Sample records for flow model theory

  1. Intercomparison of granular stress and turbulence models for unidirectional sheet flow applications

    NASA Astrophysics Data System (ADS)

    Chauchat, J.; Cheng, Z.; Hsu, T. J.

    2016-12-01

    The intergranular stresses are one of the key elements in two-phase sediment transport models. There are two main existing approaches, the kinetic theory of granular flows (Jenkins and Hanes, 1998; Hsu et al., 2004) and the phenomenological rheology such as the one proposed by Bagnold (Hanes and Bowen, 1985) or the μ(I) dense granular flow rheology (Revil-Baudard and Chauchat, 2013). Concerning the turbulent Reynolds stress, mixing length and k-ɛ turbulence models have been validated by previous studies (Revil-Baudard and Chauchat, 2013; Hsu et al., 2004). Recently, sedFoam was developed based on kinetic theory of granular flows and k-ɛ turbulence models (Cheng and Hsu, 2014). In this study, we further extended sedFoam by implementing the mixing length and the dense granular flow rheology by following Revil-Baudard and Chauchat (2013). This allows us to objectively compare the different combinations of intergranular stresses (kinetic theory or the dense granular flow rheology) and turbulence models (mixing length or k-ɛ) under unidirectional sheet flow conditions. We found that the calibrated mixing length and k-ɛ models predicts similar velocity and concentration profiles. The differences observed between the kinetic theory and the dense granular flow rheology requires further investigation. In particular, we hypothesize that the extended kinetic theory proposed by Berzi (2011) would probably improve the existing combination of the kinetic theory with a simple Coulomb frictional model in sedFoam. A semi-analytical solution proposed by Berzi and Fraccarollo(2013) for sediment transport rate and sheet layer thickness versus the Shields number is compared with the results obtained by using the dense granular flow rheology and the mixing length model. The results are similar which demonstrate that both the extended kinetic theory and the dense granular flow rheology can be used to model intergranular stresses under sheet flow conditions.

  2. How Different kinds of Communication and the Mass Media Affect Tourism.

    DTIC Science & Technology

    1984-12-01

    C. Criticism of the Two-Step Flow Model------------------------------ 38 3. The Multi-Step Flow Model or Theory------- 39 4. One-Step Flow Model or... Criticism of the Two-Step Flow Model Researchers have identified deficiencies in the r,,c-w:er :low-model. McNelly, for instance, se,7s mass...evidence of the relative importance of cc munication on the diffusion flow. 38 Rogers ’as criticized ] the theor-y on the grounds that: neither its

  3. Probabilistic physical characteristics of phase transitions at highway bottlenecks: incommensurability of three-phase and two-phase traffic-flow theories.

    PubMed

    Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael

    2014-05-01

    Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F → J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F → J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F → S transition) can be induced at the bottleneck. This explains why rather than the F → J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F → S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F → S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.

  4. Electro-osmotic flow of a model electrolyte

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Singer, Sherwin J.; Zheng, Zhi; Conlisk, A. T.

    2005-04-01

    Electro-osmotic flow is studied by nonequilibrium molecular dynamics simulations in a model system chosen to elucidate various factors affecting the velocity profile and facilitate comparison with existing continuum theories. The model system consists of spherical ions and solvent, with stationary, uniformly charged walls that make a channel with a height of 20 particle diameters. We find that hydrodynamic theory adequately describes simple pressure-driven (Poiseuille) flow in this model. However, Poisson-Boltzmann theory fails to describe the ion distribution in important situations, and therefore continuum fluid dynamics based on the Poisson-Boltzmann ion distribution disagrees with simulation results in those situations. The failure of Poisson-Boltzmann theory is traced to the exclusion of ions near the channel walls resulting from reduced solvation of the ions in that region. When a corrected ion distribution is used as input for hydrodynamic theory, agreement with numerical simulations is restored. An analytic theory is presented that demonstrates that repulsion of the ions from the channel walls increases the flow rate, and attraction to the walls has the opposite effect. A recent numerical study of electro-osmotic flow is reanalyzed in the light of our findings, and the results conform well to our conclusions for the model system.

  5. Modified kinetic theory applied to the shear flows of granular materials

    DOE PAGES

    Duan, Yifei; Feng, Zhi -Gang; Michaelides, Efstathios E.; ...

    2017-04-11

    Here, granular materials are characterized by large collections of discrete particles, where the particle-particle interactions are significantly more important than the particle-fluid interactions. The current kinetic theory captures fairly accurately the granular flow behavior in the dilute case, when only binary interactions are significant, but is not accurate at all in the dense flow regime, where multi-particle interactions and contacts must be modeled. To improve the kinetic theory results for granular flows in the dense flow regime, we propose a Modified Kinetic Theory (MKT) model that utilizes the contact duration or cut-off time to account for the complex particle-particle interactionsmore » in the dense regime. The contact duration model, also called TC model, is originally proposed by Luding and McNamara to solve the inelastic collapse issue existing in the Inelastic Hard Sphere (IHS) model. This model defines a cut-off time t c such that dissipation is not counted if the time between two consecutive contacts is less than t c. As shown in their study, the use of a cut-off time t c can also reduce the dissipation during multi-particle contacts. In this paper we relate the TC model with the Discrete Element Method (DEM) by choosing the cut-off time t c to be the duration of contact calculated from the linear-spring-dashpot soft-sphere model of the DEM. We examine two types of granular flows: simple shear flow and the plane shear flow, and compare the results of the classical Kinetic Theory (KT) model, the present MKT model, and the DEM model. Here, we show that the MKT model entails a significant improvement over the KT model for simple shear flows at inertial regimes. With the MKT model the calculations are close to the DEM results at solid fractions as high as 0.57. Even for the plane shear flows, where shear rate and solid fraction are inhomogeneous, the results of the MKT model agree very well with the DEM results.« less

  6. Modified kinetic theory applied to the shear flows of granular materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yifei; Feng, Zhi -Gang; Michaelides, Efstathios E.

    Here, granular materials are characterized by large collections of discrete particles, where the particle-particle interactions are significantly more important than the particle-fluid interactions. The current kinetic theory captures fairly accurately the granular flow behavior in the dilute case, when only binary interactions are significant, but is not accurate at all in the dense flow regime, where multi-particle interactions and contacts must be modeled. To improve the kinetic theory results for granular flows in the dense flow regime, we propose a Modified Kinetic Theory (MKT) model that utilizes the contact duration or cut-off time to account for the complex particle-particle interactionsmore » in the dense regime. The contact duration model, also called TC model, is originally proposed by Luding and McNamara to solve the inelastic collapse issue existing in the Inelastic Hard Sphere (IHS) model. This model defines a cut-off time t c such that dissipation is not counted if the time between two consecutive contacts is less than t c. As shown in their study, the use of a cut-off time t c can also reduce the dissipation during multi-particle contacts. In this paper we relate the TC model with the Discrete Element Method (DEM) by choosing the cut-off time t c to be the duration of contact calculated from the linear-spring-dashpot soft-sphere model of the DEM. We examine two types of granular flows: simple shear flow and the plane shear flow, and compare the results of the classical Kinetic Theory (KT) model, the present MKT model, and the DEM model. Here, we show that the MKT model entails a significant improvement over the KT model for simple shear flows at inertial regimes. With the MKT model the calculations are close to the DEM results at solid fractions as high as 0.57. Even for the plane shear flows, where shear rate and solid fraction are inhomogeneous, the results of the MKT model agree very well with the DEM results.« less

  7. The application of single particle hydrodynamics in continuum models of multiphase flow

    NASA Technical Reports Server (NTRS)

    Decker, Rand

    1988-01-01

    A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.

  8. Longitudinal vibration and instabilities of carbon nanotubes conveying fluid considering size effects of nanoflow and nanostructure

    NASA Astrophysics Data System (ADS)

    Oveissi, Soheil; Eftekhari, S. Ali; Toghraie, Davood

    2016-09-01

    In this study, the effects of small-scale of the both nanoflow and nanostructure on the vibrational response of fluid flowing single-walled carbon nanotubes are investigated. To this purpose, two various flowing fluids, the air-nano-flow and the water nano-flow using Knudsen number, and two different continuum theories, the nonlocal theory and the strain-inertia gradient theory are studied. Nano-rod model is used to model the fluid-structure interaction, and Galerkin method of weighted residual is utilizing to solve and discretize the governing obtained equations. It is found that the critical flow velocity decreases as the wave number increases, excluding the first mode divergence that it has the least value among of the other instabilities if the strain-inertia gradient theory is employed. Moreover, it is observed that Kn effect has considerable impact on the reduction of critical velocities especially for the air-flow flowing through the CNT. In addition, by increasing a nonlocal parameter and Knudsen number the critical flow velocity decreases but it increases as the characteristic length related to the strain-inertia gradient theory increases.

  9. Modeling of Wall-Bounded Complex Flows and Free Shear Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.

    1994-01-01

    Various wall-bounded flows with complex geometries and free shear flows have been studied with a newly developed realizable Reynolds stress algebraic equation model. The model development is based on the invariant theory in continuum mechanics. This theory enables us to formulate a general constitutive relation for the Reynolds stresses. Pope was the first to introduce this kind of constitutive relation to turbulence modeling. In our study, realizability is imposed on the truncated constitutive relation to determine the coefficients so that, unlike the standard k-E eddy viscosity model, the present model will not produce negative normal stresses in any situations of rapid distortion. The calculations based on the present model have shown an encouraging success in modeling complex turbulent flows.

  10. Flow for Exercise Adherence: Testing an Intrinsic Model of Health Behavior

    ERIC Educational Resources Information Center

    Petosa, R. Lingyak; Holtz, Brian

    2013-01-01

    Background: Health behavior theory generally does not include intrinsic motivation as a determinate of health practices. Purpose: The purpose of this study was to test the flow theory of exercise adherence. Flow theory posits that exercise can be intrinsically rewarding if the experiences of self/time transcendence and control/mastery are achieved…

  11. Exploring the Intrinsic Motivation of Hedonic Information Systems Acceptance: Integrating Hedonic Theory and Flow with TAM

    NASA Astrophysics Data System (ADS)

    Wang, Zhihuan

    Research on Information Systems (IS) acceptance is substantially focused on extrinsic motivation in workplaces, little is known about the underlying intrinsic motivations of Hedonic IS (HIS) acceptance. This paper proposes a hybrid HIS acceptance model which takes the unique characteristics of HIS and multiple identities of a HIS user into consideration by interacting Hedonic theory, Flow theory with Technology Acceptance Model (TAM). The model was empirically tested by a field survey. The result indicates that emotional responses, imaginal responses, and flow experience are three main contributions of HIS acceptance.

  12. Simulating Serious Games: A Discrete-Time Computational Model Based on Cognitive Flow Theory

    ERIC Educational Resources Information Center

    Westera, Wim

    2018-01-01

    This paper presents a computational model for simulating how people learn from serious games. While avoiding the combinatorial explosion of a games micro-states, the model offers a meso-level pathfinding approach, which is guided by cognitive flow theory and various concepts from learning sciences. It extends a basic, existing model by exposing…

  13. A Navier-Stokes phase-field crystal model for colloidal suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Praetorius, Simon, E-mail: simon.praetorius@tu-dresden.de; Voigt, Axel, E-mail: axel.voigt@tu-dresden.de

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  14. A Navier-Stokes phase-field crystal model for colloidal suspensions.

    PubMed

    Praetorius, Simon; Voigt, Axel

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  15. Conceptual Models and Theory-Embedded Principles on Effective Schooling.

    ERIC Educational Resources Information Center

    Scheerens, Jaap

    1997-01-01

    Reviews models and theories on effective schooling. Discusses four rationality-based organization theories and a fifth perspective, chaos theory, as applied to organizational functioning. Discusses theory-embedded principles flowing from these theories: proactive structuring, fit, market mechanisms, cybernetics, and self-organization. The…

  16. Advancing Traffic Flow Theory Using Empirical Microscopic Data

    DOT National Transportation Integrated Search

    2015-01-01

    As reviewed in Section 1.1, much of traffic flow theory depends a fundamental relationship (FR) between flow, density, and space mean speed; either explicitly, e.g., hydrodynamic models such as LWR (Lighthill and Whitham, 1955, and Richards, 1956) or...

  17. Hydrodynamic model of temperature change in open ionic channels.

    PubMed Central

    Chen, D P; Eisenberg, R S; Jerome, J W; Shu, C W

    1995-01-01

    Most theories of open ionic channels ignore heat generated by current flow, but that heat is known to be significant when analogous currents flow in semiconductors, so a generalization of the Poisson-Nernst-Planck theory of channels, called the hydrodynamic model, is needed. The hydrodynamic theory is a combination of the Poisson and Euler field equations of electrostatics and fluid dynamics, conservation laws that describe diffusive and convective flow of mass, heat, and charge (i.e., current), and their coupling. That is to say, it is a kinetic theory of solute and solvent flow, allowing heat and current flow as well, taking into account density changes, temperature changes, and electrical potential gradients. We integrate the equations with an essentially nonoscillatory shock-capturing numerical scheme previously shown to be stable and accurate. Our calculations show that 1) a significant amount of electrical energy is exchanged with the permeating ions; 2) the local temperature of the ions rises some tens of degrees, and this temperature rise significantly alters for ionic flux in a channel 25 A long, such as gramicidin-A; and 3) a critical parameter, called the saturation velocity, determines whether ionic motion is overdamped (Poisson-Nernst-Planck theory), is an intermediate regime (called the adiabatic approximation in semiconductor theory), or is altogether unrestricted (requiring the full hydrodynamic model). It seems that significant temperature changes are likely to accompany current flow in the open ionic channel. PMID:8599638

  18. Stochastic cycle selection in active flow networks.

    PubMed

    Woodhouse, Francis G; Forrow, Aden; Fawcett, Joanna B; Dunkel, Jörn

    2016-07-19

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models.

  19. Stochastic cycle selection in active flow networks

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis; Forrow, Aden; Fawcett, Joanna; Dunkel, Jorn

    2016-11-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such non-equilibrium networks. By connecting concepts from lattice field theory, graph theory and transition rate theory, we show how topology controls dynamics in a generic model for actively driven flow on a network. Through theoretical and numerical analysis we identify symmetry-based rules to classify and predict the selection statistics of complex flow cycles from the network topology. Our conceptual framework is applicable to a broad class of biological and non-biological far-from-equilibrium networks, including actively controlled information flows, and establishes a new correspondence between active flow networks and generalized ice-type models.

  20. Stochastic cycle selection in active flow networks

    PubMed Central

    Woodhouse, Francis G.; Forrow, Aden; Fawcett, Joanna B.; Dunkel, Jörn

    2016-01-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186

  1. Simulation of Two-Phase Flow Based on a Thermodynamically Constrained Averaging Theory Flow Model

    NASA Astrophysics Data System (ADS)

    Weigand, T. M.; Dye, A. L.; McClure, J. E.; Farthing, M. W.; Gray, W. G.; Miller, C. T.

    2014-12-01

    The thermodynamically constrained averaging theory (TCAT) has been used to formulate general classes of porous medium models, including new models for two-fluid-phase flow. The TCAT approach provides advantages that include a firm connection between the microscale, or pore scale, and the macroscale; a thermodynamically consistent basis; explicit inclusion of factors such as interfacial areas, contact angles, interfacial tension, and curvatures; and dynamics of interface movement and relaxation to an equilibrium state. In order to render the TCAT model solvable, certain closure relations are needed to relate fluid pressure, interfacial areas, curvatures, and relaxation rates. In this work, we formulate and solve a TCAT-based two-fluid-phase flow model. We detail the formulation of the model, which is a specific instance from a hierarchy of two-fluid-phase flow models that emerge from the theory. We show the closure problem that must be solved. Using recent results from high-resolution microscale simulations, we advance a set of closure relations that produce a closed model. Lastly, we use locally conservative spatial discretization and higher order temporal discretization methods to approximate the solution to this new model and compare the solution to the traditional model.

  2. Traffic Flow Density Distribution Based on FEM

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Cui, Jianming

    In analysis of normal traffic flow, it usually uses the static or dynamic model to numerical analyze based on fluid mechanics. However, in such handling process, the problem of massive modeling and data handling exist, and the accuracy is not high. Finite Element Method (FEM) is a production which is developed from the combination of a modern mathematics, mathematics and computer technology, and it has been widely applied in various domain such as engineering. Based on existing theory of traffic flow, ITS and the development of FEM, a simulation theory of the FEM that solves the problems existing in traffic flow is put forward. Based on this theory, using the existing Finite Element Analysis (FEA) software, the traffic flow is simulated analyzed with fluid mechanics and the dynamics. Massive data processing problem of manually modeling and numerical analysis is solved, and the authenticity of simulation is enhanced.

  3. Constitutive Relationships and Models in Continuum Theories of Multiphase Flows. [conferences

    NASA Technical Reports Server (NTRS)

    Decker, Rand (Editor)

    1989-01-01

    In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included.

  4. Wave models for turbulent free shear flows

    NASA Technical Reports Server (NTRS)

    Liou, W. W.; Morris, P. J.

    1991-01-01

    New predictive closure models for turbulent free shear flows are presented. They are based on an instability wave description of the dominant large scale structures in these flows using a quasi-linear theory. Three model were developed to study the structural dynamics of turbulent motions of different scales in free shear flows. The local characteristics of the large scale motions are described using linear theory. Their amplitude is determined from an energy integral analysis. The models were applied to the study of an incompressible free mixing layer. In all cases, predictions are made for the development of the mean flow field. In the last model, predictions of the time dependent motion of the large scale structure of the mixing region are made. The predictions show good agreement with experimental observations.

  5. A Theory for Stability and Buzz Pulsation Amplitude in Ram Jets and an Experimental Investigation Including Scale Effects

    NASA Technical Reports Server (NTRS)

    Trimpi, Robert L

    1956-01-01

    From a theory developed on a quasi-one-dimensional-flow basis, it is found that the stability of the ram jet is dependent upon the instantaneous values of mass flow and total pressure recovery of the supersonic diffuser and immediate neighboring subsonic diffuser. Conditions for stable and unstable flow are presented. The theory developed in the report is in agreement with the experimental data of NACA-TN-3506 and NACA-RM-L50K30. A simple theory for predicting the approximate amplitude of small pressure pulsation in terms of mass-flow decrement from minimum-stable mass flow is developed and found to agree with experiments. Cold-flow tests at a Mach number of 1.94 of ram-jet models having scale factors of 3.15:1 and Reynolds number ratios of 4.75:1 with several supersonic diffuser configurations showed only small variations in performance between geometrically similar models. The predominant variation in steady-flow performance resulted from the larger boundary layer in the combustion chamber of the low Reynolds number models. The conditions at which buzz originated were nearly the same for the same supersonic diffuser (cowling-position angle) configurations in both large and small diameter models. There was no appreciable variation in stability limits of any of the models when the combustion-chamber length was increased by a factor of three. The unsteady-flow performance and wave patterns were also similar when considered on a reduced-frequency basis determined from the relative lengths of the model. The negligible effect of Reynolds number on stability of the off-design configurations was not anticipated in view of the importance of boundary layer to stability, and this result should not be construed to be generally applicable. (author)

  6. Complexity of spatiotemporal traffic phenomena in flow of identical drivers: Explanation based on fundamental hypothesis of three-phase theory

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.

    2012-03-01

    Based on numerical simulations of a stochastic three-phase traffic flow model, we reveal the physics of the fundamental hypothesis of three-phase theory that, in contrast with a fundamental diagram of classical traffic flow theories, postulates the existence of a two-dimensional (2D) region of steady states of synchronized flow where a driver makes an arbitrary choice of a space gap (time headway) to the preceding vehicle. We find that macroscopic and microscopic spatiotemporal effects of the entire complexity of traffic congestion observed up to now in real measured traffic data can be explained by simulations of traffic flow consisting of identical drivers and vehicles, if a microscopic model used in these simulations incorporates the fundamental hypothesis of three-phase theory. It is shown that the driver's choice of space gaps within the 2D region of synchronized flow associated with the fundamental hypothesis of three-phase theory can qualitatively change types of congested patterns that can emerge at a highway bottleneck. In particular, if drivers choose long enough spaces gaps associated with the fundamental hypothesis, then general patterns, which consist of synchronized flow and wide moving jams, do not emerge independent of the flow rates and bottleneck characteristics: Even at a heavy bottleneck leading to a very low speed within congested patterns, only synchronized flow patterns occur in which no wide moving jams emerge spontaneously.

  7. Complexity of spatiotemporal traffic phenomena in flow of identical drivers: explanation based on fundamental hypothesis of three-phase theory.

    PubMed

    Kerner, Boris S

    2012-03-01

    Based on numerical simulations of a stochastic three-phase traffic flow model, we reveal the physics of the fundamental hypothesis of three-phase theory that, in contrast with a fundamental diagram of classical traffic flow theories, postulates the existence of a two-dimensional (2D) region of steady states of synchronized flow where a driver makes an arbitrary choice of a space gap (time headway) to the preceding vehicle. We find that macroscopic and microscopic spatiotemporal effects of the entire complexity of traffic congestion observed up to now in real measured traffic data can be explained by simulations of traffic flow consisting of identical drivers and vehicles, if a microscopic model used in these simulations incorporates the fundamental hypothesis of three-phase theory. It is shown that the driver's choice of space gaps within the 2D region of synchronized flow associated with the fundamental hypothesis of three-phase theory can qualitatively change types of congested patterns that can emerge at a highway bottleneck. In particular, if drivers choose long enough spaces gaps associated with the fundamental hypothesis, then general patterns, which consist of synchronized flow and wide moving jams, do not emerge independent of the flow rates and bottleneck characteristics: Even at a heavy bottleneck leading to a very low speed within congested patterns, only synchronized flow patterns occur in which no wide moving jams emerge spontaneously.

  8. Multiscale Sediment-Laden Flow Theory and Its Application in Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Cao, Z. X.; Pender, G.; Hu, P.

    2011-09-01

    Sediment-laden flows over erodible bed normally feature multiple time scales. The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity regime in line with local flow scenario and the bed deforms as compared to the flow, which literally dictate if a capacity based and/or decoupled model is justified. This paper synthesizes the recently developed multiscale theory for sediment-laden flows over erodible bed, with bed load and suspended load transport respectively. It is unravelled that bed load transport can adapt to capacity sufficiently rapidly even under highly unsteady flows and thus a capacity model is mostly applicable, whereas a non-capacity model is critical for suspended sediment because of the lower rate of adaptation to capacity. Physically coupled modeling is critical for cases characterized by rapid bed variation. Applications are outlined on flash floods and landslide dam break floods.

  9. A note on the theory of fast money flow dynamics

    NASA Astrophysics Data System (ADS)

    Sokolov, A.; Kieu, T.; Melatos, A.

    2010-08-01

    The gauge theory of arbitrage was introduced by Ilinski in [K. Ilinski, preprint arXiv:hep-th/9710148 (1997)] and applied to fast money flows in [A. Ilinskaia, K. Ilinski, preprint arXiv:cond-mat/9902044 (1999); K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)]. The theory of fast money flow dynamics attempts to model the evolution of currency exchange rates and stock prices on short, e.g. intra-day, time scales. It has been used to explain some of the heuristic trading rules, known as technical analysis, that are used by professional traders in the equity and foreign exchange markets. A critique of some of the underlying assumptions of the gauge theory of arbitrage was presented by Sornette in [D. Sornette, Int. J. Mod. Phys. C 9, 505 (1998)]. In this paper, we present a critique of the theory of fast money flow dynamics, which was not examined by Sornette. We demonstrate that the choice of the input parameters used in [K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)] results in sinusoidal oscillations of the exchange rate, in conflict with the results presented in [K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)]. We also find that the dynamics predicted by the theory are generally unstable in most realistic situations, with the exchange rate tending to zero or infinity exponentially.

  10. Theoretical Study of Turbulent Mixing in Inclined Ducted Jets.

    DTIC Science & Technology

    Jet mixing flow, * Thrust augmentation , Curved profiles, Short takeoff aircraft, Flow fields, Ducts, Ejectors , Mathematical models, Secondary flow, Theory, Angles, Problem solving, Incompressible flow

  11. The long flow to freedom

    DOE PAGES

    Aharony, Ofer; Razamat, Shlomo S.; Seiberg, Nathan; ...

    2017-02-10

    Two-dimensional field theories do not have a moduli space of vacua. Instead, it is common that their low-energy behavior is a sigma model with a target space. When this target space is compact its renormalization group flow is standard. When it is non-compact the continuous spectrum of operators can change the qualitative behavior. Here we discuss two-dimensional gauge theories with N = (2,2) supersymmetry. We focus on two specific theories, for which we argue that they flow to free chiral multiplets at low energies: the U(1) gauge theory with one flavor (two chiral superfields with charges plus and minus one)more » and a non-zero Fayet-Iliopoulos term, and pure SU( N) gauge theories. We argue that the renormalization group flow of these theories has an interesting order of limits issue. Holding the position on the target space fixed, the space flattens out under the renormalization group. On the other hand, if we first go to infinity on the target space and then perform the renormalization group, we always have a non-trivial space, e.g. a cone with a deficit angle. We explain how to interpret low-energy dualities between theories with non-compact target spaces. As a result, we expect a similar qualitative behavior also for other non-compact sigma models, even when they do not flow to free theories.« less

  12. Small-scale modelling of cementation by descending silica-bearing fluids: Explanation of the origin of arenitic caves in South American tepuis

    NASA Astrophysics Data System (ADS)

    Aubrecht, R.; Lánczos, T.; Schlögl, J.; Audy, M.

    2017-12-01

    Geoscientific research was performed on South American table mountains (tepuis) and in their sandstone cave systems. To explain speleogenesis in these poorly soluble rocks, two theories were introduced: a) arenization theory implying selective weathering of quartz along grain boundaries and releasing of sand grains, b) selective lithification theory implying cementation by descending silica-bearing fluid flow. The latter theory presumes that the descending fluid flow becomes unstable on the interface between two layers with different porosity and splits to separate flow channels (so-called ;finger flow;). The arenites outside these channels remain uncemented. To verify the latter theory, small-scale modelling was performed, using layered sands and sodium-silicate solution. Fine to medium sand was used (0.08-0.5 mm), along with a coarse sand fraction (0.5-1.5 mm). The sands were layered and compacted in a transparent plastic boxes. Three liters of sodium-silicate solution (so-called water glass) were left to drip for several hours to the top of the sediment. The fine-grained layers were perfectly laterally impregnated, whereas the descending fluid flows split to ;fingers; in the coarse-grained layers due their higher hydraulic conductivity. This small-scale laboratory simulation mimics the real diagenesis by descending silica-bearing fluids and matches the real phenomena observed on the tepuis. The resulting cemented constructions closely mimic many geomorphological features observed on tepuis and inside their caves, e.g. ;finger-flow; pillars, overhangs, imperfectly formed (aborted) pillars in forms of hummocks hanging from ceilings, locally also thicker central pillars that originated by merging of smaller fluid-flow channels. The modelling showed that selective lithification theory can explain most of the geomorphological aspects related to the speleogenesis in tepuis.

  13. Research on three-phase traffic flow modeling based on interaction range

    NASA Astrophysics Data System (ADS)

    Zeng, Jun-Wei; Yang, Xu-Gang; Qian, Yong-Sheng; Wei, Xu-Ting

    2017-12-01

    On the basis of the multiple velocity difference effect (MVDE) model and under short-range interaction, a new three-phase traffic flow model (S-MVDE) is proposed through careful consideration of the influence of the relationship between the speeds of the two adjacent cars on the running state of the rear car. The random slowing rule in the MVDE model is modified in order to emphasize the influence of vehicle interaction between two vehicles on the probability of vehicles’ deceleration. A single-lane model which without bottleneck structure under periodic boundary conditions is simulated, and it is proved that the traffic flow simulated by S-MVDE model will generate the synchronous flow of three-phase traffic theory. Under the open boundary, the model is expanded by adding an on-ramp, the congestion pattern caused by the bottleneck is simulated at different main road flow rates and on-ramp flow rates, which is compared with the traffic congestion pattern observed by Kerner et al. and it is found that the results are consistent with the congestion characteristics in the three-phase traffic flow theory.

  14. On the consistency of Reynolds stress turbulence closures with hydrodynamic stability theory

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Abid, Ridha; Blaisdell, Gregory A.

    1995-01-01

    The consistency of second-order closure models with results from hydrodynamic stability theory is analyzed for the simplified case of homogeneous turbulence. In a recent study, Speziale, Gatski, and MacGiolla Mhuiris showed that second-order closures are capable of yielding results that are consistent with hydrodynamic stability theory for the case of homogeneous shear flow in a rotating frame. It is demonstrated in this paper that this success is due to the fact that the stability boundaries for rotating homogeneous shear flow are not dependent on the details of the spatial structure of the disturbances. For those instances where they are -- such as in the case of elliptical flows where the instability mechanism is more subtle -- the results are not so favorable. The origins and extent of this modeling problem are examined in detail along with a possible resolution based on rapid distortion theory (RDT) and its implications for turbulence modeling.

  15. Flowing together: a longitudinal study of collective efficacy and collective flow among workgroups.

    PubMed

    Salanova, Marisa; Rodríguez-Sánchez, Alma M; Schaufeli, Wilmar B; Cifre, Eva

    2014-01-01

    The aim of this study is to extend the Channel Model of Flow (Csikszentmihalyi, 1975, 1990) at the collective level (workgroups) by including collective efficacy beliefs as a predictor of collective flow based on the Social Cognitive Theory (Bandura, 1997, 2001). A two-wave longitudinal lab study was conducted with 250 participants working in 52 small groups. Longitudinal results from Structural Equation Modeling with data aggregated at the group level showed, as expected, that collective efficacy beliefs predict collective flow over time, both being related reciprocally. Findings and their theoretical and practical implications in the light of Social Cognitive Theory are discussed.

  16. An experimental study of the elastic theory for granular flows

    NASA Astrophysics Data System (ADS)

    Guo, Tongtong; Campbell, Charles S.

    2016-08-01

    This paper reports annular shear cell measurements granular flows with an eye towards experimentally confirming the flow regimes laid out in the elastic theory of granular flow. Tests were carried out on four different kinds of plastic spherical particles under both constant volume flows and constant applied stress flows. In particular, observations were made of the new regime in that model, the elastic-inertial regime, and the predicted transitions between the elastic-inertial and both the elastic-quasistatic and pure inertial regimes.

  17. Towards the theory of pollinator-mediated gene flow.

    PubMed Central

    Cresswell, James E

    2003-01-01

    I present a new exposition of a model of gene flow by animal-mediated pollination between a source population and a sink population. The model's parameters describe two elements: (i) the expected portion of the source's paternity that extends to the sink population; and (ii) the dilution of this portion by within-sink pollinations. The model is termed the portion-dilution model (PDM). The PDM is a parametric restatement of the conventional view of animal-mediated pollination. In principle, it can be applied to plant species in general. I formulate a theoretical value of the portion parameter that maximizes gene flow and prescribe this as a benchmark against which to judge the performance of real systems. Existing foraging theory can be used in solving part of the PDM, but a theory for source-to-sink transitions by pollinators is currently elusive. PMID:12831465

  18. Assessment of arrays of in-stream tidal turbines in the Bay of Fundy.

    PubMed

    Karsten, Richard; Swan, Amanda; Culina, Joel

    2013-02-28

    Theories of in-stream turbines are adapted to analyse the potential electricity generation and impact of turbine arrays deployed in Minas Passage, Bay of Fundy. Linear momentum actuator disc theory (LMADT) is combined with a theory that calculates the flux through the passage to determine both the turbine power and the impact of rows of turbine fences. For realistically small blockage ratios, the theory predicts that extracting 2000-2500 MW of turbine power will result in a reduction in the flow of less than 5 per cent. The theory also suggests that there is little reason to tune the turbines if the blockage ratio remains small. A turbine array model is derived that extends LMADT by using the velocity field from a numerical simulation of the flow through Minas Passage and modelling the turbine wakes. The model calculates the resulting speed of the flow through and around a turbine array, allowing for the sequential positioning of turbines in regions of strongest flow. The model estimates that over 2000 MW of power is possible with only a 2.5 per cent reduction in the flow. If turbines are restricted to depths less than 50 m, the potential power generation is reduced substantially, down to 300 MW. For large turbine arrays, the blockage ratios remain small and the turbines can produce maximum power with a drag coefficient equal to the Betz-limit value.

  19. A theoretical and numerical study of the flow of granular materials down an inclined plane. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajagopal, K.R.

    The mechanics of the flowing granular materials such as coal, agricultural products, at deal of attention as it has fertilizers, dry chemicals, metal ores, etc. have received a great deal of attention as it has relevance to several important technological problems. Despite wide interest and more than five decades of experimental and theoretical investigations, most aspects of the behavior of flowing granular materials are still not well understood. So Experiments have to be devised which quantify and describe the non-linear behavior of the modular materials, and theories developed which can explain the experimentally observed facts. As many models have beenmore » suggested for describing the behavior of granular materials, from both continuum and kinetic theory viewpoints, we proposed to investigate the validity and usefulness of representative models from both the continuum and kinetic theory points of view, by determining the prediction of such a theory, in a representative flow, with respect to existence, non-existence, multiplicity and stability of solutions. The continuum model to be investigated is an outgrowth of a model due to Goodman and Cowin (1971, 1972) and the kinetic theory models being those due to Jenkins and Richman (1985) and Boyle and Massoudi (1989). In this report we present detailed results regarding the same. Interestingly, we find that the predictions of all the theories, in certain parameter space associated with these models, are qualitatively similar. This ofcourse depends on the values assumed for various material parameters in the models, which as yet are unknown, as reliable experiments have not been carried out as yet for their determination.« less

  20. Error and Uncertainty Quantification in the Numerical Simulation of Complex Fluid Flows

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2010-01-01

    The failure of numerical simulation to predict physical reality is often a direct consequence of the compounding effects of numerical error arising from finite-dimensional approximation and physical model uncertainty resulting from inexact knowledge and/or statistical representation. In this topical lecture, we briefly review systematic theories for quantifying numerical errors and restricted forms of model uncertainty occurring in simulations of fluid flow. A goal of this lecture is to elucidate both positive and negative aspects of applying these theories to practical fluid flow problems. Finite-element and finite-volume calculations of subsonic and hypersonic fluid flow are presented to contrast the differing roles of numerical error and model uncertainty. for these problems.

