Sample records for flow injection determination

  1. Injection flow during steam condensation in silicon microchannels

    NASA Astrophysics Data System (ADS)

    Wu, Huiying; Yu, Mengmeng; Cheng, Ping; Wu, Xinyu

    2007-08-01

    An experimental investigation with the combined use of visualization and measurement techniques was performed on flow pattern transitions and wall temperature distributions in the condensation of steam in silicon microchannels. Three sets of trapezoidal silicon microchannels, having hydraulic diameters of 53.0 µm, 77.5 µm and 128.5 µm, respectively, were tested under different flow and cooling conditions. It was found that during the transitions from the annular flow to the slug/bubbly flow, a peculiar flow pattern injection flow appeared in silicon microchannels. The location at which the injection flow occurred was dependent on the Reynolds number, condensation number and hydraulic diameter. With increase in the Reynolds number, or decrease in the condensation number and hydraulic diameter, the injection flow moved towards the channel outlet. Based on the experimental results, a dimensionless correlation for the location of injection flow in functions of the Reynolds number, condensation number and hydraulic diameter was proposed for the first time. This correlation can be used to determine the annular flow zone and the slug/bubbly flow zone, and further to determine the dominating condensation flow pattern in silicon microchannels. Wall temperature distributions were also explored in this paper. It was found that near the injection flow, wall temperatures have a rapid decrease in the flow direction, while upstream and downstream far away from the injection flow, wall temperatures decreased mildly. Thus, the location of injection flow can also be determined based on the wall temperature distributions. The results presented in this paper help us to better understand the condensation flow and heat transfer in silicon microchannels.

  2. An Ion-Selective Electrode/Flow-Injection Analysis Experiment: Determination of Potassium in Serum.

    ERIC Educational Resources Information Center

    Meyerhoff, Mark E.; Kovach, Paul M.

    1983-01-01

    Describes a low-cost, senior-level, instrumental analysis experiment in which a home-made potassium tubular flow-through electrode is constructed and incorporated into a flow injection analysis system (FIA). Also describes experiments for evaluating the electrode's response properties, examining basic FIA concepts, and determining potassium in…

  3. Determination of Hypochlorite in Bleaching Products with Flower Extracts to Demonstrate the Principles of Flow Injection Analysis

    ERIC Educational Resources Information Center

    Ramos, Luiz Antonio; Prieto, Katia Roberta; Carvalheiro, Eder Tadeu Gomes; Carvalheiro, Carla Cristina Schmitt

    2005-01-01

    The use of crude flower extracts to the principle of analytical chemistry automation, with the flow injection analysis (FIA) procedure developed to determine hypochlorite in household bleaching products was performed. The FIA comprises a group of techniques based on injection of a liquid sample into a moving, nonsegmented carrier stream of a…

  4. Determination of tannin in green tea infusion by flow-injection analysis based on quenching the fluorescence of 3-aminophthalate.

    PubMed

    Chen, Richie L C; Lin, Chun-Hsun; Chung, Chien-Yu; Cheng, Tzong-Jih

    2005-11-02

    A flow-injection analytical system was developed to determine tannin content in green tea infusions. The flow-injection system is based on measuring the quenching effect of tannin on the fluorescence of 3-aminophthalate. Fluorophore was obtained by auto-oxidation of luminol during solution preparation. System performance was satisfactory for routine analysis (sample throughput >20 h(-1); linear dynamic range for tannic acid, 0.005-0.3 mg/mL; linear dynamic range for green tea tannin, 0.02-1.0 mg/mL; CV < 3%). The flow-injection method is immune from interference by coexisting ascorbate in green tea infusion. Analytical results were verified by the ferrous tartrate method, the Japanese official analytical method.

  5. Determination of albumin in bronchoalveolar lavage fluid by flow-injection fluorometry using chromazurol S.

    PubMed

    Sato, Takaji; Saito, Yoshihiro; Chikuma, Masahiko; Saito, Yutaka; Nagai, Sonoko

    2008-03-01

    A highly sensitive flow injection fluorometry for the determination of albumin was developed and applied to the determination of albumin in human bronchoalveolar lavage fluids (BALF). This method is based on binding of chromazurol S (CAS) to albumin. The calibration curve was linear in the range of 5-200 microg/ml of albumin. A highly linear correlation (r=0.986) was observed between the albumin level in BALF samples (n=25) determined by the proposed method and by a conventional fluorometric method using CAS (CAS manual method). The IgG interference was lower in the CAS flow injection method than in the CAS manual method. The albumin level in BALF collected from healthy volunteers (n=10) was 58.5+/-13.1 microg/ml. The albumin levels in BALF samples obtained from patients with sarcoidosis and idiopathic pulmonary fibrosis were increased. This finding shows that the determination of albumin levels in BALF samples is useful for investigating lung diseases and that CAS flow injection method is promising in the determination of trace albumin in BALF samples, because it is sensitive and precise.

  6. Investigation of Thrust Augmentation of a 1600-pound Thrust Centrifugal-flow-type Turbojet Engine by Injection of Refrigerants at Compressor Inlets

    NASA Technical Reports Server (NTRS)

    Jones, William L.; Dowman, Harry W.

    1947-01-01

    Investigations were conducted to determine effectiveness of refrigerants in increasing thrust of turbojet engines. Mixtures of water an alcohol were injected for a range of total flows up to 2.2 lb/sec. Kerosene was injected into inlets covering a range of injected flows up to approximately 30% of normal engine fuel flow. Injection of 2.0 lb/sec of water alone produced an increase in thrust of 35.8% of rate engine conditions and kerosene produced a negligible increase in thrust. Carbon dioxide increased thrust 23.5 percent.

  7. Determination of Acidity Constants by Gradient Flow-Injection Titration

    ERIC Educational Resources Information Center

    Conceicao, Antonio C. L.; Minas da Piedade, Manuel E.

    2006-01-01

    A three-hour laboratory experiment, designed for an advanced undergraduate course in instrumental analysis that illustrates the application of the gradient chamber flow-injection titration (GCFIT) method with spectrophotometric detection to determine acidity constants is presented. The procedure involves the use of an acid-base indicator to obtain…

  8. Simultaneous injection-effective mixing analysis of palladium.

    PubMed

    Teshima, Norio; Noguchi, Daisuke; Joichi, Yasutaka; Lenghor, Narong; Ohno, Noriko; Sakai, Tadao; Motomizu, Shoji

    2010-01-01

    A novel concept of simultaneous injection-effective mixing analysis (SIEMA) is proposed, and a SIEMA method applied to the spectrophotometric determination of palladium using a water-soluble chromogenic reagent has been demonstrated. The flow configuration of SIEMA is a hybrid format of flow injection analysis (FIA), sequential injection analysis (SIA) and multicommutation in flow-based analysis. Sample and reagent solutions are aspirated into each holding coil through each solenoid valve by a syringe pump, and then the zones are simultaneously dispensed (injected) into a mixing coil by reversed flow toward a detector through a confluence point. This results in effective mixing and rapid detection with low reagent consumption.

  9. Portable device and method for determining permeability characteristics of earth formations

    DOEpatents

    Shuck, Lowell Z.

    1977-01-01

    The invention is directed to a device which is used for determining permeability characteristics of earth formations at the surface thereof. The determination of the maximum permeability direction and the magnitude of permeability are achieved by employing a device comprising a housing having a central fluid-injection port surrounded by a plurality of spaced-apart fluid flow and pressure monitoring ports radially extending from the central injection port. With the housing resting on the earth formation in a relatively fluid-tight manner as provided by an elastomeric pad disposed therebetween, fluid is injected through the central port into the earth formation and into registry with the fluid-monitoring ports disposed about the injection port. The fluid-monitoring ports are selectively opened and the flow of the fluid through the various fluid ports is measured so as to provide a measurement of flow rates and pressure distribution about the center hole which is indicative on the earth formation permeability direction and magnitude. For example, the azimuthal direction of the fluid-monitoring ports in the direction through which the greatest amount of injected fluid flows as determined by the lowest pressure distribution corresponds to the direction of maximum permeability in the earth formation.

  10. Flow injection method for sulphide determination using an organic mercury compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaqoob, M.; Anwar, M.; Masood, A.S.

    1991-04-01

    A simple flow injection analysis method is described for the determination of soluble sulfide, based on the complexation of sulfide with p-hydroxymercurbenzoic acid, in the presence of dithizone used as an indicator. The reaction is very rapid, with a sampling rate of 90/hr. and requires a very short length post injection reaction coil. The detection limit and precision are 0.01 mM and 0.7%, respectively.

  11. Normal and reverse flow injection–spectrophotometric determination of thiamine hydrochloride in pharmaceutical preparations using diazotized metoclopramide

    PubMed Central

    Al Abachi, Mouayed Q.; Hadi, Hind

    2012-01-01

    Simple and sensitive normal and reverse flow injection methods for spectrophotometric determination of thiamine hydrochloride (THC) at the microgram level were proposed and optimized. Both methods are based on the reaction between THC and diazotized metoclopramide in alkaline medium. Beer’s law was obeyed over the range of 10–300 and 2–90 μg/mL, the limits of detection were 2.118 and 0.839 μg/mL and the sampling rates were 80 and 95 injections per hour for normal and reverse flow injection methods respectively. The application of both methods to commercially available pharmaceuticals produced acceptable results. The flow system is suitable for application in quality control processes. PMID:29403765

  12. [Determination of mercury in Boletus impolitus by flow injection-atomic absorption spectrometry].

    PubMed

    Li, Tao; Wang, Yuan-Zhong

    2008-04-01

    Various test conditions and effect factors for the determination of mercury by flow injection-atomic absorption spectrometry were discussed, and a method for the determination of mercury in Boletus impolitus has been developed. The linear range for mercury is 0-60 microg x L(-1). The relative standard deviation is less than 3.0%, and the recovery is 96%-107%. This method is simple, rapid and has been applied to the determination of mercury in Boletus impolitus samples with satisfactory results.

  13. Flow in a porous nozzle with massive wall injection

    NASA Technical Reports Server (NTRS)

    Kinney, R. B.

    1973-01-01

    An analytical and experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a nozzle. The experiments were performed on a water table with a porous-nozzle test section. This had 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. An analysis of the water table flow was made using a one-dimensional flow assumption in the continuity and momentum equations. An analysis of a compressible flow in a nozzle was made in a manner analogous to that for the water flow. It is shown that the effect of blowing is to move the sonic position downstream of the geometric throat. Similar results were determined for the incompressible water table flow. Limited photographic results are presented for an injection of air, CO2, and Freon-12 into a main-stream air flow in a convergent-divergent nozzle. Schlieren photographs were used to visualize the flow.

  14. Flow analysis techniques for phosphorus: an overview.

    PubMed

    Estela, José Manuel; Cerdà, Víctor

    2005-04-15

    A bibliographical review on the implementation and the results obtained in the use of different flow analytical techniques for the determination of phosphorus is carried out. The sources, occurrence and importance of phosphorus together with several aspects regarding the analysis and terminology used in the determination of this element are briefly described. A classification as well as a brief description of the basis, advantages and disadvantages of the different existing flow techniques, namely; segmented flow analysis (SFA), flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA) and multipumped FIA (MPFIA) is also carried out. The most relevant manuscripts regarding the analysis of phosphorus by means of flow techniques are herein classified according to the detection instrumental technique used with the aim to facilitate their study and obtain an overall scope. Finally, the analytical characteristics of numerous flow-methods reported in the literature are provided in the form of a table and their applicability to samples with different matrixes, namely water samples (marine, river, estuarine, waste, industrial, drinking, etc.), soils leachates, plant leaves, toothpaste, detergents, foodstuffs (wine, orange juice, milk), biological samples, sugars, fertilizer, hydroponic solutions, soils extracts and cyanobacterial biofilms are tabulated.

  15. Determination of chloride in admixtures and aggregates for cement by a simple flow injection potentiometric system.

    PubMed

    Junsomboon, Jaroon; Jakmunee, Jaroon

    2008-07-15

    A simple flow injection system using three 3-way solenoid valves as an electric control injection valve and with a simple home-made chloride ion selective electrode based on Ag/AgCl wire as a sensor for determination of water soluble chloride in admixtures and aggregates for cement has been developed. A liquid sample or an extract was injected into a water carrier stream which was then merged with 0.1M KNO(3) stream and flowed through a flow cell where the solution will be in contact with the sensor, producing a potential change recorded as a peak. A calibration graph in range of 10-100 mg L(-1) was obtained with a detection limit of 2 mg L(-1). Relative standard deviations for 7 replicates injecting of 20, 60 and 90 mg L(-1) chloride solutions were 1.0, 1.2 and 0.6%, respectively. Sample throughput of 60 h(-1) was achieved with the consumption of 1 mL each of electrolyte solution and water carrier. The developed method was validated by the British Standard methods.

  16. Determination of Reaction Stoichiometries by Flow Injection Analysis.

    ERIC Educational Resources Information Center

    Rios, Angel; And Others

    1986-01-01

    Describes a method of flow injection analysis intended for calculation of complex-formation and redox reaction stoichiometries based on a closed-loop configuration. The technique is suitable for use in undergraduate laboratories. Information is provided for equipment, materials, procedures, and sample results. (JM)

  17. Chemiluminescence determination of ferulic acid by flow-injection analysis using cerium(IV) sensitized by rhodamine 6G.

    PubMed

    Wang, Ju Peng; Li, Nian Bing; Luo, Hong Qun

    2008-11-01

    A simple, sensitive and rapid flow-injection chemiluminescence method has been developed for the determination of ferulic acid based on the chemiluminescence reaction of ferulic acid with rhodamine 6G and ceric sulfate in sulphuric acid medium. Strong chemiluminescence signal was observed when ferulic acid was injected into the acidic ceric sulfate solution in a flow-cell. The present method allowed the determination of ferulic acid in the concentration range of 8.0 x 10(-6) to 1.0 x 10(-4) mol l(-1) and the detection limit for ferulic acid was 8.7 x 10(-9) mol l(-1). The relative standard deviation was 2.4% for 10 replicate analyses of 1.0 x 10(-5) mol l(-1) ferulic acid. The proposed method was applied to the determination of ferulic acid in Taita Beauty Essence samples with satisfactory results.

  18. Chemiluminescence determination of ferulic acid by flow-injection analysis using cerium(IV) sensitized by rhodamine 6G

    NASA Astrophysics Data System (ADS)

    Wang, Ju Peng; Li, Nian Bing; Luo, Hong Qun

    2008-11-01

    A simple, sensitive and rapid flow-injection chemiluminescence method has been developed for the determination of ferulic acid based on the chemiluminescence reaction of ferulic acid with rhodamine 6G and ceric sulfate in sulphuric acid medium. Strong chemiluminescence signal was observed when ferulic acid was injected into the acidic ceric sulfate solution in a flow-cell. The present method allowed the determination of ferulic acid in the concentration range of 8.0 × 10 -6 to 1.0 × 10 -4 mol l -1 and the detection limit for ferulic acid was 8.7 × 10 -9 mol l -1. The relative standard deviation was 2.4% for 10 replicate analyses of 1.0 × 10 -5 mol l -1 ferulic acid. The proposed method was applied to the determination of ferulic acid in Taita Beauty Essence samples with satisfactory results.

  19. Optimized and validated flow-injection spectrophotometric analysis of topiramate, piracetam and levetiracetam in pharmaceutical formulations.

    PubMed

    Hadad, Ghada M; Abdel-Salam, Randa A; Emara, Samy

    2011-12-01

    Application of a sensitive and rapid flow injection analysis (FIA) method for determination of topiramate, piracetam, and levetiracetam in pharmaceutical formulations has been investigated. The method is based on the reaction with ortho-phtalaldehyde and 2-mercaptoethanol in a basic buffer and measurement of absorbance at 295 nm under flow conditions. Variables affecting the determination such as sample injection volume, pH, ionic strength, reagent concentrations, flow rate of reagent and other FIA parameters were optimized to produce the most sensitive and reproducible results using a quarter-fraction factorial design, for five factors at two levels. Also, the method has been optimized and fully validated in terms of linearity and range, limit of detection and quantitation, precision, selectivity and accuracy. The method was successfully applied to the analysis of pharmaceutical preparations.

  20. Velocity field of a round jet in a cross flow for various jet injection angles and velocity ratios. [Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Fearn, R. L.; Weston, R. P.

    1979-01-01

    A subsonic round jet injected from a flat plate into a subsonic crosswind of the same temperature was investigated. Velocity and pressure measurements in planes perpendicular to the path of the jet were made for nominal jet injection angles of 45 deg, 60 deg, 75 deg, 90 deg, and 105 deg and for jet/cross flow velocity ratios of four and eight. The velocity measurements were obtained to infer the properties of the vortex pair associated with a jet in a cross flow. Jet centerline and vortex trajectories were determined and fit with an empirical equation that includes the effects of jet injection angle, jet core length, and jet/cross flow velocity ratios.

  1. A volumetric flow sensor for automotive injection systems

    NASA Astrophysics Data System (ADS)

    Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.

    2008-04-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.

  2. Efficient flow injection and sequential injection methods for spectrophotometric determination of oxybenzone in sunscreens based on reaction with Ni(II).

    PubMed

    Chisvert, A; Salvador, A; Pascual-Martí, M C; March, J G

    2001-04-01

    Spectrophotometric determination of a widely used UV-filter, such as oxybenzone, is proposed. The method is based on the complexation reaction between oxybenzone and Ni(II) in ammoniacal medium. The stoichiometry of the reaction, established by the Job method, was 1:1. Reaction conditions were studied and the experimental parameters were optimized, for both flow injection (FI) and sequential injection (SI) determinations, with comparative purposes. Sunscreen formulations containing oxybenzone were analyzed by the proposed methods and results compared with those obtained by HPLC. Data show that both FI and SI procedures provide accurate and precise results. The ruggedness, sensitivity and LOD are adequate to the analysis requirements. The sample frequency obtained by FI is three-fold higher than that of SI analysis. SI is less reagent-consuming than FI.

  3. Determination of dipyrone in pharmaceutical preparations based on the chemiluminescent reaction of the quinolinic hydrazide-H2O2-vanadium(IV) system and flow-injection analysis.

    PubMed

    Pradana Pérez, Juan A; Durand Alegría, Jesús S; Hernando, Pilar Fernández; Sierra, Adolfo Narros

    2012-01-01

    A rapid, economic and sensitive chemiluminescent method involving flow-injection analysis was developed for the determination of dipyrone in pharmaceutical preparations. The method is based on the chemiluminescent reaction between quinolinic hydrazide and hydrogen peroxide in a strongly alkaline medium, in which vanadium(IV) acts as a catalyst. Principal chemical and physical variables involved in the flow-injection system were optimized using a modified simplex method. The variations in the quantum yield observed when dipyrone was present in the reaction medium were used to determine the concentration of this compound. The proposed method requires no preconcentration steps and reliably quantifies dipyrone over the linear range 1-50 µg/mL. In addition, a sample throughput of 85 samples/h is possible. Copyright © 2011 John Wiley & Sons, Ltd.

  4. "Reagentless" flow injection determination of ammonia and urea using membrane separation and solid phase basification

    NASA Technical Reports Server (NTRS)

    Akse, J. R.; Thompson, J. O.; Sauer, R. L.; Atwater, J. E.

    1998-01-01

    Flow injection analysis instrumentation and methodology for the determination of ammonia and ammonium ions in an aqueous solution are described. Using in-line solid phase basification beds containing crystalline media. the speciation of ammoniacal nitrogen is shifted toward the un-ionized form. which diffuses in the gas phase across a hydrophobic microporous hollow fiber membrane into a pure-water-containing analytical stream. The two streams flow in a countercurrent configuration on opposite sides of the membrane. The neutral pH of the analytical stream promotes the formation of ammonium cations, which are detected using specific conductance. The methodology provides a lower limit of detection of 10 microgram/L and a dynamic concentration range spanning three orders of magnitude using a 315-microliters sample injection volume. Using immobilized urease to enzymatically promote the hydrolysis of urea to produce ammonia and carbon dioxide, the technique has been extended to the determination of urea.

  5. Piezoelectric detection of ion pairs between sulphonate and catecholamines for flow injection analysis of pharmaceutical preparations.

    PubMed

    Mo, Z; Long, X; Zhang, M

    1999-03-01

    Fundamentals of ion-pair flow injection with piezoelectric detection were investigated experimentally and theoretically for the adsorption of dodecyl phenylsulfonate and interfacial ion-pair formation with epinephrine and l-dopa on silver electrode of quartz crystal microbalance. The influences of sulfonate concentration and operating parameters on the frequency response were demonstrated and provided the possibility for the discriminating determination of mixtures. The selected system of ion-pair flow injection with piezoelectric detection was applied to the determination of epinephrine and l-dopa. Calibration curves were linear in ranges 4.00-850 and 3.50-730 mug ml(-1), with detection limits of 1.22 and 1.05 mug ml(-1) and sampling frequencies of 120 samples h(-1), for epinephrine and l-dopa, respectively. The method has been satisfactorily applied to the determination of catecholamines in pharmaceutical preparations.

  6. Flow behaviour of negatively buoyant jets in immiscible ambient fluid

    NASA Astrophysics Data System (ADS)

    Geyer, A.; Phillips, J. C.; Mier-Torrecilla, M.; Idelsohn, S. R.; Oñate, E.

    2012-01-01

    In this paper we investigate experimentally the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid. Experiments are carried out by injecting a jet of dyed fresh water through a nozzle in the base of a cylindrical tank containing rapeseed oil. The fountain inlet flow rate and nozzle diameter were varied to cover a wide range of Richardson Ri (8 × 10-4 < Ri < 1.98), Reynolds Re (467 < Re < 5,928) and Weber We (2.40 < We < 308.56) numbers. Based on the Re, Ri and We values for the experiments, we have determined a regime map to define how these values may control the occurrence of the observed flow types. Whereas Ri plays a stronger role when determining the maximum penetration height, the effect of the Reynolds number is stronger predicting the flow behaviour for a specific nozzle diameter and injection velocity.

  7. Numerical prediction of flow induced fibers orientation in injection molded polymer composites

    NASA Astrophysics Data System (ADS)

    Oumer, A. N.; Hamidi, N. M.; Mat Sahat, I.

    2015-12-01

    Since the filling stage of injection molding process has important effect on the determination of the orientation state of the fibers, accurate analysis of the flow field for the mold filling stage becomes a necessity. The aim of the paper is to characterize the flow induced orientation state of short fibers in injection molding cavities. A dog-bone shaped model is considered for the simulation and experiment. The numerical model for determination of the fibers orientation during mold-filling stage of injection molding process was solved using Computational Fluid Dynamics (CFD) software called MoldFlow. Both the simulation and experimental results showed that two different regions (or three layers of orientation structures) across the thickness of the specimen could be found: a shell region which is near to the mold cavity wall, and a core region at the middle of the cross section. The simulation results support the experimental observations that for thin plates the probability of fiber alignment to the flow direction near the mold cavity walls is high but low at the core region. It is apparent that the results of this study could assist in decisions regarding short fiber reinforced polymer composites.

  8. Insights on Flow Behavior of Foam in Unsaturated Porous Media during Soil Flushing.

    PubMed

    Zhao, Yong S; Su, Yan; Lian, Jing R; Wang, He F; Li, Lu L; Qin, Chuan Y

    2016-11-01

      One-dimensional column and two-dimensional tank experiments were carried out to determine (1) the physics of foam flow and propagation of foaming gas, foaming liquid, and foam; (2) the pressure distribution along foam flow and the effect of media permeability, foam flow rate and foam quality on foam injection pressure; and (3) the migration and distribution property of foam flow in homogeneous and heterogeneous sediments. The results demonstrated that: (1) gas and liquid front were formed ahead of the foam flow front, the transport speed order is foaming gas > foaming liquid > foam flowing; (2) injection pressure mainly comes from the resistance to bubble migration. Effect of media permeability on foam injection pressure mainly depends on the physics and behavior of foam flow; (3) foam has a stronger capacity of lateral spreading, besides, foam flow was uniformly distributed across the foam-occupied region, regardless of the heterogeneity of porous media.

  9. Migration rates and formation injectivity to determine containment time scales of sequestered carbon dioxide

    USGS Publications Warehouse

    Burke, Lauri

    2012-01-01

    Additionally, this research establishes a methodology to calculate the injectivity of a target formation. Because injectivity describes the pressure increase due to the introduction of fluids into a formation, the relevant application of injectivity is to determine the pressure increase, due to an injection volume and flow rate, that will induce fractures in the reservoir rocks. This quantity is defined mathematically as the maximum pressure differential between the hydrostatic gradient and the fracture gradient of the target formation. Injectivity is mathematically related to the maximum pressure differential of the formation, and can be used to determine the upper limit for the pressure increase that an injection target can withstand before fracturing.

  10. Flow in a discrete slotted nozzle with massive injection. [water table tests

    NASA Technical Reports Server (NTRS)

    Perkins, H. C.

    1974-01-01

    An experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a slotted nozzle. Some of the experiments were performed on a water table with a slotted-nozzle test section. This has 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. Experimental results from the water table include contours of constant Froude and Mach number with and without injection. Photographic results are also presented for the injection through slots of CO2 and Freon-12 into a main-stream air flow in a convergent-divergent nozzle in a wind tunnel. Schlieren photographs were used to visualize the flow, and qualititative agreement between the results from the gas tunnel and water table is good.

  11. Gene delivery by direct injection (microinjection) using a controlled-flow system.

    PubMed

    Dean, David A

    2006-12-01

    INTRODUCTIONThis protocol describes a method for constant-flow microinjection using the Pneumatic PicoPump (World Precision Instruments). This type of system is very simple and can be assembled on a relatively low budget. In this method, a constant flow of sample is delivered from the tip of the pipette, and the amount of sample injected into the cell is determined by how long the pipette remains in the cell. A typical system is composed of a pressure regulator that can be adjusted for two pressures (back pressure and injection pressure), a capillary holder, and a coarse and fine micromanipulator.

  12. Calculation method of water injection forward modeling and inversion process in oilfield water injection network

    NASA Astrophysics Data System (ADS)

    Liu, Long; Liu, Wei

    2018-04-01

    A forward modeling and inversion algorithm is adopted in order to determine the water injection plan in the oilfield water injection network. The main idea of the algorithm is shown as follows: firstly, the oilfield water injection network is inversely calculated. The pumping station demand flow is calculated. Then, forward modeling calculation is carried out for judging whether all water injection wells meet the requirements of injection allocation or not. If all water injection wells meet the requirements of injection allocation, calculation is stopped, otherwise the demand injection allocation flow rate of certain step size is reduced aiming at water injection wells which do not meet requirements, and next iterative operation is started. It is not necessary to list the algorithm into water injection network system algorithm, which can be realized easily. Iterative method is used, which is suitable for computer programming. Experimental result shows that the algorithm is fast and accurate.

  13. Simultaneous determination of choline and acetylcholine based on a trienzyme chemiluminometric biosensor in a single line flow injection system.

    PubMed

    Kiba, Nobutoshi; Ito, Seiji; Tachibana, Masaki; Tani, Kazue; Koizumi, Hitoshi

    2003-12-01

    A detector for the simultaneous determination of choline (Ch) and acetylcholine (ACh) based on a sensitive trienzyme chemiluminometric biosensor in a single line flow injection (FI) system is described. Immobilized choline oxidase (ChOx), immobilized peroxidase (POx), immobilized acetylcholinesterase, and coimmobilized ChOx/POx were packed, in turn, in a transparent ETFE tube (1 mm i.d., 75 cm) and the tube was placed in front of a photomultipier tube as a flow cell. Two-peak response was obtained by one injection of the sample solution. The first and second peaks were dependent on the concentrations of Ch and ACh, respectively. The influence of some experimental parameters such as flow rate, amounts of immobilized enzymes on the behavior of the sensor was studied in order to optimize the sensitivity, sample throughput and resolution. Calibration curves were linear at 1 - 1000 nM for Ch and 3 - 3000 nM for ACh. The sample throughput was 25/h without carryover. The FI system was applied to the simultaneous determination of Ch and ACh in rabbit brain tissue homogenates.

  14. Comparison of Series of Vugs and Non-vuggy Synthetic Porous Media on Formation Damage

    NASA Astrophysics Data System (ADS)

    Khan, H.; DiCarlo, D. A.; Prodanovic, M.

    2017-12-01

    Produced water reinjection (PWRI) is an established cost-effective oil field practice where produced water is injected without any cleanup, for water flooding or disposal. Resultantly the cost of fresh injection fluid and/or processing produced water is saved. A common problem with injection of unprocessed water is formation damage in the near injection zone due to solids (fines) entrapment, causing a reduction in permeability and porosity of the reservoir. Most studies have used homogeneous porous media with unimodal grain sizes, while real world porous media often has a wide range of pores, up to and including vugs in carbonaceous rocks. Here we fabricate a series of vugs in synthetic porous media by sintering glass beads with large dissolvable inclusions. The process is found to be repeatable, allowing a similar vug configuration to be tested for different flow conditions. Bi-modal glass bead particles (25 & 100 micron) are injected at two different flow rates and three different injection concentrations. Porosity, permeability and effluent concentration are determined using CT scanning, pressure measurements and particle counting (Coulter counter), respectively. Image analysis is performed on the CT images to determine the change in vug size for each flow condition. We find that for the same flow conditions, heterogeneous media with series of vugs have an equal or greater permeability loss compared to homogeneous porous media. A significant change in permeability is observed at the highest concentration and flow rate as more particles approach the filter quickly, resulting in a greater loss in permeability in the lower end of the core. Image analysis shows the highest loss in vug size occurs at the low flow rate and highest concentration. The lower vug is completely blocked for this flow case. For all flow cases lower values of porosity are observed after the core floods. At low flow rate and medium concentration, a drastic loss in porosity is observed in the lower part of the core, after the vuggy zone. This trough is also distinctly clear in the homogeneous core for the same flow conditions. This study focuses on understanding the effect of pore heterogeneity on formation damage. We conclude that more damage is done deeper in vuggy formations at high flow rates, resulting in shorter injection cycle prior to clean up.

  15. A study of the methods for the production and confinement of high energy plasmas. [injection of dense plasma into long magnetic field

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.; Wang, P.

    1972-01-01

    The injection of dense plasmas into a B sub z long magnetic field from both ends of the field coil was investigated. Deflagration plasma guns and continuous flow Z-pinch are discussed along with the possibility of a continuous flow Z-pinch fusion reactor. The injection experiments are described with emphasis on the synchronization of the two plasma deflagration guns, the collision of the two plasma beams, and the determination of plasma density.

  16. Flow injection analysis simulations and diffusion coefficient determination by stochastic and deterministic optimization methods.

    PubMed

    Kucza, Witold

    2013-07-25

    Stochastic and deterministic simulations of dispersion in cylindrical channels on the Poiseuille flow have been presented. The random walk (stochastic) and the uniform dispersion (deterministic) models have been used for computations of flow injection analysis responses. These methods coupled with the genetic algorithm and the Levenberg-Marquardt optimization methods, respectively, have been applied for determination of diffusion coefficients. The diffusion coefficients of fluorescein sodium, potassium hexacyanoferrate and potassium dichromate have been determined by means of the presented methods and FIA responses that are available in literature. The best-fit results agree with each other and with experimental data thus validating both presented approaches. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.

  17. Determination of the Flow Field in the Propellant Tank of a Rocket Engine on Completion of the Mission

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Bedarev, I. A.; Lavruk, S. A.; Trushlyakov, V. I.; Kudentsov, V. Yu.

    2018-03-01

    In the present work, a method of mathematical simulation is employed to describe processes occurring in the specimens of new equipment and using the remaining propellant in rocket-engine tanks. Within the framework of certain turbulence models, the authors perform a calculation of the flow field in the volume of the tank of the launch-vehicle stage when a hot gas jet is injected into it. A vortex flow structure is revealed; the characteristics of heat transfer for different angles of injection of the jet are determined. The obtained correlation Nu = Nu(Re) satisfactorily describes experimental data.

  18. Determination of the Flow Field in the Propellant Tank of a Rocket Engine on Completion of the Mission

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Bedarev, I. A.; Lavruk, S. A.; Trushlyakov, V. I.; Kudentsov, V. Yu.

    2018-05-01

    In the present work, a method of mathematical simulation is employed to describe processes occurring in the specimens of new equipment and using the remaining propellant in rocket-engine tanks. Within the framework of certain turbulence models, the authors perform a calculation of the flow field in the volume of the tank of the launch-vehicle stage when a hot gas jet is injected into it. A vortex flow structure is revealed; the characteristics of heat transfer for different angles of injection of the jet are determined. The obtained correlation Nu = Nu(Re) satisfactorily describes experimental data.

  19. Flow visualization study of the effect of injection hole geometry on an inclined jet in crossflow

    NASA Technical Reports Server (NTRS)

    Simon, F. F.; Ciancone, M. L.

    1985-01-01

    A flow visualization was studied by using neutrally buoyant, helium-filled soap bubbles, to determine the effect of injection hole geometry on the trajectory of an air jet in a crossflow and to investigate the mechanisms involved in jet deflection. Experimental variables were the blowing rate, and the injection hole geometry cusp facing upstream (CUS), cusp facing downstream (CDS), round, swirl passage, and oblong. It is indicated that jet deflection is governed by both the pressure drag forces and the entrainment of free-stream fluid into the jet flow. For injection hole geometries with similar cross-sectional areas and similar mass flow rates, the jet configuration with the larger aspect ratio experienced a greater deflection. Entrainment arises from lateral shearing forces on the sides of the jet, which set up a dual vortex motion within the jet and thereby cause some of the main-stream fluid momentum to be swept into the jet flow. This additional momentum forces the jet nearer the surface. Of the jet configurations, the oblong, CDS, and CUS configutations exhibited the largest deflections. The results correlate well with film cooling effectiveness data, which suggests a need to determine the jet exit configuration of optimum aspect ratio to provide maximum film cooling effectiveness.

  20. Flow visualization study of the effect of injection hole geometry on an inclined jet in crossflow

    NASA Technical Reports Server (NTRS)

    Simon, Frederick F.; Ciancone, Michael L.

    1987-01-01

    A flow visualization was studied by using neutrally buoyant, helium-filled soap bubbles, to determine the effect of injection hole geometry on the trajectory of an air jet in a crossflow and to investigate the mechanisms involved in jet deflection. Experimental variables were the blowing rate, and the injection hole geometry cusp facing upstream (CUS), cusp facing downstream (CDS), round, swirl passage, and oblong. It is indicated that jet deflection is governed by both the pressure drag forces and the entrainment of free-stream fluid into the jet flow. For injection hole geometries with similar cross-sectional areas and similar mass flow rates, the jet configuration with the larger aspect ratio experienced a greater deflection. Entrainment arises from lateral shearing forces on the sides of the jet, which set up a dual vortex motion within the jet and thereby cause some of the main-stream fluid momentum to be swept into the jet flow. This additional momentum forces the jet nearer the surface. Of the jet configurations, the oblong, CDS, and CUS configurations exhibited the largest deflections. The results correlate well with film cooling effectiveness data, which suggests a need to determine the jet exit configuration of optimum aspect ratio to provide maximum film cooling effectiveness.

  1. A flow system for the spectrophotometric determination of lead in different types of waters using ion-exchange for pre-concentration and elimination of interferences.

    PubMed

    Mesquita, Raquel B R; Fernandes, Sílvia M V; Rangel, António O S S

    2004-02-06

    A flow system for the spectrophotometric determination of lead in natural and waste waters is proposed. The determination is based on the colorimetric reaction between malachite green and iodide, followed by the formation of a ternary complex between those reagents and lead cations. The developed flow system includes a lead pre-concentration step in a column packed with a cationic resin (Chelex 100) operating in a sequential injection mode. To improve the mixture of sample and reagents, a flow injection approach was adopted for the colorimetric determination. This way a hybrid flow system, involving both sequential and flow injection concepts was designed. Another feature of the proposed system is the efficient elimination of major interferent species, such as cadmium and copper. The elimination of cadmium interference is obtained by complexing Cd(2+) with chloride and retaining the formed negatively charged complexes in an anionic resin, AG1 X-8. As for copper, with the presence of both ionic resins as well as the conditions for cadmium elimination, it no longer acts as an interferent. Different ranges of lead concentration (50-300 and 300-1000mugl(-1)) can be determined with minor changes in the controlling software, useful for application to both natural and waste waters. Therefore, a detection limit of 25mugl(-1) was achieved. Repeatability was evaluated from 10 consecutive determinations being the results better than 4%. The recoveries of lead spikes added to the samples ranged from 93 to 102%. The sampling frequency was 17 and 24 determinations per hour, for 50-300 and 300-1000mugl(-1) ranges, respectively.

  2. Flow injection analysis-flame atomic absorption spectrometry system for indirect determination of sulfite after on-line reduction of solid-phase manganese (IV) dioxide reactor.

    PubMed

    Zare-Dorabei, Rouholah; Boroun, Shokoufeh; Noroozifar, Meissam

    2018-02-01

    A new and simple flow injection method followed by atomic absorption spectrometry was developed for indirect determination of sulfite. The proposed method is based on the oxidation of sulfite to sulphate ion using solid-phase manganese dioxide (30% W/W suspended on silica gel beads) reactor. MnO 2 will be reduced to Mn(II) by sample injection in to the column under acidic carrier stream of HNO 3 (pH 2) with flow rate of 3.5mLmin -1 at room temperature. Absorption measurement of Mn(II) which is proportional to the concentration of sulfite in the sample was carried out by atomic absorption spectrometry. The calibration curve was linear up to 25mgL -1 with a detection limit (DL) of 0.08mgL -1 for 400µL injection sample volume. The presented method is efficient toward sulfite determination in sugar and water samples with a relative standard deviation (RSD) less than 1.2% and a sampling rate of about 60h -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Experiment T001: Entry communication on the Gemini 3 mission

    NASA Technical Reports Server (NTRS)

    Schroeder, L. C.; Sims, T. E.; Cuddihy, W. F.

    1971-01-01

    Water addition to the Gemini 3 exhaust plasma was studied to determine its effectiveness in the establishment of communication links during the entry portion of the flight. Attenuation levels were measured with and without water injection at uhf frequencies of 230.4 and 296.8 megahertz and at the C-band frequency of 5690 megahertz. Ultrahigh frequency signals that had been blacked out were restored to significant levels, during early portions of the water-injection sequence, by the high flow rate injection. The C-band signal was enhanced by medium and high flow rate injections during the latter portion of the injection period. The uhf signal recovered during water injection resulted in an antenna pattern that was beamed in the radial direction of injection from the spacecraft. Postflight analysis showed that the uhf recovery data were consistent with injection-penetration theory.

  4. Rapid and Automated Analytical Methods for Redox Species Based on Potentiometric Flow Injection Analysis Using Potential Buffers

    PubMed Central

    Ohura, Hiroki; Imato, Toshihiko

    2011-01-01

    Two analytical methods, which prove the utility of a potentiometric flow injection technique for determining various redox species, based on the use of some redox potential buffers, are reviewed. The first is a potentiometric flow injection method in which a redox couple such as Fe(III)-Fe(II), Fe(CN)6 3−-Fe(CN)(CN)6 4−, and bromide-bromine and a redox electrode or a combined platinum-bromide ion selective electrode are used. The analytical principle and advantages of the method are discussed, and several examples of its application are reported. Another example is a highly sensitive potentiometric flow injection method, in which a large transient potential change due to bromine or chlorine as an intermediate, generated during the reaction of the oxidative species with an Fe(III)-Fe(II) potential buffer containing bromide or chloride, is utilized. The analytical principle and details of the proposed method are described, and examples of several applications are described. The determination of trace amounts of hydrazine, based on the detection of a transient change in potential caused by the reaction with a Ce(IV)-Ce(III) potential buffer, is also described. PMID:21584280

  5. Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry.

    PubMed

    Leal, L O; Elsholz, O; Forteza, R; Cerdà, V

    2006-07-28

    A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl2 in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L(-1). The detection limit (3sigma(b)/S) achieved is 5 ng L(-1). The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L(-1) Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples.

  6. Modeling GPR data to interpret porosity and DNAPL saturations for calibration of a 3-D multiphase flow simulation

    USGS Publications Warehouse

    Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.

    2002-01-01

    Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.

  7. Determination of inorganic arsenic and its organic metabolites in urine by flow-injection hydride generation atomic absorption spectrometry.

    PubMed

    Hanna, C P; Tyson, J F; McIntosh, S

    1993-08-01

    A method has been developed for the determination of inorganic arsenic [As(III) and As(V)] and its organic metabolites (monomethylarsenic and dimethylarsenic) in urine by flow-injection hydride generation atomic absorption spectrometry. The nontoxic seafood-derived arsenobetaine and arsenocholine species were first separated by a solid-phase extraction procedure. The remaining sample was digested with a mixture of nitric and sulfuric acids and potassium dichromate, followed by attack with hydrogen peroxide. The resulting As(V) was reduced to As(III) with potassium iodide in hydrochloric acid before injection into the flow-injection manifold. The percentage analytical recoveries (mean +/- 95% confidence interval) of various arsenic species added to a urine specimen at 250 micrograms/L were 108 +/- 2, 112 +/- 11, 104 +/- 7, and 95 +/- 5 for As(III), As(V), monomethylarsenic, and dimethylarsenic, respectively. For the determination of arsenic in Standard Reference Material 2670 (toxic metals in human urine), results agreed with the certified value (480 +/- 100 micrograms/L). Analyses of samples for the Centre de Toxicologie du Quebec, containing seafood-derived species, demonstrated the viability of the separation procedure. Detection limits were between 0.1 and 0.2 microgram/L in the solution injected into the manifold, and precision at 10 micrograms/L was between 2% and 3% (CV). These preliminary results show that the method might be applicable to determinations of arsenic in a range of clinical urine specimens.

  8. Development of an automated flow injection analysis system for determination of phosphate in nutrient solutions.

    PubMed

    Karadağ, Sevinç; Görüşük, Emine M; Çetinkaya, Ebru; Deveci, Seda; Dönmez, Koray B; Uncuoğlu, Emre; Doğu, Mustafa

    2018-01-25

    A fully automated flow injection analysis (FIA) system was developed for determination of phosphate ion in nutrient solutions. This newly developed FIA system is a portable, rapid and sensitive measuring instrument that allows on-line analysis and monitoring of phosphate ion concentration in nutrient solutions. The molybdenum blue method, which is widely used in FIA phosphate analysis, was adapted to the developed FIA system. The method is based on the formation of ammonium Mo(VI) ion by reaction of ammonium molybdate with the phosphate ion present in the medium. The Mo(VI) ion then reacts with ascorbic acid and is reduced to the spectrometrically measurable Mo(V) ion. New software specific for flow analysis was developed in the LabVIEW development environment to control all the components of the FIA system. The important factors affecting the analytical signal were identified as reagent flow rate, injection volume and post-injection flow path length, and they were optimized using Box-Behnken experimental design and response surface methodology. The optimum point for the maximum analytical signal was calculated as 0.50 mL min -1 reagent flow rate, 100 µL sample injection volume and 60 cm post-injection flow path length. The proposed FIA system had a sampling frequency of 100 samples per hour over a linear working range of 3-100 mg L -1 (R 2  = 0.9995). The relative standard deviation (RSD) was 1.09% and the limit of detection (LOD) was 0.34 mg L -1 . Various nutrient solutions from a tomato-growing hydroponic greenhouse were analyzed with the developed FIA system and the results were found to be in good agreement with vanadomolybdate chemical method findings. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  9. Measurement of bronchial blood flow in the sheep by video dilution technique.

    PubMed Central

    Link, D P; Parsons, G H; Lantz, B M; Gunther, R A; Green, J F; Cross, C E

    1985-01-01

    Bronchial blood flow was determined in five adult anaesthetised sheep by the video dilution technique. This is a new fluoroscopic technique for measuring blood flow that requires only arterial catheterisation. Catheters were placed into the broncho-oesophageal artery and ascending aorta from the femoral arteries for contrast injections and subsequent videotape recording. The technique yields bronchial blood flow as a percentage of cardiac output. The average bronchial artery blood flow was 0.6% (SD 0.20%) of cardiac output. In one sheep histamine (90 micrograms) injected directly into the bronchial artery increased bronchial blood flow by a factor of 6 and histamine (90 micrograms) plus methacholine (4.5 micrograms) augmented flow by a factor of 7.5 while leaving cardiac output unchanged. This study confirms the high degree of reactivity of the bronchial circulation and demonstrates the feasibility of using the video dilution technique to investigate the determinants of total bronchial artery blood flow in a stable animal model avoiding thoracotomy. Images PMID:3883564

  10. Studies on the injection molding of polyvinyl chloride: Analysis of viscous heating and degradation in simple geometries

    NASA Astrophysics Data System (ADS)

    Garcia, Jose Luis

    2000-10-01

    In injection molding processes, computer aided engineering (CAE) allows processors to evaluate different process parameters in order to achieve complete filling of a cavity and, in some cases, it predicts shrinkage and warpage. However, because commercial computational packages are used to design complex geometries, detail in the thickness direction is limited. Approximations in the thickness direction lead to the solution of a 2½-D problem instead of a 3-D problem. These simplifications drastically reduce computational times and memory requirements. However, these approximations hinder the ability to predict thermal and/or mechanical degradation. The goal of this study was to determine the degree of degradation during PVC injection molding and to compare the results with a computational model. Instead of analyzing degradation in complex geometries, the computational analysis and injection molding trials were performed on typical sections found in complex geometries, such as flow in a tube, flow in a rectangular channel, and radial flow. This simplification reduces the flow problem to a 1-D problem and allows one to develop a computational model with a higher level of detail in the thickness direction, essential for the determination of degradation. Two different geometries were examined in this study: a spiral mold, in order to approximate the rectangular channel, and a center gated plate for the radial flow. Injection speed, melt temperature, and shot size were varied. Parts varying in degree of degradation, from no to severe degradation, were produced to determine possible transition points. Furthermore, two different PVC materials were used, low and high viscosity, M3800 and M4200, respectively (The Geon Company, Avon Lake, OH), to correlate the degree of degradation with the viscous heating observed during injection. It was found that a good agreement between experimental and computational results was obtained only if the reaction was assumed to be more thermally sensitive than found in literature. The results from this study show that, during injection, the activation energy for degradation was 65 kcal/mol, compared to 17--30 kcal/mol found in literature for quiescent systems.

  11. A multi-commuted flow injection system with a multi-channel propulsion unit placed before detection: Spectrophotometric determination of ammonium.

    PubMed

    Oliveira, Sara M; Lopes, Teresa I M S; Tóth, Ildikó V; Rangel, António O S S

    2007-09-26

    A flow system with a multi-channel peristaltic pump placed before the solenoid valves is proposed to overcome some limitations attributed to multi-commuted flow injection systems: the negative pressure can lead to the formation of unwanted air bubbles and limits the use of devices for separation processes (gas diffusion, dialysis or ion-exchange). The proposed approach was applied to the colorimetric determination of ammonium nitrogen. In alkaline medium, ammonium is converted into ammonia, which diffuses over the membrane, causing a pH change and subsequently a colour change in the acceptor stream (bromothymol blue solution). The system allowed the re-circulation of the acceptor solution and was applied to ammonium determination in surface and tap water, providing relative standard deviations lower than 1.5%. A stopped flow approach in the acceptor stream was adopted to attain a low quantification limit (42 microgL(-1)) and a linear dynamic range of 50-1000 microgL(-1) with a determination rate of 20 h(-1).

  12. A rapid and accurate method for determining protein content in dairy products based on asynchronous-injection alternating merging zone flow-injection spectrophotometry.

    PubMed

    Liang, Qin-Qin; Li, Yong-Sheng

    2013-12-01

    An accurate and rapid method and a system to determine protein content using asynchronous-injection alternating merging zone flow-injection spectrophotometry based on reaction between coomassie brilliant blue G250 (CBBG) and protein was established. Main merit of our approach is that it can avoid interferences of other nitric-compounds in samples, such as melamine and urea. Optimized conditions are as follows: Concentrations of CBBG, polyvinyl alcohol (PVA), NaCl and HCl are 150 mg/l, 30 mg/l, 0.1 mol/l and 1.0% (v/v), respectively; volumes of the sample and reagent are 150 μl and 30 μl, respectively; length of a reaction coil is 200 cm; total flow rate is 2.65 ml/min. The linear range of the method is 0.5-15 mg/l (BSA), its detection limit is 0.05 mg/l, relative standard deviation is less than 1.87% (n=11), and analytical speed is 60 samples per hour. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Assessment of Current Process Modeling Approaches to Determine Their Limitations, Applicability and Developments Needed for Long-Fiber Thermoplastic Injection Molded Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Holbery, Jim; Smith, Mark T.

    2006-11-30

    This report describes the status of the current process modeling approaches to predict the behavior and flow of fiber-filled thermoplastics under injection molding conditions. Previously, models have been developed to simulate the injection molding of short-fiber thermoplastics, and an as-formed composite part or component can then be predicted that contains a microstructure resulting from the constituents’ material properties and characteristics as well as the processing parameters. Our objective is to assess these models in order to determine their capabilities and limitations, and the developments needed for long-fiber injection-molded thermoplastics (LFTs). First, the concentration regimes are summarized to facilitate the understandingmore » of different types of fiber-fiber interaction that can occur for a given fiber volume fraction. After the formulation of the fiber suspension flow problem and the simplification leading to the Hele-Shaw approach, the interaction mechanisms are discussed. Next, the establishment of the rheological constitutive equation is presented that reflects the coupled flow/orientation nature. The decoupled flow/orientation approach is also discussed which constitutes a good simplification for many applications involving flows in thin cavities. Finally, before outlining the necessary developments for LFTs, some applications of the current orientation model and the so-called modified Folgar-Tucker model are illustrated through the fiber orientation predictions for selected LFT samples.« less

  14. A novel green analytical procedure for monitoring of azoxystrobin in water samples by a flow injection chemiluminescence method with off-line ultrasonic treatment.

    PubMed

    Yang, Xin-an; Zhang, Wang-bing

    2013-01-01

    A simple and green flow injection chemiluminescence (FI-CL) method for determination of the fungicide azoxystrobin was described for the first time. CL signal was generated when azoxystrobin was injected into a mixed stream of luminol and KMnO4 . The CL signal of azoxystrobin could be greatly improved when an off-line ultrasonic treatment was adopted. Meanwhile, the signal intensity increases with the analyte concentration proportionally. Several variables, such as the ultrasonic parameters, flow rate of reagents, concentrations of sodium hydroxide solution and CL reagents (potassium permanganate, luminol) were investigated, and the optimal CL conditions were obtained. Under optimal conditions, the linear range of 1-100 ng/mL for azoxystrobin was obtained and the detection limit (3σ) was determined as 0.13 ng/mL. The relative standard deviation was 1.5% for 10 consecutive measurements of 20 ng/mL azoxystrobin. The method has been applied to the determination of azoxystrobin residues in water samples. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Determination of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride by flow-injection analysis based on a specific condensation reaction between malonic acid and ethylenediamine.

    PubMed

    Seno, Kunihiko; Matumura, Kazuki; Oshita, Koji; Oshima, Mitsuko; Motomizu, Shoji

    2009-03-01

    A sensitive and rapid flow-injection analysis was developed for the determination of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC.HCl), which was used for the formation of amide (peptide) and esters as a dehydration or condensation reagent. The EDC.HCl could be determined by the flow-injection analysis based on a specific condensation reaction between malonic acid and ethylenediamine in aquatic media. The reaction was accelerated at 60 degrees C, and the absorbance of the product was detected at 262 nm. The calibration graph of EDC.HCl showed good linearity in the range from 0 to 0.1% (0 to 0.0005 M), whose regression equation was y = 1.52 x 10(9)x (y, peak area; x, % concentration of EDC.HCl). The proposed method allowed high-throughput analysis; the sample throughput was 12 samples per hour. The limit of detection (LOD) and the relative standard deviation (RSD) were 2 x 10(-6) M and 1.0%, respectively. This reaction is proceeded in aqueous solution and specific for EDC.HCl.

  16. Load flows and faults considering dc current injections

    NASA Technical Reports Server (NTRS)

    Kusic, G. L.; Beach, R. F.

    1991-01-01

    The authors present novel methods for incorporating current injection sources into dc power flow computations and determining network fault currents when electronic devices limit fault currents. Combinations of current and voltage sources into a single network are considered in a general formulation. An example of relay coordination is presented. The present study is pertinent to the development of the Space Station Freedom electrical generation, transmission, and distribution system.

  17. Dual-phase gas-permeation flow-injection thermometric analysis for the determination of carbon dioxide.

    PubMed

    Liu, S J; Tubino, M

    1998-11-01

    A flow-injection configuration based on a dual-phase gas-permeation system from a liquid donor to a gas acceptor stream with a thermistor flow-through detector is proposed for the direct analysis of the gas in the acceptor. This system was applied for the determination of carbon dioxide (in the form of carbonate) using the following chemical reaction: CO(2)(g)+2NH(3)(g)+H(2)O(g)=(NH(4))(2)CO(3)(s), with a linear response from 1x10(-3) to 50x10(-3) mol l(-1) of CO(3)(2-). Carbon dioxide was produced in the liquid donor and permeated into the gaseous acceptor stream of air/water vapor. The detection limit is 1x10(-3) mol l(-1) of carbonate, and a sampling frequency of 60 h(-1) is achieved with a relative standard deviation of 4.1% for replicate injections. The dual-phase gas-permeation flow-injection manifold, along with the membrane and phase separations, as well as the chemical reaction, provides enhanced selectivity when compared with the system employing a liquid acceptor stream, as serious interferents in this system, for instance, acetate and formate, among others, do not interfere in the proposed system.

  18. Flow injection method for the determination of silver concentration in drinking water for spacecrafts.

    PubMed

    Bruzzoniti, Maria Concetta; Kobylinska, Dorota Korte; Franko, Mladen; Sarzanini, Corrado

    2010-04-14

    A flow injection method has been developed for determination of silver. The method is based on a reduction reaction with sodium borohydride which leads to the formation of a colloidal species which is monitored at a wavelength of 390 nm. The reaction variables flow rate, sodium borohydride concentration and pH, which affect sensitivity, were investigated and their effects were established using a two-levels, three-factor experimental design. Further optimization of manifold variables (reaction coil and injection volume) allowed us to determine silver in the range 0.050-5.0 mg L(-1) with a minimum detectable concentration of 0.050 mg L(-1). Silver is added, as biocide, to drinking water for spacecrafts. The chemical species of silver, present in this kind of sample, were characterized by a procedure based on the selective retention of Ag(+) onto a 2.2.2. cryptand based substrate followed by determination of the non-bound and bound (after elution) Ag(+) by the FIA method. The method optimized was applied to a drinking water sample provided for the launch with the Automated Transfer Vehicle (ATV) module Jule Verne to the International Space Station (March 9, 2008). Copyright 2010 Elsevier B.V. All rights reserved.

  19. Chemical Analysis through CL-Detection Assisted by Periodate Oxidation

    PubMed Central

    Evmiridis, Nicholaos P.; Vlessidis, Athanasios G.; Thanasoulias, Nicholas C.

    2007-01-01

    The progress of the research work of the author and his colleagues on the field of CL-emission generated by pyrogallol oxidation and further application for the direct determination of periodate and indirect or direct determination of other compounds through flow-injection manifold/CL-detection set up is described. The instrumentation used for these studies was a simple flow-injection manifold that provides good reproducibility, coupled to a red sensitive photomultiplier that gives sensitive CL-detection. In addition, recent reports on studies and analytical methods based on CL-emission generated by periodate oxidation by other authors are included. PMID:17611611

  20. Rapid determination of tartaric acid in wines.

    PubMed

    Bastos, Sandra S T; Tafulo, Paula A R; Queirós, Raquel B; Matos, Cristina D; Sales, M Goreti F

    2009-08-01

    A flow-spectrophotometric method is proposed for the routine determination of tartaric acid in wines. The reaction between tartaric acid and vanadate in acetic media is carried out in flowing conditions and the subsequent colored complex is monitored at 475 nm. The stability of the complex and the corresponding formation constant are presented. The effect of wavelength and pH was evaluated by batch experiments. The selected conditions were transposed to a flow-injection analytical system. Optimization of several flow parameters such as reactor lengths, flow-rate and injection volume was carried out. Using optimized conditions, a linear behavior was observed up to 1000 microg mL(-1) tartaric acid, with a molar extinction coefficient of 450 L mg(-1) cm(-1) and +/- 1 % repeatability. Sample throughput was 25 samples per hour. The flow-spectrophotometric method was satisfactorily applied to the quantification of TA in wines from different sources. Its accuracy was confirmed by statistical comparison to the conventional Rebelein procedure and to a certified analytical method carried out in a routine laboratory.

  1. Jet mixing into a heated cross flow in a cylindrical duct: Influence of geometry and flow variations

    NASA Technical Reports Server (NTRS)

    Hatch, M. S.; Sowa, W. A.; Samuelsen, G. S.; Holdeman, J. D.

    1992-01-01

    To examine the mixing characteristics of jets in an axi-symmetric can geometry, temperature measurements were obtained downstream of a row of cold jets injected into a heated cross stream. Parametric, non-reacting experiments were conducted to determine the influence of geometry and flow variations on mixing patterns in a cylindrical configuration. Results show that jet to mainstream momentum flux ratio and orifice geometry significantly impact the mixing characteristics of jets in a can geometry. For a fixed number of orifices, the coupling between momentum flux ratio and injector determines (1) the degree of jet penetration at the injection plane, and (2) the extent of circumferential mixing downstream of the injection plane. The results also show that, at a fixed momentum flux ratio, jet penetration decreases with (1) an increase in slanted slot aspect ratio, and (2) an increase in the angle of the slots with respect to the mainstream direction.

  2. Sensitive flow-injection spectrophotometric analysis of bromopride

    NASA Astrophysics Data System (ADS)

    Lima, Liliane Spazzapam; Weinert, Patrícia Los; Pezza, Leonardo; Pezza, Helena Redigolo

    2014-12-01

    A flow injection spectrophotometric procedure employing merging zones is proposed for direct bromopride determination in pharmaceutical formulations and biological fluids. The proposed method is based on the reaction between bromopride and p-dimethylaminocinnamaldehyde (p-DAC) in acid medium, in the presence of sodium dodecyl sulfate (SDS), resulting in formation of a violet product (λmax = 565 nm). Experimental design methodologies were used to optimize the experimental conditions. The Beer-Lambert law was obeyed in a bromopride concentration range of 3.63 × 10-7 to 2.90 × 10-5 mol L-1, with a correlation coefficient (r) of 0.9999. The limits of detection and quantification were 1.07 × 10-7 and 3.57 × 10-7 mol L-1, respectively. The proposed method was successfully applied to the determination of bromopride in pharmaceuticals and human urine, and recoveries of the drug from these media were in the ranges 99.6-101.2% and 98.6-102.1%, respectively. This new flow injection procedure does not require any sample pretreatment steps.

  3. Dispersion of a Nanoliter Bolus in Microfluidic Co-Flow.

    PubMed

    Conway, A J; Saadi, W M; Sinatra, F L; Kowalski, G; Larson, D; Fiering, J

    2014-03-01

    Microfluidic systems enable reactions and assays on the scale of nanoliters. However, at this scale nonuniformities in sample delivery become significant. To determine the fundamental minimum sample volume required for a particular device, a detailed understanding of mass transport is required. Co-flowing laminar streams are widely used in many devices, but typically only in the steady-state. Because establishing the co-flow steady-state consumes excess sample volume and time, there is a benefit to operating devices in the transient state, which predominates as the volume of the co-flow reactor decreases. Analysis of the co-flow transient has been neglected thus far. In this work we describe the fabrication of a pneumatically controlled microfluidic injector constructed to inject a discrete 50nL bolus into one side of a two-stream co-flow reactor. Using dye for image analysis, injections were performed at a range of flow rates from 0.5-10μL/min, and for comparison we collected the co-flow steady-state data for this range. The results of the image analysis were also compared against theory and simulations for device validation. For evaluation, we established a metric that indicates how well the mass distribution in the bolus injection approximates steady-state co-flow. Using such analysis, transient-state injections can approximate steady-state conditions within predefined errors, allowing straight forward measurements to be performed with reduced reagent consumption.

  4. Automation of flow injection gas diffusion-ion chromatography for the nanomolar determination of methylamines and ammonia in seawater and atmospheric samples

    PubMed Central

    Gibb, Stuart W.; Wood, John W.; Fauzi, R.; Mantoura, C.

    1995-01-01

    The automation and improved design and performance of Flow Injection Gas Diffusion-Ion Chromatography (FIGD-IC), a novel technique for the simultaneous analysis of trace ammonia (NH3) and methylamines (MAs) in aqueous media, is presented. Automated Flow Injection Gas Diffusion (FIGD) promotes the selective transmembrane diffusion of MAs and NH3 from aqueous sample under strongly alkaline (pH > 12, NaOH), chelated (EDTA) conditions into a recycled acidic acceptor stream. The acceptor is then injected onto an ion chromatograph where NH3 and the MAs are fully resolved as their cations and detected conductimetrically. A versatile PC interfaced control unit and data capture unit (DCU) are employed in series to direct the selonoid valve switching sequence, IC operation and collection of data. Automation, together with other modifications improved both linearily (R2 > 0.99 MAs 0-100 nM, NH3 0-1000 nM) and precision (<8%) of FIGD-IC at nanomolar concentrations, compared with the manual procedure. The system was successfully applied to the determination of MAs and NH3 in seawater and in trapped particulate and gaseous atmospheric samples during an oceanographic research cruise. PMID:18925047

  5. Recovery of injected freshwater to differentiate fracture flow in a low-permeability brackish aquifer

    NASA Astrophysics Data System (ADS)

    Miotliński, Konrad; Dillon, Peter J.; Pavelic, Paul; Cook, Peter G.; Page, Declan W.; Levett, Kerry

    2011-10-01

    SummaryA low-permeability weathered siltstone-sandstone aquifer containing brackish water was investigated to measure recoverability of injected freshwater with the aim of determining the significance of secondary porosity in contributing to groundwater flow and transport. Examination of the core, borehole geophysics, Radon-222, electromagnetic flowmeter (EMF) profiles and step-drawdown pumping tests did not identify whether fractures contribute to groundwater flow. A number of injection and recovery tests lasting from 3 days to 3 months using potable water showed a large degree of mixing with native groundwater. Withdrawal greater than 12-17% of the injected volume resulted in recovered water containing more native groundwater than injected water. A finite element solute transport model was set up to reproduce the observed salinity in recovered water. Without the inclusion of discrete fractures in the model it was not possible to get a fit between the observed and modelled salinity of recovered water within a realistic range of dispersivity values. The model was subsequently verified by using data from long-term injection and recovery trials. This evaluation of mixing conclusively demonstrated that the aquifer behaved as a fractured rock aquifer and not as an aquifer with primary porosity alone. Therefore, aquifer storage and recovery can be a very useful hydrogeological method to identify the occurrence of fracture flow in aquifers where there is a measurable concentration difference between the injected water and ambient groundwater.

  6. The measurement of skin lymph flow by isotope clearance--reliability, reproducibility, injection dynamics, and the effect of massage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortimer, P.S.; Simmonds, R.; Rezvani, M.

    1990-12-01

    The measurement of skin lymph flow was investigated using an isotope clearance technique (ICT). Multiple lymph flow determinations were undertaken in the skin of anaesthetized large white pigs to test for reproducibility, ascertain the most suitable tracer, study the influence of injection dynamics, and observe the effect of massage as a stimulus to lymph flow. Blood clearance of tracer was also investigated. Results demonstrated that lymphatic clearance is a monoexponential function with good reproducibility under controlled laboratory conditions. 99mTc-colloid (TCK17 Cis) compared favorably with 131I-human serum albumin as a tracer and both performed better than colloid gold (198Au). Lymph flowmore » was significantly faster in one pig than in the other. No difference existed between left and right sides or between caudal and rostral sites on each flank, but clearance was significantly slower in thigh than flank skin. Sub-epidermal injections cleared faster and more consistently than either deep or subcutaneous injections. Neither injection volume nor needle tract backflow of tracer influenced results, but local massage significantly enhanced clearance. Escape of 99mTc-colloid by the blood was negligible. These results indicate that skin lymph flow can be reliably measured when conditions are controlled. Extrinsic factors such as massage strongly influence lymph flow. Greater sensitivity in detecting degrees of lymphatic insufficiency may be achieved if a standardized stimulus to lymph flow is administered during isotope clearance measurement.« less

  7. Impact of Air Injection on Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Norum, Tom

    2007-01-01

    The objective of this viewgraph presentation is to review the program to determine impact of core fluidic chevrons on noise produced by dual stream jets (i.e., broadband shock noise - supersonic, and mixing noise - subsonic and supersonic). The presentation reviews the sources of jet noise. It shows designs of Generation II Fluidic Chevrons. The injection impacts shock structure and stream disturbances through enhanced mixing. This may impact constructive interference between acoustic sources. The high fan pressures may inhibit mixing produced by core injectors. A fan stream injection may be required for better noise reduction. In future the modification of Gen II nozzles to allow for some azimuthal control: will allow for higher mass flow rates and will allow for shallower injection angles A Flow field study is scheduled for spring, 2008 The conclusions are that injection can reduce well-defined shock noise and injection reduces mixing noise near peak jet noise angle

  8. Polymeric microchip for the simultaneous determination of anions and cations by hydrodynamic injection using a dual-channel sequential injection microchip electrophoresis system.

    PubMed

    Gaudry, Adam J; Nai, Yi Heng; Guijt, Rosanne M; Breadmore, Michael C

    2014-04-01

    A dual-channel sequential injection microchip capillary electrophoresis system with pressure-driven injection is demonstrated for simultaneous separations of anions and cations from a single sample. The poly(methyl methacrylate) (PMMA) microchips feature integral in-plane contactless conductivity detection electrodes. A novel, hydrodynamic "split-injection" method utilizes background electrolyte (BGE) sheathing to gate the sample flows, while control over the injection volume is achieved by balancing hydrodynamic resistances using external hydrodynamic resistors. Injection is realized by a unique flow-through interface, allowing for automated, continuous sampling for sequential injection analysis by microchip electrophoresis. The developed system was very robust, with individual microchips used for up to 2000 analyses with lifetimes limited by irreversible blockages of the microchannels. The unique dual-channel geometry was demonstrated by the simultaneous separation of three cations and three anions in individual microchannels in under 40 s with limits of detection (LODs) ranging from 1.5 to 24 μM. From a series of 100 sequential injections the %RSDs were determined for every fifth run, resulting in %RSDs for migration times that ranged from 0.3 to 0.7 (n = 20) and 2.3 to 4.5 for peak area (n = 20). This system offers low LODs and a high degree of reproducibility and robustness while the hydrodynamic injection eliminates electrokinetic bias during injection, making it attractive for a wide range of rapid, sensitive, and quantitative online analytical applications.

  9. Vertical gas injection into liquid cross-stream beneath horizontal surfaces

    NASA Astrophysics Data System (ADS)

    Lee, In-Ho; Makiharju, Simo; Lee, Inwon; Perlin, Marc; Ceccio, Steve

    2013-11-01

    Skin friction drag reduction on flat bottomed ships and barges can be achieved by creating an air layer immediately beneath the horizontal surface. The simplest way of introducing the gas is through circular orifices; however the dynamics of gas injection into liquid cross-streams under horizontal surfaces is not well understood. Experiments were conducted to investigate the development of the gas topology following its vertical injection through a horizontal surface. The liquid cross-flow, orifice diameter and gas flow rate were varied to investigate the effect of different ratios of momentum fluxes. The testing was performed on a 4.3 m long and 0.73 m wide barge model with air injection through a hole in the transparent bottom hull. The incoming boundary layer was measured via a pitot tube. Downstream distance based Reynolds number at the injection location was 5 × 105 through 4 × 106 . To observe the flow topology, still images and video were recorded from above the model (i.e. through the transparent hull), from beneath the bottom facing upward, and from the side at an oblique angle. The transition point of the flow topology was determined and analyzed.

  10. Pressure-controlled injection of guar gum stabilized microscale zerovalent iron for groundwater remediation.

    PubMed

    Luna, M; Gastone, F; Tosco, T; Sethi, R; Velimirovic, M; Gemoets, J; Muyshondt, R; Sapion, H; Klaas, N; Bastiaens, L

    2015-10-01

    The paper reports a pilot injection test of microsized zerovalent iron (mZVI) dispersed in a guar gum shear thinning solution. The test was performed in the framework of the EU research project AQUAREHAB in a site in Belgium contaminated by chlorinated aliphatic hydrocarbons (CAHs). The field application was aimed to overcome those critical aspects which hinder mZVI field injection, mainly due to the colloidal instability of ZVI-based suspensions. The iron slurry properties (iron particles size and concentration, polymeric stabilizer type and concentration, slurry viscosity) were designed in the laboratory based on several tests (reactivity tests towards contaminants, sedimentation tests and rheological measurements). The particles were delivered into the aquifer through an injection well specifically designed for controlled-pressure delivery (approximately 10 bars). The well characteristics and the critical pressure of the aquifer (i.e. the injection pressure above which fracturing occurs) were assessed via two innovative injection step rate tests, one performed with water and the other one with guar gum. Based on laboratory and field preliminary tests, a flow regime at the threshold between permeation and preferential flow was selected for mZVI delivery, as a compromise between the desired homogeneous distribution of the mZVI around the injection point (ensured by permeation flow) and the fast and effective injection of the slurry (guaranteed by high discharge rates and injection pressure, resulting in the generation of preferential flow paths). A monitoring setup was designed and installed for the real-time monitoring of relevant parameters during injection, and for a fast determination of the spatial mZVI distribution after injection via non-invasive magnetic susceptibility measurements. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Pneumatic testing in 45-degree-inclined boreholes in ash-flow tuff near Superior, Arizona

    USGS Publications Warehouse

    LeCain, G.D.

