-12-20
Studies have shown that spatial aftereffects increase with eccentricity. Here, we demonstrate that the shape-frequency and shape-amplitude aftereffects, which describe the perceived shifts in the shape of a sinusoidal-shaped contour following adaptation to a slightly different sinusoidal-shaped contour, also increase with eccentricity. Why does this happen? We first demonstrate that the perceptual shift increases with eccentricity for stimuli of fixed sizes. These shifts are not attenuated by variations in stimulus size; in fact, at each eccentricity the degree of perceptual shift is scale-independent. This scale independence is specific to the aftereffect because basic discrimination thresholds (in the absence of adaptation) decrease as size increases. Structural aspects of the displays were found to have a modest effect on the degree of perceptual shift; the degree of adaptation depends modestly on distance between stimuli during adaptation and post-adaptation testing. There were similar temporal rates of decline of adaptation across the visual field and higher post-adaptation discrimination thresholds in the periphery than in the center. The observed results are consistent with greater sensitivity reduction in adapted mechanisms following adaptation in the periphery or an eccentricity-dependent increase in the bandwidth of the shape-frequency- and shape-amplitude-selective mechanisms.
Effects of Peripheral Eccentricity and Head Orientation on Gaze Discrimination
Palanica, Adam; Itier, Roxane J.
2017-01-01
Visual search tasks support a special role for direct gaze in human cognition, while classic gaze judgment tasks suggest the congruency between head orientation and gaze direction plays a central role in gaze perception. Moreover, whether gaze direction can be accurately discriminated in the periphery using covert attention is unknown. In the present study, individual faces in frontal and in deviated head orientations with a direct or an averted gaze were flashed for 150 ms across the visual field; participants focused on a centred fixation while judging the gaze direction. Gaze discrimination speed and accuracy varied with head orientation and eccentricity. The limit of accurate gaze discrimination was less than ±6° eccentricity. Response times suggested a processing facilitation for direct gaze in fovea, irrespective of head orientation, however, by ±3° eccentricity, head orientation started biasing gaze judgments, and this bias increased with eccentricity. Results also suggested a special processing of frontal heads with direct gaze in central vision, rather than a general congruency effect between eye and head cues. Thus, while both head and eye cues contribute to gaze discrimination, their role differs with eccentricity. PMID:28344501
Kato, Hiroyuki; Miura, Kyoko; Suzuki, Katsuya; Bannai, Makoto
2017-01-01
Eccentric contractions induce muscle damage, which impairs recovery of glycogen and adenosine tri-phosphate (ATP) content over several days. Leucine-enriched essential amino acids (LEAAs) enhance the recovery in muscles that are damaged after eccentric contractions. However, the role of LEAAs in this process remains unclear. We evaluated the content in glycogen and high energy phosphates molecules (phosphocreatine (PCr), adenosine di-phosphate (ADP) and ATP) in rats that were following electrically stimulated eccentric contractions. Muscle glycogen content decreased immediately after the contraction and remained low for the first three days after the stimulation, but increased seven days after the eccentric contraction. LEAAs administration did not change muscle glycogen content during the first three days after the contraction. Interestingly, however, it induced a further increase in muscle glycogen seven days after the stimulation. Contrarily, ATP content decreased immediately after the eccentric contraction, and remained lower for up to seven days after. Additionally, LEAAs administration did not affect the ATP content over the experimental period. Finally, ADP and PCr levels did not significantly change after the contractions or LEAA administration. LEAAs modulate the recovery of glycogen content in muscle after damage-inducing exercise. PMID:29065533
Kato, Hiroyuki; Miura, Kyoko; Suzuki, Katsuya; Bannai, Makoto
2017-10-23
Eccentric contractions induce muscle damage, which impairs recovery of glycogen and adenosine tri-phosphate (ATP) content over several days. Leucine-enriched essential amino acids (LEAAs) enhance the recovery in muscles that are damaged after eccentric contractions. However, the role of LEAAs in this process remains unclear. We evaluated the content in glycogen and high energy phosphates molecules (phosphocreatine (PCr), adenosine di-phosphate (ADP) and ATP) in rats that were following electrically stimulated eccentric contractions. Muscle glycogen content decreased immediately after the contraction and remained low for the first three days after the stimulation, but increased seven days after the eccentric contraction. LEAAs administration did not change muscle glycogen content during the first three days after the contraction. Interestingly, however, it induced a further increase in muscle glycogen seven days after the stimulation. Contrarily, ATP content decreased immediately after the eccentric contraction, and remained lower for up to seven days after. Additionally, LEAAs administration did not affect the ATP content over the experimental period. Finally, ADP and PCr levels did not significantly change after the contractions or LEAA administration. LEAAs modulate the recovery of glycogen content in muscle after damage-inducing exercise.
Delahunt, Eamonn; McGroarty, Mark; De Vito, Giuseppe; Ditroilo, Massimiliano
2016-04-01
To investigate the kinematic and muscle activation adaptations during performance of the Nordic hamstring exercise (NHE) to a 6-week eccentric hamstring training programme using the NHE as the sole mode of exercise. Twenty-nine healthy males were randomly allocated to a control (CG) or intervention (IG) group. The IG participated in a 6-week eccentric hamstring exercise programme using the NHE. The findings of the present study were that a 6-week eccentric hamstring training programme improved eccentric hamstring muscle strength (202.4 vs. 177.4 nm, p = 0.0002, Cohen's d = 0.97) and optimized kinematic (longer control of the forward fall component of the NHE, 68.1° vs. 73.7°, p = 0.022, Cohen's d = 0.90) and neuromuscular parameters (increased electromyographic activity of the hamstrings, 83.2 vs. 56.6 % and 92.0 vs. 54.2 %, p < 0.05, Cohen's d > 1.25) associated with NHE performance. This study provides some insight into potential mechanisms by which an eccentric hamstring exercise programme utilizing the NHE as the mode of exercise may result in an improvement in hamstring muscle control during eccentric contractions.
Construction of an isokinetic eccentric cycle ergometer for research and training.