  1. Dark matter as a ghost free conformal extension of Einstein theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barvinsky, A.O., E-mail: barvin@td.lpi.ru

    We discuss ghost free models of the recently suggested mimetic dark matter theory. This theory is shown to be a conformal extension of Einstein general relativity. Dark matter originates from gauging out its local Weyl invariance as an extra degree of freedom which describes a potential flow of the pressureless perfect fluid. For a positive energy density of this fluid the theory is free of ghost instabilities, which gives strong preference to stable configurations with a positive scalar curvature and trace of the matter stress tensor. Instabilities caused by caustics of the geodesic flow, inherent in this model, serve asmore » a motivation for an alternative conformal extension of Einstein theory, based on the generalized Proca vector field. A potential part of this field modifies the inflationary stage in cosmology, whereas its rotational part at the post inflationary epoch might simulate rotating flows of dark matter.« less

  2. Discrete mathematical physics and particle modeling

    NASA Astrophysics Data System (ADS)

    Greenspan, D.

    The theory and application of the arithmetic approach to the foundations of both Newtonian and special relativistic mechanics are explored. Using only arithmetic, a reformulation of the Newtonian approach is given for: gravity; particle modeling of solids, liquids, and gases; conservative modeling of laminar and turbulent fluid flow, heat conduction, and elastic vibration; and nonconservative modeling of heat convection, shock-wave generation, the liquid drop problem, porous flow, the interface motion of a melting solid, soap films, string vibrations, and solitons. An arithmetic reformulation of special relativistic mechanics is given for theory in one space dimension, relativistic harmonic oscillation, and theory in three space dimensions. A speculative quantum mechanical model of vibrations in the water molecule is also discussed.

  3. Time dependent turbulence modeling and analytical theories of turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, R.

    1993-01-01

    By simplifying the direct interaction approximation (DIA) for turbulent shear flow, time dependent formulas are derived for the Reynolds stresses which can be included in two equation models. The Green's function is treated phenomenologically, however, following Smith and Yakhot, we insist on the short and long time limits required by DIA. For small strain rates, perturbative evaluation of the correlation function yields a time dependent theory which includes normal stress effects in simple shear flows. From this standpoint, the phenomenological Launder-Reece-Rodi model is obtained by replacing the Green's function by its long time limit. Eddy damping corrections to short time behavior initiate too quickly in this model; in contrast, the present theory exhibits strong suppression of eddy damping at short times. A time dependent theory for large strain rates is proposed in which large scales are governed by rapid distortion theory while small scales are governed by Kolmogorov inertial range dynamics. At short times and large strain rates, the theory closely matches rapid distortion theory, but at long times it relaxes to an eddy damping model.

  4. Aerodynamic Modeling of Oscillating Wing in Hypersonic Flow: a Numerical Study

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Hou, Ying-Yu; Ji, Chen; Liu, Zi-Qiang

    2016-06-01

    Various approximations to unsteady aerodynamics are examined for the unsteady aerodynamic force of a pitching thin double wedge airfoil in hypersonic flow. Results of piston theory, Van Dyke’s second-order theory, Newtonian impact theory, and CFD method are compared in the same motion and Mach number effects. The results indicate that, for this thin double wedge airfoil, Newtonian impact theory is not suitable for these Mach number, while piston theory and Van Dyke’s second-order theory are in good agreement with CFD method for Ma<7.

  5. Derivation of aerodynamic kernel functions

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.; Ventres, C. S.

    1973-01-01

    The method of Fourier transforms is used to determine the kernel function which relates the pressure on a lifting surface to the prescribed downwash within the framework of Dowell's (1971) shear flow model. This model is intended to improve upon the potential flow aerodynamic model by allowing for the aerodynamic boundary layer effects neglected in the potential flow model. For simplicity, incompressible, steady flow is considered. The proposed method is illustrated by deriving known results from potential flow theory.

  6. Ideal flow theory for the double - shearing model as a basis for metal forming design

    NASA Astrophysics Data System (ADS)

    Alexandrov, S.; Trung, N. T.

    2018-02-01

    In the case of Tresca’ solids (i.e. solids obeying the Tresca yield criterion and its associated flow rule) ideal flows have been defined elsewhere as solenoidal smooth deformations in which an eigenvector field associated everywhere with the greatest principal stress (and strain rate) is fixed in the material. Under such conditions all material elements undergo paths of minimum plastic work, a condition which is often advantageous for metal forming processes. Therefore, the ideal flow theory is used as the basis of a procedure for the preliminary design of such processes. The present paper extends the theory of stationary planar ideal flow to pressure dependent materials obeying the double shearing model and the double slip and rotation model. It is shown that the original problem of plasticity reduces to a purely geometric problem. The corresponding system of equations is hyperbolic. The characteristic relations are integrated in elementary functions. In regions where one family of characteristics is straight, mapping between the principal lines and Cartesian coordinates is determined by linear ordinary differential equations. An illustrative example is provided.

  7. Application of network methods for understanding evolutionary dynamics in discrete habitats.

    PubMed

    Greenbaum, Gili; Fefferman, Nina H

    2017-06-01

    In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.

  8. The Need for a Kinetics for Biological Transport

    PubMed Central

    Schindler, A. M.; Iberall, A. S.

    1973-01-01

    The traditional theory of transport across capillary membranes via a laminar Poiseuille flow is shown to be invalid. It is demonstrated that the random, diffusive nature of the molecular flow and interactions with the “pore” walls play an important role in the transport process. Neither the continuum Navier-Stokes theory nor the equivalent theory of irreversible thermodynamics is adequate to treat the problem. Combination of near-continuum hydrodynamic theory, noncontinuum kinetic theory, and the theory of fluctuations provides a first step toward modeling both liquid processes in general and membrane transport processes as a specific application. PMID:4726880

  9. Modeling of convection, temperature distribution and dendritic growth in glass-fluxed nickel melts

    NASA Astrophysics Data System (ADS)

    Gao, Jianrong; Kao, Andrew; Bojarevics, Valdis; Pericleous, Koulis; Galenko, Peter K.; Alexandrov, Dmitri V.

    2017-08-01

    Melt flow is often quoted as the reason for a discrepancy between experiment and theory on dendritic growth kinetics at low undercoolings. But this flow effect is not justified for glass-fluxed melts where the flow field is weaker. In the present work, we modeled the thermal history, flow pattern and dendritic structure of a glass-fluxed nickel sample by magnetohydrodynamics calculations. First, the temperature distribution and flow structure in the molten and undercooled melt were simulated by reproducing the observed thermal history of the sample prior to solidification. Then the dendritic structure and surface temperature of the recalescing sample were simulated. These simulations revealed a large thermal gradient crossing the sample, which led to an underestimation of the real undercooling for dendritic growth in the bulk volume of the sample. By accounting for this underestimation, we recalculated the dendritic tip velocities in the glass-fluxed nickel melt using a theory of three-dimensional dendritic growth with convection and concluded an improved agreement between experiment and theory.

  10. Theory of low frequency noise transmission through turbines

    NASA Technical Reports Server (NTRS)

    Matta, R. K.; Mani, R.

    1979-01-01

    Improvements of the existing theory of low frequency noise transmission through turbines and development of a working prediction tool are described. The existing actuator-disk model and a new finite-chord model were utilized in an analytical study. The interactive effect of adjacent blade rows, higher order spinning modes, blade-passage shocks, and duct area variations were considered separately. The improved theory was validated using the data acquired in an earlier NASA program. Computer programs incorporating the improved theory were produced for transmission loss prediction purposes. The programs were exercised parametrically and charts constructed to define approximately the low frequency noise transfer through turbines. The loss through the exhaust nozzle and flow(s) was also considered.

  11. A systems approach to theoretical fluid mechanics: Fundamentals

    NASA Technical Reports Server (NTRS)

    Anyiwo, J. C.

    1978-01-01

    A preliminary application of the underlying principles of the investigator's general system theory to the description and analyses of the fluid flow system is presented. An attempt is made to establish practical models, or elements of the general fluid flow system from the point of view of the general system theory fundamental principles. Results obtained are applied to a simple experimental fluid flow system, as test case, with particular emphasis on the understanding of fluid flow instability, transition and turbulence.

  12. Solar wind flow past Venus - Theory and comparisons

    NASA Technical Reports Server (NTRS)

    Spreiter, J. R.; Stahara, S. S.

    1980-01-01

    Advanced computational procedures are applied to an improved model of solar wind flow past Venus to calculate the locations of the ionopause and bow wave and the properties of the flowing ionosheath plasma in the intervening region. The theoretical method is based on a single-fluid, steady, dissipationless, magneto-hydrodynamic continuum model and is appropriate for the calculation of axisymmetric supersonic, super-Alfvenic solar wind flow past a nonmagnetic planet possessing a sufficiently dense ionosphere to stand off the flowing plasma above the subsolar point and elsewhere. Determination of time histories of plasma and magnetic field properties along an arbitrary spacecraft trajectory and provision for an arbitrary oncoming direction of the interplanetary solar wind have been incorporated in the model. An outline is provided of the underlying theory and computational procedures, and sample comparisons of the results are presented with observations from the Pioneer Venus orbiter.

  13. A hydrodynamic model for granular material flows including segregation effects

    NASA Astrophysics Data System (ADS)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  14. Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerner, Boris S.

    It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliable used for control and optimization in traffic networks. It is shown that generally accepted fundamentals and methodologies of traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (formore » example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular stochastic value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of traffic and transportation theory, we discuss three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks.« less

  15. Observations, theoretical ideas and modeling of turbulent flows: Past, present and future

    NASA Technical Reports Server (NTRS)

    Chapman, G. T.; Tobak, M.

    1985-01-01

    Turbulence was analyzed in a historical context featuring the interactions between observations, theoretical ideas, and modeling within three successive movements. These are identified as predominantly statistical, structural and deterministic. The statistical movement is criticized for its failure to deal with the structural elements observed in turbulent flows. The structural movement is criticized for its failure to embody observed structural elements within a formal theory. The deterministic movement is described as having the potential of overcoming these deficiencies by allowing structural elements to exhibit chaotic behavior that is nevertheless embodied within a theory. Four major ideas of this movement are described: bifurcation theory, strange attractors, fractals, and the renormalization group. A framework for the future study of turbulent flows is proposed, based on the premises of the deterministic movement.

  16. Analysis of Heat Transfer Phenomenon in Magnetohydrodynamic Casson Fluid Flow Through Cattaneo-Christov Heat Diffusion Theory

    NASA Astrophysics Data System (ADS)

    Ramesh, G. K.; Gireesha, B. J.; Shehzad, S. A.; Abbasi, F. M.

    2017-07-01

    Heat transport phenomenon of two-dimensional magnetohydrodynamic Casson fluid flow by employing Cattaneo-Christov heat diffusion theory is described in this work. The term of heat absorption/generation is incorporated in the mathematical modeling of present flow problem. The governing mathematical expressions are solved for velocity and temperature profiles using RKF 45 method along with shooting technique. The importance of arising nonlinear quantities namely velocity, temperature, skin-friction and temperature gradient are elaborated via plots. It is explored that the Casson parameter retarded the liquid velocity while it enhances the fluid temperature. Further, we noted that temperature and thickness of temperature boundary layer are weaker in case of Cattaneo-Christov heat diffusion model when matched with the profiles obtained for Fourier’s theory of heat flux.

  17. Traffic Games: Modeling Freeway Traffic with Game Theory

    PubMed Central

    Cortés-Berrueco, Luis E.; Gershenson, Carlos; Stephens, Christopher R.

    2016-01-01

    We apply game theory to a vehicular traffic model to study the effect of driver strategies on traffic flow. The resulting model inherits the realistic dynamics achieved by a two-lane traffic model and aims to incorporate phenomena caused by driver-driver interactions. To achieve this goal, a game-theoretic description of driver interaction was developed. This game-theoretic formalization allows one to model different lane-changing behaviors and to keep track of mobility performance. We simulate the evolution of cooperation, traffic flow, and mobility performance for different modeled behaviors. The analysis of these results indicates a mobility optimization process achieved by drivers’ interactions. PMID:27855176

  18. Traffic Games: Modeling Freeway Traffic with Game Theory.

    PubMed

    Cortés-Berrueco, Luis E; Gershenson, Carlos; Stephens, Christopher R

    2016-01-01

    We apply game theory to a vehicular traffic model to study the effect of driver strategies on traffic flow. The resulting model inherits the realistic dynamics achieved by a two-lane traffic model and aims to incorporate phenomena caused by driver-driver interactions. To achieve this goal, a game-theoretic description of driver interaction was developed. This game-theoretic formalization allows one to model different lane-changing behaviors and to keep track of mobility performance. We simulate the evolution of cooperation, traffic flow, and mobility performance for different modeled behaviors. The analysis of these results indicates a mobility optimization process achieved by drivers' interactions.

  19. A New Reynolds Stress Algebraic Equation Model

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.

    1994-01-01

    A general turbulent constitutive relation is directly applied to propose a new Reynolds stress algebraic equation model. In the development of this model, the constraints based on rapid distortion theory and realizability (i.e. the positivity of the normal Reynolds stresses and the Schwarz' inequality between turbulent velocity correlations) are imposed. Model coefficients are calibrated using well-studied basic flows such as homogeneous shear flow and the surface flow in the inertial sublayer. The performance of this model is then tested in complex turbulent flows including the separated flow over a backward-facing step and the flow in a confined jet. The calculation results are encouraging and point to the success of the present model in modeling turbulent flows with complex geometries.

  20. An analytical model for highly seperated flow on airfoils at low speeds

    NASA Technical Reports Server (NTRS)

    Zunnalt, G. W.; Naik, S. N.

    1977-01-01

    A computer program was developed to solve the low speed flow around airfoils with highly separated flow. A new flow model included all of the major physical features in the separated region. Flow visualization tests also were made which gave substantiation to the validity of the model. The computation involves the matching of the potential flow, boundary layer and flows in the separated regions. Head's entrainment theory was used for boundary layer calculations and Korst's jet mixing analysis was used in the separated regions. A free stagnation point aft of the airfoil and a standing vortex in the separated region were modelled and computed.

  1. Semiempirical methods for computing turbulent flows

    NASA Technical Reports Server (NTRS)

    Belov, I. A.; Ginzburg, I. P.

    1986-01-01

    Two semiempirical theories which provide a basis for determining the turbulent friction and heat exchange near a wall are presented: (1) the Prandtl-Karman theory, and (2) the theory utilizing an equation for the energy of turbulent pulsations. A comparison is made between exact numerical methods and approximate integral methods for computing the turbulent boundary layers in the presence of pressure, blowing, or suction gradients. Using the turbulent flow around a plate as an example, it is shown that, when computing turbulent flows with external turbulence, it is preferable to construct a turbulence model based on the equation for energy of turbulent pulsations.

  2. A multi-ion generalized transport model of the polar wind

    NASA Technical Reports Server (NTRS)

    Demars, H. G.; Schunk, R. W.

    1994-01-01

    The higher-order generalizations of the equations of standard hydrodynamics, known collectively as generalized transport theories, have been used since the early 1980s to describe the terrestrial polar wind. Inherent in the structure of generalized transport theories is the ability to describe not only interparticle collisions but also certain non-Maxwellian processes, such as heat flow and viscous stress, that are characteristic of any plasma flow that is not collision dominated. Because the polar wind exhibits a transition from collision-dominated to collisionless flow, generalized transport theories possess advantages for polar wind modeling not shared by either collision-dominated models (such as standard hydrodynamics) or collisionless models (such as those based on solving the collisionless Boltzmann equation). In general, previous polar wind models have used generalized transport equations to describe electrons and only one species of ion (H(+)). If other ion species were included in the models at all, it was in a simplified or semiempirical manner. The model described in this paper is the first polar wind model that uses a generalized transport theory (bi-Maxwellian-based 16-moment theory) to describe all of the species, both major and minor, in the polar wind plasma. In the model, electrons and three ion species (H(+), He(+), O(+)) are assumed to be major and several ion species are assumed to be minor (NO(+), Fe(+), O(++)). For all species, a complete 16-moment transport formulation is used, so that profiles of density, drift velocity, parallel and perpendicular temperatures, and the field-aligned parallel and perpendicular energy flows are obtained. In the results presented here, emphasis is placed on describing those constituents of the polar wind that have received little attention in past studies. In particular, characteristic solutions are presented for supersonic H(+) outflow and for both supersonic and subsonic outflows of the major ion He(+). Solutions are also presented for various minor ions, both atomic and molecular and both singly and multiply charged.

  3. Recent developments in rotary-wing aerodynamic theory

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1986-01-01

    Current progress in the computational analysis of rotary-wing flowfields is surveyed, and some typical results are presented in graphs. Topics examined include potential theory, rotating coordinate systems, lifting-surface theory (moving singularity, fixed wing, and rotary wing), panel methods (surface singularity representations, integral equations, and compressible flows), transonic theory (the small-disturbance equation), wake analysis (hovering rotor-wake models and transonic blade-vortex interaction), limitations on computational aerodynamics, and viscous-flow methods (dynamic-stall theories and lifting-line theory). It is suggested that the present algorithms and advanced computers make it possible to begin working toward the ultimate goal of turbulent Navier-Stokes calculations for an entire rotorcraft.

  4. Thermodynamically Constrained Averaging Theory (TCAT) Two-Phase Flow Model: Derivation, Closure, and Simulation Results

    NASA Astrophysics Data System (ADS)

    Weigand, T. M.; Miller, C. T.; Dye, A. L.; Gray, W. G.; McClure, J. E.; Rybak, I.

    2015-12-01

    The thermodynamically constrained averaging theory (TCAT) has been usedto formulate general classes of porous medium models, including newmodels for two-fluid-phase flow. The TCAT approach provides advantagesthat include a firm connection between the microscale, or pore scale,and the macroscale; a thermodynamically consistent basis; explicitinclusion of factors such as interfacial areas, contact angles,interfacial tension, and curvatures; and dynamics of interface movementand relaxation to an equilibrium state. In order to render the TCATmodel solvable, certain closure relations are needed to relate fluidpressure, interfacial areas, curvatures, and relaxation rates. In thiswork, we formulate and solve a TCAT-based two-fluid-phase flow model. We detail the formulation of the model, which is a specific instancefrom a hierarchy of two-fluid-phase flow models that emerge from thetheory. We show the closure problem that must be solved. Using recentresults from high-resolution microscale simulations, we advance a set ofclosure relations that produce a closed model. Lastly, we solve the model using a locally conservative numerical scheme and compare the TCAT model to the traditional model.

  5. Progress Towards a Time-Dependent Theory of Solar Meridional Flows

    NASA Astrophysics Data System (ADS)

    Shirley, James H.

    2017-08-01

    Large-scale meridional motions of solar materials play an important role in flux transport dynamo models. Meridional flows transport surface magnetic flux to polar regions of the Sun, where it may later be subducted and conveyed back towards the equatorial region by a deep return flow in the convection zone. The transported flux may thereafter lead to the generation of new toroidal fields, thereby completing the dynamo cycle. More than two decades of observations have revealed that meridional flow speeds vary substantially with time. Further, a complex morphological variability of meridional flow cells is now recognized, with multiple cell structures detected both in latitude and in depth. ‘Countercells’ with reversed flow directions have been detected at various times. Flow speeds are apparently influenced by the proximity of flows to active regions. This complexity represents a considerable challenge to dynamo modeling efforts. Flows morphology and speed changes may be arbitrarily prescribed in models, but physical realism of model outputs may be questionable, and elusive: The models are ‘trying to hit a moving target.’ Considerations such as these led Belucz et al. (2013; Ap. J. 806:169) to call for “time-dependent theories that can tell us theoretically how this circulation may change its amplitude and form in each hemisphere.” Such a theory now exists for planetary atmospheres (Shirley, 2017; Plan. Sp. Sci. 141, 1-16). Proof of concept for the non-tidal orbit-spin coupling hypothesis of Shirley (2017) was obtained through numerical modeling of the atmospheric circulation of Mars (Mischna & Shirley, 2017; Plan. Sp. Sci. 141, 45-72). Much-improved correspondence of numerical modeling outcomes with observations was demonstrated. In this presentation we will briefly review the physical hypothesis and some prior evidence of its possible role in solar dynamo excitation. We show a strong correlation between observed meridional flow speeds of magnetic features in Cycle 23 with the putative dynamical forcing function. We will also briefly discuss the potential for incorporating orbit-spin coupling accelerations within existing numerical solar dynamo models.

  6. A Theory and Experiments for Detecting Shock Locations

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Johnson, D. K.; Adamovsky, G.

    1994-01-01

    In this paper we present a simplified one-dimensional theory for predicting locations of normal shocks in a converging diverging nozzle. The theory assumes that the flow is quasi one-dimensional and the flow is accelerated in the throat area. Optical aspects of the model consider propagation of electromagnetic fields transverse to the shock front. The theory consists of an inverse problem in which from the measured intensity it reconstructs an index of refraction profile for the shock. From this profile and the Dale-Gladstone relation, the density in the flow field is determined, thus determining the shock location. Experiments show agreement with the theory. In particular the location is determined within 10 percent of accuracy. Both the theoretical as well as the experimental results are presented to validate the procedures in this work.

  7. Sediment Vertical Flux in Unsteady Sheet Flows

    NASA Astrophysics Data System (ADS)

    Hsu, T.; Jenkins, J. T.; Liu, P. L.

    2002-12-01

    In models for sediment suspension, two different boundary conditions have been employed at the sediment bed. Either the sediment concentration is given or the vertical flux of sediment is specified. The specification of the latter is usually called the pick-up function. Recently, several developments towards a better understanding of the sediment bed boundary condition have been reported. Nielson et al (Coastal Engineering 2002, 45, p61-68) have indicated a better performance using the sediment vertical flux as the bed boundary condition in comparisons with experimental data. Also, Drake and Calantoni (Journal of Geophysical Research 2001, 106, C9, p19859-19868) have suggested that in the nearshore environment with its various unsteady flow conditions, the appropriate sediment boundary conditions of a large-scale morphology model must consider both the magnitude the free stream velocity and the acceleration of the flow. In this research, a small-scale sheet flow model based on the two-phase theory is implemented to further study these issues. Averaged two-phase continuum equations are presented for concentrated flows of sediment that are driven by strong, fully developed, unsteady turbulent shear flows over a mobile bed. The particle inter-granular stress is modeled using collisional granular flow theory and a two-equation closure for the fluid turbulence is adopted. In the context of the two-phase theory, sediment is transported through the sediment vertical velocity. Using the fully developed sediment phase continuity equation, it can be shown that the vertical velocity of the sediment must vanish when the flow reaches a steady state. In other words, in fully developed conditions, it is the unsteadiness of the flow that induces the vertical motion of the sediment and that changes the sediment concentration profile. Therefore, implementing a boundary condition based on sediment vertical flux is consistent with both the two-phase theory and with the observation that the flow acceleration is an important parameter. In this paper, the vertical flux of sediment is studied under various combinations of free stream velocity, acceleration, and sediment material properties using the two-phase sheet flow model. Some interesting features of sediment dynamics within the sheet, such as time history of sediment vertical velocity, collisional and turbulent suspension mechanisms are presented.

  8. Multi-fluid CFD analysis in Process Engineering

    NASA Astrophysics Data System (ADS)

    Hjertager, B. H.

    2017-12-01

    An overview of modelling and simulation of flow processes in gas/particle and gas/liquid systems are presented. Particular emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi-fluid techniques. Turbulence modelling strategies for gas/particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modelling are presented. Examples are shown for some gas/particle systems including flow and chemical reaction in risers as well as gas/liquid systems including bubble columns and stirred tanks.

  9. Nonisentropic unsteady three dimensional small disturbance potential theory

    NASA Technical Reports Server (NTRS)

    Gibbons, M. D.; Whitlow, W., Jr.; Williams, M. H.

    1986-01-01

    Modifications that allow for more accurate modeling of flow fields when strong shocks are present were made into three dimensional transonic small disturbance (TSD) potential theory. The Engquist-Osher type-dependent differencing was incorporated into the solution algorithm. The modified theory was implemented in the XTRAN3S computer code. Steady flows over a rectangular wing with a constant NACA 0012 airfoil section and an aspect ratio of 12 were calculated for freestream Mach numbers (M) of 0.82, 0.84, and 0.86. The obtained results are compared using the modified and unmodified TSD theories and the results from a three dimensional Euler code are presented. Nonunique solutions in three dimensions are shown to appear for the rectangular wing as aspect ratio increases. Steady and unsteady results are shown for the RAE tailplane model at M = 0.90. Calculations using unmodified theory, modified theory and experimental data are compared.

  10. Experimental and Theoretical Study of Flow Fields Around Ducted-Nacelle Models

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1998-01-01

    The flow field near four small-scale ducted-nacelle bodies of revolution has been analytically and experimentally studied to determine exterior and interior mass-flow characteristics, and to measure flow-field overpressures generated by the nacelle's forebody shape. Four nacelle models with the same profile, but of different sizes, were used in the study. Shadowgraph pictures showed inlet shocks attached to the cowl lip (indicating unchoked flow) on all four models, at all the test Mach numbers, through an angle of attack range of 0.0 to 6.0 degrees. Pressure signatures measured in the flow field of the largest of the four nacelle models were compared with those predicted by corrected and uncorrected Whitham theory. At separation distances greater than 3.0 to 4.0 inlet diameters, good agreement was found. Poorer agreement was found at extreme near-field separation distances, but this was attributed to pressure-gage limitations and probe-flow field interactions. The overall favorable results supported a conclusion that corrected Whitham theory was sufficiently accurate to make the nacelle-wing interference-lift code useful for sonic-boom analysis and the preliminary design of supersonic-cruise conceptual aircraft.

  11. Averaging Theory for Description of Environmental Problems: What Have We Learned?

    PubMed Central

    Miller, Cass T.; Schrefler, Bernhard A.

    2012-01-01

    Advances in Water Resources has been a prime archival source for implementation of averaging theories in changing the scale at which processes of importance in environmental modeling are described. Thus in celebration of the 35th year of this journal, it seems appropriate to assess what has been learned about these theories and about their utility in describing systems of interest. We review advances in understanding and use of averaging theories to describe porous medium flow and transport at the macroscale, an averaged scale that models spatial variability, and at the megascale, an integral scale that only considers time variation of system properties. We detail physical insights gained from the development and application of averaging theory for flow through porous medium systems and for the behavior of solids at the macroscale. We show the relationship between standard models that are typically applied and more rigorous models that are derived using modern averaging theory. We discuss how the results derived from averaging theory that are available can be built upon and applied broadly within the community. We highlight opportunities and needs that exist for collaborations among theorists, numerical analysts, and experimentalists to advance the new classes of models that have been derived. Lastly, we comment on averaging developments for rivers, estuaries, and watersheds. PMID:23393409

  12. A new approach to flow simulation using hybrid models

    NASA Astrophysics Data System (ADS)

    Solgi, Abazar; Zarei, Heidar; Nourani, Vahid; Bahmani, Ramin

    2017-11-01

    The necessity of flow prediction in rivers, for proper management of water resource, and the need for determining the inflow to the dam reservoir, designing efficient flood warning systems and so forth, have always led water researchers to think about models with high-speed response and low error. In the recent years, the development of Artificial Neural Networks and Wavelet theory and using the combination of models help researchers to estimate the river flow better and better. In this study, daily and monthly scales were used for simulating the flow of Gamasiyab River, Nahavand, Iran. The first simulation was done using two types of ANN and ANFIS models. Then, using wavelet theory and decomposing input signals of the used parameters, sub-signals were obtained and were fed into the ANN and ANFIS to obtain hybrid models of WANN and WANFIS. In this study, in addition to the parameters of precipitation and flow, parameters of temperature and evaporation were used to analyze their effects on the simulation. The results showed that using wavelet transform improved the performance of the models in both monthly and daily scale. However, it had a better effect on the monthly scale and the WANFIS was the best model.

  13. Analysis of high vacuum systems using SINDA'85

    NASA Technical Reports Server (NTRS)

    Spivey, R. A.; Clanton, S. E.; Moore, J. D.

    1993-01-01

    The theory, algorithms, and test data correlation analysis of a math model developed to predict performance of the Space Station Freedom Vacuum Exhaust System are presented. The theory used to predict the flow characteristics of viscous, transition, and molecular flow is presented in detail. Development of user subroutines which predict the flow characteristics in conjunction with the SINDA'85/FLUINT analysis software are discussed. The resistance-capacitance network approach with application to vacuum system analysis is demonstrated and results from the model are correlated with test data. The model was developed to predict the performance of the Space Station Freedom Vacuum Exhaust System. However, the unique use of the user subroutines developed in this model and written into the SINDA'85/FLUINT thermal analysis model provides a powerful tool that can be used to predict the transient performance of vacuum systems and gas flow in tubes of virtually any geometry. This can be accomplished using a resistance-capacitance (R-C) method very similar to the methods used to perform thermal analyses.

  14. THE BERNOULLI EQUATION AND COMPRESSIBLE FLOW THEORIES

    EPA Science Inventory

    The incompressible Bernoulli equation is an analytical relationship between pressure, kinetic energy, and potential energy. As perhaps the simplest and most useful statement for describing laminar flow, it buttresses numerous incompressible flow models that have been developed ...

  15. Response to Germann's "Comment on 'theory for source-responsive and free-surface film modeling of unsaturated flow'"

    USGS Publications Warehouse

    Nimmo, J.R.

    2010-01-01

    Germann's (2010) comment helpfully presents supporting evidence that I have missed, notes items that need clarification or correction, and stimulates discussion of what is needed for improved theory of unsaturated flow. Several points from this comment relate not only to specific features of the content of my paper (Nimmo, 2010), but also to the broader question of what methodology is appropriate for developing an applied earth science. Accordingly, before addressing specific points that Germann identified, I present here some considerations of purpose and background relevant to evaluation of the unsaturated flow model of Nimmo (2010).

  16. Optimization Design of Minimum Total Resistance Hull Form Based on CFD Method

    NASA Astrophysics Data System (ADS)

    Zhang, Bao-ji; Zhang, Sheng-long; Zhang, Hui

    2018-06-01

    In order to reduce the resistance and improve the hydrodynamic performance of a ship, two hull form design methods are proposed based on the potential flow theory and viscous flow theory. The flow fields are meshed using body-fitted mesh and structured grids. The parameters of the hull modification function are the design variables. A three-dimensional modeling method is used to alter the geometry. The Non-Linear Programming (NLP) method is utilized to optimize a David Taylor Model Basin (DTMB) model 5415 ship under the constraints, including the displacement constraint. The optimization results show an effective reduction of the resistance. The two hull form design methods developed in this study can provide technical support and theoretical basis for designing green ships.

  17. A mixture theory approach to model co- and counter-current two-phase flow in porous media accounting for viscous coupling

    NASA Astrophysics Data System (ADS)

    Qiao, Y.; Andersen, P. Ø.; Evje, S.; Standnes, D. C.

    2018-02-01

    It is well known that relative permeabilities can depend on the flow configuration and they are commonly lower during counter-current flow as compared to co-current flow. Conventional models must deal with this by manually changing the relative permeability curves depending on the observed flow regime. In this paper we use a novel two-phase momentum-equation-approach based on general mixture theory to generate effective relative permeabilities where this dependence (and others) is automatically captured. In particular, this formulation includes two viscous coupling effects: (i) Viscous drag between the flowing phases and the stagnant porous rock; (ii) viscous drag caused by momentum transfer between the flowing phases. The resulting generalized model will predict that during co-current flow the faster moving fluid accelerates the slow fluid, but is itself decelerated, while for counter-current flow they are both decelerated. The implications of these mechanisms are demonstrated by investigating recovery of oil from a matrix block surrounded by water due to a combination of gravity drainage and spontaneous imbibition, a situation highly relevant for naturally fractured reservoirs. We implement relative permeability data obtained experimentally through co-current flooding experiments and then explore the model behavior for different flow cases ranging from counter-current dominated to co-current dominated. In particular, it is demonstrated how the proposed model seems to offer some possible interesting improvements over conventional modeling by providing generalized mobility functions that automatically are able to capture more correctly different flow regimes for one and the same parameter set.

  18. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: A Realistic Cellular Automaton Model for Synchronized Traffic Flow

    NASA Astrophysics Data System (ADS)

    Zhao, Bo-Han; Hu, Mao-Bin; Jiang, Rui; Wu, Qing-Song

    2009-11-01

    A cellular automaton model is proposed to consider the anticipation effect in drivers' behavior. It is shown that the anticipation effect can be one of the origins of synchronized traffic flow. With anticipation effect, the congested traffic flow simulated by the model exhibits the features of synchronized flow. The spatiotemporal patterns induced by an on-ramp are also consistent with the three-phase traffic theory. Since the origin of synchronized flow is still controversial, our work can shed some light on the mechanism of synchronized flow.