    1995-01-01

    Matrix permeability values determined by single-hole pneumatic testing in nonfractured ash-flow tuff ranged from 5.1 to 20.3 * 1046 m2 (meters squared), depending on the gas-injection rate and analysis method used. Results from the single-hole tests showed several significant correlations between permeability and injection rate and between permeability and test order. Fracture permeability values determined by cross-hole pneumatic testing in fractured ash-flow tuff ranged from 0.81 to 3.49 * 1044 m2, depending on injection rate and analysis method used. Results from the cross-hole tests monitor intervals showed no significant correlation between permeability and injection rate; however, results from the injection interval showed a significant correlation between injection rate and permeability. Porosity estimates from the 'cross-hole testing range from 0.8 to 2.0 percent. The maximum temperature change associated with the pneumatic testing was 1.2'(2 measured in the injection interval during cross-hole testing. The maximum temperature change in the guard and monitor intervals was O.Ip C. The maximum error introduced into the permeability values due to temperature fluctuations is approximately 4 percent. Data from temperature monitoring in the borehole indicated a positive correlation between the temperature decrease in the injection interval during recovery testing and the gas-injection rate. The thermocouple psychrometers indicated that water vapor was condensing in the boreholes during testing. The psychrometers in the guard and monitor intervals detected the drier injected gas as an increase in the dry bulb reading. The relative humidity in the test intervals was always higher than the upper measurement limit of the psychrometers. Although the installation of the packer system may have altered the water balance of the borehole, the gas-injection testing resulted in minimal or no changes in the borehole relative humidity.

  12. Evaluation of Flow-Injection Tandem Mass Spectrometry for Rapid and High-Throughput Quantitative Determination of B-Vitamins in Nutritional Supplements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandari, Deepak; Van Berkel, Gary J

    2012-01-01

    The use of flow-injection electrospray ionization tandem mass spectrometry for rapid and high-throughput mass spectral analysis of selected B-vitamins, viz. B1, B2, B3, B5, and B6, in nutritional formulations was demonstrated. A simple and rapid (~5 min) in-tube sample preparation was performed by adding extraction solvent to a powdered sample aliquot followed by agitation, centrifugation, and filtration to recover an extract for analysis. Automated flow injection introduced 1 L of the extracts directly into the mass spectrometer ion source without chromatographic separation. Sample-to-sample analysis time was 60 s representing significant improvement over conventional liquid chromatography approaches which typically require 25-45more » min, and often require more significant sample preparation procedures. Quantitative capabilities of the flow-injection analysis were tested using the method of standard additions and NIST standard reference material (SRM 3280) multivitamin/multielement tablets. The quantity determined for each B-vitamin in SRM 3280 was within the statistical range provided for the respective certified values. The same sample preparation and analysis approach was also applied to two different commercial vitamin supplement tablets and proved to be successful in the quantification of the selected B-vitamins as evidenced by an agreement with the labels values and the results obtained using isotope dilution liquid chromatography/mass spectrometry.« less

  13. Modeling and flow analysis of pure nylon polymer for injection molding process

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  14. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    NASA Astrophysics Data System (ADS)

    Mi, Jiaping; Li, Yuanqian; Zhou, Xiaoli; Zheng, Bo; Zhou, Ying

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%~100.9% for Iron, 92.50%~108.0% for Copper, 93.00%~110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%~12.1%. The sampling rate is 45 samples h-1. The determination results of the food samples were in good agreement between the proposed method and ICP-AES.

  15. Sensitive determination of 2-methoxyestradiol in pharmaceutical preparations and serum samples using flow injection chemiluminescence.

    PubMed

    Yao, Hanchun; Zhang, Min; Zeng, Wenyuan; Zeng, Xiaoying; Zhang, Zhenzhong

    2014-05-01

    A rapid and sensitive flow injection chemiluminescence (FI-CL) method is described for the determination of 2-methoxyestradiol (2ME) based on enhancement of the CL intensity from a potassium ferricyanide-calcein system in sodium hydroxide medium. The optimum conditions for the CL emission were investigated. Under optimized conditions, a linear calibration graph was obtained over the range 1.0 × 10(-8) to 1.0 × 10(-6) mol/L (r = 0.998) 2ME with a detection limit (3σ) of 5.4 × 10(-9) mol/L. The relative standard deviation (RSD) for 5.0 × 10(-7) mol/L 2ME was 1.7%. As a preliminary application, the proposed method was successfully applied to the determination of 2ME in injection solutions and serum samples. The possible CL mechanism was also proposed. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Determination of gallic acid with rhodanine by reverse flow injection analysis using simplex optimization.

    PubMed

    Phakthong, Wilaiwan; Liawruangrath, Boonsom; Liawruangrath, Saisunee

    2014-12-01

    A reversed flow injection (rFI) system was designed and constructed for gallic acid determination. Gallic acid was determined based on the formation of chromogen between gallic acid and rhodanine, resulting in a colored product with a λmax at 520 nm. The optimum conditions for determining gallic acid were also investigated. Optimizations of the experimental conditions were carried out based on the so-call univariate method. The conditions obtained were 0.6% (w/v) rhodanine, 70% (v/v) ethanol, 0.9 mol L(-1) NaOH, 2.0 mL min(-1) flow rate, 75 μL injection loop and 600 cm mixing tubing length, respectively. Comparative optimizations of the experimental conditions were also carried out by multivariate or simplex optimization method. The conditions obtained were 1.2% (w/v) rhodanine, 70% (v/v) ethanol, 1.2 mol L(-1) NaOH, flow rate 2.5 mL min(-1), 75 μL injection loop and 600 cm mixing tubing length, respectively. It was found that the optimum conditions obtained by the former optimization method were mostly similar to those obtained by the latter method. The linear relationship between peak height and the concentration of gallic acid was obtained over the range of 0.1-35.0 mg L(-1) with the detection limit 0.081 mg L(-1). The relative standard deviations were found to be in the ranges 0.46-1.96% for 1, 10, 30 mg L(-1) of gallic acid (n=11). The method has the advantages of simplicity extremely high selectivity and high precision. The proposed method was successfully applied to the determination of gallic acid in longan samples without interferent effects from other common phenolic compounds that might be present in the longan samples collected in northern Thailand. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Development of a split-flow system for high precision variable sample introduction in supercritical fluid chromatography.

    PubMed

    Sakai, Miho; Hayakawa, Yoshihiro; Funada, Yasuhiro; Ando, Takashi; Fukusaki, Eiichiro; Bamba, Takeshi

    2017-09-15

    In this study, we propose a novel variable sample injection system based on full-loop injection, named the split-flow sample introduction system, for application in supercritical fluid chromatography (SFC). In this system, the mobile phase is split by the differential pressure between two back pressure regulators (BPRs) after full-loop injection suitable for SFC, and this differential pressure determines the introduction rate. Nine compounds with a wide range of characteristics were introduced with high reproducibility and universality, confirming that a robust variable sample injection system was achieved. We also investigated the control factors of our proposed system. Sample introduction was controlled by the ratio between the column-side pressure drops in splitless and split flow, ΔP columnsideinsplitless and ΔP columnsideinsplit , respectively, where ΔP columnsideinsplitless is related to the mobile phase flow rate and composition and the column resistance. When all other conditions are kept constant, increasing the make-up flow induces an additional pressure drop on the column side of the system, which leads to a reduced column-side flow rate, and hence decreased the amount of sample injected, even when the net pressure drop on the column side remains the same. Thus, sample introduction could be highly controlled at low sample introduction rate, regardless of the introduction conditions. This feature is advantageous because, as a control factor, the solvent in the make-up pump is independent of the column-side pressure drop. Copyright © 2017. Published by Elsevier B.V.

  18. Determination of As, Sb, Bi and Hg in water samples by flow-injection inductively coupled plasma mass spectrometry with an in-situ nebulizer/hydride generator

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Shyue; Jiang, Shiuh-Jen

    1996-12-01

    A simple and very inexpensive in-situ nebulizer/hydride generator was used with inductively coupled plasma mass spectrometry (ICP-MS) for the determination of As, Sb, Bi and Hg in water samples. The application of hydride generation ICP-MS alleviated the sensitivity problem of As, Sb, Bi and Hg determinations encountered when the conventional pneumatic nebulizer was used for sample introduction. The sample was introduced by flow injection to minimize the deposition of solids on the sampling orifice. The elements in the sample were reduced to the lower oxidation states with L-cysteine before being injected into the hydride generation system. This method has a detection limit of 0.003, 0.003, 0.017 and 0.17 ng ml -1 for As, Bi, Sb and Hg, respectively. This method was applied to determine As, Sb, Bi and Hg in a CASS-3 nearshore seawater reference sample, a SLRS-2 riverine water reference sample and a tap water collected from National Sun Yat-Sen University. The concentrations of the elements were determined by standard addition method. The precision was better than 20% for most of the determinations.

  19. Effect on Gaseous Film Cooling of Coolant Injection Through Angled Slots and Normal Holes

    NASA Technical Reports Server (NTRS)

    Papell, S. Stephen

    1960-01-01

    A study was made to determine the effect of coolant injection angularity on gaseous film-cooling effectiveness. In the correlation of experimental data an effective injection angle was defined by a vector summation of the coolant and mainstream gas flows. The cosine of this angle was used as a parameter to empirically develop a corrective term to qualify a correlating equation presented in Technical Note D-130 that was limited to tangential injection of the coolant. Data were also obtained for coolant injection through rows of holes normal to the test plate. The slot correlating equation was adapted to fit these data by the definition of an effective slot height. An additional corrective term was then determined to correlate these data.

  20. Evolution and transition mechanisms of internal swirling flows with tangential entry

    NASA Astrophysics Data System (ADS)

    Wang, Yanxing; Wang, Xingjian; Yang, Vigor

    2018-01-01

    The characteristics and transition mechanisms of different states of swirling flow in a cylindrical chamber have been numerically investigated using the Galerkin finite element method. The effects of the Reynolds number and swirl level were examined, and a unified theory connecting different flow states was established. The development of each flow state is considered as a result of the interaction and competition between basic mechanisms: (1) the centrifugal effect, which drives an axisymmetric central recirculation zone (CRZ); (2) flow instabilities, which develop at the free shear layer and the central solid-body rotating flow; (3) the bouncing and restoring effects of the injected flow, which facilitate the convergence of flow on the centerline and the formation of bubble-type vortex breakdown; and (4) the damping effect of the end-induced flow, which suppresses the development of the instability waves. The results show that the CRZ, together with the free shear layer on its surface, composes the basic structure of swirling flow. The development of instability waves produces a number of discrete vortex cores enclosing the CRZ. The azimuthal wave number is primarily determined by the injection angle. Generally, the wave number is smaller at a higher injection angle, due to the reduction of the perimeter of the free shear layer. At the same time, the increase in the Reynolds number facilitates the growth of the wave number. The end-induced flow tends to reduce the wave number near the head end and causes a change in wave number from the head end to the downstream region. Spiral-type vortex breakdown can be considered as a limiting case at a high injection angle, with a wave number equal to 0 near the head end and equal to 1 downstream. At lower Reynolds numbers, the bouncing and restoring effect of the injected flow generates bubble-type vortex breakdown.

  1. Estimating the gas and dye quantities for modified tracer technique measurements of stream reaeration coefficients

    USGS Publications Warehouse

    Rathbun, R.E.

    1979-01-01

    Measuring the reaeration coefficient of a stream with a modified tracer technique has been accomplished by injecting either ethylene or ethylene and propane together and a rhodamine-WT dye solution into the stream. The movement of the tracers through the stream reach after injection is described by a one-dimensional diffusion equation. The peak concentrations of the tracers at the downstream end of the reach depend on the concentrations of the tracers in the stream at the injection site, the longitudinal dispersion coefficient, the mean water velocity, the length of the reach, and the duration of the injection period. The downstream gas concentrations also depend on the gas desorption coefficients of the reach. The concentrations of the tracer gases in the stream at the injection site depend on the flow rates of the gases through the injection diffusers, the efficiency of the gas absorption process, and the stream discharge. The concentration of dye in the stream at the injection site depends on the flow rate of the dye solution, the concentration of the dye solution, and the stream discharge. Equations for estimating the gas flow rates, the quantities of the gases, the dye concentration, and the quantity of dye together with procedures for determining the variables in these equations are presented. (Woodard-USGS)

  2. Determination of As, Hg and Pb in herbs using slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry.

    PubMed

    Tai, Chia-Yi; Jiang, Shiuh-Jen; Sahayam, A C

    2016-02-01

    Analysis of herbs for As, Hg and Pb has been carried out using slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) with flow injection vapor generation. Slurry containing 0.5% m/v herbal powder, 0.1% m/v citric acid and 2% v/v HCl was injected into the VG-ICP-MS system for the determination of As, Hg and Pb that obviate dissolution and mineralization. Standard addition and isotope dilution methods were used for quantifications in selected herbal powders. This method has been validated by the determination of As, Hg and Pb in NIST standard reference materials SRM 1547 Peach Leaves and SRM 1573a Tomato Leaves. The As, Hg and Pb analysis results of the reference materials agreed with the certified values. The precision obtained by the reported procedure was better than 7% for all determinations. The detection limit estimated from standard addition curve was 0.008, 0.003, and 0.007 ng mL(-1) for As, Hg and Pb, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Flow injection spectrophotometry using natural reagent from Morinda citrifolia root for determination of aluminium in tea.

    PubMed

    Tontrong, Sopa; Khonyoung, Supada; Jakmunee, Jaroon

    2012-05-01

    A flow injection (FI) spectrophotometric method with using natural reagent extracted from Morinda citrifolia root has been developed for determination of aluminium. The extract contained anthraquinone compounds which could react with Al(3+) to form reddish complexes which had maximum absorption wavelength at 499.0nm. The extract could be used as a reagent in FI system without further purification to obtain pure compound. A sensitive method for determination of aluminium in concentration range of 0.1-1.0mgL(-1), with detection limit of 0.05mgL(-1) was achieved. Relative standard deviations of 1.2% and 1.7% were obtained for the determination of 0.1 and 0.6mgL(-1) Al(3+) (n=11). Sample throughput of 35h(-1) was achieved with the consumption of 3mL each of carrier and reagent solutions per injection. The developed method was successfully applied to tea samples, validated by the FAAS standard method. The method is simple, fast, economical and could be classified as a greener analytical method. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Flow-injection chemiluminescence method for the determination of chloramphenicol based on luminol-sodium periodate order-transform second-chemiluminescence reaction.

    PubMed

    Zhuang, Ya-Feng; Zhu, Sheng-Nan; Wei, Wei; Li, Jie-Li

    2011-01-01

    A new chemiluminescence (CL) reaction was observed when chloramphenicol solution was injected into the mixture after the end of the reaction of alkaline luminol and sodium periodate or sodium periodate was injected into the reaction mixture of chloramphenicol and alkaline luminol. This reaction is described as an order-transform second-chemiluminescence (OTSCL) reaction. The OTSCL method combined with a flow-injection technique was applied to the determination of chloramphenicol. The optimum conditions for the order-transform second-chemiluminescence emission were investigated. A mechanism for OTSCL has been proposed on the basis of the chemiluminescence kinetic characteristics, the UV-visible spectra and the chemiluminescent spectra. Under optimal experimental conditions, the CL response is proportional to the concentration of chloramphenicol over the range 5.0 × 10(-7)-5.0 × 10(-5) mol/L with a correlation coefficient of 0.9969 and a detection limit of 6.0 × 10(-8) mol/L (3σ). The relative standard deviation (RSD) for 11 repeated determinations of 5.0 × 10(-6) mol/L chloramphenicol is 1.7%. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Sensitive flow-injection spectrophotometric analysis of bromopride.

    PubMed

    Lima, Liliane Spazzapam; Los Weinert, Patrícia; Pezza, Leonardo; Pezza, Helena Redigolo

    2014-12-10

    A flow injection spectrophotometric procedure employing merging zones is proposed for direct bromopride determination in pharmaceutical formulations and biological fluids. The proposed method is based on the reaction between bromopride and p-dimethylaminocinnamaldehyde (p-DAC) in acid medium, in the presence of sodium dodecyl sulfate (SDS), resulting in formation of a violet product (λmax=565nm). Experimental design methodologies were used to optimize the experimental conditions. The Beer-Lambert law was obeyed in a bromopride concentration range of 3.63×10(-7) to 2.90×10(-5)molL(-1), with a correlation coefficient (r) of 0.9999. The limits of detection and quantification were 1.07×10(-7) and 3.57×10(-7)molL(-1), respectively. The proposed method was successfully applied to the determination of bromopride in pharmaceuticals and human urine, and recoveries of the drug from these media were in the ranges 99.6-101.2% and 98.6-102.1%, respectively. This new flow injection procedure does not require any sample pretreatment steps. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Quantitation of glycerophosphorylcholine by flow injection analysis using immobilized enzymes.

    PubMed

    Mancini, A; Del Rosso, F; Roberti, R; Caligiana, P; Vecchini, A; Binaglia, L

    1996-09-20

    A method for quantitating glycerophosphorylcholine by flow injection analysis is reported in the present paper. Glycerophosphorylcholine phosphodiesterase and choline oxidase, immobilized on controlled porosity glass beads, are packed in a small reactor inserted in a flow injection manifold. When samples containing glycerophosphorylcholine are injected, glycerophosphorylcholine is hydrolyzed into choline and sn-glycerol-3-phosphate. The free choline produced in this reaction is oxidized to betain and hydrogen peroxide. Hydrogen peroxide is detected amperometrically. Quantitation of glycerophosphorylcholine in samples containing choline and phosphorylcholine is obtained inserting ahead of the reactor a small column packed with a mixed bed ion exchange resin. The time needed for each determination does not exceed one minute. The present method, applied to quantitate glycerophosphorylcholine in samples of seminal plasma, gave results comparable with those obtained using the standard enzymatic-spectrophotometric procedure. An alternative procedure, making use of co-immobilized glycerophosphorylcholine phosphodiesterase and glycerol-3-phosphate oxidase for quantitating glycerophosphorylcholine, glycerophosphorylethanolamine and glycerophosphorylserine is also described.

  7. Spectrophotometric flow injection determination of total phosphorus in beer using on-line UV/thermal induced digestion.

    PubMed

    Fernandes, S M; Lima, J L; Rangel, A O

    2000-01-01

    A flow injection system for the automatic determination of total phosphorus in beer is described. The developed manifold uses a two-stage photooxidation/thermal digestion procedure together with oxidizing and hydrolyzing reagents to convert all forms of phosphorus compounds to orthophosphate. Polyphosphates are hydrolyzed by acid and heat, and organo-phosphates are digested by UV-catalyzed peroxodisulfate oxidation. The orthophosphate formed is then spectrophotometrically determined by the phosphomolybdenum blue reaction, using stannous chloride as reducing agent. The results obtained for a set of 19 beer samples (with concentrations from 120 to 735 mg P/L) were in good agreement with the reference method, the maximum relative deviation found being 4.7%. Relative standard deviations for ten consecutive determinations were lower than 1.5%, and a detection limit of 1 mg P/L was achieved.

  8. Parametric Studies of Flow Separation using Air Injection

    NASA Technical Reports Server (NTRS)

    Zhang, Wei

    2004-01-01

    Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as a function of the key variables. Next, the variables such as the slot geometry can be optimized using the build-in optimizer within JMP. Finally, a wind tunnel testing will be conducted using the optimized slot geometry and other key variables to verify the empirical statistical model. The long term goal for this effort is to assess the impacts of active flow control using air injection at system level as one of the task plan included in the NASAs URETI program with Georgia Institute of Technology.

  9. [Flow injection biamperometric analysis of isoniazid].

    PubMed

    Zhang, J C; Zhao, C; Song, J F

    2001-09-01

    To establish a simple, rapid, and accurate electrochemical method for on-line determination of isoniazid. Based on the flow injection biamperometry for irreversible couple system, and using two preanodized platinum electrodes with the applied potential difference of 0 V, the biamperometric method for the determination of isoniazid has been proposed by coupling the catalytic oxidation of isoniazid and the reduction of platinum oxide. Common excipients, inorganic ions, amino acids, vitamins and proteins do not interfere with the determination. Linear relationship between current and the concentration of isoniazid is obtained in the range of 1.0 x 10(-6)-1.0 x 10(-4) mol.L-1 (gamma = 0.998, n = 11). The RSD of 1.8% was obtained for 8 successive determinations of 1.0 x 10(-5) mol.L-1 isoniazid. The proposed method has been shown to be sensitive, selective, rapid (120 samples.h-1), and suitable for the on-line direct determination of isoniazid.

  10. Study optimizes gas lift in Gulf of Suez field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Waly, A.A.; Darwish, T.A.; Osman Salama, A.

    1996-06-24

    A study using PVT data combined with fluid and multiphase flow correlations optimized gas lift in the Ramadan field, Nubia C, oil wells, in the Gulf of Suez. Selection of appropriate correlations followed by multiphase flow calculations at various points of injection (POI) were the first steps in the study. After determining the POI for each well from actual pressure and temperature surveys, the study constructed lift gas performance curves for each well. Actual and optimum operating conditions were compared to determine the optimal gas lift. The study indicated a net 2,115 bo/d could be gained from implementing its recommendations.more » The actual net oil gained as a result of this optimization and injected gas reallocation was 2,024 bo/d. The paper discusses the Ramadan field, fluid properties, multiphase flow, production optimization, and results.« less

  11. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis

    PubMed Central

    Ojeda, Catalina Bosch; Rojas, Fuensanta Sánchez

    2006-01-01

    Optical techniques for chemical analysis are well established and sensors based on these techniques are now attracting considerable attention because of their importance in applications such as environmental monitoring, biomedical sensing, and industrial process control. On the other hand, flow injection analysis (FIA) is advisable for the rapid analysis of microliter volume samples and can be interfaced directly to the chemical process. The FIA has become a widespread automatic analytical method for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, and ease of assembling. In this paper, an overview of flow injection determinations by using optical chemical sensors is provided, and instrumentation, sensor design, and applications are discussed. This work summarizes the most relevant manuscripts from 1980 to date referred to analysis using optical chemical sensors in FIA.

  12. Central venous catheter integrity during mechanical power injection of iodinated contrast medium.

    PubMed

    Macha, Douglas B; Nelson, Rendon C; Howle, Laurens E; Hollingsworth, John W; Schindera, Sebastian T

    2009-12-01

    To evaluate a widely used nontunneled triple-lumen central venous catheter in order to determine whether the largest of the three lumina (16 gauge) can tolerate high flow rates, such as those required for computed tomographic angiography. Forty-two catheters were tested in vitro, including 10 new and 32 used catheters (median indwelling time, 5 days). Injection pressures were continuously monitored at the site of the 16-gauge central venous catheter hub. Catheters were injected with 300 and 370 mg of iodine per milliliter of iopamidol by using a mechanical injector at increasing flow rates until the catheter failed. The infusion rate, hub pressure, and location were documented for each failure event. The catheter pressures generated during hand injection by five operators were also analyzed. Mean flow rates and pressures at failure were compared by means of two-tailed Student t test, with differences considered significant at P < .05. Injections of iopamidol with 370 mg of iodine per milliliter generate more pressure than injections of iopamidol with 300 mg of iodine per milliliter at the same injection rate. All catheters failed in the tubing external to the patient. The lowest flow rate at which catheter failure occurred was 9 mL/sec. The lowest hub pressure at failure was 262 pounds per square inch gauge (psig) for new and 213 psig for used catheters. Hand injection of iopamidol with 300 mg of iodine per milliliter generated peak hub pressures ranging from 35 to 72 psig, corresponding to flow rates ranging from 2.5 to 5.0 mL/sec. Indwelling use has an effect on catheter material property, but even for used catheters there is a substantial safety margin for power injection with the particular triple-lumen central venous catheter tested in this study, as the manufacturer's recommendation for maximum pressure is 15 psig.

  13. Coefficients of discharge of fuel-injection nozzles for compression-ignition engines

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1932-01-01

    This report presents the results of an investigation to determine the coefficients of discharge of nozzles with small, round orifices of the size used with high-speed compression-ignition engines. The injection pressures and chamber back pressures employed were comparable to those existing in compression-ignition engines during injection. The construction of the nozzles was varied to determine the effect of the nozzle design on the coefficient. Tests were also made with nozzles assembled in an automatic injection valve, both with a plain and with a helically grooved stem. It was found that a smooth passage before the orifice is requisite for high flow efficiency. A beveled leading edge before the orifice gave a higher coefficient of discharge than a rounded edge. The results with the nozzles assembled in an automatic injection valve having a plain stem duplicated those with the nozzles assembled at the end of a straight tube of constant diameter. Lower coefficients were obtained with the nozzles assembled in an injection valve having a helically grooved stem. When the coefficients of nozzles of any one geometrical shape were plotted against values of corresponding Reynold's numbers for the orifice diameters and rates of flow tested, it was found that experimental points were distributed along a single curve.

  14. Rapid food decomposition by H2O2-H2SO4 for determination of total mercury by flow injection cold vapor atomic absorption spectrometry.

    PubMed

    Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim

    2002-01-01

    A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.

  15. Determination of total mercury in environmental and biological samples by flow injection cold vapour atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Murphy, James; Jones, Phil; Hill, Steve J.

    1996-12-01

    A simple and accurate method has been developed for the determination of total mercury in environmental and biological samples. The method utilises an off-line microwave digestion stage followed by analysis using a flow injection system with detection by cold vapour atomic absorption spectrometry. The method has been validated using two certified reference materials (DORM-1 dogfish and MESS-2 estuarine sediment) and the results agreed well with the certified values. A detection limit of 0.2 ng g -1 Hg was obtained and no significant interference was observed. The method was finally applied to the determination of mercury in river sediments and canned tuna fish, and gave results in the range 0.1-3.0 mg kg -1.

  16. Simple flow injection colorimetric system for determination of paraquat in natural water.

    PubMed

    Chuntib, Prakit; Jakmunee, Jaroon

    2015-11-01

    A simple and low cost flow injection colorimetric system has been developed for determination of paraquat in natural water. The developed method is based on the reduction of paraquat by using sodium dithionite as a reducing agent in an alkaline medium to produce a blue free radical ion that can be detected by a simple light emitting diode-light dependent resistor (LED-LDR) colorimeter. The standard or sample solution was injected via a set of 3-way solenoid valves into a water carrier stream and flowed to merge with reagent to generate a colored product which is proportional to the concentration of paraquat ion in the solution. Under the optimum condition of the system, i.e., mixing coil length 30 cm, flow rate 2.0 mL min(-1), sample volume 100 μL, concentrations of dithionite 0.1% (w/v) and sodium hydroxide 0.06 mol L(-1), a linear calibration graph in the range of 0.2-10.0 mg L(-1) with a correlation coefficient of 0.9996, and a limit of detection of 0.15 mg L(-1) were achieved. Relative standard deviation for 9 replicate injections of 1 mg L(-1) paraquat is 3.7%. A sample throughput of 40 injections h(-1) was achieved. The limit of detection can be improved by off-line preconcentration of paraquat employing a column packed with Dowex 50WX8-100 (H) cation exchange resin and eluted with 10% (w/v) ammonium chloride in ammonium buffer solution pH 10. The eluting solution was then injected into the FI system for paraquat determination. The proposed system did not suffer from interferences of some possible ions in natural water and other herbicides. Recoveries obtained by spiking 0.5 and 5.0 mg L(-1) paraquat standard into water samples were in the range of 104-110% and 101-105%, respectively. The developed system can be conveniently applied for screening of paraquat contaminated in natural water. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A novel approach for determination of free fatty acids in vegetable oils by a flow injection system with manual injection.

    PubMed

    Ayyildiz, H Filiz; Kara, Huseyin; Sherazi, S T H

    2011-12-01

    A non-aqueous flow injection method for determining free fatty acid (FFA) content in corn and sunflower oil samples was developed. A single-line manifold system was built by modification of an HPLC for flow injection analysis (FIA). Without pre-treatment, oil samples were injected into a n-propanol solution containing KOH and phenolphthalein (PHP). The main parameters, such as flow rate of carrier phase, length, geometry, inner diameters of the coils and reagent concentration were all optimized. The proposed FIA method was validated for precision, accuracy, linear region, limit of detection (LOD) and limit of quantification (LOQ). The intra- and inter-day measurements of the precision of the method were found to be within the limits of acceptance criteria (RSD < 1%), and were rugged when the method was performed by a different analyst. The linear concentration range was calculated as 0.09-1.50 and 0.07-1.40 FFA% for corn and sunflower oils, correspondingly. The LOD and LOQ were found to be 7.53 × 10(-4)-2.28 × 10(-3) oleic acid % and 7.11 × 10(-4)-2.23 × 10(-3) oleic acid % for corn and sunflower oils, respectively. The results were compared with those obtained by the AOCS (Ca-5a-40) method using statistical t and F tests, and a significant difference was not observed between the methods at a 95% confidence level. The proposed method is suitable for quality control of routine applications due to its simplicity, high sample throughput, and economy of solvents and sample, offering considerable promise as a low cost analytical system that needs minimum human intervention over long periods of time.

  18. Multisyringe flow injection analysis hyphenated with liquid core waveguides for the development of cleaner spectroscopic analytical methods: improved determination of chloride in waters.

    PubMed

    Maya, Fernando; Estela, José Manuel; Cerdà, Víctor

    2009-07-01

    In this work, the hyphenation of the multisyringe flow injection analysis technique with a 100-cm-long pathlength liquid core waveguide has been accomplished. The Cl-/Hg(SCN)2/Fe3+ reaction system for the spectrophotometric determination of chloride (Cl(-)) in waters was used as chemical model. As a result, this classic analytical methodology has been improved, minimizing dramatically the consumption of reagents, in particular, that of the highly biotoxic chemical Hg(SCN)2. The proposed method features a linear dynamic range composed of two steps between (1) 0.2-2 and (2) 2-8 mg Cl- L(-1), thus extended applicability due to on-line sample dilution (up to 400 mg Cl- L(-1)). It also presents improved limits of detection and quantification of 0.06 and 0.20 mg Cl- L(-1), respectively. The coefficient of variation and the injection throughput were 1.3% (n = 10, 2 mg Cl- L(-1)) and 21 h(-1). Furthermore, a very low consumption of reagents per Cl- determination of 0.2 microg Hg(II) and 28 microg Fe3+ has been achieved. The method was successfully applied to the determination of Cl- in different types of water samples. Finally, the proposed system is critically compared from a green analytical chemistry point of view against other flow systems for the same purpose.

  19. Flow injection chemiluminescence determination of naphazoline hydrochloride in pharmaceuticals.

    PubMed

    Iranifam, Mortaza; Sorouraddin, Mohammad H

    2014-02-01

    A simple and sensitive flow injection chemiluminescence (FI-CL) method was developed for the determination of naphazoline hydrochloride (NPZ). The method is based on the enhancing effect of NPZ on the weak CL signal from the reaction of KIO4 with H2 O2 . Experimental parameters that affected the CL signal, including the pH of the KIO4 solution, concentrations of KIO4 , H2 O2 and disodium-EDTA and flow rate were optimized. Under the optimum conditions, the increment of CL intensity was linearly proportional to the concentration of NPZ in the range 5.0 × 10(-6) to 70 × 10(-6) mol/L. The detection limit was 1.0 × 10(-6) mol/L and the relative standard deviation for 50 × 10(-6) mol/L NPZ solution was 2.8% (n = 11). In addition, a high throughput of 120 samples/h was achieved. The utility of this method was demonstrated by determining NPZ in pharmaceuticals. Copyright © 2013 John Wiley & Sons, Ltd.

  20. A novel flow injection chemiluminescence method for automated and miniaturized determination of phenols in smoked food samples.

    PubMed

    Vakh, Christina; Evdokimova, Ekaterina; Pochivalov, Aleksei; Moskvin, Leonid; Bulatov, Andrey

    2017-12-15

    An easily performed fully automated and miniaturized flow injection chemiluminescence (CL) method for determination of phenols in smoked food samples has been proposed. This method includes the ultrasound assisted solid-liquid extraction coupled with gas-diffusion separation of phenols from smoked food sample and analytes absorption into a NaOH solution in a specially designed gas-diffusion cell. The flow system was designed to focus on automation and miniaturization with minimal sample and reagent consumption by inexpensive instrumentation. The luminol - N-bromosuccinimide system in an alkaline medium was used for the CL determination of phenols. The limit of detection of the proposed procedure was 3·10 -8 ·molL -1 (0.01mgkg -1 ) in terms of phenol. The presented method demonstrated to be a good tool for easy, rapid and cost-effective point-of-need screening phenols in smoked food samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Determination of L-phenylalanine on-line based on molecularly imprinted polymeric microspheres and flow injection chemiluminescence

    NASA Astrophysics Data System (ADS)

    Qiu, Huamin; Xi, Yulei; Lu, Fuguang; Fan, Lulu; Luo, Chuannan

    2012-02-01

    A novel molecular imprinting-chemiluminescence (MIP-CL) sensor for the determination of L-phenylalanine (Phe) using molecularly imprinted polymer (MIP) as recognition element is reported. The Phe-MIP was synthesized using acrylamide (AM) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker, 2,2-azobisisobutyronitrile (AIBN) as initiator and the polymers' properties were characterized. Then the synthesized MIP was employed as recognition element by packing into flow cell to establish a novel flow injection CL sensor. The CL intensity responded linearly to the concentration of Phe in the range 1.3 × 10 -6 to 5.44 × 10 -4 mol/L with a detection limit of 6.23 × 10 -7 mol/L (3 σ), which is lower than that of conventional methods. The sensor is reusable and has a great improvement in sensitivity and selectivity for CL analysis. As a result, the new MIP-CL sensor had been successfully applied to the determination of Phe in samples.

  2. A microchip-based flow injection-amperometry system with mercaptopropionic acid modified electroless gold microelectrode for the selective determination of dopamine.

    PubMed

    Wang, Yi; Luo, Jie; Chen, Hengwu; He, Qiaohong; Gan, Nin; Li, Tianhua

    2008-09-12

    A novel chip-based flow injection analysis (FIA) system has been developed for automatic, rapid and selective determination of dopamine (DA) in the presence of ascorbic acid (AA). The system is composed of a polycarbonate (PC) microfluidic chip with an electrochemical detector (ED), a gravity pump, and an automatic sample loading and injection unit. The selectivity of the ED was improved by modification of the gold working microelectrode, which was fabricated on the PC chip by UV-directed electroless gold plating, with a self-assembled monolayer (SAM) of 3-mercaptopropionic acid (MPA). Postplating treatment methods for cleaning the surface of electroless gold microelectrodes were investigated to ensure the formation of high quality SAMs. The effects of detection potential, flow rate, and sampling volume on the performance of the chip-based FIA system were studied. Under optimum conditions, a detection limit of 74 nmol L(-1) for DA was achieved at the sample throughput rate of 180 h(-1). A RSD of 0.9% for peak heights was observed for 19 runs of a 100 micromol L(-1) DA solution. Interference-free determination of DA could be conducted if the concentration ratio of AA-DA was no more than 10.

  3. A novel stopped flow injection-amperometric procedure for the determination of chlorate.

    PubMed

    Tue-Ngeun, Orawan; Jakmunee, Jaroon; Grudpan, Kate

    2005-12-15

    A novel stopped flow injection-amperometric (sFI-Amp) procedure for determination of chlorate has been developed. The reaction of chlorate with excess potassium iodide and hydrochloric acid, forming iodine/triiodide that is further electrochemically reduced at a glassy carbon electrode at +200mV versus Ag/AgCl electrode is employed. In order to increase sensitivity without using of too high acid concentration, promoting of the reaction by increasing reaction time and temperature can be carried out. This can be done without increase of dispersion of the product zone by stopping the flow while the injected zone is being in a mixing coil which is immersed in a water bath of 55+/-0.5 degrees C. In a closed system of FIA, a side reaction of oxygen with iodide is also minimized. Under a set of conditions, linear calibration graphs were in the ranges of 1.2x10(-6)-6.0x10(-5)moll(-1)and 6.0x10(-5)-6.0x10(-4)moll(-1). A sample throughput of 25h(-1) was accomplished. Relative standard deviation was 2% (n=21, 1.2x10(-4)moll(-1) chlorate). The proposed sFI-Amp procedure was successfully applied to the determination of chlorate in soil samples from longan plantation area.

  4. Thrust shock vector control of an axisymmetric conical supersonic nozzle via secondary transverse gas injection

    NASA Astrophysics Data System (ADS)

    Zmijanovic, V.; Lago, V.; Sellam, M.; Chpoun, A.

    2014-01-01

    Transverse secondary gas injection into the supersonic flow of an axisymmetric convergent-divergent nozzle is investigated to describe the effects of the fluidic thrust vectoring within the framework of a small satellite launcher. Cold-flow dry-air experiments are performed in a supersonic wind tunnel using two identical supersonic conical nozzles with the different transverse injection port positions. The complex three-dimensional flow field generated by the supersonic cross-flows in these test nozzles was examined. Valuable experimental data were confronted and compared with the results obtained from the numerical simulations. Different nozzle models are numerically simulated under experimental conditions and then further investigated to determine which parameters significantly affect thrust vectoring. Effects which characterize the nozzle and thrust vectoring performances are established. The results indicate that with moderate secondary to primary mass flow rate ratios, ranging around 5 %, it is possible to achieve pertinent vector side forces. It is also revealed that injector positioning and geometry have a strong effect on the shock vector control system and nozzle performances.

  5. A line source tracer test - a better method for assessing high groundwater velocity

    NASA Astrophysics Data System (ADS)

    Magal, E.; Weisbrod, N.; Yakirevich, A.; Kurtzman, D.; Yechieli, Y.

    2009-12-01

    A line source injection is suggested as an effective method for assessing groundwater velocities and flow directions in subsurface characterized by high water fluxes. Modifying the common techniques of injecting a tracer into a well was necessary after frequently-used methods of natural and forced gradient tracer tests ended with no reliable information on the local groundwater flow. In a field experiment, tracers were injected into 8-m long line injection system constructed below the water table almost perpendicular to the assumed flow direction. The injection system was divided to four separate segments (each 2 m long) enabling the injection of four different tracers along the line source. An array of five boreholes located in an area of 10x10 m downstream was used for monitoring the tracers' transport. Two dye tracers (Uranine and Na Naphthionate) were injected in a long pulse of several hours into two of the injection pipe segments and two tracers (Rhenium oxide and Gd-DTPA) were instantaneously injected to the other two segments. The tracers were detected 0.7 to 2.3 hours after injection in four of the five observation wells, located 2.3 to 10 m from the injection system, respectively. Groundwater velocities were calculated directly from the tracers' arrival times and by fitting the observed breakthrough curves to simulations with one and two dimensions analytical solutions for conservative tracer transport. The groundwater velocity was determined to be ~100 m/d. The longitudinal dispersivity value, generated from fitting the tracer breakthrough curves, was in a range of 0.2-3m. The groundwater flow direction was derived based on the arrival of the tracers and was found to be consistent with the apparent direction of the hydraulic gradient. The hydraulic conductivity derived from the groundwater velocity was ~1200 m/d, which is in the upper range of gravel sediment.

  6. Online assay of bone specific alkaline phosphatase with a flow injection-bead injection system.

    PubMed

    Hartwell, Supaporn Kradtap; Somprayoon, Duangporn; Kongtawelert, Prachya; Ongchai, Siriwan; Arppornchayanon, Olarn; Ganranoo, Lucksagoon; Lapanantnoppakhun, Somchai; Grudpan, Kate

    2007-09-26

    Alkaline phosphatase (ALP) has been used as one of the biomarkers for bone resorption and liver diseases. Normally, total alkaline phosphatase is quantified along with other symptoms to determine the releasing source of the alkaline phosphatase. A semi-automated flow injection-bead injection system was proposed to conveniently and selectively assay bone alkaline phosphatase (BALP) based on its specific binding to wheat germ coated beads. Amount of BALP in serum was determined from the intensity of the yellow product produced from bound BALP on the retained beads and its substrate pNPP. The used beads were discarded and the fresh ones were introduced for the next analysis. The reaction cell was designed to be opened and closed using a computer controlled solenoid valve for a precise incubation time. The performance of the proposed system was evaluated by using it to assay BALP in human serum. The results were compared to those obtained by using a commercial ELISA kit. The system is proposed to be an easy and cost effective system for quantification of BALP as an alternative to batch wise wheat germ specific binding technique.

  7. Integration of a Capacitive EIS Sensor into a FIA System for pH and Penicillin Determination

    PubMed Central

    Rolka, David; Poghossian, Arshak; Schöning, Michael J.

    2004-01-01

    A field-effect based capacitive EIS (electrolyte-insulator-semiconductor) sensor with a p-Si-SiO2-Ta2O5 structure has been successfully integrated into a commercial FIA (flow-injection analysis) system and system performances have been proven and optimised for pH and penicillin detection. A flow-through cell was designed taking into account the requirement of a variable internal volume (from 12 μl up to 48 μl) as well as an easy replacement of the EIS sensor. FIA parameters (sample volume, flow rate, distance between the injection valve and the EIS sensor) have been optimised in terms of high sensitivity and reproducibility as well as a minimum dispersion of the injected sample zone. An acceptable compromise between different FIA parameters has been found. For the cell design used in this study, best results have been achieved with a flow rate of 1.4 ml/min, distance between the injection valve and the EIS sensor of 6.5 cm, probe volume of 0.75 ml, cell internal volume of 12 μl. A sample throughput of at least 15 samples/h was typically obtained.

  8. Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach.

    PubMed

    Milenkovic, J; Alexopoulos, A H; Kiparissides, C

    2014-01-30

    In this work the dynamic flow as well as the particle motion and deposition in a commercial dry powder inhaler, DPI (i.e., Turbuhaler) is described using computational fluid dynamics, CFD. The dynamic flow model presented here is an extension of a steady flow model previously described in Milenkovic et al. (2013). The model integrates CFD simulations for dynamic flow, an Eulerian-fluid/Lagrangian-particle description of particle motion as well as a particle/wall interaction model providing the sticking efficiency of particles colliding with the DPI walls. The dynamic flow is imposed by a time varying outlet pressure and the particle injections into the DPI are assumed to occur instantaneously and follow a prescribed particle size distribution, PSD. The total particle deposition and the production of fine particles in the DPI are determined for different peak inspiratory flow rates, PIFR, flow increase rates, FIR, and particle injection times. The simulation results for particle deposition are found to agree well with available experimental data for different values of PIFR and FIR. The predicted values of fine particle fraction are in agreement with available experimental results when the mean size of the injected PSD is taken to depend on the PIFR. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Micro-flow injection system for the urinary protein assay.

    PubMed

    Nishihama, Syouhei; Imabayashi, Hisano; Matoba, Tomoko; Toya, Chika; Watanabe, Kosuke; Yoshizuka, Kazuharu

    2008-02-15

    A urinary protein assay has been investigated, employing a micro-flow injection analysis (muFIA) combined with an adsorptive separation of protein from analyte. The adsorptive separation part of protein in the artificial urine with ceramic hydroxyapatite is integrated on the muFIA chip, since the interference of other components coexisting in urine occurs in the conventional FIA system. The typical FI peak can be obtained following the adsorption-elution process of the protein prior to the detection, and the protein concentration in artificial urine can be quantitatively determined.

  10. Flow-injection system for automated dissolution testing of isoniazid tablets with chemiluminescence detection.

    PubMed

    Li, B; Zhang, Z; Liu, W

    2001-05-30

    A simple and sensitive flow-injection chemiluminescence (CL) system for automated dissolution testing is described and evaluated for monitoring of dissolution profiles of isoniazid tablets. The undissolved suspended particles in the dissolved solution were eliminated via on-line filter. The novel CL system of KIO(4)-isoniazid was also investigated. The sampling frequency of the system was 120 h(-1). The dissolution profiles of isoniazid fast-release tablets from three sources were determined, which demonstrates the stability, great sensitivity, large dynamic measuring range and robustness of the system.

  11. Rapid determination of isoamyl nitrite in pharmaceutical preparations by flow injection analysis with on-line UV irradiation and luminol chemiluminescence detection.

    PubMed

    Kishikawa, Naoya; Kondo, Naoko; Amponsaa-Karikari, Abena; Kodamatani, Hitoshi; Ohyama, Kaname; Nakashima, Kenichiro; Yamazaki, Shigeo; Kuroda, Naotaka

    2014-02-01

    Isoamyl nitrite is used as a therapeutic reagent for cardiac angina and as an antidote for cyanide poisoning, but it is abused because of its euphoric properties. Therefore, a method to determine isoamyl nitrite is required in many fields, including pharmaceutical and forensic studies. In this study, a simple, rapid and sensitive method for the determination of isoamyl nitrite was developed using a flow injection analysis system equipped with a chemiluminescence detector and on-line photoreactor. This method is based on on-line ultraviolet irradiation of isoamyl nitrite and subsequent luminol chemiluminescence detection without the addition of an oxidant. A linear standard curve was obtained up to 1.0 μM of isoamyl nitrite with a detection limit (blank + 3SD) of 0.03 μM. The method was successfully applied to determine isoamyl nitrite content in pharmaceutical preparations. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Determination of Trace Amounts of Chromium(III) in Water Samples Using Online Flow Injection Catalytic Spectrophotometry

    NASA Astrophysics Data System (ADS)

    Zhao, Z. X.; Zhang, X. S.

    2017-01-01

    A new online flow injection spectrophotometric method for the determination of trivalent chromium was developed. This method is based on the property of trivalent chromium to be a catalyst for the oxidation of Indigo Carmine (IC) with potassium periodate and to lose its color in the presence of ethylenediaminetetraacetic acid and sodium tripolyphosphate. It was shown that Tween-20 serves as an additional accelerator of the catalytic oxidation. The linear dynamic range of the determination of Cr(III) was 1-40.0 μg/L, while the limit of detection was 0.05 μg/L. The correlation coefficient r was 0.998, while the relative standard deviation for 5 μg/L of the Cr(III) solution was 3.83%. The feasibility of this method was checked by its application to trivalent chromium determination in real water samples.

  13. Injection and swirl driven flowfields in solid and liquid rocket motors

    NASA Astrophysics Data System (ADS)

    Vyas, Anand B.

    In this work, we seek approximate analytical solutions to describe the bulk flow motion in certain types of solid and liquid rocket motors. In the case of an idealized solid rocket motor, a cylindrical double base propellant grain with steady regression rate is considered. The well known inviscid profile determined by Culick is extended here to include the effects of viscosity and steady grain regression. The approximate analytical solution for the cold flow is obtained from similarity principles, perturbation methods and the method of variation of parameters. The velocity, vorticity, pressure gradient and the shear stress distributions are determined and interpreted for different rates of wall regression and injection Reynolds number. The liquid propellant rocket engine considered here is based on a novel design that gives rise to a cyclonic flow. The resulting bidirectional motion is triggered by the tangential injection of an oxidizer just upstream of the chamber nozzle. Velocity, vorticity and pressure gradient distributions are determined for the bulk gas dynamics using a non-reactive inviscid model. Viscous corrections are then incorporated to explain the formation of a forced vortex near the core. Our results compare favorably with numerical simulations and experimental measurements obtained by other researchers. They also indicate that the bidirectional vortex in a cylindrical chamber is a physical solution of the Euler equations. In closing, we investigate the possibility of multi-directional flow behavior as predicted by Euler's equation and as reported recently in laboratory experiments.

  14. Application of direct-injection detector integrated with the multi-pumping flow system to chemiluminescence determination of the total polyphenol index.

    PubMed

    Nalewajko-Sieliwoniuk, Edyta; Iwanowicz, Magdalena; Kalinowski, Sławomir; Kojło, Anatol

    2016-03-10

    In this work, we present a novel chemiluminescence (CL) method based on direct-injection detector (DID) integrated with the multi-pumping flow system (MPFS) to chemiluminescence determination of the total polyphenol index. In this flow system, the sample and the reagents are injected directly into the cone-shaped detection cell placed in front of the photomultiplier window. Such construction of the detection chamber allows for fast measurement of the CL signal in stopped-flow conditions immediately after mixing the reagents. The proposed DID-CL-MPFS method is based on the chemiluminescence of nanocolloidal manganese(IV)-hexametaphosphate-ethanol system. The application of ethanol as a sensitizer, eliminated the use of carcinogenic formaldehyde. Under the optimized experimental conditions, the chemiluminescence intensities are proportional to the concentration of gallic acid in the range from 5 to 350 ng mL(-1). The DID-CL-MPFS method offers a number of advantages, including low limit of detection (0.80 ng mL(-1)), high precision (RSD = 3.3%) and high sample throughput (144 samples h(-1)) as well as low consumption of reagents, energy and low waste generation. The proposed method has been successfully applied to determine the total polyphenol index (expressed as gallic acid equivalent) in a variety of plant-derived food samples (wine, tea, coffee, fruit and vegetable juices, herbs, spices). Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Development of a Flow Injection System for Differential Pulse Amperometry and Its Application for Diazepam Determination

    PubMed Central

    Antunović, Vesna; Tešanović, Slavna; Perušković, Danica; Stevanović, Nikola; Baošić, Rada; Mandić, Snežana

    2018-01-01

    This work presents the development of a flow injection system for differential pulse amperometry (DPA) for diazepam determination in the presence of oxygen. The thin flow cell consisted of the bare glassy carbon electrode, reference silver/silver chloride, and stainless steel as the auxiliary electrode. Electrochemical reduction of diazepam (DZP) was characterised by cyclic voltammetry. Azomethine reduction peak was used for DZP quantification. The detector response was linear in the range 20–250 µmol/dm3 of diazepam, with a calculated detection limit of 3.83 µg/cm3. Intraday and interday precision were 1.53 and 10.8%, respectively. The method was applied on three beverage samples, energetic drink, and two different beer samples, and obtained recoveries were from 93.65 up to 104.96%. The throughoutput of the method was up to 90 analyses per hour. PMID:29744233

  16. Flow regimes for fluid injection into a confined porous medium

    DOE PAGES

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; ...

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less

  17. Flow injection spectrophotometric method for chloride determination in natural waters using Hg(SCN)(2) immobilized in epoxy resin.

    PubMed

    Silva, Claudineia R; Vieira, Heberth J; Canaes, Larissa S; Nóbrega, Joaquim A; Fatibello-Filho, Orlando

    2005-02-28

    A flow injection (FI) spectrophotometric method was proposed for the determination of chloride ion in natural waters. The determination of chloride was carried out by reaction with Hg(SCN)(2) immobilized in an epoxy resin bead in a solid-phase reactor (SPR) and the thiocyanate ions released were determined spectrophotometrically at 480nm after complexing reaction with Fe(III). The analytical curve for chloride was linear in the concentration range from 5.6 x 10(-5) to 2.2 x 10(-4)moll(-1) with a detection limit of 1.4 x 10(-5)moll(-1). The relative standard deviation (R.S.D.) was 2.2% for a solution containing 2.2 x 10(-4)moll(-1) (n = 10). The simple manifold allows a routine analytical frequency of 100 determinations per hour. The main advantage of the developed method is the 400% reduction of the Hg waste solution generated when compared to conventional methods for chloride determination based on the same spectrophotometric reaction.

  18. A computational investigation of fuel mixing in a hypersonic scramjet

    NASA Technical Reports Server (NTRS)

    Fathauer, Brett W.; Rogers, R. C.

    1993-01-01

    A parabolized, Navier-Stokes code, SHIP3D, is used to numerically investigate the mixing between air injection and hydrogen injection from a swept ramp injector configuration into either a mainstream low-enthalpy flow or a hypervelocity test flow. The mixing comparisons between air and hydrogen injection reveal the importance of matching injectant-to-mainstream mass flow ratios. In flows with the same injectant-to-mainstream dynamic pressure ratio, the mixing definition was altered for the air injection cases. Comparisons of the computed results indicate that the air injection cases overestimate the mixing performance associated with hydrogen injection simulation. A lifting length parameter, to account for the time a fluid particle transverses through the mixing region, is defined and used to establish a connection of injectant mixing in hypervelocity flows, based on nonreactive, low-enthalpy flows.

  19. Down scaled Kjeldahl digestion and flow injection conductometric system for determination of protein content in some traditional northern Thai foods.

    PubMed

    Yanu, Pattama; Jakmunee, Jaroon

    2017-09-01

    A flow injection conductometric (FIC) system for determination of total Kjeldahl nitrogen (TKN) was developed for estimating total protein content in food. A small scale Kjeldahl digestion was performed with a short digestion time of only 20min. The digested solution was injected into the FIC system, and TKN was converted to ammonia gas in an alkaline donor stream of the system. The gas diffused through a membrane and dissolved into an acceptor stream causing an increase in conductivity as detected by a detector and recorded as a peak. Under the optimum condition, a linear calibration graph in the range of 4.00-100.00mgL -1 was obtained with LOD of 0.05mgL -1 . A good precision (0.04% RSD, n=11, 30.00mgNL -1 ) and high sample throughput of 72h -1 was achieved. The method was applied for determination of protein in some traditional northern Thai foods, revealing that they are good sources of proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Flow visualization study of close-coupled canard wing and strake wing configuration

    NASA Technical Reports Server (NTRS)

    Miner, D. D.; Gloss, B. B.

    1975-01-01

    The Langley 1/8-scale V/STOL model tunnel was used to qualitatively determine the flow fields associated with semi-span close coupled canard wing and strake wing models. Small helium filled bubbles were injected upstream of the models to make the flow visible. Photographs were taken over the angle-of-attack ranges of -10 deg to 40 deg.

  1. Electrokinetic injection techniques in microfluidic chips.

    PubMed

    Fu, L M; Yang, R J; Lee, G B; Liu, H H

    2002-10-01

    The separation efficiency of a microfluidic chip is influenced to a significant degree by the flow field conditions within the injection microchannel. Therefore, an understanding of the physics of the flow within this channel is beneficial in the design and operation of such a system. The configuration of an injection system is determined by the volume of the sample plug that is to be delivered to the separation process. Accordingly, this paper addresses the design and testing of injection systems with a variety of configurations, including a simple cross, a double-T, and a triple-T configuration. This paper also presents the design of a unique multi-T injection configuration. Each injection system cycles through a predetermined series of steps, in which the electric field magnitude and distribution within the various channels is strictly manipulated, to effectuate a virtual valve. The uniquemulti-T configuration injection system presented within this paper has the ability to simulate the functions of the cross, double-T, and triple-T systems through appropriate manipulations of the electric field within its various channels. In other words, the proposed design successfully combines several conventional injection systems within a single microfluidic chip.

  2. A multisyringe flow injection Winkler-based spectrophotometric analyzer for in-line monitoring of dissolved oxygen in seawater.

    PubMed

    Horstkotte, Burkhard; Alonso, Juan Carlos; Miró, Manuel; Cerdà, Víctor

    2010-01-15

    An integrated analyzer based on the multisyringe flow injection analysis approach is proposed for the automated determination of dissolved oxygen in seawater. The entire Winkler method including precipitation of manganese(II) hydroxide, fixation of dissolved oxygen, dissolution of the oxidized manganese hydroxide precipitate, and generation of iodine and tri-iodide ion are in-line effected within the flow network. Spectrophotometric quantification of iodine and tri-iodide at the isosbestic wavelength of 466nm renders enhanced method reliability. The calibration function is linear up to 19mgL(-1) dissolved oxygen and an injection frequency of 17 per hour is achieved. The multisyringe system features a highly satisfying signal stability with repeatabilities of 2.2% RSD that make it suitable for continuous determination of dissolved oxygen in seawater. Compared to the manual starch-end-point titrimetric Winkler method and early reported automated systems, concentrations and consumption of reagents and sample are reduced up to hundredfold. The versatility of the multisyringe assembly was exploited in the implementation of an ancillary automatic batch-wise Winkler titrator using a single syringe of the module for accurate titration of the released iodine/tri-iodide with thiosulfate.

  3. Examination of the effect of blowing on the near-surface flow structure over a dimpled surface

    NASA Astrophysics Data System (ADS)

    Borchetta, C. G.; Martin, A.; Bailey, S. C. C.

    2018-03-01

    The near surface flow over a dimpled surface with flow injection through it was documented using time-resolved particle image velocimetry. The instantaneous flow structure, time-averaged statistics, and results from snapshot proper orthogonal decomposition were used to examine the coherent structures forming near the dimpled surface. In particular, the modifications made to the flow structures by the addition of flow injection through the surface were studied. It was observed that without flow injection, inclined flow structures with alternating vorticity from neighboring dimples are generated by the dimples and advect downstream. This behavior is coupled with fluid becoming entrained inside the dimples, recirculating and ejecting away from the surface. When flow injection was introduced through the surface, the flow structures became more disorganized, but some of the features of the semi-periodic structures observed without flow injection were preserved. The structures with flow injection appear in multiple wall-normal layers, formed from vortical structures shed from upstream dimples, with a corresponding increase in the size of the advecting structures. As a result of the more complex flow field observed with flow injection, there was an increase in turbulent kinetic energy and Reynolds shear stress, with the Reynolds shear stress representing an increase in vertical transport of momentum by sweeping and ejecting motions that were not present without flow injection.

  4. Experimental research on the behavior of the pneumatic transport of fine-grained iron

    NASA Astrophysics Data System (ADS)

    Andrei, V.; Hritac, M.; Constantin, N.; Dobrescu, C.

    2017-01-01

    Mixed injection of fine-grained iron ore and pulverized coal in the furnace, involves determining the behavior of these materials during pneumatic transport in a dense state through the pipe and setting possibilities for adjusting the flow rate of material transported with the corresponding values of the process. Parameters of the pneumatic transport were determined for the main types of iron ore and chalk used in Arcelor Mittal Galati. Outside the intended purpose of injecting iron ore and flux, it was considered also the experimental check of the possibility for injecting ilmenite in the furnace for crucible protection purpose. The possibility of injecting cinder mill into the furnace was also considered. Injecting cinder could be taken into account for the recycling of ferrous waste in the furnace, also as additive for intensifying the combustion process around the tuyeres.

  5. Effect of injection screen slot geometry on hydraulic conductivity tests

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Nemer, Bassel; Hatfield, Kirk

    2014-04-01

    Hydraulic conductivity and its spatial variability are important hydrogeological parameters and are typically determined through injection tests at different scales. For injection test interpretation, shape factors are required to account for injection screen geometry. Shape factors act as proportionality constants between hydraulic conductivity and observed ratios of injection flow rate and injection head at steady-state. Existing results for such shape factors assume either an ideal screen (i.e., ignoring effects of screen slot geometry) or infinite screen length (i.e., ignoring effects of screen extremes). In the present work, we investigate the combined effects of circumferential screen slot geometry and finite screen length on injection shape factors. This is done in terms of a screen entrance resistance by solving a steady-state potential flow mixed type boundary value problem in a homogeneous axi-symmetric flow domain using a semi-analytical solution approach. Results are compared to existing analytical solutions for circumferential and longitudinal slots on infinite screens, which are found to be identical. Based on an existing approximation, an expression is developed for a dimensionless screen entrance resistance of infinite screens, which is a function of the relative slot area only. For anisotropic conditions, e.g., when conductivity is smaller in the vertical direction than in the horizontal, screen entrance losses for circumferential slots increase, while they remain unaffected for longitudinal slots. This work is not concerned with investigating the effects of (possibly turbulent) head losses inside the injection device including the passage through the injection slots prior to entering the porous aquifer.

  6. Reductions in Multi-Component Jet Noise by Water Injection

    NASA Technical Reports Server (NTRS)

    Norum, Thomas D.

    2004-01-01

    An experimental investigation was performed in the NASA Langley Low Speed Aeroacoustics Wind Tunnel to determine the extent of jet exhaust noise reduction that can be obtained using water injection in a hot jet environment. The effects of water parameters such as mass flow rate, injection location, and spray patterns on suppression of dominant noise sources in both subsonic and supersonic jets were determined, and extrapolations to full-scale engine noise reduction were made. Water jets and sprays were injected in to the shear layers of cold and hot circular jets operating at both subsonic and supersonic exhaust conditions. Use of convergent-divergent and convergent nozzles (2.7in. D) allowed for simulations of all major jet noise sources. The experimental results show that water injection clearly disrupts shock noise sources within the jet plume, with large reductions in radiated shock noise. There are smaller reductions in jet mixing noise, resulting in only a small decrease in effective perceived noise level when projections are made to full scale. The fact that the measured noise reduction in the direction upstream of the nozzle was consistently larger than in the noisier downstream direction contributed to keeping effective perceived noise reductions small. Variations in the operation of the water injection system clearly show that injection at the nozzle exit rather than further downstream is required for the largest noise reduction. Noise reduction increased with water pressure as well as with its mass flow, although the type of injector had little effect.

  7. A multitracer system for multizone ventilation measurement

    NASA Astrophysics Data System (ADS)

    Sherman, Max

    1990-09-01

    Mass transfer due to pressure-driven air flow is one of the most important processes for determining both environmental quality and energy requirements in buildings. Heat, moisture, and contaminants are all transported by air movement between indoors and outdoors as well as between different zones within a building. Measurement of these air flows is critical to understanding the performance of buildings. Virtually all measurements of ventilation are made using the dilution of a tracer gas. The vast majority of such measurements have been made in a single zone, using a single tracer gas. For the past several years LBL has been developing the MultiTracer Measurement System (MTMS) to provide full multizone air flow information in an accurate, real-time manner. MTMS is based on a quadrupole mass spectrometer to provide high-speed concentration analysis of multiple tracer gases in the (low) ppm level that are injected into multiple zones using mass-flow controllers. The measurement and injection system is controlled by a PC and can measure all concentrations in all zones (and adjust the injected tracer flows) within 2 min and can operate unattended for weeks. The resulting injection rate and concentration data can be analyzed to infer the bulk air movement between zones. The system also measures related quantities such as weather and zonal temperature to assist in the data interpretation. Using MTMS, field measurements have been made for the past two years.

  8. Comparison of Descemet stripping under continuous air flow, manual air injection and balanced salt solution for DMEK: a pilot study.

    PubMed

    Gabbay, I E; Bahar, I; Nahum, Y; Livny, E

    2017-08-01

    Descemet's membrane endothelial keratoplasty (DMEK) involves removal of the recipient's Descemet membrane (DM) prior to transplanting the donor's DM. When using balanced salt solution (BSS) or ophthalmic viscosurgical devices (OVDs), visualization of the host's DM during its stripping may be inadequate and may result in Descemet remnants and could lead to sub-optimal surgical results. Previous articles described excellent visualization when utilizing air injection but this requires repeated air injection into the anterior chamber (AC). We present a pilot study that compares different techniques under which DM stripping can be performed: with continuous automated air infusion, with manual air infusion, and with BSS. We retrospectively compared video footage of DM stripping with BSS, with continuous air and with manual injection of air into the AC to determine DM stripping duration and the number of times the surgeon had to insert and retrieve a surgical instrument from the AC. Thirty videos of 10 consecutive cases of the three DM stripping techniques were evaluated. DM stripping duration was 3.26 (±1.32), 3.92 (±1.2) and 12.9 (±3.98) minutes for BSS, continuous air flow, and manual air injection, respectively. Frequency of instrument retrieval (FIR) was 3.6 (±1.71), 1.5 (±0.71) and 15.1 (±3.28) for BSS, continuous air flow, and manual air injection, respectively. Continuous air flow and BSS were both statistically different than manual air injection into the AC (p < 0.05), but did not differ from one another statistically. DM stripping during posterior lamellar surgery is imperative for favorable post-operative results and prevention of complications. Performing this step under air in the AC contributes to better visualization and an efficient surgery.

  9. In Situ NAPL Modification for Contaminant Source-Zone Passivation, Mass Flux Reduction, and Remediation

    NASA Astrophysics Data System (ADS)

    Mateas, D. J.; Tick, G.; Carroll, K. C.

    2016-12-01

    A remediation method was developed to reduce the aqueous solubility and mass-flux of target NAPL contaminants through the in-situ creation of a NAPL mixture source-zone. This method was tested in the laboratory using equilibrium batch tests and two-dimensional flow-cell experiments. The creation of two different NAPL mixture source zones were tested in which 1) volumes of relatively insoluble n-hexadecane (HEX) or vegetable oil (VO) were injected into a trichloroethene (TCE) contaminant source-zone; and 2) pre-determined HEX-TCE and VO-TCE mixture ratio source zones were emplaced into the flow cell prior to water flushing. NAPL-aqueous phase batch tests were conducted prior to the flow-cell experiments to evaluate the effects of various NAPL mixture ratios on equilibrium aqueous-phase concentrations of TCE and toluene (TOL) and to design optimal NAPL (HEX or VO) injection volumes for the flow-cell experiments. Uniform NAPL mixture source-zones were able to quickly decrease contaminant mass-flux, as demonstrated by the emplaced source-zone experiments. The success of the HEX and VO injections to also decrease mass flux was dependent on the ability of these injectants to homogeneously mix with TCE source-zone. Upon injection, both HEX and VO migrated away from the source-zone, to some extent. However, the lack of a steady-state dissolution phase and the inefficient mass-flux-reduction/mass-removal behavior produced after VO injection suggest that VO was more effective than HEX for mixing and partitioning within the source-zone region to form a more homogeneous NAPL mixture with TCE. VO appears to be a promising source-zone injectant-NAPL due to its negligible long-term toxicity and lower mobilization potential.

  10. Comparison of two methods for selegiline determination: A flow-injection chemiluminescence method using cadmium sulfide quantum dots and corona discharge ion mobility spectrometry.

    PubMed

    Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza; Zarei, Mahmoud; Joo, Sang Woo

    2016-01-15

    Two analytical approaches including chemiluminescence (CL) and corona discharge ionization ion mobility spectrometry (CD-IMS) were developed for sensitive determination of selegiline (SG). We found that the CL intensity of the KMnO4-Na2S2O3 CL system was significantly enhanced in the presence of L-cysteine capped CdS quantum dots (QDs). A possible CL mechanism for this CL reaction is proposed. In the presence of SG, the enhanced CL system was inhibited. Based on this inhibition, a simple and sensitive flow-injection CL method was proposed for the determination of SG. Under optimum experimental conditions, the decreased CL intensity was proportional to SG concentration in the range of 0.01 to 30.0 mg L(-1). The detection limit (3σ) was 0.004 mg L(-1). Also, SG was determined using CD-IMS, and under optimum conditions of CD-IMS, calibration curves were linear in the range of 0.15 to 42.0 mg L(-1), with a detection limit (3σ) of 0.03 mg L(-1). The precision of the two methods was calculated by analyzing samples containing 5.0 mg L(-1) of SG (n=11). The relative standard deviations (RSDs%) of the flow-injection CL and CD-IMS methods are 2.17% and 3.83%, respectively. The proposed CL system exhibits a higher sensitivity and precision than the CD-IMS method for the determination of SG. Copyright © 2015. Published by Elsevier B.V.

  11. A simple and sensitive flow injection method based on the catalytic activity of CdS quantum dots in an acidic permanganate chemiluminescence system for determination of formaldehyde in water and wastewater.

    PubMed

    Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza

    2016-04-01

    A simple and sensitive flow injection chemiluminescence (CL) method in which CdS quantum dots (QDs) enhanced the CL intensity of a KMnO4-formaldehyde (HCHO) reaction was offered for the determination of HCHO. This CL system was based on the catalytic activity of CdS QDs and their participation in the CL resonance energy transfer (CRET) phenomenon. A possible mechanism for the supplied CL system was proposed using the kinetic curves of the CL systems and the spectra of CL, photoluminescence (PL) and ultraviolet-visible (UV-Vis). The emanated CL intensity of the KMnO4-CdS QDs system was amplified in the presence of a trace level of HCHO. Based on this enhancement effect, a simple and sensitive flow injection CL method was suggested for the determination of HCHO concentration in environmental water and wastewater samples. Under selected optimized experimental conditions, the increased CL intensity was proportional to the HCHO concentration in the range of 0.03-4.5 μg L(-1) and 4.5-10.0 μg L(-1). The detection limits (3σ) were 0.0003 μg L(-1) and 1.2 μg L(-1). The relative standard deviations (RSD%) for eleven replicate determinations of 4.0 μg L(-1) HCHO were 2.2%. Furthermore, the feasibility of the developed method was investigated via the determination of HCHO concentration in environmental water and wastewater samples.