Elmer, Steven J; Martin, James C
2013-08-01
Eccentric cycling serves a useful exercise modality in clinical, research, and sport training settings. However, several constraints can make it difficult to use commercially available eccentric cycle ergometers. In this technical note, we describe the process by which we built an isokinetic eccentric cycle ergometer using exercise equipment modified with commonly available industrial parts. Specifically, we started with a used recumbent cycle ergometer and removed all the original parts leaving only the frame and seat. A 2.2 kW electric motor was attached to a transmission system that was then joined with the ergometer. The motor was controlled using a variable frequency drive, which allowed for control of a wide range of pedaling rates. The ergometer was also equipped with a power measurement device that quantified work, power, and pedaling rate and provided feedback to the individual performing the exercise. With these parts along with some custom fabrication, we were able to construct an isokinetic eccentric cycle ergometer suitable for research and training. This paper offers a guide for those individuals who plan to use eccentric cycle ergometry as an exercise modality and wish to construct their own ergometer.
Eccentric contractions disrupt FKBP12 content in mouse skeletal muscle
Baumann, Cory W.; Rogers, Russell G.; Gahlot, Nidhi; Ingalls, Christopher P.
2014-01-01
Abstract Strength deficits associated with eccentric contraction‐induced muscle injury stem, in part, from impaired voltage‐gated sarcoplasmic reticulum (SR) Ca2+ release. FKBP12 is a 12‐kD immunophilin known to bind to the SR Ca2+ release channel (ryanodine receptor, RyR1) and plays an important role in excitation‐contraction coupling. To assess the effects of eccentric contractions on FKBP12 content, we measured anterior crural muscle (tibialis anterior [TA], extensor digitorum longus [EDL], extensor hallucis longus muscles) strength and FKBP12 content in pellet and supernatant fractions after centrifugation via immunoblotting from mice before and after a single bout of either 150 eccentric or concentric contractions. There were no changes in peak isometric torque or FKBP12 content in TA muscles after concentric contractions. However, FKBP12 content was reduced in the pelleted fraction immediately after eccentric contractions, and increased in the soluble protein fraction 3 day after injury induction. FKBP12 content was correlated (P = 0.025; R2= 0.38) to strength deficits immediately after injury induction. In summary, eccentric contraction‐induced muscle injury is associated with significant alterations in FKBP12 content after injury, and is correlated with changes in peak isometric torque. PMID:25347864
NASA Astrophysics Data System (ADS)
Samsing, Johan; Askar, Abbas; Giersz, Mirek
2018-03-01
We estimate the population of eccentric gravitational wave (GW) binary black hole (BBH) mergers forming during binary–single interactions in globular clusters (GCs), using ∼800 GC models that were evolved using the MOCCA code for star cluster simulations as part of the MOCCA-Survey Database I project. By re-simulating BH binary–single interactions extracted from this set of GC models using an N-body code that includes GW emission at the 2.5 post-Newtonian level, we find that ∼10% of all the BBHs assembled in our GC models that merge at present time form during chaotic binary–single interactions, and that about half of this sample have an eccentricity >0.1 at 10 Hz. We explicitly show that this derived rate of eccentric mergers is ∼100 times higher than one would find with a purely Newtonian N-body code. Furthermore, we demonstrate that the eccentric fraction can be accurately estimated using a simple analytical formalism when the interacting BHs are of similar mass, a result that serves as the first successful analytical description of eccentric GW mergers forming during three-body interactions in realistic GCs.
Flück, Martin; Bosshard, Rebekka; Lungarella, Max
2017-01-01
Eccentric types of endurance exercise are an acknowledged alternative to conventional concentric types of exercise rehabilitation for the cardiac patient, because they reduce cardiorespiratory strain due to a lower metabolic cost of producing an equivalent mechanical output. The former contention has not been tested in a power- and work-matched situation of interval-type exercise under identical conditions because concentric and eccentric types of exercise pose specific demands on the exercise machinery, which are not fulfilled in current practice. Here we tested cardiovascular and muscular consequences of work-matched interval-type of leg exercise (target workload of 15 sets of 1-min bipedal cycles of knee extension and flexion at 30 rpm with 17% of maximal concentric power) on a soft robotic device in healthy subjects by concomitantly monitoring respiration, blood glucose and lactate, and power during exercise and recovery. We hypothesized that interval-type of eccentric exercise lowers strain on glucose-related aerobic metabolism compared to work-matched concentric exercise, and reduces cardiorespiratory strain to levels being acceptable for the cardiac patient. Eight physically active male subjects (24.0 years, 74.7 kg, 3.4 L O2 min -1 ), which power and endurance performance was extensively characterized, completed the study, finalizing 12 sets on average. Average performance was similar during concentric and eccentric exercise ( p = 0.75) but lower than during constant load endurance exercise on a cycle ergometer at 75% of peak aerobic power output (126 vs. 188 Watt) that is recommended for improving endurance capacity. Peak oxygen uptake (-17%), peak ventilation (-23%), peak cardiac output (-16%), and blood lactate (-37%) during soft robotic exercise were lower during eccentric than concentric exercise. Glucose was 8% increased after eccentric exercise when peak RER was 12% lower than during concentric exercise. Muscle power and RFD were similarly reduced after eccentric and concentric exercise. The results highlight that the deployed interval-type of eccentric leg exercise reduces metabolic strain of the cardiovasculature and muscle compared to concentric exercise, to recommended levels for cardio-rehabilitation (i.e., 50-70% of peak heart rate). Increases in blood glucose concentration indicate that resistance to contraction-induced glucose uptake after the deployed eccentric protocol is unrelated to muscle fatigue.