  19. Online Learner's "Flow" Experience: An Empirical Study

    ERIC Educational Resources Information Center

    Shin, Namin

    2006-01-01

    This study is concerned with online learners' "low" experiences. On the basis of Csikszentmihalyi's theory of flow, flow was conceptualised as a complex, multimentional, reflective construct composing of "enjoyment", "telepresence", "focused attention", "engagement" and "time distortion" on the part of learners. A flow model was put forward with…

  20. Stochastic modeling of mode interactions via linear parabolized stability equations

    NASA Astrophysics Data System (ADS)

    Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo

    2017-11-01

    Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.

  1. Multilane Traffic Flow Modeling Using Cellular Automata Theory

    NASA Astrophysics Data System (ADS)

    Chechina, Antonina; Churbanova, Natalia; Trapeznikova, Marina

    2018-02-01

    The paper deals with the mathematical modeling of traffic flows on urban road networks using microscopic approach. The model is based on the cellular automata theory and presents a generalization of the Nagel-Schreckenberg model to a multilane case. The created program package allows to simulate traffic on various types of road fragments (T or X type intersection, strait road elements, etc.) and on road networks that consist of these elements. Besides that, it allows to predict the consequences of various decisions regarding road infrastructure changes, such as: number of lanes increasing/decreasing, putting new traffic lights into operation, building new roads, entrances/exits, road junctions.

  2. Acoustic bubble dynamics in a microvessel surrounded by elastic material

    NASA Astrophysics Data System (ADS)

    Wang, S. P.; Wang, Q. X.; Leppinen, D. M.; Zhang, A. M.; Liu, Y. L.

    2018-01-01

    This paper is concerned with microbubble dynamics in a blood vessel surrounded by elastic tissue subject to ultrasound, which are associated with important applications in medical ultrasonics. Both the blood flow inside the vessel and the tissue flow external to the vessel are modeled using the potential flow theory coupled with the boundary element method. The elasticity of tissue is modeled through the inclusion of a pressure term in the dynamic boundary condition at the interface between the two fluids. Weakly viscous effects are considered using viscous potential flow theory. The numerical model is validated by comparison with the theoretical results of the Rayleigh-Plesset equation for spherical bubbles, the numerical results for acoustic bubbles in an unbounded flow, and the experimental images for a spark generated bubble in a rigid circular cylinder. Numerical analyses are then performed for the bubble oscillation, jet formation and penetration through the bubble, and the deformation of the vessel wall in terms of the ultrasound amplitude and the vessel radius.

  3. PopGen Fishbowl: A Free Online Simulation Model of Microevolutionary Processes

    ERIC Educational Resources Information Center

    Jones, Thomas C.; Laughlin, Thomas F.

    2010-01-01

    Natural selection and other components of evolutionary theory are known to be particularly challenging concepts for students to understand. To help illustrate these concepts, we developed a simulation model of microevolutionary processes. The model features all the components of Hardy-Weinberg theory, with population size, selection, gene flow,…

  4. Modeling of Unsteady Three-dimensional Flows in Multistage Machines

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Pratt, Edmund T., Jr.; Kurkov, Anatole (Technical Monitor)

    2003-01-01

    Despite many years of development, the accurate and reliable prediction of unsteady aerodynamic forces acting on turbomachinery blades remains less than satisfactory, especially when viewed next to the great success investigators have had in predicting steady flows. Hall and Silkowski (1997) have proposed that one of the main reasons for the discrepancy between theory and experiment and/or industrial experience is that many of the current unsteady aerodynamic theories model a single blade row in an infinitely long duct, ignoring potentially important multistage effects. However, unsteady flows are made up of acoustic, vortical, and entropic waves. These waves provide a mechanism for the rotors and stators of multistage machines to communicate with one another. In other words, wave behavior makes unsteady flows fundamentally a multistage (and three-dimensional) phenomenon. In this research program, we have has as goals (1) the development of computationally efficient computer models of the unsteady aerodynamic response of blade rows embedded in a multistage machine (these models will ultimately be capable of analyzing three-dimensional viscous transonic flows), and (2) the use of these computer codes to study a number of important multistage phenomena.

  5. Lagrangians for generalized Argyres-Douglas theories

    NASA Astrophysics Data System (ADS)

    Benvenuti, Sergio; Giacomelli, Simone

    2017-10-01

    We continue the study of Lagrangian descriptions of N=2 Argyres-Douglas theories. We use our recent interpretation in terms of sequential confinement to guess the Lagrangians of all the Argyres-Douglas models with Abelian three dimensional mirror. We find classes of four dimensional N=1 quivers that flow in the infrared to generalized Argyres-Douglas theories, such as the ( A k , A kN + N -1) models. We study in detail how the N=1 chiral rings map to the Coulomb and Higgs Branches of the N=2 CFT's. The three dimensional mirror RG flows are shown to land on the N=4 complete graph quivers. We also compactify to three dimensions the gauge theory dual to ( A 1, D 4), and find the expected Abelianization duality with N=4 SQED with 3 flavors.

  6. An Introduction to Turbulent Flow

    NASA Astrophysics Data System (ADS)

    Mathieu, Jean; Scott, Julian

    2000-06-01

    In recent years, turbulence has become a very lively area of scientific research and application, attracting many newcomers who need a basic introduction to the subject. Turbulent Flows ably meets this need, developing both physical insight and the mathematical framework needed to express the theory. The authors present basic theory and illustrate it with examples of simple turbulent flows and classical models of jets, wakes, and boundary layers. A deeper understanding of turbulence dynamics is provided by their treatment of spectral analysis and its applications.

  7. Lubrication Theory Model to Evaluate Surgical Alterations in Flow Mechanics of the Lower Esophageal Sphincter

    NASA Astrophysics Data System (ADS)

    Ghosh, Sudip K.; Brasseur, James G.; Zaki, Tamer; Kahrilas, Peter J.

    2003-11-01

    Surgery is commonly used to rebuild a weak lower esophageal sphincter (LES) and reduce reflux. Because the driving pressure (DP) is proportional to muscle tension generated in the esophagus, we developed models using lubrication theory to evaluate the consequences of surgery on muscle force required to open the LES and drive the flow. The models relate time changes in DP to lumen geometry and trans-LES flow with a manometric catheter. Inertial effects were included and found negligible. Two models, direct (opening specified) and indirect (opening predicted), were combined with manometric pressure and imaging data from normal and post-surgery LES. A very high sensitivity was predicted between the details of the DP and LES opening. The indirect model accurately captured LES opening and predicted a 3-phase emptying process, with phases I and III requiring rapid generation of muscle tone to open the LES and empty the esophagus. Data showed that phases I and III are adversely altered by surgery causing incomplete emptying. Parametric model studies indicated that changes to the surgical procedure can positively alter LES flow mechanics and improve clinical outcomes.

  8. Complex traffic flow that allows as well as hampers lane-changing intrinsically contains social-dilemma structures

    NASA Astrophysics Data System (ADS)

    Iwamura, Yoshiro; Tanimoto, Jun

    2018-02-01

    To investigate an interesting question as to whether or not social dilemma structures can be found in a realistic traffic flow reproduced by a model, we built a new microscopic model in which an intentional driver may try lane-changing to go in front of other vehicles and may hamper others’ lane-changes. Our model consists of twofold parts; cellular automaton emulating a real traffic flow and evolutionary game theory to implement a driver’s decision making-process. Numerical results reveal that a social dilemma like the multi-player chicken game or prisoner’s dilemma game emerges depending on the traffic phase. This finding implies that a social dilemma, which has been investigated by applied mathematics so far, hides behind a traffic flow, which has been explored by fluid dynamics. Highlight - Complex system of traffic flow with consideration of driver’s decision making process is concerned. - A new model dovetailing cellular automaton with game theory is established. - Statistical result from numerical simulations reveals a social dilemma structure underlying traffic flow. - The social dilemma is triggered by a driver’s egocentric actions of lane-changing and hampering other’s lane-change.

  9. Flow dynamics analyses of pathophysiological liver lobules using porous media theory

    NASA Astrophysics Data System (ADS)

    Hu, Jinrong; Lü, Shouqin; Feng, Shiliang; Long, Mian

    2017-08-01

    Blood flow inside the liver plays a key role in hepatic functions, and abnormal hemodynamics are highly correlated with liver diseases. To date, the flow field in an elementary building block of the organ, the liver lobule, is difficult to determine experimentally in humans due to its complicated structure, with radially branched microvasculature and the technical difficulties that derive from its geometric constraints. Here we established a set of 3D computational models for a liver lobule using porous media theory and analyzed its flow dynamics in normal, fibrotic, and cirrhotic lobules. Our simulations indicated that those approximations of ordinary flow in portal tracts (PTs) and the central vein, and of porous media flow in the sinusoidal network, were reasonable only for normal or fibrotic lobules. Models modified with high resistance in PTs and collateral vessels inside sinusoids were able to describe the flow features in cirrhotic lobules. Pressures, average velocities, and volume flow rates were profiled and the predictions compared well with experimental data. This study furthered our understanding of the flow dynamics features of liver lobules and the differences among normal, fibrotic, and cirrhotic lobules.

  10. Röthlisberger channel theory: its origins and consequences

    USGS Publications Warehouse

    Walder, Joseph S.

    2010-01-01

    The theory of channelized water flow through glaciers, most commonly associated with the names of Hans Röthlisberger and Ron Shreve and their 1972 papers in the Journal of Glaciology, was developed at a time when interest in glacier-bed processes was expanding, and the possible relationship between glacier sliding and water at the bed was becoming of keen interest. The R-channel theory provided for the first time a physically based conceptual model of water flow through glaciers. The theory also marks the emergence of glacier hydrology as a glaciological discipline with goals and methods distinct from those of surface-water hydrology.

  11. A novel simulation theory and model system for multi-field coupling pipe-flow system

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Jiang, Fan; Cai, Guobiao; Xu, Xu

    2017-09-01

    Due to the lack of a theoretical basis for multi-field coupling in many system-level models, a novel set of system-level basic equations for flow/heat transfer/combustion coupling is put forward. Then a finite volume model of quasi-1D transient flow field for multi-species compressible variable-cross-section pipe flow is established by discretising the basic equations on spatially staggered grids. Combining with the 2D axisymmetric model for pipe-wall temperature field and specific chemical reaction mechanisms, a finite volume model system is established; a set of specific calculation methods suitable for multi-field coupling system-level research is structured for various parameters in this model; specific modularisation simulation models can be further derived in accordance with specific structures of various typical components in a liquid propulsion system. This novel system can also be used to derive two sub-systems: a flow/heat transfer two-field coupling pipe-flow model system without chemical reaction and species diffusion; and a chemical equilibrium thermodynamic calculation-based multi-field coupling system. The applicability and accuracy of two sub-systems have been verified through a series of dynamic modelling and simulations in earlier studies. The validity of this system is verified in an air-hydrogen combustion sample system. The basic equations and the model system provide a unified universal theory and numerical system for modelling and simulation and even virtual testing of various pipeline systems.

  12. Balancing practicality and hydrologic realism: a parsimonious approach for simulating rapid groundwater recharge via unsaturated-zone preferential flow

    USGS Publications Warehouse

    Mirus, Benjamin B.; Nimmo, J.R.

    2013-01-01

    The impact of preferential flow on recharge and contaminant transport poses a considerable challenge to water-resources management. Typical hydrologic models require extensive site characterization, but can underestimate fluxes when preferential flow is significant. A recently developed source-responsive model incorporates film-flow theory with conservation of mass to estimate unsaturated-zone preferential fluxes with readily available data. The term source-responsive describes the sensitivity of preferential flow in response to water availability at the source of input. We present the first rigorous tests of a parsimonious formulation for simulating water table fluctuations using two case studies, both in arid regions with thick unsaturated zones of fractured volcanic rock. Diffuse flow theory cannot adequately capture the observed water table responses at both sites; the source-responsive model is a viable alternative. We treat the active area fraction of preferential flow paths as a scaled function of water inputs at the land surface then calibrate the macropore density to fit observed water table rises. Unlike previous applications, we allow the characteristic film-flow velocity to vary, reflecting the lag time between source and deep water table responses. Analysis of model performance and parameter sensitivity for the two case studies underscores the importance of identifying thresholds for initiation of film flow in unsaturated rocks, and suggests that this parsimonious approach is potentially of great practical value.

  13. The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings

    NASA Astrophysics Data System (ADS)

    Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat

    2018-06-01

    In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.

  14. Flow, Transport, and Reaction in Porous Media: Percolation Scaling, Critical-Path Analysis, and Effective Medium Approximation

    NASA Astrophysics Data System (ADS)

    Hunt, Allen G.; Sahimi, Muhammad

    2017-12-01

    We describe the most important developments in the application of three theoretical tools to modeling of the morphology of porous media and flow and transport processes in them. One tool is percolation theory. Although it was over 40 years ago that the possibility of using percolation theory to describe flow and transport processes in porous media was first raised, new models and concepts, as well as new variants of the original percolation model are still being developed for various applications to flow phenomena in porous media. The other two approaches, closely related to percolation theory, are the critical-path analysis, which is applicable when porous media are highly heterogeneous, and the effective medium approximation—poor man's percolation—that provide a simple and, under certain conditions, quantitatively correct description of transport in porous media in which percolation-type disorder is relevant. Applications to topics in geosciences include predictions of the hydraulic conductivity and air permeability, solute and gas diffusion that are particularly important in ecohydrological applications and land-surface interactions, and multiphase flow in porous media, as well as non-Gaussian solute transport, and flow morphologies associated with imbibition into unsaturated fractures. We describe new applications of percolation theory of solute transport to chemical weathering and soil formation, geomorphology, and elemental cycling through the terrestrial Earth surface. Wherever quantitatively accurate predictions of such quantities are relevant, so are the techniques presented here. Whenever possible, the theoretical predictions are compared with the relevant experimental data. In practically all the cases, the agreement between the theoretical predictions and the data is excellent. Also discussed are possible future directions in the application of such concepts to many other phenomena in geosciences.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juanes, Ruben

    The overarching goal of this project was to develop a new continuum theory of multiphase flow in porous media. The theory follows a phase-field modeling approach, and therefore has a sound thermodynamical basis. It is a phenomenological theory in the sense that its formulation is driven by macroscopic phenomena, such as viscous instabilities during multifluid displacement. The research agenda was organized around a set of hypothesis on hitherto unexplained behavior of multiphase flow. All these hypothesis are nontrivial, and testable. Indeed, a central aspect of the project was testing each hypothesis by means of carefully-designed laboratory experiments, therefore probing themore » validity of the proposed theory. The proposed research places an emphasis on the fundamentals of flow physics, but is motivated by important energy-driven applications in earth sciences, as well as microfluidic technology.« less

  16. Center for Modeling of Turbulence and Transition (CMOTT): Research Briefs, 1992

    NASA Technical Reports Server (NTRS)

    Liou, William W. (Editor)

    1992-01-01

    The progress is reported of the Center for Modeling of Turbulence and Transition (CMOTT). The main objective of the CMOTT is to develop, validate and implement the turbulence and transition models for practical engineering flows. The flows of interest are three-dimensional, incompressible and compressible flows with chemical reaction. The research covers two-equation (e.g., k-e) and algebraic Reynolds-stress models, second moment closure models, probability density function (pdf) models, Renormalization Group Theory (RNG), Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).

  17. Short-time-scale left ventricular systolic dynamics. Evidence for a common mechanism in both left ventricular chamber and heart muscle mechanics.

    PubMed

    Campbell, K B; Shroff, S G; Kirkpatrick, R D

    1991-06-01

    Based on the premise that short-time-scale, small-amplitude pressure/volume/outflow behavior of the left ventricular chamber was dominated by dynamic processes originating in cardiac myofilaments, a prototype model was built to predict pressure responses to volume perturbations. In the model, chamber pressure was taken to be the product of the number of generators in a pressure-bearing state and their average volumetric distortion, as in the muscle theory of A.F. Huxley, in which force was equal to the number of attached crossbridges and their average lineal distortion. Further, as in the muscle theory, pressure generators were assumed to cycle between two states, the pressure-bearing state and the non-pressure-bearing state. Experiments were performed in the isolated ferret heart, where variable volume decrements (0.01-0.12 ml) were removed at two commanded flow rates (flow clamps, -7 and -14 ml/sec). Pressure responses to volume removals were analyzed. Although the prototype model accounted for most features of the pressure responses, subtle but systematic discrepancies were observed. The presence or absence of flow and the magnitude of flow affected estimates of model parameters. However, estimates of parameters did not differ when the model was fitted to flow clamps with similar magnitudes of flows but different volume changes. Thus, prototype model inadequacies were attributed to misrepresentations of flow-related effects but not of volume-related effects. Based on these discrepancies, an improved model was built that added to the simple two-state cycling scheme, a pathway to a third state. This path was followed only in response to volume change. The improved model eliminated the deficiencies of the prototype model and was adequate in accounting for all observations. Since the template for the improved model was taken from the cycling crossbridge theory of muscle contraction, it was concluded that, in spite of the complexities of geometry, architecture, and regional heterogeneity of function and structure, crossbridge mechanisms dominated the short-time-scale dynamics of left ventricular chamber behavior.

  18. Effects of curvature on rarefied gas flows between rotating concentric cylinders

    NASA Astrophysics Data System (ADS)

    Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.

    2013-05-01

    The gas flow between two concentric rotating cylinders is considered in order to investigate non-equilibrium effects associated with the Knudsen layers over curved surfaces. We investigate the nonlinear flow physics in the near-wall regions using a new power-law (PL) wall-scaling approach. This PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. We also report new direct simulation Monte Carlo results covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Our simulation data are compared with both the classical slip flow theory and the PL model, and we find that non-equilibrium effects are not only dependent on Knudsen number and accommodation coefficient but are also significantly affected by the surface curvature. The relative merits and limitations of both theoretical models are explored with respect to rarefaction and curvature effects. The PL model is able to capture some of the nonlinear trends associated with Knudsen layers up to the early transition flow regime. The present study also illuminates the limitations of classical slip flow theory even in the early slip flow regime for higher curvature test cases, although the model does exhibit good agreement throughout the slip flow regime for lower curvature cases. Torque and velocity profile comparisons also convey that a good prediction of integral flow properties does not necessarily guarantee the accuracy of the theoretical model used, and it is important to demonstrate that field variables are also predicted satisfactorily.

  19. Cognitive Tools for Assessment and Learning in a High Information Flow Environment.

    ERIC Educational Resources Information Center

    Lajoie, Susanne P.; Azevedo, Roger; Fleiszer, David M.

    1998-01-01

    Describes the development of a simulation-based intelligent tutoring system for nurses working in a surgical intensive care unit. Highlights include situative learning theories and models of instruction, modeling expertise, complex decision making, linking theories of learning to the design of computer-based learning environments, cognitive task…

  20. On the Opening of Thick Walled Elastic Tubes: A Fluid-Structure Model for Acid Reflux

    NASA Astrophysics Data System (ADS)

    Ghosh, Sudip; Kahrilas, Peter

    2005-11-01

    A coupled fluid-structure mathematical model was developed to quantify rapid opening of thick-walled elastic tubes, a phenomenon underlying biological flows such as gastroesophageal reflux disease (GERD). The wall was modeled using non-linear finite deformation theory to predict space-time radial distention of an axisymmetric tube with luminal fluid flow. Anisotropic azimuthal and longitudinal muscle-induced stresses were incorporated, and interstitial material properties were assumed isotropic and linearly elastic. Fluid flow was modeled using lubrication theory with inertial correction. Opening and flow were driven by a specified inflow pressure and zero pressure gradient was specified at outflow. No-slip and surface force balance were applied at the fluid-wall interface. Viscoelasticity was modeled with ad hoc damping and the evolution of the tube geometry was predicted at mid-layer. A potentially important discovery was made when applied to studies of initiation of opening with GERD: while material stiffness is of minor consequence, small changes in resting lumen distension (˜2 mm diameter) may be a sensitive distinguishing feature of the disease.

  1. Derivation of Hunt equation for suspension distribution using Shannon entropy theory

    NASA Astrophysics Data System (ADS)

    Kundu, Snehasis

    2017-12-01

    In this study, the Hunt equation for computing suspension concentration in sediment-laden flows is derived using Shannon entropy theory. Considering the inverse of the void ratio as a random variable and using principle of maximum entropy, probability density function and cumulative distribution function of suspension concentration is derived. A new and more general cumulative distribution function for the flow domain is proposed which includes several specific other models of CDF reported in literature. This general form of cumulative distribution function also helps to derive the Rouse equation. The entropy based approach helps to estimate model parameters using suspension data of sediment concentration which shows the advantage of using entropy theory. Finally model parameters in the entropy based model are also expressed as functions of the Rouse number to establish a link between the parameters of the deterministic and probabilistic approaches.

  2. A theoretical description of arterial pressure-flow relationships with verification in the isolated hindlimb of the dog.

    PubMed

    Jackman, A P; Green, J F

    1990-01-01

    We developed and tested a new two-compartment serial model of the arterial vasculature which unifies the capacitance (downstream arterial compliance) and waterfall (constant downstream pressure load) theories of blood flow through the arteries. In this model, blood drains from an upstream compliance through a resistance into a downstream compliance which empties into the veins through a downstream resistance which terminates in a constant pressure load. Using transient arterial pressure data obtained from an isolated canine hindlimb preparation, we tested this model, using a stop-flow technique. Numerical parameter estimation techniques were used to estimate the physiologic parameters of the model. The downstream compliance was found to be more than ten times larger than the upstream compliance and the constant pressure load was significantly above venous pressures but decreased in response to vasodilation. Our results support the applicability of both the capacitance and waterfall theories.

  3. WASP7 Stream Transport - Model Theory and User's Guide: Supplement to Water Quality Analysis Simulation Program (WASP) User Documentation

    EPA Science Inventory

    The standard WASP7 stream transport model calculates water flow through a branching stream network that may include both free-flowing and ponded segments. This supplemental user manual documents the hydraulic algorithms, including the transport and hydrogeometry equations, the m...

  4. RG flow from Φ 4 theory to the 2D Ising model

    DOE PAGES

    Anand, Nikhil; Genest, Vincent X.; Katz, Emanuel; ...

    2017-08-16

    We study 1+1 dimensional Φ 4 theory using the recently proposed method of conformal truncation. Starting in the UV CFT of free field theory, we construct a complete basis of states with definite conformal Casimir, C. We use these states to express the Hamiltonian of the full interacting theory in lightcone quantization. After truncating to states with C≤C max, we numerically diagonalize the Hamiltonian at strong coupling and study the resulting IR dynamics. We compute non-perturbative spectral densities of several local operators, which are equivalent to real-time, infinite-volume correlation functions. These spectral densities, which include the Zamolodchikov C-function along themore » full RG flow, are calculable at any value of the coupling. Near criticality, our numerical results reproduce correlation functions in the 2D Ising model.« less

  5. Theoretical Model of Electrode Polarization and AC Electroosmotic Fluid Flow in Planar Electrode Arrays.

    PubMed

    Scott, Matthew; Kaler, Karan V. I. S.; Paul, Reginald

    2001-06-15

    Strong frequency-dependent fluid flow has been observed near the surface of microelectrode arrays. Modeling this phenomenon has proven to be difficult, with existing theories unable to account for the qualitative trend observed in the frequency spectra of this flow. Using recent electrode polarization results, a more comprehensive model of the double layer on the electrode surface is used to obtain good theoretical agreement with experimental data. Copyright 2001 Academic Press.

  6. A stationary bulk planar ideal flow solution for the double shearing model

    NASA Astrophysics Data System (ADS)

    Lyamina, E. A.; Kalenova, N. V.; Date, P. P.

    2018-04-01

    This paper provides a general ideal flow solution for the double shearing model of pressure-dependent plasticity. This new solution is restricted to a special class of stationary planar flows. A distinguished feature of this class of solutions is that one family of characteristic lines is straight. The solution is analytic. The mapping between Cartesian and principal lines based coordinate systems is given in parametric form with characteristic coordinates being the parameters. A simple relation that connects the scale factor for one family of coordinate curves of the principal lines based coordinate system and the magnitude of velocity is derived. The original ideal flow theory is widely used as the basis for inverse methods for the preliminary design of metal forming processes driven by minimum plastic work. The new theory extends this area of application to granular materials.

  7. Effective temperature dynamics of shear bands in metallic glasses

    NASA Astrophysics Data System (ADS)

    Daub, Eric G.; Klaumünzer, David; Löffler, Jörg F.

    2014-12-01

    We study the plastic deformation of bulk metallic glasses with shear transformation zone (STZ) theory, a physical model for plasticity in amorphous systems, and compare it with experimental data. In STZ theory, plastic deformation occurs when localized regions rearrange due to applied stress and the density of these regions is determined by a dynamically evolving effective disorder temperature. We compare the predictions of STZ theory to experiments that explore the low-temperature deformation of Zr-based bulk metallic glasses via shear bands at various thermal temperatures and strain rates. By following the evolution of effective temperature with time, strain rate, and temperature through a series of approximate and numerical solutions to the STZ equations, we successfully model a suite of experimentally observed phenomena, including shear-band aging as apparent from slide-hold-slide tests, a temperature-dependent steady-state flow stress, and a strain-rate- and temperature-dependent transition from stick-slip (serrated flow) to steady-sliding (nonserrated flow). We find that STZ theory quantitatively matches the observed experimental data and provides a framework for relating the experimentally measured energy scales to different types of atomic rearrangements.

  8. Visco-Resistive MHD Modeling Benchmark of Forced Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Beidler, M. T.; Hegna, C. C.; Sovinec, C. R.; Callen, J. D.; Ferraro, N. M.

    2016-10-01

    The presence of externally-applied 3D magnetic fields can affect important phenomena in tokamaks, including mode locking, disruptions, and edge localized modes. External fields penetrate into the plasma and can lead to forced magnetic reconnection (FMR), and hence magnetic islands, on resonant surfaces if the local plasma rotation relative to the external field is slow. Preliminary visco-resistive MHD simulations of FMR in a slab geometry are consistent with theory. Specifically, linear simulations exhibit proper scaling of the penetrated field with resistivity, viscosity, and flow, and nonlinear simulations exhibit a bifurcation from a flow-screened to a field-penetrated, magnetic island state as the external field is increased, due to the 3D electromagnetic force. These results will be compared to simulations of FMR in a circular cross-section, cylindrical geometry by way of a benchmark between the NIMROD and M3D-C1 extended-MHD codes. Because neither this geometry nor the MHD model has the physics of poloidal flow damping, the theory of will be expanded to include poloidal flow effects. The resulting theory will be tested with linear and nonlinear simulations that vary the resistivity, viscosity, flow, and external field. Supported by OFES DoE Grants DE-FG02-92ER54139, DE-FG02-86ER53218, DE-AC02-09CH11466, and the SciDAC Center for Extended MHD Modeling.

  9. Horizon in random matrix theory, the Hawking radiation, and flow of cold atoms.

    PubMed

    Franchini, Fabio; Kravtsov, Vladimir E

    2009-10-16

    We propose a Gaussian scalar field theory in a curved 2D metric with an event horizon as the low-energy effective theory for a weakly confined, invariant random matrix ensemble (RME). The presence of an event horizon naturally generates a bath of Hawking radiation, which introduces a finite temperature in the model in a nontrivial way. A similar mapping with a gravitational analogue model has been constructed for a Bose-Einstein condensate (BEC) pushed to flow at a velocity higher than its speed of sound, with Hawking radiation as sound waves propagating over the cold atoms. Our work suggests a threefold connection between a moving BEC system, black-hole physics and unconventional RMEs with possible experimental applications.

  10. A cellular automaton model for evacuation flow using game theory

    NASA Astrophysics Data System (ADS)

    Guan, Junbiao; Wang, Kaihua; Chen, Fangyue

    2016-11-01

    Game theory serves as a good tool to explore crowd dynamic conflicts during evacuation processes. The purpose of this study is to simulate the complicated interaction behavior among the conflicting pedestrians in an evacuation flow. Two types of pedestrians, namely, defectors and cooperators, are considered, and two important factors including fear index and cost coefficient are taken into account. By combining the snowdrift game theory with a cellular automaton (CA) model, it is shown that the increase of fear index and cost coefficient will lengthen the evacuation time, which is more apparent for large values of cost coefficient. Meanwhile, it is found that the defectors to cooperators ratio could always tend to consistent states despite different values of parameters, largely owing to self-organization effects.

  11. Evolution of Rotor Wake in Swirling Flow

    NASA Technical Reports Server (NTRS)

    El-Haldidi, Basman; Atassi, Hafiz; Envia, Edmane; Podboy, Gary

    2000-01-01

    A theory is presented for modeling the evolution of rotor wakes as a function of axial distance in swirling mean flows. The theory, which extends an earlier work to include arbitrary radial distributions of mean swirl, indicates that swirl can significantly alter the wake structure of the rotor especially at large downstream distances (i.e., for moderate to large rotor-stator spacings). Using measured wakes of a representative scale model fan stage to define the mean swirl and initial wake perturbations, the theory is used to predict the subsequent evolution of the wakes. The results indicate the sensitivity of the wake evolution to the initial profile and the need to have complete and consistent initial definition of both velocity and pressure perturbations.

  12. Granular-flow rheology: Role of shear-rate number in transition regime

    USGS Publications Warehouse

    Chen, C.-L.; Ling, C.-H.

    1996-01-01

    This paper examines the rationale behind the semiempirical formulation of a generalized viscoplastic fluid (GVF) model in the light of the Reiner-Rivlin constitutive theory and the viscoplastic theory, thereby identifying the parameters that control the rheology of granular flow. The shear-rate number (N) proves to be among the most significant parameters identified from the GVF model. As N ??? 0 and N ??? ???, the GVF model can reduce asymptotically to the theoretical stress versus shear-rate relations in the macroviscous and graininertia regimes, respectively, where the grain concentration (C) also plays a major role in the rheology of granular flow. Using available data obtained from the rotating-cylinder experiments of neutrally buoyant solid spheres dispersing in an interstitial fluid, the shear stress for granular flow in transition between the two regimes proves dependent on N and C in addition to some material constants, such as the coefficient of restitution. The insufficiency of data on rotating-cylinder experiments cannot presently allow the GVF model to predict how a granular flow may behave in the entire range of N; however, the analyzed data provide an insight on the interrelation among the relevant dimensionless parameters.

  13. Determination of trunk streams via using flow accumulation values

    NASA Astrophysics Data System (ADS)

    Farek, Vladimir

    2013-04-01

    There is often a problem, with schematisation of catchments and a channel networks in a broken relief like sandstone landscape (with high vertical segmentation, narrow valley lines, crags, sheer rocks, endorheic hollows etc.). Usual hydrological parameters (subcatchment areas, altitude of highest point of subcatchment, water discharge), which are mostly used for determination of trunk stream upstream the junction, are frequently not utilizable very well in this kind of relief. We found, that for small, relatively homogeneous catchments (within the meaning of land-use, geological subsurface, anthropogenic influence etc.), which are extremely shaped, the value called "flow accumulation" (FA) could be very useful. This value gives the number of cells of the Digital Elevation Model (DEM) grid, which are drained to each cell of the catchment. We can predict that the stream channel with higher values of flow accumulation represents the main stream. There are three crucial issues with this theory. At first it is necessary to find the most suitable algorithm for calculation flow accumulation in a broken relief. Various algorithms could have complications with correct flow routing (representation of divergent or convergent character of the flow), or with keeping the flow paths uninterrupted. Relief with high curvature changes (alternating concave/convex shapes, high steepness changes) causes interrupting of flow lines in many algorithms used for hydrological computing. Second - set down limits of this theory (e.g. the size and character of a surveyed catchment). Third - verify this theory in reality. We tested this theory on sandstone landscape of National park Czech Switzerland. The main data source were high-resolution LIDAR (Light Detection and Ranging) DEM snapshots of surveyed area. This data comes from TU Dresden project called Genesis (Geoinformation Networks For The Cross- Border National Park Region Saxon- Bohemian Switzerland). In order to solve these issues GIS applications (e. g. GIS GRASS and its hydrological modules like r.terraflow, r.watershed, r.flow etc.) are very useful. Key words: channel network, flow accumulation, Digital Elevation Model, LIDAR, broken relief, GIS GRASS

  14. The dynamic two-fluid model OLGA; Theory and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bendiksen, K.H.; Maines, D.; Moe, R.

    1991-05-01

    Dynamic two-fluid models have found a wide range of application in the simulation of two-phase-flow systems, particularly for the analysis of steam/water flow in the core of a nuclear reactor. Until quite recently, however, very few attempts have been made to use such models in the simulation of two-phase oil and gas flow in pipelines. This paper presents a dynamic two-fluid model, OLGA, in detail, stressing the basic equations and the two-fluid models applied. Predictions of steady-state pressure drop, liquid hold-up, and flow-regime transitions are compared with data from the SINTEF Two-Phase Flow Laboratory and from the literature. Comparisons withmore » evaluated field data are also presented.« less

  15. Double-porosity models for a fissured groundwater reservoir with fracture skin

    USGS Publications Warehouse

    Moench, Allen F.

    1984-01-01

    Theories of flow to a well in a double-porosity groundwater reservoir are modified to incorporate effects of a thin layer of low-permeability material or fracture skin that may be present at fracture-block interfaces as a result of mineral deposition or alteration. The commonly used theory for flow in double- porosity formations that is based upon the assumption of pseudo–steady state block-to-fissure flow is shown to be a special case of the theory presented in this paper. The latter is based on the assumption of transient block-to-fissure flow with fracture skin. Under conditions where fracture skin has a hydraulic conductivity that is less than that of the matrix rock, it may be assumed to impede the interchange of fluid between the fissures and blocks. Resistance to flow at fracture-block interfaces tends to reduce spatial variation of hydraulic head gradients within the blocks. This provides theoretical justification for neglecting the divergence of flow in the blocks as required by the pseudo–steady state flow model. Coupled boundary value problems for flow to a well discharging at a constant rate were solved in the Laplace domain. Both slab-shaped and sphere-shaped blocks were considered, as were effects of well bore storage and well bore skin. Results obtained by numerical inversion were used to construct dimensionless-type curves that were applied to well test data, for a pumped well and for an observation well, from the fractured volcanic rock terrane of the Nevada Test Site.