  12. Multi-reverse flow injection analysis integrated with multi-optical sensor for simultaneous determination of Mn(II), Fe(II), Cu(II) and Fe(III) in natural waters.

    PubMed

    Youngvises, Napaporn; Suwannasaroj, Kittigan; Jakmunee, Jaroon; AlSuhaimi, Awadh

    2017-05-01

    Multi-reverse flow injection analysis (Mr-FIA) integrated with multi-optical sensor was developed and optimized for the simultaneous determination of multi ions; Mn(II), Fe(II), Cu(II) and Fe(III) in water samples. The sample/standard solutions were propelled making use of a four channels peristaltic pump whereas 4 colorimetric reagents specific for the metal ions were separately injected in sample streams using multi-syringe pump. The color zones that formed in the individual mixing coils were then streamed into multi-channels spectrometer, which comprised of four flows through cell and four pairs of light emitting diode and photodiode, whereby signals were measured concurrently. The linearity range (along with detection limit, µgL -1 ) was 0.050-3.0(16), 0.30-2.0 (11), 0.050-1.0(12) and 0.10-1.0(50)mgL -1 , for Mn(II), Fe(II), Cu(II) and Fe(III), respectively. In the interim, the correlation coefficients were 0.9924-0.9942. The percentages relative standard deviation was less than 3. The proposed system was applied successfully to determine targeted metal ions simultaneously in natural water with high sample throughput and low reagent consumption, thus it satisfies the criteria of Green Analytical Chemistry (GAC) and its goals. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Particle Image Velocimetry During Injection Molding

    NASA Astrophysics Data System (ADS)

    Bress, Thomas; Dowling, David

    2012-11-01

    Injection molding involves the unsteady non-isothermal flow of a non-Newtonian polymer melt. An optical-access mold has been used to perform particle image velocimetry (PIV) on molten polystyrene during injection molding. Velocimetry data of the mold-filling flow will be presented. Statistical assessments of the velocimetry data and scaled residuals of the continuity equation suggest that PIV can be conducted in molten plastics with an uncertainty of +/-2 percent. Simulations are often used to model polymer flow during injection molding to design molds and select processing parameters but it is difficult to determine the accuracy of these simulations due to a lack of in-mold velocimetry and melt-front progression data. Moldflow was used to simulate the filling of the optical-access mold, and these simulated results are compared to the appropriately-averaged time-varying velocity field measurements. Simulated results for melt-front progression are also compared with the experimentally observed flow fronts. The ratio of the experimentally measured average velocity magnitudes to the simulation magnitudes was found on average to be 0.99 with a standard deviation of 0.25, and the difference in velocity orientations was found to be 0.9 degree with a standard deviation of 3.2 degrees. formerly at the University of Michigan.

  14. Electrochemical biotin detection based on magnetic beads and a new magnetic flow cell for screen printed electrode.

    PubMed

    Biscay, Julien; González García, María Begoña; Costa García, Agustín

    2015-01-01

    The use of the first flow-cell for magnetic assays with an integrated magnet is reported here. The flow injection analysis system (FIA) is used for biotin determination. The reaction scheme is based on a one step competitive assay between free biotin and biotin labeled with horseradish peroxidase (B-HRP). The mixture of magnetic beads modified with streptavidin (Strep-MB), biotin and B-HRP is left 15 min under stirring and then a washing step is performed. After that, 100 μL of the mixture is injected and after 30s 100 μL of 3,3',5,5'-Tetramethylbenzidine (TMB) is injected and the FIAgram is recorded applying a potential of -0.2V. The linear range obtained is from 0.01 to 1 nM of biotin and the sensitivity is 758 nA/nM. The modification and cleaning of the electrode are performed in an easy way due to the internal magnet of the flow cell. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  16. Flow-injection chemiluminescence determination of melamine in urine and plasma.

    PubMed

    Tang, Xiaoshuang; Shi, Xiyan; Tang, Yuhai; Yue, Zhongjin; He, Qiqi

    2012-01-01

    A novel flow-injection chemiluminescence method for the determination of melamine in urine and plasma was developed. It was found that melamine can remarkably enhance chemiluminescence emission from the luminol-K(3) Fe(CN)(6) system in an alkaline medium. Under the optimum conditions, chemiluminescence intensity had a good linear relationship with the concentration of melamine in the range 9.0 × 10(-9) -7.0 × 10(-6) g/mL, with a correlation coefficient of 0.9992. The detection limit (3σ) was 3.5 ng/mL. The method has been applied to determine the concentration of melamine in samples using liquid-liquid extraction. Average recoveries of melamine were 102.6% in urine samples and 95.1% in plasma samples. The method provided a reproducible and stable approach for the sensitive detection of melamine in urine and plasma samples. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Sibutramine selective electrodes for batch and flow injection determinations in pharmaceutical preparations.

    PubMed

    Zayed, S I M; Issa, Y M

    2010-01-01

    The construction and electrochemical response characteristics of two new polyvinyl chloride (PVC) membrane sensors for the determination of sibutramine hydrochloride were described. The sensors are based on the ion association complexes of sibutramine with sodium tetraphenylborate (NaTPB) or phosphotungstic acid (PTA) using dibutyl phthalate as plasticizing solvent. The sensors display a fast, stable response over the concentration range 3.84 x 10(-5)-1.00 x 10(-2) M sibutramine hydrochloride monohydrate (SibuCl), with cationic slopes of 57.7 +/- 0.57 and 59.7 +/- 1.79 mV concentration decade(-1) and detection limits of 8.91 x 10(-6) and 1.47 x 10(-5) M in case of sibutramine-tetraphenylborate (Sibu-TPB) and sibutramine-phosphotungstate ((Sibu)(3)-PT), respectively. The proposed sensors have been successfully applied for the determination of sibutramine hydrochloride in Regitrim capsules in batch and flow injection (FI) conditions.

  18. Subnanogram determination of aniracetam in pharmaceutical preparations and biofluids by flow injection analysis with chemiluminescence detection based on its enhancement of the myoglobin-luminol reaction.

    PubMed

    Shao, Xiaodong; Li, Ying; Li, Fagen; Liu, Yangqin; Song, Zhenghua

    2011-01-01

    A novel flow injection chemiluminescence method with a myoglobin-luminol system is described for determining aniracetam. Myoglobin-bound aniracetam produced a complex that catalyzed the chemiluminescence reaction between luminol and myoglobin, leading to fast chemiluminescence. The chemiluminescence intensity in the presence of aniracetam was remarkably enhanced compared with that in the absence of aniracetam. Under the optimum reaction conditions the chemiluminescence increment produced was proportional to the concentration of aniracetam in the range of 0.1-1000.0 ng/mL (R2 = 0.9992), with a detection limit of 0.03 ng/mL (3delta). At a flow rate of 2.0 mL/min, the whole process, including sampling and washing, could be completed in 0.5 min, offering a sampling efficiency of 120/h; the RSD was less than 3.0% (n = 5). The method was satisfactory for determination of aniracetam in pharmaceutical preparations and human urine and serum samples. A possible mechanism of the reaction is also discussed.

  19. Multi-Phase Modeling of Rainbird Water Injection

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Moss, Nicholas; Sampson, Zoe

    2014-01-01

    This paper describes the use of a Volume of Fluid (VOF) multiphase model to simulate the water injected from a rainbird nozzle used in the sound suppression system during launch. The simulations help determine the projectile motion for different water flow rates employed at the pad, as it is critical to know if water will splash on the first-stage rocket engine during liftoff.

  20. Design and development of an automated flow injection instrument for the determination of arsenic species in natural waters.

    PubMed

    Hanrahan, Grady; Fan, Tina K; Kantor, Melanie; Clark, Keith; Cardenas, Steven; Guillaume, Darrell W; Khachikian, Crist S

    2009-10-01

    The design and development of an automated flow injection instrument for the determination of arsenite [As(III)] and arsenate [As(V)] in natural waters is described. The instrument incorporates solenoid activated self-priming micropumps and electronic switching valves for controlling the fluidics of the system and a miniature charge-coupled device spectrometer operating in a graphical programming environment. The limits of detection were found to be 0.79 and 0.98 microM for As(III) and As(V), respectively, with linear range of 1-50 microM. Spiked ultrapure water samples were analyzed and recoveries were found to be 97%-101% for As(III) and 95%-99% for As(V), respectively. Future directions in terms of automation, optimization, and field deployment are discussed.

  1. A Semi-Analytical Method for Rapid Estimation of Near-Well Saturation, Temperature, Pressure and Stress in Non-Isothermal CO2 Injection

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2015-12-01

    Reservoir cooling near the wellbore is expected when fluids are injected into a reservoir or aquifer in CO2 storage, enhanced oil or gas recovery, enhanced geothermal systems, and water injection for disposal. Ignoring thermal effects near the well can lead to under-prediction of changes in reservoir pressure and stress due to competition between increased pressure and contraction of the rock in the cooled near-well region. In this work a previously developed semi-analytical model for immiscible, nonisothermal fluid injection is generalised to include partitioning of components between two phases. Advection-dominated radial flow is assumed so that the coupled two-phase flow and thermal conservation laws can be solved analytically. The temperature and saturation profiles are used to find the increase in reservoir pressure, tangential, and radial stress near the wellbore in a semi-analytical, forward-coupled model. Saturation, temperature, pressure, and stress profiles are found for parameters representative of several CO2 storage demonstration projects around the world. General results on maximum injection rates vs depth for common reservoir parameters are also presented. Prior to drilling an injection well there is often little information about the properties that will determine the injection rate that can be achieved without exceeding fracture pressure, yet injection rate and pressure are key parameters in well design and placement decisions. Analytical solutions to simplified models such as these can quickly provide order of magnitude estimates for flow and stress near the well based on a range of likely parameters.

  2. Simplex optimization of the variables influencing the determination of pefloxacin by time-resolved chemiluminescence

    NASA Astrophysics Data System (ADS)

    Murillo Pulgarín, José A.; Alañón Molina, Aurelia; Jiménez García, Elisa

    2018-03-01

    A new chemiluminescence (CL) detection system combined with flow injection analysis (FIA) for the determination of Pefloxacin is proposed. The determination is based on an energy transfer from Pefloxacin to terbium (III). The metal ion enhances the weak CL signal produced by the KMnO4/H2SO3/Pefloxacin system. A modified simplex method was used to optimize chemical and instrumental variables. The influence of the interaction of the permanganate, Tb (III), sodium sulphite and sulphuric acid concentrations, flow rate and injected sample volume was thoroughly investigated by using a modified simplex optimization procedure. The results revealed a strong direct relationship between flow rate and CL intensity throughout the studied range that was confirmed by a gamma test. The response factor for the CL emission intensity was used to assess performance in order to identify the optimum conditions for maximization of the response. Under such conditions, the CL response was proportional to the Pefloxacin concentration over a wide range. The detection limit as calculated according to Clayton's criterion 13.7 μg L- 1. The analyte was successfully determined in milk samples with an average recovery of 100.6 ± 9.8%.

  3. COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earl D Mattson; Mitchell Plummer; Carl Palmer

    2011-02-01

    Three conservative tracer tests have been conducted through the Bridge Fault fracture zone at the Raft River Geothermal (RRG) site. All three tests were conducted between injection well RRG-5 and production wells RRG-1 (790 m distance) and RRG-4 (740 m distance). The injection well is used during the summer months to provide pressure support to the production wells. The first test was conducted in 2008 using 136 kg of fluorescein tracer. Two additional tracers were injected in 2010. The first 2010 tracer injected was 100 kg fluorescein disodium hydrate salt on June, 21. The second tracer (100 kg 2,6-naphthalene disulfonicmore » acid sodium salt) was injected one month later on July 21. Sampling of the two productions wells is still being performed to obtain the tail end of the second 2010 tracer test. Tracer concentrations were measured using HPLC with a fluorescence detector. Results for the 2008 test, suggest 80% tracer recover at the two production wells. Of the tracer recovered, 85% of tracer mass was recovered in well RRG-4 indicating a greater flow pathway connection between injection well and RRG-4 than RRG-1. Fluorescein tracer results appear to be similar between the 2008 and 2010 tests for well RRG-4 with peak concentrations arriving approximately 20 days after injection despite the differences between the injection rates for the two tests (~950 gpm to 475 gpm) between the 2008 and 2010. The two 2010 tracer tests will be compared to determine if the results support the hypothesis that rock contraction along the flow pathway due to the 55 oC cooler water injection alters the flow through the ~140 oC reservoir.« less

  4. Simple and clean determination of tetracyclines by flow injection analysis

    NASA Astrophysics Data System (ADS)

    Rodríguez, Michael Pérez; Pezza, Helena Redigolo; Pezza, Leonardo

    2016-01-01

    An environmentally reliable analytical methodology was developed for direct quantification of tetracycline (TC) and oxytetracycline (OTC) using continuous flow injection analysis with spectrophotometric detection. The method is based on the diazo coupling reaction between the tetracyclines and diazotized sulfanilic acid in a basic medium, resulting in the formation of an intense orange azo compound that presents maximum absorption at 434 nm. Experimental design was used to optimize the analytical conditions. The proposed technique was validated over the concentration range of 1 to 40 μg mL- 1, and was successfully applied to samples of commercial veterinary pharmaceuticals. The detection (LOD) and quantification (LOQ) limits were 0.40 and 1.35 μg mL- 1, respectively. The samples were also analyzed by an HPLC method, and the results showed agreement with the proposed technique. The new flow injection method can be immediately used for quality control purposes in the pharmaceutical industry, facilitating monitoring in real time during the production processes of tetracycline formulations for veterinary use.

  5. Flow-injection chemiluminescence determination of diazepam by oxidation with N-bromosuccinimide.

    PubMed

    Han, Suqin; Jia, Shize; Guo, Liang

    2013-01-01

    A rapid and sensitive flow-injection chemiluminescence (FI-CL) method is described for the determination of diazepam based on its reaction with N-bromosuccinimide (NBS) in alkaline medium in the presence of dichlorofluorescein (DCF) as an effective energy-transfer agent. Under optimum conditions, the proposed method allowed the measurement of diazepam over the range of 2.0 × 10(-6) to 2.0 × 10(-4) mol/L with a detection limit of 5.0 × 10(-7) mol/L. The relative standard deviation for 11 parallel measurements of 2.0 × 10(-5) mol/L diazepam was 2.1%. The method was applied satisfactorily for the determination of diazepam in pharmaceutical preparations, and the results agree well with those obtained by spectrophotometry. The use of the proposed system for the determination of diazepam in urine and plasma samples was also tested. The possible mechanism of the chemiluminescence reaction is discussed briefly. Copyright © 2012 John Wiley & Sons, Ltd.

  6. The determination of trace lead in Chinese medicinal herbs by flow injection analysis in polyethyleneglycol medium

    NASA Astrophysics Data System (ADS)

    Gong, Aiqin; Zhu, Xiashi; Huang, Xiaoyan; Zhang, Yaqin

    2008-01-01

    In this work, a new flow injection analysis (FIA) for the determination of Pb 2+ in Chinese medicinal herbs was developed. In the buffer solution of borax-NaOH (pH 10.5), Pb 2+ reacted with 2-[(5-bromo-2-pyridyl)-azo]-5-(diethyl-amino)phenol (5-Br-PADAP) to form a complex. The experimental results showed that the sensitivity was enhanced in the presence of polyethyleneglycol-800 (PG-800). The main factors affecting the determination were investigated in detail. Under the optimum conditions, the linear range and detection limit is 0.0-0.3 μg/mL and 1.5 ng/mL (correlation coefficient r = 0.9996), respectively. The linear regression equation is A = -0.005 + 0.60 c (μg/mL). The sample throughout is 10 h -1. Foreign substrates effects were also investigated. The proposed method has been successfully applied to the determination of lead in reference material, goldthread and lepidium seed.

  7. [Determination of trace amounts of zinc in nickel electrolyte by flow injection on-line enrichment].

    PubMed

    Zhou, Z; Wang, Y; Dong, Z; Tong, K; Guo, X; Guo, X

    1999-10-01

    A method for the determination of trace amount of zinc in nickel electrolyte utilizing the flow injection on-line enrichment technique is reported in this paper. Atomic absorption spectrometer was used as detector. Zinc was separated from large amounts of nickel andother components in the electrolyte by absorption its chlorocomplex on a mini-column packed with strongly basic anion exchangers. It was found that sodium chloride containing in the electrolyte offered a sufficient chloride concentration needed for the formation of the zinc chlorocomplex and thus no additional reagent was required for the determination. The throughput of the method is 30 determinations per hour. The detection limit of the method is 0.002 microg x mL(-1) and the precision is 1.9% (RSD). The proposed method is rapid and cost-effective. It has been used for almost three years in the quality control of the electrolyte in the factory with great success.

  8. Determination of thiram in natural waters using flow-injection with cerium(IV)-quinine chemiluminescence system.

    PubMed

    Waseem, Amir; Yaqoob, Mohammad; Nabi, Abdul

    2010-01-01

    A simple and rapid flow-injection chemiluminescence method has been developed for the determination of dithiocarbamate fungicide thiram based on the chemiluminescence reaction of thiram with ceric sulfate and quinine in aqueous sulfuric acid. The present method allowed the determination of thiram in the concentration range of 7.5-2500 ng/mL and the detection limit (signal-to-noise ratio = 3) was 7.5 ng/mL with sample throughput of 120/h. The relative standard deviation was 2.5% for 10 replicate analyses of 500 ng/mL thiram. The effects of foreign species including various anions and cations present in water at environmentally relevant concentrations and some pesticides were also investigated. The proposed method was applied to determine thiram in spiked natural waters using octadecyl bonded phase silica (C(18)) cartridges for solid-phase extraction. The recoveries were in the range 99 +/- 1 to 104 +/- 1%. Copyright (c) 2009 John Wiley & Sons, Ltd.

  9. Simultaneous determination of Cr(III) and Cr(VI) in tannery wastewater using low pressure ion chromatography combined with flow injection spectrophotometry

    NASA Astrophysics Data System (ADS)

    Chen, Shujuan; Zhang, Xinshen; Yu, Lingyun; Wang, Li; Li, Hui

    2012-03-01

    Trivalent and hexavalent chromium have been successfully separated and determined using low pressure ion chromatography combined with flow injection spectrophotometric analysis (LPIC-FIA). A column packed with crosslinking starch microspheres was used for on-line separation of Cr(III) from Cr(VI) in a flow-injection system because of its absorptive effect on Cr(III). To determine the concentration of Cr(III) and Cr(VI) in samples, we used 3.0 mmol/L nitric acid to elute adsorbed Cr(III) from the column and then used ceric sulfate-sulfuric acid as oxidant to convert all Cr(III) into Cr(VI). Then, Cr(VI) directly came from the samples and Cr(VI) came from Cr(III) successively formed a amaranthine complex with diphenycarbazide and the complex shows a maximum absorption at 530 nm. Analytical parameters including the concentration of eluent and oxidant solution, oxidizing temperature, length of oxidizing reaction coil, reaction coil and injection coil, interfering effects, etc., were optimized. The limit of detection was 1.25 μg/L for Cr(VI) and 3.76 μg/L for Cr(III). The linear relationship between absorption with the concentration of Cr(VI) and Cr(III) was 0.001-1.000 mg/L and 0.030-1.000 mg/L with correlation coefficients of 0.9995 and 0.9994, respectively. The relative standard deviation of Cr(VI) and Cr(III) was 1.21% and 1.66%, respectively (n = 10). Major cations and anions did not show any interference. We validated this method through certified reference materials and through measuring the recovery in tannery wastewater.

  10. Experimental Investigation of Diffuser Hub Injection to Improve Centrifugal Compressor Stability

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2004-01-01

    Results from a series of experiments to investigate whether centrifugal compressor stability could be improved by injecting air through the diffuser hub surface are reported. The research was conducted in a 4:1 pressure ratio centrifugal compressor configured with a vane-island diffuser. Injector nozzles were located just upstream of the leading edge of the diffuser vanes. Nozzle orientations were set to produce injected streams angled at 8, 0 and +8 degrees relative to the vane mean camber line. Several injection flow rates were tested using both an external air supply and recirculation from the diffuser exit. Compressor flow range did not improve at any injection flow rate that was tested. Compressor flow range did improve slightly at zero injection due to the flow resistance created by injector openings on the hub surface. Leading edge loading and semi-vaneless space diffusion showed trends similar to those reported earlier from shroud surface experiments that did improve compressor flow range. Opposite trends are seen for hub injection cases where compressor flow range decreased. The hub injection data further explain the range improvement provided by shroud-side injection and suggest that different hub-side techniques may produce range improvement in centrifugal compressors.

  11. Automated system for on-line determination of dimethylarsinic and inorganic arsenic by hydride generation-atomic fluorescence spectrometry.

    PubMed

    Chaparro, L L; Ferrer, L; Cerdà, V; Leal, L O

    2012-09-01

    A multisyringe flow-injection approach has been coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS) with UV photo-oxidation for dimethylarsinic (DMA), inorganic As and total As determination, depending on the pre-treatment given to the sample (extraction or digestion). The implementation of a UV lamp allows on-line photo-oxidation of DMA and the following arsenic detection, whereas a bypass leads the flow directly to the HG-AFS system, performing inorganic arsenic determination. DMA concentration is calculated by the difference of total inorganic arsenic and measurement of the photo-oxidation step. The detection limits for DMA and inorganic arsenic were 0.09 and 0.47 μg L(-1), respectively. The repeatability values accomplished were of 2.4 and 1.8%, whereas the injection frequencies were 24 and 28 injections per hour for DMA and inorganic arsenic, respectively. This method was validated by means of a solid reference material BCR-627 (muscle of tuna) with good agreement with the certified values. Satisfactory results for DMA and inorganic arsenic determination were obtained in several water matrices. The proposed method offers several advantages, such as increasing the sampling frequency, low detection limits and decreasing reagents and sample consumption, which leads to lower waste generation.

  12. Visualisation of diesel injector with neutron imaging

    NASA Astrophysics Data System (ADS)

    Lehmann, E.; Grünzweig, C.; Jollet, S.; Kaiser, M.; Hansen, H.; Dinkelacker, F.

    2015-12-01

    The injection process of diesel engines influences the pollutant emissions. The spray formation is significantly influenced by the internal flow of the injector. One of the key parameters here is the generation of cavitation caused by the geometry and the needle lift. In modern diesel engines the injection pressure is established up to 3000 bar. The details of the flow and phase change processes inside the injector are of increasing importance for such injectors. With these experimental measurements the validation of multiphase and cavitation models is possible for the high pressure range. Here, for instance, cavitation effects can occur. Cavitation effects in the injection port area destabilize the emergent fuel jet and improve the jet break-up. The design of the injection system in direct-injection diesel engines is an important challenge, as the jet breakup, the atomization and the mixture formation in the combustion chamber are closely linked. These factors have a direct impact on emissions, fuel consumption and performance of an engine. The shape of the spray at the outlet is determined by the internal flow of the nozzle. Here, geometrical parameters, the injection pressure, the injection duration and the cavitation phenomena play a major role. In this work, the flow dependency in the nozzles are analysed with the Neutron-Imaging. The great advantage of this method is the penetrability of the steel structure while a high contrast to the fuel is given due to the interaction of the neutrons with the hydrogen amount. Compared to other methods (optical with glass structures) we can apply real components under highest pressure conditions. During the steady state phase of the injection various cavitation phenomena are visible in the injector, being influenced by the nozzle geometry and the fuel pressure. Different characteristics of cavitation in the sac and spray hole can be detected, and the spray formation in the primary breakup zone is influenced.

  13. Simple flow injection for determination of sulfite by amperometric detection using glassy carbon electrode modified with carbon nanotubes-PDDA-gold nanoparticles.

    PubMed

    Amatatongchai, Maliwan; Sroysee, Wongduan; Chairam, Sanoe; Nacapricha, Duangjai

    2015-02-01

    A new approach is presented for sensitive and selective measurement of sulfite (SO3(2-)) in beverages based on a simple flow injection system with amperometric detection. In this work, the sulfite sensor was a glassy carbon electrode modified with multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-gold nanoparticles composites (CNTs-PDDA-AuNPs/GC). Electrochemical oxidation of sulfite with this electrode was first studied in 0.1M phosphate buffer (pH 7.0) using cyclic voltammetry. The results indicated that the CNTs-PDDA-AuNPs/GC electrode possesses electrocatalytic activity for the oxidation of sulfite with high sensitivity and selectivity. Sulfite was quantified using amperometric measurement with the new sensor at +0.4V vs Ag/AgCl in conjunction with flow injection. The linear working range for the quantitation of sulfite was 2-200 mg L(-1) (r(2)=0.998) with a detection limit of 0.03 mg L(-1) (3σ of blank) and an estimated precision of 1.5%.The proposed method was successfully applied to the determination of sulfite in fruit juices and wines with a sample throughput of 23 samples per hour. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Injectable Solid Peptide Hydrogel as Cell Carrier: Effects of Shear Flow on Hydrogel and Cell Payload

    PubMed Central

    Yan, Congqi; Mackay, Michael E.; Czymmek, Kirk; Nagarkar, Radhika P.; Schneider, Joel P.; Pochan, Darrin J.

    2012-01-01

    β-hairpin peptide-based hydrogels are a class of injectable solid hydrogels that can deliver encapsulated cells or molecular therapies to a target site via syringe or catheter injection as a carrier material. These physical hydrogels can shear-thin and consequently flow as a low-viscosity material under a sufficient shear stress but immediately recover back into a solid upon removal of the stress, allowing them to be injected as preformed gel solids. Hydrogel behavior during flow was studied in a cylindrical capillary geometry that mimicked the actual situation of injection through a syringe needle in order to quantify effects of shear-thin injection delivery on hydrogel flow behavior and encapsulated cell payloads. It was observed that all β-hairpin peptide hydrogels investigated displayed a promising flow profile for injectable cell delivery: a central wide plug flow region where gel material and cell payloads experienced little or no shear rate and a narrow shear zone close to the capillary wall where gel and cells were subject to shear deformation. The width of the plug flow region was found to be weakly dependent on hydrogel rigidity and flow rate. Live-dead assays were performed on encapsulated MG63 cells three hours after injection flow and revealed that shear-thin delivery through the capillary had little impact on cell viability and the spatial distribution of encapsulated cell payloads. These observations help us to fundamentally understand how the gels flow during injection through a thin catheter and how they immediately restore mechanically and morphologically relative to pre-flow, static gels. PMID:22390812

  15. Determination of mercury in agroindustrial samples by flow-injection cold vapor atomic absorption spectrometry using ion exchange and reductive elution.

    PubMed

    Gomes Neto, J A; Zara, L F; Rocha, J C; Santos, A; Dakuzaku, C S; Nóbrega, J A

    2000-03-06

    A flow-injection system with a Chelite-S(R) cationic resin packed minicolumn is proposed for the determination of trace levels of mercury in agroindustrial samples by cold vapor atomic absorption spectrometry. Improved sensitivity and selectivity are attained since mercuric ions are on-line concentrated whereas other potential interferents are discarded. With on-line reductive elution procedure, concentrated hydrochloric acid could be replaced by 10% w/v SnCl(2), in 6 M HCl as eluent. The reversed-intermittent stream either carries the atomic mercury to the flow cell in the forward direction or removes the residue from reactor/gas-liquid separator to a discarding flask in the opposite direction. Concentration and volume of reagent, acidity, flow rates, commutation times and potential interfering species were investigated. For 120 s preconcentration time, the proposed system handles about 25 samples h(-1) (50.0-500 ng l(-1)), consuming about 10 ml sample and 5 mg SnCl(2) per determination. The detection limit is 0.8 ng l(-1) and the relative standard deviation (RSD) (n=12) of a 76.7 ng l(-1) sample is about 5%. Results are in agreement with certified value of standard materials at 95% confidence level and good recoveries (97-128%) of spiked samples were found.

  16. A flow injection chemiluminescence system for the determination of isoniazid.

    PubMed

    Huang, Y; Zhang, Z; Zhang, D; Lv, J

    2000-10-01

    A chemiluminescence (CL) flow system is described for the determination of isoniazid based on its enhancement on the chemiluminescence (CL) emission produced upon mixing a hexacyanoferrate(III) solution with an alkaline luminol solution. The system responds linearly to isoniazid concentration in the range 0-1 mg/L with a detection limit (3sigma) of 0.03 microg/L, relative standard deviation (RSD) of 1.2% for 0.1 mg/L isoniazid (n = 11). The system has been successfully applied to the determination of isoniazid in pharmaceutical preparations.

  17. Recent Electrochemical and Optical Sensors in Flow-Based Analysis

    PubMed Central

    Chailapakul, Orawon; Ngamukot, Passapol; Yoosamran, Alongkorn; Siangproh, Weena; Wangfuengkanagul, Nattakarn

    2006-01-01

    Some recent analytical sensors based on electrochemical and optical detection coupled with different flow techniques have been chosen in this overview. A brief description of fundamental concepts and applications of each flow technique, such as flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA), and multipumped FIA (MPFIA) were reviewed.

  18. Wicket gate trailing-edge blowing: A method for improving off-design hydroturbine performance by adjusting the runner inlet swirl angle

    NASA Astrophysics Data System (ADS)

    Lewis, B. J.; Cimbala, J. M.; Wouden, A. M.

    2014-03-01

    At their best efficiency point (BEP), hydroturbines operate at very high efficiency. However, with the ever-increasing penetration of alternative electricity generation, it has become common to operate hydroturbines at off-design conditions in order to maintain stability in the electric power grid. This paper demonstrates a method for improving hydroturbine performance during off-design operation by injecting water through slots at the trailing edges of the wicket gates. The injected water causes a change in bulk flow direction at the inlet of the runner. This change in flow angle from the wicket gate trailing-edge jets provides the capability of independently varying the flow rate and swirl angle through the runner, which in current designs are both determined by the wicket gate opening angle. When properly tuned, altering the flow angle results in a significant improvement in turbine efficiency during off-design operation.

  19. Injection characteristics study of high-pressure direct injector for Compressed Natural Gas (CNG) using experimental and analytical method

    NASA Astrophysics Data System (ADS)

    Taha, Z.; Rahim, MF Abdul; Mamat, R.

    2017-10-01

    The injection characteristics of direct injector affect the mixture formation and combustion processes. In addition, the injector is converted from gasoline operation for CNG application. Thus measurement of CNG direct injector mass flow rate was done by independently tested a single injector on a test bench. The first case investigated the effect of CNG injection pressure and the second case evaluate the effect of pulse-width of injection duration. An analytical model was also developed to predict the mass flow rate of the injector. The injector was operated in a choked condition in both the experiments and simulation studies. In case 1, it was shown that mass flow rate through the injector is affected by injection pressure linearly. Based on the tested injection pressure of 20 bar to 60 bar, the resultant mass flow rate are in the range of 0.4 g/s to 1.2 g/s which are met with theoretical flow rate required by the engine. However, in Case 2, it was demonstrated that the average mass flow rate at short injection durations is lower than recorded in Case 1. At injection pressure of 50 bar, the average mass flow rate for Case 2 and Case 1 are 0.7 g/s and 1.1 g/s respectively. Also, the measured mass flow rate at short injection duration showing a fluctuating data in the range of 0.2 g/s - 1.3 g/s without any noticeable trends. The injector model able to predict the trend of the mass flow rate at different injection pressure but unable to track the fluctuating trend at short injection duration.

  20. Three-dimensional numerical simulation for plastic injection-compression molding

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Yu, Wenjie; Liang, Junjie; Lang, Jianlin; Li, Dequn

    2018-03-01

    Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian- Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

  1. Downhole steam quality measurement

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  2. Injection System for Multi-Well Injection Using a Single Pump

    PubMed Central

    Wovkulich, Karen; Stute, Martin; Protus, Thomas J.; Mailloux, Brian J.; Chillrud, Steven N.

    2015-01-01

    Many hydrological and geochemical studies rely on data resulting from injection of tracers and chemicals into groundwater wells. The even distribution of liquids to multiple injection points can be challenging or expensive, especially when using multiple pumps. An injection system was designed using one chemical metering pump to evenly distribute the desired influent simultaneously to 15 individual injection points through an injection manifold. The system was constructed with only one metal part contacting the fluid due to the low pH of the injection solutions. The injection manifold system was used during a three-month pilot scale injection experiment at the Vineland Chemical Company Superfund site. During the two injection phases of the experiment (Phase I = 0.27 L/min total flow, Phase II = 0.56 L/min total flow), flow measurements were made 20 times over three months; an even distribution of flow to each injection well was maintained (RSD <4%). This durable system is expandable to at least 16 injection points and should be adaptable to other injection experiments that require distribution of air-stable liquids to multiple injection points with a single pump. PMID:26140014

  3. Evaluation of centrifugal compressor performance with water injection

    NASA Technical Reports Server (NTRS)

    Beede, William L; Hamrick, Joseph T; Withee, Joseph R , Jr

    1951-01-01

    The effects of water injection on a compressor are presented. To determine the effects of varying water-air ratio, the compressor was operated at a constant equivalent impeller speed over a range of water-air ratios and weight flows. Operation over a range of weight flows at one water-air ratio and two inlet air temperatures was carried out to obtain an indication of the effects of varying inlet air temperature. Beyond a water-air ratio of 0.03 there was no increase in maximum air-weight flow, a negligible rise in peak total-pressure ratio, and a decrease in peak adiabatic efficiency. An increase in inlet air temperature resulted in an increase in the magnitude of evaporation. An analysis of data indicated that the magnitude of evaporation within the compressor impeller was small.

  4. The determination of levofloxacin by flow injection analysis using UV detection, potentiometry, and conductometry in pharmaceutical preparations.

    PubMed

    Altiokka, G; Atkosar, Z; Can, N O

    2002-10-15

    A flow injection analysis (FIA) using UV detection, potentiometry and conductometry for levofloxacin (LVF) are described in this study. The best solvent system was found to consist of 0.2 M acetate buffer at pH 3 having 10% MeOH. A flow rate of 1 ml min(-1) was pumped and active material was detected at 288 nm. The detection limit (LOD) and limit of quantification (LOQ) for FIA were calculated to be 3 x 10(-7) M (S/N = 3) and 1 x 10(-7) M (S/N = 10), respectively. In the analysis of tablets, the RSD values were found to be 0.83, 0.98 and 0.99 for FIA, potentiometric and conductometric methods, respectively. Copyright 2002 Elsevier Science B.V.

  5. An analytical study of the effect of coolant flow variables on the kinetic energy output of a cooled turbine blade flow

    NASA Technical Reports Server (NTRS)

    Prust, H. W., Jr.

    1971-01-01

    The results of an analytical study to determine the effect of changes in the amount, velocity, injection location, injection angle, and temperature of coolant flow on blade row performance are presented. The results show that the change in output of a cooled turbine blade row relative to the specific output of the uncooled blade row can be positive, negative, or zero. Comparisons between the analytical results and experimental results for four different cases of coolant discharge, all at a coolant temperature ratio of unity, show good agreement for three cases and rather poor agreement for the other. To further test the validity of the method, more experimental data is needed, particularly at different coolant temperature ratios.

  6. Analysis of tests of subsurface injection, storage, and recovery of freshwater in the lower Floridan aquifer, Okeechobee County, Florida

    USGS Publications Warehouse

    Quinones-Aponte, Vicente; Kotun, Kevin; Whitley, J.F.

    1996-01-01

    A series of freshwater subsurface injection, storage, and recovery tests were conducted at an injection-well site near Lake Okeechobee in Okeechobee County, Florida, to assess the recoverability of injected canal water from the Lower Floridan aquifer. At the study site, the Lower Floridan aquifer is characterized as having four local, relatively independent, high-permeability flow zones (389 to 398 meters, 419 to 424 meters, 456 to 462 meters, and 472 to 476 meters below sea level). Four subsurface injection, storage, and recovery cycles were performed at the Lake Okeechobee injection-well site in which volumes of water injected ranged from about 387,275 to 1,343,675 cubic meters for all the cycles, and volumes of water recovered ranged from about 106,200 to 484,400 cubic meters for cycles 1, 2, and 3. The recovery efficiency for successive cycles 2 and 3 increased from 22 to 36 percent and is expected to continue increasing with additional cycles. A comparison of chloride concentration breakthrough curves at the deep monitor well (located about 171 meters from the injection well) for cycles 1, 4, and test no. 4 (from a previous study) revealed unexpected finings. One significant result was that the concentration asymptote, expected to be reached at concentration levels equivalent or close to the injected water concentration, was instead reached at higher concentration levels. The injection to recovery rate ratio might affect the chloride concentration breakthrough curve at the deep monitor well, which could explain this unexpected behavior. Because there are four high-permeability zones, if the rate of injection is smaller than the rate of recovery (natural artesian flow), the head differential might not be transmitted through the entire open wellbore, and injected water would probably flow only through the upper high- permeability zones. Therefore, observed chloride concentration values at the deep monitor well would be higher than the concentration of the injected water and would represent a mix of water from the different high-permeability zones. A generalized digital model was constructed to simulate the subsurface injection, storage, and recovery of freshwater in the Lower Floridan aquifer at the Lake Okeechobee injection-well site. The model was constructed using a modified version of the Saturated-Unsaturated TRAnsport code (SUTRA), which simulates variable-density advective-dispersive solute transport and variable-density ground-water flow. Satisfactory comparisons of simulated to observed dimensionless chloride concentrations for the deep monitor well were obtained when using the model during the injection and recovery phases of cycle 1, but not for the injection well during the recovery phase of cycle 1 even after several attempts. This precluded the determination of the recovery efficiency values by using the model. The unsatisfactory comparisons of simulated to observed dimensionless chloride concentrations for the injection well and failure of the model to represent the field data at this well could be due to the characteristics of the Lower Floridan aquifer (at the local scale), which is cavernous or conduit in nature. To test this possibility, Reynolds numbers were estimated at varying distances from the injection well, taking into consideration two aquifer types or conceptual systems, porous media and cavernous. For the porous media conceptual system, the Reynolds numbers were greater than 10 at distances less than 1.42 meters from the injection well. Thus, application of Darcy's law to ground-water flow might not be valid at this distance. However, at the deep monitor well (171 meters from the injection well), the Reynolds number was 0.08 which is indicative of laminar porous media flow. For the cavernous conceptual system, the Reynolds numbers were greater than 2,000 at distances less than 1,000 meters from the well. This number represents the upper limit of laminar flow, which is the fundamental assumption

  7. Numerical Simulation of Atomization in Nozzle Injection Flow

    NASA Astrophysics Data System (ADS)

    Fan, Qinyin; Guo, Chenhai; Takagi, Tosimi; Narumiya, Kikuo; Hattori, Hiroshi

    At the initial stage of injection, the injection flow has not yet broken up and in a range of small atmosphere pressure (16˜500KPa), the tip of the injection flow always forms a shape of mushroom. [1] [2] Moreover, the umbrella of the mushroom is always very big and its root is always very thin, especially when the atmosphere pressure is relatively low (88KPa, or 100mmHg). These phenomena are not known popularly and the reason of mushroom formation is not clear. In this paper, with the MARS method for simulating free surface, analysis of injection flow is practiced. The phenomena are reproduced and the reason is cleared that the formation of the mushroom is induced by the momentum exchange between the injection fuel flow with very high speed and the very complex flow of the air.

  8. 3-D numerical evaluation of density effects on tracer tests.

    PubMed

    Beinhorn, M; Dietrich, P; Kolditz, O

    2005-12-01

    In this paper we present numerical simulations carried out to assess the importance of density-dependent flow on tracer plume development. The scenario considered in the study is characterized by a short-term tracer injection phase into a fully penetrating well and a natural hydraulic gradient. The scenario is thought to be typical for tracer tests conducted in the field. Using a reference case as a starting point, different model parameters were changed in order to determine their importance to density effects. The study is based on a three-dimensional model domain. Results were interpreted using concentration contours and a first moment analysis. Tracer injections of 0.036 kg per meter of saturated aquifer thickness do not cause significant density effects assuming hydraulic gradients of at least 0.1%. Higher tracer input masses, as used for geoelectrical investigations, may lead to buoyancy-induced flow in the early phase of a tracer test which in turn impacts further plume development. This also holds true for shallow aquifers. Results of simulations with different tracer injection rates and durations imply that the tracer input scenario has a negligible effect on density flow. Employing model cases with different realizations of a log conductivity random field, it could be shown that small variations of hydraulic conductivity in the vicinity of the tracer injection well have a major control on the local tracer distribution but do not mask effects of buoyancy-induced flow.

  9. High-pressure liquid chromatography with direct injection of gas sample.

    PubMed

    Astanin, Anton I; Baram, Grigory I

    2017-06-09

    The conventional method of using liquid chromatography to determine the composition of a gaseous mixture entails dissolving vapors in a suitable solvent, then obtaining a chromatograph of the resulting solution. We studied the direct introduction of a gaseous sample into a C18 reversed-phase column, followed by separation of the components by HPLC with UV detection. Since the chromatography was performed at high pressure, vapors readily dissolved in the eluent and the substances separated in the column as effectively as in liquid samples. Samples were injected into the column in two ways: a) through the valve without a flow stop; b) after stopping the flow and relieving all pressure. We showed that an injectable gas volume could reach 70% of column dead volume. When an injected gaseous sample volume was less than 10% of the column dead volume, the resulting peaks were symmetrical and the column efficiency was high. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Determination of phenformin hydrochloride using molecular imprinting technology coupled with flow-injection chemiluminescence.

    PubMed

    Liu, Zhenbo; Jia, Fengyan; Wang, Wenwen; Wang, Cuixia; Liu, Yongming

    2012-01-01

    A novel method was developed using molecular imprinting technology (MIT) coupled with flow-injection chemiluminescence (FI-CL) for highly sensitive detection of phenformin hydrochloride (PH). The phenformin imprinted polymer was synthesized with methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a cross-linker. Newly synthesized molecularly imprinted polymer (MIP) particles were packed into a column as a selective recognition element for determination of PH. A CL method for the determination of PH was developed based on the CL reaction of PH with N-bromosuccinimide sensitized by eosin Y in basic media. The optimization of detection conditions was investigated. The CL intensity responded linearly to the concentration of PH in the range 0.09-2.0 µg/mL, with a correlation coefficient of 0.9920. The detection limit was 0.031 µg/mL. The relative standard deviation for the determination of 1.0 µg/mL PH solution was 1.0% (n = 11). The method was applied to the determination of PH in urine samples, with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Assessment of the viability of skin grafts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahner, H.W.

    1988-07-01

    A number of tests are available to monitor the blood flow in free and distant pedicle skin grafts. The information from these tests aids in the development of measures to enhance vascularization and is occasionally needed to make clinical decisions in patients with distant pedicle grafts. Measurements of the disappearance of an intradermally injected small amount of /sup 133/Xe allows determination of a clearance rate and blood flow before and after clamping the original blood supply through the base. With /sup 99m/Tc, which is generally more readily available, a flow index and block index can be determined. Clinically both proceduresmore » give equally good results in determining a safe time for pedicle base separation. The fluorescein test allows assessment of regional blood flow distribution within the pedicle.« less

  12. Determination of local values of gas and liquid mass flux in highly loaded two-phase flow

    NASA Technical Reports Server (NTRS)

    Burick, R. J.; Scheuerman, C. H.; Falk, A. Y.

    1974-01-01

    A measurement system using a deceleration probe was designed for determining the local values of gas and liquid mass flux in various gas/liquid droplet sprayfields. The system was used to characterize two-phase flowfields generated by gas/liquid rocket-motor injectors. Measurements were made at static pressures up to 500 psia and injected mass flow ratios up to 20. The measurement system can also be used at higher pressures and in gas/solid flowfields.

  13. Investigation of Wall Shear Stress Behavior for Rough Surfaces with Blowing

    NASA Astrophysics Data System (ADS)

    Helvey, Jacob; Borchetta, Colby; Miller, Mark; Martin, Alexandre; Bailey, Sean

    2014-11-01

    We present an experimental study conducted in a turbulent channel flow wind tunnel to determine the modifications made to the turbulent flow over rough surfaces with flow injection through the surfaces. Hot-wire profile results from a quasi-two-dimensional, sinusoidally-rough surface indicate that the effects of roughness are enhanced by momentum injection through the surface. In particular, the wall shear stress was found to show behavior consistent with increased roughness height when surface blowing was increased. This observed behavior contradicts previously reported results for regular three-dimensional roughness which show a decrease in wall shear stress with additional blowing. It is unclear whether this discrepancy is due to differences in the roughness geometry under consideration or the use of the Clauser fit to estimate wall shear stress. Additional PIV experiments are being conducted for a three-dimensional fibrous surface to obtain Reynolds shear stress profiles. These results provide an additional method for estimation of wall-shear stress and thus allow verification of the use of the Clauser chart approach for flows with momentum injection through the surface. This research is supported by NASA Kentucky EPSCoR Award NNX10AV39A, and NASA RA Award NNX13AN04A.

  14. Determination of nitrite and nitrate in water samples by an automated hydrodynamic sequential injection method.

    PubMed

    Somnam, Sarawut; Jakmunee, Jaroon; Grudpan, Kate; Lenghor, Narong; Motomizu, Shoji

    2008-12-01

    An automated hydrodynamic sequential injection (HSI) system with spectrophotometric detection was developed. Thanks to the hydrodynamic injection principle, simple devices can be used for introducing reproducible microliter volumes of both sample and reagent into the flow channel to form stacked zones in a similar fashion to those in a sequential injection system. The zones were then pushed to the detector and a peak profile was recorded. The determination of nitrite and nitrate in water samples by employing the Griess reaction was chosen as a model. Calibration graphs with linearity in the range of 0.7 - 40 muM were obtained for both nitrite and nitrate. Detection limits were found to be 0.3 muM NO(2)(-) and 0.4 muM NO(3)(-), respectively, with a sample throughput of 20 h(-1) for consecutive determination of both the species. The developed system was successfully applied to the analysis of water samples, employing simple and cost-effective instrumentation and offering higher degrees of automation and low chemical consumption.

  15. Effect of vertebral shell on injection pressure and intravertebral pressure in vertebroplasty.

    PubMed

    Baroud, Gamal; Vant, Christianne; Giannitsios, Demetri; Bohner, Marc; Steffen, Thomas

    2005-01-01

    An experimental biomechanical study conducted on osteoporotic cadaveric vertebrae. 1) To measure the intravertebral shell pressure and injection pressure; and 2) to determine the effect of the vertebral shell on the intravertebral shell pressure and on the injection pressure. Forces that govern cement flow are an essential component of the cement injection process in vertebroplasty. The vertebral shell may play a significant role in confining the flow of cement in the vertebral body and thereby affecting the intravertebral pressure and injection pressure. A small fenestration was created in the left lateral vertebral shell of 14 vertebrae. A valve to open and close the fenestration and a sensor to measure the intravertebral pressure were attached to the opening. A closed fenestration simulated an intact shell, whereas an open fenestration represented a vented shell. Injection pressure and intravertebral pressure at the shell were recorded during a controlled injection. A closed fenestration resulted in a significant increase in the intravertebral pressure at the shell. During the injection, the shell pressure increased on average to approximately 3.54 +/- 2.91 kPa. Conversely, an open fenestration resulted in an instant relaxation of the shell pressure to the ambient pressure of 0 kPa. Additionally, the injection pressure was approximately 97 times higher than the shell pressure. The presence of vertebral shell seems to be important for intravertebral pressure. However, the intravertebral shell pressure adds very little to the injection pressure.

  16. Medial prefrontal cortex acetylcholine injection-induced hypotension: the role of hindlimb vasodilation

    NASA Technical Reports Server (NTRS)

    Crippa, G. E.; Lewis, S. J.; Johnson, A. K.; Correa, F. M.

    2000-01-01

    The injection of acetylcholine (ACh) into the cingulate region of the medial prefrontal cortex (MPFC) causes a marked fall in arterial blood pressure which is not accompanied by changes in heart rate. The purpose of the present study was to investigate the hemodynamic basis for this stimulus-induced hypotension in Sprague-Dawley rats. The study was designed to determine whether a change in the vascular resistance of hindlimb, renal or mesenteric vascular beds contributes to the fall in arterial pressure in response to ACh injection into the cingulate cortex. Miniature pulsed-Doppler flow probes were used to measure changes in regional blood flow and vascular resistance. The results indicated that the hypotensive response was largely due to a consistent and marked vasodilation in the hindlimb vascular bed. On this basis, an additional experiment was then undertaken to determine the mechanisms that contribute to hindlimb vasodilation. The effect of interrupting the autonomic innervation of one leg on the hindlimb vasodilator response was tested. Unilateral transection of the lumbar sympathetic chain attenuated the cingulate ACh-induced vasodilation in the ipsilateral, but not in the contralateral hindlimb. These results suggest that the hypotensive response to cingulate cortex-ACh injection is caused by skeletal muscle vasodilation mediated by a sympathetic chain-related vasodilator system.

  17. The effect of initial flow nonuniformity on second-stage fuel injection and combustion in a supersonic duct. [supersonic combustion ramjet engine

    NASA Technical Reports Server (NTRS)

    Russin, W. R.

    1975-01-01

    The effects of flow nonuniformity on second-stage hydrogen fuel injection and combustion in supersonic flow were evaluated. The first case, second-stage fuel injection into a uniform duct flow, produced data indicating that fuel mixing is considerably slower than estimates based on an empirical mixing correlation. The second-case, two-stage fuel injection (or second-stage fuel injection into a nonuniform duct flow), produced a large interaction between stages with extensive flow separation. For this case the measured wall pressure, heat transfer, and amount of reaction at the duct exit were significantly greater than estimates based on the mixing correlation. Substantially more second-stage fuel burned in the second case than in the first case. Overall effects of unmixedness/chemical kinetics were found not to be significant at the exit for stoichiometric fuel injection.

  18. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique.

    PubMed

    Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G

    2016-08-15

    A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Double injection/single detection asymmetric flow injection manifold for spectrophotometric determination of ascorbic acid and uric acid: Selection the optimal conditions by MCDM approach based on different criteria weighting methods.

    PubMed

    Boroumand, Samira; Chamjangali, Mansour Arab; Bagherian, Ghadamali

    2017-03-05

    A simple and sensitive double injection/single detector flow injection analysis (FIA) method is proposed for the simultaneous kinetic determination of ascorbic acid (AA) and uric acid (UA). This method is based upon the difference between the rates of the AA and UA reactions with Fe 3+ in the presence of 1, 10-phenanthroline (phen). The absorbance of Fe 2+ /1, 10-phenanthroline (Fe-phen) complex obtained as the product was measured spectrophotometrically at 510nm. To reach a good accuracy in the differential kinetic determination via the mathematical manipulations of the transient signals, different criteria were considered in the selection of the optimum conditions. The multi criteria decision making (MCDM) approach was applied for the selection of the optimum conditions. The importance weights of the evaluation criteria were determined using the analytic hierarchy process, entropy method, and compromised weighting (CW). The experimental conditions (alternatives) were ranked by the technique for order preference by similarity to an ideal solution. Under the selected optimum conditions, the obtained analytical signals were linear in the ranges of 0.50-5.00 and 0.50-4.00mgL -1 for AA and UA, respectively. The 3σ detection limits were 0.07mgL -1 for AA and 0.12mgL -1 for UA. The relative standard deviations for four replicate determinations of AA and UA were 2.03% and 3.30% respectively. The method was also applied for the analysis of analytes in the blood serum, Vitamine C tablets, and tap water with satisfactory results. Copyright © 2016. Published by Elsevier B.V.

  20. Double injection/single detection asymmetric flow injection manifold for spectrophotometric determination of ascorbic acid and uric acid: Selection the optimal conditions by MCDM approach based on different criteria weighting methods

    NASA Astrophysics Data System (ADS)

    Boroumand, Samira; Chamjangali, Mansour Arab; Bagherian, Ghadamali

    2017-03-01

    A simple and sensitive double injection/single detector flow injection analysis (FIA) method is proposed for the simultaneous kinetic determination of ascorbic acid (AA) and uric acid (UA). This method is based upon the difference between the rates of the AA and UA reactions with Fe3 + in the presence of 1, 10-phenanthroline (phen). The absorbance of Fe2 +/1, 10-phenanthroline (Fe-phen) complex obtained as the product was measured spectrophotometrically at 510 nm. To reach a good accuracy in the differential kinetic determination via the mathematical manipulations of the transient signals, different criteria were considered in the selection of the optimum conditions. The multi criteria decision making (MCDM) approach was applied for the selection of the optimum conditions. The importance weights of the evaluation criteria were determined using the analytic hierarchy process, entropy method, and compromised weighting (CW). The experimental conditions (alternatives) were ranked by the technique for order preference by similarity to an ideal solution. Under the selected optimum conditions, the obtained analytical signals were linear in the ranges of 0.50-5.00 and 0.50-4.00 mg L- 1 for AA and UA, respectively. The 3σ detection limits were 0.07 mg L- 1 for AA and 0.12 mg L- 1 for UA. The relative standard deviations for four replicate determinations of AA and UA were 2.03% and 3.30% respectively. The method was also applied for the analysis of analytes in the blood serum, Vitamine C tablets, and tap water with satisfactory results.

  1. Optimization of Dendritic Cell-Mediated Cytotoxic T-Cell Activation by Tracking of Dendritic Cell Migration Using Reporter Gene Imaging.

    PubMed

    Lee, Hongje; Lee, Ho Won; La Lee, You; Jeon, Yong Hyun; Jeong, Shin Young; Lee, Sang-Woo; Lee, Jaetae; Ahn, Byeong-Cheol

    2018-06-01

    The aim of this study is to optimize the dendritic cell (DC)-mediated T-cell activation using reporter gene imaging and flow cytometric analysis in living mice. A murine dendritic cell line (DC2.4) co-expressing effluc and Thy1.1 genes were established by transfection with retroviral vectors. Thy1.1 positive cells were sorted by magnetic bead separation system (DC2.4/effluc). Cell proliferation assay and phenotype analysis to determine the effects of gene transduction on the function of dendritic cells between parental DC2.4 and DC2.4/effluc were performed. To optimize the DC-mediated immune response by cell number or frequency, different cell numbers (5 × 10 5 , 1 × 10 6 , and 2 × 10 6  DC2.4/effluc) or different frequencies of DC2.4/effluc (first, second, and third injections) were injected in the right footpad of mice. The migration of the DC2.4/effluc into the draining popliteal lymph node of mice was monitored by bioluminescence imaging (BLI). Flow cytometric analysis was performed with splenocytes to determine the cytotoxic T-cell population after injection of DC2.4/effluc. Parental DC2.4 and DC2.4/effluc exhibit no significant differences in their proliferation and phenotype. BLI signals were observed in the draining popliteal lymph node at day 1 after injection of DC2.4/effluc in 1 × 10 6 and 2 × 10 6 cells-injected groups. The highest BLI signal intensity was detected in 2 × 10 6 cells-injected mice. On day 11, the BLI signal was detected in only 2 × 10 6 cell-injected group but not in other groups. Optimized cell numbers (2 × 10 6 ) were injected in three animal groups with a different frequency (first, second, and third injection groups). The BLI signal was detected at day 1 and maintained until day 7 in the first injection group, but there is low signal intensity in the second and the third injection groups. Although the expression levels of Thy1.1 gene in the first injection group were very high, there reveals no expression of Thy1.1 gene in the second and the third injection groups. The number of tumor-specific CD8 + T-cells in the spleen significantly increased, as the number of DC injections increases. Successful optimization of DC-mediated cytotoxic T-cell activation in living mice using reporter gene imaging and flow cytometric analysis was achieved. The optimization of DC-mediated cytotoxic T-cell activation could be applied for the future DC-based immunotherapy.

  2. Influences of Detection Pinhole and Sample Flow on Thermal Lens Detection in Microfluidic Systems

    NASA Astrophysics Data System (ADS)

    Liu, Mingqiang; Franko, Mladen

    2014-12-01

    Thermal lens microscopy (TLM), due to its high temporal () and spatial resolution (), has been coupled to lab-on-chip chemistry for detection of a variety of compounds in chemical or biological fields. Due to the very short optical path length (usually below 100 ) in a microchip, the sensitivity of TLM is unfortunately still 10 to 100 times lower than conventional TLS with 1 cm sample length. Optimization of the TLM optical configuration was made with respect to different pinhole aperture-to-beam size ratios for the best signal-to-noise ratio. In the static mode, the instrumental noise comes mainly from the shot noise of the probe beam when the chopper frequency is over 1 kHz or from the flicker noise of the probe beam at low frequencies. In the flowing mode, the flow-induced noise becomes dominant when the flow rate is high. At a given flow rate, fluids with a higher density and/or a higher viscosity will cause larger flow-induced noise. As an application, a combined microfluidic flow injection analysis ()-TLM device was developed for rapid determination of pollutants by colorimetric reactions. Hexavalent chromium [Cr(VI)] was measured as a model analyte. Analytical signals for 12 sample injections in 1 min have been recorded by the FIA-TLM. For injections of sub-L samples into the microfluidic stream in a deep microchannel, a limit of detection of was achieved for Cr(VI) in water at 60 mW excitation power.

  3. Flow-injection chemiluminescence determination of acetylsalicylic acid based on its enhancing effect on the lucigenin–hydrogen peroxide system.

    PubMed

    Wabaidur, S M; Alam, S M; Alothmana, Z A; Eldesokya, Gaber

    2014-09-01

    A sensitive flow-injection chemiluminescence method for the determination of acetylsalicylic acid is described. It is based on the enhanced chemiluminescent emission of the alkaline lucigenin–H2O2 system by acetylsalicylic acid. The difference in chemiluminescent intensity of alkaline lucigenin–H2O2 in the presence of acetylsalicylic acid from that in the absence of acetylsalicylic acid was linear at acetylsalicylic acid concentrations in the range of 0.0029–47.37 μg/mL, with detection and quantification limits of 0.0011 and 0.0029 μg/mL, respectively. The correlation coefficient of the working curve was 0.9983. The relative standard deviation (n = 10) for 25 μg/mL acetylsalicylic acid is 1.95%. All experimental parameters were optimized. The method was successfully applied to the determination of acetylsalicylic acid in pharmaceutical preparations. The recovery results obtained by the method were satisfactory.

  4. Online Determination of Trace Amounts of Tannic Acid in Colored Tannery Wastewaters by Automatic Reference Flow Injection Analysis

    PubMed Central

    Wei, Liang

    2010-01-01

    A simple, rapid and sensitive method was proposed for online determination of tannic acid in colored tannery wastewater by automatic reference flow injection analysis. Based on the tannic acid reduction phosphotungstic acid to form blue compound in pH 12.38 alkaline solutions, the shade of blue compound is in a linear relation to the content of tannic acid at the point of the maximum absorption peak of 760 nm. The optimal experimental conditions had been obtained. The linear range of the proposed method was between 200 μg L−1 to 80 mg L−1 and the detection limit was 0.58 μg L−1. The relative standard deviation was 3.08% and 2.43% for 500 μg L−1 and 40 mg L−1 of tannic acid standard solution, respectively, (n = 10). The method had been successfully applied to determination of tannic acid in colored tannery wastewaters and the analytical results were satisfactory. PMID:20508812

  5. Flow injection chemiluminescent determination of tetracycline using a tris(2,2'-bipyridine)ruthenium(II)-cerium(IV) sulphate system.

    PubMed

    Guo, Liangqia; Xie, Zenghong; Lin, Xucong; Liu, Xiaohua; Zhang, Weilin; Chen, Guonan

    2004-01-01

    A flow-injection chemiluminescence method for the determination of tetracycline was developed. The method is based on an enhancement by tetracycline of the chemiluminescence light emission of tris(2,2'-bipyridine)ruthenium(II). In sulphuric acid medium, the chemiluminescence is generated by the continuous oxidation of tris(2,2'-bipyridine)ruthenium(II) by cerium (IV) sulphate. The light-emission intensity is greatly enhanced in the presence of tetracycline. Under the optimum conditions, the calibration curve is linear over the range 3.75 x 10(-8) g/mL-1.5 x 10(-5) g/mL for tetracycline with the linear equation: deltaINT = 205.898 x C - 20.442 (R2 = 0.9974). The detection limit is 3.27 x 10(-8) g/mL. The proposed method was also successfully used to determine tetracycline in pharmaceutical formulation (mean recovery of tetracycline, 100.7%). Copyright 2004 John Wiley & Sons, Ltd.

  6. Flow-injection analysis with electrochemical detection of reduced nicotinamide adenine dinucleotide using 2,6-dichloroindophenol as a redox coupling agent.

    PubMed

    Tang, H T; Hajizadeh, K; Halsall, H B; Heineman, W R

    1991-01-01

    The determination of reduced nicotinamide adenine dinucleotide (NADH) by electrochemical oxidation requires a more positive potential than is predicted by the formal reduction potential for the NAD+/NADH couple. This problem is alleviated by use of 2,6-dichloroindophenol (DCIP) as a redox coupling agent for NADH. The electrochemical characteristics of DCIP at the glassy carbon electrode are examined by cyclic voltammetry and hydrodynamic voltammetry. NADH is determined by reaction with DCIP to form NAD+ and DCIPH2. DCIPH2 is then quantitated by flow-injection analysis with electrochemical detection by oxidation at a detector potential of +0.25 V at pH 7. NADH is determined over a linear range of 0.5 to 200 microM and with a detection limit of 0.38 microM. The lower detection potential for DCIPH2 compared to NADH helps to minimize interference from oxidizable components in serum samples.

  7. N-bromosuccinimide-fluorescein based sensitive flow-injection chemiluminescence determination of phenformin.

    PubMed

    Wang, Zhouping; Zhang, Zhujun; Fu, Zhifeng; Fang, Luqiu; Zhang, Xiao

    2004-02-01

    A novel and highly sensitive method for the determination of phenformin over the range of 6 x 10(-9) - 1 x 10(-5) g ml(-1) in pharmaceutical formulations with flow-injection chemiluminescence (CL) detection is proposed. The method is based on the CL produced during the oxidation of N-bromosuccinimide (NBS) in an alkaline medium in the presence of fluorescein as an effective energy transfer agent. The use of cetyltrimethylammonium bromide (CTAB) as a sensitizer enhances the signal magnitude by about 100 times. The detection limit is 2 x 10(-9) g ml(-1) (3sigma) with a relative standard deviation of 2.3% (n = 11) at 1 x 10(-7) g ml(-1) phenformin. Ninety samples can be determined per hour. The method was evaluated by carrying out a recovery study and by the analysis of commercial formulations. The obtained results compared well with those by an official method, and demonstrated good accuracy and precision. The possible CL mechanism of the proposed system was also briefly analyzed.

  8. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  9. Verification of a three-dimensional resin transfer molding process simulation model

    NASA Technical Reports Server (NTRS)

    Fingerson, John C.; Loos, Alfred C.; Dexter, H. Benson

    1995-01-01

    Experimental evidence was obtained to complete the verification of the parameters needed for input to a three-dimensional finite element model simulating the resin flow and cure through an orthotropic fabric preform. The material characterizations completed include resin kinetics and viscosity models, as well as preform permeability and compaction models. The steady-state and advancing front permeability measurement methods are compared. The results indicate that both methods yield similar permeabilities for a plain weave, bi-axial fiberglass fabric. Also, a method to determine principal directions and permeabilities is discussed and results are shown for a multi-axial warp knit preform. The flow of resin through a blade-stiffened preform was modeled and experiments were completed to verify the results. The predicted inlet pressure was approximately 65% of the measured value. A parametric study was performed to explain differences in measured and predicted flow front advancement and inlet pressures. Furthermore, PR-500 epoxy resin/IM7 8HS carbon fabric flat panels were fabricated by the Resin Transfer Molding process. Tests were completed utilizing both perimeter injection and center-port injection as resin inlet boundary conditions. The mold was instrumented with FDEMS sensors, pressure transducers, and thermocouples to monitor the process conditions. Results include a comparison of predicted and measured inlet pressures and flow front position. For the perimeter injection case, the measured inlet pressure and flow front results compared well to the predicted results. The results of the center-port injection case showed that the predicted inlet pressure was approximately 50% of the measured inlet pressure. Also, measured flow front position data did not agree well with the predicted results. Possible reasons for error include fiber deformation at the resin inlet and a lag in FDEMS sensor wet-out due to low mold pressures.

  10. Heat-exchanger concepts for neutral-beam calorimeters

    NASA Astrophysics Data System (ADS)

    Thompson, C. C.; Polk, D. H.; McFarlin, D. J.; Stone, R.

    1981-10-01

    Advanced cooling concepts that permit the design of water cooled heat exchangers for use as calorimeters and beam dumps for advanced neutral beam injection systems were evaluated. Water cooling techniques ranging from pool boiling to high pressure, high velocity swirl flow were considered. Preliminary performance tests were carried out with copper, inconel and molybdenum tubes ranging in size from 0.19 to 0.50 in. diameter. Coolant flow configurations included: (1) smooth tube/straight flow; (2) smooth tube with swirl flow created by tangential injection of the coolant; and (3) axial flow in internally finned tubes. Additionally, the effect of tube L/D was evaluated. A CO2 laser was employed to irradiate a sector of the tube exterior wall; the laser power was incrementally increased until burnout occurred. Absorbed heat fluxes were calculated by dividing the measured coolant heat load by the area of the burn spot on the tube surface. Two six element thermopiles were used to accurately determine the coolant temperature rise. A maximum burnout heat flux near 14 kW/sq cm was obtained for the molybdenum tube swirl flow configuration.

  11. Using a tracer technique to identify the extent of non-ideal flows in the continuous mixing of non-Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Patel, D.; Ein-Mozaffari, F.; Mehrvar, M.

    2013-05-01

    The identification of non-ideal flows in a continuous-flow mixing of non-Newtonian fluids is a challenging task for various chemical industries: plastic manufacturing, water and wastewater treatment, and pulp and paper manufacturing. Non-ideal flows such as channelling, recirculation, and dead zones significantly affect the performance of continuous-flow mixing systems. Therefore, the main objective of this paper was to develop an identification protocol to measure non-ideal flows in the continuous-flow mixing system. The extent of non-ideal flows was quantified using a dynamic model that incorporated channelling, recirculation, and dead volume in the mixing vessel. To estimate the dynamic model parameters, the system was excited using a frequency-modulated random binary input by injecting the saline solution (as a tracer) into the fresh feed stream prior to being pumped into the mixing vessel. The injection of the tracer was controlled by a computer-controlled on-off solenoid valve. Using the trace technique, the extent of channelling and the effective mixed volume were successfully determined and used as mixing quality criteria. Such identification procedures can be applied at various areas of chemical engineering in order to improve the mixing quality.

  12. Simulation of the Transverse Injection of a Pulsed Jet from the Surface of a Flat Plate into a Supersonic Flow

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.; Emelyanov, V. N.; Yakovchuk, M. S.

    2017-11-01

    The transverse injection of a pulsed jet into a supersonic flow for thrust vectoring in solid rocket motors is investigated. The gas flow through the injection nozzle is controlled by a piston which performs reciprocating motion. Reynolds-averaged Navier-Stokes equations and the ( k- ɛ) turbulence model equations are discretized using the finite volume method and moving grids. The pressure distributions on the plate surface obtained using various approaches to the description of the flow field and difference schemes are compared. The solution obtained for the case of injection of a pulsed jet is compared with the solution for the case where a valve prevents gas flow through the injection nozzle. The dependence of the control force produced by gas injection on time is investigated.

  13. Universality Results for Multi-Layer Hele-Shaw and Porous Media Flows

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir

    2012-11-01

    Saffman-Taylor instability is a well known viscosity driven instability of an interface. Motivated by a need to understand the effect of various injection policies currently in practice for chemical enhanced oil recovery, we study linear stability of displacement processes in a Hele-Shaw cell involving injection of an arbitrary number of immiscible fluid phases in succession. This is a problem involving many interfaces. Universal stability results have been obtained for this multi-layer (multi-region) flow in the sense that the results hold with arbitrary number of interfaces. These stability results have been applied to design injection policies that are considerably less unstable than the pure Saffman-Taylor case. In particular, we determine specific values of the viscosity of the fluid layers corresponding to smallest unstable band. Moreover, we discuss universal selection principle of optimal viscous profiles. The talk is based on following papers. Qatar National Fund (a member of the Qatar Foundation).

  14. Simulation of Orientation in Injection Molding of High Aspect Ratio Particle Thermoplastic Composites

    NASA Astrophysics Data System (ADS)

    Vélez-García, Gregorio M.; Ortman, Kevin C.; Eberle, Aaron P. R.; Wapperom, Peter; Baird, Donald G.

    2008-07-01

    A 2D coupled Hele-Shaw flow approximation for predicting the flow-induced orientation of high aspect ratio particles in injection molded composite parts is presented. For a highly concentrated short glass fiber PBT suspension, the impact of inter-particle interactions and the orientation at the gate is investigated for a center-gated disk using material parameters determined from rheometry. Experimental orientation is determined from confocal laser micrographs using the methods of ellipses. The constitutive equations are discretized using discontinuous Galerkin Finite Elements. Model predictions are significantly improved by using a localized orientation measured experimentally at the gate region instead of random or averaged gapwise measured orientation assumed in previous studies. The predicted profile in different radial positions can be related to the layered structure along the gapwise direction. Model modifications including interactions have lower impact than the initial conditions.