Flück, Martin; Bosshard, Rebekka; Lungarella, Max
2017-01-01
Eccentric types of endurance exercise are an acknowledged alternative to conventional concentric types of exercise rehabilitation for the cardiac patient, because they reduce cardiorespiratory strain due to a lower metabolic cost of producing an equivalent mechanical output. The former contention has not been tested in a power- and work-matched situation of interval-type exercise under identical conditions because concentric and eccentric types of exercise pose specific demands on the exercise machinery, which are not fulfilled in current practice. Here we tested cardiovascular and muscular consequences of work-matched interval-type of leg exercise (target workload of 15 sets of 1-min bipedal cycles of knee extension and flexion at 30 rpm with 17% of maximal concentric power) on a soft robotic device in healthy subjects by concomitantly monitoring respiration, blood glucose and lactate, and power during exercise and recovery. We hypothesized that interval-type of eccentric exercise lowers strain on glucose-related aerobic metabolism compared to work-matched concentric exercise, and reduces cardiorespiratory strain to levels being acceptable for the cardiac patient. Eight physically active male subjects (24.0 years, 74.7 kg, 3.4 L O2 min−1), which power and endurance performance was extensively characterized, completed the study, finalizing 12 sets on average. Average performance was similar during concentric and eccentric exercise (p = 0.75) but lower than during constant load endurance exercise on a cycle ergometer at 75% of peak aerobic power output (126 vs. 188 Watt) that is recommended for improving endurance capacity. Peak oxygen uptake (−17%), peak ventilation (−23%), peak cardiac output (−16%), and blood lactate (−37%) during soft robotic exercise were lower during eccentric than concentric exercise. Glucose was 8% increased after eccentric exercise when peak RER was 12% lower than during concentric exercise. Muscle power and RFD were similarly reduced after eccentric and concentric exercise. The results highlight that the deployed interval-type of eccentric leg exercise reduces metabolic strain of the cardiovasculature and muscle compared to concentric exercise, to recommended levels for cardio-rehabilitation (i.e., 50–70% of peak heart rate). Increases in blood glucose concentration indicate that resistance to contraction-induced glucose uptake after the deployed eccentric protocol is unrelated to muscle fatigue. PMID:28912726
Opto-acoustic recanilization delivery system
Visuri, Steven R.; Da Silva, Luiz B.; Celliers, Peter M.; London, Richard A.; Benett, William; Broughton, Kathryn; Esch, Victor
2002-01-01
Fiber delivered laser pulses emulsify thrombus by mechanical stresses that include a combination of pressure, tension and shear stress. Laser radiation is delivered to the locality of a thrombus and the radiation is absorbed by blood, blood dot, or other present materials. The combination of a leading pressure wave and subsequent vapor bubble cause efficient, emulsification of thrombus. Operating the laser in a low average power mode alleviates potential thermal complications. The laser is operated in a high repetition rate mode to take advantage of ultrasound frequency effects of thrombus dissolution as well as to decrease the total procedure time. Specific parameter ranges for operation are described. The device includes optical fibers surrounding a lumen intended for flow of a cooling agent. The fibers may be arranged concentrically around the lumen to deliver radiation and heat over as large an area as possible. An alternative design approach incorporates the optical fibers into the wall of the guiding catheter and utilizes the catheter lumen as the cooling channel. An eccentric tip enables rotation of the device to address all parts of the vasculature. The eccentricity can be provided via a variety of means: spring dip, balloon, protrusion, etc.
NASA Technical Reports Server (NTRS)
Rampino, M. R.
1981-01-01
Revisions in the dates of reported geomagnetic excursions during the Brunhes Epoch are proposed in light of possible correlations between a section at Gioia Tauro, Italy, deep-sea cores, a core from Lake Biwa, Japan, and some lava flows. The anomalously long, double Blake Event reported at Gioia Tauro is here correlated with the Blake Event (approximately 110 kyr) and the Biwa 1 event (180 plus or minus 5 kyr); an hiatus may be present in the section between these two events. The alpha event at Gioia Tauro is correlated with the Biwa 2 event at about 295 kyr; the beta event with the 'Biwa 3' event at about 400 kyr; the gamma event with the Snake River event at 480 plus or minus 50; and the delta event, not recorded elsewhere, is estimated to have occurred at approximately 620 kyr. These proposed refinements in the age estimates of the excursions suggest an approximately 100 kyr cyclicity. If the events are real and the revised dating is correct, the timing of the geomagnetic events seems to coincide with times of peak eccentricity of the earth's orbit, suggesting a causal connection.
Variations in the cone packing density with eccentricity in emmetropes.
Dabir, S; Mangalesh, S; Kumar, K A; Kummelil, M K; Sinha Roy, A; Shetty, R
2014-12-01
To describe the parafoveal cone arrangement in emmetropic subjects and its variations with eccentricity, meridians and change in axial length in Indian eyes. We imaged 25 subjects using compact adaptive optics (AO) retinal camera prototype, the rtx1. Imaging was done at 1, 2, and 3° eccentricity from the fovea in four meridians: nasal, temporal, superior, and inferior. A statistically significant drop in the cone packing density was observed from 2 to 3° (2° eccentricity=25 350/mm(2) (5300/mm(2), 8400-34 800/mm(2)) 3° eccentricity=20 750/mm(2) (6000 mm(2), 9000-33 670/mm(2))) P<0.05. The spacing correspondingly increased with increase in distance from the fovea (2° eccentricity=6.9 μm (0.70 μm, 5.95-11.6 μm)) and 3°eccentricity=7.80 μm (1.00 μm, 6.5-13.5 μm) P<0.05. As the axial length increases, the cone density significantly decreases. Interocular variations were noted. With the advent of AO, visualization at the cellular level is now possible. Understanding the photoreceptor mosaic in the parafoveal space in terms of its density, spacing, and arrangement is crucial so as to detect early pathology and intervene appropriately. Newer therapeutic modalitites that are targeted at the cellular level like yellow micropulse laser, stem cells, gene therapy and so on may be better monitored in terms of safety and efficacy.