  16. Flow theory – goal orientation theory: positive experience is related to athlete’s goal orientation

    PubMed Central

    Stavrou, Nektarios A. M.; Psychountaki, Maria; Georgiadis, Emmanouil; Karteroliotis, Konstantinos; Zervas, Yannis

    2015-01-01

    The main purpose of this study was to examine the relationship between flow experience and goal orientation theory, as well as, the differences in flow experience based on the orthogonal model of goal orientation theory. Two hundred and seventy eight athletes completed the Task and Ego Orientation Sport Questionnaire based on how they usually feel. The challenge and skills ratings were completed 1 h before the competition, based on how they felt at the exact time of answering. In the following, the Flow State Scale-2 was completed up to 30 min after the competition they just participated, along with the challenge-skill ratings, based on how athletes felt during the competition. The results indicated that the athletes’ task orientation may be an important factor for attaining flow in competitive sport, feeling more skillful and estimating the upcoming competition as challenging, while low ego and low task oriented athletes lack these elements, which are important for them to get into flow. Additionally, not the level of task and ego orientation per se, but the balance between athletes’ goal orientation preferences seems important for the formation of flow experience, indicating that high task – high ego and high task – low ego athletes are experiencing the most positive mental state. PMID:26500577

  17. Analytical transport network theory to guide the design of 3-D microstructural networks in energy materials: Part 1. Flow without reactions

    NASA Astrophysics Data System (ADS)

    Cocco, Alex P.; Nakajo, Arata; Chiu, Wilson K. S.

    2017-12-01

    We present a fully analytical, heuristic model - the "Analytical Transport Network Model" - for steady-state, diffusive, potential flow through a 3-D network. Employing a combination of graph theory, linear algebra, and geometry, the model explicitly relates a microstructural network's topology and the morphology of its channels to an effective material transport coefficient (a general term meant to encompass, e.g., conductivity or diffusion coefficient). The model's transport coefficient predictions agree well with those from electrochemical fin (ECF) theory and finite element analysis (FEA), but are computed 0.5-1.5 and 5-6 orders of magnitude faster, respectively. In addition, the theory explicitly relates a number of morphological and topological parameters directly to the transport coefficient, whereby the distributions that characterize the structure are readily available for further analysis. Furthermore, ATN's explicit development provides insight into the nature of the tortuosity factor and offers the potential to apply theory from network science and to consider the optimization of a network's effective resistance in a mathematically rigorous manner. The ATN model's speed and relative ease-of-use offer the potential to aid in accelerating the design (with respect to transport), and thus reducing the cost, of energy materials.

  18. A simple depth-averaged model for dry granular flow

    NASA Astrophysics Data System (ADS)

    Hung, Chi-Yao; Stark, Colin P.; Capart, Herve

    Granular flow over an erodible bed is an important phenomenon in both industrial and geophysical settings. Here we develop a depth-averaged theory for dry erosive flows using balance equations for mass, momentum and (crucially) kinetic energy. We assume a linearized GDR-Midi rheology for granular deformation and Coulomb friction along the sidewalls. The theory predicts the kinematic behavior of channelized flows under a variety of conditions, which we test in two sets of experiments: (1) a linear chute, where abrupt changes in tilt drive unsteady uniform flows; (2) a rotating drum, to explore steady non-uniform flow. The theoretical predictions match the experimental results well in all cases, without the need to tune parameters or invoke an ad hoc equation for entrainment at the base of the flow. Here we focus on the drum problem. A dimensionless rotation rate (related to Froude number) characterizes flow geometry and accounts not just for spin rate, drum radius and gravity, but also for grain size, wall friction and channel width. By incorporating Coriolis force the theory can treat behavior under centrifuge-induced enhanced gravity. We identify asymptotic flow regimes at low and high dimensionless rotation rates that exhibit distinct power-law scaling behaviors.

  19. Free surface profiles in river flows: Can standard energy-based gradually-varied flow computations be pursued?

    NASA Astrophysics Data System (ADS)

    Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish

    2015-10-01

    Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.

  20. Heat-transfer distributions on a 0.013-scale shuttle solid rocket booster at Mach 3.70 and angles of attack from 0 deg to 180 deg

    NASA Technical Reports Server (NTRS)

    Lamb, M.; Stallings, R. L., Jr.

    1976-01-01

    An experimental investigation was conducted in the Langley Unitary Plan wind tunnel to estimate the peak aerodynamic heating on the space shuttle solid rocket booster during the descent phase of its flight. Heat transfer measurements were obtained using 0.013 scale models instrumented with thermocouples at a Mach number of 3.70, Reynolds number per meter of 11.48 million, and angles of attack from 0 to 180 deg. At angles of attack of 0 and 180 deg, heat transfer measurements on the cylindrical section of the model between the conical nose and ring interaction region were in good agreement with flat plate strip theory for laminar and turbulent flow. At angles of attack up to 30 deg, measurements on this section of the model were in good agreement with laminar swept-cylinder theory, whereas at angles of attack from 120 to 180 deg, the measurements were in good agreement with turbulent swept-cylinder theory. The good agreement with turbulent theory indicated that large flow disturbances created by the nozzle and afterbody flare at these large angles of attack influenced the downstream heating primarily by promoting boundary layer transition. Measurements obtained at 90 deg angle of attack were indicative of laminar flow.

  1. Relativistic thermodynamics, a Lagrangian field theory for general flows including rotation

    NASA Astrophysics Data System (ADS)

    Frønsdal, Christian

    Any theory that is based on an action principle has a much greater predictive power than one that does not have such a formulation. The formulation of a dynamical theory of General Relativity, including matter, is here viewed as a problem of coupling Einstein’s theory of pure gravity to an independently chosen and well-defined field theory of matter. It is well known that this is accomplished in a most natural way when both theories are formulated as relativistic, Lagrangian field theories, as is the case with Einstein-Maxwell theory. Special matter models of this type have been available; here a more general thermodynamical model that allows for vortex flows is presented. In a wider context, the problem of subjecting hydrodynamics and thermodynamics to an action principle is one that has been pursued for at least 150 years. A solution to this problem has been known for some time, but only under the strong restriction to potential flows. A variational principle for general flows has become available. It represents a development of the Navier-Stokes-Fourier approach to fluid dynamics. The principal innovation is the recognition that two kinds of flow velocity fields are needed, one the gradient of a scalar field and the other the time derivative of a vector field, the latter closely associated with vorticity. In the relativistic theory that is presented here, the latter is the Hodge dual of an exact 3-form, well known as the notoph field of Ogievetskij and Palubarinov, the B-field of Kalb and Ramond and the vorticity field of Lund and Regge. The total number of degrees of freedom of a unary system, including the density and the two velocity fields is 4, as expected — as in classical hydrodynamics. In this paper, we do not reduce Einstein’s dynamical equation for the metric to phenomenology, which would have denied the relevance of any intrinsic dynamics for the matter sector, nor do we abandon the equation of continuity - the very soul of hydrodynamics.

  2. Heat-Transfer and Pressure Measurements from a Flight Test of the Third 1/18-Scale Model of the Titan Intercontinental Ballistic Missile up to a Mach Number of 3.86 and Reynolds Number per Foot of 23.5 x 10(exp 6) and a Comparison with Heat Transfer

    NASA Technical Reports Server (NTRS)

    Graham, John B., Jr.

    1958-01-01

    Heat-transfer and pressure measurements were obtained from a flight test of a 1/18-scale model of the Titan intercontinental ballistic missile up to a Mach number of 3.86 and Reynolds number per foot of 23.5 x 10(exp 6) and are compared with the data of two previously tested 1/18-scale models. Boundary-layer transition was observed on the nose of the model. Van Driest's theory predicted heat-transfer coefficients reasonably well for the fully laminar flow but predictions made by Van Driest's theory for turbulent flow were considerably higher than the measurements when the skin was being heated. Comparison with the flight test of two similar models shows fair repeatability of the measurements for fully laminar or turbulent flow.

  3. Robust flow stability: Theory, computations and experiments in near wall turbulence

    NASA Astrophysics Data System (ADS)

    Bobba, Kumar Manoj

    Helmholtz established the field of hydrodynamic stability with his pioneering work in 1868. From then on, hydrodynamic stability became an important tool in understanding various fundamental fluid flow phenomena in engineering (mechanical, aeronautics, chemical, materials, civil, etc.) and science (astrophysics, geophysics, biophysics, etc.), and turbulence in particular. However, there are many discrepancies between classical hydrodynamic stability theory and experiments. In this thesis, the limitations of traditional hydrodynamic stability theory are shown and a framework for robust flow stability theory is formulated. A host of new techniques like gramians, singular values, operator norms, etc. are introduced to understand the role of various kinds of uncertainty. An interesting feature of this framework is the close interplay between theory and computations. It is shown that a subset of Navier-Stokes equations are globally, non-nonlinearly stable for all Reynolds number. Yet, invoking this new theory, it is shown that these equations produce structures (vortices and streaks) as seen in the experiments. The experiments are done in zero pressure gradient transiting boundary layer on a flat plate in free surface tunnel. Digital particle image velocimetry, and MEMS based laser Doppler velocimeter and shear stress sensors have been used to make quantitative measurements of the flow. Various theoretical and computational predictions are in excellent agreement with the experimental data. A closely related topic of modeling, simulation and complexity reduction of large mechanics problems with multiple spatial and temporal scales is also studied. A nice method that rigorously quantifies the important scales and automatically gives models of the problem to various levels of accuracy is introduced. Computations done using spectral methods are presented.

  4. Numerical and experimental study of expiratory flow in the case of major upper airway obstructions with fluid structure interaction

    NASA Astrophysics Data System (ADS)

    Chouly, F.; van Hirtum, A.; Lagrée, P.-Y.; Pelorson, X.; Payan, Y.

    2008-02-01

    This study deals with the numerical prediction and experimental description of the flow-induced deformation in a rapidly convergent divergent geometry which stands for a simplified tongue, in interaction with an expiratory airflow. An original in vitro experimental model is proposed, which allows measurement of the deformation of the artificial tongue, in condition of major initial airway obstruction. The experimental model accounts for asymmetries in geometry and tissue properties which are two major physiological upper airway characteristics. The numerical method for prediction of the fluid structure interaction is described. The theory of linear elasticity in small deformations has been chosen to compute the mechanical behaviour of the tongue. The main features of the flow are taken into account using a boundary layer theory. The overall numerical method entails finite element solving of the solid problem and finite differences solving of the fluid problem. First, the numerical method predicts the deformation of the tongue with an overall error of the order of 20%, which can be seen as a preliminary successful validation of the theory and simulations. Moreover, expiratory flow limitation is predicted in this configuration. As a result, both the physical and numerical models could be useful to understand this phenomenon reported in heavy snorers and apneic patients during sleep.

  5. On relativistic generalization of Perelman's W-entropy and thermodynamic description of gravitational fields and cosmology

    NASA Astrophysics Data System (ADS)

    Ruchin, Vyacheslav; Vacaru, Olivia; Vacaru, Sergiu I.

    2017-03-01

    Using double 2+2 and 3+1 nonholonomic fibrations on Lorentz manifolds, we extend the concept of W-entropy for gravitational fields in general relativity (GR). Such F- and W-functionals were introduced in the Ricci flow theory of three dimensional (3-d) Riemannian metrics by Perelman (the entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159). Non-relativistic 3-d Ricci flows are characterized by associated statistical thermodynamical values determined by W-entropy. Generalizations for geometric flows of 4-d pseudo-Riemannian metrics are considered for models with local thermodynamical equilibrium and separation of dissipative and non-dissipative processes in relativistic hydrodynamics. The approach is elaborated in the framework of classical field theories (relativistic continuum and hydrodynamic models) without an underlying kinetic description, which will be elaborated in other work. The 3+1 splitting allows us to provide a general relativistic definition of gravitational entropy in the Lyapunov-Perelman sense. It increases monotonically as structure forms in the Universe. We can formulate a thermodynamic description of exact solutions in GR depending, in general, on all spacetime coordinates. A corresponding 2+2 splitting with nonholonomic deformation of linear connection and frame structures is necessary for generating in very general form various classes of exact solutions of the Einstein and general relativistic geometric flow equations. Finally, we speculate on physical macrostates and microstate interpretations of the W-entropy in GR, geometric flow theories and possible connections to string theory (a second unsolved problem also contained in Perelman's work) in Polyakov's approach.

  6. The Design of Wind Tunnels and Wind Tunnel Propellers

    NASA Technical Reports Server (NTRS)

    Warner, Edward P; Norton, F H; Hebbert, C M

    1919-01-01

    Report discusses the theory of energy losses in wind tunnels, the application of the Drzewiecki theory of propeller design to wind tunnel propellers, and the efficiency and steadiness of flow in model tunnels of various types.

  7. Spectral flow as a map between N = (2 , 0)-models

    NASA Astrophysics Data System (ADS)

    Athanasopoulos, P.; Faraggi, A. E.; Gepner, D.

    2014-07-01

    The space of (2 , 0) models is of particular interest among all heterotic-string models because it includes the models with the minimal SO (10) unification structure, which is well motivated by the Standard Model of particle physics data. The fermionic Z2 ×Z2 heterotic-string models revealed the existence of a new symmetry in the space of string configurations under the exchange of spinors and vectors of the SO (10) GUT group, dubbed spinor-vector duality. In this paper we generalize this idea to arbitrary internal rational conformal field theories (RCFTs). We explain how the spectral flow operator normally acting within a general (2 , 2) theory can be used as a map between (2 , 0) models. We describe the details, give an example and propose more simple currents that can be used in a similar way.

  8. The harmonic oscillator and nuclear physics

    NASA Technical Reports Server (NTRS)

    Rowe, D. J.

    1993-01-01

    The three-dimensional harmonic oscillator plays a central role in nuclear physics. It provides the underlying structure of the independent-particle shell model and gives rise to the dynamical group structures on which models of nuclear collective motion are based. It is shown that the three-dimensional harmonic oscillator features a rich variety of coherent states, including vibrations of the monopole, dipole, and quadrupole types, and rotations of the rigid flow, vortex flow, and irrotational flow types. Nuclear collective states exhibit all of these flows. It is also shown that the coherent state representations, which have their origins in applications to the dynamical groups of the simple harmonic oscillator, can be extended to vector coherent state representations with a much wider range of applicability. As a result, coherent state theory and vector coherent state theory become powerful tools in the application of algebraic methods in physics.

  9. Unsteady viscous effects in the flow over an oscillating surface. [mathematical model

    NASA Technical Reports Server (NTRS)

    Lerner, J. I.

    1972-01-01

    A theoretical model for the interaction of a turbulent boundary layer with an oscillating wavy surface over which a fluid is flowing is developed, with an application to wind-driven water waves and to panel flutter in low supersonic flow. A systematic methodology is developed to obtain the surface pressure distribution by considering separately the effects on the perturbed flow of a mean shear velocity profile, viscous stresses, the turbulent Reynolds stresses, compressibility, and three-dimensionality. The inviscid theory is applied to the wind-water wave problem by specializing to traveling-wave disturbances, and the pressure magnitude and phase shift as a function of the wave phase speed are computed for a logarithmic mean velocity profile and compared with inviscid theory and experiment. The results agree with experimental evidence for the stabilization of the panel motion due to the influence of the unsteady boundary layer.

  10. Particle size segregation in granular avalanches: A brief review of recent progress

    NASA Astrophysics Data System (ADS)

    Gray, J. M. N. T.

    2010-05-01

    Hazardous natural flows such as snow avalanches, debris-flows, lahars and pyroclastic flows are part of a much wider class of granular avalanches, that frequently occur in industrial processes and in our kitchens! Granular avalanches are very efficient at sorting particles by size, with the smaller ones percolating down towards the base and squeezing the larger grains up towards the free-surface, to create inversely-graded layers. This paper provides a short introduction and review of recent theoretical advances in describing segregation and remixing with relatively simple hyperbolic and parabolic models. The derivation from two phase mixture theory is briefly summarized and links are drawn to earlier models of Savage & Lun and Dolgunin & Ukolov. The more complex parabolic version of the theory has a diffusive force that competes against segregation and yields S-shaped steady-state concentration profiles through the avalanche depth, that are able to reproduce results obtained from particle dynamics simulations. Time-dependent exact solutions can be constructed by using the Cole-Hopf transformation to linearize the segregation-remixing equation and the nonlinear surface and basal boundary conditions. In the limit of no diffusion, the theory is hyperbolic and the grains tend to separate out into completely segregated inversely graded layers. A series of elementary problems are used to demonstrate how concentration shocks, expansion fans, breaking waves and the large and small particles paths can be computed exactly using the model. The theory is able to capture the key features of the size distribution observed in stratification experiments, and explains how a large particle rich front is connected to an inversely graded avalanche in the interior. The theory is simple enough to couple it to the bulk flow field to investigate segregation-mobility feedback effects that spontaneously generate self-channelizing leveed avalanches, which can significantly enhance the total run-out distance of geophysical mass flows.

  11. Modeling study of rarefied gas effects on hypersonic reacting stagnation flows

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Bao, Lin

    2014-12-01

    Recent development of the near space hypersonic sharp leading vehicles has raised a necessity to fast and accurately predict the aeroheating in hypersonic rarefied flows, which challenges our understanding of the aerothermodynamics and aerothermochemistry. The present flow and heat transfer problem involves complex rarefied gas effects and nonequilibrium real gas effects which are beyond the scope of the traditional prediction theory based on the continuum hypothesis and equilibrium assumption. As a typical example, it has been found that the classical Fay-Riddell equation fails to predict the stagnation point heat flux, when the flow is either rarefied or chemical nonequilibrium. In order to design a more general theory covering the rarefied reacting flow cases, an intuitive model is proposed in this paper to describe the nonequilibrium dissociation-recombination flow along the stagnation streamline towards a slightly blunted nose in hypersonic rarefied flows. Some characteristic flow parameters are introduced, and based on these parameters, an explicitly analytical bridging function is established to correct the traditional theory to accurately predict the actual aeroheating performance. It is shown that for a small size nose in medium density flows, the flow at the outer edge of the stagnation point boundary layer could be highly nonequilibrium, and the aeroheating performance is distinguished from that of the big blunt body reentry flows at high altitudes. As a result, when the rarefied gas effects and the nonequilibrium real gas effects are both significant, the classical similarity law could be questionable, and it is inadequate to directly analogize results from the classical blunt body reentry problems to the present new generation sharp-leading vehicles. In addition, the direct simulation Monte Carlo method is also employed to validate the conclusion.

  12. Accounting for Hydrologic State in Ground-Penetrating Radar Classification Systems

    DTIC Science & Technology

    2014-04-22

    water content as a result of infiltration processes. • Demonstrated that effective medium approximations (one-dimensional flow and ray theory...280 290 300 310 320 330 340 -5 0 5 10 15 20 (a) (b) (c) Page 8 of 32 Figure 6: a) Conceptual model of flow experiment and GPR rays showing... ray theory for GPR) for characterizing the hydrologic state of the subsurface under arbitrary water content conditions. Figure 7: Comparison of

  13. Motivational beliefs, values, and goals.

    PubMed

    Eccles, Jacquelynne S; Wigfield, Allan

    2002-01-01

    This chapter reviews the recent research on motivation, beliefs, values, and goals, focusing on developmental and educational psychology. The authors divide the chapter into four major sections: theories focused on expectancies for success (self-efficacy theory and control theory), theories focused on task value (theories focused on intrinsic motivation, self-determination, flow, interest, and goals), theories that integrate expectancies and values (attribution theory, the expectancy-value models of Eccles et al., Feather, and Heckhausen, and self-worth theory), and theories integrating motivation and cognition (social cognitive theories of self-regulation and motivation, the work by Winne & Marx, Borkowski et al., Pintrich et al., and theories of motivation and volition). The authors end the chapter with a discussion of how to integrate theories of self-regulation and expectancy-value models of motivation and suggest new directions for future research.

  14. Loads Correlation of a Full-Scale UH-60A Airloads Rotor in a Wind Tunnel

    DTIC Science & Technology

    2012-05-01

    modeling in lifting line theory is unsteady, compressible, viscous flow about an infinite wing in a uniform flow consisting of a yawed freestream and...wake-induced velocity. This problem is modeled within CAMRAD II as two-dimensional, steady, compressible, viscous flow (airfoil tables), plus...and 21 aerodynamic panels. Detailed rotor control system geometry, stiffness, and lag damper were also incorporated. When not coupling to OVERFLOW, a

  15. The culmination of an inverse cascade: Mean flow and fluctuations

    NASA Astrophysics Data System (ADS)

    Frishman, Anna

    2017-12-01

    Two dimensional turbulence has a remarkable tendency to self-organize into large, coherent structures, forming a mean flow. The purpose of this paper is to elucidate how these structures are sustained and what determines them and the fluctuations around them. A recent theory for the mean flow will be reviewed. The theory assumes that turbulence is excited by a forcing supported on small scales and uses a linear shear model to relate the turbulent momentum flux to the mean shear rate. Extending the theory, it will be shown here that the relation between the momentum flux and mean shear is valid, and the momentum flux is non-zero, for both an isotropic forcing and an anisotropic forcing, independent of the dissipation mechanism at small scales. This conclusion requires taking into account that the linear shear model is an approximation to the real system. The proportionality between the momentum flux and the inverse of the shear can then be inferred most simply on dimensional grounds. Moreover, for a homogeneous pumping, the proportionality constant can be determined by symmetry considerations, recovering the result of the original theory. The regime of applicability of the theory, its compatibility with observations from simulations, a formula for the momentum flux for an inhomogeneous pumping, and results for the statistics of fluctuations will also be discussed.

  16. Stability analysis of dynamic collaboration model with control signals on two lanes

    NASA Astrophysics Data System (ADS)

    Li, Zhipeng; Zhang, Run; Xu, Shangzhi; Qian, Yeqing; Xu, Juan

    2014-12-01

    In this paper, the influence of control signals on the stability of two-lane traffic flow is mainly studied by applying control theory with lane changing behaviors. We present the two-lane dynamic collaboration model with lateral friction and the expressions of feedback control signals. What is more, utilizing the delayed feedback control theory to the two-lane dynamic collaboration model with control signals, we investigate the stability of traffic flow theoretically and the stability conditions for both lanes are derived with finding that the forward and lateral feedback signals can improve the stability of traffic flow while the backward feedback signals cannot achieve it. Besides, direct simulations are conducted to verify the results of theoretical analysis, which shows that the feedback signals have a significant effect on the running state of two vehicle groups, and the results are same with the theoretical analysis.

  17. Variable speed limit strategies analysis with mesoscopic traffic flow model based on complex networks

    NASA Astrophysics Data System (ADS)

    Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin

    As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.

  18. Nonlinear effects on sound propagation through high subsonic Mach number flows in variable area ducts

    NASA Technical Reports Server (NTRS)

    Callegari, A. J.

    1979-01-01

    A nonlinear theory for sound propagation in variable area ducts carrying a nearly sonic flow is presented. Linear acoustic theory is shown to be singular and the detailed nature of the singularity is used to develop the correct nonlinear theory. The theory is based on a quasi-one dimensional model. It is derived by the method of matched asymptotic expansions. In a nearly chocked flow, the theory indicates the following processes to be acting: a transonic trapping of upstream propagating sound causing an intensification of this sound in the throat region of the duct; generation of superharmonics and an acoustic streaming effect; development of shocks in the acoustic quantities near the throat. Several specific problems are solved analytically and numerical parameter studies are carried out. Results indicate that appreciable acoustic power is shifted to higher harmonics as shocked conditions are approached. The effect of the throat Mach number on the attenuation of upstream propagating sound excited by a fixed source is also determined.

  19. Theory of plasma contractors for electrodynamic tethered satellite systems

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1986-01-01

    Recent data from ground and space experiments indicate that plasma releases from an object dramatically reduce the sheath impedance between the object and the ambient plasma surrounding it. Available data is in qualitative accord with the theory developed to quantify the flow of current in the sheath. Electron transport in the theory is based on a fluid model of a collisionless plasma with an effective collision frequency comparable to frequencies of plasma oscillations. The theory leads to low effective impedances varying inversely with the square root of the injected plasma density. To support such a low impedance mode of operation using an argon plasma source for example requires that only one argon ion be injected for each thirty electrons extracted from the ambient plasma. The required plasma flow rates are quite low; to extract one ampere of electron current requires a mass flow rate of about one gram of argon per day.

  20. Limitations of the clump-correlation theories of shear-induced turbulence suppression

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Z.; Mahajan, S. M.

    2017-05-01

    The clump theory, primarily constructed by Dupree [Phys. Fluids 15, 334 (1972)] based on the moment approach and then generalized to the correlation theory [Y. Z. Zhang and S. M. Mahajan, Phys. Fluids B 5, 2000 (1993)], has long served as a basis for constructing theories of turbulence suppression by shear flow. In order to reveal the "intrinsic approximation" invoked in the clump-correlation theory, we examine a model based on two dimensional magnetized drift waves. After a rigorous derivation of the exact response function—a key to average the Green function of the system—we show that the Dupree, Zhang-Mahajan approach is recovered as the lowest order approximation in a small dimensionless parameter ϒ which is a triple product of the correlation time, wave number, and fluctuating drift velocity. The clump-correlation theory, thus, constitutes the Gaussian and lowest order non-Markovian process for a homogeneous stationary turbulence. We also provide, especially for the tokamak community, a readily usable formula to evaluate the effectiveness of shear-flow suppression; this formula pertains regardless of the specific model of correlation time.

  1. Predicting radiative heat transfer in thermochemical nonequilibrium flow fields. Theory and user's manual for the LORAN code

    NASA Technical Reports Server (NTRS)

    Chambers, Lin Hartung

    1994-01-01

    The theory for radiation emission, absorption, and transfer in a thermochemical nonequilibrium flow is presented. The expressions developed reduce correctly to the limit at equilibrium. To implement the theory in a practical computer code, some approximations are used, particularly the smearing of molecular radiation. Details of these approximations are presented and helpful information is included concerning the use of the computer code. This user's manual should benefit both occasional users of the Langley Optimized Radiative Nonequilibrium (LORAN) code and those who wish to use it to experiment with improved models or properties.

  2. Analyzing Company Economics Using the Leontief Open Production Model

    ERIC Educational Resources Information Center

    Laumakis, Paul J.

    2008-01-01

    This article details the application of an economic theory to the fiscal operation of a small engineering consulting firm. Nobel Prize-winning economist Wassily Leontief developed his general input-output economic theory in the mid-twentieth century to describe the flow of goods and services in the U.S. economy. We use one mathematical model that…

  3. Horizon in Random Matrix Theory, the Hawking Radiation, and Flow of Cold Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franchini, Fabio; Kravtsov, Vladimir E.

    2009-10-16

    We propose a Gaussian scalar field theory in a curved 2D metric with an event horizon as the low-energy effective theory for a weakly confined, invariant random matrix ensemble (RME). The presence of an event horizon naturally generates a bath of Hawking radiation, which introduces a finite temperature in the model in a nontrivial way. A similar mapping with a gravitational analogue model has been constructed for a Bose-Einstein condensate (BEC) pushed to flow at a velocity higher than its speed of sound, with Hawking radiation as sound waves propagating over the cold atoms. Our work suggests a threefold connectionmore » between a moving BEC system, black-hole physics and unconventional RMEs with possible experimental applications.« less

  4. Nonlinear Reynolds stress model for turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Barton, J. Michael; Rubinstein, R.; Kirtley, K. R.

    1991-01-01

    A nonlinear algebraic Reynolds stress model, derived using the renormalization group, is applied to equilibrium homogeneous shear flow and fully developed flow in a square duct. The model, which is quadratically nonlinear in the velocity gradients, successfully captures the large-scale inhomogeneity and anisotropy of the flows studied. The ratios of normal stresses, as well as the actual magnitudes of the stresses are correctly predicted for equilibrium homogeneous shear flow. Reynolds normal stress anisotropy and attendant turbulence driven secondary flow are predicted for a square duct. Profiles of mean velocity and normal stresses are in good agreement with measurements. Very close to walls, agreement with measurements diminishes. The model has the benefit of containing no arbitrary constants; all values are determined directly from the theory. It seems that near wall behavior is influenced by more than the large scale anisotropy accommodated in the current model. More accurate near wall calculations may well require a model for anisotropic dissipation.

  5. Transient foam flow in porous media with CAT Scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Dianbin; Brigham, W.E.

    1992-03-01

    Transient behavior is likely to dominate over most of the duration of a foam injection field project. Due to the lack of date, little is presently known about transient foam flow behavior. Foam flow does not follow established models such as the Buckley-Leverett theory, and no general predictive model has been derived. Therefore, both experimental data and a foam flow theory are needed. In this work, foam was injected at a constant mass rate into one-dimensional sandpacks of 1-in diameter and 24-in or 48-in length that had initially been saturate with distilled water. The system was placed in a catmore » Scanner. Data, obtained at room temperature and low pressure at various times, include both the pressure and saturation distributions. Pressure profiles showed that the pressure gradient is much greater behind the foam front than ahead of it. Moreover, the pressure gradients keep changing as the foam advances in the sandpack. This behavior differs from Buckley-Leverett theory. The CT scan results demonstrated gas channeling near the front, but eventually the foam block all these channels and sweeps the entire cross section after many pore volumes of injection. Three series of experiments were run: (1) surfactant adsorption measurements; (2) gas displacements of surfactant-laden solutions and (3) foam displacements. The first two series of experiments were made to provide the necessary parameters required to match the foam displacements. To this end, it was necessary to smooth the saturation history data, using a Langmuir-type formula. A theory was proposed based on the principles of the fractional flow curve construction method. This foam theory treats the foam as composed of infinitesimal slugs of gas of varying viscosities. The foam front has the lowest viscosity and foam at the injection end has the highest.« less

  6. Graph theory applied to noise and vibration control in statistical energy analysis models.

    PubMed

    Guasch, Oriol; Cortés, Lluís

    2009-06-01

    A fundamental aspect of noise and vibration control in statistical energy analysis (SEA) models consists in first identifying and then reducing the energy flow paths between subsystems. In this work, it is proposed to make use of some results from graph theory to address both issues. On the one hand, linear and path algebras applied to adjacency matrices of SEA graphs are used to determine the existence of any order paths between subsystems, counting and labeling them, finding extremal paths, or determining the power flow contributions from groups of paths. On the other hand, a strategy is presented that makes use of graph cut algorithms to reduce the energy flow from a source subsystem to a receiver one, modifying as few internal and coupling loss factors as possible.

  7. RG flows and bifurcations

    DOE PAGES

    Gukov, Sergei

    2017-03-29

    Interpreting RG flows as dynamical systems in the space of couplings we produce a variety of constraints, global (topological) as well as local. These constraints, in turn, rule out some of the proposed RG flows and also predict new phases and fixed points, surprisingly, even in familiar theories such as model, QED3, or QCD4.

  8. Microfluidic rheology of active particle suspensions: Kinetic theory.

    PubMed

    Alonso-Matilla, Roberto; Ezhilan, Barath; Saintillan, David

    2016-07-01

    We analyze the effective rheology of a dilute suspension of self-propelled slender particles confined between two infinite parallel plates and subject to a pressure-driven flow. We use a continuum kinetic model to describe the configuration of the particles in the system, in which the disturbance flows induced by the swimmers are taken into account, and use it to calculate estimates of the suspension viscosity for a range of channel widths and flow strengths typical of microfluidic experiments. Our results are in agreement with previous bulk models, and in particular, demonstrate that the effect of activity is strongest at low flow rates, where pushers tend to decrease the suspension viscosity whereas pullers enhance it. In stronger flows, dissipative stresses overcome the effects of activity leading to increased viscosities followed by shear-thinning. The effects of confinement and number density are also analyzed, and our results confirm the apparent transition to superfluidity reported in recent experiments on pusher suspensions at intermediate densities. We also derive an approximate analytical expression for the effective viscosity in the limit of weak flows and wide channels, and demonstrate good agreement between theory and numerical calculations.

  9. Stochastic differential equations and turbulent dispersion

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1983-01-01

    Aspects of the theory of continuous stochastic processes that seem to contribute to an understanding of turbulent dispersion are introduced and the theory and philosophy of modelling turbulent transport is emphasized. Examples of eddy diffusion examined include shear dispersion, the surface layer, and channel flow. Modeling dispersion with finite-time scale is considered including the Langevin model for homogeneous turbulence, dispersion in nonhomogeneous turbulence, and the asymptotic behavior of the Langevin model for nonhomogeneous turbulence.

  10. Fluid-structure interaction for nonlinear response of shells conveying pulsatile flow

    NASA Astrophysics Data System (ADS)

    Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.