  15. Regional myocardial flow and capillary permeability-surface area products are nearly proportional.

    PubMed

    Caldwell, J H; Martin, G V; Raymond, G M; Bassingthwaighte, J B

    1994-08-01

    Analyses of data on the transcapillary exchange and cellular uptake in the normal heart have generally been based on the assumption that local membrane conductances and volumes of distribution are everywhere the same. The question is whether such an assumption is justified in view of the marked (sixfold) heterogeneity of local blood flows per gram tissue. The method was to estimate both flow and capillary membrane permeability-surface area products (PS) locally in the heart. For each of five dogs running on a sloped treadmill, the deposition of tracer microspheres and of [131I]iodophenylpentadecanoic acid (IPPA), after left atrial injection, was determined in 256 pieces of left ventricular myocardium by killing the animals at approximately 100 s after radiotracer injection. A hydraulic occluder stopped the flow to a portion of the myocardium supplied by the left circumflex coronary artery 30 s before tracer injection. Regional flows ranged from 0.1 to 7.0 ml.g-1.min-1. IPPA extractions ranged from 20 to 49%. Using the known flows, we assumed the applicability of an axially distributed blood-tissue exchange model to estimate the PS for the capillary (PSc) and the parenchymal cell. It was impossible to explain the data if the PSc values for membrane transport were uniform throughout the organ. Rather, the only reasonable descriptors of the data required that local PSc values increase with local flow, almost in proportion. Current methods of analysis using data based on deposition methods need to be revised to take into account the near proportionality of PS to flow for at least some substrates.

  16. Effects of intravitreal injection of ranibizumab on choroidal structure and blood flow in eyes with diabetic macular edema.

    PubMed

    Okamoto, Masahiro; Yamashita, Mariko; Ogata, Nahoko

    2018-05-01

    To determine the effects of an intravitreal injection of ranibizumab (IVR) on the choroidal structure and blood flow in eyes with diabetic macular edema (DME). Twenty-eight consecutive patients with DME who received an IVR and 20 non-diabetic, age-matched controls were followed for 1 month. The eyes with DME were divided into those with prior panretinal photocoagulation (PRP, n = 16) and those without prior PRP (no-PRP, n = 12). The enhanced depth imaging optical coherence tomography (EDI-OCT) scans and Niblack's image binarization were performed to determine the choroidal structure. The choroidal blood flow was determined by laser speckle flowgraphy. The subfoveal choroidal thickness at the baseline was significantly thicker in the no-PRP group than in the PRP-treated group. After IVR, the best-corrected visual acuity (BCVA) and central retinal thickness in eyes with DME were significantly improved compared to the baseline values. There were significant differences in the choroidal thickness, total choroidal area, and choroidal vascularity index between the groups after IVR. Choroidal vascular index and choroidal blood flow were significantly reduced only in the no-PRP group and not in the PRP-treated group. In addition, the correlation between the central retinal thickness and the choroidal blood flow was significant in the no-PRP group (r = 0.47, P < 0.05). A single IVR will reduce the central retinal thickness and improve the BCVA in eyes with DME in both the no-PRP and PRP-treated group. IVR affected the choroidal vasculature and blood flow significantly, and a significant correlation was found between the central retinal thickness and the choroidal blood flow in eyes without PRP.

  17. Bienzymatic Biosensor for Rapid Detection of Aspartame by Flow Injection Analysis

    PubMed Central

    Radulescu, Maria-Cristina; Bucur, Bogdan; Bucur, Madalina-Petruta; Radu, Gabriel Lucian

    2014-01-01

    A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX), carboxyl esterase (CaE) and bovine serum albumin (BSA) were immobilised with glutaraldehyde (GA) onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC). The biosensor response was fast. The sample throughput using a flow injection analysis (FIA) system was 40 h−1 with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 μM for methanol and 0.2 μM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples) without any pre-treatment step prior to measurement. PMID:24412899

  18. Bienzymatic biosensor for rapid detection of aspartame by flow injection analysis.

    PubMed

    Radulescu, Maria-Cristina; Bucur, Bogdan; Bucur, Madalina-Petruta; Radu, Gabriel Lucian

    2014-01-09

    A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX), carboxyl esterase (CaE) and bovine serum albumin (BSA) were immobilised with glutaraldehyde (GA) onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC). The biosensor response was fast. The sample throughput using a flow injection analysis (FIA) system was 40 h⁻¹ with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 µM for methanol and 0.2 µM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples) without any pre-treatment step prior to measurement.

  19. Distribution of injected power fluctuations in electroconvection.

    PubMed

    Tóth-Katona, Tibor; Gleeson, J T

    2003-12-31

    We report on the distribution spectra of the fluctations in the amount of power injected into a liquid crystal undergoing electroconvective flow. The probability distribution functions (PDFs) of the fluc-tuations as well as the magnitude of the fluctuations have been determined in a wide range of imposed stress both for unconfined and confined flow geometries. These spectra are compared to those found in other systems held far from equilibrium, and find that in certain conditions we obtain the universal PDF form reported by Phys. Rev. Lett. 84, 3744 (2000)]. Moreover, the PDF approaches this universal form via an interesting mechanism whereby the distribution's negative tail evolves towards form in a different manner than the positive tail.

  20. Evaluation of a direct injection nebulizer interface for flow injection analysis and high performance liquid chromatography with inductively coupled plasma-atomic emission spectroscopic detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, K.E.

    A direct injection nebulizer (DIN) was designed, developed and evaluated to determine its potential utilization as an effective interface for flow injection analysis (FIA) and high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-atomic emission spectroscopic detection. The analytical figures of merit for the DIN when used as an interface for FIA-ICP-AES were found to be comparable to or better than those obtained with conventional pneumatic nebulization in terms of limits of detection (LODs), reproducibility, linearity, and interelement effects. In the HPLC mode, the LODDs were found to be comparable to those obtained by continuous-flow sample introduction into themore » ICP, or inferior by up to only a factor of four. Stable plasma operation was maintained for the DIN sample introduction of a variety of pure organic solvents, including acetonitrile, methanol, methyl-isobutylketone, and pyridine. The HPLC-DIN-ICP-AES facility was specifically applied for the speciation of inorganic and organo-metallic species contained in synthetic mixtures, vanilla extracts and a variety of energy-related materials, such as shale oil process water, coal extracts, shale oil, crude oil, and an SRC II. Suggestions for future research are also considered.« less

  1. Observable Emission Features of Black Hole GRMHD Jets on Event Horizon Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Hung-Yi; Wu, Kinwah; Younsi, Ziri

    The general-relativistic magnetohydrodynamical (GRMHD) formulation for black hole-powered jets naturally gives rise to a stagnation surface, where inflows and outflows along magnetic field lines that thread the black hole event horizon originate. We derive a conservative formulation for the transport of energetic electrons, which are initially injected at the stagnation surface and subsequently transported along flow streamlines. With this formulation the energy spectra evolution of the electrons along the flow in the presence of radiative and adiabatic cooling is determined. For flows regulated by synchrotron radiative losses and adiabatic cooling, the effective radio emission region is found to be finite,more » and geometrically it is more extended along the jet central axis. Moreover, the emission from regions adjacent to the stagnation surface is expected to be the most luminous as this is where the freshly injected energetic electrons are concentrated. An observable stagnation surface is thus a strong prediction of the GRMHD jet model with the prescribed non-thermal electron injection. Future millimeter/submillimeter (mm/sub-mm) very-long-baseline interferometric observations of supermassive black hole candidates, such as the one at the center of M87, can verify this GRMHD jet model and its associated non-thermal electron injection mechanism.« less

  2. Numerical analysis of a microwave torch with axial gas injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsinin, S. I.; Davydov, A. M.; Kossyi, I. A., E-mail: kossyi@fpl.gpi.ru

    2013-07-15

    The characteristics of a microwave discharge in an argon jet injected axially into a coaxial channel with a shortened inner electrode are numerically analyzed using a self-consistent equilibrium gas-dynamic model. The specific features of the excitation and maintenance of the microwave discharge are determined, and the dependences of the discharge characteristics on the supplied electromagnetic power and gas flow rate are obtained. The calculated results are compared with experimental data.

  3. Development of a WES Centrifuge,

    DTIC Science & Technology

    1992-09-01

    soil container 2 flexible strips 6 catch pieces 3 centrifuge arm 7 minature jacks 4 springs 8 underlying decking Fig. B 1 The spring-actuated shaker...flow (and so the heat transfer) evenly across the model; "* air may be injected downwards through a central hole above the model and vented through... holes at the sides or vice versa; "* air can be injected at several locations and then vented at intermediate positions. The choice will be determined

  4. Plasma Sheet Injections into the Inner Magnetosphere: Two-way Coupled OpenGGCM-RCM model results

    NASA Astrophysics Data System (ADS)

    Raeder, J.; Cramer, W. D.; Toffoletto, F.; Gilson, M. L.; Hu, B.

    2017-12-01

    Plasma sheet injections associated with low flux tube entropy bubbles have been found to be the primary means of mass transport from the plasma sheet to the inner magnetosphere. A two-way coupled global magnetosphere-ring current model, where the magnetosphere is modeled by the OpenGGCM MHD model and the ring current is modeled by the Rice Convection Model (RCM), is used to determine the frequency of association of bubbles with injections and inward plasma transport, as well as typical injection characteristics. Multiple geomagnetic storms and quiet periods are simulated to track and characterize inward flow behavior. Dependence on geomagnetic activity levels or drivers is also examined.

  5. Waterflood control system for maximizing total oil recovery

    DOEpatents

    Patzek, Tadeusz Wiktor; Silin, Dimitriy Borisovic; De, Asoke Kumar

    2005-06-07

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  6. Waterflood control system for maximizing total oil recovery

    DOEpatents

    Patzek, Tadeusz Wiktor [Oakland, CA; Silin, Dimitriy Borisovich [Pleasant Hill, CA; De, Asoke Kumar [San Jose, CA

    2007-07-24

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  7. Enhancing resolution of free-flow zone electrophoresis via a simple sheath-flow sample injection.

    PubMed

    Yang, Ying; Kong, Fan-Zhi; Liu, Ji; Li, Jun-Min; Liu, Xiao-Ping; Li, Guo-Qing; Wang, Ju-Fang; Xiao, Hua; Fan, Liu-Yin; Cao, Cheng-Xi; Li, Shan

    2016-07-01

    In this work, a simple and novel sheath-flow sample injection method (SFSIM) is introduced to reduce the band broadening of free-flow zone electrophoresis separation in newly developed self-balance free-flow electrophoresis instrument. A needle injector was placed in the center of the separation inlet, into which the BGE and sample solution were pumped simultaneously. BGE formed sheath flow outside the sample stream, resulting in less band broadening related to hydrodynamics and electrodynamics. Hemoglobin and C-phycocyanin were successfully separated by the proposed method in contrast to the poor separation of free-flow electrophoresis with the traditional injection method without sheath flow. About 3.75 times resolution enhancement could be achieved by sheath-flow sample injection method. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rapid Quantitation of Ascorbic and Folic Acids in SRM 3280 Multivitamin/Multielement Tablets using Flow-Injection Tandem Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandari, Deepak; Kertesz, Vilmos; Van Berkel, Gary J

    RATIONALE: Ascorbic acid (AA) and folic acid (FA) are water-soluble vitamins and are usually fortified in food and dietary supplements. For the safety of human health, proper intake of these vitamins is recommended. Improvement in the analysis time required for the quantitative determination of these vitamins in food and nutritional formulations is desired. METHODS: A simple and fast (~5 min) in-tube sample preparation was performed, independently for FA and AA, by mixing extraction solvent with a powdered sample aliquot followed by agitation, centrifugation, and filtration to recover an extract for analysis. Quantitative detection was achieved by flow-injection (1 L injectionmore » volume) electrospray ionization tandem mass spectrometry (ESI-MS/MS) in negative ion mode using the method of standard addition. RESULTS: Method of standard addition was employed for the quantitative estimation of each vitamin in a sample extract. At least 2 spiked and 1 non-spiked sample extract were injected in triplicate for each quantitative analysis. Given an injection-to-injection interval of approximately 2 min, about 18 min was required to complete the quantitative estimation of each vitamin. The concentration values obtained for the respective vitamins in the standard reference material (SRM) 3280 using this approach were within the statistical range of the certified values provided in the NIST Certificate of Analysis. The estimated limit of detections of FA and AA were 13 and 5.9 ng/g, respectively. CONCLUSIONS: Flow-injection ESI-MS/MS was successfully applied for the rapid quantitation of FA and AA in SRM 3280 multivitamin/multielement tablets.« less

  9. Computational Fluid Dynamics Simulation of Dual Bell Nozzle Film Cooling

    NASA Technical Reports Server (NTRS)

    Braman, Kalen; Garcia, Christian; Ruf, Joseph; Bui, Trong

    2015-01-01

    Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) are working together to advance the technology readiness level (TRL) of the dual bell nozzle concept. Dual bell nozzles are a form of altitude compensating nozzle that consists of two connecting bell contours. At low altitude the nozzle flows fully in the first, relatively lower area ratio, nozzle. The nozzle flow separates from the wall at the inflection point which joins the two bell contours. This relatively low expansion results in higher nozzle efficiency during the low altitude portion of the launch. As ambient pressure decreases with increasing altitude, the nozzle flow will expand to fill the relatively large area ratio second nozzle. The larger area ratio of the second bell enables higher Isp during the high altitude and vacuum portions of the launch. Despite a long history of theoretical consideration and promise towards improving rocket performance, dual bell nozzles have yet to be developed for practical use and have seen only limited testing. One barrier to use of dual bell nozzles is the lack of control over the nozzle flow transition from the first bell to the second bell during operation. A method that this team is pursuing to enhance the controllability of the nozzle flow transition is manipulation of the film coolant that is injected near the inflection between the two bell contours. Computational fluid dynamics (CFD) analysis is being run to assess the degree of control over nozzle flow transition generated via manipulation of the film injection. A cold flow dual bell nozzle, without film coolant, was tested over a range of simulated altitudes in 2004 in MSFC's nozzle test facility. Both NASA centers have performed a series of simulations of that dual bell to validate their computational models. Those CFD results are compared to the experimental results within this paper. MSFC then proceeded to add film injection to the CFD grid of the dual bell nozzle. A series of nozzle pressure ratios and film coolant flow rates are investigated to determine the effect of the film injection on the nozzle flow transition behavior. The results of this CFD study of a dual bell with film injection are presented in this paper.

  10. Longitudinal flow of endolymph measured by distribution of tetraethylammonium and choline in scala media.

    PubMed

    Syková, E; Syka, J; Johnstone, B M; Yates, G K

    1987-01-01

    Longitudinal endolymph flow rate in the guinea pig cochlea was measured by determining the rate of migration of extrinsic ions, tetraethylammonium chloride (TEA) or choline, with a potassium sensitive ion-selective microelectrode (ISM). Low concentrations of iontophoretically injected TEA were detected with the ISM at various distances from the injection electrode. The results were variable when the ISM was used to record spread of TEA from turn II to turn I and vice versa. However, consistent data were obtained when the TEA spread was measured at different electrode separations (0.2, 0.5, 0.7 mm) within turn II. Electrode locations were systematically exchanged without changing their distance, i.e. the ISM electrode was placed basally or apically with respect to the TEA electrode. Comparison of data with a model, which combines the bulk diffusion of TEA and the flow of endolymph, is consistent with a rate of endolymph flow in turn II of about 0.2 mm/min, apex to base. A similar value was also obtained with the iontophoretic injection of choline. The endolymph flow rate may be different in turn I as indicated by measurements of compound action potential (CAP) changes. However, the results of experiments when TEA spread is measured at large distances must be interpreted cautiously because TEA may enter cellular walls of the cochlear duct and alternative routes of transport may be involved.

  11. Experimental and analytical results of a liquid-gas separator in microgravity

    NASA Astrophysics Data System (ADS)

    Best, Frederick; Ellis, Michael

    1999-01-01

    The microgravity phase separator designed and fabricated at Texas A&M University relies on centripetally driven buoyancy forces to form a gas-liquid vortex within a fixed, right-circular cylinder. Two phase flow is injected tangentially along the inner wall of this cylinder. Centripetal acceleration is produced from the intrinsic momentum of the resulting rotating flow and drives the buoyancy process. Gas travels under density gradients through the rotating liquid, eventually forming a gaseous core along the centerline of the cylinder. Gas core stability, the presence of liquid in the air line, and the presence of air in the liquid line determine whether a successful core results. To predict separation failure, these three factors were examined both analytically and empirically with the goal of determining what operating circumstances would generate them. The centripetal acceleration profile was determined from angular velocity measurements taken using a paddle wheel assembly. To aid in understanding the nature of the rotating flow, these results were compared to analytical results provided by solving simplified Navier-Stokes equations. The theoretical velocity profile indicated a linear dependence on radius, which with the experimental data agreed, although two distinctly different slopes were observed. As injection nozzle width increased, the difference between the slopes lessened. For all three nozzles tested, the discontinuity between the linear sections occurred at a radius of approximately 3.8 cm. The maximum centripetal acceleration generated by the flow was greatest for the 0.0635 cm wide, 0.516 cm tall injection nozzle and least for the 0.102 cm wide, 1.02 cm tall injection nozzle. The circumstances leading to carry-under are dictated by the relationship between axial and radial bubble transit times. To determine the radial and axial transit times, the radial velocity profile was solved analytically by relating the buoyancy and drag forces for a 0.0635 cm radius bubble. This velocity profile was then used to produce a numerical solution for the radial transit time. Volumetric flowrate analysis provided the axial velocity and bubble transit time. 33.4, 50.1, 66.8, and 83.5 cm3/s flowrates were tested and only the 33.4 cm3/s flowrate resulted in conditions which would lead to carry under.

  12. Characterization and optimization of low cost microfluidic thread based electroanalytical device for micro flow injection analysis.

    PubMed

    Agustini, Deonir; Bergamini, Márcio F; Marcolino-Junior, Luiz Humberto

    2017-01-25

    The micro flow injection analysis (μFIA) is a powerful technique that uses the principles of traditional flow analysis in a microfluidic device and brings a number of improvements related to the consumption of reagents and samples, speed of analysis and portability. However, the complexity and cost of manufacturing processes, difficulty in integrating micropumps and the limited performance of systems employing passive pumps are challenges that must be overcome. Here, we present the characterization and optimization of a low cost device based on cotton threads as microfluidic channel to perform μFIA based on passive pumps with good analytical performance in a simple, easy and inexpensive way. The transport of solutions is made through cotton threads by capillary force facilitated by gravity. After studying and optimizing several features related to the device, were obtained a flow rate of 2.2 ± 0.1 μL s -1 , an analytical frequency of 208 injections per hour, a sample injection volume of 2.0 μL and a waste volume of approximately 40 μL per analysis. For chronoamperometric determination of naproxen, a detection limit of 0.29 μmol L -1 was reached, with a relative standard deviation (RSD) of 1.69% between injections and a RSD of 3.79% with five different devices. Thus, based on the performance presented by proposed microfluidic device, it is possible to overcome some limitations of the μFIA systems based on passive pumps and allow expansion in the use of this technique. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Study of Convective Flow Effects in Endwall Casing Treatments in Transonic Compressor Rotors

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Mueller, Martin W.; Schiffer, Heinz-Peter

    2012-01-01

    The unsteady convective flow effects in a transonic compressor rotor with a circumferential-groove casing treatment are investigated in this paper. Experimental results show that the circumferential-groove casing treatment increases the compressor stall margin by almost 50% for the current transonic compressor rotor. Steady flow simulation of the current casing treatment, however, yields only a 15% gain in stall margin. The flow field at near-stall operation is highly unsteady due to several self-induced flow phenomena. These include shock oscillation, vortex shedding at the trailing edge, and interaction between the passage shock and the tip clearance vortex. The primary focus of the current investigation is to assess the effects of flow unsteadiness and unsteady flow convection on the circumferential-groove casing treatment. Unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) techniques were applied in addition to steady Reynolds-averaged Navier-Stokes (RANS) to simulate the flow field at near-stall operation and to determine changes in stall margin. The current investigation reveals that unsteady flow effects are as important as steady flow effects on the performance of the circumferential grooves casing treatment in extending the stall margin of the current transonic compressor rotor. The primary unsteady flow mechanism is unsteady flow injection from the grooves into the main flow near the casing. Flows moving into and out of the grooves are caused due to local pressure difference near the grooves. As the pressure field becomes transient due to self-induced flow oscillation, flow injection from the grooves also becomes unsteady. The unsteady flow simulation shows that this unsteady flow injection from the grooves is substantial and contributes significantly to extending the compressor stall margin. Unsteady flows into and out of the grooves have as large a role as steady flows in the circumferential grooves. While the circumferential-groove casing treatment seems to be a steady flow device, unsteady flow effects should be included to accurately assess its performance as the flow is transient at near-stall operation.

  14. Fracture propagation during fluid injection experiments in shale at elevated confining pressures.

    NASA Astrophysics Data System (ADS)

    Chandler, Mike; Mecklenburgh, Julian; Rutter, Ernest; Fauchille, Anne-Laure; Taylor, Rochelle; Lee, Peter

    2017-04-01

    The use of hydraulic fracturing to recover shale-gas has focused attention upon the fundamental fracture properties of gas-bearing shales. Fracture propagation trajectories in these materials depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. Here we report the results of laboratory-scale fluid injection experiments, for Whitby mudstone and Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone (a tight sandstone with permeability similar to shales), which is used an isotropic baseline and tight-gas sandstone analogue. Our injection experiments involved the pressurisation of a blind-ending central hole in an initially dry cylindrical sample. Pressurisation was conducted under constant volume-rate control, using silicone oils of various viscosities. The dependence of breakdown pressure on confining pressure was seen to be dependent on the rock strength, with the significantly stronger Pennant sandstone exhibiting much lower confining-pressure dependence of breakdown pressure than the weaker shales. In most experiments, a small drop in the injection pressure record was observed at what is taken to be fracture initiation, and in the Pennant sandstone this was accompanied by a small burst of acoustic energy. Breakdown was found to be rapid and uncontrollable after initiation if injection is continued, but can be limited to a slower (but still uncontrolled) rate by ceasing the injection of fluid after the breakdown initiation in experiments where it could be identified. A simplified 2-dimensional model for explaining these observations is presented in terms of the stress intensities at the tip of a pressurised crack. Additionally, we present a suite of supporting mechanical, flow and elastic measurements. Mechanical experiments include standard triaxial tests, pressure-dependent permeability experiments and fracture toughness determined using the double-torsion test. Elastic characterisation was determined through ultrasonic velocities determined using a cross-correlation method.

  15. User's guide for the computer code COLTS for calculating the coupled laminar and turbulent flow over a Jovian entry probe

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Graeves, R. A.

    1980-01-01

    A user's guide for a computer code 'COLTS' (Coupled Laminar and Turbulent Solutions) is provided which calculates the laminar and turbulent hypersonic flows with radiation and coupled ablation injection past a Jovian entry probe. Time-dependent viscous-shock-layer equations are used to describe the flow field. These equations are solved by an explicit, two-step, time-asymptotic finite-difference method. Eddy viscosity in the turbulent flow is approximated by a two-layer model. In all, 19 chemical species are used to describe the injection of carbon-phenolic ablator in the hydrogen-helium gas mixture. The equilibrium composition of the mixture is determined by a free-energy minimization technique. A detailed frequency dependence of the absorption coefficient for various species is considered to obtain the radiative flux. The code is written for a CDC-CYBER-203 computer and is capable of providing solutions for ablated probe shapes also.

  16. Linear Stability Analysis of Gravitational Effects on a Low-Density Gas Jet Injected into a High-Density Medium

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony L.; Parthasarathy, Ramkumar N.

    2005-01-01

    The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas was performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The Briggs-Bers criterion was combined with the spatio-temporal stability analysis to determine the nature of the absolute instability of the jet whether absolutely or convectively unstable. The roles of the density ratio, Froude number, Schmidt number, and the lateral shift between the density and velocity profiles on the absolute instability of the jet were determined. Comparisons of the results with previous experimental studies show good agreement when the effects of these variables are combined together. Thus, the combination of these variables determines how absolutely unstable the jet will be.

  17. New diesel injection nozzle flow measuring device

    NASA Astrophysics Data System (ADS)

    Marčič, Milan

    2000-04-01

    A new measuring device has been developed for diesel injection nozzle testing, allowing measuring of the steady flow through injection nozzle and the injection rate. It can be best applied for measuring the low and high injection rates of the pintle and single hole nozzle. In steady flow measuring the fuel pressure at the inlet of the injection nozzle is 400 bar. The sensor of the measuring device measures the fuel charge, resulting from fuel rubbing in the fuel injection system, as well as from the temperature gradient in the sensor electrode. The electric charge is led to the charge amplifier, where it is converted into electric current and amplified. The amplifier can be used also to measure the mean injection rate value.

  18. Flow-injection determination of trace hydrogen peroxide or glucose utilizing an amperometric biosensor based on glucose oxidase bound to a reticulated vitreous carbon electrode.

    PubMed

    Khayyami, M; Johansson, G; Kriz, D; Xie, B; Larsson, P O; Danielsson, B

    1996-06-01

    An electron transfer mediator, 8-dimethylamino-2,3-benzophenoxazine (Meldola Blue), dissolved in the carrier solution in a flow-injection system, was found to reduce the oxidation potential for hydrogen peroxide from 600-1200 mV without mediator to-100 mV vs. Ag/AgCl with the mediator present. The very low background current of reticulated vitreous carbon (RVC) at this potential makes it possible to detect very low levels of hydrogen peroxide or glucose. Glucose oxidase was covalently coupled with carbodiimide to RVC, and the RVC was formed into a column inserted in a flow-injection system. The calibration curve was linear from 30 nM to 10 microM glucose with 5 microM mediator. At higher mediator concentrations, the linear range was extended to 1000 microM, but with a much higher background current. The sample throughput was about 60 h(-1). The current response decreased to 50% of the original response after 20 days. The coulometric yield was high because the sample was pumped through the pores of the RVC. It was 16% and 55% at a flow rate of 1 ml min(-1) at mediator concentrations of 5 and 50 microM respectively.

  19. Preparation of Fe(3)O(4)@C@CNC multifunctional magnetic core/shell nanoparticles and their application in a signal-type flow-injection photoluminescence immunosensor.

    PubMed

    Chu, Chengchao; Li, Meng; Li, Long; Ge, Shenguang; Ge, Lei; Yu, Jinghua; Yan, Mei; Song, Xianrang

    2013-11-01

    We describe here the preparation of carbon-coated Fe3O4 magnetic nanoparticles that were further fabricated into multifunctional core/shell nanoparticles (Fe3O4@C@CNCs) through a layer-by-layer self-assembly process of carbon nanocrystals (CNCs). The nanoparticles were applied in a photoluminescence (PL) immunosensor to detect the carcinoembryonic antigen (CEA), and CEA primary antibody was immobilized onto the surface of the nanoparticles. In addition, CEA secondary antibody and glucose oxidase were covalently bonded to silica nanoparticles. After stepwise immunoreactions, the immunoreagent was injected into the PL cell using a flow-injection PL system. When glucose was injected, hydrogen peroxide was obtained because of glucose oxidase catalysis and quenched the PL of the Fe3O4@C@CNC nanoparticles. The here proposed PL immunosensor allowed us to determine CEA concentrations in the 0.005–50 ng·mL-1 concentration range, with a detection limit of 1.8 pg·mL-1.

  20. Evaluation of a direct injection nebulizer interface for flow injection analysis and high performance liquid chromatography with inductively coupled plasma-atomic emission spectroscopic detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, K.E.

    A direct injection nebulizer (DIN) was designed, developed, and evaluated to determine its potential utilization as an effective interface for flow injection analysis (FIA) and high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-atomic emission spectroscopic detection. The analytical figures of merit for the DIN when used as an interface for FIA-ICP-AES were found to be comparable to or better than those obtained with conventional pneumatic nebulization in terms of limits of detection (LODs), reproducibility, linearity, and interelement effects. Stable plasma operation was maintained for the DIN sample introduction of a variety of pure organic solvents, including acetonitrile, methanol,more » methylisobutylketone, and pyridine. The HPLC-DIN-ICP-AES facility was specifically applied for the speciation of inorganic and organometallic species contained in synthetic mixtures, vanilla extracts, and a variety of energy-related materials, such as shale oil process water, coal extracts, shale oil, crude oil, and an SRC II. Suggestions for future research are also considered. 227 refs., 44 figs., 15 tabs.« less

  1. Microorganisms as tracers in groundwater injection and recovery experiments: A review

    USGS Publications Warehouse

    Harvey, R.W.

    1997-01-01

    Modern day injection and recovery techniques designed to examine the transport behavior of microorganisms in groundwater have evolved from experiments conducted in the late 1800s, in which bacteria that form red or yellow pigments were used to trace flow paths through karst and fractured- rock aquifers. A number of subsequent groundwater hydrology studies employed bacteriophage that can be injected into aquifers at very high concentrations (e g., 1013 phage ml-1) and monitored through many log units of dilution to follow groundwater flow paths for great distances, particularly in karst terrain. Starting in the 1930s, microbial indicators of fecal contamination (particularly coliform bacteria and their coliphages) were employed as tracers to determine potential migration of pathogens in groundwater. Several injection and recovery experiments performed in the 1990s employed indigenous groundwater microorganisms (both cultured and uncultured) that are better able to survive under in situ conditions. Better methods for labeling native bacteria (e.g by stable isotope labeling or inserting genetic markers; such as the ability to cause ice nucleation) are being developed that will not compromise the organisms' viability during the experimental time course.

  2. Renewable chemiluminescence optosensors based on implementation of bead injection principle with multicommutation.

    PubMed

    Domínguez-Romero, Juan C; Gilbert-López, Bienvenida; Beneito-Cambra, Miriam; Molina-Díaz, Antonio

    2018-05-15

    In this work, the implementation of Bead Injection with multicommutation-based flow systems is reported. A surface renewable chemiluminescence (CL) flow sensor is presented based on the use of CL reaction of luminol with H 2 O 2 . Dowex 1 × 8 beads with immobilized luminol onto them were injected in the flow system by means of a six-port rotary valve and were accommodated into a 1 mm optical glass flow cell placed just in front of the rectangular photosensor window with the same size than the cell wall. Automatic computer-controlled manipulation of both reagents and sample solutions was undertaken using a multicommutated flow system which comprises five three-way solenoid valves, a home-made electronic interface and a Java-written software. Once the chemiluminescence signal was registered, sensing beads were automatically discarded out with a six-port rotary valve without needing to reverse or stop the flow. As a proof of concept and example, the enhancement of the chemiluminescence signal produced by Co(II) on the luminol-H 2 O 2 reaction in alkaline medium was used for illustrating this implementation determining vitamin B 12 in pharmaceutical preparations (after mineralization for releasing Co(II)). The analytical performance of the approach was satisfactory, showing a linear dynamic range from 1.7 to 50 µg L -1 , a detection limit of 0.5 µg L -1 , RSD (%) of 5.3%, with a sampling frequency of 11 h -1 . The proposed approach was applied to different samples and the results were consistent with those obtained with a reference method based on ICP-MS. Based on the same reaction (or re-configuring the system to accommodate it to reaction requirements) the approach can also be applied to the determination of other metal ions such as Cr(III) and Fe(II) and appropriately extended to molecules of bioanalytical interest based e.g. in CL immunoassays, given its versatility. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Validated flow-injection method for rapid aluminium determination in anti-perspirants.

    PubMed

    López-Gonzálvez, A; Ruiz, M A; Barbas, C

    2008-09-29

    A flow-injection (FI) method for the rapid determination of aluminium in anti-perspirants has been developed. The method is based on the spectrophotometric detection at 535nm of the complex formed between Al ions and the chromogenic reagent eriochrome cyanine R. Both the batch and FI methods were validated by checking the parameters included in the ISO-3543-1 regulation. Variables involved in the FI method were optimized by using appropriate statistical tools. The method does not exhibit interference from other substances present in anti-perspirants and it shows a high precision with a R.S.D. value (n=6) of 0.9%. Moreover, the accuracy of the method was evaluated by comparison with a back complexometric titration method, which is currently used for routine analysis in pharmaceutical laboratories. The Student's t-test showed that the results obtained by both methods were not significantly different for a significance level of 95%. A response time of 12s and a sample analysis time, by performing triplicate injections, of 60s were achieved. The analytical figures of merit make the method highly appropriate to substitute the time-consuming complexometric method for this kind of analysis.

  4. Instability Analysis of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony Layiwola

    2001-01-01

    The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas were performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The temporal growth rates and the phase velocity of the disturbances were obtained. It was found that the presence of variable density within the shear layer resulted in an increase in the temporal amplification rate of the disturbances and an increase in the range of unstable frequencies, accompanied by a reduction in the phase velocities of the disturbances. Also, the temporal growth rates of the disturbances were increased as the Froude number was reduced (i.e. gravitational effects increased), indicating the destabilizing role played by gravity. The spatio-temporal stability analysis was performed to determine the nature of the absolute instability of the jet. The roles of the density ratio, Froude number, Schmidt number, and the lateral shift between the density and velocity profiles on the jet s absolute instability were determined. Comparisons of the results with previous experimental studies show good agreement when the effects of these variables are combined together. Thus, the combination of these variables determines how absolutely unstable the jet will be. Experiments were carried out to observe the qualitative differences between a round low-density gas jet injected into a high-density gas (helium jet injected into air) and a round constant density jet (air jet injected into air). Flow visualizations and velocity measurements in the near-injector region of the helium jet show more mixing and spreading of the helium jet than the air jet. The vortex structures develop and contribute to the jet spreading causing the helium jet to oscillate.

  5. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, John C.

    1993-01-01

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  6. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1993-02-16

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  7. An experimental study of wall-injected flows in a rectangular cylinder

    NASA Astrophysics Data System (ADS)

    Perrotta, A.; Romano, G. P.; Favini, B.

    2018-01-01

    An experimental investigation of the flow inside a rectangular cylinder with air injected continuously along the wall is performed. This kind of flow is a two-dimensional approximation of what happens inside a solid rocket motor, where the lateral grain burns expelling exhaust gas or in processes with air filtration or devices to attain uniform flows. We propose a brief derivation of some analytical solutions and a comparison between these solutions and experimental data, which are obtained using the particle image velocimetry technique, to provide a global reconstruction of the flowfield. The flow, which enters orthogonal to the injecting wall, turns suddenly its direction being pushed towards the exit of the chamber. Under the incompressible and inviscid flow hypothesis, two analytical solutions are reported and compared. The first one, known as Hart-McClure solution, is irrotational and the injection velocity is non-perpendicular to the injecting wall. The other one, due to Taylor and Culick, has non-zero vorticity and constant, vertical injection velocity. The comparison with laminar solutions is useful to assess whether transition to turbulence is reached and how the disturbance thrown in by the porous injection influences and modifies those solutions.

  8. Automated on-line renewable solid-phase extraction-liquid chromatography exploiting multisyringe flow injection-bead injection lab-on-valve analysis.

    PubMed

    Quintana, José Benito; Miró, Manuel; Estela, José Manuel; Cerdà, Víctor

    2006-04-15

    In this paper, the third generation of flow injection analysis, also named the lab-on-valve (LOV) approach, is proposed for the first time as a front end to high-performance liquid chromatography (HPLC) for on-line solid-phase extraction (SPE) sample processing by exploiting the bead injection (BI) concept. The proposed microanalytical system based on discontinuous programmable flow features automated packing (and withdrawal after single use) of a small amount of sorbent (<5 mg) into the microconduits of the flow network and quantitative elution of sorbed species into a narrow band (150 microL of 95% MeOH). The hyphenation of multisyringe flow injection analysis (MSFIA) with BI-LOV prior to HPLC analysis is utilized for on-line postextraction treatment to ensure chemical compatibility between the eluate medium and the initial HPLC gradient conditions. This circumvents the band-broadening effect commonly observed in conventional on-line SPE-based sample processors due to the low eluting strength of the mobile phase. The potential of the novel MSFI-BI-LOV hyphenation for on-line handling of complex environmental and biological samples prior to reversed-phase chromatographic separations was assessed for the expeditious determination of five acidic pharmaceutical residues (viz., ketoprofen, naproxen, bezafibrate, diclofenac, and ibuprofen) and one metabolite (viz., salicylic acid) in surface water, urban wastewater, and urine. To this end, the copolymeric divinylbenzene-co-n-vinylpyrrolidone beads (Oasis HLB) were utilized as renewable sorptive entities in the micromachined unit. The automated analytical method features relative recovery percentages of >88%, limits of detection within the range 0.02-0.67 ng mL(-1), and coefficients of variation <11% for the column renewable mode and gives rise to a drastic reduction in operation costs ( approximately 25-fold) as compared to on-line column switching systems.

  9. Generation of electromagnetic emission during the injection of dense supersonic plasma flows into arched magnetic field

    NASA Astrophysics Data System (ADS)

    Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Vodopyanov, Alexander

    2016-04-01

    Interaction of dense supersonic plasma flows with an inhomogeneous arched magnetic field is one of the key problems in near-Earth and space plasma physics. It can influence on the energetic electron population formation in magnetosphere of the Earth, movement of plasma flows in magnetospheres of planets, energy release during magnetic reconnection, generation of electromagnetic radiation and particle precipitation during solar flares eruption. Laboratory study of this interaction is of big interest to determine the physical mechanisms of processes in space plasmas and their detailed investigation under reproducible conditions. In this work a new experimental approach is suggested to study interaction of supersonic (ion Mach number up to 2.7) dense (up to 1015 cm-3) plasma flows with inhomogeneous magnetic field (an arched magnetic trap with a field strength up to 3.3 T) which opens wide opportunities to model space plasma processes in laboratory conditions. Fully ionized plasma flows with density from 1013 cm-3 to 1015 cm-3 are created by plasma generator on the basis of pulsed vacuum arc discharge. Then plasma is injected in an arched open magnetic trap along or across magnetic field lines. The filling of the arched magnetic trap with dense plasma and further magnetic field lines break by dense plasma flow were experimentally demonstrated. The process of plasma deceleration during the injection of plasma flow across the magnetic field lines was experimentally demonstrated. Pulsed plasma microwave emission at the electron cyclotron frequency range was observed. It was shown that frequency spectrum of plasma emission is determined by position of deceleration region in the magnetic field of the magnetic arc, and is affected by plasma density. Frequency spectrum shifts to higher frequencies with increasing of arc current (plasma density) because the deceleration region of plasma flow moves into higher magnetic field. The observed emission can be related to the cyclotron mechanism of generation by non-equilibrium energetic electrons in dense plasma. The reported study was funded by RFBR, according to the research project No. 16-32-60056 mol_a_dk.

  10. MUFITS Code for Modeling Geological Storage of Carbon Dioxide at Sub- and Supercritical Conditions

    NASA Astrophysics Data System (ADS)

    Afanasyev, A.

    2012-12-01

    Two-phase models are widely used for simulation of CO2 storage in saline aquifers. These models support gaseous phase mainly saturated with CO2 and liquid phase mainly saturated with H2O (e.g. TOUGH2 code). The models can be applied to analysis of CO2 storage only in relatively deeply-buried reservoirs where pressure exceeds CO2 critical pressure. At these supercritical reservoir conditions only one supercritical CO2-rich phase appears in aquifer due to CO2 injection. In shallow aquifers where reservoir pressure is less than the critical pressure CO2 can split in two different liquid-like and gas-like phases (e.g. Spycher et al., 2003). Thus a region of three-phase flow of water, liquid and gaseous CO2 can appear near the CO2 injection point. Today there is no widely used and generally accepted numerical model capable of the three-phase flows with two CO2-rich phases. In this work we propose a new hydrodynamic simulator MUFITS (Multiphase Filtration Transport Simulator) for multiphase compositional modeling of CO2-H2O mixture flows in porous media at conditions of interest for carbon sequestration. The simulator is effective both for supercritical flows in a wide range of pressure and temperature and for subcritical three-phase flows of water, liquid CO2 and gaseous CO2 in shallow reservoirs. The distinctive feature of the proposed code lies in the methodology for mixture properties determination. Transport equations and Darcy correlation are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines the mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. The potential is determined using a three-parametric generalization of Peng-Robinson equation of state fitted to experimental data (Todheide, Takenouchi, Altunin etc.). We apply MUFITS to simple 1D and 2D test problems of CO2 injection in shallow reservoirs subjected to phase changes between liquid and gaseous CO2. We consider CO2 injection into highly heterogeneous the 10th SPE reservoir. We provide analysis of physical phenomena that have control temperature distribution in the reservoir. The distribution is non-monotonic with regions of high and low temperature. The main phenomena responsible for considerable temperature decline around CO2 injection point is the liquid CO2 evaporation process. We also apply the code to real-scale 3D simulations of CO2 geological storage at supercritical conditions in Sleipner field and Johansen formation (Fig). The work is supported financially by the Russian Foundation for Basic Research (12-01-31117) and grant for leading scientific schools (NSh 1303.2012.1). CO2 phase saturation in Johansen formation after 50 years of injection and 1000 years of rest period

  11. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    NASA Astrophysics Data System (ADS)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was referenced to the rotor surface speed for radial injection cooling. The mass flow rates for the radial injection were 0.032, 0.0432, 0.054 and 0.068 Kg/min, which result in average injection speed of 150, 200, 250 and 300% of rotor surface speed. Several thermocouples were attached at various circumferential directions of the bearing sleeve, two plenums, bearing holder and ball bearing housings to collect the temperature data of the bearing at 30krpm under 10lb of load. Both axial cooling and radial injection are effective cooling mechanism and effectiveness of both cooling methods is directly proportional to the total mass flow rates. However, axial cooling is slightly more efficient in controlling the average temperature of the bearing sleeve, but results in higher thermal gradient of the shaft along the axial direction and also higher thermal gradient of the bearing sleeve along the circumferential direction compared to the radial injection cooling. The smaller thermal gradient of the radial injection cooling is due to the direct cooling effect of the shaft by impinging jets. While the axial cooling has an effect on only the bearing, the radial injection has a cooling effect on both the bearing sleeve and shaft. It is considered the radial injection cooling needs to be further optimized in terms of number of injection holes and their locations.

  12. Determination of Noncovalent Binding Using a Continuous Stirred Tank Reactor as a Flow Injection Device Coupled to Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Santos, Inês C.; Waybright, Veronica B.; Fan, Hui; Ramirez, Sabra; Mesquita, Raquel B. R.; Rangel, António O. S. S.; Fryčák, Petr; Schug, Kevin A.

    2015-07-01

    Described is a new method based on the concept of controlled band dispersion, achieved by hyphenating flow injection analysis with ESI-MS for noncovalent binding determinations. A continuous stirred tank reactor (CSTR) was used as a FIA device for exponential dilution of an equimolar host-guest solution over time. The data obtained was treated for the noncovalent binding determination using an equimolar binding model. Dissociation constants between vancomycin and Ac-Lys(Ac)-Ala-Ala-OH peptide stereoisomers were determined using both the positive and negative ionization modes. The results obtained for Ac- L-Lys(Ac)- D-Ala- D-Ala (a model for a Gram-positive bacterial cell wall) binding were in reasonable agreement with literature values made by other mass spectrometry binding determination techniques. Also, the developed method allowed the determination of dissociation constants for vancomycin with Ac- L-Lys(Ac)- D-Ala- L-Ala, Ac- L-Lys(Ac)- L-Ala- D-Ala, and Ac- L-Lys(Ac)- L-Ala- L-Ala. Although some differences in measured binding affinities were noted using different ionization modes, the results of each determination were generally consistent. Differences are likely attributable to the influence of a pseudo-physiological ammonium acetate buffer solution on the formation of positively- and negatively-charged ionic complexes.

  13. Determination of the DNA-binding characteristics of ethidium bromide, proflavine, and cisplatin by flow injection analysis: usefulness in studies on antitumor drugs.

    PubMed

    Alonso, A; Almendral, M J; Curto, Y; Criado, J J; Rodríguez, E; Manzano, J L

    2006-08-15

    Flow injection analysis was used to study the reactions occurring between DNA and certain compounds that bind to its double helix, deforming this and even breaking it, such that some of them (e.g., cisplatin) are endowed with antitumoral activity. Use of this technique in the merging zones and stopped-flow modes afforded data on the binding parameters and the kinetic characteristics of the process. The first compound studied was ethidium bromide (EtdBr), used as a fluorescent marker because its fluorescence is enhanced when it binds to DNA. The DNA-EtdBr binding parameters, the apparent intrinsic binding constant (0.31+/-0.02 microM(-1)), and the maximum number of binding sites per nucleotide (0.327+/-0.009) were determined. The modification introduced in these parameters by the presence of proflavine (Prf), a classic competitive inhibitor of the binding of EtdBr to the DNA double helix, was also studied, determining the value of the intrinsic binding constant of Prf (K(Prf) = 0.119+/-9x10(-3) microM(-1)). Finally, we determined the binding parameters between DNA and EtdBr in the presence of the antitumor agent cisplatin, a noncompetitive inhibitor of such binding. This provided information about the binding mechanism as well as the duration and activity of the binding of the compound in its pharmacological use.

  14. Flow injection on-line displacement/solid phase extraction system coupled with flame atomic absorption spectrometry for selective trace silver determination in water samples.

    PubMed

    Christou, Chrysoula K; Anthemidis, Aristidis N

    2009-04-15

    A novel flow injection (FI) on-line displacement solid phase extraction preconcentration and/or separation method coupled with FAAS in order to minimize interference from other metals was developed for trace silver determination. The proposed method involved the on-line formation and subsequently pre-sorption of lead diethyldithiocarbamate (Pb-DDTC) into a column packed with PTFE-turnings. The preconcentration and/or separation of the Ag(I) took place through a displacement reaction between Ag(I) and Pb(II) of the pre-sorbed Pb-DDTC. Finally, the retained analyte was eluted with isobutyl methyl ketone (IBMK) and delivered directly to nebulizer for measuring. Interference from co-existing ions with lower DDTC complex stability in comparison with Pb-DDTC, was eliminated without need for any masking reagent. With 120 s of preconcentration time at a sample flow rate of 7.6 mL min(-1), an enhancement factor of 110 and a detection limit (3s) of 0.2 microg L(-1) were obtained. The precision (RSD, n=10) was 3.1% at the 10 mug L(-1) level. The developed method was successfully applied to trace silver determination in a variety of environmental water samples and certified reference material.

  15. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  16. Potential for Carbon Dioxide Sequestration and Enhanced Oil Recovery in the Vedder Formation, Greeley Field, San Joaquin Valley, California.

    NASA Astrophysics Data System (ADS)

    Jameson, S.

    2015-12-01

    Most scientists agree that greenhouse gases (GHG) such as carbon dioxide (CO2), Methane (CH4), and nitrous oxide (N2O) are major contributors to the global warming trend and climate change. One effort to mitigate anthropogenic sourced CO2 is through carbon capture and sequestration. Depleted oil and gas reservoirs due to their known trapping capability, in-place infrastructure, and proximity to carbon emission sources are good candidates for possible CO2 storage. The Vedder formation is one of three reservoirs identified in the San Joaquin Basin that meets standards for possible storage. An analysis of net fluid production data (produced minus injected) from discovery to the present is used to determine the reservoir volume available for CO2 storage. Data regarding reservoir pressure response to injection and production of fluids include final shut-in pressures from drill stem test, static bottom-hole pressure measurements from well completion histories, and idle well fluid level measurements for recent pressure data. Proprietary experimental pressure, volume and temperature data (PVT), gas oil ratios (GOR), well by well permeability, porosity, and oil gravity, and relative permeability and perforation intervals are used to create static and dynamic multiphase fluid flow models. All data collected was logged and entered into excel spreadsheets and mapping software to create subsurface structure, reservoir thickness and pressure maps, cross sections, production/injection charts on a well-by-well basis, and both static and dynamic flow models. This data is used to determine storage capacity and the amount of pressure variance within the field to determine how the reservoir will react to CO2 injection and to gain insight into the subsurface fluid movement of CO2. Results indicate a homogenous field with a storage capacity of approximately 26 Million Metric Tons of CO2. Analysis of production by stream and pressure change through time indicates a strong water drive. The connection to a large and active aquifer allows pressure changes to be spread over large areas. Flow modeling will help to determine the impact that the water influx will have on storage capacity and EOR production potential.

  17. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media

    NASA Astrophysics Data System (ADS)

    Strutz, Tessa J.; Hornbruch, Götz; Dahmke, Andreas; Köber, Ralf

    2016-08-01

    Successful groundwater remediation by injecting nanoscale zero-valent iron (NZVI) particles requires efficient particle transportation and distribution in the subsurface. This study focused on the influence of injection velocity and particle concentration on the spatial NZVI particle distribution, the deposition processes and on quantifying the induced decrease in hydraulic conductivity (K) as a result of particle retention by lab tests and numerical simulations. Horizontal column tests of 2 m length were performed with initial Darcy injection velocities (q0) of 0.5, 1.5, and 4.1 m/h and elemental iron input concentrations (Fe0in) of 0.6, 10, and 17 g/L. Concentrations of Fe0 in the sand were determined by magnetic susceptibility scans, which provide detailed Fe0 distribution profiles along the column. NZVI particles were transported farther at higher injection velocity and higher input concentrations. K decreased by one order of magnitude during injection in all experiments, with a stronger decrease after reaching Fe0 concentrations of about 14-18 g/kg(sand). To simulate the observed nanoparticle transport behavior the existing finite-element code OGS has been successfully extended and parameterized for the investigated experiments using blocking, ripening, and straining as governing deposition processes. Considering parameter relationships deduced from single simulations for each experiment (e.g. deposition rate constants as a function of flow velocity) one mean parameter set has been generated reproducing the observations in an adequate way for most cases of the investigated realistic injection conditions. An assessment of the deposition processes related to clogging effects showed that the percentage of retention due to straining and ripening increased during experimental run time resulting in an ongoing reduction of K. Clogging is mainly evoked by straining which dominates particle deposition at higher flow velocities, while blocking and ripening play a significant role for attachment, mainly at lower injection velocities. Since the injection of fluids at real sites leads to descending flow velocities with increasing radial distance from the injection point, the simulation of particle transport requires accounting for all deposition processes mentioned above. Thus, the derived mean parameter set can be used as a basis for quantitative and predictive simulations of particle distributions and clogging effects at both lab and field scale. Since decreases in K can change the flow system, which may have positive as well as negative implications for the in situ remediation technology at a contaminated site, a reliable simulation is thus of great importance for NZVI injection and prediction.

  18. Determination of Total Selenium in Infant Formulas: Comparison of the Performance of FIA and MCFA Flow Systems

    PubMed Central

    Pistón, Mariela; Knochen, Moisés

    2012-01-01

    Two flow methods, based, respectively, on flow-injection analysis (FIA) and on multicommutated flow analysis (MCFA), were compared with regard to their use for the determination of total selenium in infant formulas by hydride-generation atomic absorption spectrometry. The method based on multicommutation provided lower detection and quantification limits (0.08 and 0.27 μg L−1 compared to 0.59 and 1.95 μ L−1, resp.), higher sampling frequency (160 versus. 70 samples per hour), and reduced reagent consumption. Linearity, precision, and accuracy were similar for the two methods compared. It was concluded that, while both methods proved to be appropriate for the purpose, the MCFA-based method exhibited a better performance. PMID:22505923

  19. Flow-injection determination of total organic fluorine with off-line defluorination reaction on a solid sorbent bed.

    PubMed

    Musijowski, Jacek; Trojanowicz, Marek; Szostek, Bogdan; da Costa Lima, José Luis Fontes; Lapa, Rui; Yamashita, Hiroki; Takayanagi, Toshio; Motomizu, Shoji

    2007-09-26

    Considering recent reports on widespread occurrence and concerns about perfluoroalkyl substances (PFAS) in environmental and biological systems, analysis of these compounds have gained much attention in recent years. Majority of analyte-specific methods are based on a LC/MS/MS or a GC/MS detection, however many environmental or biological studies would benefit from a total organic fluorine (TOF) determination. Presented work was aimed at developing a method for TOF determination. TOF is determined as an amount of inorganic fluoride obtained after defluorination reaction conducted off-line using sodium biphenyl reagent directly on the sorbent without elution of retained analytes. Recovered fluoride was analyzed using flow-injection system with either fluorimetric or potentiometric detection. The TOF method was tested using perfluorocarboxylic acids (PFCA), including perfluorooctanoic acid (PFOA), as model compounds. Considering low concentrations of PFAS in natural samples, solid-phase extraction as a preconcentration procedure was evaluated. Several carbon-based sorbents were tested, namely multi-wall carbon nanotubes, carbon nanofibres and activated carbon. Good sorption of all analytes was achieved and defluorination reaction was possible to carry out directly on a sorbent bed. Recoveries obtained for PFCAs, adsorbed on an activated carbon sorbent, and measured as TOF, were 99.5+/-1.7, 110+/-9.4, 95+/-26, 120+/-32, 110+/-12 for C4, C6, C8, C10 and C12-PFCA, respectively. Two flow systems that would enable the defluorination reaction and fluoride determination in a single system were designed and tested.

  20. Dysprosium-sensitized chemiluminescence system for the determination of enoxacin in pharmaceutical preparations and biological fluids with flow-injection sampling.

    PubMed

    Sun, Han-wen; Wu, Yuan-yuan; Li, Li-qing

    2009-03-01

    A novel trivalence dysprosium(Dy(3+))-sensitized chemiluminescence method was developed for the first time for the determination of enoxacin (ENX) using flow-injection sampling based on the chemiluminescence (CL) associated with the reaction of the Dy(3+)-cerium(Ce(IV))-S(2)O(3) (2-)-ENX system and the Dy(3+)-MnO(4) (-) S(2)O(3) (2-)-ENX system. The analytical conditions for CL emission were investigated and optimized. The relationship between the CL intensity of ENX and its concentration has good linearity, with a correlation coefficient of 0.9984-0.9994. The limit of detection (LOD, 3sigma) was 0.20 ng/mL for the Dy(3+)-ENX-S(2)O(3)(2-)-Ce(IV)-H(2)SO(4) system and 0.22 ng/mL for the Dy(3+)-ENX-S(2)O(3)(2-)-MnO(4) (-)-HNO(3) system. The relative standard deviation (RSD, n = 11) was 1.8% for 11 determinations of 60 ng/mL ENX. The proposed method was applied to the analysis of ENX in injections, serum and urine samples with a recovery of 98%-105%. A possible mechanism for this sensitized CL reaction is discussed by comparing the CL spectra with the fluorescence emission spectra. The proposed method represents a wide linear range, high sensitivity and accuracy, and can be used for the routine determination of ENX in pharmaceutical preparations and biological fluids. Copyright 2009 John Wiley & Sons, Ltd.

  1. Water Tunnel Flow Visualization Study Through Poststall of 12 Novel Planform Shapes

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.; Neuhart, Dan H.

    1996-01-01

    To determine the flow field characteristics of 12 planform geometries, a flow visualization investigation was conducted in the Langley 16- by 24-Inch Water Tunnel. Concepts studied included flat plate representations of diamond wings, twin bodies, double wings, cutout wing configurations, and serrated forebodies. The off-surface flow patterns were identified by injecting colored dyes from the model surface into the free-stream flow. These dyes generally were injected so that the localized vortical flow patterns were visualized. Photographs were obtained for angles of attack ranging from 10' to 50', and all investigations were conducted at a test section speed of 0.25 ft per sec. Results from the investigation indicate that the formation of strong vortices on highly swept forebodies can improve poststall lift characteristics; however, the asymmetric bursting of these vortices could produce substantial control problems. A wing cutout was found to significantly alter the position of the forebody vortex on the wing by shifting the vortex inboard. Serrated forebodies were found to effectively generate multiple vortices over the configuration. Vortices from 65' swept forebody serrations tended to roll together, while vortices from 40' swept serrations were more effective in generating additional lift caused by their more independent nature.

  2. Stopped-in-loop flow analysis system for successive determination of trace vanadium and iron in drinking water using their catalytic reactions.

    PubMed

    Ayala Quezada, Alejandro; Ohara, Keisuke; Ratanawimarnwong, Nuanlaor; Nacapricha, Duangjai; Murakami, Hiroya; Teshima, Norio; Sakai, Tadao

    2015-11-01

    An automated stopped-in-loop flow analysis (SILFA) system is proposed for the successive catalytic determination of vanadium and iron. The determination of vanadium was based on the p-anisidine oxidation by potassium bromate in the presence of Tiron as an activator to form a reddish dye, which has an absorption maximum at 510 nm. The selectivity of the vanadium determination was greatly improved by adding diphosphate as a masking agent of iron. For the iron determination, an iron-catalyzed oxidative reaction of p-anisidine by hydrogen peroxide with 1,10-phenanthroline as an activator to produce a reddish dye (510 nm) was employed. The SILFA system consisted of two peristaltic pumps, two six-port injection valves, a four-port selection valve, a heater device, a spectrophotometric detector and a data acquisition device. One six-port injection valve was used for the isolation of a mixed solution of standard/sample and reagent to promote each catalytic reaction, and another six-port injection valve was used for switching the reagent for vanadium or iron to achieve selective determination of each analyte. The above mentioned four-port selection valve was used to select standard solutions or sample. These three valves and the two peristaltic pumps were controlled by a built-in programmable logic controller in a touchscreen controller. The obtained results showed that the proposed SILFA monitoring system constituted an effective approach for the selective determination of vanadium and iron. The limits of detection, 0.052 and 0.55 µg L(-1), were obtained for vanadium and iron, respectively. The proposed system was successfully applied to drinking water samples without any preconcentration procedures. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Determination of picloram in natural waters employing sequential injection square wave voltammetry using the hanging mercury drop electrode.

    PubMed

    Dos Santos, Luciana B O; Masini, Jorge C

    2007-05-15

    This paper describes the development of a sequential injection analysis method to automate the determination of picloram by square wave voltammetry exploiting the concept of monosegmented flow analysis to perform in-line sample conditioning and standard addition. To perform these tasks, an 800muL monosegment is formed, composed by 400muL of sample and 400muL of conditioning/standard solution, in medium of 0.10molL(-1) H(2)SO(4). Homogenization of the monosegment is achieved by three flow reversals. After homogenization the mixture zone is injected toward the flow cell, which is adapted to the capillary of a hanging drop mercury electrode, at a flow rate of 50muLs(-1). After a suitable delay time, the potential is scanned from -0.5 to -1.0V versus Ag/AgCl at frequency of 300Hz and pulse height of 25mV. The linear dynamic range is observed for picloram concentrations between 0.10 and 2.50mgL(-1) fitting to the linear equation I(p)=(-2.19+/-0.03)C(picloram)+(0.096+/-0.039), with R(2)=0.9996, for which the slope is given in muALmg(-1). The detection and quantification limits are 0.036 and 0.12mgL(-1), respectively. The sampling frequency is 37h(-1) when the standard addition protocol is followed, but can be increased to 41h(-1) if the protocol to obtain in-line external calibration curve is used for quantification. The method was applied for determination of picloram in spiked water samples and the accuracy was evaluated by comparison with high performance liquid chromatography using molecular absorption at 220nm for detection. No evidences of statistically significant differences between the two methods were observed.

  4. Lanthanides determination in red wine using ultrasound assisted extraction, flow injection, aerosol desolvation and ICP-MS.

    PubMed

    Bentlin, Fabrina R S; dos Santos, Clarissa M M; Flores, Erico M M; Pozebon, Dirce

    2012-01-13

    This paper deals with the determination of the fourteen naturally occurring elements of the lanthanide series in red wine. Ultrasound (US) was used for sample preparation prior lanthanides determination using ICP-MS. Flow injection (FI) and pneumatic nebulization/aerosol desolvation were used for nebulization of aliquots of 50 μL of sample and its subsequent transportation to plasma. Sample preparation procedures, matrix interference and time of sonication were evaluated. Better results for lanthanides in red wine were obtained by sonication with US probe for 90 s and sample 10-fold diluted. The limits of detection of La, Ce, Nd, Sm, Gd, Pr, Eu, Tb, Dy, Ho, Er, Tm, Lu and Yb were 6.57, 10.8, 9.97, 9.38, 2.71, 1.29, 1.22, 0.52, 2.35, 0.96, 2.30, 0.45, 0.24 and 1.35 ng L(-1), respectively. Red wines of different varieties from three countries of South America were discriminated according to the country of origin by means of multivariate analysis of lanthanides concentration. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. In-line electrochemical reagent generation coupled to a flow injection biamperometric system for the determination of sulfite in beverage samples.

    PubMed

    de Paula, Nattany T G; Barbosa, Elaine M O; da Silva, Paulo A B; de Souza, Gustavo C S; Nascimento, Valberes B; Lavorante, André F

    2016-07-15

    This work reports an in-line electrochemical reagent generation coupled to a flow injection biamperometric procedure for the determination of SO3(2-). The method was based on a redox reaction between the I3(-) and SO3(2-) ions, after the diffusion of SO2 through a gas diffusion chamber. Under optimum experimental conditions, a linear response ranging from 1.0 to 12.0 mg L(-1) (R=0.9999 and n=7), a detection and quantification limit estimated at 0.26 and 0.86 mg L(-1), respectively, a standard deviation relative of 0.4% (n=10) for a reference solution of 4.0 mg L(-1) SO3(2-) and sampling throughput for 40 determinations per hour were achieved. Addition and recovery tests with juice and wine samples were performed resulting in a range between 92% and 110%. There were no significant differences at a 95% confidence level in the analysis of eight samples when comparing the new method with a reference procedure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Flow-injection chemiluminescence determination of ofloxacin and levofloxacin in pharmaceutical preparations and biological fluids.

    PubMed

    Sun, Hanwen; Li, Liqing; Chen, Xueyan

    2006-08-01

    A novel, rapid and sensitive analytical method is described for determination of ofloxacin and levofloxacin by enhanced chemiluminescence (CL) with flow-injection sampling. The method is based on the CL reaction of the Ce(IV)-Na2S2O4-ofloxacin/levofloxacin-H2SO2 system. The enhanced CL mechanism was developed and the optimum conditions for CL emission were investigated. The CL intensity was correlated linearly (r = 0.9988) with the concentration of ofloxacin (or levofloxacin) in the range of 1.0 x 10(-8) - 1.0 x 10(-7) g ml(-1) and 1.0 x 10(-7) - 6.0 x 10(-6) g ml(-1). The detection limit (S/N = 3) is 7 x 10(-9) g ml(-1). The relative standard derivation (RSD, n = 11) is 2.0% for ofloxacin at 4 x 10(-7) g ml(-1) and for levofloxacin at 6 x 10(-7) g ml(-1). This method has been successfully applied for the determination of ofloxacin and levofloxacin in pharmaceutical preparations and biological fluids with satisfactory results.

  7. Sequential injection spectrophotometric determination of oxybenzone in lipsticks.

    PubMed

    Salvador, A; Chisvert, A; Camarasa, A; Pascual-Martí, M C; March, J G

    2001-08-01

    A sequential injection (SI) procedure for the spectrophotometric determination of oxybenzone in lipsticks is reported. The colorimetric reaction between nickel and oxybenzone was used. SI parameters such as sample solution volume, reagent solution volume, propulsion flow rate and reaction coil length were studied. The limit of detection was 3 microg ml(-1). The sensitivity was 0.0108+/-0.0002 ml microg(-1). The relative standard deviations of the results were between 6 and 12%. The real concentrations of samples and the values obtained by HPLC were comparable. Microwave sample pre-treatment allowed the extraction of oxybenzone with ethanol, thus avoiding the use of toxic organic solvents. Ethanol was also used as carrier in the SI system. Seventy-two injections per hour can be performed, which means a sample frequency of 24 h(-1) if three replicates are measured for each sample.

  8. Direct-injection chemiluminescence detector. Properties and potential applications in flow analysis.

    PubMed

    Koronkiewicz, Stanislawa; Kalinowski, Slawomir

    2015-02-01

    We present a novel chemiluminescence detector, with a cone-shaped detection chamber where the analytical reaction takes place. The sample and appropriate reagents are injected directly into the chamber in countercurrent using solenoid-operated pulse micro-pumps. The proposed detector allows for fast measurement of the chemiluminescence signal in stop-flow conditions from the moment of reagents mixing. To evaluate potential applications of the detector the Fenton-like reaction with a luminol-H2O2 system and several transition metal ions (Co(2+), Cu(2+), Cr(3+), Fe(3+)) as a catalyst were investigated. The results demonstrate suitability of the proposed detector for quantitative analysis and for investigations of reaction kinetics, particularly rapid reactions. A multi-pumping flow system was designed and optimized. The developed methodology demonstrated that the shape of the analytical signals strongly depends on the type and concentration of the metal ions. The application of the detector in quantitative analysis was assessed for determination of Fe(III). The direct-injection chemiluminescence detector allows for a sensitive and repeatable (R.S.D. 2%) determination. The intensity of chemiluminescence increased linearly in the range from about 0.5 to 10 mg L(-1) Fe(III) with the detection limit of 0.025 mg L(-1). The time of analysis depended mainly on reaction kinetics. It is possible to achieve the high sampling rate of 144 samples per hour. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of Water-Alcohol Injection and Maximum Economy Spark Advance on Knock-Limited Performance and Fuel Economy of a Large Air-Cooled Cylinder

    NASA Technical Reports Server (NTRS)

    Heinicke, Orville H.; Vandeman, Jack E.

    1945-01-01

    An investigation was conducted to determine the effect of a coolant solution of 25 percent ethyl alcohol, 25 percent methyl alcohol, and 50 percent water by volume and maximum-economy spark advance on knock-limited performance and fuel economy of a large air-cooled cylinder. The knock-limited performance of the cylinder at engine speeds of 2100 and 2500 rpm was determined for coolant-fuel ratios of 0.0, 0.2, and 0.4. The effect of water-alcohol injection on fuel economy was determined in constant charge-air flow tests. The tests were conducted at a spark advance of 20 deg B.T.C. and maximum-economy spark advance.

  10. Mid-infrared quantum cascade lasers for flow injection analysis

    PubMed

    Lendl; Frank; Schindler; Muller; Beck; Faist

    2000-04-01

    A Fabry-Perot quantum cascade laser (QCL) was used as a powerful light source for mid infrared (MIR) detection in flow injection analysis. The QCL lased at several wavelengths close to each other within a few wavenumbers (990-1010 cm-1), hence fitting well to the broad absorption bands of molecules in liquid phase. As compared with that of a state-of-the-art Fourier transform spectrometer, the signal-to-noise ratio could be improved by a factor of 50. Additionally, by using a QCL as the light source, optical path lengths of more than 100 microns could be used even in aqueous matrixes which reduced the danger of cell clogging. In the example shown here phosphate was determined in Diet Coke samples. The flow injection system used allowed the measurement of the sample at two pH values (5 and 13) at which the analyte was present as H2PO4- and PO4(3-), respectively. As the analytical readout the difference in IR absorption of H2PO4- and PO4(3-) at the laser wavelengths was taken. The FIA-QCL measurements were corroborated by ion chromatography which was used as a reference method.

  11. Flow injection gas chromatography with sulfur chemiluminescence detection for the analysis of total sulfur in complex hydrocarbon matrixes.

    PubMed

    Hua, Yujuan; Hawryluk, Myron; Gras, Ronda; Shearer, Randall; Luong, Jim

    2018-01-01

    A fast and reliable analytical technique for the determination of total sulfur levels in complex hydrocarbon matrices is introduced. The method employed flow injection technique using a gas chromatograph as a sample introduction device and a gas phase dual-plasma sulfur chemiluminescence detector for sulfur quantification. Using the technique described, total sulfur measurement in challenging hydrocarbon matrices can be achieved in less than 10 s with sample-to-sample time <2 min. The high degree of selectivity and sensitivity toward sulfur compounds of the detector offers the ability to measure low sulfur levels with a detection limit in the range of 20 ppb w/w S. The equimolar response characteristic of the detector allows the quantitation of unknown sulfur compounds and simplifies the calibration process. Response is linear over a concentration range of five orders of magnitude, with a high degree of repeatability. The detector's lack of response to hydrocarbons enables direct analysis without the need for time-consuming sample preparation and chromatographic separation processes. This flow injection-based sulfur chemiluminescence detection technique is ideal for fast analysis or trace sulfur analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Flow injection for the determination of Se(IV) and Se(VI) by hydride generation atomic absorption spectrometry with microwave oven on-line prereduction of Se(VI) to Se(IV)

    NASA Astrophysics Data System (ADS)

    Burguera, J. L.; Carrero, P.; Burguera, M.; Rondon, C.; Brunetto, M. R.; Gallignani, M.