Paddon-Jones, D; Muthalib, M; Jenkins, D
2000-03-01
This study examined markers of muscle damage following a repeated bout of maximal isokinetic eccentric exercise performed prior to full recovery from a previous bout. Twenty non-resistance trained volunteers were randomly assigned to a control (CON, n=10) or experimental (EXP, n=10) group. Both groups performed 36 maximal isokinetic eccentric contractions of the elbow flexors of the non-dominant arm (ECC1). The EXP group repeated the same eccentric exercise bout two days later (ECC2). Total work and peak eccentric torque were recorded during each set of ECC1 and ECC2. Isometric torque, delayed onset muscle soreness (DOMS), flexed elbow angle and plasma creatine kinase (CK) activity were measured prior to and immediately following ECC1 and ECC2. at 24h intervals for 7 days following ECC1 and finally on day 11. In both groups, all dependent variables changed significantly during the 2 days following ECC1. A further acute post-exercise impairment in isometric torque (30 +/- 5%) and flexed elbow angle (20 +/- 4%) was observed following ECC2 (p<0.05), despite EXP subjects producing uniformly lower work and peak eccentric torque values during ECC2 (p<0.05). No other significant differences between the CON and EXP groups were observed throughout the study (p>0.05). These findings suggest that when maximal isokinetic eccentric exercise is repeated two days after experiencing of contraction-induced muscle damage, the recovery time course is not significantly altered.
Exoplanet orbital eccentricities derived from LAMOST-Kepler analysis.
Xie, Ji-Wei; Dong, Subo; Zhu, Zhaohuan; Huber, Daniel; Zheng, Zheng; De Cat, Peter; Fu, Jianning; Liu, Hui-Gen; Luo, Ali; Wu, Yue; Zhang, Haotong; Zhang, Hui; Zhou, Ji-Lin; Cao, Zihuang; Hou, Yonghui; Wang, Yuefei; Zhang, Yong
2016-10-11
The nearly circular (mean eccentricity [Formula: see text]) and coplanar (mean mutual inclination [Formula: see text]) orbits of the solar system planets motivated Kant and Laplace to hypothesize that planets are formed in disks, which has developed into the widely accepted theory of planet formation. The first several hundred extrasolar planets (mostly Jovian) discovered using the radial velocity (RV) technique are commonly on eccentric orbits ([Formula: see text]). This raises a fundamental question: Are the solar system and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), whereas the other half are multiple transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with [Formula: see text] 0.3, whereas the multiples are on nearly circular [Formula: see text] and coplanar [Formula: see text] degree) orbits similar to those of the solar system planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation [[Formula: see text](1-2)[Formula: see text
Computation of Coupled Thermal-Fluid Problems in Distributed Memory Environment
NASA Technical Reports Server (NTRS)
Wei, H.; Shang, H. M.; Chen, Y. S.
2001-01-01
The thermal-fluid coupling problems are very important to aerospace and engineering applications. Instead of analyzing heat transfer and fluid flow separately, this study merged two well-accepted engineering solution methods, SINDA for thermal analysis and FDNS for fluid flow simulation, into a unified multi-disciplinary thermal fluid prediction method. A fully conservative patched grid interface algorithm for arbitrary two-dimensional and three-dimensional geometry has been developed. The state-of-the-art parallel computing concept was used to couple SINDA and FDNS for the communication of boundary conditions through PVM (Parallel Virtual Machine) libraries. Therefore, the thermal analysis performed by SINDA and the fluid flow calculated by FDNS are fully coupled to obtain steady state or transient solutions. The natural convection between two thick-walled eccentric tubes was calculated and the predicted results match the experiment data perfectly. A 3-D rocket engine model and a real 3-D SSME geometry were used to test the current model, and the reasonable temperature field was obtained.
Enhanced simulation software for rocket turbopump, turbulent, annular liquid seals
NASA Technical Reports Server (NTRS)
Padavala, Satya; Palazzolo, Alan
1994-01-01
One of the main objectives of this work is to develop a new dynamic analysis for liquid annular seals with arbitrary profile and to analyze a general distorted interstage seal of the space shuttle main engine high pressure oxygen turbopump (SSME-ATD-HPOTP). The dynamic analysis developed is based on a method originally proposed by Nelson and Nguyen. A simpler scheme based on cubic splines is found to be computationally more efficient and has better convergence properties at higher eccentricities. The first order solution of the original analysis is modified by including a more exact solution that takes into account the variation of perturbed variables along the circumference. A new set of equations for dynamic analysis are derived based on this more general model. A unified solution procedure that is valid for both Moody's and Hirs' friction models is presented. Dynamic analysis is developed for three different models: constant properties, variable properties, and thermal effects with variable properties. Arbitrarily varying seal profiles in both axial and circumferential directions are considered. An example case of an elliptical seal with varying degrees of axial curvature is analyzed in detail. A case study based on predicted clearances of an interstage seal of the SSME-ATD-HPOTP is presented. Dynamic coefficients based on external specified load are introduced to analyze seals that support a preload. The other objective of this work is to study the effect of large rotor displacements of SSME-ATD-HPOTP on the dynamics of the annular seal and the resulting transient motion. One task is to identify the magnitude of motion of the rotor about the centered position and establish limits of effectiveness of using current linear models. This task is accomplished by solving the bulk flow model seal governing equations directly for transient seal forces for any given type of motion, including motion with large eccentricities. Based on the above study, an equivalence is established between linearized coefficients based transient motion and the same motion as predicted by the original governing equations. An innovative method is developed to model nonlinearities in an annular seal based on dynamic coefficients computed at various static eccentricities. This method is thoroughly tested for various types of transient motion using bulk flow model results as a benchmark.
Comparison of performances between IPM and SPM motors with rotor eccentricity
NASA Astrophysics Data System (ADS)
Hwang, C. C.; Chang, C. M.; Cheng, S. P.; Chan, C. K.; Pan, C. T.; Chang, T. Y.
2004-11-01
Rotor eccentricity in two three-phase, 6-pole, 36-slot interior permanent magnet- and surface-mounted synchronous motors are investigated and compared by means of a transient finite element model. Magnet flux density, EMF, cogging torque and average torque generated by the model are presented for the cases of static rotor eccentricity. These results are compared with those obtained from a symmetric rotor case.