    2016-06-01

    Circular cylindrical shells with flexible boundary conditions conveying pulsatile flow and subjected to pulsatile pressure are investigated. The equations of motion are obtained based on the nonlinear Novozhilov shell theory via Lagrangian approach. The flow is set in motion by a pulsatile pressure gradient. The fluid is modeled as a Newtonian pulsatile flow and it is formulated using a hybrid model that contains the unsteady effects obtained from the linear potential flow theory and the pulsatile viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior. The case of shells containing quiescent fluid subjected to the action of a pulsatile transmural pressure is also addressed. Geometrically nonlinear vibration response to pulsatile flow and transmural pressure are here presented via frequency-response curves and time histories. The vibrations involving both a driven mode and a companion mode, which appear due to the axial symmetry, are also investigated. This theoretical framework represents a pioneering study that could be of great interest for biomedical applications. In particular, in the future, a more refined model of the one here presented will possibly be applied to reproduce the dynamic behavior of vascular prostheses used for repairing and replacing damaged and diseased thoracic aorta in cases of aneurysm, dissection or coarctation. For this purpose, a pulsatile time-dependent blood flow model is here considered by applying physiological waveforms of velocity and pressure during the heart beating period. This study provides, for the first time in literature, a fully coupled fluid-structure interaction model with deep insights in the nonlinear vibrations of circular cylindrical shells subjected to pulsatile pressure and pulsatile flow.

  11. External mean flow influence on sound transmission through finite clamped double-wall sandwich panels

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Catalan, Jean-Cédric

    2017-09-01

    This paper studies the influence of an external mean flow on the sound transmission through finite clamped double-wall sandwich panels lined with poroelastic materials. Biot's theory is employed to describe wave propagation in poroelastic materials and various configurations of coupling the poroelastic layer to the facing plates are considered. The clamped boundary of finite panels are dealt with by the modal superposition theory and the weighted residual (Garlekin) method, leading to a matrix equation solution for the sound transmission loss (STL) through the structure. The theoretical model is validated against existing theories of infinite sandwich panels with and without an external flow. The numerical results of a single incident wave show that the external mean flow has significant effects on the STL which are coupled with the clamped boundary effect dominating in the low-frequency range. The external mean flow also influences considerably the limiting incidence angle of the panel system and the effect of the incidence angle on the STL. However, the influences of the azimuthal angle and the external flow orientation are negligible.

  12. Center for Modeling of Turbulence and Transition (CMOTT). Research briefs: 1990

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A. (Compiler); Liou, Meng-Sing (Compiler); Shih, Tsan-Hsing (Compiler)

    1991-01-01

    Brief progress reports of the Center for Modeling of Turbulence and Transition (CMOTT) research staff from May 1990 to May 1991 are given. The objectives of the CMOTT are to develop, validate, and implement the models for turbulence and boundary layer transition in the practical engineering flows. The flows of interest are three dimensional, incompressible, and compressible flows with chemistry. The schemes being studied include the two-equation and algebraic Reynolds stress models, the full Reynolds stress (or second moment closure) models, the probability density function models, the Renormalization Group Theory (RNG) and Interaction Approximation (DIA), the Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).

  13. A Wavelet Neural Network Optimal Control Model for Traffic-Flow Prediction in Intelligent Transport Systems

    NASA Astrophysics Data System (ADS)

    Huang, Darong; Bai, Xing-Rong

    Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.

  14. Rethinking wave-kinetic theory applied to zonal flows

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey

    2017-10-01

    Over the past two decades, a number of studies have employed a wave-kinetic theory to describe fluctuations interacting with zonal flows. Recent work has uncovered a defect in this wave-kinetic formulation: the system is dominated by the growth of (arbitrarily) small-scale zonal structures. Theoretical calculations of linear growth rates suggest, and nonlinear simulations confirm, that this system leads to the concentration of zonal flow energy in the smallest resolved scales, irrespective of the numerical resolution. This behavior results from the assumption that zonal flows are extremely long wavelength, leading to the neglect of key terms responsible for conservation of enstrophy. A corrected theory, CE2-GO, is presented; it is free of these errors yet preserves the intuitive phase-space mathematical structure. CE2-GO properly conserves enstrophy as well as energy, and yields accurate growth rates of zonal flow. Numerical simulations are shown to be well-behaved and not dependent on box size. The steady-state limit simplifies into an exact wave-kinetic form which offers the promise of deeper insight into the behavior of wavepackets. The CE2-GO theory takes its place in a hierarchy of models as the geometrical-optics reduction of the more complete cumulant-expansion statistical theory CE2. The new theory represents the minimal statistical description, enabling an intuitive phase-space formulation and an accurate description of turbulence-zonal flow dynamics. This work was supported by an NSF Graduate Research Fellowship, a US DOE Fusion Energy Sciences Fellowship, and US DOE Contract Nos. DE-AC52-07NA27344 and DE-AC02-09CH11466.

  15. Numerical simulation study on the distribution law of smoke flow velocity in horizontal tunnel fire

    NASA Astrophysics Data System (ADS)

    Liu, Yejiao; Tian, Zhichao; Xue, Junhua; Wang, Wencai

    2018-02-01

    According to the fluid similarity theory, the simulation experiment system of mining tunnel fire is established. The grid division of experimental model roadway is carried on by GAMBIT software. By setting the boundary and initial conditions of smoke flow during fire period in FLUENT software, using RNG k-Ɛ two-equation turbulence model, energy equation and SIMPLE algorithm, the steady state numerical simulation of smoke flow velocity in mining tunnel is done to obtain the distribution law of smoke flow velocity in tunnel during fire period.

  16. Theories of international labor migration: an overview.

    PubMed

    Stahl, C W

    1995-01-01

    "Emigration pressures are primarily the result of increasing inequalities between countries which, in turn, are the result of factors internal to less developed countries and their relations with developed countries. Both micro (neoclassical) and macrostructural theories of migration are reviewed. It is argued that the neoclassical theory of migration is often unjustly criticized and is sufficiently robust to incorporate those structural considerations which are at the core of macrostructural theories. Moreover, the neoclassical theory, with slight modification, can incorporate the ¿new economics of migration.' The major empirical problem confronting models of international labor migration is that migration flows are constrained by immigration policy. This policy, in turn, is influenced by various special interest groups. The direction and form of migration flows is conditioned by contemporary and historical relationships between source and destination countries." excerpt

  17. The Effect of Global-Scale, Steady-State Convection and Elastic-Gravitational Asphericities on Helioseismic Oscillations

    NASA Astrophysics Data System (ADS)

    Lavely, Eugene M.; Ritzwoller, Michael H.

    1992-06-01

    In this paper we derive a theory, based on quasi-degenerate perturbation theory, that governs the effect of global-scale, steady-state convection and associated static asphericities in the elastic-gravitational variables (adiabatic bulk modulus kappa , density ρ , and gravitational potential φ ) on helioseismic eigenfrequencies and eigenfunctions and present a formalism with which this theory can be applied computationally. The theory rests on three formal assumptions: (1) that convection is temporally steady in a frame corotating with the Sun, (2) that accurate eigenfrequencies and eigenfunctions can be determined by retaining terms in the seismically perturbed equations of motion only to first order in p-mode displacement, and (3) that we are justified in retaining terms only to first order in convective velocity (this is tantamount to assuming that the convective flow is anelastic). The most physically unrealistic assumption is (1), and we view the results of this paper as the first step toward a more general theory governing the seismic effects of time-varying fields. Although the theory does not govern the seismic effects of non-stationary flows, it can be used to approximate the effects of unsteady flows on the acoustic wavefield if the flow is varying smoothly in time. The theory does not attempt to model seismic modal amplitudes since these are governed, in part, by the exchange of energy between convection and acoustic motions which is not a part of this theory. However, we show how theoretical wavefields can be computed given a description of the stress field produced by a source process such as turbulent convection. The basic reference model that will be perturbed by rotation, convection, structural asphericities, and acoustic oscillations is a spherically symmetric, non-rotating, non-magnetic, isotropic, static solar model that, when subject to acoustic oscillations, oscillates adiabatically. We call this the SNRNMAIS model. An acoustic mode of the SNRNMAIS model is denoted by k = (n,l,m), where n is the radial order, l is the harmonic degree, and m is the azimuthal order of the mode. The main result of the paper is the general matrix element Hn'n,l'lm'm for steady-state convection satisfying the anelastic condition with static structural asphericities. It is written in terms of the radial, scalar eigenfunctions of the SNRNMAIS model, resulting in equations (90)-(110). We prove Rayleigh's principle in our derivation of quasi-degenerate perturbation theory which, as a by-product, yields the general matrix element. Within this perturbative method, modes need not be exactly degenerate in the SNRNMAIS solar model to couple, only nearly so. General matrix elements compose the hermitian supermatrix Z. The eigenvalues of the supermatrix are the eigenfrequency perturbations of the convecting, aspherical model and the eigenvector components of Z are the expansion coefficients in the linear combination forming the eigenfunctions in which the eigenfunctions of the SNRNMAIS solar model act as basis functions. The properties of the Wigner 3j symbols and the reduced matrix elements composing Hn'n,l'lm' produce selection rules governing the coupling of SNRNMAIS modes that hold even for time-varying flows. We state selection rules for both quasi-degenerate and degenerate perturbation theories. For example, within degenerate perturbation theory, only odd-degree s toroidal flows and even degree structural asphericities, both with s <= 2l, will couple and/or split acoustic modes with harmonic degree l. In addition, the frequency perturbations caused by a toroidal flow display odd symmetry with respect to the degenerate frequency when ordered from the minimum to the maximum frequency perturbation. We consider the special case of differential rotation, the odd-degree, axisymmetric, toroidal component of general convection, and present the general matrix element and selection rules under quasi-degenerate perturbation theory. We argue that due to the spacing of modes that satisfy the selection rules, quasi-degenerate coupling can, for all practical purposes, be neglected in modelling the effect of low-degree differential rotation on helioseismic data. In effect, modes that can couple through low-degree differential rotation are too far separated in frequency to couple strongly. This is not the case for non-axisymmetric flows and asphericities where near degeneracies will regularly occur, and couplings can be relatively strong especially among SNRNMAIS modes within the same multiplet. All derivations are performed and all solutions are presented in a frame corotating with the mean solar angular rotation rate. Equation (18) shows how to transform the eigenfrequencies and eigenfunctions in the corotating frame into an inertial frame. The transformation has the effect that each eigenfunction in the inertial frame is itself time varying. That is, a mode of oscillation, which is defined to have a single frequency in the corotating frame, becomes multiply periodic in the inertial frame.

  18. Modeling the net flows of U.S. mutual funds with stochastic catastrophe theory

    NASA Astrophysics Data System (ADS)

    Clark, A.

    2006-04-01

    Using the recent work of Hartelman, van der Maas, and Wagenmakers, we demonstrate the use of invariant stochastic catastrophe models in finance for modeling net flows (the difference between purchases and redemptions of fund shares) of U.S. mutual funds. We validate Goetzmann et al. and others' work concerning the importance of sentiment variables on stock fund flows. We also answer some of the questions Goetzmann et al. and Brown et al. pose at the end of their respective papers. We end with possible experiments for experimental economists and sociophysicists.

  19. Steady induction effects in geomagnetism. Part 1A: Steady motional induction of geomagnetic chaos

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1992-01-01

    Geomagnetic effects of magnetic induction by hypothetically steady fluid motion and steady magnetic flux diffusion near the top of Earth's core are investigated using electromagnetic theory, simple magnetic earth models, and numerical experiments with geomagnetic field models. The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation indicated by broad-scale models of the observed geomagnetic field is examined and solved. In Part 1, the steady surficial core flow estimation problem is solved in the context of the source-free mantle/frozen-flux core model. In the first paper (IA), the theory underlying such estimates is reviewed and some consequences of various kinematic and dynamic flow hypotheses are derived. For a frozen-flux core, fluid downwelling is required to change the mean square normal magnetic flux density averaged over the core-mantle boundary. For surficially geostrophic flow, downwelling implies poleward flow. The solution of the forward steady motional induction problem at the surface of a frozen-flux core is derived and found to be a fine, easily visualized example of deterministic chaos. Geomagnetic effects of statistically steady core surface flow may well dominate secular variation over several decades. Indeed, effects of persistent, if not steady, surficially geostrophic core flow are described which may help explain certain features of the present broad-scale geomagnetic field and perhaps paleomagnetic secular variation.

  20. Recent results and persisting problems in modeling flow induced coalescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortelný, I., E-mail: fortelny@imc.cas.cz, E-mail: juza@imc.cas.cz; Jza, J., E-mail: fortelny@imc.cas.cz, E-mail: juza@imc.cas.cz

    2014-05-15

    The contribution summarizes recent results of description of the flow induced coalescence in immiscible polymer blends and addresses problems that call for which solving. The theory of coalescence based on the switch between equations for matrix drainage between spherical or deformed droplets provides a good agreement with more complicated modeling and available experimental data for probability, P{sub c}, that the collision of droplets will be followed by their fusion. A new equation for description of the matrix drainage between deformed droplets, applicable to the whole range of viscosity ratios, p, of the droplets and matrixes, is proposed. The theory facilitatesmore » to consider the effect of the matrix elasticity on coalescence. P{sub c} decreases with the matrix relaxation time but this decrease is not pronounced for relaxation times typical of most commercial polymers. Modeling of the flow induced coalescence in concentrated systems is needed for prediction of the dependence of coalescence rate on volume fraction of droplets. The effect of the droplet anisometry on P{sub c} should be studied for better understanding the coalescence in flow field with high and moderate deformation rates. A reliable description of coalescence in mixing and processing devices requires proper modeling of complex flow fields.« less

  1. Delay-feedback control strategy for reducing CO2 emission of traffic flow system

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Dong; Zhu, Wen-Xing

    2015-06-01

    To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.

  2. Calibration of Discrete Random Walk (DRW) Model via G.I Taylor's Dispersion Theory

    NASA Astrophysics Data System (ADS)

    Javaherchi, Teymour; Aliseda, Alberto

    2012-11-01

    Prediction of particle dispersion in turbulent flows is still an important challenge with many applications to environmental, as well as industrial, fluid mechanics. Several models of dispersion have been developed to predict particle trajectories and their relative velocities, in combination with a RANS-based simulation of the background flow. The interaction of the particles with the velocity fluctuations at different turbulent scales represents a significant difficulty in generalizing the models to the wide range of flows where they are used. We focus our attention on the Discrete Random Walk (DRW) model applied to flow in a channel, particularly to the selection of eddies lifetimes as realizations of a Poisson distribution with a mean value proportional to κ / ɛ . We present a general method to determine the constant of this proportionality by matching the DRW model dispersion predictions for fluid element and particle dispersion to G.I Taylor's classical dispersion theory. This model parameter is critical to the magnitude of predicted dispersion. A case study of its influence on sedimentation of suspended particles in a tidal channel with an array of Marine Hydrokinetic (MHK) turbines highlights the dependency of results on this time scale parameter. Support from US DOE through the Northwest National Marine Renewable Energy Center, a UW-OSU partnership.

  3. Comparison of the lifting-line free vortex wake method and the blade-element-momentum theory regarding the simulated loads of multi-MW wind turbines

    NASA Astrophysics Data System (ADS)

    Hauptmann, S.; Bülk, M.; Schön, L.; Erbslöh, S.; Boorsma, K.; Grasso, F.; Kühn, M.; Cheng, P. W.

    2014-12-01

    Design load simulations for wind turbines are traditionally based on the blade- element-momentum theory (BEM). The BEM approach is derived from a simplified representation of the rotor aerodynamics and several semi-empirical correction models. A more sophisticated approach to account for the complex flow phenomena on wind turbine rotors can be found in the lifting-line free vortex wake method. This approach is based on a more physics based representation, especially for global flow effects. This theory relies on empirical correction models only for the local flow effects, which are associated with the boundary layer of the rotor blades. In this paper the lifting-line free vortex wake method is compared to a state- of-the-art BEM formulation with regard to aerodynamic and aeroelastic load simulations of the 5MW UpWind reference wind turbine. Different aerodynamic load situations as well as standardised design load cases that are sensitive to the aeroelastic modelling are evaluated in detail. This benchmark makes use of the AeroModule developed by ECN, which has been coupled to the multibody simulation code SIMPACK.

  4. Continuous protein concentration via free-flow moving reaction boundary electrophoresis.

    PubMed

    Kong, Fanzhi; Zhang, Min; Chen, Jingjing; Fan, Liuyin; Xiao, Hua; Liu, Shaorong; Cao, Chengxi

    2017-07-28

    In this work, we developed the model and theory of free-flow moving reaction boundary electrophoresis (FFMRB) for continuous protein concentration for the first time. The theoretical results indicated that (i) the moving reaction boundary (MRB) can be quantitatively designed in free-flow electrophoresis (FFE) system; (ii) charge-to-mass ratio (Z/M) analysis could provide guidance for protein concentration optimization; and (iii) the maximum processing capacity could be predicted. To demonstrate the model and theory, three model proteins of hemoglobin (Hb), cytochrome C (Cyt C) and C-phycocyanin (C-PC) were chosen for the experiments. The experimental results verified that (i) stable MRBs with different velocities could be established in FFE apparatus with weak acid/weak base neutralization reaction system; (ii) proteins of Hb, Cyt C and C-PC were well concentrated with FFMRB; and (iii) a maximum processing capacity and recovery ratio of Cyt C enrichment were 126mL/h and 95.5% respectively, and a maximum enrichment factor was achieved 12.6 times for Hb. All of the experiments demonstrated the protein concentration model and theory. In contrast to other methods, the continuous processing ability enables FFMRB to efficiently enrich diluted protein or peptide in large volume solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Impact of Media Richness and Flow on E-Learning Technology Acceptance

    ERIC Educational Resources Information Center

    Liu, Su-Houn; Liao, Hsiu-Li; Pratt, Jean A.

    2009-01-01

    Advances in e-learning technologies parallels a general increase in sophistication by computer users. The use of just one theory or model, such as the technology acceptance model, is no longer sufficient to study the intended use of e-learning systems. Rather, a combination of theories must be integrated in order to fully capture the complexity of…

  6. Utilizing Diffusion Theory to predict carbon dioxide concentration in an indoor environment

    NASA Astrophysics Data System (ADS)

    Kramer, Andrew R.

    This research details a new method of relating sources of carbon dioxide to carbon dioxide concentration in a room operating in a reduced ventilation mode by utilizing Diffusion Theory. The theoretical basis of this research involved solving Fick's Second Law of Diffusion in spherical coordinates for a source of carbon dioxide flowing at a constant rate and located in the center of an impermeable spherical boundary. The solution was developed using a Laplace Transformation. A spherical diffusion test chamber was constructed and used to validate and benchmark the developed theory. The method was benchmarked by using Dispersion Coefficients for large carbon dioxide flow rates due to diffusion induced convection. The theoretical model was adapted to model a room operating with restricted ventilation in the presence of a known, constant source of carbon dioxide. The room was modeled as a sphere of volume equal to the room and utilized a Dispersion Coefficient that is consistent with published values. The developed Diffusion Model successfully predicted the spatial concentration of carbon dioxide in a room operating in a reduced ventilation mode in the presence of a source of carbon dioxide. The flow rates of carbon dioxide that were used in the room are comparable to the average flow rate of carbon dioxide from a person during quiet breathing, also known as the Tidal Breathing. This indicates the Diffusion Model developed from this research has the potential to correlate carbon dioxide concentration with static occupancy levels which can lead to energy savings through a reduction in air exchange rates when low occupancy is detected.

  7. Similarity Theory of Withdrawn Water Temperature Experiment

    PubMed Central

    2015-01-01

    Selective withdrawal from a thermal stratified reservoir has been widely utilized in managing reservoir water withdrawal. Besides theoretical analysis and numerical simulation, model test was also necessary in studying the temperature of withdrawn water. However, information on the similarity theory of the withdrawn water temperature model remains lacking. Considering flow features of selective withdrawal, the similarity theory of the withdrawn water temperature model was analyzed theoretically based on the modification of governing equations, the Boussinesq approximation, and some simplifications. The similarity conditions between the model and the prototype were suggested. The conversion of withdrawn water temperature between the model and the prototype was proposed. Meanwhile, the fundamental theory of temperature distribution conversion was firstly proposed, which could significantly improve the experiment efficiency when the basic temperature of the model was different from the prototype. Based on the similarity theory, an experiment was performed on the withdrawn water temperature which was verified by numerical method. PMID:26065020

  8. Modeling gas displacement kinetics in coal with Maxwell-Stefan diffusion theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, X.R.; Wang, G.X.; Massarotto, P.

    2007-12-15

    The kinetics of binary gas counter-diffusion and Darcy flow in a large coal sample were modeled, and the results compared with data from experimental laboratory investigations. The study aimed for a better understanding of the CO{sub 2}-sequestration enhanced coalbed methane (ECBM) recovery process. The transport model used was based on the bidisperse diffusion mechanism and Maxwell-Stefan (MS) diffusion theory. This provides an alternative approach to simulate multicomponent gas diffusion and flow in bulk coals. A series of high-stress core flush tests were performed on a large coal sample sourced from a Bowen Basin coal mine in Queensland, Australia to investigatemore » the kinetics of one gas displacing another. These experimental results were used to derive gas diffusivities, and to examine the predictive capability of the diffusion model. The simulations show good agreements with the displacement experiments revealing that MS diffusion theory is superior for describing diffusion of mixed gases in coals compared with the constant Fick diffusivity model. The optimized effective micropore and macropore diffusivities are comparable with experimental measurements achieved by other researchers.« less

  9. Analytical Solution for the Aeroelastic Response of a Two-Dimensional Elastic Plate in Axial Flow

    NASA Astrophysics Data System (ADS)

    Medina, Cory; Kang, Chang-Kwon

    2017-11-01

    The aeroelastic response of an elastic plate in an unsteady flow describes many engineering problems from bio-locomotion, deforming airfoils, to energy harvesting. However, the analysis is challenging because the shape of the plate is a priori unknown. This study presents an analytical model that can predict the two-way tightly coupled aeroelastic response of a two-dimensional elastic plate including the effects of plate curvature along the flow direction. The plate deforms due to the dynamic balance of wing inertia, elastic restoring force, and aerodynamic force. The coupled model utilizes the linearized Euler-Bernoulli beam theory for the structural model and thin airfoil theory as presented by Theodorsen, which assumes incompressible potential flow, for the aerodynamic model. The coupled equations of motion are solved via Galerkin's method, where closed form solutions for the plate deformation are obtained by deriving the unsteady aerodynamic pressure with respect to the plate normal functions, expressed in a Chebyshev polynomial expansion. Stability analysis is performed for a range of mass ratios obtaining the flutter velocities and corresponding frequencies and the results agree well with the results reported in the literature.

  10. Functional renormalization group for the U (1 )-T56 tensorial group field theory with closure constraint

    NASA Astrophysics Data System (ADS)

    Lahoche, Vincent; Ousmane Samary, Dine

    2017-02-01

    This paper is focused on the functional renormalization group applied to the T56 tensor model on the Abelian group U (1 ) with closure constraint. For the first time, we derive the flow equations for the couplings and mass parameters in a suitable truncation around the marginal interactions with respect to the perturbative power counting. For the second time, we study the behavior around the Gaussian fixed point, and show that the theory is nonasymptotically free. Finally, we discuss the UV completion of the theory. We show the existence of several nontrivial fixed points, study the behavior of the renormalization group flow around them, and point out evidence in favor of an asymptotically safe theory.

  11. A dual-porosity model for simulating solute transport in oil shale

    USGS Publications Warehouse

    Glover, K.C.

    1987-01-01

    A model is described for simulating three-dimensional groundwater flow and solute transport in oil shale and associated geohydrologic units. The model treats oil shale as a dual-porosity medium by simulating flow and transport within fractures using the finite-element method. Diffusion of solute between fractures and the essentially static water of the shale matrix is simulated by including an analytical solution that acts as a source-sink term to the differential equation of solute transport. While knowledge of fracture orientation and spacing is needed to effectively use the model, it is not necessary to map the locations of individual fractures. The computer program listed in the report incorporates many of the features of previous dual-porosity models while retaining a practical approach to solving field problems. As a result the theory of solute transport is not extended in any appreciable way. The emphasis is on bringing together various aspects of solute transport theory in a manner that is particularly suited to the unusual groundwater flow and solute transport characteristics of oil shale systems. (Author 's abstract)

  12. The Burgers/squirt-flow seismic model of the crust and mantle

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Poletto, Flavio; Farina, Biancamaria

    2018-01-01

    Part of the crust shows generally brittle behaviour while areas of high temperature and/or high pore pressure, including the mantle, may present ductile behaviour. For instance, the potential heat source of geothermal fields, overpressured formations and molten rocks. Seismic waves can be used to detect these conditions on the basis of reflection and transmission events. Basically, from the elastic-plastic point of view the seismic properties (seismic velocity, quality factor and density) depend on effective pressure and temperature. Confining and pore pressures have opposite effects on these properties, and high temperatures may induce a similar behaviour by partial melting. In order to model these effects, we consider a poro-viscoelastic model based on the Burgers mechanical element and the squirt-flow model to represent the properties of the rock frame to describe ductility in which deformation takes place by shear plastic flow, and to model local and global fluid flow effects. The Burgers element allows us to model the effects of the steady-state creep flow on the dry-rock frame. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. Effective pressure effects are taken into account in the dry-rock moduli by using exponential functions whose parameters are obtained by fitting experimental data as a function of confining pressure. Since fluid effects are important, the density and bulk modulus of the saturating fluids (water at sub- and supercritical conditions) are modeled by using the equations provided by the NIST website. The squirt-flow model has a single free parameter represented by the aspect ratio of the grain contacts. The theory generalizes a preceding theory based on Gassmann (low-frequency) moduli to the more general case of the presence of local (squirt) flow and global (Biot) flow, which contribute with additional attenuation mechanisms to the wave propagation.

  13. Numerical Evidence for a Phase Transition in 4D Spin-Foam Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Bahr, Benjamin; Steinhaus, Sebastian

    2016-09-01

    Building on recent advances in defining Wilsonian renormalization group (RG) flows, and the notion of scales in particular, for background-independent theories, we present a first investigation of the renormalization of the 4D spin-foam path integral for quantum gravity, both analytically and numerically. Focusing on a specific truncation of the model using a hypercubic lattice, we compute the RG flow and find strong indications for a phase transition, as well as an interesting interplay between the different observed phases and the (broken) diffeomorphism symmetry of the model. Most notably, it appears that the critical point between the phases, which is a fixed point of the RG flow, is precisely where broken diffeomorphism symmetry is restored, which suggests that it might allow us to define a continuum limit of the quantum gravity theory.

  14. Numerical Evidence for a Phase Transition in 4D Spin-Foam Quantum Gravity.

    PubMed

    Bahr, Benjamin; Steinhaus, Sebastian

    2016-09-30

    Building on recent advances in defining Wilsonian renormalization group (RG) flows, and the notion of scales in particular, for background-independent theories, we present a first investigation of the renormalization of the 4D spin-foam path integral for quantum gravity, both analytically and numerically. Focusing on a specific truncation of the model using a hypercubic lattice, we compute the RG flow and find strong indications for a phase transition, as well as an interesting interplay between the different observed phases and the (broken) diffeomorphism symmetry of the model. Most notably, it appears that the critical point between the phases, which is a fixed point of the RG flow, is precisely where broken diffeomorphism symmetry is restored, which suggests that it might allow us to define a continuum limit of the quantum gravity theory.

  15. Role of regression analysis and variation of rheological data in calculation of pressure drop for sludge pipelines.

    PubMed

    Farno, E; Coventry, K; Slatter, P; Eshtiaghi, N

    2018-06-15

    Sludge pumps in wastewater treatment plants are often oversized due to uncertainty in calculation of pressure drop. This issue costs millions of dollars for industry to purchase and operate the oversized pumps. Besides costs, higher electricity consumption is associated with extra CO 2 emission which creates huge environmental impacts. Calculation of pressure drop via current pipe flow theory requires model estimation of flow curve data which depends on regression analysis and also varies with natural variation of rheological data. This study investigates impact of variation of rheological data and regression analysis on variation of pressure drop calculated via current pipe flow theories. Results compare the variation of calculated pressure drop between different models and regression methods and suggest on the suitability of each method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Functional renormalization group analysis of tensorial group field theories on Rd

    NASA Astrophysics Data System (ADS)

    Geloun, Joseph Ben; Martini, Riccardo; Oriti, Daniele

    2016-07-01

    Rank-d tensorial group field theories are quantum field theories (QFTs) defined on a group manifold G×d , which represent a nonlocal generalization of standard QFT and a candidate formalism for quantum gravity, since, when endowed with appropriate data, they can be interpreted as defining a field theoretic description of the fundamental building blocks of quantum spacetime. Their renormalization analysis is crucial both for establishing their consistency as quantum field theories and for studying the emergence of continuum spacetime and geometry from them. In this paper, we study the renormalization group flow of two simple classes of tensorial group field theories (TGFTs), defined for the group G =R for arbitrary rank, both without and with gauge invariance conditions, by means of functional renormalization group techniques. The issue of IR divergences is tackled by the definition of a proper thermodynamic limit for TGFTs. We map the phase diagram of such models, in a simple truncation, and identify both UV and IR fixed points of the RG flow. Encouragingly, for all the models we study, we find evidence for the existence of a phase transition of condensation type.

  17. Determination of cohesive and normal stresses and simulation of fluidization using kinetic theory

    NASA Astrophysics Data System (ADS)

    Bezbaruah, R.

    1991-08-01

    The general objective of this study is focused on the solid stresses involved in gas-solid flow. These stresses are generally included in the momentum conservation equations, essentially for stability and to prevent particles from collapsing to unreasonably low values of gas volume fraction. The first half of this work undertakes the measurement of the stresses in various powders by direct means, while the second part uses a newly developed kinetic theory constitutive equation for stress to predict the flow and also the solid's viscosity in a CFB. The cohesive or tensile stress found to exist in some classes of powders is measured using a Cohetester, based on which a cohesive force model is derived, which is sensitive to the characteristic properties of the powder material. The normal stress is measured using a Consolidometer, and the powder solid's modulus is obtained as a function of the volume fraction. The solid's modulus is seen to vary with particle size and particle type, with the smaller size particles being more compressible. The simulation of flow in the CFB using Gidaspow's (1991) extension of Ding's (1990) kinetic theory model to dilute phase flow, predicts realistic values of solids' viscosity that are comparable to viscosities obtained experimentally by Miller (1991). However, to obtain a match between the two, the value of the restitution coefficient has to be close to unity. The flow behavior showed periodic oscillations of flow (turbulence) as seen in a real system.

  18. Physics of automated driving in framework of three-phase traffic theory.

    PubMed

    Kerner, Boris S

    2018-04-01

    We have revealed physical features of automated driving in the framework of the three-phase traffic theory for which there is no fixed time headway to the preceding vehicle. A comparison with the classical model approach to automated driving for which an automated driving vehicle tries to reach a fixed (desired or "optimal") time headway to the preceding vehicle has been made. It turns out that automated driving in the framework of the three-phase traffic theory can exhibit the following advantages in comparison with the classical model of automated driving: (i) The absence of string instability. (ii) Considerably smaller speed disturbances at road bottlenecks. (iii) Automated driving vehicles based on the three-phase theory can decrease the probability of traffic breakdown at the bottleneck in mixed traffic flow consisting of human driving and automated driving vehicles; on the contrary, even a single automated driving vehicle based on the classical approach can provoke traffic breakdown at the bottleneck in mixed traffic flow.

  19. Physics of automated driving in framework of three-phase traffic theory

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.

    2018-04-01

    We have revealed physical features of automated driving in the framework of the three-phase traffic theory for which there is no fixed time headway to the preceding vehicle. A comparison with the classical model approach to automated driving for which an automated driving vehicle tries to reach a fixed (desired or "optimal") time headway to the preceding vehicle has been made. It turns out that automated driving in the framework of the three-phase traffic theory can exhibit the following advantages in comparison with the classical model of automated driving: (i) The absence of string instability. (ii) Considerably smaller speed disturbances at road bottlenecks. (iii) Automated driving vehicles based on the three-phase theory can decrease the probability of traffic breakdown at the bottleneck in mixed traffic flow consisting of human driving and automated driving vehicles; on the contrary, even a single automated driving vehicle based on the classical approach can provoke traffic breakdown at the bottleneck in mixed traffic flow.

  20. Topologically massive gravity and Ricci-Cotton flow

    NASA Astrophysics Data System (ADS)

    Lashkari, Nima; Maloney, Alexander

    2011-05-01

    We consider topologically massive gravity (TMG), which is three-dimensional general relativity with a cosmological constant and a gravitational Chern-Simons term. When the cosmological constant is negative the theory has two potential vacuum solutions: anti-de Sitter space and warped anti-de Sitter space. The theory also contains a massive graviton state which renders these solutions unstable for certain values of the parameters and boundary conditions. We study the decay of these solutions due to the condensation of the massive graviton mode using Ricci-Cotton flow, which is the appropriate generalization of Ricci flow to TMG. When the Chern-Simons coupling is small the AdS solution flows to warped AdS by the condensation of the massive graviton mode. When the coupling is large the situation is reversed, and warped AdS flows to AdS. Minisuperspace models are constructed where these flows are studied explicitly.

  1. The physics of debris flows

    NASA Astrophysics Data System (ADS)

    Iverson, Richard M.

    1997-08-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ˜10 m³ of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.

  2. The physics of debris flows

    USGS Publications Warehouse

    Iverson, R.M.

    1997-01-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.

  3. A continuum model for pressure-flow relationship in human pulmonary circulation.

    PubMed

    Huang, Wei; Zhou, Qinlian; Gao, Jian; Yen, R T

    2011-06-01

    A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation.

  4. Internal-external flow integration for a thin ejector-flapped wing section

    NASA Technical Reports Server (NTRS)

    Woolard, H. W.