    1996-12-01

    An on-line flow injection system has been developed for the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters by hydride generation atomic absorption spectrometry with microwave-aided heating prereduction of Se(VI) to Se(IV). The samples and the prereductant solutions (4 mol l -1 HCl for Se(IV) and 12 mol l -1 HCl for Se(VI)) which circulated in a closed-flow circuit were injected by means of a time-based injector. This mixture was displaced by a carrier solution of 1% v/v of hydrochloric acid through a PTFE coil located inside the focused microwave oven and mixed downstream with a borohydride solution to generate the hydride. The linear ranges were 0-120 and 0-100 μg l -1 of Se(IV) and Se(VI), respectively. The detection limits were 1.0 μg l -1 for Se(IV) and 1.5 μg l -1 for Se(VI). The precision (about 2.0-2.5% RSD) and recoveries (96-98% for Se(IV) and 94-98% for Se(VI)) were good. Total selenium values were also obtained by electrothermal atomic absorption spectrometry which agreed with the content of both selenium species. The sample throughput was about 50 measurements per hour. The main advantage of the method is that the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters is performed in a closed system with a minimum sample manipulation, exposure to the environment, minimum sample waste and operator attention.

  13. Unsteady boundary-layer injection

    NASA Technical Reports Server (NTRS)

    Telionis, D. P.; Jones, G. S.

    1981-01-01

    The boundary-layer equations for two-dimensional incompressible flow are integrated numerically for the flow over a flat plate and a Howarth body. Injection is introduced either impulsively or periodically along a narrow strip. Results indicate that injection perpendicular to the wall is transmitted instantly across the boundary layer and has little effect on the velocity profile parallel to the wall. The effect is a little more noticeable for flows with adverse pressure gradients. Injection parallel to the wall results in fuller velocity profiles. Parallel and oscillatory injection appears to influence the mean. The amplitude of oscillation decreases with distance from the injection strip but further downstream it increases again in a manner reminiscent of an unstable process.

  14. Bulk-modified modified screen-printing carbon electrodes with both lactate oxidase (LOD) and horseradish peroxide (HRP) for the determination of L-lactate in flow injection analysis mode.

    PubMed

    Ghamouss, Fouad; Ledru, Sophie; Ruillé, Nadine; Lantier, Françoise; Boujtita, Mohammed

    2006-06-16

    A screen-printed carbon electrode modified with both HRP and LOD (SPCE-HRP/LOD) has been developed for the determination of L-lactate concentration in real samples. The resulting SPCE-HRP/LOD was prepared in a one-step procedure, and was then optimised as an amperometric biosensor operating at [0, -100]mV versus Ag/AgCl for L-lactate determination in flow injection mode. A significant improvement in the reproducibility (coefficient variation of about 10%) of the preparation of the biosensors was obtained when graphite powder was modified with LOD in the presence of HRP previously oxidised by periodate ion (IO4-). Optimisation studies were performed by examining the effects of LOD loading, periodation step and rate of the binder on analytical performances of SPCE-HRP/LOD. The sensitivity of the optimised SPCE-HRP/LOD to L-lactate was 0.84 nAL micromol(-1) in a detection range between 10 and 180 microMol. The possibility of using the developed biosensor to determine L-lactate concentrations in various dairy products was also evaluated.

  15. Flow injection determination of Se in dietary supplements using TiO2 mediated ultraviolet-photochemical volatile species generation

    NASA Astrophysics Data System (ADS)

    Nováková, E.; Linhart, O.; Červený, V.; Rychlovský, P.; Hraníček, J.

    2017-08-01

    This paper proposes a method for determination of selenium content in samples of dietary supplements using TiO2 mediated UV-photochemical vapor generation with quartz furnace atomic spectrometric detection. The flow-injection method was optimized for determination of selenium in the form of selenite or selenate ions. The limits of detection of the proposed method are 0.89 ng mL- 1 and 0.68 ng mL- 1 for selenite and selenate, respectively. Extraction in neutral medium was used for the leaching of selenate and NaOH solution was used for the leaching of selenite. The methods accuracy was verified against the declared amounts of Se in five different samples of over-the-counter dietary supplements and on NIST SRM 3280. The method was also compared to results achieved with determination by electrothermal atomization atomic absorption spectrometry following microwave decomposition. The recovery of selenium during sample preparation was tested by spiking the tablets prior to extraction and estimated to be approximately 100%. An interference study has been carried out to estimate the effect of concomitant elements on the methods accuracy.

  16. Chemometrics-assisted simultaneous determination of cobalt(II) and chromium(III) with flow-injection chemiluminescence method

    NASA Astrophysics Data System (ADS)

    Li, Baoxin; Wang, Dongmei; Lv, Jiagen; Zhang, Zhujun

    2006-09-01

    In this paper, a flow-injection chemiluminescence (CL) system is proposed for simultaneous determination of Co(II) and Cr(III) with partial least squares calibration. This method is based on the fact that both Co(II) and Cr(III) catalyze the luminol-H 2O 2 CL reaction, and that their catalytic activities are significantly different on the same reaction condition. The CL intensity of Co(II) and Cr(III) was measured and recorded at different pH of reaction medium, and the obtained data were processed by the chemometric approach of partial least squares. The experimental calibration set was composed with nine sample solutions using orthogonal calibration design for two component mixtures. The calibration curve was linear over the concentration range of 2 × 10 -7 to 8 × 10 -10 and 2 × 10 -6 to 4 × 10 -9 g/ml for Co(II) and Cr(III), respectively. The proposed method offers the potential advantages of high sensitivity, simplicity and rapidity for Co(II) and Cr(III) determination, and was successfully applied to the simultaneous determination of both analytes in real water sample.

  17. Iodine speciation in coastal and inland bathing waters and seaweeds extracts using a sequential injection standard addition flow-batch method.

    PubMed

    Santos, Inês C; Mesquita, Raquel B R; Bordalo, Adriano A; Rangel, António O S S

    2015-02-01

    The present work describes the development of a sequential injection standard addition method for iodine speciation in bathing waters and seaweeds extracts without prior sample treatment. Iodine speciation was obtained by assessing the iodide and iodate content, the two inorganic forms of iodine in waters. For the determination of iodide, an iodide ion selective electrode (ISE) was used. The indirect determination of iodate was based on the spectrophotometric determination of nitrite (Griess reaction). For the iodate measurement, a mixing chamber was employed (flow batch approach) to explore the inherent efficient mixing, essential for the indirect determination of iodate. The application of the standard addition method enabled detection limits of 0.14 µM for iodide and 0.02 µM for iodate, together with the direct introduction of the target water samples, coastal and inland bathing waters. The results obtained were in agreement with those obtained by ICP-MS and a colorimetric reference procedure. Recovery tests also confirmed the accuracy of the developed method which was effectively applied to bathing waters and seaweed extracts. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2014-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  19. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2011-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  20. A qualitative view of cryogenic fluid injection into high speed flows

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Schlumberger, J.; Proctor, M.

    1991-01-01

    The injection of supercritical pressure, subcritical temperature fluids, into a 2-D, ambient, static temperature and static pressure supersonic tunnel and free jet supersonic nitrogen flow field was observed. Observed patterns with fluid air were the same as those observed for fluid nitrogen injected into the tunnel at 90 deg to the supersonic flow. The nominal injection pressure was of 6.9 MPa and tunnel Mach number was 2.7. When injected directly into and opposing the tunnel exhaust flow, the observed patterns with fluid air were similar to those observed for fluid nitrogen but appeared more diffusive. Cryogenic injection creates a high density region within the bow shock wake but the standoff distance remains unchanged from the gaseous value. However, as the temperature reaches a critical value, the shock faded and advanced into the supersonic stream. For both fluids, nitrogen and air, the phenomena was completely reversible.

  1. PAB3D Simulations of a Nozzle with Fluidic Injection for Yaw Thrust-Vector Control

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.

    1998-01-01

    An experimental and computational study was conducted on an exhaust nozzle with fluidic injection for yaw thrust-vector control. The nozzle concept was tested experimentally in the NASA Langley Jet Exit Test Facility (JETF) at nozzle pressure ratios up to 4 and secondary fluidic injection flow rates up to 15 percent of the primary flow rate. Although many injection-port geometries and two nozzle planforms (symmetric and asymmetric) were tested experimentally, this paper focuses on the computational results of the more successful asymmetric planform with a slot injection port. This nozzle concept was simulated with the Navier-Stokes flow solver, PAB3D, invoking the Shih, Zhu, and Lumley algebraic Reynolds stress turbulence model (ASM) at nozzle pressure ratios (NPRs) of 2,3, and 4 with secondary to primary injection flow rates (w(sub s)/w(sub p)) of 0, 2, 7 and 10 percent.

  2. Impulsive Injection for Compressor Stator Separation Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Braunscheidel, Edward P.; Bright, Michelle M.

    2005-01-01

    Flow control using impulsive injection from the suction surface of a stator vane has been applied in a low speed axial compressor. Impulsive injection is shown to significantly reduce separation relative to steady injection for vanes that were induced to separate by an increase in vane stagger angle of 4 degrees. Injected flow was applied to the airfoil suction surface using spanwise slots pitched in the streamwise direction. Injection was limited to the near-hub region, from 10 to 36 percent of span, to affect the dominant loss due to hub leakage flow. Actuation was provided externally using high-speed solenoid valves closely coupled to the vane tip. Variations in injected mass, frequency, and duty cycle are explored. The local corrected total pressure loss across the vane at the lower span region was reduced by over 20 percent. Additionally, low momentum fluid migrating from the hub region toward the tip was effectively suppressed resulting in an overall benefit which reduced corrected area averaged loss through the passage by 4 percent. The injection mass fraction used for impulsive actuation was typically less than 0.1 percent of the compressor through flow.

  3. Turbine vane gas film cooling with injection in the leading edge region from a single row of spanwise angled holes

    NASA Technical Reports Server (NTRS)

    Lecuyer, M. R.; Hanus, G. J.

    1976-01-01

    An experimental study of gas film cooling was conducted on a 3X size model turbine vane. Injection in the leading edge region was from a single row of holes angled in a spanwise direction. Measurements of the local heat flux downstream from the row of coolant holes, both with and without film coolant flow, were used to determine the film cooling performance presented in terms of the Stanton number ratio. Results for a range of coolant blowing ratio, M = 0 to 2.0, indicate a reduction in heat flux of up to 15 to 30 percent at a point 10 to 11 hole diameters downstream from injection. An optimum coolant blowing ratio corresponds to a coolant-to-freestream velocity ratio in the range of 0.5. The shallow injection angle resulted in superior cooling performance for injection closest to stagnation, while the effect of injection angle was insignificant for injection further from stagnation.

  4. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    PubMed Central

    Reges, José E. O.; Salazar, A. O.; Maitelli, Carla W. S. P.; Carvalho, Lucas G.; Britto, Ursula J. B.

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  5. Delineating Fecal Contaminant Sources and Travel Times in a Karst Groundwater Basin, Inner Bluegrass Region, Kentucky

    NASA Astrophysics Data System (ADS)

    Ward, J. W.; Reed, T. M.; Fryar, A. E.; Brion, G. M.

    2006-12-01

    Because of preferential flowpaths via features such as sinkholes and conduits, karst aquifers are susceptible to non-point-source pollution from agricultural and urban drainage. With many karst aquifers being drinking- water sources, pathogens are contaminants of public health concern. Monitoring of microbial parameters (total coliforms [TC], atypical colonies [AC] and fecal coliform bacteria [FC]) transpired biweekly from December 2002 March 2004 and weekly from February October 2005 at Blue Hole Spring, which drains outlying farm lands and the town of Versailles in the Inner Bluegrass Region of Kentucky. Physicochemical parameters (discharge, temperature, specific conductance, and pH) were measured continuously during the entire period. The AC/TC ratio, which had been employed only in surface water-quality studies, was used with FC counts, precipitation and discharge data to determine sources of fecal loading to ground water as result of land-use practices. An AC/TC ratio < 10 demonstrates fresh input of fecal matter, while a larger ratio can represent a variety of occurrences, including aged fecal material input and/or lack of nutrient input into the system. AC/TC ratio data in the 2002 04 dataset behaved similarly to surface waters, with ratios > 10 during dry periods and < 10 during wet periods, while the 2005 data demonstrated a very irregular pattern. The difference in these two data sets indicated a compositional change within the groundwater basin between the two sampling periods, perhaps as a result of construction at a sewage treatment plant adjoining the spring. Solute (rhodamine WT fluorescent dye and bromide) and particle (1-μm diameter fluorescent latex microspheres) tracer tests were conducted during summer 2006 to examine contaminant mobility within the system under base-flow and storm-flow conditions. Rainfall was limited prior to the base-flow trace, totaling 0.025 cm within 2 weeks prior to the slug injection. Base-flow discharge averaged 400 m3/s and solute breakthrough began ~ 7.5 hours post injection and cleared the system after 77 hours. For the storm-flow trace, rainfall totaled 3.12 cm prior to injection, with another 9.35 cm of rainfall occurring over the two week monitoring period. Spring discharge during the storm-flow trace averaged 0.443 m3/s, with a maximum of 0.503 m3/s. Under storm-flow conditions solute breakthrough began ~ 2.33 hours post injection, with particle breakthrough beginning ~ 2.5 hours post injection. Bromide concentrations at the spring were < 0.1 ppm (the detection limit, or DL) 5.5 hours after injection, while rhodamine WT concentrations were < DL (0.1 ppb) 14 hours post injection. Microspheres were detected at the spring until 164 hours after injection. These traces demonstrate that storms in this karst basin can accelerate solute movement, and particles can remain mobile for as long as 1 week after introduction.

  6. Planning and Analysis of Fractured Rock Injection Tests in the Cerro Brillador Underground Laboratory, Northern Chile

    NASA Astrophysics Data System (ADS)

    Fairley, J. P., Jr.; Oyarzún L, R.; Villegas, G.

    2015-12-01

    Early theories of fluid migration in unsaturated fractured rock hypothesized that matrix suction would dominate flow up to the point of matrix saturation. However, experiments in underground laboratories such as the ESF (Yucca Mountain, NV) have demonstrated that liquid water can migrate significant distances through fractures in an unsaturated porous medium, suggesting limited interaction between fractures and unsaturated matrix blocks and potentially rapid transmission of recharge to the sat- urated zone. Determining the conditions under which this rapid recharge may take place is an important factor in understanding deep percolation processes in arid areas with thick unsaturated zones. As part of an on-going, Fondecyt-funded project (award 11150587) to study mountain block hydrological processes in arid regions, we are plan- ning a series of in-situ fracture flow injection tests in the Cerro Brillador/Mina Escuela, an underground laboratory and teaching facility belonging to the Universidad la Serena, Chile. Planning for the tests is based on an analytical model and curve-matching method, originally developed to evaluate data from injection tests at Yucca Mountain (Fairley, J.P., 2010, WRR 46:W08542), that uses a known rate of liquid injection to a fracture (for example, from a packed-off section of borehole) and the observed rate of seepage discharging from the fracture to estimate effective fracture aperture, matrix sorptivity, fracture/matrix flow partitioning, and the wetted fracture/matrix interac- tion area between the injection and recovery points. We briefly review the analytical approach and its application to test planning and analysis, and describe the proposed tests and their goals.

  7. Flow Injection Technique for Biochemical Analysis with Chemiluminescence Detection in Acidic Media

    PubMed Central

    Chen, Jing; Fang, Yanjun

    2007-01-01

    A review with 90 references is presented to show the development of acidic chemiluminescence methods for biochemical analysis by use of flow injection technique in the last 10 years. A brief discussion of both the chemiluminescence and flow injection technique is given. The proposed methods for biochemical analysis are described and compared according to the used chemiluminescence system.

  8. A novel flow injection spectrophotometric method using plant extracts as green reagent for the determination of doxycycline

    NASA Astrophysics Data System (ADS)

    Palamy, Sysay; Ruengsitagoon, Wirat

    2017-01-01

    A novel flow injection spectrophotometric method was developed for the determination of doxycycline in pharmaceutical preparations using iron(III) contained in extracts from plants. The assay was based on the complex formed between doxycycline and iron(III) characterized by an absorption maximum at 435 nm. The calibration graphs obtained over the doxycycline concentration range 5-250 μg mL- 1 gave correlation coefficients of 0.9979, 0.9987 and 0.9987 with the three green reagents prepared from Senna alata (L.) Roxb. (S. alata), Polygonum hydropiper L. (P. hydropiper) or Diplazium esculentum (Retz.) Sw. (D. esculentum), respectively. The relative standard deviations of the repeatability was < 2.00%. The percentage recoveries were in the range of 98.27-101.03%. Doxycycline contents obtained by this new method and by the reference methods reported in literature were in agreement at 95% confidence level with the paired t-test. The sample throughput was 36 h- 1 for each green reagent.

  9. A "Dual-acceptor Channel" Membraneless Gas-diffusion Unit for Simultaneous Determination of Ethanol and Acetaldehyde in Liquors Using Reverse Flow Injection.

    PubMed

    Choengchan, Nathawut; Poontong, Bangerdsuk; Mathaweesansurn, Arjnarong; Maneerat, Noppadol; Motomizu, Shoji; Ratanawimarnwong, Nuanlaor; Nacapricha, Duangjai

    2018-01-01

    A new design of membraneless gas-diffusion unit with dual acceptor channels for separation, collection and simultaneous determination of two volatile analytes in liquid sample is presented. The unit is comprised of three parallel channels in a closed module. A sample is aspirated into the central channel and two kinds of reagents are introduced into the other two channels. Two analytes are isolated from the sample matrix by diffusion into head-space and absorbed into the specific reagents. Non-absorbed vapor is released by opening the programmable controlled lid. The unit was applied to liquors for measurement of ethanol and acetaldehyde using reverse flow injection. Dichromate and nitroprusside were exploited as reagents for colorimetric detection of ethanol and acetaldehyde, respectively. Good linearity ranges (r 2 >0.99) with high precision (RSD <2%) and high accuracy (recovery: 90 - 105%) were achieved. The results were compared to the results by GC-FID and no significant difference was observed by paired t-test (95% confidence).

  10. Incorporation of flow injection analysis with dual-wavelength overlapping resonance Rayleigh scattering for rapid determination of malachite green and its metabolite in fish.

    PubMed

    Zhu, Jinghui; Qin, Mingyou; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Hu, Xiaoli

    2014-09-15

    A flow injection analysis (FIA) system combined with dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) has been established and validated for rapid determination of malachite green (MG) and its metabolite in fish samples. Under experimental condition, MG would react with Erythrosin (Ery) to form ion-association complexes, resulting in the occurrence of two RRS peaks and a dramatic enhancement of RRS intensity. The maximum RRS peaks were located at 286 nm and 337 nm. It is noted that the increments of both of these two peaks were proportional to the concentration of MG. The detection limit of DWO-RRS was 1.5 ng/mL, which was comparable to several reported methods. Moreover, the results of real sample analysis exhibited an acceptable recovery between 97.5% and 103.6%, indicating that the method had good reproducibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Vitamin A determination in milk samples based on the luminol-periodate chemiluminescence system.

    PubMed

    Rishi, Lubna; Yaqoob, Mohammad; Waseem, Amir; Nabi, Abdul

    2014-01-01

    A simple and rapid flow injection (FI) method for the determination of retinyl acetate is reported based on its enhancing effect on the luminol-periodate chemiluminescence (CL) system in an alkaline medium. The detection limit (3s×blank) was 8.0×10⁻⁸ mol L⁻¹, with an injection throughput of 90 h⁻¹. The method allows linear increase of CL intensity over the retinyl acetate concentration range of 1.0-100×10⁻⁷ mol L⁻¹ (R²=0.9996) with relative standard deviations of 2.4% (n=10) for 5.0×10⁻⁷ mol L⁻¹. The key chemical and physical variables (reagent concentrations, flow rates, sample volume, and photomultiplier tube (PMT) voltage) were optimized and potential interferences were investigated. The method was successfully applied to human milk, fresh cow's milk and infant milk-based formulas and the results were in good agreement with the previously reported HPLC method. A brief discussion on the possible CL reaction mechanism is also presented.

  12. Determination of water traces in various organic solvents using Karl Fischer method under FIA conditions.

    PubMed

    Dantan, N; Frenzel, W; Küppers, S

    2000-05-31

    Flow injection methods utilising the Karl Fischer (KF) reaction with spectrophotometric and potentiometric detection are described for the determination of the trace water content in various organic solvents. Optimisation of the methods resulted in an accessible (linear) working range of 0.01-0.2% water for many solvents studied with a typical precision of 1-2% R.S.D. Only 50 mul of organic solvent was injected and the sampling frequency was about 120 samples per h. Since the slopes of the calibration curves were different for different solvents appropriate calibration was required. Problems associated with spectrophotometric detection and caused by refractive index changes were pointed out and a nested-loop configuration was proposed to overcome this kind of interference. The potentiometric method with a novel flow-through detector cell was shown to surpass the performance of spectrophotometric detection in any respect. The characteristics of the procedures developed made them well applicable for on-line monitoring of technical solvent distillations in an industrial plant.

  13. Single-sample method for the estimation of glomerular filtration rate in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tauxe, W.N.; Bagchi, A.; Tepe, P.G.

    1987-03-01

    A method for the determination of the glomerular filtration rate (GFR) in children which involves the use of a single-plasma sample (SPS) after the injection of a radioactive indicator such as radioiodine labeled diatrizoate (Hypaque) has been developed. This is analogous to previously published SPS techniques of effective renal plasma flow (ERPF) in adults and children and GFR SPS techniques in adults. As a reference standard, GFR has been calculated from compartment analysis of injected radiopharmaceuticals (Sapirstein Method). Theoretical volumes of distribution were calculated at various times after injection (Vt) by dividing the total injected counts (I) by the plasmamore » concentration (Ct) expressed in liters, determined by counting an aliquot of plasma in a well type scintillation counter. Errors of predicting GFR from the various Vt values were determined as the standard error of estimate (Sy.x) in ml/min. They were found to be relatively high early after injection and to fall to a nadir of 3.9 ml/min at 91 min. The Sy.x Vt relationship was examined in linear, quadratic, and exponential form, but the simpler linear relationship was found to yield the lowest error. Other data calculated from the compartment analysis of the reference plasma disappearance curves are presented, but at this time have apparently little clinical relevance.« less

  14. Separation Control in a Multistage Compressor Using Impulsive Surface Injection

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.; Braunscheidel, Edward P.; Culley, Dennis E.; Bright, Michelle M.

    2006-01-01

    Control of flow separation using impulsive surface injection is investigated within the multistage environment of a low speed axial-flow compressor. Measured wake profiles behind a set of embedded stator vanes treated with suction-surface injection indicate significant reduction in flow separation at a variety of injection-pulse repetition rates and durations. The corresponding total pressure losses across the vanes reveal a bank of repetition rates at each pulse duration where the separation control remains nearly complete. This persistence allows for demands on the injected-mass delivery system to be economized while still achieving effective flow control. The response of the stator-vane boundary layers to infrequently applied short injection pulses is described in terms of the periodic excitation of turbulent strips whose growth and propagation characteristics dictate the lower bound on the band of optimal pulse repetition rates. The eventual falloff in separation control at higher repetition rates is linked to a competition between the benefits of pulse-induced mixing and the aggravation caused by the periodic introduction of low-momentum fluid. Use of these observations for impulsive actuator design is discussed and their impact on modeling the time-average effect of impulsive surface injection for multistage steady-flow simulation is considered.

  15. Mathematical Investigation of Fluid Flow, Mass Transfer, and Slag-steel Interfacial Behavior in Gas-stirred Ladles

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Nastac, Laurentiu

    2018-06-01

    In this study, the Euler-Euler and Euler-Lagrange modeling approaches were applied to simulate the multiphase flow in the water model and gas-stirred ladle systems. Detailed comparisons of the computational and experimental results were performed to establish which approach is more accurate for predicting the gas-liquid multiphase flow phenomena. It was demonstrated that the Euler-Lagrange approach is more accurate than the Euler-Euler approach. The Euler-Lagrange approach was applied to study the effects of the free surface setup, injected bubble size, gas flow rate, and slag layer thickness on the slag-steel interaction and mass transfer behavior. Detailed discussions on the flat/non-flat free surface assumption were provided. Significant inaccuracies in the prediction of the surface fluid flow characteristics were found when the flat free surface was assumed. The variations in the main controlling parameters (bubble size, gas flow rate, and slag layer thickness) and their potential impact on the multiphase fluid flow and mass transfer characteristics (turbulent intensity, mass transfer rate, slag-steel interfacial area, flow patterns, etc.,) in gas-stirred ladles were quantitatively determined to ensure the proper increase in the ladle refining efficiency. It was revealed that by injecting finer bubbles as well as by properly increasing the gas flow rate and the slag layer thickness, the ladle refining efficiency can be enhanced significantly.

  16. Study on the Effect of water Injection Momentum on the Cooling Effect of Rocket Engine Exhaust Plume

    NASA Astrophysics Data System (ADS)

    Yang, Kan; Qiang, Yanhui; Zhong, Chenghang; Yu, Shaozhen

    2017-10-01

    For the study of water injection momentum factors impact on flow field of the rocket engine tail flame, the numerical computation model of gas-liquid two phase flow in the coupling of high temperature and high speed gas flow and low temperature liquid water is established. The accuracy and reliability of the numerical model are verified by experiments. Based on the numerical model, the relationship between the flow rate and the cooling effect is analyzed by changing the water injection momentum of the water spray pipes. And the effective mathematical expression is obtained. What’s more, by changing the number of the water spray and using small flow water injection, the cooling effect is analyzed to check the application range of the mathematical expressions. The results show that: the impact and erosion of the gas flow field could be reduced greatly by water injection, and there are two parts in the gas flow field, which are the slow cooling area and the fast cooling area. In the fast cooling area, the influence of the water flow momentum and nozzle quantity on the cooling effect can be expressed by mathematical functions without causing bifurcation flow for the mainstream gas. The conclusion provides a theoretical reference for the engineering application.

  17. Material flow data for numerical simulation of powder injection molding

    NASA Astrophysics Data System (ADS)

    Duretek, I.; Holzer, C.

    2017-01-01

    The powder injection molding (PIM) process is a cost efficient and important net-shape manufacturing process that is not completely understood. For the application of simulation programs for the powder injection molding process, apart from suitable physical models, exact material data and in particular knowledge of the flow behavior are essential in order to get precise numerical results. The flow processes of highly filled polymers are complex. Occurring effects are very hard to separate, like shear flow with yield stress, wall slip, elastic effects, etc. Furthermore, the occurrence of phase separation due to the multi-phase composition of compounds is quite probable. In this work, the flow behavior of a 316L stainless steel feedstock for powder injection molding was investigated. Additionally, the influence of pre-shearing on the flow behavior of PIM-feedstocks under practical conditions was examined and evaluated by a special PIM injection molding machine rheometer. In order to have a better understanding of key factors of PIM during the injection step, 3D non-isothermal numerical simulations were conducted with a commercial injection molding simulation software using experimental feedstock properties. The simulation results were compared with the experimental results. The mold filling studies amply illustrate the effect of mold temperature on the filling behavior during the mold filling stage. Moreover, the rheological measurements showed that at low shear rates no zero shear viscosity was observed, but instead the viscosity further increased strongly. This flow behavior could be described with the Cross-WLF approach with Herschel-Bulkley extension very well.

  18. Injectant mole-fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.

    1989-01-01

    A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.

  19. Generating A Strobed Laser Light Sheet

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.; Franke, John M.; Rhodes, David B.; Jones, Stephen B.

    1994-01-01

    An optoelectronic system generating synchronous, strobed sheet of laser light developed for use in making visible flow of air about model helicopter rotor. Used in wind-tunnel tests to determine actual locations of vortices for comparison with locations predicted by mathematical models to validate models. Each blade tip produces vortex. By establishing successive vortex locations, researcher determines trajectory of vortex pattern. Light-sheet strobe circuits provide selection of blade positions, strobe-pulse durations, and multiple pulses per revolution for rotors having two to nine blades. To make flow visible, vaporizing propylene glycol injected upstream of model. System also provides calibrated trigger delay of strobe pulses, adjustable strobe-pulse durations, selectable number of blades, and slip-sync mode to make flow visible as though in slow motion.

  20. Axisymmetric flows from fluid injection into a confined porous medium

    NASA Astrophysics Data System (ADS)

    Guo, Bo; Zheng, Zhong; Celia, Michael A.; Stone, Howard A.

    2016-02-01

    We study the axisymmetric flows generated from fluid injection into a horizontal confined porous medium that is originally saturated with another fluid of different density and viscosity. Neglecting the effects of surface tension and fluid mixing, we use the lubrication approximation to obtain a nonlinear advection-diffusion equation that describes the time evolution of the sharp fluid-fluid interface. The flow behaviors are controlled by two dimensionless groups: M, the viscosity ratio of displaced fluid relative to injected fluid, and Γ, which measures the relative importance of buoyancy and fluid injection. For this axisymmetric geometry, the similarity solution involving R2/T (where R is the dimensionless radial coordinate and T is the dimensionless time) is an exact solution to the nonlinear governing equation for all times. Four analytical expressions are identified as asymptotic approximations (two of which are new solutions): (i) injection-driven flow with the injected fluid being more viscous than the displaced fluid (Γ ≪ 1 and M < 1) where we identify a self-similar solution that indicates a parabolic interface shape; (ii) injection-driven flow with injected and displaced fluids of equal viscosity (Γ ≪ 1 and M = 1), where we find a self-similar solution that predicts a distinct parabolic interface shape; (iii) injection-driven flow with a less viscous injected fluid (Γ ≪ 1 and M > 1) for which there is a rarefaction wave solution, assuming that the Saffman-Taylor instability does not occur at the reservoir scale; and (iv) buoyancy-driven flow (Γ ≫ 1) for which there is a well-known self-similar solution corresponding to gravity currents in an unconfined porous medium [S. Lyle et al. "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)]. The various axisymmetric flows are summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime. The implications of the regime diagram are discussed using practical engineering projects of geological CO2 sequestration, enhanced oil recovery, and underground waste disposal.

  1. A LabVIEW®-based software for the control of the AUTORAD platform: a fully automated multisequential flow injection analysis Lab-on-Valve (MSFIA-LOV) system for radiochemical analysis.

    PubMed

    Barbesi, Donato; Vicente Vilas, Víctor; Millet, Sylvain; Sandow, Miguel; Colle, Jean-Yves; Aldave de Las Heras, Laura

    2017-01-01

    A LabVIEW ® -based software for the control of the fully automated multi-sequential flow injection analysis Lab-on-Valve (MSFIA-LOV) platform AutoRAD performing radiochemical analysis is described. The analytical platform interfaces an Arduino ® -based device triggering multiple detectors providing a flexible and fit for purpose choice of detection systems. The different analytical devices are interfaced to the PC running LabVIEW ® VI software using USB and RS232 interfaces, both for sending commands and receiving confirmation or error responses. The AUTORAD platform has been successfully applied for the chemical separation and determination of Sr, an important fission product pertinent to nuclear waste.

  2. Plasma core reactor simulations using RF uranium seeded argon discharges

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1976-01-01

    Experimental results are described in which pure uranium hexafluoride was injected into an argon-confined, steady-state, RF-heated plasma to investigate characteristics of plasma core nuclear reactors. The 80 kW (13.56 MHz) and 1.2 MW (5.51 MHz) rf induction heater facilities were used to determine a test chamber flow scheme which offered best uranium confinement with minimum wall coating. The cylindrical fused-silica test chamber walls were 5.7-cm-ID by 10-cm-long. Test conditions included RF powers of 2-85 kW, chamber pressures of 1-12 atm, and uranium hexafluoride mass-flow rates of 0.005-0.13 g/s. Successful techniques were developed for fluid-mechanical confinement of RF-heated plasmas with pure uranium hexafluoride injection.

  3. Dynamic leaching and fractionation of trace elements from environmental solids exploiting a novel circulating-flow platform.

    PubMed

    Mori, Masanobu; Nakano, Koji; Sasaki, Masaya; Shinozaki, Haruka; Suzuki, Shiho; Okawara, Chitose; Miró, Manuel; Itabashi, Hideyuki

    2016-02-01

    A dynamic flow-through microcolumn extraction system based on extractant re-circulation is herein proposed as a novel analytical approach for simplification of bioaccessibility tests of trace elements in sediments. On-line metal leaching is undertaken in the format of all injection (AI) analysis, which is a sequel of flow injection analysis, but involving extraction under steady-state conditions. The minimum circulation times and flow rates required to determine the maximum bioaccessible pools of target metals (viz., Cu, Zn, Cd, and Pb) from lake and river sediment samples were estimated using Tessier's sequential extraction scheme and an acid single extraction test. The on-line AIA method was successfully validated by mass balance studies of CRM and real sediment samples. Tessier's test in on-line AI format demonstrated to be carried out by one third of extraction time (6h against more than 17 h by the conventional method), with better analytical precision (<9.2% against >15% by the conventional method) and significant decrease in blank readouts as compared with the manual batch counterpart. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Vortex flow hysteresis

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1986-01-01

    An experimental study was conducted to quantify the hysteresis associated with various vortex flow transition points and to determine the effect of planform geometry. The transition points observed consisted of the appearance (or disappearance) of trailing edge vortex burst and the transition to (or from) flat plate or totally separated flows. Flow visualization with smoke injected into the vortices was used to identify the transitions on a series of semi-span models tested in a low speed tunnel. The planforms tested included simple deltas (55 deg to 80 deg sweep), cranked wings with varying tip panel sweep and dihedral, and a straked wing. High speed movies at 1000 frames per second were made of the vortex flow visualization in order to better understand the dynamics of vortex flow, burst and transition.

  5. Numerical analysis of combustion characteristics of hybrid rocket motor with multi-section swirl injection

    NASA Astrophysics Data System (ADS)

    Li, Chengen; Cai, Guobiao; Tian, Hui

    2016-06-01

    This paper is aimed to analyse the combustion characteristics of hybrid rocket motor with multi-section swirl injection by simulating the combustion flow field. Numerical combustion flow field and combustion performance parameters are obtained through three-dimensional numerical simulations based on a steady numerical model proposed in this paper. The hybrid rocket motor adopts 98% hydrogen peroxide and polyethylene as the propellants. Multiple injection sections are set along the axis of the solid fuel grain, and the oxidizer enters the combustion chamber by means of tangential injection via the injector ports in the injection sections. Simulation results indicate that the combustion flow field structure of the hybrid rocket motor could be improved by multi-section swirl injection method. The transformation of the combustion flow field can greatly increase the fuel regression rate and the combustion efficiency. The average fuel regression rate of the motor with multi-section swirl injection is improved by 8.37 times compared with that of the motor with conventional head-end irrotational injection. The combustion efficiency is increased to 95.73%. Besides, the simulation results also indicate that (1) the additional injection sections can increase the fuel regression rate and the combustion efficiency; (2) the upstream offset of the injection sections reduces the combustion efficiency; and (3) the fuel regression rate and the combustion efficiency decrease with the reduction of the number of injector ports in each injection section.

  6. Short-term efficacy of sacroiliac joint corticosteroid injection based on arthrographic contrast patterns.

    PubMed

    Scholten, Paul M; Patel, Shounuck I; Christos, Paul J; Singh, Jaspal R

    2015-04-01

    To determine the relationship between sacroiliac joint (SIJ) contrast dispersal patterns during SIJ corticosteroid injection and pain relief at 2 and 8 weeks after the procedure. The association between the number of positive provocative SIJ physical examination maneuvers (minimum of one in all patients undergoing SIJ injection) and the patient's response to the intervention was also assessed. Retrospective chart review. Academic outpatient musculoskeletal practice. Fifty-four subjects who underwent therapeutic SIJ corticosteroid injection were screened for inclusion; 49 subjects were included in the final analysis. A retrospective review of electronic medical records identified patients who underwent SIJ corticosteroid injection. Fluoroscopic contrast flow patterns were categorized as type I (intra-articular injection with cephalad extension within the SIJ) or type II (intra-articular injection with poor cephalad extension). Self-reported numeric pain rating scale (NPRS) values at the time of injection and 2 and 8 weeks after the procedure were recorded. The number of positive provocative SIJ physical examination maneuvers at the time of the initial evaluation was also recorded. The primary outcome measure was the effect of contrast patterns (type I or type II) on change in NPRS values at 2 weeks and 8 weeks after the injection. The secondary outcome measure was the association between the number of positive provocative SIJ physical examination maneuvers and decrease in the level of pain after the procedure. At 2 weeks after the procedure, type I subjects demonstrated a significantly lower mean NPRS value compared with type II subjects (2.8 ± 1.4 versus 3.8 ± 1.6, respectively, P = .02). No statistically significant difference was observed at 8 weeks after the procedure. NPRS values were significantly reduced both at 2 weeks and 8 weeks, compared with baseline, in both subjects identified as having type I flow and those with type II flow (P < .0001 for all within-group comparisons). Fluoroscopically guided corticosteroid injections into the SIJ joint are effective in decreasing NPRS values in patients with SIJ-mediated pain. Delivery of corticosteroid to the superior portion of the SIJ leads to a greater reduction in pain at 2 weeks, but not at 8 weeks. Patients with at least one positive provocative maneuver should benefit from an intra-articular corticosteroid injection. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  7. Advancement of In-Flight Alumina Powder Spheroidization Process with Water Droplet Injection Using a Small Power DC-RF Hybrid Plasma Flow System

    NASA Astrophysics Data System (ADS)

    Jang, Juyong; Takana, Hidemasa; Park, Sangkyu; Nishiyama, Hideya

    2012-09-01

    The correlation between plasma thermofluid characteristics and alumina powder spheroidization processes with water droplet injection using a small power DC-RF hybrid plasma flow system was experimentally clarified. Micro-sized water droplets with a low water flow rate were injected into the tail of thermal plasma flow so as not to disturb the plasma flow directly. Injected water droplets were vaporized in the thermal plasma flow and were transported upstream in the plasma flow to the torch by the backflow. After dissociation of water, the production of hydrogen was detected by the optical emission spectroscopy in the downstream RF plasma flow. The emission area of the DC plasma jet expanded and elongated in the vicinity of the RF coils. Additionally, the emission area of RF plasma flow enlarged and was visible as red emission in the downstream RF plasma flow in the vicinity below the RF coils due to hydrogen production. Therefore, the plasma flow mixed with produced hydrogen increased the plasma enthalpy and the highest spheroidization rate of 97% was obtained at a water flow rate of 15 Sm l/min and an atomizing gas flow rate of 8 S l/min using a small power DC-RF hybrid plasma flow system.

  8. Determination of methylmercury and inorganic mercury in water samples by slurry sampling cold vapor atomic absorption spectrometry in a flow injection system after preconcentration on silica C(18) modified.

    PubMed

    Segade, Susana Río; Tyson, Julian F

    2007-03-15

    A novel method for preconcentration of methylmercury and inorganic mercury from water samples was developed involving the determination of ngl(-1) levels of analytes retained on the silica C(18) solid sorbent, previous complexation with ammonium pyrrolidine dithiocarbamate (APDC), by slurry sampling cold vapor atomic absorption spectrometry (SS-CVAAS) in a flow injection (FI) system. Several variables were optimized affecting either the retention of both mercury species, such as APDC concentration, silica C(18) amount, agitation times, or their determination, including hydrochloric acid concentration in the suspension medium, peristaltic pump speed and argon flow-rate. A Plackett-Burman saturated factorial design permitted to differentiate the influential parameters on the preconcentration efficiency, which were after optimized by the sequential simplex method. The contact time between mercury containing solution and APDC, required to reach an efficient sorption, was decreased from 26 to 3min by the use of sonication stirring instead of magnetic stirring. The use of 1moldm(-3) hydrochloric acid suspension medium and 0.75% (m/v) sodium borohydride reducing agent permitted the selective determination of methylmercury. The combination of 5moldm(-3) hydrochloric acid and 10(-4)% (m/v) sodium borohydride was used for the selective determination of inorganic mercury. The detection limits achieved for methylmercury and inorganic mercury determination under optimum conditions were 0.96 and 0.25ngl(-1), respectively. The reliability of the proposed method for the determination of both mercury species in waters was checked by the analysis of samples spiked with known concentrations of methylmercury and inorganic mercury; quantitative recoveries were obtained.

  9. Flow friction of the turbulent coolant flow in cryogenic porous cables

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Yeroshenko, V. M.; Zaichik, L. I.; Yanovsky, L. S.

    1979-01-01

    Considered are cryogenic power transmission cables with porous cores. Calculations of the turbulent coolant flow with injection or suction through the porous wall are presented within the framework of a two-layer model. Universal velocity profiles were obtained for the viscous sublayer and flow core. Integrating the velocity profile, the law of flow friction in the pipe with injection has been derived for the case when there is a tangential injection velocity component. The effect of tangential velocity on the relative law of flow friction is analyzed. The applicability of the Prandtl model to the problem under study is discussed. It is shown that the error due to the acceptance of the model increases with the injection parameter and at lower Reynolds numbers; under these circumstances, the influence of convective terms in the turbulent energy equation on the mechanism of turbulent transport should be taken into account.

  10. An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid.

    PubMed

    van Staden, J F; Mashamba, Mulalo G; Stefan, Raluca I

    2002-09-01

    An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid is proposed. A solution of 0.1 mol L(-1) sodium chloride is used as carrier. Titration is achieved by aspirating acetic acid samples between two strong base-zone volumes into a holding coil and by channelling the stack of well-defined zones with flow reversal through a reaction coil to a potentiometric sensor where the peak widths were measured. A linear relationship between peak width and logarithm of the acid concentration was obtained in the range 1-9 g/100 mL. Vinegar samples were analysed without any sample pre-treatment. The method has a relative standard deviation of 0.4% with a sample frequency of 28 samples per hour. The results revealed good agreement between the proposed sequential injection and an automated batch titration method.

  11. A Review of Flow Analysis Methods for Determination of Radionuclides in Nuclear Wastes and Nuclear Reactor Coolants

    DOE PAGES

    Trojanowicz, Marek; Kolacinska, Kamila; Grate, Jay W.

    2018-02-13

    Here, the safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. Themore » benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β–radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection.« less

  12. A Review of Flow Analysis Methods for Determination of Radionuclides in Nuclear Wastes and Nuclear Reactor Coolants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trojanowicz, Marek; Kolacinska, Kamila; Grate, Jay W.

    Here, the safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. Themore » benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β–radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection.« less

  13. A review of flow analysis methods for determination of radionuclides in nuclear wastes and nuclear reactor coolants.

    PubMed

    Trojanowicz, Marek; Kołacińska, Kamila; Grate, Jay W

    2018-06-01

    The safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. The benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β-radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. [Determination of aconitine, hypaconitine and mesaconitine in Shenfu injection].

    PubMed

    Zhang, Pan-Pan; Zhang, Jun-Zhen; Wang, Zhao-Hong; Lu, Yong-Jiang; Jiang, Ye

    2013-05-01

    To establish a method for the content determination of indexes for measuring aconitic compounds contained in Shenfu injection, in order to provide basis for the evaluation of the curative effect of monkshood in Shenfu injection. The sample were purified and enriched with HF-LPME. ACQUITY UPLC BEH C18 column (2.1 mm x 50 mm, 1.7 microm) was adopted and eluted with a gradient program, with acetonitrile-10 mmol x L(-1) NH4HCO3 (pH 10) as the mobile phases. The flow rate was 0.45 mL x min(-1). The content was determined with ESI and MRM. The results showed that aconitine, hypaconitine and mesaconitine showed a good linear relationship, with r > 0.999, within the range of 0.1-100 ng x L(-1). The recoveries were detected to be 100.1%, 97.4%, 97.5%, with RSD being 1.2%, 1.1%, 1.5%, respectively. This method was used to prove the safety of Shenfu injection, and provide scientific basis for correct evaluation of curative effect of monkshood, as well as a reliable, simple and practical means for quality control of monkshood-containing Chinese materia medica preparations.

  15. The dependence of permeability on effective stress from flow tests at hot dry rock reservoirs at Rosemanowes (Cornwall) and Fenton Hill (New Mexico)

    USGS Publications Warehouse

    Nathenson, M.

    1999-01-01

    Effective stress is the primary control on permeability and thus on flow and water loss for two-well hot dry rock systems involving injection and production that have been tested to date. Theoretical relations are derived for the flow between an injector and producer, including the dependence of permeability on effective stress. Four relations for permeability as a function of effective stress are used to match field data for the hot dry rock systems at Rosemanowes, Cornwall, and Fenton Hill, New Mexico. The flow and water loss behavior of these systems are well explained by the influence of effective stress on permeability. All four relations for permeability as a function of effective stress are successful in matching the field data, but some have difficulty in determining unique values for elastic and hydrologic parameters.Effective stress is the primary control on permeability and thus on flow and water loss for two-well hot dry rock systems involving injection and production that have been tested to date. Theoretical relations are derived for the flow between an injector and producer, including the dependence of permeability on effective stress. Four relations for permeability as a function of effective stress are used to match field data for the hot dry rock systems at Rosemanowes, Cornwall, and Fenton Hill, New Mexico. The flow and water loss behavior of these systems are well explained by the influence of effective stress on permeability. All four relations for permeability as a function of effective stress are successful in matching the field data, but some have difficulty in determining unique values for elastic and hydrologic parameters.

  16. Deep aquifer prokaryotic community responses to CO2 geosequestration

    NASA Astrophysics Data System (ADS)

    Mu, A.; Moreau, J. W.

    2015-12-01

    Little is known about potential microbial responses to supercritical CO2 (scCO2) injection into deep subsurface aquifers, a currently experimental means for mitigating atmospheric CO2 pollution being trialed at several locations around the world. One such site is the Paaratte Formation of the Otway Basin (~1400 m below surface; 60°C; 2010 psi), Australia. Microbial responses to scCO2 are important to understand as species selection may result in changes to carbon and electron flow. A key aim is to determine if biofilm may form in aquifer pore spaces and reduce aquifer permeability and storage. This study aimed to determine in situ, using 16S rRNA gene, and functional metagenomic analyses, how the microbial community in the Otway Basin geosequestration site responded to experimental injection of 150 tons of scCO2. We demonstrate an in situ sampling approach for detecting deep subsurface microbial community changes associated with geosequestration. First-order level analyses revealed a distinct shift in microbial community structure following the scCO2 injection event, with proliferation of genera Comamonas and Sphingobium. Similarly, functional profiling of the formation revealed a marked increase in biofilm-associated genes (encoding for poly-β-1,6-N-acetyl-D-glucosamine). Global analysis of the functional gene profile highlights that scCO2 injection potentially degraded the metabolism of CH4 and lipids. A significant decline in carboxydotrophic gene abundance (cooS) and an anaerobic carboxydotroph OTU (Carboxydocella), was observed in post-injection samples. The potential impacts on the flow networks of carbon and electrons to heterotrophs are discussed. Our findings yield insights for other subsurface systems, such as hydrocarbon-rich reservoirs and high-CO2 natural analogue sites.

  17. Development of a sequential injection-square wave voltammetry method for determination of paraquat in water samples employing the hanging mercury drop electrode.

    PubMed

    dos Santos, Luciana B O; Infante, Carlos M C; Masini, Jorge C

    2010-03-01

    This work describes the development and optimization of a sequential injection method to automate the determination of paraquat by square-wave voltammetry employing a hanging mercury drop electrode. Automation by sequential injection enhanced the sampling throughput, improving the sensitivity and precision of the measurements as a consequence of the highly reproducible and efficient conditions of mass transport of the analyte toward the electrode surface. For instance, 212 analyses can be made per hour if the sample/standard solution is prepared off-line and the sequential injection system is used just to inject the solution towards the flow cell. In-line sample conditioning reduces the sampling frequency to 44 h(-1). Experiments were performed in 0.10 M NaCl, which was the carrier solution, using a frequency of 200 Hz, a pulse height of 25 mV, a potential step of 2 mV, and a flow rate of 100 µL s(-1). For a concentration range between 0.010 and 0.25 mg L(-1), the current (i(p), µA) read at the potential corresponding to the peak maximum fitted the following linear equation with the paraquat concentration (mg L(-1)): i(p) = (-20.5 ± 0.3)C (paraquat) - (0.02 ± 0.03). The limits of detection and quantification were 2.0 and 7.0 µg L(-1), respectively. The accuracy of the method was evaluated by recovery studies using spiked water samples that were also analyzed by molecular absorption spectrophotometry after reduction of paraquat with sodium dithionite in an alkaline medium. No evidence of statistically significant differences between the two methods was observed at the 95% confidence level.

  18. Breakdown pressures and characteristic flaw sizes during fluid injection experiments in shale at elevated confining pressures.

    NASA Astrophysics Data System (ADS)

    Chandler, M.; Mecklenburgh, J.; Rutter, E. H.; Taylor, R.; Fauchille, A. L.; Ma, L.; Lee, P. D.

    2017-12-01

    Fracture propagation trajectories in gas-bearing shales depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. A suite of mechanical, flow and elastic measurements have been made on two shale materials, the Whitby mudrock and the Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone, an isotropic baseline and tight-gas sandstone analogue. Mechanical characterization includes standard triaxial experiments, pressure-dependent permeability, brazilian disk tensile strength, and fracture toughness determined using double-torsion experiments. Elastic characterisation was performed through ultrasonic velocities determined using a cross-correlation method. Additionally, we report the results of laboratory-scale fluid injection experiments for the same materials. Injection experiments involved the pressurisation of a blind-ending central hole in a dry cylindrical sample. Pressurisation is conducted under constant volume-rate control, using silicon oils of varying viscosities. Breakdown pressure is not seen to exhibit a strong dependence on rock type or orientation, and increases linearly with confining pressure. In most experiments, a small drop in the injection pressure record is observed at what is taken to be fracture initiation, and in the Pennant sandstone this is accompanied by a small burst of acoustic energy. The shale materials were acoustically quiet. Breakdown is found to be rapid and uncontrollable after initiation if injection is continued. A simplified 2-dimensional model for explaining this is presented in terms of the stress intensities at the tip of a pressurised crack, and is used alongside the triaxial data to derive a characteristic flaw size from which the fractures have initiated in the borehole wall.

  19. CFD Analyses and Jet-Noise Predictions of Chevron Nozzles with Vortex Stabilization

    NASA Technical Reports Server (NTRS)

    Dippold, Vance

    2008-01-01

    The wind computational fluid dynamics code was used to perform a series of analyses on a single-flow plug nozzle with chevrons. Air was injected from tubes tangent to the nozzle outer surface at three different points along the chevron at the nozzle exit: near the chevron notch, at the chevron mid-point, and near the chevron tip. Three injection pressures were used for each injection tube location--10, 30, and 50 psig-giving injection mass flow rates of 0.1, 0.2, and 0.3 percent of the nozzle mass flow. The results showed subtle changes in the jet plume s turbulence and vorticity structure in the region immediately downstream of the nozzle exit. Distinctive patterns in the plume structure emerged from each injection location, and these became more pronounced as the injection pressure was increased. However, no significant changes in centerline velocity decay or turbulent kinetic energy were observed in the jet plume as a result of flow injection. Furthermore, computational acoustics calculations performed with the JeNo code showed no real reduction in jet noise relative to the baseline chevron nozzle.

  20. The use of a polymer inclusion membrane in flow injection analysis for the on-line separation and determination of zinc.

    PubMed

    Zhang, Lujia L; Cattrall, Robert W; Kolev, Spas D

    2011-06-15

    This paper reports the first use of a polymer inclusion membrane (PIM) for on-line separation in flow injection analysis (FIA) involving simultaneous extraction and back-extraction. The FIA system containing the PIM separation module was used for the determination of Zn(II) in aqueous samples in the presence of Mg(II), Ca(II), Cd(II), Co(II), Ni(II), Cu(II), and Fe(III). The Fe(III) and Cu(II) interferences were eliminated by off-line precipitation with phosphate and on-line complexation with chloride, respectively. The concentration of Zn(II) was determined spectrophotometrically using 4-(2-pyridylazo) resorcinol (PAR). The optimal composition of the PIM consisted of 40% (m/m) di(2-ethlyhexyl) phosphoric acid (D2EHPA) as carrier, 10% (m/m) dioctyl phthalate (DOP) as plasticizer and 50% (m/m) poly(vinyl chloride) (PVC) as the base polymer. The optimized FIA system was characterized by a linear calibration curve in the range from 1.0 to 30.0 mg L(-1) Zn(II), a detection limit of 0.05 mg L(-1) and a relative standard deviation of 3.4% with a sampling rate of 4h(-1). Reproducible results were obtained for 20 replicate injections over a 5h period which demonstrated a good membrane stability. The FIA system was applied to the determination of Zn(II) in pharmaceuticals and samples from the galvanizing industry and very good agreement with atomic absorption spectrometry was obtained. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Transverse injection into Mach 2 flow behind a rearward-facing step - A 3-D, compressible flow test case for hypersonic combustor CFD validation

    NASA Technical Reports Server (NTRS)

    Mcdaniel, James C.; Fletcher, Douglas G.; Hartfield, Roy J.; Hollo, Steven D.

    1991-01-01

    A spatially-complete data set of the important primitive flow variables is presented for the complex, nonreacting, 3D unit combustor flow field employing transverse injection into a Mach 2 flow behind a rearward-facing step. A unique wind tunnel facility providing the capability for iodine seeding was built specifically for these measurements. Two optical techniques based on laser-induced-iodine fluorescence were developed and utilized for nonintrusive, in situ flow field measurements. LDA provided both mean and fluctuating velocity component measurements. A thermographic phosphor wall temperature measurement technique was developed and employed. Data from the 2D flow over a rearward-facing step and the complex 3D mixing flow with injection are reported.

  2. Experimental Investigation of Centrifugal Compressor Stabilization Techniques

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2003-01-01

    Results from a series of experiments to investigate techniques for extending the stable flow range of a centrifugal compressor are reported. The research was conducted in a high-speed centrifugal compressor at the NASA Glenn Research Center. The stabilizing effect of steadily flowing air-streams injected into the vaneless region of a vane-island diffuser through the shroud surface is described. Parametric variations of injection angle, injection flow rate, number of injectors, injector spacing, and injection versus bleed were investigated for a range of impeller speeds and tip clearances. Both the compressor discharge and an external source were used for the injection air supply. The stabilizing effect of flow obstructions created by tubes that were inserted into the diffuser vaneless space through the shroud was also investigated. Tube immersion into the vaneless space was varied in the flow obstruction experiments. Results from testing done at impeller design speed and tip clearance are presented. Surge margin improved by 1.7 points using injection air that was supplied from within the compressor. Externally supplied injection air was used to return the compressor to stable operation after being throttled into surge. The tubes, which were capped to prevent mass flux, provided 9.3 points of additional surge margin over the baseline surge margin of 11.7 points.

  3. Renal cortical and medullary blood flow responses to altered NO availability in humans.

    PubMed

    Damkjær, Mads; Vafaee, Manoucher; Møller, Michael L; Braad, Poul Erik; Petersen, Henrik; Høilund-Carlsen, Poul Flemming; Bie, Peter

    2010-12-01

    The objective of this study was to quantify regional renal blood flow in humans. In nine young volunteers on a controlled diet, the lower abdomen was CT-scanned, and regional renal blood flow was determined by positron emission tomography (PET) scanning using H(2)(15)O as tracer. Measurements were performed at baseline, during constant intravenous infusion of nitric oxide (NO) donor glyceryl nitrate and after intravenous injection of NO synthase inhibitor N(ω)-monomethyl-L-arginine (L-NMMA). Using the CT image, the kidney pole areas were delineated as volumes of interest (VOI). In the data analysis, tissue layers with a thickness of one voxel were eliminated stepwise from the external surface of the VOI (voxel peeling), and the blood flow subsequently was determined in each new, reduced VOI. Blood flow in the shrinking VOIs decreased as the number of cycles of voxel peeling increased. After 4-5 cycles, blood flow was not reduced further by additional voxel peeling. This volume-insensitive flow was measured to be 2.30 ± 0.17 ml·g tissue(-1)·min(-1) during the control period; it increased during infusion of glyceryl nitrate to 2.97 ± 0.18 ml·g tissue(-1)·min(-1) (P < 0.05) and decreased after L-NMMA injection to 1.57 ± 0.17 ml·g tissue(-1)·min(-1) (P < 0.05). Cortical blood flow was 4.67 ± 0.31 ml·g tissue(-1)·min(-1) during control, unchanged by glyceryl nitrate, and decreased after L-NMMA [3.48 ± 0.23 ml·(g·min)(-1), P < 0.05]. PET/CT scanning allows identification of a renal medullary region in which the measured blood flow is 1) low, 2) independent of reduction in the VOI, and 3) reactive to changes in systemic NO supply. The technique seems to provide indices of renal medullary blood flow in humans.

  4. Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic Fracturing in Shale Gas Systems and Electromagnetic Geophysical Monitoring of Fluid Migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jihoon; Um, Evan; Moridis, George

    2014-12-01

    We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostlymore » filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow-geomechanical simulator and are transformed via a rock-physics model into electrical conductivity models. It is shown that anomalous conductivity distribution in the resulting models is closely related to injected water saturation, but not closely related to newly created unsaturated fractures. Our numerical modeling experiments demonstrate that the crosswell EM method can be highly sensitive to conductivity changes that directly indicate the migration pathways of the injected fluid. Accordingly, the EM method can serve as an effective monitoring tool for distribution of injected fluids (i.e., migration pathways) during hydraulic fracturing operations« less

  5. Development of enantioselective chemiluminescence flow- and sequential-injection immunoassays for alpha-amino acids.

    PubMed

    Silvaieh, Hossein; Schmid, Martin G; Hofstetter, Oliver; Schurig, Volker; Gübitz, Gerald

    2002-01-01

    The development of an enantioselective flow-through chemiluminescence immunosensor for amino acids is described. The approach is based on a competitive assay using enantioselective antibodies. Two different instrumental approaches, a flow-injection (FIA) and a sequential-injection system (SIA), are used. Compared to the flow-injection technique, the sequential injection-mode showed better repeatability. Both systems use an immunoreactor consisting of a flow cell packed with immobilized haptens. The haptens (4-amino-L- or D-phenylalanine) are immobilized onto a hydroxysuccinimide-activated polymer (Affi-prep 10) via a tyramine spacer. Stereoselective antibodies, raised against 4-amino-L- or D-phenylalanine, are labeled with an acridinium ester. Stereoselective inhibition of binding of the acridinum-labeled antibodies to the immobilized hapten by amino acids takes place. Chiral recognition was observed not only for the hapten molecule but also for a series of different amino acids. One assay cycle including regeneration takes 6:30 min in the FIA mode and 4:40 min in the SIA mode. Using D-phenylalanine as a sample, the detection limit was found to be 6.13 pmol/ml (1.01 ng/ml) for the flow-injection immunoassay (FIIA) and 1.76 pmol/ml (0.29 ng/ml ) for the sequential-injection immunoassay (SIIA) which can be lowered to 0.22 pmol/ml (0.036 ng/ml) or 0.064 pmol/ml (0.01 ng/ml) by using a stopped flow system. The intra-assay repeatability was found to be about 5% RSD and the inter-assay repeatability below 6% (within 3 days).

  6. Can nerve regeneration on an artificial nerve conduit be enhanced by ethanol-induced cervical sympathetic ganglion block?

    PubMed Central

    Sunada, Katsuhisa; Shigeno, Keiji; Nakada, Akira; Honda, Michitaka; Nakamura, Tatsuo

    2017-01-01

    This study aimed to determine whether nerve regeneration by means of an artificial nerve conduit is promoted by ethanol-induced cervical sympathetic ganglion block (CSGB) in a canine model. This study involved two experiments—in part I, the authors examined the effect of CSGB by ethanol injection on long-term blood flow to the orofacial region; part II involved evaluation of the effect of CSGB by ethanol injection on inferior alveolar nerve (IAN) repair using polyglycolic acid-collagen tubes. In part I, seven Beagles were administered left CSGB by injection of 99.5% ethanol under direct visualization by means of thoracotomy, and changes in oral mucosal blood flow in the mental region and nasal skin temperature were evaluated. The increase in blood flow on the left side lasted for 7 weeks, while the increase in average skin temperature lasted 10 weeks on the left side and 3 weeks on the right. In part II, fourteen Beagles were each implanted with a polyglycolic acid-collagen tube across a 10-mm gap in the left IAN. A week after surgery, seven of these dogs were administered CSGB by injection of ethanol. Electrophysiological findings at 3 months after surgery revealed significantly higher sensory nerve conduction velocity and recovery index (ratio of left and right IAN peak amplitudes) after nerve regeneration in the reconstruction+CSGB group than in the reconstruction-only group. Myelinated axons in the reconstruction+CSGB group were greater in diameter than those in the reconstruction-only group. Administration of CSGB with ethanol resulted in improved nerve regeneration in some IAN defects. However, CSGB has several physiological effects, one of which could possibly be the long-term increase in adjacent blood flow. PMID:29220373

  7. End-of-injection fuel dribble of multi-hole diesel injector: Comprehensive investigation of phenomenon and discussion on control strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Seoksu; Huang, Weidi; Li, Zhilong

    The needle shutdown of fuel injectors leads to an undesired fuel dribble that forms unburned hydrocarbons and decreases the engine thermal efficiency in modern engines. Understanding of the fuel dribbling process is of great importance to establish its minimization strategy for optimal use of conventional fuels. However, the detailed needle dynamics and in- and near-nozzle flow characteristics governing the fuel dribble process have not been thoroughly understood. In this study, the needle dynamics, in- and near-nozzle flow characteristics and fuel dribble of a mini-sac type three-hole diesel injector were investigated using a highspeed X-ray phase-contrast imaging technique at different injectionmore » pressures. The results showed that an increase in injection pressure increased the flow evacuation velocity at the needle close that induced a more intense fuel cavitation and air ingestion inside the nozzle. The fuel dribbling process showed a high shot-toshot deviation. A statistical analysis of 50-shot results exhibited two breakup modes of fuel dribble determined by the flow evacuation velocity at the needle close and presence of air ingestion. In the first mode, the fast breakup with a short residence time of fuel dribble occurred. Meanwhile, the dripping of undisturbed liquid column with a long residence time of fuel dribble occurred in the second mode. An increase in injection pressure increased the population of the first mode due to more intense air ingestion that primarily caused by an increase in needle closing speed other than an increase in peak injection velocity. Based on the results, the formation mechanism and control strategies of the fuel dribble from modern diesel injectors were discussed.« less

  8. Analysis of the Electrohydrodynamic Flow in a Symmetric System of Electrodes by the Method of Dynamic Current-Voltage Characteristics

    NASA Astrophysics Data System (ADS)

    Stishkov, Yu. K.; Zakir'yanova, R. E.

    2018-04-01

    We have solved the problem of injection-type through electrohydrodynamic (EHD) flow in a closed channel. We have considered a model of a liquid with four types of ions. It is shown that a through EHD flow without internal vortices in the electrode gap is formed for the ratio 2 : 1 of the initial injection current from the electrodes in the channel. The structure of the flow in different parts of the channel and the integral characteristics of the flow have been analyzed. It is shown that for a quadratic function of injection at the electrodes, the current-voltage characteristic of the flow is also quadratic.

  9. Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery

    NASA Astrophysics Data System (ADS)

    Beyerlein, K. R.; Adriano, L.; Heymann, M.; Kirian, R.; Knoška, J.; Wilde, F.; Chapman, H. N.; Bajt, S.

    2015-12-01

    Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injection molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquid flow conservation. Finally, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.

  10. Effective Jet Properties for the Prediction of Turbulent Mixing Noise Reduction by Water Injection

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Lonergan, Michael J.

    2007-01-01

    A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the control volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

  11. Analytical study of striated nozzle flow with small radius of curvature ratio throats

    NASA Technical Reports Server (NTRS)

    Norton, D. J.; White, R. E.

    1972-01-01

    An analytical method was developed which is capable of estimating the chamber and throat conditions in a nozzle with a low radius of curvature throat. The method was programmed using standard FORTRAN 4 language and includes chemical equilibrium calculation subprograms (modified NASA Lewis program CEC71) as an integral part. The method determines detailed and gross rocket characteristics in the presence of striated flows and gives detailed results for the motor chamber and throat plane with as many as 20 discrete zones. The method employs a simultaneous solution of the mass, momentum, and energy equations and allows propellant types, 0/F ratios, propellant distribution, nozzle geometry, and injection schemes to be varied so to predict spatial velocity, density, pressure, and other thermodynamic variable distributions in the chamber as well as the throat. Results for small radius of curvature have shown good comparison to experimental results. Both gaseous and liquid injection may be considered with frozen or equilibrium flow calculations.

  12. Characteristics of a trapped-vortex (TV) combustor

    NASA Technical Reports Server (NTRS)

    Hsu, K.-Y.; Gross, L. P.; Trump, D. D.; Roquemore, W. M.

    1994-01-01

    The characteristics of a Trapped-Vortex (TV) combustor are presented. A vortex is trapped in the cavity established between two disks mounted in tandem. Fuel and air are injected directly into the cavity in such a way as to increase the vortex strength. Some air from the annular flow is also entrained into the recirculation zone of the vortex. Lean blow-out limits of the combustor are determined for a wide range of annular air flow rates. These data indicate that the lean blow-out limits are considerably lower for the TV combustor than for flames stabilized using swirl or bluff-bodies. The pressure loss through the annular duct is also low, being less than 2% for the flow conditions in this study. The instantaneous shape of the recirculation zone of the trapped vortex is measured using a two-color PIV technique. Temperature profiles obtained with CARS indicate a well mixed recirculation zone and demonstrate the impact of primary air injection on the local equivalence ratio.

  13. Prediction of Turbulent Jet Mixing Noise Reduction by Water Injection

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2008-01-01

    A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the confrol volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on perfectly expanded hot supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

  14. Fuel injection assembly for gas turbine engine combustor

    NASA Technical Reports Server (NTRS)

    Candy, Anthony J. (Inventor); Glynn, Christopher C. (Inventor); Barrett, John E. (Inventor)

    2002-01-01

    A fuel injection assembly for a gas turbine engine combustor, including at least one fuel stem, a plurality of concentrically disposed tubes positioned within each fuel stem, wherein a cooling supply flow passage, a cooling return flow passage, and a tip fuel flow passage are defined thereby, and at least one fuel tip assembly connected to each fuel stem so as to be in flow communication with the flow passages, wherein an active cooling circuit for each fuel stem and fuel tip assembly is maintained by providing all active fuel through the cooling supply flow passage and the cooling return flow passage during each stage of combustor operation. The fuel flowing through the active cooling circuit is then collected so that a predetermined portion thereof is provided to the tip fuel flow passage for injection by the fuel tip assembly.

  15. A Novel Method for Determining the Gas Transfer Velocity of Carbon Dioxide in Streams

    NASA Astrophysics Data System (ADS)

    McDowell, M. J.; Johnson, M. S.

    2016-12-01

    Characterization of the global carbon cycle relies on the accurate quantification of carbon fluxes into and out of natural and human-dominated ecosystems. Among these fluxes, carbon dioxide (CO2) evasion from surface water has received increasing attention in recent years. However, limitations of current methods, including determination of the gas transfer velocity (k), compromise our ability to evaluate the significance of CO2 fluxes between freshwater systems and the atmosphere. We developed an automated method to determine gas transfer velocities of CO2 (kCO2), and tested it under a range of flow conditions for a first-order stream of a headwater catchment in southwestern British Columbia, Canada. Our method uses continuous in situ measurements of CO2 concentrations using two non-dispersive infrared (NDIR) sensors enclosed in water impermeable, gas permeable membranes (Johnson et al., 2010) downstream from a gas diffuser. CO2 was injected into the stream at regular intervals via a compressed gas tank connected to the diffuser. CO2 injections were controlled by a datalogger at fixed time intervals and in response to storm-induced changes in streamflow. Following the injection, differences in CO2 concentrations at known distances downstream from the diffuser relative to pre-injection baseline levels allowed us to calculate kCO2. Here we present relationships between kCO2 and hydro-geomorphologic (flow velocity, streambed slope, stream width, stream depth), atmospheric (wind speed and direction), and water quality (stream temperature, pH, electrical conductivity) variables. This method has advantages of being automatable and field-deployable, and it does not require supplemental gas chromatography, as is the case for propane injections typically used to determine k. The dataset presented suggests the potential role of this method to further elucidate the role that CO2 fluxes from headwater streams play in the global carbon cycle. Johnson, M. S., Billett, M. F., Dinsmore, K. J., Wallin, M., Dyson, K. E., & Jassal, R. S. (2010). Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems—method and applications. Ecohydrology, 3(1), 68-78. http://doi.org/10.1002/eco.95

  16. DETERMINATION OF PERCHLORATE AT TRACE LEVELS IN DRINKING WATER BY ION-PAIR EXTRACTION WITH ELECTROSPRAY IONIZATION MASS SPECTROMETRY.

    EPA Science Inventory

    Perchlorate has been added to the U.S. Environmental Protection Agency,s Drinking Water Contaminant Candidate List (CCL). The present work describes the analysis of perchlorate in water by liquid-liquid extraction followed by flow injection electrospray mass spectrometry (ESI/MS...