ERIC Educational Resources Information Center
Vukicevic, Meri; Fitzmaurice, Kerry
2009-01-01
Macular degeneration has a severe impact on a person's ability to perform activities of daily living. This study investigated the impact of in-home training in eccentric viewing on near acuity and performance of activities of daily living. The results suggest that eccentric viewing can ameliorate the impact of the loss of vision that is due to…
Complete waveform model for compact binaries on eccentric orbits
NASA Astrophysics Data System (ADS)
Huerta, E. A.; Kumar, Prayush; Agarwal, Bhanu; George, Daniel; Schive, Hsi-Yu; Pfeiffer, Harald P.; Haas, Roland; Ren, Wei; Chu, Tony; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela
2017-01-01
We present a time domain waveform model that describes the inspiral, merger and ringdown of compact binary systems whose components are nonspinning, and which evolve on orbits with low to moderate eccentricity. The inspiral evolution is described using third-order post-Newtonian equations both for the equations of motion of the binary, and its far-zone radiation field. This latter component also includes instantaneous, tails and tails-of-tails contributions, and a contribution due to nonlinear memory. This framework reduces to the post-Newtonian approximant TaylorT4 at third post-Newtonian order in the zero-eccentricity limit. To improve phase accuracy, we also incorporate higher-order post-Newtonian corrections for the energy flux of quasicircular binaries and gravitational self-force corrections to the binding energy of compact binaries. This enhanced prescription for the inspiral evolution is combined with a fully analytical prescription for the merger-ringdown evolution constructed using a catalog of numerical relativity simulations. We show that this inspiral-merger-ringdown waveform model reproduces the effective-one-body model of Ref. [Y. Pan et al., Phys. Rev. D 89, 061501 (2014)., 10.1103/PhysRevD.89.061501] for quasicircular black hole binaries with mass ratios between 1 to 15 in the zero-eccentricity limit over a wide range of the parameter space under consideration. Using a set of eccentric numerical relativity simulations, not used during calibration, we show that our new eccentric model reproduces the true features of eccentric compact binary coalescence throughout merger. We use this model to show that the gravitational-wave transients GW150914 and GW151226 can be effectively recovered with template banks of quasicircular, spin-aligned waveforms if the eccentricity e0 of these systems when they enter the aLIGO band at a gravitational-wave frequency of 14 Hz satisfies e0GW 150914≤0.15 and e0GW 151226≤0.1 . We also find that varying the spin combinations of the quasicircular, spin-aligned template waveforms does not improve the recovery of nonspinning, eccentric signals when e0≥0.1 . This suggests that these two signal manifolds are predominantly orthogonal.
Boling, Michelle C; Padua, Darin A; Alexander Creighton, R
2009-01-01
Individuals suffering from patellofemoral pain have previously been reported to have decreased isometric strength of the hip musculature; however, no researchers have investigated concentric and eccentric torque of the hip musculature in individuals with patellofemoral pain. To compare concentric and eccentric torque of the hip musculature in individuals with and without patellofemoral pain. Case control. Research laboratory. Twenty participants with patellofemoral pain (age = 26.8 +/- 4.5 years, height = 171.8 +/- 8.4 cm, mass = 72.4 +/- 16.8 kg) and 20 control participants (age = 25.6 +/- 2.8 years, height = 169.5 +/- 8.9 cm, mass = 70.0 +/- 16.9 kg) were tested. Volunteers with patellofemoral pain met the following criteria: knee pain greater than or equal to 3 cm on a 10-cm visual analog scale, insidious onset of symptoms not related to trauma, pain with palpation of the patellar facets, and knee pain during 2 of the following activities: stair climbing, jumping or running, squatting, kneeling, or prolonged sitting. Control participants were excluded if they had a prior history of patellofemoral pain, knee surgery in the past 2 years, or current lower extremity injury that limited participation in physical activity. Concentric and eccentric torque of the hip musculature was measured on an isokinetic dynamometer. All volunteers performed 5 repetitions of each strength test. Separate multivariate analyses of variance were performed to compare concentric and eccentric torque of the hip extensors, abductors, and external rotators between groups. Average and peak concentric and eccentric torque of the hip extensors, abductors, and external rotators. Torque measures were normalized to the participant's body weight multiplied by height. The patellofemoral pain group was weaker than the control group for peak eccentric hip abduction torque (F(1,38) = 6.630, P = .014), and average concentric (F(1,38) = 4.156, P = .048) and eccentric (F(1,38) = 4.963, P = .032) hip external rotation torque. The patellofemoral pain group displayed weakness in eccentric hip abduction and hip external rotation, which may allow for increased hip adduction and internal rotation during functional movements.
Croisier, J L; Camus, G; Deby-Dupont, G; Bertrand, F; Lhermerout, C; Crielaard, J M; Juchmès-Ferir, A; Deby, C; Albert, A; Lamy, M
1996-01-01
To address the question of whether delayed onset muscular soreness (DOMS) following intense eccentric muscle contraction could be due to increased production of the arachidonic acid derived product prostaglandin E2 (PGE2). 10 healthy male subjects were submitted to eccentric and concentric isokinetic exercises on a Kin Trex device at 60 degrees/s angular velocity. Exercise consisted of 8 stages of 5 maximal contractions of the knee extensor and flexor muscle groups of both legs separated by 1 min rest phases. There was an interval of at least 30 days between eccentric and concentric testing, and the order of the two exercise sessions was randomly assigned. The subjective presence and intensity of DOMS was evaluated using a visual analogue scale, immediately, following 24 h and 48 h after each test. Five blood samples were drawn from an antecubital vein: at rest before exercise, immediately after, after 30 min recovery, 24 h and 48 h after the tests. The magnitude of the acute inflammatory response to exercise was assessed by measuring plasma levels of polymorphonuclear elastase ([EL]), myeloperoxidase ([MPO]) and PGE2 ([PGE2]). Using two way analysis of variance, it appeared that only eccentric exercise significantly increased [EL] and DOMS, especially of the hamstring muscles. Furthermore, a significant decrease in eccentric peak torque of this muscle group only was observed on day 2 after eccentric work (- 21%; P < 0.002). Serum activity of creatine kinase and serum concentration of myoglobin increased significantly 24 and 48 h after both exercise tests. However, these variables reached significantly higher values following eccentric contractions 48 h after exercise. Mean [PGE2] in the two exercise modes remained unchanged over time and were practically equal at each time point. On the basis of these findings, we conclude that the magnitude of polymorphonuclear (PMN) activation, muscle damage, and DOMS are greater after eccentric than after concentric muscle contractions. However, the hypothesized interplay between muscle damage, increased PGE2 production, DOMS sensations, and reduced isokinetic muscle performance was not substantiated by the present results.