    1979-01-01

    Thin airfoil theories of an ejector flapped wing section are reviewed. The global matching of the external airfoil flow with the ejector internal flow and the overall ejector flapped wing section aerodynamic performance are examined. Mathematical models of the external and internal flows are presented. The delineation of the suction flow coefficient characteristics are discussed. The idealized lift performance of an ejector flapped wing relative to a jet augmented flapped wing are compared.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burge, S.W.

    This report describes the theory and structure of the FORCE2 flow program. The manual describes the governing model equations, solution procedure and their implementation in the computer program. FORCE2 is an extension of an existing B&V multidimensional, two-phase flow program. FORCE2 was developed for application to fluid beds by flow implementing a gas-solids modeling technology derived, in part, during a joint government -- industry research program, ``Erosion of FBC Heat Transfer Tubes,`` coordinated by Argonne National Laboratory. The development of FORCE2 was sponsored by ASEA-Babcock, an industry participant in this program. This manual is the principal documentation for the programmore » theory and organization. Program usage and post-processing of code predictions with the FORCE2 post-processor are described in a companion report, FORCE2 -- A Multidimensional Flow Program for Fluid Beds, User`s Guide. This manual is segmented into sections to facilitate its usage. In section 2.0, the mass and momentum conservation principles, the basis for the code, are presented. In section 3.0, the constitutive relations used in modeling gas-solids hydrodynamics are given. The finite-difference model equations are derived in section 4.0 and the solution procedures described in sections 5.0 and 6.0. Finally, the implementation of the model equations and solution procedure in FORCE2 is described in section 7.0.« less

  6. A computational fluid dynamics approach to nucleation in the water-sulfuric acid system.

    PubMed

    Herrmann, E; Brus, D; Hyvärinen, A-P; Stratmann, F; Wilck, M; Lihavainen, H; Kulmala, M

    2010-08-12

    This study presents a computational fluid dynamics modeling approach to investigate the nucleation in the water-sulfuric acid system in a flow tube. On the basis of an existing experimental setup (Brus, D.; Hyvärinen, A.-P.; Viisanen, Y.; Kulmala, M.; Lihavainen, H. Atmos. Chem. Phys. 2010, 10, 2631-2641), we first establish the effect of convection on the flow profile. We then proceed to simulate nucleation for relative humidities of 10, 30, and 50% and for sulfuric acid concentration between 10(9) to 3 x 10(10) cm(-3). We describe the nucleation zone in detail and determine how flow rate and relative humidity affect its characteristics. Experimental nucleation rates are compared to rates gained from classical binary and kinetic nucleation theory as well as cluster activation theory. For low RH values, kinetic theory yields the best agreement with experimental results while binary nucleation best reproduces the experimental nucleation behavior at 50% relative humidity. Particle growth is modeled for an example case at 50% relative humidity. The final simulated diameter is very close to the experimental result.

  7. Time-dependent particle migration and margination in the pressure-driven channel flow of blood

    NASA Astrophysics Data System (ADS)

    Qi, Qin M.; Shaqfeh, Eric S. G.

    2018-03-01

    We present a theory to describe the time evolution of the red blood cell (RBC) and platelet concentration distributions in pressure-driven flow through a straight channel. This model is based on our previous theory for the steady-state distributions [Qi and Shaqfeh, Phys. Rev. Fluids 2, 093102 (2017), 10.1103/PhysRevFluids.2.093102] and captures the flow-induced nonuniformity of the concentrations of RBCs and platelets in the cross-flow direction. Starting with a uniform concentration, RBCs migrate away from the channel walls due to a shear-induced lift force and eventually reach steady state due to shear-induced diffusion, i.e., hydrodynamic "collisions" with other RBCs. On the other hand, platelets exit the cell-laden region due to RBC-platelet interactions and enter the cell-free layer, resulting in margination. To validate the theory, we also perform boundary integral simulations of blood flow in microchannels and directly compare various measureables between theory and simulation. The timescales associated with RBC migration and platelet margination are discussed in the context of the simulation and theory, and their importance in the function of microfluidic devices as well as the vascular network are elucidated. Due to the varying shear rate in pressure-driven flow and the wall-induced RBC lift, we report a separation of timescales for the transport in the near-wall region and in the bulk region. We also relate the transient problem to the axial variation of migration and margination, and we demonstrate how the relevant timescales can be used to predict corresponding entrance lengths. Our theory can serve as a fast and convenient alternative to large-scale simulations of these phenomena.

  8. Spatial interaction between tissue pressure and skeletal muscle perfusion during contraction.

    PubMed

    van Donkelaar, C C; Huyghe, J M; Vankan, W J; Drost, M R

    2001-05-01

    The vascular waterfall theory attributes decreased muscle perfusion during contraction to increased intramuscular pressure (P(IM)) and concomitant increase in venous resistance. Although P(IM) is distributed during contractions, this theory does not account for heterogeneity. This study hypothesises that pressure heterogeneity could affect the interaction between P(IM) rise and perfusion. Regional tissue perfusion during submaximum (100kPa) tetanic contraction is studied, using a finite element model of perfused contracting skeletal muscle. Capillary flow in muscles with one proximal artery and vein (SIM(1)) and with an additional distal artery and vein (SIM(2)) is compared. Blood flow and pressures at rest and P(IM) during contraction ( approximately 25kPa maximally) are similar between simulations, but capillary flow and venous pressure differ. In SIM(2), venous pressure and capillary flow correspond to P(IM) distribution, whereas capillary flow in SIM(1) is less than 10% of flow in SIM(2), in the muscle half without draining vein. This difference is caused by a high central P(IM), followed by central venous pressure rise, in agreement with the waterfall theory. The high central pressure (SIM(1)), obstructs outflow from the distal veins. Distal venous pressure rises until central blood pressure is reached, although local P(IM) is low. Adding a distal vein (SIM(2)) restores the perfusion. It is concluded that regional effects contribute to the interaction between P(IM) and perfusion during contraction. Unlike stated by the vascular waterfall theory, venous pressure may locally exceed P(IM). Although this can be explained by the principles of this theory, the theory does not include this phenomenon as such.

  9. Biomimetic model systems of rigid hair beds: Part I - Theory

    NASA Astrophysics Data System (ADS)

    Hood, Kaitlyn; Jammalamadaka, Mani S. S.; Hosoi, Anette

    2017-11-01

    Crustaceans - such as lobsters, crabs, and stomapods - have hairy appendages that they use to recognize and track odorants in the surrounding fluid. An array of rigid hairs impedes flow at different rates depending on the spacing between hairs and the Reynolds number, Re. At larger Reynolds numbers (Re >1), fluid travels through the hairs rather than around them, a phenomenon called leakiness. Crustaceans flick their appendages at different speeds in order to manipulate the leakiness between the hairs, allowing the hairs to either detect odors in a sample of fluid or collect a new sample. A single hair can be represented as a slender body attached at one end to a wall. Using both slender body theory and numerical methods, we observe that there is a region of flow around the hair that speeds up relative to the unobstructed flow. As the Reynolds number increases, this fast flow region moves closer to the hair. Using this model, we predict that an array of hairs can be engineered to have a desired leakiness profile.

  10. A Method for Computing the Core Flow in Three-Dimensional Leading-Edge Vortices. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    1985-01-01

    A theory is presented for calculating the flow in the core of a separation-induced leading-edge vortex. The method is based on matching inner and outer representations of the vortex. The inner model of the vortex is based on the quasicylindrical Navier-Stokes equations; the flow is assumed to be steady, axially symmetric, and incompressible and in addition, gradients in the radial direction are assumed to be much larger then gradients in the axial direction. The outer model is based on the three-dimensional free-vortex-sheet theory, a higher-order panel method which solves the Prandtl-Glauert equation including nonlinear boundary conditions pertinent to the concentrated vorticity representation of the leading edge vortex. The resultant flow is evaluated a posteriori for evidence of incipient vortex breakdown and the critical helix angle concept, in conjunction with an adverse longitudinal pressure gradient, is found to correlate well with the occurrence of vortex breakdown at the trailing edge of delta, arrow, and diamond wings.

  11. Nonlinear modeling of forced magnetic reconnection in slab geometry with NIMROD

    NASA Astrophysics Data System (ADS)

    Beidler, M. T.; Callen, J. D.; Hegna, C. C.; Sovinec, C. R.

    2017-05-01

    The nonlinear, extended-magnetohydrodynamic (MHD) code NIMROD is benchmarked with the theory of time-dependent forced magnetic reconnection induced by small resonant fields in slab geometry in the context of visco-resistive MHD modeling. Linear computations agree with time-asymptotic, linear theory of flow screening of externally applied fields. The inclusion of flow in nonlinear computations can result in mode penetration due to the balance between electromagnetic and viscous forces in the time-asymptotic state, which produces bifurcations from a high-slip state to a low-slip state as the external field is slowly increased. We reproduce mode penetration and unlocking transitions by employing time-dependent externally applied magnetic fields. Mode penetration and unlocking exhibit hysteresis and occur at different magnitudes of applied field. We also establish how nonlinearly determined flow screening of the resonant field is affected by the square of the magnitude of the externally applied field. These results emphasize that the inclusion of nonlinear physics is essential for accurate prediction of the reconnected field in a flowing plasma.

  12. Full velocity difference model for a car-following theory.

    PubMed

    Jiang, R; Wu, Q; Zhu, Z

    2001-07-01

    In this paper, we present a full velocity difference model for a car-following theory based on the previous models in the literature. To our knowledge, the model is an improvement over the previous ones theoretically, because it considers more aspects in car-following process than others. This point is verified by numerical simulation. Then we investigate the property of the model using both analytic and numerical methods, and find that the model can describe the phase transition of traffic flow and estimate the evolution of traffic congestion.

  13. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.

    PubMed

    Brader, J M; Siebenbürger, M; Ballauff, M; Reinheimer, K; Wilhelm, M; Frey, S J; Weysser, F; Fuchs, M

    2010-12-01

    Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the nonlinearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory experiments (with Fourier transform rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disk mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in good agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves, and large amplitude oscillatory spectroscopy.

  14. Modeling sediment concentration in debris flow by Tsallis entropy

    NASA Astrophysics Data System (ADS)

    Singh, Vijay P.; Cui, Huijuan

    2015-02-01

    Debris flow is a natural hazard that occurs in landscapes having high slopes, such as mountainous areas. It can be so powerful that it destroys whatever comes in its way, that is, it can kill people and animals; decimate roads, bridges, railway tracks, homes and other property; and fill reservoirs. Owing to its frequent occurrence, it is receiving considerable attention these days. Of fundamental importance in debris flow modeling is the determination of concentration of debris (or sediment) in the flow. The usual approach to determining debris flow concentration is either empirical or hydraulic. Both approaches are deterministic and therefore say nothing about the uncertainty associated with the sediment concentration in the flow. This paper proposes to model debris flow concentration using the Tsallis entropy theory. Verification of the entropy-based distribution of debris flow concentration using the data and equations reported in the literature shows that the Tsallis entropy-proposed model is capable of mimicking the field observed concentration and has potential for practical application.

  15. Studying Turbulence Using Numerical Simulation Databases. 3: Proceedings of the 1990 Summer Program

    NASA Technical Reports Server (NTRS)

    Spinks, Debra (Compiler)

    1990-01-01

    Papers that cover the following topics are presented: subgrid scale modeling; turbulence modeling; turbulence structure, transport, and control; small scales mixing; turbulent reacting flows; and turbulence theory.

  16. Netflow Theory Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozinoski, Radoslav; Winters, William

    2016-01-01

    The purpose of this report is to document the theoretical models utilized by the computer code NETFLOW. This report will focus on the theoretical models used to analyze high Mach number fully compressible transonic flows in piping networks.

  17. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories.

    PubMed

    Buican, Matthew; Laczko, Zoltan

    2018-02-23

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N=2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N=2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  18. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories

    NASA Astrophysics Data System (ADS)

    Buican, Matthew; Laczko, Zoltan

    2018-02-01

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N =2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N =2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  19. Particle and momentum confinement in tokamak plasmas with unbalanced neutral beam injection and strong rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, M.A.

    1988-01-01

    There is a self-consistent theory of the effects of neutral beam injection on impurity transport in tokamak plasmas. The theory predicts that co-injection drives impurities outward and that counter-injection enhances the normally inward flow of impurities. The theory was applied to carry out a detailed analysis of the large experimental database from the PLT and the ISX-B tokamaks. The theory was found to generally model the experimental data quite well. It is, therefore, concluded that neutral beam co-injection can drive impurities outward to achieve clean central plasmas and a cool radiating edge. Theoretical predictions for future thermonuclear reactors such asmore » INTOR, TIBER II, and ITER indicated that neutral beam driven flow reversal might be an effective impurity control method if the rate of beam momentum deposited per plasma ion is adequate. The external momentum drag, which is a pivotal concept in impurity flow reversal theory, is correctly predicted by the gyroviscous theory of momentum confinement. The theory was applied to analyze experimental data from the PLT and the PDX tokamaks with exact experimental conditions. The theory was found to be in excellent agreement with experiment over a wide range of parameters. It is, therefore, possible to formulate the impurity transport theory from first principles, without resort to empiricism.« less

  20. Practical application of game theory based production flow planning method in virtual manufacturing networks

    NASA Astrophysics Data System (ADS)

    Olender, M.; Krenczyk, D.

    2016-08-01

    Modern enterprises have to react quickly to dynamic changes in the market, due to changing customer requirements and expectations. One of the key area of production management, that must continuously evolve by searching for new methods and tools for increasing the efficiency of manufacturing systems is the area of production flow planning and control. These aspects are closely connected with the ability to implement the concept of Virtual Enterprises (VE) and Virtual Manufacturing Network (VMN) in which integrated infrastructure of flexible resources are created. In the proposed approach, the players role perform the objects associated with the objective functions, allowing to solve the multiobjective production flow planning problems based on the game theory, which is based on the theory of the strategic situation. For defined production system and production order models ways of solving the problem of production route planning in VMN on computational examples for different variants of production flow is presented. Possible decision strategy to use together with an analysis of calculation results is shown.

  1. An assessment of first-order stochastic dispersion theories in porous media

    NASA Astrophysics Data System (ADS)

    Chin, David A.

    1997-12-01

    Random realizations of three-dimensional exponentially correlated hydraulic conductivity fields are used in a finite-difference numerical flow model to calculate the mean and covariance of the corresponding Lagrangian-velocity fields. The dispersivity of the porous medium is then determined from the Lagrangian-velocity statistics using the Taylor definition. This estimation procedure is exact, except for numerical errors, and the results are used to assess the accuracy of various first-order dispersion theories in both isotropic and anisotropic porous media. The results show that the Dagan theory is by far the most robust in both isotropic and anisotropic media, producing accurate values of the principal dispersivity components for σy as high as 1.0, In the case of anisotropic media where the flow is at an angle to the principal axis of hydraulic conductivity, it is shown that the dispersivity tensor is rotated away from the flow direction in the non-Fickian phase, but eventually coincides with the flow direction in the Fickian phase.

  2. Modeling of Density-Dependent Flow based on the Thermodynamically Constrained Averaging Theory

    NASA Astrophysics Data System (ADS)

    Weigand, T. M.; Schultz, P. B.; Kelley, C. T.; Miller, C. T.; Gray, W. G.

    2016-12-01

    The thermodynamically constrained averaging theory (TCAT) has been used to formulate general classes of porous medium models, including new models for density-dependent flow. The TCAT approach provides advantages that include a firm connection between the microscale, or pore scale, and the macroscale; a thermodynamically consistent basis; explicit inclusion of factors such as a diffusion that arises from gradients associated with pressure and activity and the ability to describe both high and low concentration displacement. The TCAT model is presented and closure relations for the TCAT model are postulated based on microscale averages and a parameter estimation is performed on a subset of the experimental data. Due to the sharpness of the fronts, an adaptive moving mesh technique was used to ensure grid independent solutions within the run time constraints. The optimized parameters are then used for forward simulations and compared to the set of experimental data not used for the parameter estimation.

  3. Detailed finite element method modeling of evaporating multi-component droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diddens, Christian, E-mail: C.Diddens@tue.nl

    The evaporation of sessile multi-component droplets is modeled with an axisymmetic finite element method. The model comprises the coupled processes of mixture evaporation, multi-component flow with composition-dependent fluid properties and thermal effects. Based on representative examples of water–glycerol and water–ethanol droplets, regular and chaotic examples of solutal Marangoni flows are discussed. Furthermore, the relevance of the substrate thickness for the evaporative cooling of volatile binary mixture droplets is pointed out. It is shown how the evaporation of the more volatile component can drastically decrease the interface temperature, so that ambient vapor of the less volatile component condenses on the droplet.more » Finally, results of this model are compared with corresponding results of a lubrication theory model, showing that the application of lubrication theory can cause considerable errors even for moderate contact angles of 40°. - Graphical abstract:.« less

  4. Sound transmission in narrow pipes with superimposed uniform mean flow and acoustic modelling of automobile catalytic converters

    NASA Astrophysics Data System (ADS)

    Dokumaci, E.

    1995-05-01

    The theory of Zwikker and Kosten for axisymmetric wave propagation in circular pipes has been extended to include the effect of uniform mean flow. This formulation can be used in acoustical modelling of both the honeycomb pipes in monolithic catalytic converters and the standard pipes in internal combustion engine exhaust lines. The effects of mean flow on the propagation constants are shown. Two-port elements for acoustic modelling of the honeycomb structure of monolithic catalytic converters are developed and applied to the prediction of the transmission loss characteristics.

  5. An application of miniscale experiments on Earth to refine microgravity analysis of adiabatic multiphase flow in space

    NASA Technical Reports Server (NTRS)

    Rothe, Paul H.; Martin, Christine; Downing, Julie

    1994-01-01

    Adiabatic two-phase flow is of interest to the design of multiphase fluid and thermal management systems for spacecraft. This paper presents original data and unifies existing data for capillary tubes as a step toward assessing existing multiphase flow analysis and engineering software. Comparisons of theory with these data once again confirm the broad accuracy of the theory. Due to the simplicity and low cost of the capillary tube experiments, which were performed on earth, we were able to closely examine for the first time a flow situation that had not previously been examined appreciably by aircraft tests. This is the situation of a slug flow at high quality, near transition to annular flow. Our comparison of software calculations with these data revealed overprediction of pipeline pressure drop by up to a factor of three. In turn, this finding motivated a reexamination of the existing theory, and then development of a new analytical and is in far better agreement with the data. This sequence of discovery illustrates the role of inexpensive miniscale modeling on earth to anticipate microgravity behavior in space and to complete and help define needs for aircraft tests.

  6. A multicomponent coupled model of glacier hydrology 1. Theory and synthetic examples

    NASA Astrophysics Data System (ADS)

    Flowers, Gwenn E.; Clarke, Garry K. C.

    2002-11-01

    Basal hydrology is acknowledged as a fundamental control on glacier dynamics, especially in cases where surface meltwater reaches the bed. For many glaciers at midlatitudes, basal drainage is influenced by subaerial, englacial, and subsurface water flow. One of the major shortcomings of existing basal hydrology models is the treatment of the glacier bed as an isolated system. We present theoretical and computational models that couple glacier surface runoff, englacial water storage and transport, subglacial drainage, and subsurface groundwater flow. Each of the four model components is represented as a two-dimensional, vertically integrated layer that communicates with its neighbors through water exchange. Governing equations are derived from the law of mass conservation and are expressed as a balance between the internal distribution of water and external sources. The numerical exposition of this theory is a time-dependent finite difference model that can be used to simulate glacier drainage. In this paper we outline the theory and conduct simple tests using an idealized glacier geometry. In the companion paper, the model is tailored to Trapridge Glacier, Yukon Territory, Canada, where results are compared with measurements of subglacial water pressure.

  7. The Cartridge Theory: a description of the functioning of horizontal subsurface flow constructed wetlands for wastewater treatment, based on modelling results.

    PubMed

    Samsó, Roger; García, Joan

    2014-03-01

    Despite the fact that horizontal subsurface flow constructed wetlands have been in operation for several decades now, there is still no clear understanding of some of their most basic internal functioning patterns. To fill this knowledge gap, on this paper we present what we call "The Cartridge Theory". This theory was derived from simulation results obtained with the BIO_PORE model and explains the functioning of urban wastewater treatment wetlands based on the interaction between bacterial communities and the accumulated solids leading to clogging. In this paper we start by discussing some changes applied to the biokinetic model implemented in BIO_PORE (CWM1) so that the growth of bacterial communities is consistent with a well-known population dynamics models. This discussion, combined with simulation results for a pilot wetland system, led to the introduction of "The Cartridge Theory", which states that the granular media of horizontal subsurface flow wetlands can be assimilated to a generic cartridge which is progressively consumed (clogged) with inert solids from inlet to outlet. Simulations also revealed that bacterial communities are poorly distributed within the system and that their location is not static but changes over time, moving towards the outlet as a consequence of the progressive clogging of the granular media. According to these findings, the life-span of constructed wetlands corresponds to the time when bacterial communities are pushed as much towards the outlet that their biomass is not anymore sufficient to remove the desirable proportion of the influent pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Constitutive model development for flows of granular materials

    NASA Astrophysics Data System (ADS)

    Chialvo, Sebastian

    Granular flows are ubiquitous in both natural and industrial processes. When com- posed of dry, noncohesive particles, they manifest three different flow regimes---commonly referred to as the quasistatic, inertial, and intermediate regimes---each of which exhibits its own dependences on solids volume fraction, shear rate, and particle-level properties. The differences in these regimes can be attributed to microscale phenomena, with quasistatic flows being dominated by enduring, frictional contacts between grains, inertial flows by grain collisions, and intermediate flows by a combination of the two. Existing constitutive models for the solids-phase stress tend to focus on one or two regimes at a time, with a limited degree of success; the same is true of models for wall-boundary conditions for granular flows. Moreover, these models tend not to be based on detailed particle-level flow data, either from experiment or simulation. Clearly, a comprehensive modeling framework is lacking. The work in this thesis aims to address these issues by proposing continuum models constructed on the basis of discrete element method (DEM) simulations of granular shear flows. Specifically, we propose (a) a constitutive stress model that bridges the three dense flow regimes, (b) an modified kinetic-theory model that covers both the dense and dilute ends of the inertial regime, and (c) a boundary-condition model for dense, wall-bounded flows. These models facilitate the modeling of a wide range of flow systems of practical interest and provide ideas for further model development and refinement.

  9. Benchmarking computational fluid dynamics models of lava flow simulation for hazard assessment, forecasting, and risk management

    USGS Publications Warehouse

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.

    2017-01-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.

  10. The research on flow pulsation characteristics of axial piston pump

    NASA Astrophysics Data System (ADS)

    Wang, Bingchao; Wang, Yulin

    2017-01-01

    The flow pulsation is an important factor influencing the axial piston pump performance. In this paper we implement modeling and simulation of the axial piston pump with AMESim software to explore the flow pulsation characteristics under various factors . Theory analysis shows the loading pressure, angular speed, piston numbers and the accumulator impose evident influence on the flow pulsation characteristics. This simulation and analysis can be used for reducing the flow pulsation rate via properly setting the related factors.

  11. The Mach number of the cosmic flow - A critical test for current theories

    NASA Technical Reports Server (NTRS)

    Ostriker, Jeremiah P.; Suto, Yusushi

    1990-01-01

    A new cosmological, self-contained test using the ratio of mean velocity and the velocity dispersion in the mean flow frame of a group of test objects is presented. To allow comparison with linear theory, the velocity field must first be smoothed on a suitable scale. In the context of linear perturbation theory, the Mach number M(R) which measures the ratio of power on scales larger than to scales smaller than the patch size R, is independent of the perturbation amplitude and also of bias. An apparent inconsistency is found for standard values of power-law index n = 1 and cosmological density parameter Omega = 1, when comparing values of M(R) predicted by popular models with tentative available observations. Nonstandard models based on adiabatic perturbations with either negative n or small Omega value also fail, due to creation of unacceptably large microwave background fluctuations.

  12. A mathematical model for the iron/chromium redox battery

    NASA Technical Reports Server (NTRS)

    Fedkiw, P. S.; Watts, R. W.

    1984-01-01

    A mathematical model has been developed to describe the isothermal operation of a single anode-separator-cathode unit cell in a redox-flow battery and has been applied to the NASA iron/chromium system. The model, based on porous electrode theory, incorporates redox kinetics, mass transfer, and ohmic effects as well as the parasitic hydrogen reaction which occurs in the chromium electrode. A numerical parameter study was carried out to predict cell performance to aid in the rational design, scale-up, and operation of the flow battery. The calculations demonstrate: (1) an optimum electrode thickness and electrolyte flow rate exist; (2) the amount of hydrogen evolved and, hence, cycle faradaic efficiency, can be affected by cell geometry, flow rate, and charging procedure; (3) countercurrent flow results in enhanced cell performance over cocurrent flow; and (4) elevated temperature operation enhances cell performance.

  13. Traffic flow theory and chaotic behavior

    DOT National Transportation Integrated Search

    1989-03-01

    Many commonly occurring natural systems are modeled with mathematical experessions and exhibit a certain stability. The inherent stability of these equations allows them to serve as the basis for engineering predictions. More complex models, such as ...

  14. Vibration characteristics of an inclined flip-flow screen panel in banana flip-flow screens

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoyan; Niu, Linkai; Gu, Chengxiang; Wang, Yinhua

    2017-12-01

    A banana flip-flow screen is an effective solution for the screening of high-viscosity, high-water and fine materials. As one of the key components, the vibration characteristics of the inclined flip-flow screen panel largely affects the screen performance and the processing capacity. In this paper, a mathematical model for the vibration characteristic of the inclined flip-flow screen panel is proposed based on Catenary theory. The reasonability of Catenary theory in analyzing the vibration characteristic of flip-flow screen panels is verified by a published experiment. Moreover, the effects of the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen on the vertical deflection, the vertical velocity and the vertical acceleration of the screen panel are investigated parametrically. The results show that the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen have significant effects on the vibrations of an inclined flip-flow screen panel, and these parameters should be optimized.

  15. Congested Aggregation via Newtonian Interaction

    NASA Astrophysics Data System (ADS)

    Craig, Katy; Kim, Inwon; Yao, Yao

    2018-01-01

    We consider a congested aggregation model that describes the evolution of a density through the competing effects of nonlocal Newtonian attraction and a hard height constraint. This provides a counterpoint to existing literature on repulsive-attractive nonlocal interaction models, where the repulsive effects instead arise from an interaction kernel or the addition of diffusion. We formulate our model as the Wasserstein gradient flow of an interaction energy, with a penalization to enforce the constraint on the height of the density. From this perspective, the problem can be seen as a singular limit of the Keller-Segel equation with degenerate diffusion. Two key properties distinguish our problem from previous work on height constrained equations: nonconvexity of the interaction kernel (which places the model outside the scope of classical gradient flow theory) and nonlocal dependence of the velocity field on the density (which causes the problem to lack a comparison principle). To overcome these obstacles, we combine recent results on gradient flows of nonconvex energies with viscosity solution theory. We characterize the dynamics of patch solutions in terms of a Hele-Shaw type free boundary problem and, using this characterization, show that in two dimensions patch solutions converge to a characteristic function of a disk in the long-time limit, with an explicit rate on the decay of the energy. We believe that a key contribution of the present work is our blended approach, combining energy methods with viscosity solution theory.

  16. A numerical study of blood flow using mixture theory

    PubMed Central

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F.

    2014-01-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner–Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed. PMID:24791016

  17. A numerical study of blood flow using mixture theory.

    PubMed

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F

    2014-03-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner-Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM ® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed.

  18. Visualization study of flow in axial flow inducer.

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.

    1972-01-01

    A visualization study of the flow through a three ft dia model of a four bladed inducer, which is operated in air at a flow coefficient of 0.065, is reported in this paper. The flow near the blade surfaces, inside the rotating passages, downstream and upstream of the inducer is visualized by means of smoke, tufts, ammonia filament, and lampblack techniques. Flow is found to be highly three dimensional, with appreciable radial velocity throughout the entire passage. The secondary flows observed near the hub and annulus walls agree with qualitative predictions obtained from the inviscid secondary flow theory.

  19. Polymer Fluid Dynamics: Continuum and Molecular Approaches.

    PubMed

    Bird, R B; Giacomin, A J

    2016-06-07

    To solve problems in polymer fluid dynamics, one needs the equations of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (a) One can write a continuum expression for the stress tensor in terms of kinematic tensors, or (b) one can select a molecular model that represents the polymer molecule and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. We restrict the discussion primarily to the simplest stress tensor expressions or constitutive equations containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. Studying the simplest models allows us to discover which types of empiricisms or molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows, which are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.

  20. Laboratory investigations of the physics of steam flow in a porous medium

    USGS Publications Warehouse

    Herkelrath, W.N.; Moench, A.F.

    1982-01-01

    Experiments were carried out in the laboratory to test a theory of transient flow of pure steam in a uniform porous medium. This theory is used extensively in modeling pressure-transient behavior in vapor-dominated geothermal systems. Transient, superheated steam-flow experiments were run by bringing a cylinder of porous material to a uniform initial pressure, and then making a step increase in pressure at one end of the sample, while monitoring the pressure-transient breakthrough at the other end. It was found in experiments run at 100?, 125?, and 146?C that the time required for steam-pressure transients to propagate through an unconsolidated material containing sand, silt, and clay was 10 to 25 times longer than predicted by theory. It is hypothesized that the delay in the steam-pressure transient was caused by adsorption of steam in the porous sample. In order to account for steam adsorption, a sink term was included in the conservation of mass equation. In addition, energy transfer in the system has to be considered because latent heat is released when steam adsorption occurs, increasing the sample temperature by as much as 10?C. Finally, it was recognized that the steam pressure was a function of both the temperature and the amount of adsorption in the sample. For simplicity, this function was assumed to be in equilibrium adsorption isotherm, which was determined by experiment. By solving the modified mass and energy equations numerically, subject to the empirical adsorption isotherm relationship, excellent theoretical simulation of the experiments was achieved. The experiments support the hypothesis that adsorption of steam can strongly influence steam pressure-transient behavior in porous media; the results suggest that the modified steam-flow theory, which includes steam adsorption terms, should be used in modeling steam flow in vapor-dominated geothermal systems.

  1. Nonlinear dynamics of shells conveying pulsatile flow with pulse-wave propagation. Theory and numerical results for a single harmonic pulsation

    NASA Astrophysics Data System (ADS)

    Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.

    2017-05-01

    In deformable shells conveying pulsatile flow, oscillatory pressure changes cause local movements of the fluid and deformation of the shell wall, which propagate downstream in the form of a wave. In biomechanics, it is the propagation of the pulse that determines the pressure gradient during the flow at every location of the arterial tree. In this study, a woven Dacron aortic prosthesis is modelled as an orthotropic circular cylindrical shell described by means of the Novozhilov nonlinear shell theory. Flexible boundary conditions are considered to simulate connection with the remaining tissue. Nonlinear vibrations of the shell conveying pulsatile flow and subjected to pulsatile pressure are investigated taking into account the effects of the pulse-wave propagation. For the first time in literature, coupled fluid-structure Lagrange equations of motion for a non-material volume with wave propagation in case of pulsatile flow are developed. The fluid is modeled as a Newtonian inviscid pulsatile flow and it is formulated using a hybrid model based on the linear potential flow theory and considering the unsteady viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. Contributions of pressure and velocity propagation are also considered in the pressure drop along the shell and in the pulsatile frictional traction on the internal wall in the axial direction. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior of a pressurized Dacron aortic graft conveying blood flow. A pulsatile time-dependent blood flow model is considered by applying the first harmonic of the physiological waveforms of velocity and pressure during the heart beating period. Geometrically nonlinear vibration response to pulsatile flow and transmural pulsatile pressure, considering the propagation of pressure and velocity changes inside the shell, is here presented via frequency-response curves, time histories, bifurcation diagrams and Poincaré maps. It is shown that traveling waves of pressure and velocity cause a delay in the radial displacement of the shell at different values of the axial coordinate. The effect of different pulse wave velocities is also studied. Comparisons with the corresponding ideal case without wave propagation (i.e. with the same pulsatile velocity and pressure at any point of the shell) are here discussed. Bifurcation diagrams of Poincaré maps obtained from direct time integration have been used to study the system in the spectral neighborhood of the fundamental natural frequency. By increasing the forcing frequency, the response undergoes very complex nonlinear dynamics (chaos, amplitude modulation and period-doubling bifurcation), here deeply investigated.

  2. Inverse Theory for Petroleum Reservoir Characterization and History Matching

    NASA Astrophysics Data System (ADS)

    Oliver, Dean S.; Reynolds, Albert C.; Liu, Ning

    This book is a guide to the use of inverse theory for estimation and conditional simulation of flow and transport parameters in porous media. It describes the theory and practice of estimating properties of underground petroleum reservoirs from measurements of flow in wells, and it explains how to characterize the uncertainty in such estimates. Early chapters present the reader with the necessary background in inverse theory, probability and spatial statistics. The book demonstrates how to calculate sensitivity coefficients and the linearized relationship between models and production data. It also shows how to develop iterative methods for generating estimates and conditional realizations. The text is written for researchers and graduates in petroleum engineering and groundwater hydrology and can be used as a textbook for advanced courses on inverse theory in petroleum engineering. It includes many worked examples to demonstrate the methodologies and a selection of exercises.