  17. [Comparison and Discussion of National/Military Standards Related to Flow Measurement of Medical Injection Pump].

    PubMed

    Zhang, Nan; Zhou, Juan; Yu, Jinlai; Hua, Ziyu; Li, Yongxue; Wu, Jiangang

    2018-05-30

    Medical injection pump is a commonly used clinical equipment with high risk. Accurate detection of flow is an important aspect to ensure its reliable operation. In this paper, we carefully studied and analyzed the flow detection methods of three standards being used in medical injection pump detection in our country. The three standards were compared from the aspects of standard device, flow test point selection, length of test time and accuracy judgment. The advantages and disadvantages of these standards were analyzed and suggestions for improvement were put forward.

  18. Stopped-in-loop flow analysis of trace vanadium in water.

    PubMed

    Teshima, Norio; Ohno, Shinsuke; Sakai, Tadao

    2007-01-01

    The new concept of stopped-in-loop flow analysis (SIL-FA) is proposed, and an SIL-FA method for the catalytic determination of vanadium is demonstrated. In an SIL format, a sample solution merges with reagent(s), and the well-mixed solution is loaded into a loop. The solution in the loop is separated by a six-way switching valve from the main stream. While the reaction proceeds in the stationary loop, the SIL-FA system does not need to establish a baseline continuously. This leads to a reduction in reagent consumption and waste generation compared with traditional flow injection analysis.

  19. The Effect of the Air-Delivery Method on Parameters of the Precessing Vortex Core in a Hydrodynamic Vortex Chamber

    NASA Astrophysics Data System (ADS)

    Alekseenko, S. V.; Shtork, S. I.; Yusupov, R. R.

    2018-03-01

    The effect of the method of gas-phase injection into a swirled fluid flow on parameters of a precessing vortex core is studied experimentally. Conditions of the appearance of the vortex-core precession effect were modeled in a hydrodynamic sudden expansion vortex chamber. The dependences of the vortexcore precession frequency, flow-pulsation level, and full pressure differential in the vortex chamber on the consumption gas content in the flow have been obtained. The results of measurements permit one to determine optimum conditions for the most effective control of vortex-core precession.

  20. Flow visualization of film cooling with spanwise injection from a small array of holes and compound-angle injection from a large array

    NASA Technical Reports Server (NTRS)

    Russell, L. M.

    1978-01-01

    Film injection from discrete holes in a smooth, flat plate was studied for two configurations: (1) spanwise injection through a four hole staggered array; and (2) compound angle injection through a 49 hole staggered array. The ratio of boundary layer thicknesses to hole diameter and the Reynolds number were typical of gas turbine film cooling applications. Streaklines showing the motion of the injected air were obtained by photographing small, neutrally buoyant, helium-filled soap bubbles that followed the flow field.

  1. Verification of a two-dimensional infiltration model for the resin transfer molding process

    NASA Technical Reports Server (NTRS)

    Hammond, Vincent H.; Loos, Alfred C.; Dexter, H. Benson; Hasko, Gregory H.

    1993-01-01

    A two-dimensional finite element model for the infiltration of a dry textile preform by an injected resin was verified. The model, which is based on the finite element/control volume technique, determines the total infiltration time and the pressure increase at the mold inlet associated with the RTM process. Important input data for the model are the compaction and permeability behavior of the preform along with the kinetic and rheological behavior of the resin. The compaction behavior for several textile preforms was determined by experimental methods. A power law regression model was used to relate fiber volume fraction to the applied compaction pressure. Results showed a large increase in fiber volume fraction with the initial application of pressure. However, as the maximum fiber volume fraction was approached, the amount of compaction pressure required to decrease the porosity of the preform rapidly increased. Similarly, a power law regression model was used to relate permeability to the fiber volume fraction of the preform. Two methods were used to measure the permeability of the textile preform. The first, known as the steady state method, measures the permeability of a saturated preform under constant flow rate conditions. The second, denoted the advancing front method, determines the permeability of a dry preform to an infiltrating fluid. Water, corn oil, and an epoxy resin, Epon 815, were used to determine the effect of fluid type and viscosity on the steady state permeability behavior of the preform. Permeability values measured with the different fluids showed that fluid viscosity had no influence on the permeability behavior of 162 E-glass and TTI IM7/8HS preforms. Permeabilities measured from steady state and advancing front experiments for the warp direction of 162 E-glass fabric were similar. This behavior was noticed for tests conducted with corn oil and Epon 815. Comparable behavior was observed for the warp direction of the TTI IM7/8HS preform and corn oil. Mold filling and flow visualization experiments were performed to verify the analytical computer model. Frequency dependent electromagnetic sensors were used to monitor the resin flow front as a function of time. For the flow visualization tests, a video camera and high resolution tape recorder were used to record the experimental flow fronts. Comparisons between experimental and model predicted flow fronts agreed well for all tests. For the mold filling tests conducted at constant flow rate injection, the model was able to accurately predict the pressure increase at the mold inlet during the infiltration process. A kinetics model developed to predict the degree of cure as a function of time for the injected resin accurately calculated the increase in the degree of cure during the subsequent cure cycle.

  2. Gain and temperature in a slit nozzle supersonic chemical oxygen-iodine laser with transonic and supersonic injection of iodine

    NASA Astrophysics Data System (ADS)

    Rosenwaks, Salman; Barmashenko, Boris D.; Bruins, Esther; Furman, Dov; Rybalkin, Victor; Katz, Arje

    2002-05-01

    Spatial distributions of the gain and temperament across the flow were studied for transonic and supersonic schemes of the iodine injection in a slit nozzle supersonic chemical oxygen-iodine laser as a function of the iodine and secondary nitrogen flow rate, jet penetration parameter and gas pumping rate. The mixing efficiency for supersonic injection of iodine is found to be much larger than for transonic injection, the maximum values of the gain being approximately 0.65 percent/cm for both injection schemes. Measurements of the gain distribution as a function of the iodine molar flow rate nI2 were carried out. For transonic injection the optimal value of nI2 at the flow centerline is smaller than that at the off axis location. The temperature is distributed homogeneously across the flow, increasing only in the narrow boundary layers near the walls. Opening a leak downstream of the cavity in order to decease the Mach number results in a decrease of the gain and increase of the temperature. The mixing efficiency in this case is much larger than for closed leak.

  3. Comparison of gene delivery techniques for therapeutic angiogenesis ultrasound-mediated destruction of carrier microbubbles versus direct intramuscular injection.

    PubMed

    Kobulnik, Jeremy; Kuliszewski, Michael A; Stewart, Duncan J; Lindner, Jonathan R; Leong-Poi, Howard

    2009-10-27

    This study was designed to compare the efficacy of angiogenic gene delivery by ultrasound-mediated (UM) destruction of intravenous carrier microbubbles to direct intramuscular (IM) injections. Current trials of gene therapy for angiogenesis remain limited by suboptimal, invasive delivery techniques. Hind-limb ischemia was produced by iliac artery ligation in 99 rats. In 32 rats, UM delivery of green fluorescent protein (GFP)/vascular endothelial growth factor-165 (VEGF(165)) plasmid deoxyribonucleic acid was performed. Thirty-five animals received IM injections of VEGF(165)/GFP plasmid. Remaining rats received no treatment. Before delivery (day 14 after ligation) and at days 17, 21, and 28 and week 8 after ligation, microvascular blood volume and microvascular blood flow to the proximal hind limbs were assessed by contrast-enhanced ultrasound (n = 8 per group). Total transfection was assessed by reverse transcriptase-polymerase chain reaction, and localization of transfection was determined by immunohistochemistry. By day 28, both IM and UM delivery of VEGF(165) produced significant increases in microvascular blood volume and microvascular blood flow. Whereas increases in microvascular blood volume were similar between treatment groups, microvascular blood flow was greater (p < 0.005) in UM-treated animals as compared with IM-treated animals, persisting to week 8. The VEGF(165)/GFP messenger ribonucleic acid expression was greater (p < 0.05) for IM-treated animals. A strong GFP signal was detected for both groups and was localized to focal perivascular regions and myocytes around injection sites for IM and to the vascular endothelium of arterioles/capillaries in a wider distribution for UM delivery. Despite lower transfection levels, UM delivery of VEGF(165) is as effective as IM injections. The UM delivery results in directed vascular transfection over a wider distribution, which may account for the more efficient angiogenesis.

  4. Theoretical aspects for estimating anisotropic saturated hydraulic conductivity from in-well or direct-push probe injection tests in uniform media

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Layton, Leif; Nemer, Bassel; Hatfield, Kirk; Mohseni, Ana

    2017-06-01

    Hydraulic conductivity and its anisotropy are fundamental aquifer properties for groundwater flow and transport modeling. Current in-well or direct-push field measurement techniques allow for relatively quick determination of general conductivity profiles with depth. However, capabilities for identifying local scale conductivities in the horizontal and vertical directions are very limited. Here, we develop the theoretical basis for estimating horizontal and vertical conductivities from different types of steady-state single-well/probe injection tests under saturated conditions and in the absence of a well skin. We explore existing solutions and a recent semi-analytical solution approach to the flow problem under the assumption that the aquifer is locally homogeneous. The methods are based on the collection of an additional piece of information in the form of a second injection (or recirculation) test at a same location, or in the form of an additional head or flow observation along the well/probe. Results are represented in dimensionless charts for partial validation against approximate solutions and for practical application to test interpretation. The charts further allow for optimization of a test configuration to maximize sensitivity to anisotropy ratio. The two methods most sensitive to anisotropy are found to be (1) subsequent injection from a lateral screen and from the bottom of an otherwise cased borehole, and (2) single injection from a lateral screen with an additional head observation along the casing. Results may also be relevant for attributing consistent divergences in conductivity measurements from different testing methods applied at a same site or location to the potential effects of anisotropy. Some practical aspects are discussed and references are made to existing methods, which appear easily compatible with the proposed procedures.

  5. Condensation heat transfer and flow friction in silicon microchannels

    NASA Astrophysics Data System (ADS)

    Wu, Huiying; Wu, Xinyu; Qu, Jian; Yu, Mengmeng

    2008-11-01

    An experimental investigation was performed on heat transfer and flow friction characteristics during steam condensation flow in silicon microchannels. Three sets of trapezoidal silicon microchannels, with hydraulic diameters of 77.5 µm, 93.0 µm and 128.5 µm respectively, were tested under different flow and cooling conditions. It was found that both the condensation heat transfer Nusselt number (Nu) and the condensation two-phase frictional multiplier (phi2Lo) were dependent on the steam Reynolds number (Rev), condensation number (Co) and dimensionless hydraulic diameter (Dh/L). With the increase in the steam Reynolds number, condensation number and dimensionless hydraulic diameter, the condensation Nusselt number increased. However, different variations were observed for the condensation two-phase frictional multiplier. With the increase in the steam Reynolds number and dimensionless hydraulic diameter, the condensation two-phase frictional multiplier decreased, while with the increase in the condensation number, the condensation two-phase frictional multiplier increased. Based on the experimental results, dimensionless correlations for condensation heat transfer and flow friction in silicon microchannels were proposed for the first time. These correlations can be used to determine the condensation heat transfer coefficient and pressure drop in silicon microchannels if the steam mass flow rate, cooling rate and geometric parameters are fixed. It was also found that the condensation heat transfer and flow friction have relations to the injection flow (a transition flow pattern from the annular flow to the slug/bubbly flow), and with injection flow moving toward the outlet, both the condensation heat transfer coefficient and the condensation two-phase frictional multiplier increased.

  6. Relationship between aquaporin-5 expression and saliva flow in streptozotocin-induced diabetic mice?

    PubMed

    Soyfoo, M S; Bolaky, N; Depoortere, I; Delporte, C

    2012-07-01

    To investigate the expression and distribution of AQP5 in submandibular acinar cells from sham- and streptozotocin (STZ)-treated mice in relation to the salivary flow. Mice were sham or STZ injected. Distribution of AQP5 subcellular expression in submandibular glands was determined by immunohistochemistry. AQP5 labelling indices (LI), reflecting AQP5 subcellular distribution, were determined in acinar cells. Western blotting was performed to determine the expression of AQP5 in submandibular glands. Blood glycaemia and osmolality and saliva flow rates were also determined. AQP5 immunoreactivity was primarily located at the apical and apical-basolateral membranes of submandibular gland acinar cells from sham- and STZ-treated mice. No significant differences in AQP5 protein levels were observed between sham- and STZ-treated mice. Compared to sham-treated mice, STZ-treated mice had significant increased glycaemia, while no significant differences in blood osmolality were observed. Saliva flow rate was significantly decreased in STZ-treated mice as compared to sham-treated mice. In STZ-treated mice, significant reduction in salivary flow rate was observed without any concomitant modification in AQP5 expression and localization. © 2011 John Wiley & Sons A/S.

  7. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry.

    PubMed

    Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  8. Microfluidic Flow Injection Analysis with Thermal Lens Microscopic Detection for Determination of NGAL

    NASA Astrophysics Data System (ADS)

    Radovanović, Tatjana; Liu, Mingqiang; Likar, Polona; Klemenc, Matjaž; Franko, Mladen

    2015-06-01

    A combined microfluidic flow injection analysis-thermal lens microscopy (FIA-TLM) system was applied for determination of neutrophil gelatinase-associated lipocalin (NGAL)—a biomarker of acute kidney injury. NGAL was determined following a commercial ELISA assay and transfer of the resulting solution into the FIA-TLM system with a 100 m deep microchannel. At an excitation power of 100 mW, the FIA-TLM provided about seven times lower limits of detection (1.5 pg as compared to a conventional ELISA test, and a sample throughput of six samples per minute, which compares favorably with sample throughput of the microtiter plate reader, which reads 96 wells in about 30 min. Comparison of results for NGAL in plasma samples from healthy individuals and for NGAL dynamics in patients undergoing coronary angiography measured with transmission mode spectrometry on a microtiter plate reader and with FIA-TLM showed good agreement. In addition to improved LOD, the high sensitivity of FIA-TLM offers possibilities of a further reduction of the total reaction time of the NGAL ELISA test by sacrificing some of the sensitivity while reducing the duration of individual incubation steps.

  9. Geological factors affecting CO2 plume distribution

    USGS Publications Warehouse

    Frailey, S.M.; Leetaru, H.

    2009-01-01

    Understanding the lateral extent of a CO2 plume has important implications with regards to buying/leasing pore volume rights, defining the area of review for an injection permit, determining the extent of an MMV plan, and managing basin-scale sequestration from multiple injection sites. The vertical and lateral distribution of CO2 has implications with regards to estimating CO2 storage volume at a specific site and the pore pressure below the caprock. Geologic and flow characteristics such as effective permeability and porosity, capillary pressure, lateral and vertical permeability anisotropy, geologic structure, and thickness all influence and affect the plume distribution to varying degrees. Depending on the variations in these parameters one may dominate the shape and size of the plume. Additionally, these parameters do not necessarily act independently. A comparison of viscous and gravity forces will determine the degree of vertical and lateral flow. However, this is dependent on formation thickness. For example in a thick zone with injection near the base, the CO2 moves radially from the well but will slow at greater radii and vertical movement will dominate. Generally the CO2 plume will not appreciably move laterally until the caprock or a relatively low permeability interval is contacted by the CO2. Conversely, in a relatively thin zone with the injection interval over nearly the entire zone, near the wellbore the CO2 will be distributed over the entire vertical component and will move laterally much further with minimal vertical movement. Assuming no geologic structure, injecting into a thin zone or into a thick zone immediately under a caprock will result in a larger plume size. With a geologic structure such as an anticline, CO2 plume size may be restricted and injection immediately below the caprock may have less lateral plume growth because the structure will induce downward vertical movement of the CO2 until the outer edge of the plume reaches a spill point within the structure. ?? 2009 Elsevier Ltd. All rights reserved.

  10. Targeted Drug Delivery in the Suprachoroidal Space by Swollen Hydrogel Pushing.

    PubMed

    Jung, Jae Hwan; Desit, Patcharin; Prausnitz, Mark R

    2018-04-01

    The purpose is to target model drug particles to the posterior region of the suprachoroidal space (SCS) of the eye controlled via pushing by hydrogel swelling. A particle formulation containing 1% hyaluronic acid (HA) with fluorescent polymer particles and a hydrogel formulation containing 4% HA were introduced in a single syringe as two layers without mixing, and injected sequentially into the SCS of the rabbit eye ex vivo and in vivo using a microneedle. Distribution of particles in the eye was determined by microscopy. During injection, the particle formulation was pushed toward the middle of the SCS by the viscous hydrogel formulation, but less than 12% of particles reached the posterior SCS. After injection, the particle formulation was pushed further toward the macula and optic nerve in the posterior SCS by hydrogel swelling and spreading. Heating the eye to 37°C, or injecting in vivo decreased viscosity and mechanical strength of the hydrogel, thereby allowing it to swell and flow further in the SCS. A high salt concentration (9% NaCl) in the hydrogel formulation further increased hydrogel swelling due to osmotic flow into the hydrogel. In this way, up to 76% of particles were delivered to the posterior SCS from an injection made near the limbus. This study shows that model drug particles can be targeted to the posterior SCS by HA hydrogel swelling and pushing without particle functionalization or administering external driving forces.

  11. Models, data available, and data requirements for estimating the effects of injecting saltwater into disposal wells in the greater Altamont-Bluebell oil and gas field, northern Uinta Basin, Utah

    USGS Publications Warehouse

    Freethey, Geoffrey W.

    1988-01-01

    Permits for disposing of salty oil-production water have been issued for 19 wells in the Greater Altamont-Bluebell field. During 1986 more than 500 million gallons of production water were injected into the Duchesne River, Uinta, and Green River Formations through 18 of these wells. The physical and chemical effects of injecting this water into aquifers containing potable water are poorly understood. Interfingering and the structural configuration of these formations add complexity to the description of the geometry and hydrogeology of the ground-water system.A preliminary assessment of the problem indicates that numerical modeling may offer a method of determining the effects of injection. Modeling possibilities include variable-density, three-dimensional flow, sectionaltransport, and areal-transport models. Data needed to develop these models can be derived from a synthesis of geologic, hydrologic, and hydrochemical data already available in the files of State and Federal agencies, oil companies, and private companies. Results from each modeling phase would contribute information for implementing the following phase. The result will be a better understanding of how water moves naturally through the groundwater system, the extent of alterations of both vertical and horizontal flow near the disposal wells, and an overall concept of the effects of deep injection on near-surface aquifers.

  12. Multiplexed detection of nitrate and nitrite for capillary electrophoresis with an automated device for high injection efficiency.

    PubMed

    Gao, Leyi; Patterson, Eric E; Shippy, Scott A

    2006-02-01

    A simple automated nanoliter scale injection device which allows for reproducible 5 nL sample injections from samples with a volume of <1 microL is successfully used for conventional capillary electrophoresis (CE) and Hadamard transform (HT) CE detection. Two standard fused silica capillaries are assembled axially through the device to function as an injection and a separation capillary. Sample solution is supplied to the injection capillary using pressure controlled with a solenoid valve. Buffer solution flows gravimetrically by the junction of the injection and separation capillaries and is also gated with a solenoid valve. Plugs of sample are pushed into the space between the injection and separation capillaries for electrokinectic injection. To evaluate the performance of the injection device, several optimizations are performed including the influence of flow rates, the injected sample volume and the control of the buffer transverse flow on the overall sensitivity. The system was then applied to HT-CE-UV detection for the signal-to-noise ratio (S/N) improvement of the nitric oxide (NO) metabolites, nitrite and nitrate. In addition, signal averaging was performed to explore the possibility of greater sensitivity enhancements compared to single injections.

  13. Studies of the haemodynamic effects of creatine phosphate in man.

    PubMed Central

    Hurlow, R A; Aukland, A; Hardman, J; Whittington, J R

    1982-01-01

    1 The haemodynamic effects of intravenous creatine phosphate 1000 mg have been studied. 2 During the first 60 min following drug administration heart rate and blood pressure did not change but cardiac output fell significantly by approximately 18%. Calculated total peripheral resistance showed a corresponding significant rise, the maximum increase being approximately 24%. All these changes were beginning to diminish within 90 min after the injection. 3 Total limb blood flow measured in both arm and leg (using venous occlusion strain-gauge plethysmography) showed no appreciable changes following injection of creatine phosphate. 4 There was a progressive reduction in leg muscle blood flow (Xe133 clearance method) following injection which was statistically significant with respect to the initial level and reached a minimum (46% reduction) 50 min after the injection. 5 Skin blood flow, estimated by infra-red photoplethysmography, showed changes complementary to those seen with muscle flow. There was a progressive and significant rise to a peak (73% increase) 30 min after the injection. 6 No adverse reactions to the injections were noted. 7 Reduced cardiac output in the absence of altered total limb blood flow presumably reflects a reduction in visceral blood flow, which was not measured in this study. Within the limbs, creatine phosphate appears to result in a redistribution of blood flow from muscle to skin. Thus, these preliminary results suggest that intravenous creatine phosphate could be clinically useful in situations where short term improvement in skin blood flow would be advantageous and that further controlled studies would be justified. PMID:7093109

  14. Experimental determination of sorption in fractured flow systems

    NASA Astrophysics Data System (ADS)

    Zimmerman, Mitchell D.; Bennett, Philip C.; Sharp, John M.; Choi, Wan-Joo

    2002-09-01

    Fracture "skins" are alteration zones on fracture surfaces created by a variety of biological, chemical, and physical processes. Skins increase surface area, where sorption occurs, compared to the unaltered rock matrix. This study examines the sorption of organic solutes on altered fracture surfaces in an experimental fracture-flow apparatus. Fracture skins containing abundant metal oxides, clays, and organic material from the Breathitt Formation (Kentucky, USA) were collected in a manner such that skin surface integrity was maintained. The samples were reassembled in the lab in a flow-through apparatus that simulated ˜2.7 m of a linear fracture "conduit." A dual-tracer injection scheme was utilized with the sorbing or reactive tracer compared to a non-reactive tracer (chloride) injected simultaneously. Sorption was assessed from the ratio of the first temporal moments of the breakthrough curves and from the loss of reactive tracer mass and evaluated as a function of flow velocity and solute type. The breakthrough curves suggest dual-flow regimes in the fracture with both sorbing and non-sorbing flow fields. Significant sorption occurs for the reactive components, and sorption increased with decreasing flow rate and decreasing compound solubility. Based on moment analysis, however, there was little retardation of the center of solute mass. These data suggest that non-equilibrium sorption processes dominate and that slow desorption and boundary layer diffusion cause extensive tailing in the breakthrough curves.

  15. An investigation into the injection molding of PMR-15 polyimide

    NASA Technical Reports Server (NTRS)

    Colaluca, M. A.

    1984-01-01

    The chemorheological behavior of the PRM-15 molding compounds were characterized, the range of suitable processing parameters for injection molding in a reciprocating screw injection molding machine was determined, and the effects of the injection molding processing parameters on the mechanical properties of molded PMR-15 parts were studied. The apparatus and procedures for measuring viscosity and for determining the physical response of the material during heating are described. Results show that capillary rheometry can be effectively used with thermosets if the equipment is designed to overcome some of the inherent problems of these materials. A uniform temperature was provided in the barrel by using a circulating hot oil system. Standard capillary rheometry methods can provide the dependence of thermoset apparent viscosity on shear rate, temperature, and time. Process conditions resulting in complete imidization should be carefully defined. Specification of controlled oven temperature is inadequate and can result in incomplete imidization. For completely imidized PMR-15 heat at 15 C/min melt flow without gas evolution occurs in the temperature range of 325 C to 400 C.

  16. Investigation of Mixing a Supersonic Stream with the Flow Downstream of a Wedge

    NASA Technical Reports Server (NTRS)

    Sheeley, Joseph

    1997-01-01

    The flow characteristics in the base region of a two-dimensional supersonic compression ramp are investigated. A stream-wise oriented air jet, M = 1.75, is injected through a thin horizontal slot into a supersonic air main flow, M = 2.3, at the end of a two-dimensional compression ramp. The velocity profile and basic characteristics of the flow in the base region immediately following the ramp are determined. Visualization of the flowfield for qualitative observations is accomplished via Dark Central Ground Interferometry (DCGI). Two-dimensional velocity profiles are obtained using Laser Doppler Velocimetry (LDV). The study is the initial phase of a four-year investigation of base flow mixing. The current study is to provide more details of the flowfield.

  17. Semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow

    NASA Astrophysics Data System (ADS)

    Cao, M.-H.; Jiang, H.-K.; Chin, J.-S.

    1982-04-01

    An improved flat-fan spray model is used for the semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow. The model assumes that, due to the aerodynamic force of the high-velocity cross air flow, the injected fuel immediately forms a flat-fan liquid sheet perpendicular to the cross flow. Once the droplets have been formed, the trajectories of individual droplets determine fuel distribution downstream. Comparison with test data shows that the proposed model accurately predicts liquid fuel distribution at any point downstream of a plain orifice injector under high-velocity, low-temperature uniform cross-stream air flow over a wide range of conditions.

  18. Determination of scandium in acid mine drainage by ICP-OES with flow injection on-line preconcentration using oxidized multiwalled carbon nanotubes.

    PubMed

    Jerez, Javier; Isaguirre, Andrea C; Bazán, Cristian; Martinez, Luis D; Cerutti, Soledad

    2014-06-01

    An on-line scandium preconcentration and determination system implemented with inductively coupled plasma optical emission spectrometry associated with flow injection was studied. Trace amounts of scandium were preconcentrated by sorption on a minicolumn packed with oxidized multiwalled carbon nanotubes, at pH 1.5. The retained analyte was removed from the minicolumn with 30% (v/v) nitric acid. A total enrichment factor of 225-fold was obtained within a preconcentration time of 300 s (for a 25 mL sample volume). The overall time required for preconcentration and elution of 25 mL of sample was about 6 min; the throughput was about 10 samples per hour. The value of the detection limit was 4 ng L(-1) and the precision for 10 replicate determinations at 100 ng L(-1) Sc level was 5% relative standard deviation, calculated from the peak heights obtained. The calibration graph using the preconcentration system was linear with a correlation coefficient of 0.9996 at levels near the detection limits up to at least 10 mg L(-1). After optimization, the method was successfully applied to the determination of Sc in an acid drainage from an abandoned mine located in the province of San Luis, Argentina. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Flow injection amperometric sensor with a carbon nanotube modified screen printed electrode for determination of hydroquinone.

    PubMed

    Upan, Jantima; Reanpang, Preeyaporn; Chailapakul, Orawon; Jakmunee, Jaroon

    2016-01-01

    Flow injection amperometric (FI-Amp) sensor was developed for sensitive and selective determination of hydroquinone. A simple screen printed carbon electrode (SPCE) was modified with various nanomaterials for improvement of sensitivity on the determination of quinone. As a result, the appropriate sensitivity is obtained from the SPCE modified with carbon nanotube (CNT) which indicated that CNT contributed to the transfer of electron to quinone. The reproducibility (n=9) and repeatability (n=111) of SPCE-CNT were obtained at 4.4% and 3.6%RSD, respectively. The SPCE-CNT electrode and enzymatic column were incorporated to the FI-Amp system to determine hydroquinone. Laccase was immobilized on silica gel using a cross-linking method by glutaraldehyde modification and then packed in the column. The laccase column has high efficiency for catalytic oxidation of hydroquinone to quinone, which further detects by amperometric detection. Parameters affecting response of the proposed sensor, i.e., pH, ionic strength, and temperature have been optimized. The proposed system provided a wide linear range between 1 and 50 µM with detection limit of 0.1 µM. Satisfactory recoveries in the range of 91.2-103.8% were obtained for the analysis of water sample. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine

    NASA Astrophysics Data System (ADS)

    Chirkov, D. V.; Shcherbakov, P. K.; Cherny, S. G.; Skorospelov, V. A.; Turuk, P. A.

    2017-09-01

    At full and over load operating points, some Francis turbines experience strong self-excited pressure and power oscillations. These oscillations are occuring due to the hydrodynamic instability of the cavitating fluid flow. In many cases, the amplitude of such pulsations may be reduced substantially during the turbine operation by the air injection/ admission below the runner. Such an effect is investigated numerically in the present work. To this end, the hybrid one-three-dimensional model of the flow of the mixture "liquid-vapor" in the duct of a hydroelectric power station, which was proposed previously by the present authors, is augmented by the second gaseous component — the noncondensable air. The boundary conditions and the numerical method for solving the equations of the model are described. To check the accuracy of computing the interface "liquid-gas", the numerical method was applied at first for solving the dam break problem. The algorithm was then used for modeling the flow in a hydraulic turbine with air injection below the runner. It is shown that with increasing flow rate of the injected air, the amplitude of pressure pulsations decreases. The mechanism of the flow structure alteration in the draft tube cone has been elucidated, which leads to flow stabilization at air injection.

  1. Reverse-Tangent Injection in a Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2007-01-01

    Injection of working fluid into a centrifugal compressor in the reverse tangent direction has been invented as a way of preventing flow instabilities (stall and surge) or restoring stability when stall or surge has already commenced. The invention applies, in particular, to a centrifugal compressor, the diffuser of which contains vanes that divide the flow into channels oriented partly radially and partly tangentially. In reverse-tangent injection, a stream or jet of the working fluid (the fluid that is compressed) is injected into the vaneless annular region between the blades of the impeller and the vanes of the diffuser. As used here, "reverse" signifies that the injected flow opposes (and thereby reduces) the tangential component of the velocity of the impeller discharge. At the same time, the injected jet acts to increase the radial component of the velocity of the impeller discharge.

  2. Droplet Breakup in Expansion-contraction Microchannels

    PubMed Central

    Zhu, Pingan; Kong, Tiantian; Lei, Leyan; Tian, Xiaowei; Kang, Zhanxiao; Wang, Liqiu

    2016-01-01

    We investigate the influences of expansion-contraction microchannels on droplet breakup in capillary microfluidic devices. With variations in channel dimension, local shear stresses at the injection nozzle and focusing orifice vary, significantly impacting flow behavior including droplet breakup locations and breakup modes. We observe transition of droplet breakup location from focusing orifice to injection nozzle, and three distinct types of recently-reported tip-multi-breaking modes. By balancing local shear stresses and interfacial tension effects, we determine the critical condition for breakup location transition, and characterize the tip-multi-breaking mode quantitatively. In addition, we identify the mechanism responsible for the periodic oscillation of inner fluid tip in tip-multi-breaking mode. Our results offer fundamental understanding of two-phase flow behaviors in expansion-contraction microstructures, and would benefit droplet generation, manipulation and design of microfluidic devices. PMID:26899018

  3. Computational flow field in energy efficient engine (EEE)

    NASA Astrophysics Data System (ADS)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2016-11-01

    In this paper, preliminary results for the recently-updated Open National Combustor Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the Eusing different ways to introduce the fuel injection. Supported by NASA's Transformational Tools and Technologies project.

  4. Computational Flow Field in Energy Efficient Engine (EEE)

    NASA Technical Reports Server (NTRS)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2016-01-01

    In this paper, preliminary results for the recently-updated Open National Combustion Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the EEE using different ways to introduce the fuel injection.

  5. Time of travel and dispersion in a selected reach of Roberts Creek, Clayton County, Iowa

    USGS Publications Warehouse

    Kolpin, D.W.; Kalkhoff, S.J.

    1992-01-01

    Time of travel was determined by dye tracing, using rhodamine WT as the tracer. One dyeinjection site and three sampling sites were used to measure time of travel. Two dye-tracing tests were conducted at discharges having flow-duration values of 48 and 80 percent. The discharges at the time of the two dye-tracing tests approximated medium- and low-flow conditions. The average stream velocity in the study area was 0.23 foot per second during medium-flow conditions, March 20 to 22,1990, and 0.07 foot per second during low-flow conditions, April 30 to May 12, 1990. The injected dye dispersed in a plume that lasted about 18 hours during medium flow and about 64 hours during low flow at the downstream site.

  6. Fluid flow characteristics during polymer flooding

    NASA Astrophysics Data System (ADS)

    Yao, S. L.; Dou, H. E.; Wu, M.; Zhang, H. J.

    2018-05-01

    At present the main problems of polymer flooding is the high injection pressure which could not guarantee the later injection. In this paper the analyses of polymer’s physical properties and its solution’s variable movement characteristics in porous media reveal the inevitable trend of decrease in injection capacity and liquid production due to the increase of fluid viscosity and flow rate with more flow resistance. The injection rate makes the primary contribution to the active viscosity of the polymer solution in porous media. The higher injection rate, the greater shearing degradation and the more the viscosity loss. Besides the quantitative variation, the rate also changes qualitatively as that the injection rate demonstrates composite change of injection intensity and density. Due to the different adjustment function of the polymer solution on its injection profile, there should be different adjustment model of rates in such stages. Here in combination of the on-site recognitions, several conclusions and recommendations are made based on the study of the injection pattern adjustment during polymer flooding to improve the pressure distribution system, which would be a meaningful reference for extensive polymer flooding in the petroleum industry.

  7. Cu2+-imprinted cross-linked chitosan resin as micro-column packing materials for online chemiluminescence determination of trace copper.

    PubMed

    Nie, Feng; Hao, Liang; Gao, Mei; Wu, Yingchun; Li, Xinsheng; Yu, Sha

    2011-01-01

    The Cu(2+)-imprinted cross-linked chitosan resin was synthesized and the binding characteristic of the resin to Cu(2+) was evaluated. The prepared resin was packed into a micro-glass column and used as micro-separating column. The micro-separating column was connected into the chemiluminescence flow system and placed in front of the window of the photomultiplier tube. Based on the luminol-hydrogen peroxide chemiluminescence system, a flow injection online chemiluminescence method for determination of trace copper was developed and trace Cu(2+) in complex samples was successfully determined. The proposed method improved the shortcomings of chemiluminescence method's poor selectivity. Copyright © 2010 John Wiley & Sons, Ltd.

  8. Supersonic Pulsed Injection

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Harding, G. C.; Diskin, G. S.

    2001-01-01

    An injector has been developed to provide high-speed high-frequency (order 10 kHz) pulsed a supersonic crossflow. The injector nozzle is formed between the fixed internal surface of the nozzle and a freely rotating three- or four-sided wheel embedded within the device. Flow-induced rotation of the wheel causes the nozzle throat to open and close at a frequency proportional to the speed of sound of the injected gas. Measurements of frequency and mass flow rate as a function of supply pressure are discussed for various injector designs. Preliminary results are presented for wall-normal injection of helium into a Mach-2 ducted airflow. The data include schlieren images in the injectant plume in a plane normal to the flow, downstream of injection.

  9. Film cooling effectiveness and heat transfer with injection through holes

    NASA Technical Reports Server (NTRS)

    Eriksen, V. L.

    1971-01-01

    An experimental investigation of the local film cooling effectiveness and heat transfer downstream of injection of air through discrete holes into a turbulent boundary layer of air on a flat plate is reported. Secondary air is injected through a single hole normal to the main flow and through both a single hole and a row of holes spaced at three diameter intervals with an injection angle of 35 deg to the main flow. Two values of the mainstream Reynolds number are used; the blowing rate is varied from 0.1 to 2.0. Photographs of a carbon dioxide-water fog injected into the main flow at an angle of 90 deg are also presented to show interaction between the jet and mainstream.

  10. Analysis of a Rocket Based Combined Cycle Engine during Rocket Only Operation

    NASA Technical Reports Server (NTRS)

    Smith, T. D.; Steffen, C. J., Jr.; Yungster, S.; Keller, D. J.

    1998-01-01

    The all rocket mode of operation is a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. However, outside of performing experiments or a full three dimensional analysis, there are no first order parametric models to estimate performance. As a result, an axisymmetric RBCC engine was used to analytically determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and statistical regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, percent of injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inject diameter ratio. A perfect gas computational fluid dynamics analysis was performed to obtain values of vacuum specific impulse. Statistical regression analysis was performed based on both full flow and gas generator engine cycles. Results were also found to be dependent upon the entire cycle assumptions. The statistical regression analysis determined that there were five significant linear effects, six interactions, and one second-order effect. Two parametric models were created to provide performance assessments of an RBCC engine in the all rocket mode of operation.

  11. Numerical study of vorticity-enhanced heat transfer

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Alben, Silas

    2013-11-01

    Vortices produced by vibrated reeds and flapping foils can improve heat transfer efficiency in electronic hardware. Vortices enhance forced convection by boundary layer separation and thermal mixing in the bulk flow. In this work, we modeled and simulated the fluid flow and temperature in a 2-D channel flow with vortices injected at the upstream boundary. We classified four types of vortex streets depending on the Reynolds number and vortices' strengths and spacings, and studied the different vortex dynamics in each situation. We then used Lagrangian coherent structures (LCS) to study the effect of the vortices on mixing and determined how the Nusselt number and Coefficients of performance vary with flow parameters and Peclet numbers.

  12. Experiments in dilution jet mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.; Berenfeld, A.

    1983-01-01

    Experimental results are presented on the mixing of a single row of jets with an isothermal mainstream in a straight duct, with flow and geometric variations typical of combustion chambers in gas turbine engines included. It is found that at a constant momentum ratio, variations in the density ratio have only a second-order effect on the profiles. A first-order approximation to the mixing of jets with a variable temperature mainstream can, it is found, be obtained by superimposing the jets-in-an-isothermal-crossflow and mainstream profiles. Another finding is that the flow area convergence, especially injection-wall convergence, significantly improves the mixing. For opposed rows of jets with the orifice cone centerlines in-line, the optimum ratio of orifice spacing to duct height is determined to be 1/2 of the optimum value for single injection at the same momentum ratio. For opposed rows of jets with the orifice centerlines staggered, the optimum ratio of orifice spacing to duct height is found to be twice the optimum value for single side injection at the same momentum ratio.

  13. Flow injection chemiluminescence determination of lercanidipine based on N-chlorosuccinimide-eosin Y post-chemiluminescence reaction.

    PubMed

    Wang, Guowei; Zhao, Fang; Gao, Ying

    2014-12-01

    A novel post-chemiluminescence (PCL) reaction was discovered when lercanidipine was injected into the CL reaction mixture of N-chlorosuccinimide with alkaline eosin Y in the presence of cetyltrimethylammonium bromide (CTAB), where eosin Y was used as the CL reagent and CTAB as the surfactant. Based on this observation, a simple and highly sensitive PCL method combined with a flow injection (FI) technique was developed for the assay of lercanidipine. Under optimum conditions, the CL signal was linearly related to the concentration of lercanidipine in the range 7.0 × 10(-10) to 3.0 × 10(-6)  g/mL with a detection limit of 2.3 × 10(-10) g/mL (3σ). The relative standard deviation (RSD) was 2.1% for 1.0 × 10(-8) g/mL lercanidipine (n = 13). The proposed method had been applied to the estimation of lercanidipine in tablets and human serum samples with satisfactory results. The possible CL mechanism is also discussed briefly. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Study on cyclic injection gas override in condensate gas reservoir

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Zhu, Weiyao; Xia, Jing; Li, Baozhu

    2018-02-01

    Cyclic injection gas override in condensate gas reservoirs for the large density difference between injection gas and condensate gas has been studied, but no relevant mathematical models have been built. In this paper, a mathematical model of cyclic injection gas override in condensate gas reservoir is established, considering density difference between the injected gas and the remaining condensate gas in the formation. The vertical flow ratio and override degree are used to reflect the override law of injected dry gas. Combined with the actual data of Tarim gas condensate reservoir, the parameters of injected dry gas override are calculated and analysed. The results show that the radial pressure rises or falls rapidly and the pressure gradient varies greatly in the near wells. The radial pressure varies slowly and the pressure gradient changes little in the reservoir which is within a certain distance from the wells. In the near injection well, the injected dry gas mainly migrates along the radial direction, and the vertical migration is relatively not obvious. With the distance from the injection well, the vertical flow ratio and override degree of injected dry gas increases, and the vertical flow ratio reaches the maximum in the middle of the injection well and the production well.

  15. Turbine disk cavity aerodynamics and heat transfer

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Daniels, W. A.

    1992-01-01

    Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant flow injected into the disk cavities; (3) coolant density; (4) leakage flows through the seal between blades; and (5) the role that each of these various flows has in determining the adiabatic recovery temperature at all of the critical locations within the cavities. The model and the test apparatus provide close geometrical and aerodynamic simulation of all the two-stage cavity flow regions for the SSME High Pressure Fuel Turbopump and the ability to simulate the sources and sinks for each cavity flow.

  16. Spheromak plasma flow injection into a torus chamber and the HIST plasmas

    NASA Astrophysics Data System (ADS)

    Hatuzaki, Akinori

    2005-10-01

    The importance of plasma flow or two-fluid effect is recognized in understanding the relaxed states of high-beta torus plasmas, start-up and current drive by non-coaxial helicity injection, magnetic reconnection and plasma dynamo in fusion, laboratory and space plasmas. As a new approach to create a flowing two-fluid plasma equilibrium, we have tried to inject tangentially the plasma flow with spheromak-type magnetic configurations into a torus vacuum chamber with an external toroidal magnetic field (TF) coil. In the initial experiments, the RFP-like configuration with helical magnetic structures was realized in the torus vessel. The ion flow measurement with Mach probes showed that the ion flow keeps the same direction despite the reversal of the toroidal current and the axial electric field. The ion fluid comes to flow in the opposite direction to the electron fluid by the reversal of TF. This result suggests that not only electron but also ion flow contributes significantly on the reversed toroidal current. In this case, the ratio of ui to the electron flow velocity ue is estimated as ui/ue ˜ 1/2. We also will inject the spheromak flow into the HIST spherical torus plasmas to examine the possibilities to embedding the two-fluid effect in the ST plasmas.

  17. Reservoir response to thermal and high-pressure well stimulation efforts at Raft River, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plummer, Mitchell; Bradford, Jacob; Moore, Joseph

    An injection stimulation test begun at the Raft River geothermal reservoir in June, 2013 has produced a wealth of data describing well and reservoir response via high-resolution temperature logging and distributed temperature sensing, seismic monitoring, periodic borehole televiewer logging, periodic stepped flow rate tests and tracer injections before and after stimulation efforts. One of the primary measures of response to the stimulation is the relationship between fluid pressure and flow rate, short-term during forced flow rate changes and the long-term change in injectivity. In this paper we examine that hydraulic response using standard pumping test analysis methods, largely because pressuremore » response to the stimulation was not detected, or measurable, in other wells. Analysis of stepped rate flow tests supports the inference from other data that a large fracture, with a radial extent of one to several meters, intersects the well in the target reservoir, suggests that the flow regime is radial to a distance of only several meters and demonstrates that the pressure build-up cone reaches an effective constant head at that distance. The well’s longer term hydraulic response demonstrated continually increasing injectivity but at a dramatically faster rate later from ~2 years out and continuing to the present. The net change in injectivity is significantly greater than observed in other longterm injectivity monitoring studies, with an approximately 150–fold increase occurring over ~2.5 years. While gradually increasing injectivity is a likely consequence of slow migration of a cooling front, and consequent dilation of fractures, the steady, ongoing, rate of increase is contrary to what would be expected in a radial or linear flow regime, where the cooling front would slow with time. As a result, occasional step-like changes in injectivity, immediately following high-flow rate tests suggest that hydro shearing during high-pressure testing altered the near-well permeability structure.« less

  18. On the existence of solutions of an equation arising in the theory of laminar flow in a uniformly porous channel with injection

    NASA Technical Reports Server (NTRS)

    Shih, K. G.

    1986-01-01

    The existence of concave solutions of Berman's equation which describes the laminar flow in channels with injection through porous walls is established. It was found that the (unique) concave solutions exist for all injection Reynolds number R < 0.

  19. Tracer simulation study of potential solute movement in Port Royal Sound, South Carolina

    USGS Publications Warehouse

    Kilpatrick, F.A.; Cummings, T. Ray

    1972-01-01

    A tracer study was conducted in Port Royal Sound to simulate the movement and ultimate pattern of concentration of a solute continuously injected into the flow. A total of 750 pounds of Rhodamine WT dye was injected by boat during a period of 24.8 hours in a line across the Colleton River. During the following 43 days, samples of water were taken at selected points in the sound, and the concentration of dye in the samples was determined by fluorometric analysis. The data obtained in the field study were used with theoretical models to compute the ultimate pattern of concentration of nonconservative and conservative solutes for a hypothetical continuous injection at the site on the Colleton River.

  20. Finite-Difference Solutions of the Alternate Turbopump Development High-Pressure Oxidizer Turbopump Pump-End Ball-Bearing Cavity Flows

    NASA Technical Reports Server (NTRS)

    Benjamin, Theodore G.; Garcia, Roberto; Mcconnaughey, Paul K.; Wang, Ten-See; Vu, Bruce T.; Dakhoul, Youssef

    1993-01-01

    These analyses were undertaken to aid in the understanding of flow phenomena in the Alternate Turbopump Development (ATD) High-pressure Oxidizer Turbopump (HPOTP) Pump-end ball bearing (PEBB) cavities and their roles in turbopump vibration initiation and bearing distress. This effort was being performed to provide timely support to the program in a decision as to whether or not the program should be continued. In the first case, it was determined that a change in bearing through flow had no significant effect on axial preload. This was a follow-on to a previous study which had resulted in a redesign of the bearing exit cavity which virtually eliminated bearing axial loading. In the second case, a three-dimensional analysis of the inner-race-guided cage configuration was performed so as to determine the pressure distribution on the outer race when the shaft is 0.0002 inches off-center. The results indicate that there is virtually no circumferential pressure difference caused by the offset to contribute to bearing tilt. In the third case, axisymmetric analyses were performed on an outer-race guided cage configuration to determine the magnitude of tangential flow entering the bearing. The removed-shoulder case was analyzed as was the static diverter case. A third analysis where the preload spring was shielded by a sheet of metal for the baseline case was also performed. It was determined that the swirl entering the bearing was acceptable and the project decided to use the outer-race-guided cage configuration. In the fourth case, more bearing configurations were analyzed. These analyses included thermal modeling so as to determine the added benefit of injecting colder fluid directly onto the bearing inner-race contact area. The results of these analyses contributed to a programmatic decision to include coolant injection in the design.

  1. Fluorescence microplate readers as an alternative to flow injection analysis for determination of wort beta-glucan

    USDA-ARS?s Scientific Manuscript database

    Wort beta-glucan concentration is a critical malting quality parameter used to identify and avoid potential brewhouse filtration problems. ASBC method Wort-18 is widely used in malt analysis laboratories and brewhouses to measure wort beta-glucan levels. However, the chemistry underlying the method...

  2. Differential determination of chromium(VI) and total chromium in natural waters using flow injection on-line separation and preconcentration electrothermal atomic absorption spectrometry.

    PubMed

    Sperling, M; Yin, X; Welz, B

    1992-03-01

    A rapid, sensitive and selective method for the differential determination of CrIII and CrVI in natural waters is described. Chromium(vi) can be determined directly by flow injection on-line sorbent extraction preconcentration coupled with electrothermal atomic absorption spectrometry using sodium diethyldithiocarbamate as the complexing agent and C18 bonded silica reversed-phase sorbent as the column material. Total Cr can be determined after oxidation of CrIII to CrVI by potassium peroxydisulfate. Chromium(III) can be calculated by difference. The optimum conditions for sorbent extraction of CrVI and oxidation of CrIII to CrVI are evaluated. A 12-fold enhancement in sensitivity compared with direct introduction of 40 microliters samples was achieved after preconcentration for 60 s, giving detection limits of 16 ng l-1 for CrVI and 18 ng l-1 for total Cr (based on 3 sigma). Results obtained for sea-water and river water reference materials were all within the certified range for total Cr with a precision of better than 10% relative standard deviation in the range 100-200 ng l-1. The selectivity of the determination of CrVI was evaluated by analysing spiked reference materials in the presence of CrIII, resulting in quantitative recovery of CrVI.

  3. [Flow injection-spectrophotometric determination of total dissolved nitrogen in seawater based on quantificational solenoid valves].

    PubMed

    Han, Bin; Cao, Lei; Zheng, Li; Zang, Jia-ye; Wang, Xiao-ru

    2012-01-01

    Using three pipe clamp solenoid valves to replace the traditional six-port valve for sample quota, a set of multi-channel flow injection analyzer was designed in the present paper. The authors optimized optimum instrumental testing condition, and realized determination and analysis of total dissolved nitrogen in seawaters. The construction of apparatus is simple and it has the potential to be used for analysis of total dissolved nitrogen. The sample throughput of total dissolved nitrogen was 27 samples per hour. The linear range of total dissolved nitrogen was 50.0-1 000.0 microgN x L(-3) (r > or = 0.999). The detection limit was 7.6 microgN x L(-3). The recovery of total dissolved nitrogen was 87.3%-107.2%. The relative standard deviation for total dissolved nitrogen was 1.35%-6.32% (n = 6). After the t-test analysis, it does not have the significance difference between this method and national standard method. It is suitable for fast analysis of total dissolved nitrogen in seawater.

  4. Fast Determination of Yttrium and Rare Earth Elements in Seawater by Inductively Coupled Plasma-Mass Spectrometry after Online Flow Injection Pretreatment.

    PubMed

    Zhu, Zuhao; Zheng, Airong

    2018-02-23

    A method for daily monitoring of yttrium and rare earth elements (YREEs) in seawater using a cheap flow injection system online coupled to inductively coupled plasma-mass spectrometry is reported. Toyopearl AF Chelate 650M ® resin permits separation and concentration of YREEs using a simple external calibration. A running cycle consumed 6 mL sample and took 5.3 min, providing a throughput of 11 samples per hour. Linear ranges were up to 200 ng kg -1 except Tm (100 ng kg -1 ). The precision of the method was <6% (RSDs, n = 5), and recoveries ranged from 93% to 106%. Limits of detection (LODs) were in the range 0.002 ng kg -1 (Tm) to 0.078 ng kg -1 (Ce). Good agreement between YREEs concentrations in CASS-4 and SLEW-3 obtained in this work and results from other studies was observed. The proposed method was applied to the determination of YREEs in seawater from the Jiulong River Estuary and the Taiwan Strait.

  5. Determination of arsenic in traditional Chinese medicine by microwave digestion with flow injection-inductively coupled plasma mass spectrometry (FI-ICP-MS).

    PubMed

    Ong, E S; Yong, Y L; Woo, S O

    1999-01-01

    A simple, rapid, and sensitive method with high sample throughput was developed for determining arsenic in traditional Chinese medicine (TCM) in the form of uncoated tablets, sugar-coated tablets, black pills, capsules, powders, and syrups. The method involves microwave digestion with flow injection-inductively coupled plasma mass spectrometry (FI-ICP-MS). Method precision was 2.7-10.1% (relative standard deviation, n = 6) for different concentrations of arsenic in different TCM samples analyzed by different analysts on different days. Method accuracy was checked with a certified reference material (sea lettuce, Ulva lactuca, BCR CRM 279) for external calibration and by spiking arsenic standard into different TCMs. Recoveries of 89-92% were obtained for the certified reference material and higher than 95% for spiked TCMs. Matrix interference was insignificant for samples analyzed by the method of standard addition. Hence, no correction equation was used in the analysis of arsenic in the samples studied. Sample preparation using microwave digestion gave results that were very similar to those obtained by conventional wet acid digestion using nitric acid.

  6. Mitigation of tip vortex cavitation by means of air injection on a Kaplan turbine scale model

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2014-03-01

    Kaplan turbines operating at full-load conditions may undergo excessive vibration, noise and cavitation. In such cases, damage by erosion associated to tip vortex cavitation can be observed at the discharge ring. This phenomenon involves design features such as (1) overhang of guide vanes; (2) blade profile; (3) gap increasing size with blade opening; (4) suction head; (5) operation point; and (6) discharge ring stiffness, among others. Tip vortex cavitation may cause erosion at the discharge ring and draft tube inlet following a wavy pattern, in which the number of vanes can be clearly identified. Injection of pressurized air above the runner blade centerline was tested as a mean to mitigate discharge ring cavitation damage on a scale model. Air entrance was observed by means of a high-speed camera in order to track the air trajectory toward its mergence with the tip vortex cavitation core. Post-processing of acceleration signals shows that the level of vibration and the RSI frequency amplitude decrease proportionally with air flow rate injected. These findings reveal the potential mitigating effect of air injection in preventing cavitation damage and will be useful in further tests to be performed on prototype, aiming at determining the optimum air flow rate, size and distribution of the injectors.

  7. Modeling of coulpled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappa, F.; Rutqvist, J.

    2010-06-01

    The interaction between mechanical deformation and fluid flow in fault zones gives rise to a host of coupled hydromechanical processes fundamental to fault instability, induced seismicity, and associated fluid migration. In this paper, we discuss these coupled processes in general and describe three modeling approaches that have been considered to analyze fluid flow and stress coupling in fault-instability processes. First, fault hydromechanical models were tested to investigate fault behavior using different mechanical modeling approaches, including slip interface and finite-thickness elements with isotropic or anisotropic elasto-plastic constitutive models. The results of this investigation showed that fault hydromechanical behavior can be appropriatelymore » represented with the least complex alternative, using a finite-thickness element and isotropic plasticity. We utilized this pragmatic approach coupled with a strain-permeability model to study hydromechanical effects on fault instability during deep underground injection of CO{sub 2}. We demonstrated how such a modeling approach can be applied to determine the likelihood of fault reactivation and to estimate the associated loss of CO{sub 2} from the injection zone. It is shown that shear-enhanced permeability initiated where the fault intersects the injection zone plays an important role in propagating fault instability and permeability enhancement through the overlying caprock.« less

  8. Optimization of Tangential Mass Injection for Minimizing Flow Separation in a Scramjet Inlet

    DTIC Science & Technology

    1991-12-01

    34 Aerospace EnQineering, Vol. 11. No. 8, August 1991, p.23. 26. Heppenheimer , Thomas A . Lecture notes from Hypersonic Technologies seminar. University...AFIT/GAE/ENY,/9 lD-2 ( /~ AD-A243 868 "DTIC OPTIMIZATION OF TANGENTIAL MASS INJECTION FOR MINIMIZING FLOW SEPARATION IN A SC.R-.MJET INLET THESIS...OF TANGENTIAL MASS INJECTION FOR MINIMIZING FLOW SEPARATION IN A SCRAMJET INLEr THESIS Presented to the Faculty of the School of E.ngineering of the

  9. A theoretical model of the influence of spray on the exchange of momentum, with storm and hurricane winds

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Ezhova, Ekaterina; Soustova, Irina

    2013-04-01

    A stochastic model of the "life cycle" of a droplet, the torn off the crest of a steep surface wave and then falling down to the water is constructed. The model includes the following constituents: i) a model of motion of a heavy particle in the forcing air flow (equation of motion), ii) a model of the wind flow (wind velocity, wave-induced disturbances, turbulent fluctuations), iii) a model of spray injection, iiii) the droplet statistics (size distribution, wind-speed dependence) The interaction of water droplets in the atmospheric boundary layer with turbulent fluctuations is described in terms of the Markovian chain. The mean wind field in the marine atmospheric boundary layer is determined by the momentum exchange associated with the turbulent and wave momentum transfer and by sprays. The wave and turbulent momentum exchange is parameterized by the Charnok expression for the roughness parameter. Wave disturbances induced in the air flow by waves at the surface, were calculated within the model of the marine atmospheric boundary suggested in [1]. The greatest uncertainty in this model is the mechanism of droplets injection. We consider two models for the injection of droplets in the air flow. In the first model the droplets formed by the development of the Kelvin-Helmholtz instability, are entered in the flow with the orbital velocity of the wave (Koga's model [2]), The second mechanism, investigated in many papers, considers droplets from the breakdown of a jet which rises at high speeds from the bottom of the collapsing air bubble cavity [3]. To determine the number of drops injected to the atmospheric boundary layer from the sea surface, the Spray generation function proposed in [4] was in use. Within the model the momentum acquired by every droplet in the interaction with the air flow was calculated. Depending on the particular field of air velocity, wave parameters and the radius of the droplet, it can both get and deliver momentum give impetus to the air flow during the life cycle from taking them off the water to fall into the water. Contribution of droplets to the momentum balance of air flow is determined by the total momentum balance of sea sprays. The calculations in the model showed that the momentum exchange with the spray can lead to either a weak (less than 10%) increase of the aerodynamic surface drag or to a weak reduction (within Koga's model [2]). Recommendations for the experiment on investigation of the "life cycle" of spray in the air flow are suggested. This work was supported by RFBR (project 11-05-12047-ofi-m, 13-05-00865-a, 12-05-33070 mol-a-ved, 12-05-31435 mol-a, 12-05-01064_A). References 1. Troitskaya, Y. I., D. A. Sergeev, A. A. Kandaurov, G. A. Baidakov, M. A. Vdovin, and V. I. Kazakov Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions J.Geophys. Res., 117, C00J21, doi:10.1029/2011JC007778. 2. Koga M. Direct production of droplets from breaking wind-waves - its observation by a multi-colored overlapping exposure photographing technique // Tellus. 1981. V.33. Issue 6. P. 552-563. 3. Spiel D.E. On the birth of jet drops from bubbles bursting on water surfaces // J. Geophys. Res. 1995. V.100. P. 4995-5006. 4. Andreas E. L., 1998: A new sea spray generation function for wind speeds up to 32 m s21. J. Phys. Oceanogr., 28, 2175-2184.

  10. Pulsed Turbulent Diffusion Flames in a Coflow

    NASA Astrophysics Data System (ADS)

    Usowicz, James E.; Hermanson, James C.; Johari, Hamid

    2000-11-01

    Fully modulated diffusion flames were studied experimentally in a co-flow combustor using unheated ethylene fuel at atmospheric pressure. A fast solenoid valve was used to fully modulate (completely shut-off) the fuel flow. The fuel was released from a 2 mm diameter nozzle with injection times ranging from 2 to 750 ms. The jet exit Reynolds number was 2000 to 10,000 with a co-flow air velocity of up to 0.02 times the jet exit velocity. Establishing the effects of co-flow for the small nozzle and short injection times is required for future tests of pulsed flames under microgravity conditions. The very short injection times resulted in compact, burning puffs. The compact puffs had a mean flame length as little as 20flame for the same Reynolds number. As the injection time and fuel volume increased, elongated flames resembling starting jets resulted with a flame length comparable to that of a steady flame. For short injection times, the addition of an air co-flow resulted in an increase in flame length of nearly 50flames with longer injection times was correspondingly smaller. The effects of interaction of successive pulses on the flame length were most pronounced for the compact puffs. The emissions of unburned hydrocarbon and NOx from the pulsed flames were examined.

  11. Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Pais, Salvatore Cezar

    1999-01-01

    The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed experiments. However, at higher superficial,liquid velocities, the bubble neck length begins to significantly deviate from the value of the air injection nozzle diameter and thus the theory no longer predicts the experiment behavior. Effects of fluid properties, injection geometry and flow conditions on generated bubble size are investigated using the theoretical model. It is shown that bubble diameter is larger in a reduced gravity environment than in a normal gravity environment at similar flow condition and flow geometry.

  12. Performance of an Axisymmetric Rocket Based Combined Cycle Engine During Rocket Only Operation Using Linear Regression Analysis

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.

    1998-01-01

    The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.

  13. Effects of regional groundwater flow on the performance of an aquifer thermal energy storage system under continuous operation

    NASA Astrophysics Data System (ADS)

    Lee, Kun Sang

    2014-01-01

    Numerical investigations and a thermohydraulic evaluation are presented for two-well models of an aquifer thermal energy storage (ATES) system operating under a continuous flow regime. A three-dimensional numerical model for groundwater flow and heat transport is used to analyze the thermal energy storage in the aquifer. This study emphasizes the influence of regional groundwater flow on the heat transfer and storage of the system under various operation scenarios. For different parameters of the system, performances were compared in terms of the temperature of recovered water and the temperature field in the aquifer. The calculated temperature at the producing well varies within a certain range throughout the year, reflecting the seasonal (quarterly) temperature variation of the injected water. The pressure gradient across the system, which determines the direction and velocity of regional groundwater flow, has a substantial influence on the convective heat transport and performance of aquifer thermal storage. Injection/production rate and geometrical size of the aquifer used in the model also impact the predicted temperature distribution at each stage and the recovery water temperature. The hydrogeological-thermal simulation is shown to play an integral part in the prediction of performance of processes as complicated as those in ATES systems.

  14. Measurement of discharge using tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.; Cobb, Ernest D.

    1985-01-01

    The development of fluorescent dyes and fluorometers that can measure these dyes at very low concentrations has made dye-dilution methods practical for measuring discharge. These methods are particularly useful for determining discharge under certain flow conditions that are unfavorable for current meter measurements. These include small streams, canals, and pipes where 1. Turbulence is excessive for current-meter measurement but conducive to good mixing. 2. Moving rocks and debris may damage instruments placed in the flow. 3. Cross-sectional areas or velocities are indeterminate or changing. 4. The flow is unsteady, such as the flow that exists with storm-runoff events on small streams and urban storm-sewer systems. 5. The flow is physically inaccessible or unsafe. From a practical standpoint, such methods are limited primarily to small streams, because of the excessively long channel-mixing lengths required for larger streams. Very good accuracy can be obtained provided that 1. Adequate mixing length and time are allowed. 2. Careful field and laboratory techniques are used. 3. Dye losses are not significant. This manual describes the slug-injection and constant-rate injection methods of performing tracer-dilution measurements. Emphasis is on the use of fluorescent dyes as tracers and the equipment, field methods, and laboratory procedures for performing such measurements. The tracer-velocity method is also briefly discussed.

  15. The facile flow-injection spectrophotometric detection of gold(III) in water and pharmaceutical samples using 3,5-dimethoxy-4-hydroxy-2-aminoacetophenone isonicotinoyl hydrazone (3,5-DMHAAINH).

    PubMed

    Babu, S Hari; Suvardhan, K; Kumar, K Suresh; Reddy, K M; Rekha, D; Chiranjeevi, P

    2005-04-11

    A simple, sensitive and rapid flow-injection spectrophotometric method was developed for the determination of trace amounts of Au(III) in aqueous dimethylformamide (DMF). The method is based on formation of Au(III)-(3,5-DMHAAINH)3 complex. The optimum conditions for the chromogenic reaction of Au(III) with 3,5-DMHAAINH is studied and the colored (reddish brown) complex is selectively monitored at lambda(max) 490 nm at pH 6.0. The reaction and flow conditions of the full experimental design were optimized. The detection limit (2 s) of 0.1 microg l-1 Au(III) was obtained at a sampling rate of 15 samples h-1. Beer's law is obeyed over the range of 0.30-4.00 microg ml-1. The molar absorptivity and Sandell's sensitivity were 3.450x10(4) M and 0.0050 microg ml-1, respectively. Job's method of continuous variation and stability constants corresponding to these maxima was determined and found to be 9.3x10(15) (1:3, M:R) (M, metal; R, reagent). The detailed study of various interferences confirmed the high selectivity of the developed method. The method was successfully applied for the determination of trace amount of Au(III) in water and pharmaceutical samples. The results obtained were in agreement with the reported methods at the 95% confidence level.

  16. Phase and flow behavior of mixed gas hydrate systems during gas injection

    NASA Astrophysics Data System (ADS)

    Darnell, K.; Flemings, P. B.; DiCarlo, D. A.

    2017-12-01

    We present one-dimensional, multi-phase flow model results for injections of carbon dioxide and nitrogen mixtures, or flue gas, into methane hydrate bearing reservoirs. Our flow model is coupled to a thermodynamic simulator that predicts phase stabilities as a function of composition, so multiple phases can appear, disappear, or change composition as the injection invades the reservoir. We show that the coupling of multi-phase fluid flow with phase behavior causes preferential phase fractionation in which each component flows through the system at different speeds and in different phases. We further demonstrate that phase and flow behavior within the reservoir are driven by hydrate stability of each individual component in addition to the hydrate stability of the injection composition. For example, if carbon dioxide and nitrogen are both individually hydrate stable at the reservoir P-T conditions, then any injection composition will convert all available water into hydrate and plug the reservoir. In contrast, if only carbon dioxide is hydrate stable at the reservoir P-T conditions, then nitrogen preferentially stays in the gaseous phase, while the carbon dioxide partitions into the hydrate and liquid water phases. For all injections of this type, methane originally held in hydrate is released by dissociation into the nitrogen-rich gaseous phase. The net consequence is that a gas phase composed of nitrogen and methane propagates through the reservoir in a fast-moving front. A slower-moving front lags behind where carbon dioxide and nitrogen form a mixed hydrate, but methane is absent due to dissociation-induced methane stripping from the first, fast-moving front. The entire composition path traces through the phase space as the flow develops with each front moving at different, constant velocities. This behavior is qualitatively similar to the dynamics present in enhanced oil recovery or enhanced coalbed methane recovery. These results explain why the inclusion of nitrogen in mixed gas injection into methane hydrate reservoirs has been far more successful at producing methane than pure carbon dioxide injections. These results also provide a test for the validity of equilibrium thermodynamics in transport-dominated mixed hydrate systems that can be validated by laboratory-scale flow-through experiments.

  17. Pressure and Flow Rate Changes During Contrast Injections in Cerebral Angiography: Correlation to Reflux Length.

    PubMed

    Kovarovic, Brandon; Woo, Henry H; Fiorella, David; Lieber, Baruch B; Sadasivan, Chander

    2018-03-01

    Cerebral angiography involves the antegrade injection of contrast media through a catheter into the vasculature to visualize the region of interest under X-ray imaging. Depending on the injection and blood flow parameters, the bolus of contrast can propagate in the upstream direction and proximal to the catheter tip, at which point contrast is said to have refluxed. In this in vitro study, we investigate the relationship of fundamental hemodynamic variables to this phenomenon. Contrast injections were carried out under steady and pulsatile flow using various vessel diameters, catheter sizes, working fluid flow rates, and injection rates. The distance from the catheter tip to the proximal edge of the contrast bolus, called reflux length, was measured on the angiograms; the relation of this reflux length to different hemodynamic parameters was evaluated. Results show that contrast reflux occurs when the pressure distal to the catheter tip increases to be greater than the pressure proximal to the catheter tip. The ratio of this pressure difference to the baseline flow rate, called reflux resistance here, was linearly correlated to the normalized reflux length (reflux length/vessel diameter). Further, the ratio of blood flow to contrast fluid momentums, called the Craya-Curtet number, was correlated to the normalized reflux length via a sigmoid function. A sigmoid function was also found to be representative of the relationship between the ratio of the Reynolds numbers of blood flow to contrast and the normalized reflux length. As described by previous reports, catheter based contrast injections cause substantial increases in local flow and pressure. Contrast reflux should generally be avoided during standard antegrade angiography. Our study shows two specific correlations between contrast reflux length and baseline and intra-injection parameters that have not been published previously. Further studies need to be conducted to fully characterize the phenomena and to extract reliable indicators of clinical utility. Parameters relevant to cerebral angiography are studied here, but the essential principles are applicable to all angiographic procedures involving antegrade catheter injections.

  18. Comparative Evaluation of U.S. Brand and Generic Intravenous Sodium Ferric Gluconate Complex in Sucrose Injection: Physicochemical Characterization

    PubMed Central

    Sun, Dajun; Rouse, Rodney; Patel, Vikram; Wu, Yong; Zheng, Jiwen; Karmakar, Alokita; Patri, Anil K.; Keire, David; Ma, Jia; Jiang, Wenlei

    2018-01-01

    The objective of this study was to evaluate physicochemical equivalence between brand (i.e., Ferrlecit) and generic sodium ferric gluconate (SFG) in sucrose injection by conducting a series of comparative in vitro characterizations using advanced analytical techniques. The elemental iron and carbon content, thermal properties, viscosity, particle size, zeta potential, sedimentation coefficient, and molecular weight were determined. There was no noticeable difference between brand and generic SFG in sucrose injection for the above physical parameters evaluated, except for the sedimentation coefficient determined by sedimentation velocity analytical ultracentrifugation (SV-AUC) and molecular weight by asymmetric field flow fractionation-multi-angle light scattering (AFFF-MALS). In addition, brand and generic SFG complex products showed comparable molecular weight distributions when determined by gel permeation chromatography (GPC). The observed minor differences between brand and generic SFG, such as sedimentation coefficient, do not impact their biological activities in separate studies of in vitro cellular uptake and rat biodistribution. Coupled with the ongoing clinical study comparing the labile iron level in healthy volunteers, the FDA-funded post-market studies intended to illustrate comprehensive surveillance efforts ensuring safety and efficacy profiles of generic SFG complex in sucrose injection, and also to shed new light on the approval standards on generic parenteral iron colloidal products. PMID:29303999

  19. Kinetic sensitivity of a receptor-binding radiopharmaceutical: Technetium-99m galactosyl-neoglycoalbumin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vera, D.R.; Woodle, E.S.; Stadalnik, R.C.