Electrophoresis of concentrically and eccentrically positioned cylindrical particles in a long tube.
Liu, Hui; Bau, Haim H; Hu, Howard H
2004-03-30
We study analytically and numerically the electrophoretic motion of cylindrical particles translating slowly in long tubes filled with an electrolyte solution and subjected to axial electric fields. Both thin and thick double layers are considered. Of particular interest is the case when the particle's and tube's radii are of the same order of magnitude. The model accounts for the flow induced by the particle's motion (the particle acts as a leaky piston) and the electroosmotic flow in the tube. The electrophoretic velocity of the particle and the forces and torques acting on it are determined as functions of the particle's radius, length, and position, the particle's and tube's zeta potentials, the tube's length, and the externally imposed pressures. When the particle is positioned off center, it rotates and its trajectory traces an oscillatory path.
Uncertainties in tidal theory: Implications for bloated hot Jupiters
NASA Astrophysics Data System (ADS)
Leconte, Jérémy; Chabrier, Gilles; Baraffe, Isabelle
2011-11-01
Thanks to the combination of transit photometry and radial velocity doppler measurements, we are now able to constrain theoretical models of the structure and evolution of objects in the whole mass range between icy giants and stars, including the giant planet/brown dwarf overlapping mass regime (Leconte et al. 2009). In the giant planet mass range, the significant fraction of planets showing a larger radius than predicted by the models suggests that a missing physical mechanism which is either injecting energy in the deep convective zone or reducing the net outward thermal flux is taking place in these objects. Several possibilities have been suggested for such a mechanism:•downward transport of kinetic energy originating from strong winds generated at the planet's surface (Showman & Guillot 2002),•enhanced opacity sources in hot-Jupiter atmospheres (Burrows et al. 2007),•ohmic dissipation in the ionized atmosphere (Batygin & Stevenson 2010),•(inefficient) layered or oscillatory convection in the planet's interior (Chabrier & Baraffe 2007),•Tidal heating due to circularization of the orbit, as originally suggested by Bodenheimer, Lin & Mardling (2001).Here we first review the differences between current models of tidal evolution and their uncertainties. We then revisit the viability of the tidal heating hypothesis using a tidal model which treats properly the highly eccentric and misaligned orbits commonly encountered in exoplanetary systems. We stress again that the low order expansions in eccentricity often used in constant phase lag tidal models (i.e. constant Q) necessarily yields incorrect results as soon as the (present or initial) eccentricity exceeds ~ 0.2, as can be rigorously demonstrated from Kepler's equations.
Nosaka, K; Muthalib, M; Lavender, A; Laursen, P B
2007-01-01
This study investigated the hypothesis that muscle damage would be attenuated in muscles subjected to passive hyperthermia 1 day prior to exercise. Fifteen male students performed 24 maximal eccentric actions of the elbow flexors with one arm; the opposite arm performed the same exercise 2-4 weeks later. The elbow flexors of one arm received a microwave diathermy treatment that increased muscle temperature to over 40 degrees C, 16-20 h prior to the exercise. The contralateral arm acted as an untreated control. Maximal voluntary isometric contraction strength (MVC), range of motion (ROM), upper arm circumference, muscle soreness, plasma creatine kinase activity and myoglobin concentration were measured 1 day prior to exercise, immediately before and after exercise, and daily for 4 days following exercise. Changes in the criterion measures were compared between conditions (treatment vs. control) using a two-way repeated measures ANOVA with a significance level of P < 0.05. All measures changed significantly following exercise, but the treatment arm showed a significantly faster recovery of MVC, a smaller change in ROM, and less muscle soreness compared with the control arm. However, the protective effect conferred by the diathermy treatment was significantly less effective compared with that seen in the second bout performed 4-6 weeks after the initial bout by a subgroup of the subjects (n = 11) using the control arm. These results suggest that passive hyperthermia treatment 1 day prior to eccentric exercise-induced muscle damage has a prophylactic effect, but the effect is not as strong as the repeated bout effect.
NASA Astrophysics Data System (ADS)
POLYCARPE, William; Lainey, Valery; Vienne, Alain; Noyelles, Benoît; Saillenfest, Melaine; Rambaux, Nicolas
2018-04-01
Iapetus orbits Saturn with an orbtial eccentricity of 3% and possesses an constant tilt to its local Laplace plane of around 7°, both elements are today poorly explained. The objective of the this work is to investigate if these orbtial characteristics may be explained in the frame of rapid tidal migration in the saturnian system [Lainey et al., 2012, 2017] [Fuller et al. 2016]. We present several sets of numerical simulations of a past 5:1 mean motion resonance crossing between Titan and Iapetus. Iapetus was placed initially on its local Laplace plane with a circular orbit. Simulations show that the outcomes of this resonance are very dependent on the migration speed of Titan, and therefore on the effective quality factor Q of Saturn. Iapetus will generally be ejected of the system due to this resonance when the migration is too slow, typically Q higher than 1500. Lower values allow Iapetus to survive with an eccentricity of a few percent, consistent with today's value. This resonance would also act on the inclination and can bring the tilt up to several degrees, and even reach 7° and more on rare occasions. It seems, in general, that the current value of the eccentricity can be easily explained by this resonance. On the other hand the tilt is more difficult to obtain for fast tidal migration (Q lower than 20), but high values are possible for medium migration rate (typically Q between 200 and 1500).