  3. Investigation of metrics to assess vascular flow modifications for diverter device designs using hydrodynamics and angiographic studies

    NASA Astrophysics Data System (ADS)

    Ionita, Ciprian N.; Bednarek, Daniel R.; Rudin, Stephen

    2012-03-01

    Intracranial aneurysm treatment with flow diverters (FD) is a new minimally invasive approach, recently approved for use in human patients. Attempts to correlate the flow reduction observed in angiograms with a parameter related to the FD structure have not been totally successful. To find the proper parameter, we investigated four porous-media flow models. The models describing the relation between the pressure drop and flow velocity that are investigated include the capillary theory linear model (CTLM), the drag force linear model (DFLM), the simple quadratic model (SQM) and the modified quadratic model (MQM). Proportionality parameters are referred to as permeability for the linear models and resistance for the quadratic ones. A two stage experiment was performed. First, we verified flow model validity by placing six different stainless-steel meshes, resembling FD structures, in known flow conditions. The best flow model was used for the second stage, where six different FD's were inserted in aneurysm phantoms and flow modification was estimated using angiographically derived time density curves (TDC). Finally, TDC peak variation was compared with the FD parameter. Model validity experiments indicated errors of: 70% for the linear models, 26% for the SQM and 7% for the MQM. The resistance calculated according to the MQM model correlated well with the contrast flow reduction. Results indicate that resistance calculated according to MQM is appropriate to characterize the FD and could explain the flow modification observed in angiograms.

  4. Noise from Supersonic Coaxial Jets. Part 1; Mean Flow Predictions

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Morris, Philip J.

    1997-01-01

    Recent theories for supersonic jet noise have used an instability wave noise generation model to predict radiated noise. This model requires a known mean flow that has typically been described by simple analytic functions for single jet mean flows. The mean flow of supersonic coaxial jets is not described easily in terms of analytic functions. To provide these profiles at all axial locations, a numerical scheme is developed to calculate the mean flow properties of a coaxial jet. The Reynolds-averaged, compressible, parabolic boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed to account for the effects of velocity and temperature ratios and Mach number on the shear layer spreading. Both normal velocity profile and inverted velocity profile coaxial jets are considered. The mixing length model is modified in each case to obtain reasonable results when the two stream jet merges into a single fully developed jet. The mean flow calculations show both good qualitative and quantitative agreement with measurements in single and coaxial jet flows.

  5. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.

    PubMed

    Decker, Gifford Z; Thomson, Scott L

    2007-05-01

    The use of the mechanical energy (ME) equation for fluid flow, an extension of the Bernoulli equation, to predict the aerodynamic loading on a two-dimensional finite element vocal fold model is examined. Three steady, one-dimensional ME flow models, incorporating different methods of flow separation point prediction, were compared. For two models, determination of the flow separation point was based on fixed ratios of the glottal area at separation to the minimum glottal area; for the third model, the separation point determination was based on fluid mechanics boundary layer theory. Results of flow rate, separation point, and intraglottal pressure distribution were compared with those of an unsteady, two-dimensional, finite element Navier-Stokes model. Cases were considered with a rigid glottal profile as well as with a vibrating vocal fold. For small glottal widths, the three ME flow models yielded good predictions of flow rate and intraglottal pressure distribution, but poor predictions of separation location. For larger orifice widths, the ME models were poor predictors of flow rate and intraglottal pressure, but they satisfactorily predicted separation location. For the vibrating vocal fold case, all models resulted in similar predictions of mean intraglottal pressure, maximum orifice area, and vibration frequency, but vastly different predictions of separation location and maximum flow rate.

  6. Feedback control for unsteady flow and its application to the stochastic Burgers equation

    NASA Technical Reports Server (NTRS)

    Choi, Haecheon; Temam, Roger; Moin, Parviz; Kim, John

    1993-01-01

    The study applies mathematical methods of control theory to the problem of control of fluid flow with the long-range objective of developing effective methods for the control of turbulent flows. Model problems are employed through the formalism and language of control theory to present the procedure of how to cast the problem of controlling turbulence into a problem in optimal control theory. Methods of calculus of variations through the adjoint state and gradient algorithms are used to present a suboptimal control and feedback procedure for stationary and time-dependent problems. Two types of controls are investigated: distributed and boundary controls. Several cases of both controls are numerically simulated to investigate the performances of the control algorithm. Most cases considered show significant reductions of the costs to be minimized. The dependence of the control algorithm on the time-descretization method is discussed.

  7. Estimating outflow facility through pressure dependent pathways of the human eye

    PubMed Central

    Gardiner, Bruce S.

    2017-01-01

    We develop and test a new theory for pressure dependent outflow from the eye. The theory comprises three main parameters: (i) a constant hydraulic conductivity, (ii) an exponential decay constant and (iii) a no-flow intraocular pressure, from which the total pressure dependent outflow, average outflow facilities and local outflow facilities for the whole eye may be evaluated. We use a new notation to specify precisely the meaning of model parameters and so model outputs. Drawing on a range of published data, we apply the theory to animal eyes, enucleated eyes and in vivo human eyes, and demonstrate how to evaluate model parameters. It is shown that the theory can fit high quality experimental data remarkably well. The new theory predicts that outflow facilities and total pressure dependent outflow for the whole eye are more than twice as large as estimates based on the Goldman equation and fluorometric analysis of anterior aqueous outflow. It appears likely that this discrepancy can be largely explained by pseudofacility and aqueous flow through the retinal pigmented epithelium, while any residual discrepancy may be due to pathological processes in aged eyes. The model predicts that if the hydraulic conductivity is too small, or the exponential decay constant is too large, then intraocular eye pressure may become unstable when subjected to normal circadian changes in aqueous production. The model also predicts relationships between variables that may be helpful when planning future experiments, and the model generates many novel testable hypotheses. With additional research, the analysis described here may find application in the differential diagnosis, prognosis and monitoring of glaucoma. PMID:29261696

  8. The Emergence of Modern Humans.

    ERIC Educational Resources Information Center

    Stringer, Christopher B.

    1990-01-01

    Presented are the three main theories that describe the pattern of evolution of geographic variants of H. sapiens--the multiregional model, the out-of-Africa model, and the gene-flow or hybridization model. The contributions of geneticists, paleoanthropologists, and the history of fossils are included. (KR)

  9. Theories of dynamical phenomena in sunspots

    NASA Technical Reports Server (NTRS)

    Thomas, J. H.

    1981-01-01

    Attempts that have been made to understand and explain observed dynamical phenomena in sunspots within the framework of magnetohydrodynamic theory are surveyed. The qualitative aspects of the theory and physical arguments are emphasized, with mathematical details generally avoided. The dynamical phenomena in sunspots are divided into two categories: aperiodic (quasi-steady) and oscillatory. For each phenomenon discussed, the salient observational features that any theory should explain are summarized. The two contending theoretical models that can account for the fine structure of the Evershed motion, namely the convective roll model and the siphon flow model, are described. With regard to oscillatory phenomena, attention is given to overstability and oscillatory convection, umbral oscillations and flashes. penumbral waves, five-minute oscillations in sunspots, and the wave cooling of sunspots.

  10. [Ecological management model of agriculture-pasture ecotone based on the theory of energy and material flow--a case study in Houshan dryland area of Inner Mongolia].

    PubMed

    Fan, Jinlong; Pan, Zhihua; Zhao, Ju; Zheng, Dawei; Tuo, Debao; Zhao, Peiyi

    2004-04-01

    The degradation of ecological environment in the agriculture-pasture ecotone in northern China has been paid more attentions. Based on our many years' research and under the guide of energy and material flow theory, this paper put forward an ecological management model, with a hill as the basic cell and according to the natural, social and economic characters of Houshan dryland farming area inside the north agriculture-pasture ecotone. The input and output of three models, i.e., the traditional along-slope-tillage model, the artificial grassland model and the ecological management model, were observed and recorded in detail in 1999. Energy and material flow analysis based on field test showed that compared with traditional model, ecological management model could increase solar use efficiency by 8.3%, energy output by 8.7%, energy conversion efficiency by 19.4%, N output by 26.5%, N conversion efficiency by 57.1%, P output by 12.1%, P conversion efficiency by 45.0%, and water use efficiency by 17.7%. Among the models, artificial grassland model had the lowest solar use efficiency, energy output and energy conversion efficiency; while the ecological management model had the most outputs and benefits, was the best model with high economic effect, and increased economic benefits by 16.1%, compared with the traditional model.

  11. Optimization of flow modeling in fractured media with discrete fracture network via percolation theory

    NASA Astrophysics Data System (ADS)

    Donado-Garzon, L. D.; Pardo, Y.

    2013-12-01

    Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical percolation theory, the latter is applicable to such networks. Under these conditions, percolation theory permit us to reduced the number of elements (90% in average) that form clusters of the 100 DFNs, preserving the so-called backbone. In this way the calibration runs in these networks changed from several hours to just a second obtaining much better results.

  12. Porous Media and Mixture Models for Hygrothermal Behavior of Phenolic Composites

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Stokes, Eric H.

    1999-01-01

    Theoretical models are proposed to describe the interaction of water with phenolic polymer. The theoretical models involve the study of the flow of a viscous fluid through a porous media and the thermodynamic theory of mixtures. From the theory, a set of mathematical relations are developed to simulate the effect of water on the thermostructural response of phenolic composites. The expressions are applied to simulate the measured effect of water in a series of experiments conducted on carbon phenolic composites.

  13. SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport

    NASA Astrophysics Data System (ADS)

    Chauchat, Julien; Cheng, Zhen; Nagel, Tim; Bonamy, Cyrille; Hsu, Tian-Jian

    2017-11-01

    In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k - ɛ, and a k - ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.

  14. Traffic Flow Theory - A State-of-the-Art Report: Revised Monograph on Traffic Flow Theory

    DOT National Transportation Integrated Search

    2002-04-13

    This publication is an update and expansion of the Transportation Research Board (TRB) Special Report 165, "Traffic Flow Theory," published in 1975. This updating was undertaken on recommendation of the TRB's Committee on Traffic Flow Theory and Char...

  15. Testing relationships from the hierarchical model of intrinsic and extrinsic motivation using flow as a motivational consequence.

    PubMed

    Kowal, J; Fortier, M S

    2000-06-01

    The purpose of this study was to test a motivational model based on Vallerand's (1997) Hierarchical Model of Intrinsic and Extrinsic Motivation. This model incorporates situational and contextual motivational variables, and was tested using a time-lagged design. Master's level swimmers (N = 104) completed a questionnaire on two separate occasions. At Time 1, situational social factors (perceptions of success and perceptions of the motivational climate), situational motivational mediators (perceptions of autonomy, competence, and relatedness), situational motivation, and flow were assessed immediately following a swim practice. Contextual measures of these same variables were assessed at Time 2, 1 week later, with the exception of flow. Results of a path analysis supported numerous links in the hypothesized model. Findings are discussed in light of research and theory on motivation and flow.

  16. Two-phase non-Newtonian hydrodynamic modeling of slurries

    NASA Astrophysics Data System (ADS)

    Wang, C. S.; Lyczkowski, R. W.; Berry, G. F.

    The two-phase hydrodynamic theory of fluid/solid flow has been extended to incorporate the constitutive relationship for power-law non-Newtonian behavior. A model has been developed to predict the spatial and temporal variations in solids and liquid velocities and concentration of non-Newtonian slurries under high shear rates in diesel engine injection systems. Comparisons between the present non-Newtonian two-phase theory and the conventional theory have also been made. Selected results for diesel injection nozzle applications are presented. The results from this model can be used to calculate directly the erosion rates at the nozzle boundaries and the solids loading at the nozzle exit.

  17. Current Trends in Modeling Research for Turbulent Aerodynamic Flows

    NASA Technical Reports Server (NTRS)

    Gatski, Thomas B.; Rumsey, Christopher L.; Manceau, Remi

    2007-01-01

    The engineering tools of choice for the computation of practical engineering flows have begun to migrate from those based on the traditional Reynolds-averaged Navier-Stokes approach to methodologies capable, in theory if not in practice, of accurately predicting some instantaneous scales of motion in the flow. The migration has largely been driven by both the success of Reynolds-averaged methods over a wide variety of flows as well as the inherent limitations of the method itself. Practitioners, emboldened by their ability to predict a wide-variety of statistically steady, equilibrium turbulent flows, have now turned their attention to flow control and non-equilibrium flows, that is, separation control. This review gives some current priorities in traditional Reynolds-averaged modeling research as well as some methodologies being applied to a new class of turbulent flow control problems.

  18. Dry granular avalanche impact force on a rigid wall of semi-infinite height

    NASA Astrophysics Data System (ADS)

    Albaba, Adel; Lambert, Stéphane; Faug, Thierry

    2017-06-01

    The present paper tackles the problem of the impact of a dry granular avalanche-flow on a rigid wall of semi-infinite height. An analytic force model based on depth-averaged shock theory is proposed to describe the flow-wall interaction and the resulting impact force on the wall. Provided that the analytic force model is fed with the incoming flow conditions regarding thickness, velocity and density, all averaged over a certain distance downstream of the undisturbed incoming flow, it reproduces very well the time history of the impact force actually measured by detailed discrete element simulations, for a wide range of slope angles.

  19. Single-phase power distribution system power flow and fault analysis

    NASA Technical Reports Server (NTRS)

    Halpin, S. M.; Grigsby, L. L.

    1992-01-01

    Alternative methods for power flow and fault analysis of single-phase distribution systems are presented. The algorithms for both power flow and fault analysis utilize a generalized approach to network modeling. The generalized admittance matrix, formed using elements of linear graph theory, is an accurate network model for all possible single-phase network configurations. Unlike the standard nodal admittance matrix formulation algorithms, the generalized approach uses generalized component models for the transmission line and transformer. The standard assumption of a common node voltage reference point is not required to construct the generalized admittance matrix. Therefore, truly accurate simulation results can be obtained for networks that cannot be modeled using traditional techniques.

  20. A crystallographic model for the tensile and fatigue response for Rene N4 at 982 C

    NASA Technical Reports Server (NTRS)

    Sheh, M. Y.; Stouffer, D. C.

    1990-01-01

    An anisotropic constitutive model based on crystallographic slip theory was formulated for nickel-base single-crystal superalloys. The current equations include both drag stress and back stress state variables to model the local inelastic flow. Specially designed experiments have been conducted to evaluate the existence of back stress in single crystals. The results showed that the back stress effect of reverse inelastic flow on the unloading stress is orientation-dependent, and a back stress state variable in the inelastic flow equation is necessary for predicting inelastic behavior. Model correlations and predictions of experimental data are presented for the single crystal superalloy Rene N4 at 982 C.

  1. Breakdown parameter for kinetic modeling of multiscale gas flows.

    PubMed

    Meng, Jianping; Dongari, Nishanth; Reese, Jason M; Zhang, Yonghao

    2014-06-01

    Multiscale methods built purely on the kinetic theory of gases provide information about the molecular velocity distribution function. It is therefore both important and feasible to establish new breakdown parameters for assessing the appropriateness of a fluid description at the continuum level by utilizing kinetic information rather than macroscopic flow quantities alone. We propose a new kinetic criterion to indirectly assess the errors introduced by a continuum-level description of the gas flow. The analysis, which includes numerical demonstrations, focuses on the validity of the Navier-Stokes-Fourier equations and corresponding kinetic models and reveals that the new criterion can consistently indicate the validity of continuum-level modeling in both low-speed and high-speed flows at different Knudsen numbers.

  2. Mean-field theory for pedestrian outflow through an exit.

    PubMed

    Yanagisawa, Daichi; Nishinari, Katsuhiro

    2007-12-01

    The average pedestrian flow through an exit is one of the most important indices in evaluating pedestrian dynamics. In order to study the flow in detail, the floor field model, which is a crowd model using cellular automata, is extended by taking into account realistic behavior of pedestrians around the exit. The model is studied by both numerical simulations and cluster analysis to obtain a theoretical expression for the average pedestrian flow through the exit. It is found quantitatively that the effects of exit door width, the wall, and the pedestrian mood of competition or cooperation significantly influence the average flow. The results show that there is a suitable width and position of the exit according to the pedestrians' mood.

  3. A Study of Flow Theory in the Foreign Language Classroom.

    ERIC Educational Resources Information Center

    Egbert, Joy

    2003-01-01

    Focuses on the relationship between flow experiences and language learning. Flow theory suggests that flow experiences can lead to optimal learning. Findings suggest flow does exist in the foreign language classroom and that flow theory offers an interesting and useful framework for conceptualizing and evaluating language learning activities.…

  4. A search theory model of patch-to-patch forager movement with application to pollinator-mediated gene flow.

    PubMed

    Hoyle, Martin; Cresswell, James E

    2007-09-07

    We present a spatially implicit analytical model of forager movement, designed to address a simple scenario common in nature. We assume minimal depression of patch resources, and discrete foraging bouts, during which foragers fill to capacity. The model is particularly suitable for foragers that search systematically, foragers that deplete resources in a patch only incrementally, and for sit-and-wait foragers, where harvesting does not affect the rate of arrival of forage. Drawing on the theory of job search from microeconomics, we estimate the expected number of patches visited as a function of just two variables: the coefficient of variation of the rate of energy gain among patches, and the ratio of the expected time exploiting a randomly chosen patch and the expected time travelling between patches. We then consider the forager as a pollinator and apply our model to estimate gene flow. Under model assumptions, an upper bound for animal-mediated gene flow between natural plant populations is approximately proportional to the probability that the animal rejects a plant population. In addition, an upper bound for animal-mediated gene flow in any animal-pollinated agricultural crop from a genetically modified (GM) to a non-GM field is approximately proportional to the proportion of fields that are GM and the probability that the animal rejects a field.

  5. Renormalizability of the gradient flow in the 2D O(N) non-linear sigma model

    NASA Astrophysics Data System (ADS)

    Makino, Hiroki; Suzuki, Hiroshi

    2015-03-01

    It is known that the gauge field and its composite operators evolved by the Yang-Mills gradient flow are ultraviolet (UV) finite without any multiplicative wave function renormalization. In this paper, we prove that the gradient flow in the 2D O(N) non-linear sigma model possesses a similar property: The flowed N-vector field and its composite operators are UV finite without multiplicative wave function renormalization. Our proof in all orders of perturbation theory uses a (2+1)-dimensional field theoretical representation of the gradient flow, which possesses local gauge invariance without gauge field. As an application of the UV finiteness of the gradient flow, we construct the energy-momentum tensor in the lattice formulation of the O(N) non-linear sigma model that automatically restores the correct normalization and the conservation law in the continuum limit.

  6. A Hele-Shaw-Cahn-Hilliard Model for Incompressible Two-Phase Flows with Different Densities

    NASA Astrophysics Data System (ADS)

    Dedè, Luca; Garcke, Harald; Lam, Kei Fong

    2017-07-01

    Topology changes in multi-phase fluid flows are difficult to model within a traditional sharp interface theory. Diffuse interface models turn out to be an attractive alternative to model two-phase flows. Based on a Cahn-Hilliard-Navier-Stokes model introduced by Abels et al. (Math Models Methods Appl Sci 22(3):1150013, 2012), which uses a volume-averaged velocity, we derive a diffuse interface model in a Hele-Shaw geometry, which in the case of non-matched densities, simplifies an earlier model of Lee et al. (Phys Fluids 14(2):514-545, 2002). We recover the classical Hele-Shaw model as a sharp interface limit of the diffuse interface model. Furthermore, we show the existence of weak solutions and present several numerical computations including situations with rising bubbles and fingering instabilities.

  7. Mesoscale density variability in the mesosphere and thermosphere: Effects of vertical flow accelerations

    NASA Technical Reports Server (NTRS)

    Revelle, D. O.

    1987-01-01

    A mechanistic one dimensional numerical (iteration) model was developed which can be used to simulate specific types of mesoscale atmospheric density (and pressure) variability in the mesosphere and the thermosphere, namely those due to waves and those due to vertical flow accelerations. The model was developed with the idea that it could be used as a supplement to the TGCMs (thermospheric general circulation models) since such models have a very limited ability to model phenomena on small spatial scales. The simplest case to consider was the integration upward through a time averaged, height independent, horizontally divergent flow field. Vertical winds were initialized at the lower boundary using the Ekman pumping theory over flat terrain. The results of the computations are summarized.

  8. Asymptotic theory of two-dimensional trailing-edge flows

    NASA Technical Reports Server (NTRS)

    Melnik, R. E.; Chow, R.

    1975-01-01

    Problems of laminar and turbulent viscous interaction near trailing edges of streamlined bodies are considered. Asymptotic expansions of the Navier-Stokes equations in the limit of large Reynolds numbers are used to describe the local solution near the trailing edge of cusped or nearly cusped airfoils at small angles of attack in compressible flow. A complicated inverse iterative procedure, involving finite-difference solutions of the triple-deck equations coupled with asymptotic solutions of the boundary values, is used to accurately solve the viscous interaction problem. Results are given for the correction to the boundary-layer solution for drag of a finite flat plate at zero angle of attack and for the viscous correction to the lift of an airfoil at incidence. A rational asymptotic theory is developed for treating turbulent interactions near trailing edges and is shown to lead to a multilayer structure of turbulent boundary layers. The flow over most of the boundary layer is described by a Lighthill model of inviscid rotational flow. The main features of the model are discussed and a sample solution for the skin friction is obtained and compared with the data of Schubauer and Klebanoff for a turbulent flow in a moderately large adverse pressure gradient.

  9. New full velocity difference model considering the driver’s heterogeneity of the disturbance risk preference for car-following theory

    NASA Astrophysics Data System (ADS)

    Zeng, You-Zhi; Zhang, Ning

    2016-12-01

    This paper proposes a new full velocity difference model considering the driver’s heterogeneity of the disturbance risk preference for car-following theory to investigate the effects of the driver’s heterogeneity of the disturbance risk preference on traffic flow instability when the driver reacts to the relative velocity. We obtain traffic flow instability condition and the calculation method of the unstable region headway range and the probability of traffic congestion caused by a small disturbance. The analysis shows that has important effects the driver’s heterogeneity of the disturbance risk preference on traffic flow instability: (1) traffic flow instability is independent of the absolute size of the driver’s disturbance risk preference coefficient and depends on the ratio of the preceding vehicle driver’s disturbance risk preference coefficient to the following vehicle driver’s disturbance risk preference coefficient; (2) the smaller the ratio of the preceding vehicle driver’s disturbance risk preference coefficient to the following vehicle driver’s disturbance risk preference coefficient, the smaller traffic flow instability and vice versa. It provides some viable ideas to suppress traffic congestion.

  10. A quasi-one-dimensional theory of sound propagation in lined ducts with mean flow

    NASA Astrophysics Data System (ADS)

    Dokumaci, Erkan

    2018-04-01

    Sound propagation in ducts with locally-reacting liners has received the attention of many authors proposing two- and three-dimensional solutions of the convected wave equation and of the Pridmore-Brown equation. One-dimensional lined duct models appear to have received less attention. The present paper proposes a quasi-one-dimensional theory for lined uniform ducts with parallel sheared mean flow. The basic assumption of the theory is that the effects of refraction and wall compliance on the fundamental mode remain within ranges in which the acoustic fluctuations are essentially uniform over a duct section. This restricts the model to subsonic low Mach numbers and Helmholtz numbers of less than about unity. The axial propagation constants and the wave transfer matrix of the duct are given by simple explicit expressions and can be applied with no-slip, full-slip or partial slip boundary conditions. The limitations of the theory are discussed and its predictions are compared with the fundamental mode solutions of the convected wave equation, the Pridmore-Brown equation and measurements where available.

  11. An analytic solution for periodic thermally-driven flows over an infinite slope

    NASA Astrophysics Data System (ADS)

    Zardi, Dino; Serafin, Stefano

    2013-04-01

    The flow generated along an infinite slope in an unperturbed stably stratified atmosphere at rest by a time periodic surface temperature forcing is examined. Following Defant (1949), a set of equations is derived which extends Prandtl's (1942) theory to allow for nonstationary conditions. Uniform boundary conditions are conducive to an along-slope parallel flow, governed by a periodically reversing local imbalance between along-slope advection and slope-normal fluxes of momentum and heat. Solutions include both a transient part and a subsequent periodic regime. The former can only be expressed in an integral form, whereas the latter is a combination of exponential and sine or cosine functions of time and height normal to the slope. Key parameters are the quantity Nα = N sinα (where α is the slope angle, and N is the Brunt-Väisälä frequency of the unperturbed atmosphere) and the angular frequency of the driving surface temperature cycle, ?. Three different flow regimes may occur, namely subcritical (Nα < ?), critical (Nα = ?) and supercritical (Nα > ?). The properties of the solutions in each regime are examined and discussed. The relationship between the present solutions and the earlier time-dependent slope flow model by Defant (1949) is also discussed. References Defant, F., 1949: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. [A theory of slope winds, along with remarks on the theory of mountain winds and valley winds]. Arch. Meteor. Geophys. Bioclimatol., Ser. A, 1, 421-450 (Theoretical and Applied Climatology). [English translation: Whiteman, C.D., and E. Dreiseitl, 1984: Alpine meteorology: Translations of classic contributions by A. Wagner, E. Ekhart and F. Defant. PNL-5141 / ASCOT-84-3. Pacific Northwest Laboratory, Richland, Washington, 121 pp]. Prandtl, L., 1942: Strömungslehre [Flow Studies]. Vieweg und Sohn, Braunschweig, 382 pp.

  12. Network analysis applications in hydrology

    NASA Astrophysics Data System (ADS)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  13. Renormalization group analysis of anisotropic diffusion in turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Barton, J. Michael

    1991-01-01

    The renormalization group is applied to compute anisotropic corrections to the scalar eddy diffusivity representation of turbulent diffusion of a passive scalar. The corrections are linear in the mean velocity gradients. All model constants are computed theoretically. A form of the theory valid at arbitrary Reynolds number is derived. The theory applies only when convection of the velocity-scalar correlation can be neglected. A ratio of diffusivity components, found experimentally to have a nearly constant value in a variety of shear flows, is computed theoretically for flows in a certain state of equilibrium. The theoretical value is well within the fairly narrow range of experimentally observed values. Theoretical predictions of this diffusivity ratio are also compared with data from experiments and direct numerical simulations of homogeneous shear flows with constant velocity and scalar gradients.

  14. Solid Rocket Motor Combustion Instability Modeling in COMSOL Multiphysics

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.

    2015-01-01

    Combustion instability modeling of Solid Rocket Motors (SRM) remains a topic of active research. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process, acoustics, and steady-state gas dynamics. Recent advances in defining the energy transport of disturbances within steady flow-fields have been applied by combustion stability modelers to improve the analysis framework [1, 2, 3]. Employing this more accurate global energy balance requires a higher fidelity model of the SRM flow-field and acoustic mode shapes. The current industry standard analysis tool utilizes a one dimensional analysis of the time dependent fluid dynamics along with a quasi-three dimensional propellant grain regression model to determine the SRM ballistics. The code then couples with another application that calculates the eigenvalues of the one dimensional homogenous wave equation. The mean flow parameters and acoustic normal modes are coupled to evaluate the stability theory developed and popularized by Culick [4, 5]. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The current study employs the COMSOL multiphysics finite element framework to model the steady flow-field parameters and acoustic normal modes of a generic SRM. The study requires one way coupling of the CFD High Mach Number Flow (HMNF) and mathematics module. The HMNF module evaluates the gas flow inside of a SRM using St. Robert's law to model the solid propellant burn rate, no slip boundary conditions, and the hybrid outflow condition. Results from the HMNF model are verified by comparing the pertinent ballistics parameters with the industry standard code outputs (i.e. pressure drop, thrust, ect.). These results are then used by the coefficient form of the mathematics module to determine the complex eigenvalues of the Acoustic Velocity Potential Equation (AVPE). The mathematics model is truncated at the nozzle sonic line, where a zero flux boundary condition is self-satisfying. The remaining boundaries are modeled with a zero flux boundary condition, assuming zero acoustic absorption on all surfaces. The results of the steady-state CFD and AVPE analyses are used to calculate the linear acoustic growth rate as is defined by Flandro and Jacob [2, 3]. In order to verify the process implemented within COMSOL we first employ the Culick theory and compare the results with the industry standard. After the process is verified, the Flandro/Jacob energy balance theory is employed and results displayed.

  15. Simulation of cylindrical flow to a well using the U.S. Geological Survey Modular Finite-Difference Ground-Water Flow Model

    USGS Publications Warehouse

    Reilly, Thomas E.; Harbaugh, Arlen W.

    1993-01-01

    Cylindrical (axisymmetric) flow to a well is an important specialized topic of ground-water hydraulics and has been applied by many investigators to determine aquifer properties and determine heads and flows in the vicinity of the well. A recent modification to the U.S. Geological Survey Modular Three-Dimensional Finite-Difference Ground-Water Flow Model provides the opportunity to simulate axisymmetric flow to a well. The theory involves the conceptualization of a system of concentric shells that are capable of reproducing the large variations in gradient in the vicinity of the well by decreasing their area in the direction of the well. The computer program presented serves as a preprocessor to the U.S. Geological Survey model by creating the input data file needed to implement the axisymmetric conceptualization. Data input requirements to this preprocessor are described, and a comparison with a known analytical solution indicates that the model functions appropriately.

  16. The Stability and Interfacial Motion of Multi-layer Radial Porous Media and Hele-Shaw Flows

    NASA Astrophysics Data System (ADS)

    Gin, Craig; Daripa, Prabir

    2017-11-01

    In this talk, we will discuss viscous fingering instabilities of multi-layer immiscible porous media flows within the Hele-Shaw model in a radial flow geometry. We study the motion of the interfaces for flows with both constant and variable viscosity fluids. We consider the effects of using a variable injection rate on multi-layer flows. We also present a numerical approach to simulating the interface motion within linear theory using the method of eigenfunction expansion. We compare these results with fully non-linear simulations.

  17. Performance characteristics of plane-wall venturi-like reverse flow diverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.V.; Counce, R.M.

    1984-02-01

    The results of an analytical and experimental study of plane-wall venturi-like reverse flow diverters (RFD) are presented. In general, the flow characteristics of the RFD are reasonably well predicted by the mathematical model of the RFD, although a divergence between theory and data is observed for the output characteristics in the reverse flow mode as the output impedance is reduced. Overall, the performance of these devices indicates their usefulness in fluid control and fluid power systems, such as displacement pumping systems.

  18. Performance characteristics of plane-wall venturi-like reverse flow diverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.V.; Counce, R.M.

    1982-01-01

    The results of an analytical and experimental study of plane-wall venturi-like reverse flow diverters (RFD) are presented. In general, the flow characteristics of the RFD are reasonably well predicted by the mathematical model of the RFD, although a divergence between theory and data is observed for the output characteristics in the reverse flow mode as the output impedance is reduced. Overall, the performance of these devices indicates their usefulness in fluid control and fluid power systems, such as displacement pumping systems.

  19. Quantifying water flow and retention in an unsaturated fracture-facial domain

    USGS Publications Warehouse

    Nimmo, John R.; Malek-Mohammadi, Siamak

    2015-01-01

    Hydrologically significant flow and storage of water occur in macropores and fractures that are only partially filled. To accommodate such processes in flow models, we propose a three-domain framework. Two of the domains correspond to water flow and water storage in a fracture-facial region, in addition to the third domain of matrix water. The fracture-facial region, typically within a fraction of a millimeter of the fracture wall, includes a flowing phase whose fullness is determined by the availability and flux of preferentially flowing water, and a static storage portion whose fullness is determined by the local matric potential. The flow domain can be modeled with the source-responsive preferential flow model, and the roughness-storage domain can be modeled with capillary relations applied on the fracture-facial area. The matrix domain is treated using traditional unsaturated flow theory. We tested the model with application to the hydrology of the Chalk formation in southern England, coherently linking hydrologic information including recharge estimates, streamflow, water table fluctuation, imaging by electron microscopy, and surface roughness. The quantitative consistency of the three-domain matrix-microcavity-film model with this body of diverse data supports the hypothesized distinctions and active mechanisms of the three domains and establishes the usefulness of this framework.

  20. Dynamics of Voluntary Cough Maneuvers

    NASA Astrophysics Data System (ADS)

    Naire, Shailesh

    2008-11-01

    Voluntary cough maneuvers are characterized by transient peak expiratory flows (PEF) exceeding the maximum expiratory flow-volume (MEFV) curve. In some cases, these flows can be well in excess of the MEFV, generally referred to as supramaximal flows. Understanding the flow-structure interaction involved in these maneuvers is the main goal of this work. We present a simple theoretical model for investigating the dynamics of voluntary cough and forced expiratory maneuvers. The core modeling idea is based on a 1-D model of high Reynolds number flow through flexible-walled tubes. The model incorporates key ingredients involved in these maneuvers: the expiratory effort generated by the abdominal and expiratory muscles, the glottis and the flexibility and compliance of the lung airways. Variations in these allow investigation of the expiratory flows generated by a variety of single cough maneuvers. The model successfully reproduces PEF which is shown to depend on the cough generation protocol, the glottis reopening time and the compliance of the airways. The particular highlight is in simulating supramaximal PEF for very compliant tubes. The flow-structure interaction mechanisms behind these are discussed. The wave speed theory of flow limitation is used to characterize the PEF. Existing hypotheses of the origin of PEF, from cough and forced expiration experiments, are also tested using this model.

  1. A field technique for estimating aquifer parameters using flow log data

    USGS Publications Warehouse

    Paillet, Frederick L.