    1989-09-01

    Kinetic sensitivity is the ability of a physiochemical parameter to alter the time-activity curve of a radiotracer. The kinetic sensitivity of liver and blood time-activity data resulting from a single bolus injection of ({sup 99m}Tc)galactosyl-neoglycoalbumin (( Tc)NGA) into healthy pigs was examined. Three parameters, hepatic plasma flow scaled as flow per plasma volume, ligand-receptor affinity, and total receptor concentration, were tested using (Tc)NGA injections of various molar doses and affinities. Simultaneous measurements of plasma volume (iodine-125 human serum albumin dilution), and hepatic plasma flow (indocyanine green extraction) were performed during 12 (Tc)NGA studies. Paired data sets demonstrated differences (P(chi v2)more » less than 0.01) in liver and blood time-activity curves in response to changes in each of the tested parameters. We conclude that the (Tc)NGA radiopharmacokinetic system is therefore sensitive to hepatic plasma flow, ligand-receptor affinity, and receptor concentration. In vivo demonstration of kinetic sensitivity permits delineation of the physiologic parameters that determine the biodistribution of a radiopharmaceutical. This delineation is a prerequisite to a valid analytic assessment of receptor biochemistry via kinetic modeling.« less

  20. Measurement of discharge using tracers

    USGS Publications Warehouse

    Kilpatrick, Frederick A.; Cobb, Ernest D.

    1984-01-01

    The development of fluorescent dyes and fluorometers that can measure these dyes at very low concentrations has made dye-dilution methods practical for measuring discharge. These methods are particularly useful for determining discharge under certain flow conditions that are unfavorable for current meter measurements. These include small streams, canals, and pipes where:Turbulence is excessive for current meter measurement but conducive to good mixing.Moving rocks and debris are damaging to any instruments placed in the flow.Cross-sectional areas or velocities are indeterminant or changing.There are some unsteady flows such as exist with storm-runoff events on small streams.The flow is physically inaccessible or unsafe.From a practical standpoint, such measurements are limited primarily to small streams due to excessively long channel mixing lengths required of larger streams. Very good accuracy can be obtained provided:Adequate mixing length and time are allowed.Careful field and laboratory techniques are employed.Dye losses are not significant.This manual describes the slug-injection and constant-rate injection methods of performing tracer-dilution measurements. Emphasis is on the use of fluorescent dyes as tracers and the equipment, field methods, and Laboratory procedures for performing such measurements. The tracer-velocity method is also briefly discussed.

  1. Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.

    1988-01-01

    A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.

  2. Numerical simulations of an impinging liquid spray in a cross-flow

    NASA Astrophysics Data System (ADS)

    Gomatam, Sreekar; Vengadesan, S.; Chakravarthy, S. R.

    2017-11-01

    The characteristics of a liquid spray in a uniform cross-flow field are numerically simulated in this study. A hollow cone liquid spray is injected perpendicular to the air stream flowing through a rectangular duct under room temperature and pressure. An Eulerian-Lagrangian framework is adopted to simulate the spray in cross-flow phenomenon. The cross-flow velocity is varied from 6-12 m/s while the liquid injection pressure is varied from 0.3-0.6 MPa. The liquid droplets from the injected spray undergo breakup and/or coalescence further in the cross-flow. Moreover, the spray injected into the cross-flow impinges on the opposite wall resulting in the formation of a liquid film. This liquid film disintegrates further into discrete droplets because of the impingement of the droplets from the spray and the shear from the cross-flow. The overall distribution of the droplets in the cross-flow for varying conditions is studied in detail. The evolution of the liquid film with space and time for varying conditions is also investigated. Suitable sub-models are used to numerically model the droplet break-up, coalescence, liquid film formation and disintegration, splashing of the droplets on the film and subsequent formation of daughter droplets. Department of Applied Mechanics, Indian Inst of Tech-Madras.

  3. A new Doppler-echo method to quantify regurgitant volume.

    PubMed

    Wang, S S; Rubenstein, J J; Goldman, M; Sidd, J J

    1992-01-01

    An in vitro technique using color flow imaging and continuous wave Doppler was developed to measure the initial regurgitant flow jet diameter and velocity integral to yield the parameters for a volume calculation. Jets were produced by volume-controlled injection through tubes of various diameters (1.3, 1.9, 2.8, and 3.5 mm) to deliver volumes from 1 to 7 ml over 100 to 300 msec at pressures from 40 to 200 mm Hg. One hundred forty-five samples were obtained. Flow jet diameter consistently overestimated tube diameter by 2 mm when injected volume was 1.5 to 7 ml and by 1.5 mm when injected volume was less than 1.5 ml. This offset was stable with various transducers (2.5, 3.5, 5.0 MHz) at normal gain setting (just under noise). Therefore, corrected flow jet diameter (FJD) = FJD - 2 mm, and Doppler volume = corrected flow jet area x velocity integral. A range of injectates from 1.1 to 7 ml generated Doppler volume of 1.0 to 8.2 ml. The relation between Doppler volume (DV) and injected volume (IV) was DV = 1.079 IV - 0.22, r2 = 0.945, p less than 0.01. This relation was not altered by tube diameter. Thus a method combining color flow imaging and continuous wave Doppler provides a reliable and accurate measure of in vitro flow volume.

  4. Automated tagging of pharmaceutically active thiols under flow conditions using monobromobimane.

    PubMed

    Tzanavaras, Paraskevas D; Karakosta, Theano D

    2011-03-25

    The thiol-specific derivatization reagent monobromobimane (MBB) is applied--for the first time--under flow conditions. Sequential injection analysis allows the handling of precise volumes of the reagent in the micro-liter range. The effect of the main chemical and instrumental variables was investigated using captopril (CAP), N-acetylcysteine (NAC) and penicillamine (PEN) as representative pharmaceutically active thiols. Previously reported hydrolysis of MBB due to interaction with nucleophilic components of the buffers was avoided kinetically under flow conditions. The proposed analytical scheme is suitable for the fluorimetric determination of thiols at a sampling rate of 36 h(-1). Copyright © 2010 Elsevier B.V. All rights reserved.

  5. A multi-directional tracer test in the fractured Chalk aquifer of E. Yorkshire, UK.

    PubMed

    Hartmann, S; Odling, N E; West, L J

    2007-12-07

    A multi-borehole radial tracer test has been conducted in the confined Chalk aquifer of E. Yorkshire, UK. Three different tracer dyes were injected into three injection boreholes and a central borehole, 25 m from the injection boreholes, was pumped at 330 m(3)/d for 8 days. The breakthrough curves show that initial breakthrough and peak times were fairly similar for all dyes but that recoveries varied markedly from 9 to 57%. The breakthrough curves show a steep rise to a peak and long tail, typical of dual porosity aquifers. The breakthrough curves were simulated using a 1D dual porosity model. Model input parameters were constrained to acceptable ranges determined from estimations of matrix porosity and diffusion coefficient, fracture spacing, initial breakthrough times and bulk transmissivity of the aquifer. The model gave equivalent hydraulic apertures for fractures in the range 363-384 microm, dispersivities of 1 to 5 m and matrix block sizes of 6 to 9 cm. Modelling suggests that matrix block size is the primary controlling parameter for solute transport in the aquifer, particularly for recovery. The observed breakthrough curves suggest results from single injection-borehole tracer tests in the Chalk may give initial breakthrough and peak times reasonably representative of the aquifer but that recovery is highly variable and sensitive to injection and abstraction borehole location. Consideration of aquifer heterogeneity suggests that high recoveries may be indicative of a high flow pathway adjacent, but not necessarily connected, to the injection and abstraction boreholes whereas low recoveries may indicate more distributed flow through many fractures of similar aperture.

  6. Gas-injection-start and shutdown characteristics of a 2-kilowatt to 15-kilowatt Brayton power system

    NASA Technical Reports Server (NTRS)

    Cantoni, D. A.

    1972-01-01

    Two methods of starting the Brayton power system have been considered: (1) using the alternator as a motor to spin the Brayton rotating unit (BRU), and (2) spinning the BRU by forced gas injection. The first method requires the use of an auxiliary electrical power source. An alternating voltage is applied to the terminals of the alternator to drive it as an induction motor. Only gas-injection starts are discussed in this report. The gas-injection starting method requires high-pressure gas storage and valves to route the gas flow to provide correct BRU rotation. An analog computer simulation was used to size hardware and to determine safe start and shutdown procedures. The simulation was also used to define the range of conditions for successful startups. Experimental data were also obtained under various test conditions. These data verify the validity of the start and shutdown procedures.

  7. Determination of stream reaeration coefficients by use of tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, N.; Parker, G.W.; DeLong, L.L.

    1987-01-01

    Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes.Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed in which a radioactive tracer gas was injected into a stream--the tracer gas being desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas.This manual describes the slug-injection and constant-rate injection methods of performing gas-tracer desorption measurements. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, methods of injection, sampling and analysis, and computational techniques to compute desorption and reaeration coefficients.

  8. An investigation of air solubility in Jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1981-01-01

    Problems concerned with the supercritical injection concept are discussed. Supercritical injection involves dissolving air into a fuel prior to injection. A similar effect is obtained by preheating the fuel so that a portion of the fuel flashes when its pressure is reduced. Flashing improves atomization properties and the presence of air in the primary zone of a spray flame reduces the formation of pollutants. The investigation is divided into three phases: (1) measure the solubility and density properties of fuel/gas mixtures, including Jet A/air, at pressures and correlate these results using theory; (2) investigate the atomization properties of flashing liquids, including fuel/dissolved gas systems. Determine and correlate the effect of inlet properties and injector geometry on mass flow rates, Sauter mean diameter and spray angles; (3) examine the combustion properties of flashing injection in an open burner flame, considering flame shape and soot production.

  9. Monitoring CO2 invasion processes at the pore scale using geological labs on chip.

    PubMed

    Morais, S; Liu, N; Diouf, A; Bernard, D; Lecoutre, C; Garrabos, Y; Marre, S

    2016-09-21

    In order to investigate at the pore scale the mechanisms involved during CO2 injection in a water saturated pore network, a series of displacement experiments is reported using high pressure micromodels (geological labs on chip - GLoCs) working under real geological conditions (25 < T (°C) < 75 and 4.5 < p (MPa) < 8). The experiments were focused on the influence of three experimental parameters: (i) the p, T conditions, (ii) the injection flow rates and (iii) the pore network characteristics. By using on-chip optical characterization and imaging approaches, the CO2 saturation curves as a function of either time or the number of pore volume injected were determined. Three main mechanisms were observed during CO2 injection, namely, invasion, percolation and drying, which are discussed in this paper. Interestingly, besides conventional mechanisms, two counterintuitive situations were observed during the invasion and drying processes.

  10. Non-Darcian flow of shear-thinning fluids through packed beads: Experiments and predictions using Forchheimer's law and Ergun's equation

    NASA Astrophysics Data System (ADS)

    Rodríguez de Castro, Antonio; Radilla, Giovanni

    2017-02-01

    The flow of shear-thinning fluids through unconsolidated porous media is present in a number of important industrial applications such as soil depollution, Enhanced Oil Recovery or filtration of polymeric liquids. Therefore, predicting the pressure drop-flow rate relationship in model porous media has been the scope of major research efforts during the last decades. Although the flow of Newtonian fluids through packs of spherical particles is well understood in most cases, much less is known regarding the flow of shear-thinning fluids as high molecular weight polymer aqueous solutions. In particular, the experimental data for the non-Darcian flow of shear-thinning fluids are scarce and so are the current approaches for their prediction. Given the relevance of non-Darcian shear-thinning flow, the scope of this work is to perform an experimental study to systematically evaluate the effects of fluid shear rheology on the flow rate-pressure drop relationships for the non-Darcian flow through different packs of glass spheres. To do so, xanthan gum aqueous solutions with different polymer concentrations are injected through four packs of glass spheres with uniform size under Darcian and inertial flow regimes. A total of 1560 experimental data are then compared with predictions coming from different methods based on the extension of widely used Ergun's equation and Forchheimer's law to the case of shear thinning fluids, determining the accuracy of these predictions. The use of a proper definition for Reynolds number and a realistic model to represent the rheology of the injected fluids results in the porous media are shown to be key aspects to successfully predict pressure drop-flow rate relationships for the inertial shear-thinning flow in packed beads.

  11. Development of an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yoojin

    In this study, we have developed an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs where fluid flow through the fracture is radial. The dimensionless forms of the governing equations and the initial and boundary conditions in the radial flow system can be written in a form identical to those in the linear flow system developed by Jung and Pruess [Jung, Y., and K. Pruess (2012), A Closed-Form Analytical Solution for Thermal Single-Well Injection-Withdrawal Tests, Water Resour. Res., 48, W03504, doi:10.1029/2011WR010979], and therefore the analytical solutions developed in Jung and Pruess (2012) can be applied to computemore » the time dependence of temperature recovery at the injection/withdrawal well in a horizontally oriented fracture with radial flow.« less

  12. Bioremediation in fractured rock: 1. Modeling to inform design, monitoring, and expectations

    USGS Publications Warehouse

    Tiedeman, Claire; Shapiro, Allen M.; Hsieh, Paul A.; Imbrigiotta, Thomas; Goode, Daniel J.; Lacombe, Pierre; DeFlaun, Mary F.; Drew, Scott R.; Johnson, Carole D.; Williams, John H.; Curtis, Gary P.

    2018-01-01

    Field characterization of a trichloroethene (TCE) source area in fractured mudstones produced a detailed understanding of the geology, contaminant distribution in fractures and the rock matrix, and hydraulic and transport properties. Groundwater flow and chemical transport modeling that synthesized the field characterization information proved critical for designing bioremediation of the source area. The planned bioremediation involved injecting emulsified vegetable oil and bacteria to enhance the naturally occurring biodegradation of TCE. The flow and transport modeling showed that injection will spread amendments widely over a zone of lower‐permeability fractures, with long residence times expected because of small velocities after injection and sorption of emulsified vegetable oil onto solids. Amendments transported out of this zone will be diluted by groundwater flux from other areas, limiting bioremediation effectiveness downgradient. At nearby pumping wells, further dilution is expected to make bioremediation effects undetectable in the pumped water. The results emphasize that in fracture‐dominated flow regimes, the extent of injected amendments cannot be conceptualized using simple homogeneous models of groundwater flow commonly adopted to design injections in unconsolidated porous media (e.g., radial diverging or dipole flow regimes). Instead, it is important to synthesize site characterization information using a groundwater flow model that includes discrete features representing high‐ and low‐permeability fractures. This type of model accounts for the highly heterogeneous hydraulic conductivity and groundwater fluxes in fractured‐rock aquifers, and facilitates designing injection strategies that target specific volumes of the aquifer and maximize the distribution of amendments over these volumes.

  13. Fast batch injection analysis of H(2)O(2) using an array of Pt-modified gold microelectrodes obtained from split electronic chips.

    PubMed

    Pacheco, Bruno D; Valério, Jaqueline; Angnes, Lúcio; Pedrotti, Jairo J

    2011-06-24

    A fast and robust analytical method for amperometric determination of hydrogen peroxide (H(2)O(2)) based on batch injection analysis (BIA) on an array of gold microelectrodes modified with platinum is proposed. The gold microelectrode array (n=14) was obtained from electronic chips developed for surface mounted device technology (SMD), whose size offers advantages to adapt them in batch cells. The effect of the dispensing rate, volume injected, distance between the platinum microelectrodes and the pipette tip, as well as the volume of solution in the cell on the analytical response were evaluated. The method allows the H(2)O(2) amperometric determination in the concentration range from 0.8 μmolL(-1) to 100 μmolL(-1). The analytical frequency can attain 300 determinations per hour and the detection limit was estimated in 0.34 μmolL(-1) (3σ). The anodic current peaks obtained after a series of 23 successive injections of 50 μL of 25 μmolL(-1) H(2)O(2) showed an RSD<0.9%. To ensure the good selectivity to detect H(2)O(2), its determination was performed in a differential mode, with selective destruction of the H(2)O(2) with catalase in 10 mmolL(-1) phosphate buffer solution. Practical application of the analytical procedure involved H(2)O(2) determination in rainwater of São Paulo City. A comparison of the results obtained by the proposed amperometric method with another one which combines flow injection analysis (FIA) with spectrophotometric detection showed good agreement. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Investigations on the self-excited oscillations in a kerosene spray flame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de la Cruz Garcia, M.; Mastorakos, E.; Dowling, A.P.

    2009-02-15

    A laboratory scale gas turbine type burner at atmospheric pressure and with air preheat was operated with aviation kerosene Jet-A1 injected from a pressure atomiser. Self-excited oscillations were observed and analysed to understand better the relationship between the spray and thermo-acoustic oscillations. The fluctuations of CH{sup *} chemiluminescence measured simultaneously with the pressure were used to determine the flame transfer function. The Mie scattering technique was used to record spray fluctuations in reacting conditions with a high speed camera. Integrating the Mie intensity over the imaged region gave a temporal signal acquired simultaneously with pressure fluctuations and the transfer functionmore » between the light scattered from the spray and the velocity fluctuations in the plenum was evaluated. Phase Doppler anemometry was used for axial velocity and drop size measurements at different positions downstream the injection plane and for various operating conditions. Pressure spectra showed peaks at a frequency that changed with air mass flow rate. The peak for low air mass flow rate operation was at 220 Hz and was associated with a resonance of the supply plenum. At the same global equivalence ratio but at high air mass flow rates, the pressure spectrum peak was at 323 Hz, a combustion chamber resonant frequency. At low air flow rates, the spray fluctuation motion was pronounced and followed the frequency of the pressure oscillation. At high air flow rates, more effective evaporation resulted in a complete disappearance of droplets at an axial distance of about 1/3 burner diameters from the injection plane, leading to a different flame transfer function and frequency of the self-excited oscillation. The results highlight the sensitivity of the self-excited oscillation to the degree of mixing achieved before the main recirculation zone. (author)« less

  15. Residence time distribution measurements in a pilot-scale poison tank using radiotracer technique.

    PubMed

    Pant, H J; Goswami, Sunil; Samantray, J S; Sharma, V K; Maheshwari, N K

    2015-09-01

    Various types of systems are used to control the reactivity and shutting down of a nuclear reactor during emergency and routine shutdown operations. Injection of boron solution (borated water) into the core of a reactor is one of the commonly used methods during emergency operation. A pilot-scale poison tank was designed and fabricated to simulate injection of boron poison into the core of a reactor along with coolant water. In order to design a full-scale poison tank, it was desired to characterize flow of liquid from the tank. Residence time distribution (RTD) measurement and analysis was adopted to characterize the flow dynamics. Radiotracer technique was applied to measure RTD of aqueous phase in the tank using Bromine-82 as a radiotracer. RTD measurements were carried out with two different modes of operation of the tank and at different flow rates. In Mode-1, the radiotracer was instantaneously injected at the inlet and monitored at the outlet, whereas in Mode-2, the tank was filled with radiotracer and its concentration was measured at the outlet. From the measured RTD curves, mean residence times (MRTs), dead volume and fraction of liquid pumped in with time were determined. The treated RTD curves were modeled using suitable mathematical models. An axial dispersion model with high degree of backmixing was found suitable to describe flow when operated in Mode-1, whereas a tanks-in-series model with backmixing was found suitable to describe flow of the poison in the tank when operated in Mode-2. The results were utilized to scale-up and design a full-scale poison tank for a nuclear reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Detection of small degree of nonuniformity in dialysate flow in hollow-fiber dialyzer using proton magnetic resonance imaging.

    PubMed

    Osuga, T; Obata, T; Ikehira, H

    2004-04-01

    A small degree of nonuniformity in dialysate flow in a hollow-fiber dialyzer was detected using proton magnetic resonance imaging (MRI). Since paramagnetic ions reduce the spin-lattice relaxation time of protons around them, MRI can detect Gd in water. An aqueous solution of a chelate compound of Gd was impulsively injected into the dialysate flow path at a flow rate of 500 cm(3) /m, which is that utilized in actual dialysis. Despite the apparent elimination of Gd from the dialysate flow path by the newly injected dialysate fluid after the injection of Gd was terminated, MRI revealed that Gd remained in the interior of the hollow fiber. The observed structure pattern of the Gd concentration profile revealed that the dialysate flow had a small degree of nonuniformity despite the currently established design to restrict channeling in dialysate flow. Local nonuniformity of the hollow-fiber density and vortex generation in the dialysate flow were considered to cause the nonuniformity in the dialysate flow.

  17. Line spread instrumentation for propagation measurements

    NASA Technical Reports Server (NTRS)

    Bailey, W. H., Jr.

    1980-01-01

    A line spread device capable of yielding direct measure of a laser beam's line spread function (LSF) was developed and employed in propagation tests conducted in a wind tunnel to examine optimal acoustical suppression techniques for laser cavities exposed to simulated aircraft aerodynamic environments. Measurements were made on various aerodynamic fences and cavity air injection techniques that effect the LSF of a propagating laser. Using the quiescent tunnel as a control, the relative effect of each technique on laser beam quality was determined. The optical instrument employed enabled the comparison of relative beam intensity for each fence or mass injection. It was found that fence height had little effect on beam quality but fence porosity had a marked effect, i.e., 58% porosity alleviated cavity resonance and degraded the beam the least. Mass injection had little effect on the beam LSF. The use of a direct LSF measuring device proved to be a viable means of determining aerodynamic seeing qualities of flow fields.

  18. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar.« less

  19. Flow-injection assay of catalase activity.

    PubMed

    Ukeda, Hiroyuki; Adachi, Yukiko; Sawamura, Masayoshi

    2004-03-01

    A novel flow-injection assay (FIA) system with a double line for catalase activity was constructed in which an oxidase is immobilized and the substrate is continuously pumped to reduce the dissolved oxygen and to generate a given level of hydrogen peroxide. The catalase in a sample decomposed the hydrogen peroxide, and thus the increase in dissolved oxygen dependent on the activity was amperometrically monitored using a Clark-type oxygen electrode. Among the examined several oxidases, uricase was most suitable for the continuous formation of hydrogen peroxide from a consideration of the stability and the conversion efficiency. Under the optimum conditions, a linear calibration curve was obtained in the range from 21 to 210 units/mg and the reproducibility (CV) was better than 2% by 35 successive determinations of 210 units/ml catalase preparation. The sampling frequency was about 15 samples/h. The present FIA system was applicable to monitor the inactivation of catalase by glycation.

  20. Speciation of selenium and arsenic compounds by capillary electrophoresis with hydrodynamically modified electroosmotic flow and on-line reduction of selenium(VI) to selenium(IV) with hydride generation inductively coupled plasma mass spectrometric detection.

    PubMed

    Magnuson, M L; Creed, J T; Brockhoff, C A

    1997-10-01

    Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV) by mixing the CE effluent with concentrated HCl. A microporous PTFE tube was used as a gas-liquid separator to eliminate the 40Ar37Cl and 40Ar35Cl interference from 77Se and 75As, respectively. The direction of the electroosmotic flow during CE was reversed with hydrodynamic pressure, which allowed increased freedom of buffer choice. For conventional pressure injection, method detection limits for SeIV and SeVI based on seven replicate injections were 10 and 24 pg, respectively. Recoveries of SeIV and SeVI in drinking water were measured.

  1. Speciation of chromium (VI) and total chromium determination in welding dust samples by flow-injection analysis coupled to atomic absorption spectrometry.

    PubMed

    Girard, L; Hubert, J

    1996-11-01

    We have studied the speciation of chromium (VI) in stainless-steel welding dusts. The approach used for the analysis of Cr(VI) and total Cr relies on a flow-injection analyzer (FIA) equipped with two different sequential detectors. The system measures Cr(VI). by colorimetry (with 1,5-diphenyl carbohydrazide) and total chromium content by flame atomic absorption spectroscopy (AAS). The extraction of the samples of welding-fume dusts is achieved in a buffer solution (acetic acid and sodium acetate at pH 4). This extraction procedure gives a 96% recovery of chromium (VI). The FIA-AAS system that has been described is also more sensitive, has a lower detection limit (0.005 mug ml(-1)) and gives a better precision (< 1%) than other equivalent systems that have been previously described.

  2. Spectrophotometric determination of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride by flow injection analysis.

    PubMed

    Seno, Kunihiko; Matumura, Kazuki; Oshima, Mitsuko; Motomizu, Shoji

    2008-04-01

    1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC.HCl) is a very useful agent to form amide bonds (peptide bonds) in an aqueous medium. A simple and fast detection system was developed using the reaction with pyridine and ethylenediamine in acidic aqueous solution and spectrophotometric flow injection analysis. The absorbances were measured at 400 nm and the reaction was accelerated at 40 degrees C. The calibration graph showed good linearity from 0 to 10% of EDC.HCl solutions: the regression equation was y=3.15x10(4)x (y, peak area; x, % concentration of EDC.HCl). The RSD was under 1.0%. Sample throughput was 15 h(-1). This method was applied to monitoring the EDC.HCl concentration that remained after the anhydration of phthalic acid in water, esterification of acetic acid in methanol or dehydration condensation of malonic acid and ethylenediamine in water.

  3. Thermal protection performance of opposing jet generating with solid fuel

    NASA Astrophysics Data System (ADS)

    Shen, Binxian; Liu, Weiqiang

    2018-03-01

    A light and small gas supply device, which uses fuel gas generating with solid fuel as coolant gas, is introduced for opposing jet thermal protection in hypersonic vehicles. A numerical study on heat flux reduction in hypersonic flow with opposing jet is conducted to investigate the cooling efficiency of fuel gas. Flow field and cooling efficiency at different jet temperatures, as well as the effect of fuel gas, are determined. Detailed results show that shock stand-off distance changes with an increase in jet pressure ratio and remains constant with an increase in jet temperature. Cooling efficiency weakens with an increase in jet temperature and can be strengthened by enhancing jet pressure. Lastly, a remarkable heat flux reduction is observed with fuel gas injection with respect to no fuel gas injection when jet temperature reaches 900 K, thereby proving the positive cooling efficiency of fuel gas.

  4. Gaseous film cooling investigation in a multi-element splash platelet injector

    NASA Astrophysics Data System (ADS)

    Yin, Liang; Liu, Weiqiang

    2018-03-01

    Film cooling is an effective technique that protects chamber walls in rocket combustion against chemical attacks and heat fluxes. This study discusses cooling effect in a multi-element GO2/CH4 splash platelet injector. Influence parameters, such as slot height, slot number, percentage of coolant, and injection position on cooling effect, were investigated. GCH4 with 298.15 K was applied as film coolant. In the first step, slot heights of 0.2 and 0.4 mm were compared by applying a constant film mass flow rate. Temperature, CH4 mole fraction distribution, and flow field structure were obtained. The effects of slot number, percentage of coolant, and injection position on wall temperature distribution were then determined. Finally, the reasons for the low cooling efficiency were analyzed. Improvement in the method is proposed to achieve improved cooling effect for splash platelet injectors.

  5. Flow injection amperometric detection of insulin at cobalt hydroxide nanoparticles modified carbon ceramic electrode.

    PubMed

    Habibi, Esmaeil; Omidinia, Eskandar; Heidari, Hassan; Fazli, Maryam

    2016-02-15

    Cobalt hydroxide nanoparticles were prepared onto a carbon ceramic electrode (CHN|CCE) using the cyclic voltammetry (CV) technique. The modified electrode was characterized by X-ray diffraction and scanning electron microscopy. The results showed that CHN with a single-layer structure was uniformly electrodeposited on the surface of CCE. The electrocatalytic activity of the modified electrode toward the oxidation of insulin was studied by CV. CHN|CCE was also used in a homemade flow injection analysis system for insulin determination. The limit of detection (signal/noise [S/N] = 3) and sensitivity were found to be 0.11 nM and 11.8 nA/nM, respectively. Moreover, the sensor was used for detection of insulin in human serum samples. This sensor showed attractive properties such as high stability, reproducibility, and high selectivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Fuel Injector With Shear Atomizer

    NASA Technical Reports Server (NTRS)

    Beal, George W.; Mills, Virgil L.; Smith, Durward B., II; Beacom, William F.

    1995-01-01

    Atomizer for injecting liquid fuel into combustion chamber uses impact and swirl to break incoming stream of fuel into small, more combustible droplets. Slanted holes direct flow of liquid fuel to stepped cylindrical wall. Impact on wall atomizes liquid. Air flowing past vanes entrains droplets of liquid in swirling flow. Fuel injected at pressure lower than customarily needed.

  7. Evaluation of lymph flow patterns in splenic flexural colon cancers using laparoscopic real-time indocyanine green fluorescence imaging.

    PubMed

    Watanabe, Jun; Ota, Mitsuyoshi; Suwa, Yusuke; Ishibe, Atsushi; Masui, Hidenobu; Nagahori, Kaoru

    2017-02-01

    The treatment of splenic flexural colon cancer is not standardized because the lymphatic drainage is variable. The aim of this study is to evaluate the lymph flow at the splenic flexure. From July 2013 to January 2016, consecutive patients of the splenic flexural colon cancer with a preoperative diagnosis of N0 who underwent laparoscopic surgery were enrolled. Primary outcome is frequency of the direction of lymph flow from splenic flexure. We injected indocyanine green (2.5 mg) into the submucosal layer around the tumor and observed lymph flow using the laparoscopic near-infrared camera system in 30 min after injection. Thirty-one patients were enrolled in this study. The lymph flow was visualized in 31 patients (100 %) without any complications. No case exhibited lymph flow in both the left colic artery (LCA) and left branch of the middle colic artery (lt-MCA) areas. There were 19 cases (61.3 %) with lymph flow directed to the area of the root of the inferior mesenteric vein (IMV), regardless of the presence of the left accessory aberrant colic artery. Lymph node metastases were observed in six cases (19.4 %), and all of the involved lymph nodes existed in lymph flow areas determined by real-time indocyanine green fluorescence imaging. The findings of the lymph flow pattern of splenic flexure suggest that lymph node dissection at the root of the IMV area is important, and it may be not necessary to ligate both the lt-MCA and LCA, at least in cases without widespread lymph node metastases.

  8. Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.

    2006-01-01

    A Dual Throat Nozzle fluidic thrust vectoring technique that achieves higher thrust-vectoring efficiencies than other fluidic techniques, without sacrificing thrust efficiency has been developed at NASA Langley Research Center. The nozzle concept was designed with the aid of the structured-grid, Reynolds-averaged Navier-Stokes computational fluidic dynamics code PAB3D. This new concept combines the thrust efficiency of sonic-plane skewing with increased thrust-vectoring efficiencies obtained by maximizing pressure differentials in a separated cavity located downstream of the nozzle throat. By injecting secondary flow asymmetrically at the upstream minimum area, a new aerodynamic minimum area is formed downstream of the geometric minimum and the sonic line is skewed, thus vectoring the exhaust flow. The nozzle was tested in the NASA Langley Research Center Jet Exit Test Facility. Internal nozzle performance characteristics were defined for nozzle pressure ratios up to 10, with a range of secondary injection flow rates up to 10 percent of the primary flow rate. Most of the data included in this paper shows the effect of secondary injection rate at a nozzle pressure ratio of 4. The effects of modifying cavity divergence angle, convergence angle and cavity shape on internal nozzle performance were investigated, as were effects of injection geometry, hole or slot. In agreement with computationally predicted data, experimental data verified that decreasing cavity divergence angle had a negative impact and increasing cavity convergence angle had a positive impact on thrust vector angle and thrust efficiency. A curved cavity apex provided improved thrust ratios at some injection rates. However, overall nozzle performance suffered with no secondary injection. Injection holes were more efficient than the injection slot over the range of injection rates, but the slot generated larger thrust vector angles for injection rates less than 4 percent of the primary flow rate.

  9. Summary and interpretation of dye-tracer tests to investigate the hydraulic connection of fractures at a ridge-and-valley-wall site near Fishtrap Lake, Pike County, Kentucky

    USGS Publications Warehouse

    Taylor, Charles J.

    1994-01-01

    Dye-tracer tests were done during 1985-92 to investigate the hydraulic connection between fractures in Pennsylvanian coal-bearing strata at a ridge-and-valley-wall site near Fishtrap Lake, Pike County, Ky. Fluorescent dye was injected into a core hole penetrating near-surface and mining-induced fractures near the crest of the ridge. The rate and direction of migration of dye in the subsurface were determined by measuring the relative concentration of dye in water samples collected from piezometers completed in conductive fracture zones and fractured coal beds at various stratigraphic horizons within the ridge. Dye-concentration data and water-level measurements for each piezometer were plotted as curves on dye-recovery hydrographs. The dye-recovery hydrographs were used to evaluate trends in the fluctuation of dye concentrations and hydraulic heads in order to identify geologic and hydrologic factors affecting the subsurface transport of dye. The principal factors affecting the transport of dye in the subsurface hydrologic system were determined to be (1) the distribution, interconnection, and hydraulic properties of fractures; (2) hydraulic-head conditions in the near-fracture zone at the time of dye injection; and (3) subsequent short- and long-term fluctuations in recharge to the hydrologic system. In most of the dye-tracer tests, dye-recovery hydrographs are characterized by complex, multipeaked dye-concentration curves that are indicative of a splitting of dye flow as ground water moved through fractures. Intermittent dye pulses (distinct upward spikes in dye concentration) mark the arrivals of dye-labeled water to piezometers by way of discrete fracture-controlled flow paths that vary in length, complexity, and hydraulic conductivity. Dye injections made during relatively high- or increasinghead conditions resulted in rapid transport of dye (within several days or weeks) from near-surf ace fractures to piezometers. Injections made during relatively low- or decreasing-head conditions resulted in dye being trapped in hydraulically dead zones in water-depleted fractures. Residual dye was remobilized from storage and transported (over periods ranging from several months to about 2 years) by increased recharge to the hydrologic system. Subsequent fluctuations in hydraulic gradients, resulting from increases or decreases in recharge to the hydrologic system, acted to speed or slow the transport of dye along the fracture-controlled flow paths. The dye-tracer tests also demonstrated that mining-related disturbances significantly altered the natural fracture-controlled flow paths of the hydrologic system over time. An abandoned underground mine and subsidence-related surface cracks extend to within 250 ft of the principal dye-injection core hole. Results from two of the dye-tracer tests at the site indicate that the annular seal in the core hole was breached by subsurface propagation of the mining-induced fractures. This propagation of fractures resulted in hydraulic short-circuiting between the dye-injection zone in the core hole and two lower piezometer zones, and a partial disruption of the hydraulic connection between the injection core hole and downgradient piezometers on the ridge crest and valley wall. In addition, injected dye was detected in piezometers monitoring a flooded part of the abandoned underground mine. Dye was apparently transported into the mine through a hydraulic connection between the injection core hole and subsidence-related fractures.

  10. Targeted Drug Delivery in the Suprachoroidal Space by Swollen Hydrogel Pushing

    PubMed Central

    Jung, Jae Hwan; Desit, Patcharin; Prausnitz, Mark R.

    2018-01-01

    Purpose The purpose is to target model drug particles to the posterior region of the suprachoroidal space (SCS) of the eye controlled via pushing by hydrogel swelling. Methods A particle formulation containing 1% hyaluronic acid (HA) with fluorescent polymer particles and a hydrogel formulation containing 4% HA were introduced in a single syringe as two layers without mixing, and injected sequentially into the SCS of the rabbit eye ex vivo and in vivo using a microneedle. Distribution of particles in the eye was determined by microscopy. Results During injection, the particle formulation was pushed toward the middle of the SCS by the viscous hydrogel formulation, but less than 12% of particles reached the posterior SCS. After injection, the particle formulation was pushed further toward the macula and optic nerve in the posterior SCS by hydrogel swelling and spreading. Heating the eye to 37°C, or injecting in vivo decreased viscosity and mechanical strength of the hydrogel, thereby allowing it to swell and flow further in the SCS. A high salt concentration (9% NaCl) in the hydrogel formulation further increased hydrogel swelling due to osmotic flow into the hydrogel. In this way, up to 76% of particles were delivered to the posterior SCS from an injection made near the limbus. Conclusions This study shows that model drug particles can be targeted to the posterior SCS by HA hydrogel swelling and pushing without particle functionalization or administering external driving forces. PMID:29677369

  11. Heat Extraction from a Hydraulically Fractured Penny-Shaped Crack in Hot Dry Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, H.; Mura, T.; Keer, L.M.

    1976-12-01

    Heat extraction from a penny-shaped crack having both inlet and outlet holes is investigated analytically by considering the hydraulic and thermal growth of the crack when fluid is injected at a constant flow rate. The rock mass is assumed to be infinitely extended, homogeneous, and isotropic. The equations for fluid flow are derived and solved to determine the flow pattern in the crack. Temperature distributions in both rock and fluid are also determined. The crack width change due to thermal contraction and the corresponding flow rate increase are discussed. Some numerical calculations of outlet temperature, thermal power extraction, and crackmore » opening displacement due to thermal contraction of rocks are presented for cracks after they attain stationary states for given inlet flow rate and outlet suction pressure. The present paper is a further development of the previous works of Bodvarsson (1969), Gringarten et al. (1975), Lowell (1976), Harlow and Pracht (1972), McFarland (1975), among others, and considers the two-dimensional rather than the one-dimensional crack. Furthermore, the crack radius and width are quantities to be determined rather than given a priori. 11 refs., 1 tab., 5 figs.« less

  12. A Numerical Simulation of a Normal Sonic Jet into a Hypersonic Cross-Flow

    NASA Technical Reports Server (NTRS)

    Jeffries, Damon K.; Krishnamurthy, Ramesh; Chandra, Suresh

    1997-01-01

    This study involves numerical modeling of a normal sonic jet injection into a hypersonic cross-flow. The numerical code used for simulation is GASP (General Aerodynamic Simulation Program.) First the numerical predictions are compared with well established solutions for compressible laminar flow. Then comparisons are made with non-injection test case measurements of surface pressure distributions. Good agreement with the measurements is observed. Currently comparisons are underway with the injection case. All the experimental data were generated at the Southampton University Light Piston Isentropic Compression Tube.

  13. Carbon dioxide fluid-flow modeling and injectivity calculations

    USGS Publications Warehouse

    Burke, Lauri

    2011-01-01

    These results were used to classify subsurface formations into three permeability classifications for the probabilistic calculations of storage efficiency and containment risk of the U.S. Geological Survey geologic carbon sequestration assessment methodology. This methodology is currently in use to determine the total carbon dioxide containment capacity of the onshore and State waters areas of the United States.

  14. Ignition Characterization Tests of the LOX/Ethanol Propellant Combination

    NASA Technical Reports Server (NTRS)

    Popp, Christopher G.; Robinson, Philip J.; Veith, Eric M.

    2004-01-01

    A series of contracts have been issued by the Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) to explore candidate technologies considered to be important for the Next Generation Launch Technology (NGLT) effort. One aspect of the NGLT effort is to explore the potential of incorporating non-toxic propellants for Reaction Control Subsystems (RCS). Contract NAS8-01109 has been issued to Aerojet to develop a dual thrust Reaction Control Engine (RCE) that utilizes liquid oxygen and ethanol as the propellants. The dual thrust RCE incorporates a primary thrust level of 870 lbf, and a vernier thrust level of 10 - 30 lbf. Aerojet has designed and tested a workhorse LOX igniter to determine LOX/Ethanol ignition characteristics as part of a risk mitigation effort for the dual thrust RCE design. The objective of the ignition testing was to demonstrate successfid ignition from GOX to LOX, encompassing potential two-phase flow conditions. The workhorse igniter was designed to accommodate the full LOX design flowrate, as well as a reduced GOX flowrate. It was reasoned that the initial LOX flow through the igniter would flash to GOX due to the inherent heat stored in the hardware, causing a reduced oxygen flowrate because of a choked, or sonic, flow condition through the injection elements. As LOX flow continued, the inherent heat of the test hardware would be removed and the hardware would chill-in, with the injected oxygen flow transitioning from cold GOX through two-phase flow to subcooled LOX. Pressure and temperature instrumentation permitted oxygen state points to be determined, and gas-side igniter chamber thermocouples provided chamber thermal profile characteristics. The cold flow chamber pressure (P(sub c)) for each test was determined and coupled with the igniter chamber diameter (D(sub c)) to calculate the characteristic quench parameter (P(sub c) x D(sub c)), which was plotted as a function of core mixture ratio, MR(sub c). Ignition limits were determined over a broad range of valve inlet conditions, and ignition was demonstrated with oxygen inlet conditions that ranged from subcooled 173 R LOX to 480 R GQX. Once ignited at cold GOX conditions, combustion was continuous as the hardware chilled in and the core mixture ratio transitioned from values near 1.0 to over 12.5.

  15. Radial lean direct injection burner

    DOEpatents

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  16. Active Flow Separation Control of a Stator Vane Using Surface Injection in a Multistage Compressor Experiment

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Bright, Michelle M.; Prahst, Patricia S.; Strazisar, Anthony J.

    2003-01-01

    Micro-flow control actuation embedded in a stator vane was used to successfully control separation and improve near stall performance in a multistage compressor rig at NASA Glenn. Using specially designed stator vanes configured with internal actuation to deliver pulsating air through slots along the suction surface, a research study was performed to identify performance benefits using this microflow control approach. Pressure profiles and unsteady pressure measurements along the blade surface and at the shroud provided a dynamic look at the compressor during microflow air injection. These pressure measurements lead to a tracking algorithm to identify the onset of separation. The testing included steady air injection at various slot locations along the vane. The research also examined the benefit of pulsed injection and actively controlled air injection along the stator vane. Two types of actuation schemes were studied, including an embedded actuator for on-blade control. Successful application of an online detection and flow control scheme will be discussed. Testing showed dramatic performance benefit for flow reattachment and subsequent improvement in diffusion through the use of pulsed controlled injection. The paper will discuss the experimental setup, the blade configurations, and preliminary CFD results which guided the slot location along the blade. The paper will also show the pressure profiles and unsteady pressure measurements used to track flow control enhancement, and will conclude with the tracking algorithm for adjusting the control.

  17. Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob

    2018-02-01

    Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and injected grout volume.

  18. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye.

    PubMed

    Patel, Samirkumar R; Berezovsky, Damian E; McCarey, Bernard E; Zarnitsyn, Vladimir; Edelhauser, Henry F; Prausnitz, Mark R

    2012-07-01

    This study seeks to determine the intraocular pharmacokinetics of molecules and particles injected into the suprachoroidal space of the rabbit eye in vivo using a hollow microneedle. Suprachoroidal injections of fluorescein and fluorescently tagged dextrans (40 and 250 kDa), bevacizumab, and polymeric particles (20 nm to 10 μm in diameter) were performed using microneedles in New Zealand white rabbits. The fluorescence intensity within the eye was monitored in each animal using an ocular fluorophotometer to determine the distribution of the injected material in the eye over time as compared with intravitreal injection of fluorescein. Fundus photography and histology were performed as well. Molecules and particles injected near the limbus using a microneedle flowed circumferentially around the eye within the suprachoroidal space. By targeting the suprachoroidal space, the concentration of injected materials was at least 10-fold higher in the back of the eye tissues than in anterior tissues. In contrast, intravitreal injection of fluorescein targeted the vitreous humor with no significant selectivity for posterior versus anterior segment tissues. Half-lives in the suprachoroidal space for molecules of molecular weight from 0.3 to 250 kDa ranged from 1.2 to 7.9 hours. In contrast, particles ranging in size from 20 nm to 10 μm remained primarily in the suprachoroidal space and choroid for a period of months and did not clear the eye. No adverse effects of injection into the suprachoroidal space were observed. Injection into the suprachoroidal space using a microneedle offers a simple and minimally invasive way to target the delivery of drugs to the choroid and retina.

  19. Targeted Administration into the Suprachoroidal Space Using a Microneedle for Drug Delivery to the Posterior Segment of the Eye

    PubMed Central

    Patel, Samirkumar R.; Berezovsky, Damian E.; McCarey, Bernard E.; Zarnitsyn, Vladimir; Edelhauser, Henry F.; Prausnitz, Mark R.

    2012-01-01

    Purpose. This study seeks to determine the intraocular pharmacokinetics of molecules and particles injected into the suprachoroidal space of the rabbit eye in vivo using a hollow microneedle. Methods. Suprachoroidal injections of fluorescein and fluorescently tagged dextrans (40 and 250 kDa), bevacizumab, and polymeric particles (20 nm to 10 μm in diameter) were performed using microneedles in New Zealand white rabbits. The fluorescence intensity within the eye was monitored in each animal using an ocular fluorophotometer to determine the distribution of the injected material in the eye over time as compared with intravitreal injection of fluorescein. Fundus photography and histology were performed as well. Results. Molecules and particles injected near the limbus using a microneedle flowed circumferentially around the eye within the suprachoroidal space. By targeting the suprachoroidal space, the concentration of injected materials was at least 10-fold higher in the back of the eye tissues than in anterior tissues. In contrast, intravitreal injection of fluorescein targeted the vitreous humor with no significant selectivity for posterior versus anterior segment tissues. Half-lives in the suprachoroidal space for molecules of molecular weight from 0.3 to 250 kDa ranged from 1.2 to 7.9 hours. In contrast, particles ranging in size from 20 nm to 10 μm remained primarily in the suprachoroidal space and choroid for a period of months and did not clear the eye. No adverse effects of injection into the suprachoroidal space were observed. Conclusion. Injection into the suprachoroidal space using a microneedle offers a simple and minimally invasive way to target the delivery of drugs to the choroid and retina. PMID:22669719

  20. Enhancing the performance of the domestic refrigerator with hot gas injection to suction line

    NASA Astrophysics Data System (ADS)

    Berman, E. T.; Hasan, S.; Mutaufiq

    2016-04-01

    The purpose of this study was to determine the increase in performance of a domestic refrigerator that uses hot gas injection (IHG) to the suction line. The experiment was conducted by flowing refrigerant from the discharge line to the suction line. To get performance data, measurements performed on the liquid brine as cooling load with various temperatures (range from 3°C to - 3°C). The working fluid is used as a cooling medium is R-134a. The experimental results showed that the injection of hot gas to the suction line generates an increase in the coefficient of performance systems (COPs) of 7% and is able to lower the discharge temperature, causing the compressor to work lighter/easier, saving electric power needed by the refrigerator.

  1. Online spectrophotometric determination of Fe(II) and Fe(III) by flow injection combined with low pressure ion chromatography

    NASA Astrophysics Data System (ADS)

    Chen, Shujuan; Li, Nan; Zhang, Xinshen; Yang, Dongjing; Jiang, Heimei

    2015-03-01

    A simple and new low pressure ion chromatography combined with flow injection spectrophotometric procedure for determining Fe(II) and Fe(III) was established. It is based on the selective adsorption of low pressure ion chromatography column to Fe(II) and Fe(III), the online reduction reaction of Fe(III) and the reaction of Fe(II) in sodium acetate with phenanthroline, resulting in an intense orange complex with a suitable absorption at 515 nm. Various chemical (such as the concentration of colour reagent, eluant and reductive agent) and instrumental parameters (reaction coil length, reductive coil length and wavelength) were studied and were optimized. Under the optimum conditions calibration graph of Fe(II)/Fe(III) was linear in the Fe(II)/Fe(III) range of 0.040-1.0 mg/L. The detection limit of Fe(III) and Fe(II) was respectively 3.09 and 1.55 μg/L, the relative standard deviation (n = 10) of Fe(II) and Fe(III) 1.89% and 1.90% for 0.5 mg/L of Fe(II) and Fe(III) respectively. About 2.5 samples in 1 h can be analyzed. The interfering effects of various chemical species were studied. The method was successfully applied in the determination of water samples.

  2. Flow injection chemiluminescence determination of loxoprofen and naproxen with the acidic permanganate-sulfite system.

    PubMed

    Wang, Li-Juan; Tang, Yu-Hai; Liu, Yang-Hao

    2011-02-01

    A novel flow injection chemiluminescence (CL) method for the determination of loxoprofen and naproxen was proposed based on the CL system of KMnO 4 , and Na 2 SO 3 in acid media. The CL intensity of KMnO 4 -Na 2 SO 3 was greatly enhaneed in the presence of loxoprofen and naproxen. The mechanism of the CL reaction was studied by the kinetic proecss and UV-vis absorption and the conditions were optimized. Under optimized conditions, the CL intensity was linear with loxoprofen and naproxen concentration in the range of 7.0 × 10 -8 - 1.0 × 10 -5 g/mL and 2.0 × 10 -7 - 4.0 × 10 -6 g/mL with the detection limit of 2.0 × 10 -8 g/mL and 3.0 × 10 -8 g/mL (S/N = 3), respectively. Thc relative standard deviations were 2.39% and 1.37% for 5.0 × 10 -7 g/mL naproxen and 5.0 × 10 -7 g/mL loxoprofen ( n = 10), respectively. The proposed method was satisfactorily applied to thc determination of loxoprofen and naproxen in pharmaceutical preparations.

  3. Detection of L-phenylalanine using molecularly imprinted solid-phase extraction and flow injection electrochemiluminescence.

    PubMed

    Lu, Juanjuan; Ge, Shenguang; Wan, Fuwei; Yu, Jinghua

    2012-01-01

    A novel flow injection electrochemiluminescence method combined with molecularly imprinted solid-phase extraction was developed for the determination of L-phenylalanine, in which ${\\rm{Ru(bpy}})_3^{2 + }$ was used as the luminophor and indium tin oxide glass was modified as the working electrode. Molecularly imprinted polymers, synthesized by self-assembly with functional monomer and crossing linker, were used for the selective extraction of L-phenylalanine. In order to overcome the drawbacks of traditional electrochemiluminescence cells such as high IR drop, high over-potential and so on, a novel electrochemiluminescence cell was developed. The enhanced electrochemiluminescence intensity was linearly related with the concentration of L-phenylalanine in the range from 1.0×10(-7) to 5.0×10(-5) g/mL with a detection limit of 2.59×10(-8) g/mL. The relative standard deviation for the determination of 1.0×10(-6) g/mL L-phenylalanine was 1.2% (n=11). The method showed higher sensitivity and good repeatability, and was successfully applied for the determination of L-phenylalanine in egg white, chicken and serum samples. A possible mechanism for the enhanced electrochemiluminescence response on indium tin oxide glass is proposed. Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Reverse flow injection spectrophotometric determination of ciprofloxacin in pharmaceuticals using iron from soil as a green reagent

    NASA Astrophysics Data System (ADS)

    Palamy, Sysay; Ruengsitagoon, Wirat

    2018-02-01

    A novel reverse flow injection spectrophotometric method for the determination of ciprofloxacin was successfully combined with the on-line introduction of an iron solution extracted from soil as green reagent. The assay was optimized by a univariate method to select the optimum conditions for the highest absorbance and highest stability of the complex. Beer-Lambert's law (λmax = 440 nm) is obeyed in the range 0.5-50 μg mL- 1 with a correlation coefficient (r2) of 0.9976 and 0.9996 using soil as green reagent from Khon Kaen, Thailand and Vientiane, Laos, respectively. The average percentage recoveries were in the range of 98.55-102.14% and the precision was in the range of 0.80-1.73%. The limit of detection and the limit of quantitation were 0.20 and 0.69 μg mL- 1, respectively, with a sampling rate of over 46 samples h- 1. The method was successfully applied to the determination of ciprofloxacin in commercial pharmaceutical formulations. The results were in good agreement with those obtained by the reference HPLC method using a t-test at 95% of confidence level for comparison. This method is suitable for laboratories looking for alternative analytical methods using green reagents.

  5. A Dual-Plane PIV Study of Turbulent Heat Transfer Flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Wroblewski, Adam C.; Locke, Randy J.

    2016-01-01

    Thin film cooling is a widely used technique in turbomachinery and rocket propulsion applications, where cool injection air protects a surface from hot combustion gases. The injected air typically has a different velocity and temperature from the free stream combustion flow, yielding a flow field with high turbulence and large temperature differences. These thin film cooling flows provide a good test case for evaluating computational model prediction capabilities. The goal of this work is to provide a database of flow field measurements for validating computational flow prediction models applied to turbulent heat transfer flows. In this work we describe the application of a Dual-Plane Particle Image Velocimetry (PIV) technique in a thin film cooling wind tunnel facility where the injection air stream velocity and temperatures are varied in order to provide benchmark turbulent heat transfer flow field measurements. The Dual-Plane PIV data collected include all three components of velocity and all three components of vorticity, spanning the width of the tunnel at multiple axial measurement planes.

  6. Results of ground-water tracer tests using tritiated water at Oak Ridge National Laboratory, Tennessee

    USGS Publications Warehouse

    Webster, D.A.

    1996-01-01

    Ground-water tracer test were conducted at two sites in the radioactive-waste disposal area of Oak Ridge National Laboratory from 1977 to 1982. The purpose of the tests was to determine if the regolith beds had weathered sufficiently to permit the substantial flow of water across them. About 50 curies of tritium dissolved in water were used as the tracer in one site, and about 100 curies at the other. Results demonstrated that ground water is able to flow through joints in the weathered bedding and that the direction of the water-table gradient is the primary factor governint flow direction. Nevertheless, the substantial lateral spread of the plume as it developed showed that bedding-plane openings can still exert a significant secondary influence on flow direction in weathered rock. About 3,500 water samples from the injection and observation wells were analyzed for tritium during the test period. Concentrations detected spanned 11 orders of magnitude. Measurable concentrations were still present in the two injection wells and most observation wells 5 years after the tracer was introduced. Matrix diffusion may have played a significant role in these tests. The process would account for the sustained concentrations of tritium at many of the observation wells, the long-term residual concentrations at the injection and observation wells, and the apparent slow movement of the centers of mass across the two well fields. The process also would have implications regarding aquifer remediation. Other tracer tests have been conducted in the regolith of the Conasauga Group. Results differ from the results described in this report.

  7. A green analytical method using ultrasound in sample preparation for the flow injection determination of iron, manganese, and zinc in soluble solid samples by flame atomic absorption spectrometry.

    PubMed

    Yebra, M Carmen

    2012-01-01

    A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5-30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2-4.6%) and a sample throughput of ca. 25 samples h(-1) were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4-25.61 μg g(-1) for iron, 5.74-18.30 μg g(-1) for manganese, and 33.27-57.90 μg g(-1) for zinc in soluble solid food samples and 3.75-9.90 μg g(-1) for iron, 0.47-5.05 μg g(-1) for manganese, and 1.55-15.12 μg g(-1) for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors.

  8. Combustion of hydrogen injected into a supersonic airstream (a guide to the HISS computer program)

    NASA Technical Reports Server (NTRS)

    Dyer, D. F.; Maples, G.; Spalding, D. B.

    1976-01-01

    A computer program based on a finite-difference, implicit numerical integration scheme is described for the prediction of hydrogen injected into a supersonic airstream at an angle ranging from normal to parallel to the airstream main flow direction. Results of calculations for flow and thermal property distributions were compared with 'cold flow data' taken by NASA/Langley and show excellent correlation. Typical results for equilibrium combustion are presented and exhibit qualitatively plausible behavior. Computer time required for a given case is approximately one minute on a CDC 7600. A discussion of the assumption of parabolic flow in the injection region is given which demonstrates that improvement in calculation in this region could be obtained by a partially-parabolic procedure which has been developed. It is concluded that the technique described provides an efficient and reliable means for analyzing hydrogen injection into supersonic airstreams and the subsequent combustion.

  9. Apparatus and method for continuous production of materials

    DOEpatents

    Chang, Chih-hung; Jin, Hyungdae

    2014-08-12

    Embodiments of a continuous-flow injection reactor and a method for continuous material synthesis are disclosed. The reactor includes a mixing zone unit and a residence time unit removably coupled to the mixing zone unit. The mixing zone unit includes at least one top inlet, a side inlet, and a bottom outlet. An injection tube, or plurality of injection tubes, is inserted through the top inlet and extends past the side inlet while terminating above the bottom outlet. A first reactant solution flows in through the side inlet, and a second reactant solution flows in through the injection tube(s). With reference to nanoparticle synthesis, the reactant solutions combine in a mixing zone and form nucleated nanoparticles. The nucleated nanoparticles flow through the residence time unit. The residence time unit may be a single conduit, or it may include an outer housing and a plurality of inner tubes within the outer housing.

  10. Comparison of Reductive Dechlorination of Chlorinated Ethylene in Batch and Continuous-Flow Reactor

    NASA Astrophysics Data System (ADS)

    Park, S.; Jonghwan, L.; Hong, U.; Kim, N.; Ahn, H.; Lee, S.; Kim, Y.

    2010-12-01

    A 1.28 L-Batch reactor and continuous-flow stirred tank reactor (CFSTR) fed with formate and trichloriethene (TCE) were operated for 120 days and 72 days, respectively, to study the effect of formate as electron donor on reductive dechlorination of TCE to cis-1,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethylene (ETH). In batch reactor, injected 60 μmol TCE was completely degraded in presence of 20% hydrogen gas (H2) in less than 8 days by Evanite culture (300 mg-soluble protein) with ability to completely degrade tetrachloroethene (PCE) and TCE to ETH under anaerobic conditions. To determine the effect of formate as electron donor instead of H2, about 3 or 11 mmol of formate injected into batch-reactor every 15 days was enough to support H2 for dechlorination of c-DCE to VC and ETH. Soluble protein concentration of Evanite culture during the batch test increased from 300 mg to 688 mg for 120 days. In CFSTR test, TCE was fed continuously at 9.9 ppm (75.38 μmol/L) and the influent formate feed concentration increased stepwise from 1.3 mmol/L to 14.3 mmol/L. Injected TCE was accumulated at HRT 18 days for 13 days, but TCE was completed degraded at HRT 36 days without accumulation during left of experiment period, getting H2 from fermentative hydrogen production of injected formate. Although c-DCE was also accumulated for 23 days after CFSTR operation, it reached steady-state without accumulation in presence of excessive formate. However, since c-DCE in CFSTR was not completely dechlorinated, we will determine the transcriptional level of enzyme involved in reductive dechlorination of TCE, c-DCE, and VC in our future work.

  11. Determination of ambroxol hydrochloride, methylparaben and benzoic acid in pharmaceutical preparations based on sequential injection technique coupled with monolithic column.

    PubMed

    Satínský, Dalibor; Huclová, Jitka; Ferreira, Raquel L C; Montenegro, Maria Conceição B S M; Solich, Petr

    2006-02-13

    The porous monolithic columns show high performance at relatively low pressure. The coupling of short monoliths with sequential injection technique (SIA) results in a new approach to implementation of separation step to non-separation low-pressure method. In this contribution, a new separation method for simultaneous determination of ambroxol, methylparaben and benzoic acid was developed based on a novel reversed-phase sequential injection chromatography (SIC) technique with UV detection. A Chromolith SpeedROD RP-18e, 50-4.6 mm column with 10 mm precolumn and a FIAlab 3000 system with a six-port selection valve and 5 ml syringe were used for sequential injection chromatographic separations in our study. The mobile phase used was acetonitrile-tetrahydrofuran-0.05M acetic acid (10:10:90, v/v/v), pH 3.75 adjusted with triethylamine, flow rate 0.48 mlmin(-1), UV-detection was at 245 nm. The analysis time was <11 min. A new SIC method was validated and compared with HPLC. The method was found to be useful for the routine analysis of the active compounds ambroxol and preservatives (methylparaben or benzoic acid) in various pharmaceutical syrups and drops.

  12. Active heat pulse sensing of 3-D-flow fields in streambeds

    NASA Astrophysics Data System (ADS)

    Banks, Eddie W.; Shanafield, Margaret A.; Noorduijn, Saskia; McCallum, James; Lewandowski, Jörg; Batelaan, Okke

    2018-03-01

    Profiles of temperature time series are commonly used to determine hyporheic flow patterns and hydraulic dynamics in the streambed sediments. Although hyporheic flows are 3-D, past research has focused on determining the magnitude of the vertical flow component and how this varies spatially. This study used a portable 56-sensor, 3-D temperature array with three heat pulse sources to measure the flow direction and magnitude up to 200 mm below the water-sediment interface. Short, 1 min heat pulses were injected at one of the three heat sources and the temperature response was monitored over a period of 30 min. Breakthrough curves from each of the sensors were analysed using a heat transport equation. Parameter estimation and uncertainty analysis was undertaken using the differential evolution adaptive metropolis (DREAM) algorithm, an adaption of the Markov chain Monte Carlo method, to estimate the flux and its orientation. Measurements were conducted in the field and in a sand tank under an extensive range of controlled hydraulic conditions to validate the method. The use of short-duration heat pulses provided a rapid, accurate assessment technique for determining dynamic and multi-directional flow patterns in the hyporheic zone and is a basis for improved understanding of biogeochemical processes at the water-streambed interface.

  13. Questa baseline and pre-mining ground-water quality investigation. 2. Low-flow (2001) and snowmelt (2002) synoptic/tracer water chemistry for the Red River, New Mexico

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Steiger, Judy I.; Kimball, Briant A.; Verplanck, Philip L.

    2003-01-01

    Water analyses are reported for 259 samples collected from the Red River, New Mexico, and its tributaries during low-flow(2001) and spring snowmelt (2002) tracer studies. Water samples were collected along a 20-kilometer reach of the Red River beginning just east of the town of Red River and ending at the U.S. Geological Survey streamflow-gaging station located east of Questa, New Mexico. The study area was divided into three sections where separate injections and synoptic sampling events were performed during the low-flow tracer study. During the spring snowmelt tracer study, three tracer injections and synoptic sampling events were performed bracketing the areas with the greatest metal loading into the Red River as determined from the low-flow tracer study. The lowflow tracer synoptic sampling events were August 17, 20, and 24, 2001. The synoptic sampling events for the spring snowmelt tracer were March 30, 31, and April 1, 2002. Stream and large inflow water samples were sampled using equal-width and depth-integrated sampling methods and composited into half-gallon bottles. Grab water samples were collected from smaller inflows. Stream temperatures were measured at the time of sample collection. Samples were transported to a nearby central processing location where pH and specific conductance were measured and the samples processed for chemical analyses. Cations, trace metals, iron redox species, and fluoride were analyzed at the U.S. Geological Survey laboratory in Boulder, Colorado. Cations and trace metal concentrations were determined using inductively coupled plasma-optical emission spectrometry and graphite furnace atomic absorption spectrometry. Arsenic concentrations were determined using hydride generation atomic absorption spectrometry, iron redox species were measured using ultraviolet-visible spectrometry, and fluoride concentrations were determined using an ion-selective electrode. Alkalinity was measured by automated titration, and sulfate, chloride, and bromide were analyzed by ion chromatography at the U.S. Geological Survey laboratory in Salt Lake City, Utah.

  14. An initial investigation of multidimensional flow and transverse mixing characteristics of the Ohio River near Cincinnati, Ohio

    USGS Publications Warehouse

    Holtschlag, David J.

    2009-01-01

    Two-dimensional hydrodynamic and transport models were applied to a 34-mile reach of the Ohio River from Cincinnati, Ohio, upstream to Meldahl Dam near Neville, Ohio. The hydrodynamic model was based on the generalized finite-element hydrodynamic code RMA2 to simulate depth-averaged velocities and flow depths. The generalized water-quality transport code RMA4 was applied to simulate the transport of vertically mixed, water-soluble constituents that have a density similar to that of water. Boundary conditions for hydrodynamic simulations included water levels at the U.S. Geological Survey water-level gaging station near Cincinnati, Ohio, and flow estimates based on a gate rating at Meldahl Dam. Flows estimated on the basis of the gate rating were adjusted with limited flow-measurement data to more nearly reflect current conditions. An initial calibration of the hydrodynamic model was based on data from acoustic Doppler current profiler surveys and water-level information. These data provided flows, horizontal water velocities, water levels, and flow depths needed to estimate hydrodynamic parameters related to channel resistance to flow and eddy viscosity. Similarly, dye concentration measurements from two dye-injection sites on each side of the river were used to develop initial estimates of transport parameters describing mixing and dye-decay characteristics needed for the transport model. A nonlinear regression-based approach was used to estimate parameters in the hydrodynamic and transport models. Parameters describing channel resistance to flow (Manning’s “n”) were estimated in areas of deep and shallow flows as 0.0234, and 0.0275, respectively. The estimated RMA2 Peclet number, which is used to dynamically compute eddy-viscosity coefficients, was 38.3, which is in the range of 15 to 40 that is typically considered appropriate. Resulting hydrodynamic simulations explained 98.8 percent of the variability in depth-averaged flows, 90.0 percent of the variability in water levels, 93.5 percent of the variability in flow depths, and 92.5 percent of the variability in velocities. Estimates of the water-quality-transport-model parameters describing turbulent mixing characteristics converged to different values for the two dye-injection reaches. For the Big Indian Creek dye-injection study, an RMA4 Peclet number of 37.2 was estimated, which was within the recommended range of 15 to 40, and similar to the RMA2 Peclet number. The estimated dye-decay coefficient was 0.323. Simulated dye concentrations explained 90.2 percent of the variations in measured dye concentrations for the Big Indian Creek injection study. For the dye-injection reach starting downstream from Twelvemile Creek, however, an RMA4 Peclet number of 173 was estimated, which is far outside the recommended range. Simulated dye concentrations were similar to measured concentration distributions at the first four transects downstream from the dye-injection site that were considered vertically mixed. Farther downstream, however, simulated concentrations did not match the attenuation of maximum concentrations or cross-channel transport of dye that were measured. The difficulty of determining a consistent RMA4 Peclet was related to the two-dimension model assumption that velocity distributions are closely approximated by their depth-averaged values. Analysis of velocity data showed significant variations in velocity direction with depth in channel reaches with curvature. Channel irregularities (including curvatures, depth irregularities, and shoreline variations) apparently produce transverse currents that affect the distribution of constituents, but are not fully accounted for in a two-dimensional model. The two-dimensional flow model, using channel resistance to flow parameters of 0.0234 and 0.0275 for deep and shallow areas, respectively, and an RMA2 Peclet number of 38.3, and the RMA4 transport model with a Peclet number of 37.2, may have utility for emergency-planning purposes. Emergency-response efforts would be enhanced by continuous streamgaging records downstream from Meldahl Dam, real-time water-quality monitoring, and three-dimensional modeling. Decay coefficients are constituent specific.

  15. Investigation of representing hysteresis in macroscopic models of two-phase flow in porous media using intermediate scale experimental data

    NASA Astrophysics Data System (ADS)

    Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; Gonzalez-Nicolas, Ana; Illangasekare, Tissa

    2017-01-01

    Incorporating hysteresis into models is important to accurately capture the two phase flow behavior when porous media systems undergo cycles of drainage and imbibition such as in the cases of injection and post-injection redistribution of CO2 during geological CO2 storage (GCS). In the traditional model of two-phase flow, existing constitutive models that parameterize the hysteresis associated with these processes are generally based on the empirical relationships. This manuscript presents development and testing of mathematical hysteretic capillary pressure—saturation—relative permeability models with the objective of more accurately representing the redistribution of the fluids after injection. The constitutive models are developed by relating macroscopic variables to basic physics of two-phase capillary displacements at pore-scale and void space distribution properties. The modeling approach with the developed constitutive models with and without hysteresis as input is tested against some intermediate-scale flow cell experiments to test the ability of the models to represent movement and capillary trapping of immiscible fluids under macroscopically homogeneous and heterogeneous conditions. The hysteretic two-phase flow model predicted the overall plume migration and distribution during and post injection reasonably well and represented the postinjection behavior of the plume more accurately than the nonhysteretic models. Based on the results in this study, neglecting hysteresis in the constitutive models of the traditional two-phase flow theory can seriously overpredict or underpredict the injected fluid distribution during post-injection under both homogeneous and heterogeneous conditions, depending on the selected value of the residual saturation in the nonhysteretic models.

  16. Effect of double air injection on performance characteristics of centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Hirano, Toshiyuki; Ogawa, Tatsuya; Yasui, Ryutaro; Tsujita, Hoshio

    2017-02-01

    In the operation of a centrifugal compressor of turbocharger, instability phenomena such as rotating stall and surge are induced at a lower flow rate close to the maximum pressure ratio. In this study, the compressed air at the exit of centrifugal compressor was re-circulated and injected to the impeller inlet by using two injection nozzles in order to suppress the surge phenomenon. The most effective circumferential position was examined to reduce the flow rate at the surge inception. Moreover, the influences of the injection on the fluctuating property of the flow field before and after the surge inception were investigated by examining the frequency of static pressure fluctuation on the wall surface and visualizing the compressor wall surface by oil-film visualization technique.

  17. Mathematical Modeling of Fluid Flow in a Water Physical Model of an Aluminum Degassing Ladle Equipped with an Impeller-Injector

    NASA Astrophysics Data System (ADS)

    Gómez, Eudoxio Ramos; Zenit, Roberto; Rivera, Carlos González; Trápaga, Gerardo; Ramírez-Argáez, Marco A.

    2013-04-01

    In this work, a 3D numerical simulation using a Euler-Euler-based model implemented into a commercial CFD code was used to simulate fluid flow and turbulence structure in a water physical model of an aluminum ladle equipped with an impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate, and the point of gas injection (conventional injection through the shaft vs a novel injection through the bottom of the ladle) on the fluid flow and vortex formation was analyzed with this model. The commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this two-phase fluid flow system. The mathematical model was reasonably well validated against experimentally measured liquid velocity and vortex sizes in a water physical model built specifically for this investigation. From the results, it was concluded that the angular speed of the impeller is the most important parameter in promoting better stirred baths and creating smaller and better distributed bubbles in the liquid. The pumping effect of the impeller is increased as the impeller rotation speed increases. Gas flow rate is detrimental to bath stirring and diminishes the pumping effect of the impeller. Finally, although the injection point was the least significant variable, it was found that the "novel" injection improves stirring in the ladle.