The formation of Kuiper-belt binaries through exchange reactions.
Funato, Yoko; Makino, Junichiro; Hut, Piet; Kokubo, Eiichiro; Kinoshita, Daisuke
2004-02-05
Recent observations have revealed that an unexpectedly high fraction--a few per cent--of the trans-Neptunian objects (TNOs) that inhabit the Kuiper belt are binaries. The components have roughly equal masses, with very eccentric orbits that are wider than a hundred times the radius of the primary. Standard theories of binary asteroid formation tend to produce close binaries with circular orbits, so two models have been proposed to explain the unique characteristics of the TNOs. Both models, however, require extreme assumptions regarding the size distribution of the TNOs. Here we report a mechanism that is capable of producing binary TNOs with the observed properties during the early stages of their formation and growth. The only required assumption is that the TNOs were initially formed through gravitational instabilities in the protoplanetary dust disk. The basis of the mechanism is an exchange reaction in which a binary whose primary component is much more massive than the secondary interacts with a third body, whose mass is comparable to that of the primary. The low-mass secondary component is ejected and replaced by the third body in a wide but eccentric orbit.
The Pan-Pacific Planet Search. VII. The Most Eccentric Planet Orbiting a Giant Star
NASA Astrophysics Data System (ADS)
Wittenmyer, Robert A.; Jones, M. I.; Horner, Jonathan; Kane, Stephen R.; Marshall, J. P.; Mustill, A. J.; Jenkins, J. S.; Pena Rojas, P. A.; Zhao, Jinglin; Villaver, Eva; Butler, R. P.; Clark, Jake
2017-12-01
Radial velocity observations from three instruments reveal the presence of a 4 M Jup planet candidate orbiting the K giant HD 76920. HD 76920b has an orbital eccentricity of 0.856 ± 0.009, making it the most eccentric planet known to orbit an evolved star. There is no indication that HD 76920 has an unseen binary companion, suggesting a scattering event rather than Kozai oscillations as a probable culprit for the observed eccentricity. The candidate planet currently approaches to about four stellar radii from its host star, and is predicted to be engulfed on a ∼100 Myr timescale due to the combined effects of stellar evolution and tidal interactions.
A Resonance Overlap Criterion for the Onset of Chaos in Systems of Two Eccentric Planets
NASA Astrophysics Data System (ADS)
Hadden, Sam; Lithwick, Yoram
2018-04-01
I will desrcribe a new analytic criterion to predict the onset of chaos in systems consisting of two massive, eccentric planets. Given a planet pair's spacing and masses, the criterion predicts the eccentricities at which the onset of large-scale chaos occurs. The onset of chaos is predicted based on overlap of mean motion resonances as in Wisdom (1980)'s pioneering work. Whereas Wisdom's work was limited to the overlap of first-order resonance and therefore to nearly circular planets, we account for resonances of all orders. This allows us to consider resonance overlap for planets with arbitrary eccentricities (up to orbit-crossing). Our results show excellent agreement with numerical simulations.
NASA Astrophysics Data System (ADS)
Botella, Olivier; Ait-Messaoud, Mazigh; Pertat, Adrien; Cheny, Yoann; Rigal, Claire
2015-04-01
This paper presents the extension of a well-established immersed boundary/cut-cell method, the LS-STAG method (Cheny and Botella in J Comput Phys 229:1043-1076, 2010), to non-Newtonian flow computations in 2D irregular geometries. One of the distinguished features of our IB method is to use level-set techniques in the cut-cells near the irregular boundary, where accurate discretization is of paramount importance for stability and accuracy of the computations. For this purpose, we present here an accurate discretization of the velocity gradients and shear rate in the cut-cells that fits elegantly in the framework of the velocity-pressure-stress staggered arrangement and the special quadratures developed previously for viscoelastic flows. After assessing the accuracy of the discretization on a benchmark solution for power-law fluids, the LS-STAG code is applied to the flow of various shear-thinning xanthan solutions in a wide-gap, non-coaxial, Taylor-Couette reactor for which rheological characterization, experimental flow measurements (PIV) and FLUENT simulations have recently been performed in our group. Our numerical investigation will give new insight on the flow patterns (onset, size and position of the recirculation zone) and will firmly correlate them to global flow properties such as shear-thinning index, generalized Reynolds number and torque ratio at the cylinders.
Velocity-specific strength recovery after a second bout of eccentric exercise.
Barss, Trevor S; Magnus, Charlene R A; Clarke, Nick; Lanovaz, Joel L; Chilibeck, Philip D; Kontulainen, Saija A; Arnold, Bart E; Farthing, Jonathan P
2014-02-01
A bout of eccentric exercise (ECC) has the protective effect of reducing muscle damage during a subsequent bout of ECC known as the "repeated bout effect" (RBE). The purpose of this study was to determine if the RBE is greater when both bouts of ECC are performed using the same vs. different velocity of contraction. Thirty-one right-handed participants were randomly assigned to perform an initial bout of either fast (3.14 rad·s [180°·s]) or slow (0.52 rad·s [30°·s]) maximal isokinetic ECCs of the elbow flexors. Three weeks later, the participants completed another bout of ECC at the same velocity (n = 16), or at a different velocity (n = 15). Indirect muscle damage markers were measured before, immediately after, and at 24, 48, and 72 hours postexercise. Measures included maximal voluntary isometric contraction (MVC) strength (dynamometer), muscle thickness (MT; ultrasound), delayed onset muscle soreness (DOMS; visual analog scale), biceps and triceps muscle activation amplitude (electromyography), voluntary activation (interpolated twitch), and twitch torque. After the repeated bout, MVC strength recovered faster compared with the same time points after the initial bout for only the same velocity group (p = 0.017), with no differences for all the other variables. Irrespective of velocity, MT and DOMS were reduced after the repeated bout compared with that of the initial bout at 24, 48, and 72 hours with a corresponding increase in TT at 72 hours (p < 0.05). Faster recovery of isometric strength associated with a repeated bout of ECC was evident when the velocity was matched between bouts, suggesting that specificity effects contribute to the RBE. The current findings support the idea of multiple mechanisms contributing to the RBE.