  18. Integrated luminometer for the determination of trace metals in seawater using fluorescence, phosphorescence and chemiluminescence detection

    PubMed Central

    Achterberg, E. P.; Bowie, A. R.; Cannizzaro, V.; Charles, S.; Costa, J. M.; Dubois, F.; Pereiro, R.; San Vicente, B.; Sanz-Medel, A.; Vandeloise, R.; Donckt, E. Vander; Wollast, P.; Yunus, S.

    2002-01-01

    The paper describes an integrated luminometer able to perform fluorescence (FL), room temperature phosphorescence (RTP) and chemiluminescence (CL) measurements on seawater samples. The technical details of the instrumentation are presented together with flow injection (FI) manifolds for the determination of cadmium and zinc (by FL), lead (RTP) and cobalt (CL). The analytical figures of merit are given for each manifold and results are presented for the determination of the four trace metals in seawater reference materials (NASS-5, SLEW-2) and Scheldt estuarine water samples. PMID:18924742

  19. Closed Loop Active Flow Separation Detection and Control in a Multistage Compressor

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Culley, Dennis E.; Braunscheidel, Edward P.; Welch, Gerard E.

    2005-01-01

    Active closed loop flow control was successfully demonstrated on a full annulus of stator vanes in a low speed axial compressor. Two independent methods of detecting separated flow conditions on the vane suction surface were developed. The first technique detects changes in static pressure along the vane suction surface, while the second method monitors variation in the potential field of the downstream rotor. Both methods may feasibly be used in future engines employing embedded flow control technology. In response to the detection of separated conditions, injection along the suction surface of each vane was used. Injected mass flow on the suction surface of stator vanes is known to reduce separation and the resulting limitation on static pressure rise due to lowered diffusion in the vane passage. A control algorithm was developed which provided a proportional response of the injected mass flow to the degree of separation, thereby minimizing the performance penalty on the compressor system.

  20. Flow through electrode with automated calibration

    DOEpatents

    Szecsody, James E [Richland, WA; Williams, Mark D [Richland, WA; Vermeul, Vince R [Richland, WA

    2002-08-20

    The present invention is an improved automated flow through electrode liquid monitoring system. The automated system has a sample inlet to a sample pump, a sample outlet from the sample pump to at least one flow through electrode with a waste port. At least one computer controls the sample pump and records data from the at least one flow through electrode for a liquid sample. The improvement relies upon (a) at least one source of a calibration sample connected to (b) an injection valve connected to said sample outlet and connected to said source, said injection valve further connected to said at least one flow through electrode, wherein said injection valve is controlled by said computer to select between said liquid sample or said calibration sample. Advantages include improved accuracy because of more frequent calibrations, no additional labor for calibration, no need to remove the flow through electrode(s), and minimal interruption of sampling.

  1. Flow injection spectrophotometric determination of V(V) involving on-line separation using a poly(vinylidene fluoride-co-hexafluoropropylene)-based polymer inclusion membrane.

    PubMed

    Yaftian, Mohammad Reza; Almeida, M Inês G S; Cattrall, Robert W; Kolev, Spas D

    2018-05-01

    A poly(vinylidene fluoride-co-hexafluoropropylene)-based polymer inclusion membrane (PIM) using Cyphos® IL 101 (i.e. trihexyl(tetradecyl)phosphonium chloride) as the carrier and 2-nitrophenyl octyl ether as a plasticizer in a mass ratio of 55/35/10 was employed for the on-line extractive separation of V(V) prior to its spectrophotometric determination in a flow injection analysis (FIA) system using xylenol orange as the colorimetric reagent. The selectivity of the membrane allowed the determination of V(V) in sulfate solutions in the presence of a variety of cations and anions. The interference of molybdenum(VI) was eliminated by off-line extraction using the same PIM. A univariate sequential optimization of the newly developed FIA system was conducted and under optimal conditions the system is characterized by a linear concentration range of 0.5-8.0mgL -1 , detection limit of 0.08mgL -1 and sample throughput of 4h -1 . The relative standard deviation at the 3mgL -1 level of V(V) was 2.9% based on 8 replicate determinations. The membrane was stable, which was reflected by the standard deviation value for determinations over three consecutive days (24 determinations of 3mgL -1 V(V)) of 3.6%. The newly developed FIA system was applied to the determination of V(V) in water and dietary supplements samples and a good agreement with inductively coupled plasma optical emission spectrometry was observed. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Re-injection feasibility study of fracturing flow-back fluid in shale gas mining

    NASA Astrophysics Data System (ADS)

    Kang, Dingyu; Xue, Chen; Chen, Xinjian; Du, Jiajia; Shi, Shengwei; Qu, Chengtun; Yu, Tao

    2018-02-01

    Fracturing flow-back fluid in shale gas mining is usually treated by re-injecting into formation. After treatment, the fracturing flow-back fluid is injected back into the formation. In order to ensure that it will not cause too much damage to the bottom layer, feasibility evaluations of re-injection of two kinds of fracturing fluid with different salinity were researched. The experimental research of the compatibility of mixed water samples based on the static simulation method was conducted. Through the analysis of ion concentration, the amount of scale buildup and clay swelling rate, the feasibility of re-injection of different fracturing fluid were studied. The result shows that the swelling of the clay expansion rate of treated fracturing fluid is lower than the mixed water of treated fracturing fluid and the distilled water, indicating that in terms of clay expansion rate, the treated fracturing flow-back fluid is better than that of water injection after re-injection. In the compatibility test, the maximum amount of fouling in the Yangzhou oilfield is 12mg/L, and the maximum value of calcium loss rate is 1.47%, indicating that the compatibility is good. For the fracturing fluid with high salinity in the Yanchang oilfield, the maximum amount of scaling is 72mg/L, and the maximum calcium loss rate is 3.50%, indicating that the compatibility is better.

  3. Calculation of eddy viscosity in a compressible turbulent boundary layer with mass injection and chemical reaction, volume 1. [theoretical analysis

    NASA Technical Reports Server (NTRS)

    Omori, S.

    1973-01-01

    The turbulent kinetic energy equation is coupled with boundary layer equations to solve the characteristics of compressible turbulent boundary layers with mass injection and combustion. The Reynolds stress is related to the turbulent kinetic energy using the Prandtl-Wieghardt formulation. When a lean mixture of hydrogen and nitrogen is injected through a porous plate into the subsonic turbulent boundary layer of air flow and ignited by external means, the turbulent kinetic energy increases twice as much as that of noncombusting flow with the same mass injection rate of nitrogen. The magnitudes of eddy viscosity between combusting and noncombusting flows with injection, however, are almost the same due to temperature effects, while the distributions are different. The velocity profiles are significantly affected by combustion; that is, combustion alters the velocity profile as if the mass injection rate is increased, reducing the skin-friction as a result of a smaller velocity gradient at the wall. If pure hydrogen as a transpiration coolant is injected into a rocket nozzle boundary layer flow of combustion products, the temperature drops significantly across the boundary layer due to the high heat capacity of hydrogen. At a certain distance from the wall, hydrogen reacts with the combustion products, liberating an extensive amount of heat. The resulting large increase in temperature reduces the eddy viscosity in this region.

  4. Simple flow injection analysis system for simultaneous determination of phenolic antioxidants with multiple pulse amperometric detection at a boron-doped diamond electrode.

    PubMed

    Medeiros, Roberta Antigo; Lourenção, Bruna Cláudia; Rocha-Filho, Romeu Cardozo; Fatibello-Filho, Orlando

    2010-10-15

    A method for simultaneous determination of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in food was developed that uses multiple pulse amperometry (MPA) with flow injection analysis (FIA). Determination of these phenolic antioxidants was carried out with a cathodically pretreated boron-doped diamond electrode and an aqueous ethanolic (30% ethanol, v/v) 10 mmol L⁻¹ KNO₃ solution (pH(cond) = 1.5) as supporting electrolyte. A dual-potential waveform, at E(det1) = 850 mV/200 ms and E(det2) = 1150 mV/200 ms versus Ag/AgCl (3.0 mol L⁻¹ KCl), was employed. The use of E(det1) or E(det2) caused the oxidation of BHA or of BHA and BHT, respectively; hence, concentration subtraction could be used to determine both species. The respective analytical curves presented good linearity in the investigated concentration range (0.050-3.0 μmol L⁻¹ for BHA and 0.70-70 μmol L⁻¹ for BHT), and the detection limits were 0.030 μmol L⁻¹ for BHA and 0.40 μmol L⁻¹ for BHT. The proposed method, which is simple, quick, and presents good precision and accuracy, was successfully applied in the simultaneous determination of BHA and BHT in commercial mayonnaise samples, with results similar to those obtained by HPLC, at a 95% confidence level.

  5. Flow injection determination of aluminium by spectrofluorimetric detection after complexation with N-o-vanillidine-2-amino-p-cresol: the application to natural waters.

    PubMed

    Kara, Derya; Fisher, Andrew; Hill, Steve J

    2008-03-17

    An on-line flow injection spectrofluorimetric method for the direct determination of aluminium in water samples is described. The method is based on the reaction of aluminium with N-o-vanillidine-2-amino-p-cresol (OVAC) in acidic medium at pH 4.0 to form a water-soluble complex. The excitation and emission wavelengths were 423.0 and 553.0nm, respectively, at which the OVAC-Al complex gave the maximum fluorescence intensity at pH 4.0 in a 50% methanol-50% water medium at 50 degrees C. An interference from fluoride ions was minimised by the addition of Be(2+). Other ions were found not to interfere at the concentrations likely to be found in natural waters. The proposed methods were validated in terms of linearity, repeatability, detection limit, accuracy and selectivity. Under these conditions, the calibration was linear up to 1000microgL(-1) (r=0.999). The limit of detection (3sigma) for the determination of Al(III) was 0.057microgL(-1) and the precision for multiple determinations of 3ngmL(-1) Al(III) prepared in ultra-pure water was found to be 0.62% (n=10). The Schiff base ligand could be used to determine ultra-trace aluminium from natural waters. Analysis of environmental certified reference materials showed good agreement with the certified values. The procedure was found to be equally applicable to both freshwater and saline solutions, including seawater.

  6. A New Microfluidic Polymer Chip with an Embedded Cationic Surfactant Ion-selective Optode as a Detector for the Determination of Cationic Surfactants.

    PubMed

    Ashagre, Mekonnen Abiyot; Masadome, Takashi

    2018-01-01

    A new microfluidic polymer chip with an embedded cationic surfactant (CS) ion-selective optode (CS-optode) as a detector of flow-injection analysis (FIA) for the determination of CSs was developed. The optode sensing membrane is based on a poly(vinyl chloride) membrane plasticized with 2-nitrophenyl octyl ether containing tetrabromophenolphthalein ethyl ester. Under the optimal flow conditions of the FIA system, the CS-optode showed a good linear relationship between the peak heights in the absorbance, and the concentrations of CS in a concentration range from 50 to 400 μmol dm -3 . The sample throughput of the present system for the determination of a CS ion (300 μmol dm -3 zephiramine) was ca. 11 samples h -1 . The proposed FIA system was applied to determine the level of CS in dental rinses.

  7. Influence of gas injection on viscous and viscoelastic properties of Xanthan gum.

    PubMed

    Bobade, Veena; Cheetham, Madalyn; Hashim, Jamal; Eshtiaghi, Nicky

    2018-05-01

    Xanthan gum is widely used as a model fluid for sludge to mimic the rheological behaviour under various conditions including impact of gas injection in sludge. However, there is no study to show the influence of gas injection on rheological properties of xanthan gum specifically at the concentrations at which it is used as a model fluid for sludge with solids concentration above 2%. In this paper, the rheological properties of aqueous xanthan gum solutions at different concentrations were measured over a range of gas injection flow rates. The effect of gas injection on both the flow and viscoelastic behaviour of Xanthan gum (using two different methods - a creep test and a time sweep test) was evaluated. The viscosity curve of different solid concentrations of digested sludge and waste activated sludge were compared with different solid concentrations of Xanthan gum and the results showed that Xanthan gum can mimic the flow behaviour of sludge in flow regime. The results in linear viscoelastic regime showed that increasing gas flow rate increases storage modulus (G'), indicating an increase in the intermolecular associations within the material structure leading to an increase in material strength and solid behaviour. Similarly, in creep test an increase in the gas flow rate decreased strain%, signifying that the material has become more resistant to flow. Both observed behaviour is opposite to what occurs in sludge under similar conditions. The results of both the creep test and the time sweep test indicated that choosing Xanthan gum aqueous solution as a transparent model fluid for sludge in viscoelastic regime under similar conditions involving gas injection in a concentration range studied is not feasible. However Xanthan gum can be used as a model material for sludge in flow regime; because it shows a similar behaviour to sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Design and performance of a new continuous-flow sample-introduction system for flame infrared-emission spectrometry: Applications in process analysis, flow injection analysis, and ion-exchange high-performance liquid chromatography.

    PubMed

    Lam, C K; Zhang, Y; Busch, M A; Busch, K W

    1993-06-01

    A new sample introduction system for the analysis of continuously flowing liquid streams by flame infrared-emission (FIRE) spectrometry has been developed. The system uses a specially designed purge cell to strip dissolved CO(2) from solution into a hydrogen gas stream that serves as the fuel for a hydrogen/air flame. Vibrationally excited CO(2) molecules present in the flame are monitored with a simple infrared filter (4.4 mum) photometer. The new system can be used to introduce analytes as a continuous liquid stream (process analysis mode) or on a discrete basis by sample injection (flow injection analysis mode). The key to the success of the method is the new purge-cell design. The small internal volume of the cell minimizes problems associated with purge-cell clean-out and produces sharp, reproducible signals. Spent analytical solution is continuously drained from the cell, making cell disconnection and cleaning between samples unnecessary. Under the conditions employed in this study, samples could be analyzed at a maximum rate of approximately 60/h. The new sample introduction system was successfully tested in both a process analysis- and a flow injection analysis mode for the determination of total inorganic carbon in Waco tap water. For the first time, flame infrared-emission spectrometry was successfully extended to non-volatile organic compounds by using chemical pretreatment with peroxydisulfate in the presence of silver ion to convert the analytes into dissolved carbon dioxide, prior to purging and detection by the FIRE radiometer. A test of the peroxydisulfate/Ag(+) reaction using six organic acids and five sugars indicated that all 11 compounds were oxidized to nearly the same extent. Finally, the new sample introduction system was used in conjunction with a simple filter FIRE radiometer as a detection system in ion-exchange high-performance liquid chromatography. Ion-exchange chromatograms are shown for two aqueous mixtures, one containing six organic acids and the second containing six mono-, di-, and trisaccharides.

  9. On the physics-based processes behind production-induced seismicity in natural gas fields

    NASA Astrophysics Data System (ADS)

    Zbinden, Dominik; Rinaldi, Antonio Pio; Urpi, Luca; Wiemer, Stefan

    2017-04-01

    Induced seismicity due to natural gas production is observed at different sites around the world. Common understanding is that the pressure drop caused by gas production leads to compaction, which affects the stress field in the reservoir and the surrounding rock formations, hence reactivating pre-existing faults and inducing earthquakes. Previous studies have often assumed that pressure changes in the reservoir compartments and intersecting fault zones are equal, while neglecting multi-phase fluid flow. In this study, we show that disregarding fluid flow involved in natural gas extraction activities is often inappropriate. We use a fully coupled multiphase fluid flow and geomechanics simulator, which accounts for stress-dependent permeability and linear poroelasticity, to better determine the conditions leading to fault reactivation. In our model setup, gas is produced from a porous reservoir, cut in two compartments that are offset by a normal fault, and overlain by impermeable caprock. Results show that fluid flow plays a major role pertaining to pore pressure and stress evolution within the fault. Hydro-mechanical processes include rotation of the principal stresses due to reservoir compaction, as well as poroelastic effects caused by the pressure drop in the adjacent reservoir. Fault strength is significantly reduced due to fluid flow into the fault zone from the neighbouring reservoir compartment and other formations. We also analyze the case of production in both compartments, and results show that simultaneous production does not prevent the fault to be reactivated, but the magnitude of the induced event is smaller. Finally, we analyze scenarios for minimizing seismicity after a period of production, such as (i) well shut-in and (ii) gas re-injection. Results show that, in the case of well shut-in, a highly stressed fault zone can still be reactivated several decades after production stop, although in average the shut-in results in reduction of seismicity. In the case of gas re-injection, fault reactivation can be avoided if gas is injected directly into the compartment under depletion. However, accounting for continuous production at a given reservoir and gas re-injection at a neighbouring compartment does not stop the fault from being reactivated.

  10. Stationary to nonstationary transition in crossed-field devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marini, Samuel; Rizzato, Felipe B.; Pakter, Renato

    2016-03-15

    The previous results based on numerical simulations showed that a cold electron beam injected in a crossed field gap does not reach a time independent stationary state in the space charge limited regime [P. J. Christenson and Y. Y. Lau, Phys. Plasmas 1, 3725 (1994)]. In this work, the effect of finite injection temperature in the transition from stationary to nonstationary states is investigated. A fully kinetic model for the electron flow is derived and used to determine the possible stationary states of the system. It is found that although there is always a stationary solution for any set ofmore » parameters, depending on the injection temperature the electron flow becomes very sensitive to fluctuations and the stationary state is never reached. By investigating the nonlinear dynamics of a characteristic electron, a theory based on a single free parameter is constructed to predict when the transition between stationary and nonstationary states occurs. In agreement with the previous numerical results, the theory indicates that for vanishing temperatures the system never reaches the time independent stationary state in the space charge limited regime. Nevertheless, as the injection temperature is raised it is found a broad range of system parameters for which the stationary state is indeed attained. By properly adjusting the free parameter in the theory, one can be able to describe, to a very good accuracy, when the transition occurs.« less

  11. Videodensitometric Methods for Cardiac Output Measurements

    NASA Astrophysics Data System (ADS)

    Mischi, Massimo; Kalker, Ton; Korsten, Erik

    2003-12-01

    Cardiac output is often measured by indicator dilution techniques, usually based on dye or cold saline injections. Developments of more stable ultrasound contrast agents (UCA) are leading to new noninvasive indicator dilution methods. However, several problems concerning the interpretation of dilution curves as detected by ultrasound transducers have arisen. This paper presents a method for blood flow measurements based on UCA dilution. Dilution curves are determined by real-time densitometric analysis of the video output of an ultrasound scanner and are automatically fitted by the Local Density Random Walk model. A new fitting algorithm based on multiple linear regression is developed. Calibration, that is, the relation between videodensity and UCA concentration, is modelled by in vitro experimentation. The flow measurement system is validated by in vitro perfusion of SonoVue contrast agent. The results show an accurate dilution curve fit and flow estimation with determination coefficient larger than 0.95 and 0.99, respectively.

  12. Selected contribution: redistribution of pulmonary perfusion during weightlessness and increased gravity

    NASA Technical Reports Server (NTRS)

    Glenny, R. W.; Lamm, W. J.; Bernard, S. L.; An, D.; Chornuk, M.; Pool, S. L.; Wagner, W. W. Jr; Hlastala, M. P.; Robertson, H. T.

    2000-01-01

    To compare the relative contributions of gravity and vascular structure to the distribution of pulmonary blood flow, we flew with pigs on the National Aeronautics and Space Administration KC-135 aircraft. A series of parabolas created alternating weightlessness and 1.8-G conditions. Fluorescent microspheres of varying colors were injected into the pulmonary circulation to mark regional blood flow during different postural and gravitational conditions. The lungs were subsequently removed, air dried, and sectioned into approximately 2 cm(3) pieces. Flow to each piece was determined for the different conditions. Perfusion heterogeneity did not change significantly during weightlessness compared with normal and increased gravitational forces. Regional blood flow to each lung piece changed little despite alterations in posture and gravitational forces. With the use of multiple stepwise linear regression, the contributions of gravity and vascular structure to regional perfusion were separated. We conclude that both gravity and the geometry of the pulmonary vascular tree influence regional pulmonary blood flow. However, the structure of the vascular tree is the primary determinant of regional perfusion in these animals.

  13. Microfluidic Device for Sequential Injection and Flushing of Solutions and its Application to Immunosensing

    NASA Astrophysics Data System (ADS)

    Nashida, Norihiro; Suzuki, Hiroaki

    A microfluidic system with injecting and flushing functions was developed. In the system, hydrophilic flow channels have a dry-film photoresist layer which facilitates the introduction of solutions from four injection ports. The injection and flushing of solutions are controlled by valves operated by electrowetting. The valves consist of gold working electrodes in the flow channels or a through-hole in the glass substrate. Solutions can be sequentially introduced through the injection ports into a reaction chamber and flushed through a valve in the through-hole. Necessary immunoassay steps can be conducted on the chip, and a target antibody can be detected electrochemically.

  14. Anthropogenic contaminants as tracers in an urbanizing karst aquifer

    USGS Publications Warehouse

    Mahler, B.; Massei, N.

    2007-01-01

    Karst aquifers are uniquely vulnerable to contamination. In the Barton Springs segment of the karstic Edwards aquifer (Texas, U.S.A.), urban contaminants such as pesticides and volatile organic compounds frequently are detected in spring base flow. To determine whether contaminant concentrations change in response to storms, and if they therefore might act as tracers of focused recharge, samples were collected from Barton Springs at closely spaced intervals following three storms. Two herbicides (atrazine and simazine), two insecticides (carbaryl and diazinon), and a solvent (tetrachloroethene) described breakthrough curves over a 1-week period following one or more storms. The breakthrough curves were decomposed into two to five log-normal subcurves, which were interpreted as representing pulses of contaminants moving through the aquifer. Each subcurve could be used in the same way as an artificial tracer to determine travel time to and recovery at the spring. The contaminants have several advantages over artificial tracers: they represent the actual compounds of interest, they are injected essentially simultaneously at several points, and they are injected under those conditions when transport is of the most interest, i.e., following storms. The response of storm discharge, specific conductance, and contaminant loading at the spring depended on initial aquifer flow conditions, which varied from very low (spring discharge of 0.48??m3/s) to high (spring discharge of 2.7??m3/s): concentrations and recovery were the highest when initial aquifer flow conditions were low. This behavior provides information about aquifer structure and the influence of aquifer flow condition on transport properties. ?? 2006 Elsevier B.V. All rights reserved.

  15. Determination of available phosphorus in soils by using a new extraction procedure and a flow injection amperometric system.

    PubMed

    Jakmunee, Jaroon; Junsomboon, Jaroon

    2009-09-15

    A new extraction procedure based on an off-line extraction column was proposed for extracting of available phosphorus from soils. The column was fabricated from a plastic syringe fitted at the bottom with a cotton wool and a piece of filter paper to support a soil sample. An aliquot (50 mL) of extracting solution (0.05 M HCl+0.0125 M H(2)SO(4)) was used to extract the sample under gravity flow and the eluate was collected in a polyethylene bottle. The extract was then analyzed for phosphorus contents by a simple flow injection amperometric system, employing a set of three-way solenoid valves as an injection valve. The method is based on the electrochemical reduction of 12-molybdophosphate which is produced on-line by the reaction of orthophosphate with acidic molybdate and the electrical current produced was directly proportional to the concentration of phosphate in range of 0.1-10.0 mg L(-1) PO(4)-P, with a detection limit of 0.02 mg L(-1). Relative standard for 11 replicate injections of 5 mg L(-1) PO(4)-P was 0.5%. A sample through put of 35 h(-1) was achieved, with consumption of 14 mg KCl, 10mg ammonium molybdate and 0.05 mL H(2)SO(4) per analysis. The detection system does not suffer from the interferences that are encountered in the photometric method such as colored substances, colloids, metal ions, silicate and refractive index effect (Schlieren effect). The results obtained by the column extraction procedure were well correlated with those obtained by the steady-state extraction procedure, but showed slightly higher extraction efficiency.

  16. Experimental investigation of the impulse gas injection into liquid and the use of experimental data for verification of the HYDRA-IBRAE/LM thermohydraulic code

    NASA Astrophysics Data System (ADS)

    Lobanov, P. D.; Usov, E. V.; Butov, A. A.; Pribaturin, N. A.; Mosunova, N. A.; Strizhov, V. F.; Chukhno, V. I.; Kutlimetov, A. E.

    2017-10-01

    Experiments with impulse gas injection into model coolants, such as water or the Rose alloy, performed at the Novosibirsk Branch of the Nuclear Safety Institute, Russian Academy of Sciences, are described. The test facility and the experimental conditions are presented in details. The dependence of coolant pressure on the injected gas flow and the time of injection was determined. The purpose of these experiments was to verify the physical models of thermohydraulic codes for calculation of the processes that could occur during the rupture of tubes of a steam generator with heavy liquid metal coolant or during fuel rod failure in water-cooled reactors. The experimental results were used for verification of the HYDRA-IBRAE/LM system thermohydraulic code developed at the Nuclear Safety Institute, Russian Academy of Sciences. The models of gas bubble transportation in a vertical channel that are used in the code are described in detail. A two-phase flow pattern diagram and correlations for prediction of friction of bubbles and slugs as they float up in a vertical channel and of two-phase flow friction factor are presented. Based on the results of simulation of these experiments using the HYDRA-IBRAE/LM code, the arithmetic mean error in predicted pressures was calculated, and the predictions were analyzed considering the uncertainty in the input data, geometry of the test facility, and the error of the empirical correlation. The analysis revealed major factors having a considerable effect on the predictions. The recommendations are given on updating of the experimental results and improvement of the models used in the thermohydraulic code.

  17. DIFFERENTIATION OF AURANTII FRUCTUS IMMATURUS AND FRUCTUS PONICIRI TRIFOLIATAE IMMATURUS BY FLOW-INJECTION WITH ULTRAVIOLET SPECTROSCOPIC DETECTION AND PROTON NUCLEAR MAGNETIC RESONANCE USING PARTIAL LEAST-SQUARES DISCRIMINANT ANALYSIS.

    PubMed

    Zhang, Mengliang; Zhao, Yang; Harrington, Peter de B; Chen, Pei

    2016-03-01

    Two simple fingerprinting methods, flow-injection coupled to ultraviolet spectroscopy and proton nuclear magnetic resonance, were used for discriminating between Aurantii fructus immaturus and Fructus poniciri trifoliatae immaturus . Both methods were combined with partial least-squares discriminant analysis. In the flow-injection method, four data representations were evaluated: total ultraviolet absorbance chromatograms, averaged ultraviolet spectra, absorbance at 193, 205, 225, and 283 nm, and absorbance at 225 and 283 nm. Prediction rates of 100% were achieved for all data representations by partial least-squares discriminant analysis using leave-one-sample-out cross-validation. The prediction rate for the proton nuclear magnetic resonance data by partial least-squares discriminant analysis with leave-one-sample-out cross-validation was also 100%. A new validation set of data was collected by flow-injection with ultraviolet spectroscopic detection two weeks later and predicted by partial least-squares discriminant analysis models constructed by the initial data representations with no parameter changes. The classification rates were 95% with the total ultraviolet absorbance chromatograms datasets and 100% with the other three datasets. Flow-injection with ultraviolet detection and proton nuclear magnetic resonance are simple, high throughput, and low-cost methods for discrimination studies.

  18. Pressurized feed-injection spray-forming apparatus

    DOEpatents

    Berry, R.A.; Fincke, J.R.; McHugh, K.M.

    1995-08-29

    A spray apparatus and method are disclosed for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers. 22 figs.

  19. Pressurized feed-injection spray-forming apparatus

    DOEpatents

    Berry, Ray A.; Fincke, James R.; McHugh, Kevin M.

    1995-01-01

    A spray apparatus and method for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers.

  20. Optimization of large-volume injection for the determination of polychlorinated biphenyls in children's fast-food menus by low-resolution mass spectrometry.

    PubMed

    Esteve-Turrillas, Francesc A; Caupos, Emilie; Llorca, Isabel; Pastor, Agustín; de la Guardia, Miguel

    2008-03-26

    This study includes the determination of five indicator polychlorinated biphenyls (PCBs) (52, 101, 153, 138, and 180), six non-ortho PCBs (35, 80, 81, 77, 126, and 169), and two mono-ortho PCBs (28 and 118) in fast food for children. A freeze-dried sample of 10 g is extracted by using pressurized n-hexane in two 5 min cycles at 120 degrees C and 100 mbar. Fatty extracts were cleaned up by means of acetonitrile/n-hexane partitioning and gel-permeation chromatography. The fractionation of non-ortho, mono-ortho, and indicator PCBs was made on graphitized carbon solid-phase extraction cartridges by using n-hexane, n-hexane/toluene (99:1, v/v), and toluene as elution solvents. Gas chromatography coupled to tandem mass spectrometry and large-volume injections with a programmed-temperature vaporizer (PTV-LV) were used to increase sensitivity and selectivity of the PCB determination. The PTV-LV injection settings, that is, vaporizing temperature, vaporizing time, and purge flow, were optimized by using a central composite design. A 15-40 times increased sensitivity was reached as compared with that obtained with the conventional 1 microL splitless injection. The limits of detection achieved were between 0.3 and 1.2 pg/g, and repeatability data, as relative standard deviation varied, ranged from 2 to 9% for the 0.05 ng/mL PCB level.

  1. Downstream influence of swept slot injection in hypersonic turbulent flow

    NASA Technical Reports Server (NTRS)

    Hefner, J. N.; Cary, A. M., Jr.; Bushnell, D. B.

    1977-01-01

    Results of an experimental and numerical investigation of tangential swept slot injection into a thick turbulent boundary layer at Mach 6 are presented. Film cooling effectiveness, skin friction, and flow structure downstream of the swept slot injection were investigated. The data were compared with that for unswept slots, and it was found that cooling effectiveness and skin friction reductions are not significantly affected by sweeping the slot.

  2. Development of mediated BOD biosensor system of flow injection mode for shochu distillery wastewater.

    PubMed

    Oota, Shinichi; Hatae, Yuta; Amada, Kei; Koya, Hidekazu; Kawakami, Mitsuyasu

    2010-09-15

    Although microbial biochemical oxygen demand (BOD) sensors utilizing redox mediators have attracted much attention as a rapid BOD measurement method, little attempts have been made to apply the mediated BOD biosensors to the flow injection analysis system. In this work, a mediated BOD sensor system of flow injection mode, constructed by combining an immobilized microbial reactor with an electrochemical flow cell of three electrodes configuration, has been developed to estimate BOD of shochu distillery wastewater (SDW). It was demonstrated consequently that the mediated sensing was realized by employing phosphate buffer containing potassium hexacyanoferrate as the carrier. The output current was found to yield a peak with a sample injection, and to result from reoxidation of reduced mediator at the electrode. By employing the peak area as the sensor response, the effects of flow rate and pH of the carrier on the sensitivity were investigated. The sensor system using a microorganism of high SDW-assimilation capacity showed good performance and proved to be available for estimation of BOD of SDW. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Miniaturized flow injection analysis system

    DOEpatents

    Folta, James A.

    1997-01-01

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  4. Reducing or stopping the uncontrolled flow of fluid such as oil from a well

    DOEpatents

    Hermes, Robert E

    2014-02-18

    The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.

  5. Highly sensitive determination of diclofenac based on resin beads and a novel polyclonal antibody by using flow injection chemiluminescence competitive immunoassay

    NASA Astrophysics Data System (ADS)

    Shi, Jing; Xu, Mingxia; Tang, Qinghui; Zhao, Kang; Deng, Anping; Li, Jianguo

    2018-02-01

    A novel flow injection chemiluminescence immunoassay for simple, sensitive and low-cost detection of diclofenac was established based on specific binding of antigen and antibody. Carboxylic resin beads used as solid phase carrier materials provided good biocompatibility and large surface-to-volume ratio for modifying more coating antigen. There was a competitive process between the diclofenac in solution and the immobilized coating antigen to react with the limited binding sites of the polyclonal antibody to form the immunocomplex. The second antibody labelled with horseradish peroxidase was introduced into the immunosensor and trapped by captured polyclonal antibody against diclofenac, which could effectively amplify chemiluminescence signals of luminol-PIP-H2O2. Under optimal conditions, the diclofenac could be detected quantitatively. The chemiluminescence intensity decreased linearly with the logarithm of the diclofenac concentration in the range of 0.1-100 ng mL- 1 with a detection limit of 0.05 ng mL- 1 at a signal-to-noise ratio of 3. The immunosensor exhibited high sensitivity, specificity and acceptable stability. This easy-operated and cost-effective analytical method could be valuable for the diclofenac determination in real water samples.

  6. Novel PVC-membrane electrode for flow injection potentiometric determination of Biperiden in pharmaceutical preparations.

    PubMed

    Khaled, Elmorsy; El-Sabbagh, Inas A; El-Kholy, N G; Ghahni, E Y Abdel

    2011-12-15

    The construction and performance characteristics of Biperiden (BP) polyvinyl chloride (PVC) electrodes are described. Different methods for electrode fabrication are tested including; incorporation of BP-ion pairs (BP-IPs), incorporation of ion pairing agents, or soaking the plain electrode in BP-ion pairs suspension solution. Electrode matrices were optimized referring to the effect of modifier content and nature, plasticizer and the method of modification. The proposed electrodes work satisfactorily in the BP concentration range from 10(-5) to 10(-2)mol L(-1), with fast response time (7s) and adequate operational lifetime (28 days). The electrode potential is pH independent within the range 2.0-7.0, with good selectivity towards BP in presence of various interfering species. The developed electrodes have been applied for potentiometric determination of BP in pharmaceutical formulation under batch and flow injection analysis (FIA) conditions. FIA offers the advantages of accuracy and automation feasibility with high sampling frequency. The dissolution profile for Akineton tablets (2mg BP/tablet) was studied using the proposed electrode in comparison with the official methods. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Investigation of iron(III) reduction and trace metal interferences in the determination of dissolved iron in seawater using flow injection with luminol chemiluminescence detection.

    PubMed

    Ussher, Simon J; Milne, Angela; Landing, William M; Attiq-ur-Rehman, Kakar; Séguret, Marie J M; Holland, Toby; Achterberg, Eric P; Nabi, Abdul; Worsfold, Paul J

    2009-10-12

    A detailed investigation into the performance of two flow injection-chemiluminescence (FI-CL) manifolds (with and without a preconcentration column) for the determination of sub-nanomolar dissolved iron (Fe(II)+Fe(III)), following the reduction of Fe(III) by sulphite, in seawater is described. Kinetic experiments were conducted to examine the efficiency of reduction of inorganic Fe(III) with sulphite under different conditions and a rigorous study of the potential interference caused by other transition metals present in seawater was conducted. Using 100microM concentrations of sulphite a reduction time of 4h was sufficient to quantitatively reduce Fe(III) in seawater. Under optimal conditions, cobalt(II) and vanadium(IV)/(III) were the major positive interferences and strategies for their removal are reported. Specifically, cobalt(II) was masked by the addition of dimethylglyoxime to the luminol solution and vanadium(IV) was removed by passing the sample through an 8-hydroxyquinoline column in a low pH carrier stream. Manganese(II) also interfered by suppression of the CL response but this was not significant at typical open ocean concentrations.

  8. An experimental study of geyser-like flows induced by a pressurized air pocket

    NASA Astrophysics Data System (ADS)

    Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.

    2015-12-01

    Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.

  9. Flow injection trace gas analysis method for on-site determination of organoarsenicals

    DOEpatents

    Aldstadt, III, Joseph H.

    1997-01-01

    A method for real-time determination of the concentration of Lewisite in the ambient atmosphere, the method includes separating and collecting a Lewisite sample from the atmosphere in a collection chamber, converting the collected Lewisite to an arsenite ion solution sample, pumping the arsenite ion containing sample to an electrochemical detector connected to the collection chamber, and electrochemically detecting the converted arsenite ions in the sample, whereby the concentration of arsenite ions detected is proportional to the concentration of Lewisite in the atmosphere.

  10. Performance Evaluation and Adaptability Research of Flowing Gel System Prepared with Re-injected Waste Water

    NASA Astrophysics Data System (ADS)

    Shi, Lei; You, Jing; Liu, Na; Liu, Xinmin; Wang, Zhiqiang; Zhang, Tiantian; Gu, Yi; Guo, Suzhen; Gao, Shanshan

    2017-12-01

    The crosslinking intensity and stability of flowing gel system prepared with re-injected waste water are seriously affected as the high salinity waste water contains a high concentration of Na+, Fe2+, S2-, Ca2+, etc. The influence of various ions on the flowing gel system can be reduced by increasing polymer concentration, adding new ferric ion stabilizing agent (MQ) and calcium ion eliminating agent (CW). The technique of profile controlling and oil-displacing is carried out in Chanan multi-purpose station, Chabei multi-purpose station and Chayi multi-purpose station of Huabei Oilfield. The flowing gel system is injected from 10 downflow wells and the 15 offsetting production wells have increased the yield by 1770 tons.

  11. Sub-1min separation in sequential injection chromatography for determination of synthetic water-soluble dyes in pharmaceutical formulation.

    PubMed

    Davletbaeva, Polina; Chocholouš, Petr; Bulatov, Andrey; Šatínský, Dalibor; Solich, Petr

    2017-09-05

    Sequential Injection Chromatography (SIC) evolved from fast and automated non-separation Sequential Injection Analysis (SIA) into chromatographic separation method for multi-element analysis. However, the speed of the measurement (sample throughput) is due to chromatography significantly reduced. In this paper, a sub-1min separation using medium polar cyano monolithic column (5mm×4.6mm) resulted in fast and green separation with sample throughput comparable with non-separation flow methods The separation of three synthetic water-soluble dyes (sunset yellow FCF, carmoisine and green S) was in a gradient elution mode (0.02% ammonium acetate, pH 6.7 - water) with flow rate of 3.0mLmin -1 corresponding with sample throughput of 30h -1 . Spectrophotometric detection wavelengths were set to 480, 516 and 630nm and 10Hz data collection rate. The performance of the separation was described and discussed (peak capacities 3.48-7.67, peak symmetries 1.72-1.84 and resolutions 1.42-1.88). The method was represented by validation parameters: LODs of 0.15-0.35mgL -1 , LOQs of 0.50-1.25mgL -1 , calibration ranges 0.50-150.00mgL -1 (r>0.998) and repeatability at 10.0mgL -1 of RSD≤0.98% (n=6). The method was used for determination of the dyes in "forest berries" colored pharmaceutical cough-cold formulation. The sample matrix - pharmaceuticals and excipients were not interfering with vis determination because of no retention in the separation column and colorless nature. The results proved the concept of fast and green chromatography approach using very short medium polar monolithic column in SIC. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Co-elution effects can influence molar mass determination of large macromolecules with asymmetric flow field-flow fractionation coupled to multiangle light scattering.

    PubMed

    Perez-Rea, Daysi; Zielke, Claudia; Nilsson, Lars

    2017-07-14

    Starch and hence, amylopectin is an important biomacromolecule in both the human diet as well as in technical applications. Therefore, accurate and reliable analytical methods for its characterization are needed. A suitable method for analyzing macromolecules with ultra-high molar mass, branched structure and high polydispersity is asymmetric flow field-flow fractionation (AF4) in combination with multiangle light scattering (MALS) detection. In this paper we illustrate how co-elution of low quantities of very large analytes in AF4 may cause disturbances in the MALS data which, in turn, causes an overestimation of the size. Furthermore, it is shown how pre-injection filtering of the sample can improve the results. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Differentiating organic and conventional sage by chromatographic and mass spectrometry flow-injection fingerprints

    USDA-ARS?s Scientific Manuscript database

    High performance liquid chromatography (UPLC) and flow injection electrospray ionization with ion trap mass spectrometry (FIMS) fingerprints combined with the principal component analysis (PCA) were examined for their potential in differentiating commercial organic and conventional sage samples. The...

  14. Geo-Hydro Statistical Characterization of Preferential Flow and Transport Processes in Karst Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Anaya, A. A.; Padilla, I. Y.; Macchiavelli, R. E.

    2011-12-01

    Karst groundwater systems are highly productive and provide an important fresh water resource for human development and ecological integrity. Their high productivity is often associated with conduit flow and high matrix permeability. The same characteristics that make these aquifers productive also make them highly vulnerable to contamination and a likely for contaminant exposure. Of particular interest are chlorinated organic contaminants and phthalates derived from industrial solvents and plastic by-products. These chemicals have been identified as potential precursors of pre-term birth, a leading cause of neonatal complications with a significant health and societal cost. The general objectives of this work are to: (1) develop fundamental knowledge and determine the processes controlling the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems, and (2) characterize transport processes in conduit and diffusion-dominated flow under base flow and storm flow conditions. The work presented herein focuses on the development of geo-hydro statistical tools to characterize flow and transport processes under different flow regimes. Multidimensional, laboratory-scale Geo-Hydrobed models were developed and tested for this purpose. The models consist of stainless-steel tanks containing karstified limestone blocks collected from the karst aquifer formation of northern Puerto Rico. The models a network of sampling wells to monitor flow, pressure, and solute concentrations temporally and spatially. Experimental work entailed making a series of point injections in wells while monitoring the hydraulic response in other wells. Statistical mixed models were applied to spatial probabilities of hydraulic response and weighted injected volume data, and were used to determinate the best spatial correlation structure to represent paths of preferential flow in the limestone units under different groundwater flow regimes. Preliminary testing of the karstified models show that the system can be used to represent the variable transport regime characterized by conduit and diffuses flow in the karst systems. Initial hydraulic characterization indicates a highly heterogeneous system resulting in large preferential flow components. Future works involve characterization of dual porosity system using conservative tracers, fate and transport experiments using phthalates and chlorinated solvents, geo-temporal statistical modeling, and the testing of "green" remediation technologies in karst groundwater. This work is supported by the U.S. Department of Energy, Savannah River (Grant Award No. DE-FG09-07SR22571), and the National Institute of Environmental Health Sciences (NIEHS, Grant Award No. P42ES017198).

  15. Flow Range of Centrifugal Compressor Being Extended

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2001-01-01

    General Aviation will benefit from turbine engines that are both fuel-efficient and reliable. Current engines fall short of their potential to achieve these attributes. The reason is compressor surge, which is a flow stability problem that develops when the compressor is subjected to conditions that are outside of its operating range. Compressor surge can occur when fuel flow to the engine is increased, temporarily back pressuring the compressor and pushing it past its stability limit, or when the compressor is subjected to inlet flow-field distortions that may occur during takeoff and landing. Compressor surge can result in the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. Unfortunately, the most efficient operating line for the compressor is usually closer to its stability limit line than it is to the line that provides an adequate margin of safety. A wider stable flow range will permit operation along the most efficient operating line of the compressor, improving the specific fuel consumption of the engine and reducing emissions. The NASA Glenn Research Center is working to extend the stable flow range of the compressor. Significant extension has been achieved in axial compressors by injecting air upstream of the compressor blade rows. Recently, the technique was successfully applied to a 4:1 pressure ratio centrifugal compressor by injecting streams of air into the diffuser. Both steady and controlled unsteady injection were used to inject air through the diffuser shroud surface and extend the range. Future work will evaluate the effect of air injection through the diffuser hub surface and diffuser vanes with the goal of maximizing the range extension while minimizing the amount of injected air that is required.

  16. Hot air injection for removal of dense, non-aqueous-phase liquid contaminants from low-permeability soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, F.C.

    1996-08-01

    The performance of soil vapor extraction systems for the recovery of volatile and semi-volatile organic compounds is potentially enhanced by the injection of heated air to increase soil temperatures. The soil temperature increase is expected to improve soil vapor extraction (SVE) performance by increasing target compound vapor pressures and by increasing soil permeability through drying. The vapor pressure increase due to temperature rise relieves the vapor pressure limit on the feasibility of soil vapor extraction. However, the system still requires an air flow through the soil system to deliver heat and to recover mobilized contaminants. Although the soil permeability canmore » be increased through drying, very low permeability soils and low permeability soils adjacent to high permeability air flow pathways will be treated slowly, if at all. AR thermal enhancement methods face this limitation. Heated air injection offers advantages relative to other thermal techniques, including low capital and operation costs. Heated air injection is at a disadvantage relative to other thermal techniques due to the low heat capacity of air. To be effective, heated air injection requires that higher air flows be established than for steam injection or radio frequency heating. Heated air injection is not economically feasible for the stratified soil system developed as a standard test for this document. This is due to the inability to restrict heated air flow to the clay stratum when a low-resistance air flow pathway is available in the adjoining sand. However, the technology should be especially attractive, both technically and economically, for low-volatile contaminant recovery from relatively homogeneous soil formations. 16 refs., 2 tabs.« less

  17. An analytical study on groundwater flow in drainage basins with horizontal wells

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Zhi; Jiang, Xiao-Wei; Wan, Li; Wang, Xu-Sheng; Li, Hailong

    2014-06-01

    Analytical studies on release/capture zones are often limited to a uniform background groundwater flow. In fact, for basin-scale problems, the undulating water table would lead to the development of hierarchically nested flow systems, which are more complex than a uniform flow. Under the premise that the water table is a replica of undulating topography and hardly influenced by wells, an analytical solution of hydraulic head is derived for a two-dimensional cross section of a drainage basin with horizontal injection/pumping wells. Based on the analytical solution, distributions of hydraulic head, stagnation points and flow systems (including release/capture zones) are explored. The superposition of injection/pumping wells onto the background flow field leads to the development of new internal stagnation points and new flow systems (including release/capture zones). Generally speaking, the existence of n injection/pumping wells would result in up to n new internal stagnation points and up to 2n new flow systems (including release/capture zones). The analytical study presented, which integrates traditional well hydraulics with the theory of regional groundwater flow, is useful in understanding basin-scale groundwater flow influenced by human activities.

  18. Redesigning flow injection after 40 years of development: Flow programming.

    PubMed

    Ruzicka, Jaromir Jarda

    2018-01-01

    Automation of reagent based assays, by means of Flow Injection (FI), is based on sample processing, in which a sample flows continuously towards and through a detector for quantification of the target analyte. The Achilles heel of this methodology, the legacy of Auto Analyzer®, is continuous reagent consumption, and continuous generation of chemical waste. However, flow programming, assisted by recent advances in precise pumping, combined with the lab-on-valve technique, allows the FI manifold to be designed around a single confluence point through which sample and reagents are sequentially directed by means of a series of flow reversals. This approach results in sample/reagent mixing analogous to the traditional FI, reduces sample and reagent consumption, and uses the stop flow technique for enhancement of the yield of chemical reactions. The feasibility of programmable Flow Injection (pFI) is documented by example of commonly used spectrophotometric assays of, phosphate, nitrate, nitrite and glucose. Experimental details and additional information are available in online tutorial http://www.flowinjectiontutorial.com/. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Composite time-lapse computed tomography and micro finite element simulations: A new imaging approach for characterizing cement flows and mechanical benefits of vertebroplasty.

    PubMed

    Stadelmann, Vincent A; Zderic, Ivan; Baur, Annick; Unholz, Cynthia; Eberli, Ursula; Gueorguiev, Boyko

    2016-02-01

    Vertebroplasty has been shown to reinforce weak vertebral bodies and reduce fracture risks, yet cement leakage is a major problem that can cause severe complications. Since cement flow is nearly impossible to control during surgery, small volumes of cement are injected, but then mechanical benefits might be limited. A better understanding of cement flows within bone structure is required to further optimize vertebroplasty and bone augmentation in general. We developed a novel imaging method, composite time-lapse CT, to characterize cement flow during injection. In brief, composite-resolution time-lapse CT exploits the qualities of microCT and clinical CT. The method consists in overlaying low-resolution time-lapse CT scans acquired during injection onto pre-operative high-resolution microCT scans, generating composite-resolution time-lapse CT series of cement flow within bone. In this in vitro study, composite-resolution time-lapse CT was applied to eight intact and five artificially fractured cadaveric vertebrae during vertebroplasty. The time-lapse scans were acquired at one-milliliter cement injection steps until a total of 10 ml cement was injected. The composite-resolution series were then converted into micro finite element models to compute strains distribution under virtual axial loading. Relocation of strain energy density within bone structure was observed throughout the progression of the procedure. Interestingly, the normalized effect of cement injection on the overall stiffness of the vertebrae was similar between intact and fractured specimens, although at different orders of magnitude. In conclusion, composite time-lapse CT can picture cement flows during bone augmentation. The composite images can also be easily converted into finite element models to compute virtual strain distributions under loading at every step of an injection, providing deeper understanding on the biomechanics of vertebroplasty. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. A new approach to flow-batch titration. A monosegmented flow titrator with coulometric reagent generation and potentiometric or biamperometric detection.

    PubMed

    de Aquino, Emerson Vidal; Rohwedder, Jarbas José Rodrigues; Pasquini, Celio

    2006-11-01

    Monosegmented flow analysis (MSFA) has been used as a flow-batch system to produce a simple, robust, and mechanized titrator that enables true titrations to be performed without the use of standards. This paper also introduces the use of coulometry with monosegmented titration by proposing a versatile flow cell. Coulometric generation of the titrand is attractive for titrations performed in monosegmented systems, because the reagent can be added without increasing the volume of sample injected. Also, biamperomeric and potentiometric detection of titration end-points can increase the versatility of the monosegmented titrator. The cell integrates coulometric generation of the titrand with detection of end-point by potentiometry or biamperometry. The resulting titrator is a flow-batch system in which the liquid monosegment, constrained by the interfaces of the gaseous carrier stream, plays the role of a sample of known volume to be titrated. The system has been used for determination of ascorbic acid, by coulometric generation of I2 with biamperometric detection, and for determination of Fe(II), by coulometric generation of Ce(IV) with potentiometric detection of the end-point, both in feed supplements.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeJemtel, T.H.; Scortichini, D.; Katz, S.

    In patients with chronic congestive heart failure (CHF), skeletal muscle blood flow can be measured directly by the continuous thermodilution technique and by the xenon-133 clearance method. The continuous thermodilution technique requires retrograde catheterization of the femoral vein and, thus, cannot be repeated conveniently in patients during evaluation of pharmacologic interventions. The xenon-133 clearance, which requires only an intramuscular injection, allows repeated determination of skeletal muscle blood flow. In patients with severe CHF, a fixed capacity of the skeletal muscle vasculature to dilate appears to limit maximal exercise performance. Moreover, the changes in peak skeletal muscle blood flow noted duringmore » long-term administration of captopril, an angiotensin-converting enzyme inhibitor, appears to correlate with the changes in aerobic capacity. In patients with CHF, resting supine deep femoral vein oxygen content can be used as an indirect measurement of resting skeletal muscle blood flow. The absence of a steady state complicates the determination of peak skeletal muscle blood flow reached during graded bicycle or treadmill exercise in patients with chronic CHF. Indirect assessments of skeletal muscle blood flow and metabolism during exercise performed at submaximal work loads are currently developed in patients with chronic CHF.« less

  2. Using biplanar fluoroscopy to guide radiopaque vascular injections: a new method for vascular imaging.

    PubMed

    O'Brien, Haley D; Williams, Susan H

    2014-01-01

    Studying vascular anatomy, especially in the context of relationships with hard tissues, is of great interest to biologists. Vascular studies have provided significant insight into physiology, function, phylogenetic relationships, and evolutionary patterns. Injection of resin or latex into the vascular system has been a standard technique for decades. There has been a recent surge in popularity of more modern methods, especially radiopaque latex vascular injection followed by CT scanning and digital "dissection." This technique best displays both blood vessels and bone, and allows injections to be performed on cadaveric specimens. Vascular injection is risky, however, because it is not a standardizable technique, as each specimen is variable with regard to injection pressure and timing. Moreover, it is not possible to view the perfusion of injection medium throughout the vascular system of interest. Both data and rare specimens can therefore be lost due to poor or excessive perfusion. Here, we use biplanar video fluoroscopy as a technique to guide craniovascular radiopaque latex injection. Cadaveric domestic pigs (Sus scrofa domestica) and white-tailed deer (Odocoileus virginianus) were injected with radiopaque latex under guidance of fluoroscopy. This method was found to enable adjustments, in real-time, to the rate, location, and pressure at which latex is injected in order to avoid data and specimen loss. In addition to visualizing the injection process, this technique can be used to determine flow patterns, and has facilitated the development of consistent markers for complete perfusion.

  3. Estimating Preferential Flow in Karstic Aquifers Using Statistical Mixed Models

    PubMed Central

    Anaya, Angel A.; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J.; Meeker, John D.; Alshawabkeh, Akram N.

    2013-01-01

    Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory-scale Geo-HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless-steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow-dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit-like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the statistical mixed models used in the study. PMID:23802921

  4. Estimating preferential flow in karstic aquifers using statistical mixed models.

    PubMed

    Anaya, Angel A; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J; Meeker, John D; Alshawabkeh, Akram N

    2014-01-01

    Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory-scale Geo-HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models (SMMs) are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow-dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit-like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the SMMs used in the study. © 2013, National Ground Water Association.

  5. Differentiating organic from conventional peppermints using chromatographic and flow-injection mass spectrometric (FIMS) fingerprints

    USDA-ARS?s Scientific Manuscript database

    High performance liquid chromatography (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were tested for their potential in differentiating organic and conventional peppermint samples. Ten organic and ten conventional peppermint samples were examined using HPLC-UV and FI...

  6. Exact solution for flow in a porous pipe with unsteady wall suction and/or injection

    NASA Astrophysics Data System (ADS)

    Tsangaris, S.; Kondaxakis, D.; Vlachakis, N. W.

    2007-10-01

    This paper presents an extension of the exact solution of the steady laminar axisymmetric flow in a straight pipe of circular cross section with porous wall, given by R.M. Terrill, to the case of unsteady wall injection and/or suction. The cases of the pulsating parabolic profile and of the developed pulsating flow are investigated as examples. The pulsating flow in porous ducts has many applications in biomedical engineering and in other engineering areas.

  7. Subsurface storage of freshwater in South Florida; a digital analysis of recoverability

    USGS Publications Warehouse

    Merritt, Michael L.

    1983-01-01

    As part of a feasibility study of cyclic freshwater injection, digital models were implemented to analyze the relation of recovery efficiency to various hydrogeologic conditions which could prevail in brackish aquifers and to various management regimes. The analyses implemented an approach in which the control for sensitivity testing was a hypothetical aquifer representative of potential injection zones in south Florida, and parameter variations in sensitivity tests represented possible variations in aquifer conditions in the area. The permeability of the aquifer determined whether buoyancy stratification could reduce recovery efficiency. The range of permeability leading to buoyancy stratification became lower as resident fluid salinity increased. Thus, recovery efficiency was optimized by both low permeability and low resident fluid density. High levels of simulated hydrodynamic dispersion led to the lowest estimates of recovery efficiency. Advection by regional flow within the artesian injection zone could significantly affect recovery efficiency, depending upon the storage period, the volume injected, and site-specific hydraulic characteristics. Recovery efficiency was unrelated to the rate of injection or withdrawal or to the degree of penetration of permeable layers, and improved with successive cycles of injection and recovery. (USGS)

  8. Simulation of Liquid Injection Thrust Vector Control for Mars Ascent Vehicle

    NASA Technical Reports Server (NTRS)

    Gudenkauf, Jared

    2017-01-01

    The Jet Propulsion Laboratory is currently in the initial design phase for a potential Mars Ascent Vehicle; which will be landed on Mars, stay on the surface for period of time, collect samples from the Mars 2020 rover, and then lift these samples into orbit around Mars. The engineers at JPL have down selected to a hybrid wax-based fuel rocket using a liquid oxidizer based on nitrogen tetroxide, or a Mixed Oxide of Nitrogen. To lower the gross lift-off mass of the vehicle the thrust vector control system will use liquid injection of the oxidizer to deflect the thrust of the main nozzle instead of using a gimbaled nozzle. The disadvantage of going with the liquid injection system is the low technology readiness level with a hybrid rocket. Presented in this paper is an effort to simulate the Mars Ascent Vehicle hybrid rocket nozzle and liquid injection thrust vector control system using the computational fluid dynamic flow solver Loci/Chem. This effort also includes determining the sensitivity of the thrust vector control system to a number of different design variables for the injection ports; including axial location, number of adjacent ports, injection angle, and distance between the ports.

  9. Fluid-dynamically coupled solid propellant combustion instability - cold flow simulation

    NASA Astrophysics Data System (ADS)

    Ben-Reuven, M.

    1983-10-01

    The near-wall processes in an injected, axisymmetric, viscous flow is examined. Solid propellant rocket instability, in which cold flow simulation is evaluated as a tool to elucidate possible instability driving mechanisms is studied. One such prominent mechanism seems to be visco-acoustic coupling. The formulation is presented in terms of a singular boundary layer problem, with detail (up to second order) given only to the near wall region. The injection Reynolds number is assumed large, and its inverse square root serves as an appropriate small perturbation quantity. The injected Mach number is also small, and taken of the same order as the aforesaid small quantity. The radial-dependence of the inner solutions up to second order is solved, in polynominal form. This leaves the (x,t) dependence to much simpler partial differential equations. Particular results demonstrate the existence of a first order pressure perturbation, which arises due to the dissipative near wall processes. This pressure and the associated viscous friction coefficient are shown to agree very well with experimental injected flow data.

  10. Bio-convection on the nonlinear radiative flow of a Carreau fluid over a moving wedge with suction or injection

    NASA Astrophysics Data System (ADS)

    Raju, C. S. K.; Ibrahim, S. M.; Anuradha, S.; Priyadharshini, P.

    2016-11-01

    In modern days, the mass transfer rate is challenging to the scientists due to its noticeable significance for industrial as well as engineering applications; owing to this we attempt to study the cross-diffusion effects on the magnetohydrodynamic nonlinear radiative Carreau fluid over a wedge filled with gyro tactic microorganisms. Numerical results are presented graphically as well as in tabular form with the aid of the Runge-Kutta and Newton methods. The effects of pertinent parameters on velocity, temperature, concentration and density of motile organism distributions are presented and discussed for two cases (suction and injection flows). For real-life application we also calculated the local Nusselt and Sherwood numbers. It is observed that thermal and concentration profiles are not uniform in the suction and injection flow cases. It is found that the heat and mass transport phenomenon is high in the injection case, while heat and mass transfer rates are high in the suction flow case.

  11. Smart Application of Direct Gas Injection using a new conceptual model on Coherent and Incoherent Flow: From Bench Scale to Field Scale.

    NASA Astrophysics Data System (ADS)

    Geistlinger, H.; Samani, S.; Pohlert, M.; Martienssen, M.; Engelmann, F.; Hüttmann, S.

    2008-12-01

    Within the framework of the OXYWALL field experiment we developed the direct gas injection (DGI) of oxygen as a remediation technology, which allows the cost-efficient and large-scale cleaning of groundwater contaminated with organic contaminants. That technology can be used as wide-banded, unselective remediation method for complex contaminant mixtures. Particularly, it could be proofed in field experiments that mineral oil hydrocarbons, aromatic hydrocarbons (BTEX), the rather persistent gasoline component Methyl tertiary-butyl ether (MTBE), and chlorinated aliphatic and aromatic hydrocarbons, like Trichloroethene and Monochlorobenzene, can be aerobically metabolized by autochthon microorganisms. Over the last 8 years the field site was investigated and a dense monitoring network was installed using Geoprobe direct- push technology and standard hydrogeological investigations were conducted, like EC-Logs, Injections-Logs, Gamma-Logs, TDR-probes, oxygen measurements with in-situ optodes, and tracer test with test gases SF6, Ar, and Oxygen. The key parameter for controling and regulating the DGI is the spatial and temporal distribution of the gas phase. High-resolution optical bench scale experiments were conducted in order to investigate local gas flow pattern and integral flow properties caused by point-like gas injection into water-saturated glass beads and natural sands. We observed a grain-size (dk)- and flow-rate (Q) dependent transition from incoherent to coherent flow. Conceptualizing the stationary tortuous gas flow as core-annulus flow and applying Hagen- Poiseuille flow for a straight capillary, we propose a flow-rate- and grain-size dependent stability criterion that could describe our experimental results and was used for classifying the experiments in a dk-Q-diagram (flow chart). Since DGI simulations are mainly based on continuum models, we also test the validity of the continuum approach for two-fluid flow in macroscopic homogeneous media by comparing our experimental flow pattern with the theoretical ones. It was found that a pulse-like function yields the best fit for the lateral gas saturation profile. This strange behaviour of a relatively sharp saturation transition is in contradiction to the widely anticipated picture of a smooth Gaussian-like transition, which is obtained by the continuum approach. Based on lab experiments, the proposed flow chart, and computer simulations the DGI-technology will be advanced and optimized at the field scale. A proper application of continuum models to direct gas injection should check, whether stable coherent flow is achieved; estimate the coherence length, and account for the channelized flow pattern by a realistic capillary pressure - saturation relationship. Further research is needed for modeling of direct gas injection to include appropriate stability criteria, the transition from coherent to incoherent flow, and bubble trapping. Geistlinger, H., Krauss, G., Lazik, D., and Luckner, L. (2006) Direct gas injection into saturated glass beads: transition from incoherent to coherent gas flow pattern. Water Resour. Res., 42 (7) W07403. Lazik, D., G. Krauss, H. Geistlinger, and H.-J. Vogel (2008) Multi-scale optical analyses of dynamic gas saturation during air sparging into glass beads, Transp. Porous Media. 74, 87-104.

  12. Flow cytometric analysis of regulatory T cells during hyposensitization of acquired allergic contact dermatitis.

    PubMed

    Fraser, Kathleen; Abbas, Mariam; Hull, Peter R

    2014-01-01

    We previously demonstrated that repeated intradermal steroid injections administered at weekly intervals into positive patch-test sites induce hyposensitization and desensitization. To examine changes in CD4CD25CD127lo/ regulatory T cells during the attenuation of the patch-test response. Ten patients with known allergic contact dermatitis were patch tested weekly for 10 weeks. The patch-test site was injected intradermally with 2 mg triamcinolone. At weeks 1 and 7, a biopsy was performed on the patch-test site in 6 patients, and flow cytometry was performed assessing CD4CD25CD127lo/ regulatory T cells. Secondary outcomes were clinical score, reaction size, erythema, and temperature. Statistical analysis included regression, correlation, and repeated-measures analysis of variance. The percentage of CD4CD25CD127lo/ regulatory T cells, measured by flow cytometry, increased from week 1 to week 7 by an average of 19.2%. The average grade of patch-test reaction decreased from +++ (vesicular reaction) to ++ (palpable erythema). The mean drop in temperature following treatment was 0.28°C per week. The mean area decreased 8.6 mm/wk over 10 weeks. Intradermal steroid injections of weekly patch-test reactions resulted in hyposensitization of the allergic contact dermatitis reaction. CD4CD25CD127lo/ regulatory T cells showed a tendency to increase; however, further studies are needed to determine if this is significant.

  13. Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles.

    PubMed

    Ahfir, Nasre-Dine; Hammadi, Ahmed; Alem, Abdellah; Wang, HuaQing; Le Bras, Gilbert; Ouahbi, Tariq

    2017-03-01

    The effects of porous media grain size distribution on the transport and deposition of polydisperse suspended particles under different flow velocities were investigated. Selected Kaolinite particles (2-30μm) and Fluorescein (dissolved tracer) were injected in the porous media by step input injection technique. Three sands filled columns were used: Fine sand, Coarse sand, and a third sand (Mixture) obtained by mixing the two last sands in equal weight proportion. The porous media performance on the particle removal was evaluated by analysing particles breakthrough curves, hydro-dispersive parameters determined using the analytical solution of convection-dispersion equation with a first order deposition kinetics, particles deposition profiles, and particle-size distribution of the recovered and the deposited particles. The deposition kinetics and the longitudinal hydrodynamic dispersion coefficients are controlled by the porous media grain size distribution. Mixture sand is more dispersive than Fine and Coarse sands. More the uniformity coefficient of the porous medium is large, higher is the filtration efficiency. At low velocities, porous media capture all sizes of suspended particles injected with larger ones mainly captured at the entrance. A high flow velocity carries the particles deeper into the porous media, producing more gradual changes in the deposition profile. The median diameter of the deposited particles at different depth increases with flow velocity. The large grain size distribution leads to build narrow pores enhancing the deposition of the particles by straining. Copyright © 2016. Published by Elsevier B.V.

  14. Flow electrochemical biosensors based on enzymatic porous reactor and tubular detector of silver solid amalgam.

    PubMed

    Josypčuk, Bohdan; Barek, Jiří; Josypčuk, Oksana

    2013-05-17

    A flow amperometric enzymatic biosensor for the determination of glucose was constructed. The biosensor consists of a flow reactor based on porous silver solid amalgam (AgSA) and a flow tubular detector based on compact AgSA. The preparation of the sensor and the determination of glucose occurred in three steps. First, a self-assembled monolayer of 11-mercaptoundecanoic acid (MUA) was formed at the porous surface of the reactor. Second, enzyme glucose oxidase (GOx) was covalently immobilized at MUA-layer using N-ethyl-N'-(3-dimethylaminopropyl) carboimide and N-hydroxysuccinimide chemistry. Finally, a decrease of oxygen concentration (directly proportional to the concentration of glucose) during enzymatic reaction was amperometrically measured on the tubular detector under flow injection conditions. The following parameters of glucose determination were optimized with respect to amperometric response: composition of the mobile phase, its concentration, the potential of detection and the flow rate. The calibration curve of glucose was linear in the concentration range of 0.02-0.80 mmol L(-1) with detection limit of 0.01 mmol L(-1). The content of glucose in the sample of honey was determined as 35.5±1.0 mass % (number of the repeated measurements n=7; standard deviation SD=1.2%; relative standard deviation RSD=3.2%) which corresponds well with the declared values. The tested biosensor proved good long-term stability (77% of the current response of glucose was retained after 35 days). Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Injector Element which Maintains a Constant Mean Spray Angle and Optimum Pressure Drop During Throttling by Varying the Geometry of Tangential Inlets

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)

    2014-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.

  16. Determination of stream reaeration coefficients by use of tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, Nobuhiro; Parker, G.W.; DeLong, L.L.

    1989-01-01

    Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes. Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed whereby a radioactive tracer gas was injected into a stream-the principle being that the tracer gas would be desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas. This manual describes the slug-injection and constant-rate-injection methods of measuring gas-tracer desorption. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, on methods of injection, sampling, and analysis, and on techniques for computing desorption and reaeration coefficients.

  17. A multi-channel photometric detector for multi-component analysis in flow injection analysis

    PubMed Central

    Tan, Aimin; Huang, Jialin; Geng, Liudi; Xu, Jinhua; Zhao, Xinna

    1994-01-01

    The detector, a multi-channel photometric detector, described in this paper was developed using multi-wavelength LEDs (light emitting diode) and phototransistors for absorbance measurement controlled by an Intel 8031 8-bit single chip microcomputer. Up to four flow cells can be attached to the detector. The LEDs and phototransistors are both inexpensive, and reliable. The results given by the detector for simultaneous determination of trace amounts of cobalt and cadmium in zinc sulphate electrolyte are reported. Because of the newly developed detector, this approach employs much less hardware apparatus than by employing conventional photometric detectors. PMID:18924688

  18. A multi-channel photometric detector for multi-component analysis in flow injection analysis.

    PubMed

    Tan, A; Huang, J; Geng, L; Xu, J; Zhao, X

    1994-01-01

    The detector, a multi-channel photometric detector, described in this paper was developed using multi-wavelength LEDs (light emitting diode) and phototransistors for absorbance measurement controlled by an Intel 8031 8-bit single chip microcomputer. Up to four flow cells can be attached to the detector. The LEDs and phototransistors are both inexpensive, and reliable. The results given by the detector for simultaneous determination of trace amounts of cobalt and cadmium in zinc sulphate electrolyte are reported. Because of the newly developed detector, this approach employs much less hardware apparatus than by employing conventional photometric detectors.

  19. Transcapillary Exchange and Retention of Fluoride, Strontium, EDTA, Sucrose, and Antipyrine in Bone

    PubMed Central

    Lemon, Gerard J.; Davies, David R.; Hughes, Sean P.F.; Bassingthwaighte, James B.; Kelly, Patrick J.

    2010-01-01

    Summary The extractions of 85Sr2+, 18F−, sucrose-14C, EDTA-51Cr, and antipyrine-14C in bone were determined by the multiple indicator-dilution method. Fluoride and strontium extractions were 18 to 70% during a single transcapillary passage, and those of EDTA and sucrose were from 11 to 59%, whereas extraction of antipyrine was 87%. Injections of 85Sr2+ and 18F− made when perfusion was done alternately with blood and plasma resulted in similar fractional extractions. When flow and extraction were measured simultaneously, extraction was related inversely to flow. PMID:6770980

  20. Capsule injection system for a hydraulic capsule pipelining system

    DOEpatents

    Liu, Henry

    1982-01-01

    An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

Top