An independent determination of Fomalhaut b's orbit and the dynamical effects on the outer dust belt
NASA Astrophysics Data System (ADS)
Beust, H.; Augereau, J.-C.; Bonsor, A.; Graham, J. R.; Kalas, P.; Lebreton, J.; Lagrange, A.-M.; Ertel, S.; Faramaz, V.; Thébault, P.
2014-01-01
Context. The nearby star Fomalhaut harbors a cold, moderately eccentric (e ~ 0.1) dust belt with a sharp inner edge near 133 au. A low-mass, common proper motion companion, Fomalhaut b (Fom b), was discovered near the inner edge and was identified as a planet candidate that could account for the belt morphology. However, the most recent orbit determination based on four epochs of astrometry over eight years reveals a highly eccentric orbit (e = 0.8 ± 0.1) that appears to cross the belt in the sky plane projection. Aims: We perform here a full orbital determination based on the available astrometric data to independently validate the orbit estimates previously presented. Adopting our values for the orbital elements and their associated uncertainties, we then study the dynamical interaction between the planet and the dust ring, to check whether the proposed disk sculpting scenario by Fom b is plausible. Methods: We used a dedicated MCMC code to derive the statistical distributions of the orbital elements of Fom b. Then we used symplectic N-body integration to investigate the dynamics of the dust belt, as perturbed by a single planet. Different attempts were made assuming different masses for Fom b. We also performed a semi-analytical study to explain our results. Results: Our results are in good agreement with others regarding the orbit of Fom b. We find that the orbit is highly eccentric, is close to apsidally aligned with the belt, and has a mutual inclination relative to the belt plane of <29° (67% confidence). If coplanar, this orbit crosses the disk. Our dynamical study then reveals that the observed planet could sculpt a transient belt configuration with a similar eccentricity to what is observed, but it would not be simultaneously apsidally aligned with the planet. This transient configuration only occurs a short time after the planet is placed on such an orbit (assuming an initially circular disk), a time that is inversely proportional to the planet's mass, and that is in any case much less than the 440 Myr age of the star. Conclusions: We constrain how long the observed dust belt could have survived with Fom b on its current orbit, as a function of its possible mass. This analysis leads us to conclude that Fom b is likely to have low mass, that it is unlikely to be responsible for the sculpting of the belt, and that it supports the hypothesis of a more massive, less eccentric planet companion Fomalhaut c.
Physical therapies for Achilles tendinopathy: systematic review and meta-analysis
2012-01-01
Background Achilles tendinopathy (AT) is a common condition, causing considerable morbidity in athletes and non-athletes alike. Conservative or physical therapies are accepted as first-line management of AT; however, despite a growing volume of research, there remains a lack of high quality studies evaluating their efficacy. Previous systematic reviews provide preliminary evidence for non-surgical interventions for AT, but lack key quality components as outlined in the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) Statement. The aim of this study was to conduct a systematic review and meta-analysis (where possible) of the evidence for physical therapies for AT management. Methods A comprehensive strategy was used to search 11 electronic databases from inception to September 2011. Search terms included Achilles, tendinopathy, pain, physical therapies, electrotherapy and exercise (English language full-text publications, human studies). Reference lists of eligible papers were hand-searched. Randomised controlled trials (RCTs) were included if they evaluated at least one non-pharmacological, non-surgical intervention for AT using at least one outcome of pain and/or function. Two independent reviewers screened 2852 search results, identifying 23 suitable studies, and assessed methodological quality and risk of bias using a modified PEDro scale. Effect size calculation and meta-analyses were based on fixed and random effects models respectively. Results Methodological quality ranged from 2 to 12 (/14). Four studies were excluded due to high risk of bias, leaving 19 studies, the majority of which evaluated midportion AT. Effect sizes from individual RCTs support the use of eccentric exercise. Meta-analyses identified significant effects favouring the addition of laser therapy to eccentric exercise at 12 weeks (pain VAS: standardised mean difference −0.59, 95% confidence interval −1.11 to −0.07), as well as no differences in effect between eccentric exercise and shock wave therapy at 16 weeks (VISA-A:–0.55,–2.21 to 1.11). Pooled data did not support the addition of night splints to eccentric exercise at 12 weeks (VISA-A:–0.35,–1.44 to 0.74). Limited evidence from an individual RCT suggests microcurrent therapy to be an effective intervention. Conclusions Practitioners can consider eccentric exercise as an initial intervention for AT, with the addition of laser therapy as appropriate. Shock wave therapy may represent an effective alternative. High-quality RCTs following CONSORT guidelines are required to further evaluate the efficacy of physical therapies and determine optimal clinical pathways for AT. PMID:22747701
Intramuscular pressure and torque during isometric, concentric and eccentric muscular activity
NASA Technical Reports Server (NTRS)
Styf, J.; Ballard, R.; Aratow, M.; Crenshaw, A.; Watenpaugh, D.; Hargens, A. R.
1995-01-01
Intramuscular pressures, electromyography (EMG) and torque generation during isometric, concentric and eccentric maximal isokinetic muscle activity were recorded in 10 healthy volunteers. Pressure and EMG activity were continuously and simultaneously measured side by side in the tibialis anterior and soleus muscles. Ankle joint torque and position were monitored continuously by an isokinetic dynamometer during plantar flexion and dorsiflexion of the foot. The increased force generation during eccentric muscular activity, compared with other muscular activity, was not accompanied by higher intramuscular pressure. Thus, this study demonstrated that eccentric muscular activity generated higher torque values for each increment of intramuscular pressure. Intramuscular pressures during antagonistic co-activation were significantly higher in the tibilis anterior muscle (42-46% of maximal agonistic activity) compared with the soleus muscle (12-29% of maximal agonistic activity) and was largely due to active recruitment of muscle fibers. In summary, eccentric muscular activity creates higher torque values with no additional increase of the intramuscular pressure compared with concentric and isometric muscular activity.