    2000-01-01

    A numerical model is used to predict flow along intervals between producing zones in open boreholes for comparison with measurements of borehole flow. The model gives flow under quasi-steady conditions as a function of the transmissivity and hydraulic head in an arbitrary number of zones communicating with each other along open boreholes. The theory shows that the amount of inflow to or outflow from the borehole under any one flow condition may not indicate relative zone transmissivity. A unique inversion for both hydraulic-head and transmissivity values is possible if flow is measured under two different conditions such as ambient and quasi-steady pumping, and if the difference in open-borehole water level between the two flow conditions is measured. The technique is shown to give useful estimates of water levels and transmissivities of two or more water-producing zones intersecting a single interval of open borehole under typical field conditions. Although the modeling technique involves some approximation, the principle limit on the accuracy of the method under field conditions is the measurement error in the flow log data. Flow measurements and pumping conditions are usually adjusted so that transmissivity estimates are most accurate for the most transmissive zones, and relative measurement error is proportionately larger for less transmissive zones. The most effective general application of the borehole-flow model results when the data are fit to models that systematically include more production zones of progressively smaller transmissivity values until model results show that all accuracy in the data set is exhausted.A numerical model is used to predict flow along intervals between producing zones in open boreholes for comparison with measurements of borehole flow. The model gives flow under quasi-steady conditions as a function of the transmissivity and hydraulic head in an arbitrary number of zones communicating with each other along open boreholes. The theory shows that the amount of inflow to or outflow from the borehole under any one flow condition may not indicate relative zone transmissivity. A unique inversion for both hydraulic-head and transmissivity values is possible if flow is measured under two different conditions such as ambient and quasi-steady pumping, and if the difference in open-borehole water level between the two flow conditions is measured. The technique is shown to give useful estimates of water levels and transmissivities of two or more water-producing zones intersecting a single interval of open borehole under typical field conditions. Although the modeling technique involves some approximation, the principle limit on the accuracy of the method under field conditions is the measurement error in the flow log data. Flow measurements and pumping conditions are usually adjusted so that transmissivity estimates are most accurate for the most transmissive zones, and relative measurement error is proportionately larger for less transmissive zones. The most effective general application of the borehole-flow model results when the data are fit to models that symmetrically include more production zones of progressively smaller transmissivity values until model results show that all accuracy in the data set is exhausted.

  2. Combustion Model of Supersonic Rocket Exhausts in an Entrained Flow Enclosure

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Oliveira, Justin

    2011-01-01

    This paper describes the Computation Fluid Dynamics (CFD) model developed to simulate the supersonic rocket exhaust in an entrained flow cylinder. The model can be used to study the plume-induced environment due to static firing test of the Taurus II launch vehicle. The finite rate chemistry is used to model the combustion process involving rocket propellant (RP 1) and liquid oxidizer (LOX). A similar chemical reacting model is also used to simulate the mixing of rocket plume and ambient air. The model provides detailed information on the gas concentration and other flow parameters within the enclosed region thus allowing different operating scenarios to be examined in an efficient manner. It is shown that the real gas influence is significant and yields better agreement with the theory.

  3. Combustion Model of Supersonic Rocket Exhausts in an Entrained Flow Enclosure

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Oliveira, Justin

    2011-01-01

    This paper describes the Computational Fluid Dynamics (CFD) model developed to simulate the supersonic rocket exhaust in an entrained flow cylinder. The model can be used to study the plume-induced environment due to static firing tests of the Taurus-II launch vehicle. The finite-rate chemistry is used to model the combustion process involving rocket propellant (RP-1) and liquid oxidizer (LOX). A similar chemical reacting model is also used to simulate the mixing of rocket plume and ambient air. The model provides detailed information on the gas concentration and other flow parameters within the enclosed region, thus allowing different operating scenarios to be examined in an efficient manner. It is shown that the real gas influence is significant and yields better agreement with the theory.

  4. Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Y., E-mail: ybao@sjtu.edu.cn; Department of Aeronautics, Imperial College London, South Kensington Campus, London; Palacios, R., E-mail: r.palacios@imperial.ac.uk

    2016-09-15

    We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip-theory-based 2D models, the fluid domain is divided into “thick” strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural modelmore » of the cylinder. Therefore, this approach is able to cover the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single “thick” strip would fill the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip–structure interactions. Numerical tests on both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to demonstrate the applicability of this approach.« less

  5. Prediction of Rare Transitions in Planetary Atmosphere Dynamics Between Attractors with Different Number of Zonal Jets

    NASA Astrophysics Data System (ADS)

    Bouchet, F.; Laurie, J.; Zaboronski, O.

    2012-12-01

    We describe transitions between attractors with either one, two or more zonal jets in models of turbulent atmosphere dynamics. Those transitions are extremely rare, and occur over times scales of centuries or millennia. They are extremely hard to observe in direct numerical simulations, because they require on one hand an extremely good resolution in order to simulate accurately the turbulence and on the other hand simulations performed over an extremely long time. Those conditions are usually not met together in any realistic models. However many examples of transitions between turbulent attractors in geophysical flows are known to exist (paths of the Kuroshio, Earth's magnetic field reversal, atmospheric flows, and so on). Their study through numerical computations is inaccessible using conventional means. We present an alternative approach, based on instanton theory and large deviations. Instanton theory provides a way to compute (both numerically and theoretically) extremely rare transitions between turbulent attractors. This tool, developed in field theory, and justified in some cases through the large deviation theory in mathematics, can be applied to models of turbulent atmosphere dynamics. It provides both new theoretical insights and new type of numerical algorithms. Those algorithms can predict transition histories and transition rates using numerical simulations run over only hundreds of typical model dynamical time, which is several order of magnitude lower than the typical transition time. We illustrate the power of those tools in the framework of quasi-geostrophic models. We show regimes where two or more attractors coexist. Those attractors corresponds to turbulent flows dominated by either one or more zonal jets similar to midlatitude atmosphere jets. Among the trajectories connecting two non-equilibrium attractors, we determine the most probable ones. Moreover, we also determine the transition rates, which are several of magnitude larger than a typical time determined from the jet structure. We discuss the medium-term generalization of those results to models with more complexity, like primitive equations or GCMs.

  6. Ionization of Interstellar Hydrogen

    NASA Astrophysics Data System (ADS)

    Whang, Y. C.

    1996-09-01

    Interstellar hydrogen can penetrate through the heliopause, enter the heliosphere, and may become ionized by photoionization and by charge exchange with solar wind protons. A fluid model is introduced to study the flow of interstellar hydrogen in the heliosphere. The flow is governed by moment equations obtained from integration of the Boltzmann equation over the velocity space. Under the assumption that the flow is steady axisymmetric and the pressure is isotropic, we develop a method of solution for this fluid model. This model and the method of solution can be used to study the flow of neutral hydrogen with various forms of ionization rate β and boundary conditions for the flow on the upwind side. We study the solution of a special case in which the ionization rate β is inversely proportional to R2 and the interstellar hydrogen flow is uniform at infinity on the upwind side. We solve the moment equations directly for the normalized density NH/NN∞, bulk velocity VH/VN∞, and temperature TH/TN∞ of interstellar hydrogen as functions of r/λ and z/λ, where λ is the ionization scale length. The solution is compared with the kinetic theory solution of Lallement et al. The fluid solution is much less time-consuming than the kinetic theory solutions. Since the ionization rate for production of pickup protons is directly proportional to the local density of neutral hydrogen, the high-resolution solution of interstellar neutral hydrogen obtained here will be used to study the global distribution of pickup protons.

  7. Analysis of neutral beam driven impurity flow reversal in PLT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, M.A.; Stacey, W.M. Jr.; Thomas, C.E.

    1986-10-01

    The Stacey-Sigmar impurity transport theory for tokamak plasmas is applied to the analysis of experimental data from the PLT tokamak with a tungsten limiter. The drag term, which is a central piece in the theory, is evaluated from the recently developed gyroviscous theory for radial momentum transfer. An effort is made to base the modeling of the experiment on measured quantities. Where measured data is not available, recourse is made to extrapolation or numerical modeling. The theoretical and the experimental tungsten fluxes are shown to agree very closely within the uncertainties of the experimental data.

  8. Theory of energy and power flow of plasmonic waves on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2017-10-01

    The energy theorem of electrodynamics is extended so as to apply to the plasmonic waves on single-walled carbon nanotubes which propagate parallel to the axial direction of the system and are periodic waves in the azimuthal direction. Electronic excitations on the nanotube surface are modeled by an infinitesimally thin layer of free-electron gas which is described by means of the linearized hydrodynamic theory. General expressions of energy and power flow associated with surface waves are obtained by solving Maxwell and hydrodynamic equations with appropriate boundary conditions. Numerical results for the transverse magnetic mode show that energy, power flow, and energy transport velocity of the plasmonic waves strongly depend on the nanotube radius in the long-wavelength region.

  9. Flows of dioxins and furans in coastal food webs: inverse modeling, sensitivity analysis, and applications of linear system theory.

    PubMed

    Saloranta, Tuomo M; Andersen, Tom; Naes, Kristoffer

    2006-01-01

    Rate constant bioaccumulation models are applied to simulate the flow of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the coastal marine food web of Frierfjorden, a contaminated fjord in southern Norway. We apply two different ways to parameterize the rate constants in the model, global sensitivity analysis of the models using Extended Fourier Amplitude Sensitivity Test (Extended FAST) method, as well as results from general linear system theory, in order to obtain a more thorough insight to the system's behavior and to the flow pathways of the PCDD/Fs. We calibrate our models against observed body concentrations of PCDD/Fs in the food web of Frierfjorden. Differences between the predictions from the two models (using the same forcing and parameter values) are of the same magnitude as their individual deviations from observations, and the models can be said to perform about equally well in our case. Sensitivity analysis indicates that the success or failure of the models in predicting the PCDD/F concentrations in the food web organisms highly depends on the adequate estimation of the truly dissolved concentrations in water and sediment pore water. We discuss the pros and cons of such models in understanding and estimating the present and future concentrations and bioaccumulation of persistent organic pollutants in aquatic food webs.

  10. The flow of plasma in the solar terrestrial environment

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.

    1992-01-01

    The overall goal of our NASA Theory Program is to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, our immediate emphasis is on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we have developed unique global models that allow us to study the coupling between the different regions. Another important aspect of our NASA Theory Program concerns the effect that localized structure has on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkeland current patterns) or time variations in these inputs due to storms and substorms. Also, some of the plasma flows that we predict with our macroscopic models may be unstable, and another one of our goals is to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulation). Therefore, another long-range goal of our NASA Theory Program is to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This may involve a detailed comparison of kinetic, semikinetic, and hydrodynamic predictions for a given polar wind scenario or it may involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations will provide insight into when the various models can be used with confidence.

  11. Generic theory for channel sinuosity.

    PubMed

    Lazarus, Eli D; Constantine, José Antonio

    2013-05-21

    Sinuous patterns traced by fluid flows are a ubiquitous feature of physical landscapes on Earth, Mars, the volcanic floodplains of the Moon and Venus, and other planetary bodies. Typically discussed as a consequence of migration processes in meandering rivers, sinuosity is also expressed in channel types that show little or no indication of meandering. Sinuosity is sometimes described as "inherited" from a preexisting morphology, which still does not explain where the inherited sinuosity came from. For a phenomenon so universal as sinuosity, existing models of channelized flows do not explain the occurrence of sinuosity in the full variety of settings in which it manifests, or how sinuosity may originate. Here we present a generic theory for sinuous flow patterns in landscapes. Using observations from nature and a numerical model of flow routing, we propose that flow resistance (representing landscape roughness attributable to topography or vegetation density) relative to surface slope exerts a fundamental control on channel sinuosity that is effectively independent of internal flow dynamics. Resistance-dominated surfaces produce channels with higher sinuosity than those of slope-dominated surfaces because increased resistance impedes downslope flow. Not limited to rivers, the hypothesis we explore pertains to sinuosity as a geomorphic pattern. The explanation we propose is inclusive enough to account for a wide variety of sinuous channel types in nature, and can serve as an analytical tool for determining the sinuosity a landscape might support.

  12. Self-sustaining turbulence in a restricted nonlinear model of plane Couette flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Vaughan L.; Gayme, Dennice F.; Lieu, Binh K.

    2014-10-15

    This paper demonstrates the maintenance of self-sustaining turbulence in a restricted nonlinear (RNL) model of plane Couette flow. The RNL system is derived directly from the Navier-Stokes equations and permits higher resolution studies of the dynamical system associated with the stochastic structural stability theory (S3T) model, which is a second order approximation of the statistical state dynamics of the flow. The RNL model shares the dynamical restrictions of the S3T model but can be easily implemented by reducing a DNS code so that it retains only the RNL dynamics. Comparisons of turbulence arising from DNS and RNL simulations demonstrate thatmore » the RNL system supports self-sustaining turbulence with a mean flow as well as structural and dynamical features that are consistent with DNS. These results demonstrate that the simplified RNL system captures fundamental aspects of fully developed turbulence in wall-bounded shear flows and motivate use of the RNL/S3T framework for further study of wall-turbulence.« less

  13. Prospectus: towards the development of high-fidelity models of wall turbulence at large Reynolds number

    NASA Astrophysics Data System (ADS)

    Klewicki, J. C.; Chini, G. P.; Gibson, J. F.

    2017-03-01

    Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier-Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted.

  14. Modeling Sediment Detention Ponds Using Reactor Theory and Advection-Diffusion Concepts

    NASA Astrophysics Data System (ADS)

    Wilson, Bruce N.; Barfield, Billy J.

    1985-04-01

    An algorithm is presented to model the sedimentation process in detention ponds. This algorithm is based on a mass balance for an infinitesimal layer that couples reactor theory concepts with advection-diffusion processes. Reactor theory concepts are used to (1) determine residence time of sediment particles and to (2) mix influent sediment with previously stored flow. Advection-diffusion processes are used to model the (1) settling characteristics of sediment and the (2) vertical diffusion of sediment due to turbulence. Predicted results of the model are compared to those observed on two pilot scale ponds for a total of 12 runs. The average percent error between predicted and observed trap efficiency was 5.2%. Overall, the observed sedimentology values were predicted with reasonable accuracy.

  15. Aerodynamic models for a Darrieus wind turbine

    NASA Astrophysics Data System (ADS)

    Fraunie, P.; Beguier, C.; Paraschivoiu, I.; Delclaux, F.

    1982-11-01

    Various models proposed for the aerodynamics of Darrieus wind turbines are reviewed. The magnitude of the L/D ratio for a Darrieus rotor blade is dependent on the profile, the Re, boundary layer characteristics, and the three-dimensional flow effects. The aerodynamic efficiency is theoretically the Betz limit, and the interference of one blade with another is constrained by the drag force integrated over all points on the actuator disk. A single streamtube model can predict the power available in a Darrieus, but the model lacks definition of the flow structure and the cyclic stresses. Techniques for calculating the velocity profiles and the consequent induced velocity at the blades are presented. The multiple streamtube theory has been devised to account for the repartition of the velocity in the rotor interior. The model has been expanded as the double multiple streamtube theory at Sandia Laboratories. Futher work is necessary, however, to include the effects of dynamic decoupling at high rotation speeds and to accurately describe blade behavior.

  16. Theory for source-responsive and free-surface film modeling of unsaturated flow

    USGS Publications Warehouse

    Nimmo, J.R.

    2010-01-01

    A new model explicitly incorporates the possibility of rapid response, across significant distance, to substantial water input. It is useful for unsaturated flow processes that are not inherently diffusive, or that do not progress through a series of equilibrium states. The term source-responsive is used to mean that flow responds sensitively to changing conditions at the source of water input (e.g., rainfall, irrigation, or ponded infiltration). The domain of preferential flow can be conceptualized as laminar flow in free-surface films along the walls of pores. These films may be considered to have uniform thickness, as suggested by field evidence that preferential flow moves at an approximately uniform rate when generated by a continuous and ample water supply. An effective facial area per unit volume quantitatively characterizes the medium with respect to source-responsive flow. A flow-intensity factor dependent on conditions within the medium represents the amount of source-responsive flow at a given time and position. Laminar flow theory provides relations for the velocity and thickness of flowing source-responsive films. Combination with the Darcy-Buckingham law and the continuity equation leads to expressions for both fluxes and dynamic water contents. Where preferential flow is sometimes or always significant, the interactive combination of source-responsive and diffuse flow has the potential to improve prediction of unsaturated-zone fluxes in response to hydraulic inputs and the evolving distribution of soil moisture. Examples for which this approach is efficient and physically plausible include (i) rainstorm-generated rapid fluctuations of a deep water table and (ii) space- and time-dependent soil water content response to infiltration in a macroporous soil. ?? Soil Science Society of America.

  17. Flux-flow and vortex-glass phase in iron pnictide {{BaFe}}_{2-x}{{Ni}}_{x}{{As}}_{2} single crystals with {T}_{c}\\,\\sim \\,20 K

    NASA Astrophysics Data System (ADS)

    Salem-Sugui, S., Jr.; Alvarenga, A. D.; Luo, H.-Q.; Zhang, R.; Gong, D.-L.

    2017-01-01

    We analysed the flux-flow region of isofield magnetoresistivity data obtained on three crystals of {{BaFe}}2-x Ni x As2 with T c ˜ 20 K for three different geometries relative to the angle formed between the applied magnetic field and the c-axis of the crystals. The field dependent activation energy, U 0, was obtained from the thermal assisted flux-flow (TAFF) and modified vortex-glass models, which were compared with the values of U 0 obtained from flux-creep available in the literature. We observed that the U 0 obtained from the TAFF model show deviations among the different crystals, while the correspondent glass lines obtained from the vortex-glass model are virtually coincident. It is shown that the data is well explained by the modified vortex-glass model, allowing extract of values of T g, the glass transition temperature, and {T}* , a temperature which scales with the mean field critical temperature {T}{{c}}(H). The resulting glass lines obey the anisotropic Ginzburg-Landau theory and are well fitted by a theory developed in the literature by considering the effect of disorder.

  18. Thermally driven up-slope flows: state of the art and open questions

    NASA Astrophysics Data System (ADS)

    Zardi, D.

    2015-12-01

    Thermally driven flows over simple slopes are a relevant research topic, not only per se, but also as a source of key concepts for understanding and modelling many other flows over more complex topographies. However, compared to down-slope, up-slope flows have received much less attention in the literature. Indeed, to investigate katabatic winds many extensive and well equipped field measurements were performed in recent years under various research projects, and a series of high-resolution numerical simulations were run. On the contrary, few field experiments have provided detailed datasets documenting the development of anabatic flows, and the analysis of numerical investigations still relies on Schumann's (1990) pioneering LES simulations. Also, analytic solutions - such as Prandtl's (1942) constant-K profiles - reproduce fairly well katabatic flows, but are definitely inadequate to accurately reproduce field data for up-slope flows (Defant 1949). In particular, some open questions still claim for further investigations, such as the conditions of instability of slope-parallel flow vs. vertical motions, and the related possible occurrence of flow separation, and the similarity analysis of slope-normal velocity profiles of temperature anomaly, wind intensity and turbulence related quantities. Here a review of the state of the art on the subject is proposed, along with some insights into possible future developments. ReferencesDefant, F., 1949: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. [A theory of slope winds, along with remarks on the theory of mountain winds and valley winds]. Arch. Meteor. Geophys. Bioclimatol., Ser. A, 1, 421-450 (Theoretical and Applied Climatology). [English translation: Whiteman, C.D., and E. Dreiseitl, 1984: Alpine meteorology: Translations of classic contributions by A. Wagner, E. Ekhart and F. Defant. PNL-5141 / ASCOT-84-3. Pacific Northwest Laboratory, Richland, Washington, 121 pp]. Prandtl, L., 1942: Strömungslehre [Flow Studies]. Vieweg und Sohn, Braunschweig, 382 pp. Schumann, U., 1990: Large-eddy simulation of the up-slope boundary layer. Quart. J. Roy. Meteor. Soc., 116, 637-670.

  19. Semi-actuator disk theory for compressor choke flutter

    NASA Technical Reports Server (NTRS)

    Micklow, J.; Jeffers, J.

    1981-01-01

    A mathematical anaysis predict the unsteady aerodynamic utilizing semi actuator theory environment for a cascade of airfoils harmonically oscillating in choked flow was developed. A normal shock is located in the blade passage, its position depending on the time dependent geometry, and pressure perturbations of the system. In addition to shock dynamics, the model includes the effect of compressibility, interblade phase lag, and an unsteady flow field upstream and downstream of the cascade. Calculated unsteady aerodynamics were compared with isolated airfoil wind tunnel data, and choke flutter onset boundaries were compared with data from testing of an F100 high pressure compressor stage.

  20. On simulations of rarefied vapor flows with condensation

    NASA Astrophysics Data System (ADS)

    Bykov, Nikolay; Gorbachev, Yuriy; Fyodorov, Stanislav

    2018-05-01

    Results of the direct simulation Monte Carlo of 1D spherical and 2D axisymmetric expansions into vacuum of condens-ing water vapor are presented. Two models based on the kinetic approach and the size-corrected classical nucleation theory are employed for simulations. The difference in obtained results is discussed and advantages of the kinetic approach in comparison with the modified classical theory are demonstrated. The impact of clusterization on flow parameters is observed when volume fraction of clusters in the expansion region exceeds 5%. Comparison of the simulation data with the experimental results demonstrates good agreement.

  1. Numerical simulation of swept-wing flows

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.

    1991-01-01

    Efforts of the last six months to computationally model the transition process characteristics of flow over swept wings are described. Specifically, the crossflow instability and crossflow/Tollmien-Schlichting wave interactions are analyzed through the numerical solution of the full 3D Navier-Stokes equations including unsteadiness, curvature, and sweep. This approach is chosen because of the complexity of the problem and because it appears that linear stability theory is insufficient to explain the discrepancies between different experiments and between theory and experiment. The leading edge region of a swept wing is considered in a 3D spatial simulation with random disturbances as the initial conditions.

  2. Research on Closed Residential Area Based on Balanced Distribution Theory

    NASA Astrophysics Data System (ADS)

    Lan, Si; Fang, Ni; Lin, Hai Peng; Ye, Shi Qi

    2018-06-01

    With the promotion of the street system, residential quarters and units of the compound gradually open. In this paper, the relationship between traffic flow and traffic flow is established for external roads, and the road resistance model is established by internal roads. We propose a balanced distribution model from the two aspects of road opening conditions and traffic flow inside and outside the district, and quantitatively analyze the impact of the opening and closing on the surrounding roads. Finally, it puts forward feasible suggestions to improve the traffic situation and optimize the network structure.

  3. Safety performance of traffic phases and phase transitions in three phase traffic theory.

    PubMed

    Xu, Chengcheng; Liu, Pan; Wang, Wei; Li, Zhibin

    2015-12-01

    Crash risk prediction models were developed to link safety to various phases and phase transitions defined by the three phase traffic theory. Results of the Bayesian conditional logit analysis showed that different traffic states differed distinctly with respect to safety performance. The random-parameter logit approach was utilized to account for the heterogeneity caused by unobserved factors. The Bayesian inference approach based on the Markov Chain Monte Carlo (MCMC) method was used for the estimation of the random-parameter logit model. The proposed approach increased the prediction performance of the crash risk models as compared with the conventional logit model. The three phase traffic theory can help us better understand the mechanism of crash occurrences in various traffic states. The contributing factors to crash likelihood can be well explained by the mechanism of phase transitions. We further discovered that the free flow state can be divided into two sub-phases on the basis of safety performance, including a true free flow state in which the interactions between vehicles are minor, and a platooned traffic state in which bunched vehicles travel in successions. The results of this study suggest that a safety perspective can be added to the three phase traffic theory. The results also suggest that the heterogeneity between different traffic states should be considered when estimating the risks of crash occurrences on freeways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Two-fluid models of turbulence

    NASA Technical Reports Server (NTRS)

    Spalding, D. B.

    1985-01-01

    The defects of turbulence models are summarized and the importance of so-called nongradient diffusion in turbulent fluxes is discussed. The mathematical theory of the flow of two interpenetrating continua is reviewed, and the mathematical formulation of the two fluid model is outlined. Results from plane wake, axisymmetric jet, and combustion studies are shown.

  5. Flow behavior of colloidal rodlike viruses in the nematic phase.

    PubMed

    Lettinga, M Paul; Dogic, Zvonimir; Wang, Hao; Vermant, Jan

    2005-08-16

    The behavior of a colloidal suspension of rodlike fd viruses in the nematic phase, subjected to steady state and transient shear flows, is studied. The monodisperse nature of these rods combined with relatively small textural contribution to the overall stress make this a suitable model system to investigate the effects of flow on the nonequilibrium phase diagram. Transient rheological experiments are used to determine the critical shear rates at which director tumbling, wagging, and flow-aligning occurs. The present model system enables us to study the effect of rod concentration on these transitions. The results are in quantitatively agreement with the Doi-Edwards-Hess model. Moreover, we observe that there is a strong connection between the dynamic transitions and structure formation, which is not incorporated in theory.

  6. Sediment transport through self-adjusting, bedrock-walled waterfall plunge pools

    NASA Astrophysics Data System (ADS)

    Scheingross, Joel S.; Lamb, Michael P.

    2016-05-01

    Many waterfalls have deep plunge pools that are often partially or fully filled with sediment. Sediment fill may control plunge-pool bedrock erosion rates, partially determine habitat availability for aquatic organisms, and affect sediment routing and debris flow initiation. Currently, there exists no mechanistic model to describe sediment transport through waterfall plunge pools. Here we develop an analytical model to predict steady-state plunge-pool depth and sediment-transport capacity by combining existing jet theory with sediment transport mechanics. Our model predicts plunge-pool sediment-transport capacity increases with increasing river discharge, flow velocity, and waterfall drop height and decreases with increasing plunge-pool depth, radius, and grain size. We tested the model using flume experiments under varying waterfall and plunge-pool geometries, flow hydraulics, and sediment size. The model and experiments show that through morphodynamic feedbacks, plunge pools aggrade to reach shallower equilibrium pool depths in response to increases in imposed sediment supply. Our theory for steady-state pool depth matches the experiments with an R2 value of 0.8, with discrepancies likely due to model simplifications of the hydraulics and sediment transport. Analysis of 75 waterfalls suggests that the water depths in natural plunge pools are strongly influenced by upstream sediment supply, and our model provides a mass-conserving framework to predict sediment and water storage in waterfall plunge pools for sediment routing, habitat assessment, and bedrock erosion modeling.

  7. Etude d'un modele de Boltzmann sur reseau pour la simulation assistee par ordinateur des fluides a plusieurs phases immiscibles

    NASA Astrophysics Data System (ADS)

    Leclaire, Sebastien

    The computer assisted simulation of the dynamics of fluid flow has been a highly rewarding topic of research for several decades now, in terms of the number of scientific problems that have been solved as a result, both in the academic world and in industry. In the fluid dynamics field, simulating multiphase immiscible fluid flow remains a challenge, because of the complexity of the interactions at the flow phase interfaces. Various numerical methods are available to study these phenomena, and, the lattice Boltzmann method has been shown in recent years to be well adapted to solving this type of complex flow. In this thesis, a lattice Boltzmann model for the simulation of two-phase immiscible flows is studied. The main objective of the thesis is to develop this promising method further, with a view to enhancing its validity. To achieve this objective, the research is divided into five distinct themes. The first two focus on correcting some of the deficiencies of the original model. The third generalizes the model to support the simulation of N-phase immiscible fluid flows. The fourth is aimed at modifying the model itself, to enable the simulation of immiscible fluid flows in which the density of the phases varies. With the lattice Boltzmann class of models studied here, this density variation has been inadequately modeled, and, after 20 years, the issue still has not been resolved. The fifth, which complements this thesis, is connected with the lattice Boltzmann method, in that it generalizes the theory of 2D and 3D isotropic gradients for a high order of spatial precision. These themes have each been the subject of a scientific article, as listed in the appendix to this thesis, and together they constitute a synthesis that explains the links between the articles, as well as their scientific contributions, and satisfy the main objective of this research. Globally, a number of qualitative and quantitative test cases based on the theory of multiphase fluid flows have highlighted issues plaguing the simulation model. These test cases have resulted in various modifications to the model, which have reduced or eliminated some numerical artifacts that were problematic. They also allowed us to validate the extensions that were applied to the original model.

  8. Theory and Modeling of Liquid Explosive Detonation

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.; Urtiew, Paul A.

    2010-10-01

    The current understanding of the detonation reaction zones of liquid explosives is discussed in this article. The physical and chemical processes that precede and follow exothermic chemical reaction within the detonation reaction zone are discussed within the framework of the nonequilibrium Zeldovich-von Neumann-Doring (NEZND) theory of self-sustaining detonation. Nonequilibrium chemical and physical processes cause finite time duration induction zones before exothermic chemical energy release occurs. This separation between the leading shock wave front and the chemical energy release needed to sustain it results in shock wave amplification and the subsequent formation of complex three-dimensional cellular structures in all liquid detonation waves. To develop a practical Zeldovich-von Neumann-Doring (ZND) reactive flow model for liquid detonation, experimental data on reaction zone structure, confined failure diameter, unconfined failure diameter, and failure wave velocity in the Dremin-Trofimov test for detonating nitromethane are calculated using the ignition and growth reactive flow model.

  9. Oscillating-Flow Regenerator Test Rig: Hardware and Theory With Derived Correlations for Screens and Felts

    NASA Technical Reports Server (NTRS)

    Gedeon, D.; Wood, J. G.

    1996-01-01

    A number of wire mesh and metal felt test samples, with a range of porosities, yield generic correlations for friction factor, Nusselt number, enhanced axial conduction ratio, and overall heat flux ratio. This information is directed primarily toward stirling cycle regenerator modelers, but will be of use to anyone seeking to better model fluid flow through these porous materials. Behind these results lies an oscillating-flow test rig, which measures pumping dissipation and thermal energy transport in sample matrices, and several stages of data-reduction software, which correlate instantaneous values for the above dimensionless groups. Within the software, theoretical model reduces instantaneous quantifies from cycle-averaged measurables using standard parameter estimation techniques.

  10. A potential method for lift evaluation from velocity field data

    NASA Astrophysics Data System (ADS)

    de Guyon-Crozier, Guillaume; Mulleners, Karen

    2017-11-01

    Computing forces from velocity field measurements is one of the challenges in experimental aerodynamics. This work focuses on low Reynolds flows, where the dynamics of the leading and trailing edge vortices play a major role in lift production. Recent developments in 2D potential flow theory, using discrete vortex models, have shown good results for unsteady wing motions. A method is presented to calculate lift from experimental velocity field data using a discrete vortex potential flow model. The model continuously adds new point vortices at leading and trailing edges whose circulations are set directly from vorticity measurements. Forces are computed using the unsteady Blasius equation and compared with measured loads.

  11. Inertial particle manipulation in microscale oscillatory flows

    NASA Astrophysics Data System (ADS)

    Agarwal, Siddhansh; Rallabandi, Bhargav; Raju, David; Hilgenfeldt, Sascha

    2017-11-01

    Recent work has shown that inertial effects in oscillating flows can be exploited for simultaneous transport and differential displacement of microparticles, enabling size sorting of such particles on extraordinarily short time scales. Generalizing previous theory efforts, we here derive a two-dimensional time-averaged version of the Maxey-Riley equation that includes the effect of an oscillating interface to model particle dynamics in such flows. Separating the steady transport time scale from the oscillatory time scale results in a simple and computationally efficient reduced model that preserves all slow-time features of the full unsteady Maxey-Riley simulations, including inertial particle displacement. Comparison is made not only to full simulations, but also to experiments using oscillating bubbles as the driving interfaces. In this case, the theory predicts either an attraction to or a repulsion from the bubble interface due to inertial effects, so that versatile particle manipulation is possible using differences in particle size, particle/fluid density contrast and streaming strength. We also demonstrate that these predictions are in agreement with experiments.

  12. Control Theory based Shape Design for the Incompressible Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Cowles, G.; Martinelli, L.

    2003-12-01

    A design method for shape optimization in incompressible turbulent viscous flow has been developed and validated for inverse design. The gradient information is determined using a control theory based algorithm. With such an approach, the cost of computing the gradient is negligible. An additional adjoint system must be solved which requires the cost of a single steady state flow solution. Thus, this method has an enormous advantage over traditional finite-difference based algorithms. The method of artificial compressibility is utilized to solve both the flow and adjoint systems. An algebraic turbulence model is used to compute the eddy viscosity. The method is validated using several inverse wing design test cases. In each case, the program must modify the shape of the initial wing such that its pressure distribution matches that of the target wing. Results are shown for the inversion of both finite thickness wings as well as zero thickness wings which can be considered a model of yacht sails.

  13. Toward a Unified Modeling of Learner's Growth Process and Flow Theory

    ERIC Educational Resources Information Center

    Challco, Geiser C.; Andrade, Fernando R. H.; Borges, Simone S.; Bittencourt, Ig I.; Isotani, Seiji

    2016-01-01

    Flow is the affective state in which a learner is so engaged and involved in an activity that nothing else seems to matter. In this sense, to help students in the skill development and knowledge acquisition (referred to as learners' growth process) under optimal conditions, the instructional designers should create learning scenarios that favor…

  14. A k-Omega Turbulence Model for Quasi-Three-Dimensional Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    1995-01-01

    A two-equation k-omega turbulence model has been developed and applied to a quasi-three-dimensional viscous analysis code for blade-to-blade flows in turbomachinery. the code includes the effects of rotation, radius change, and variable stream sheet thickness. The flow equations are given and the explicit runge-Kutta solution scheme is described. the k-omega model equations are also given and the upwind implicit approximate-factorization solution scheme is described. Three cases were calculated: transitional flow over a flat plate, a transonic compressor rotor, and transonic turbine vane with heat transfer. Results were compared to theory, experimental data, and to results using the Baldwin-Lomax turbulence model. The two models compared reasonably well with the data and surprisingly well with each other. Although the k-omega model behaves well numerically and simulates effects of transition, freestream turbulence, and wall roughness, it was not decisively better than the Baldwin-Lomax model for the cases considered here.

  15. Molecular beam mass spectrometer development

    NASA Technical Reports Server (NTRS)

    Brock, F. J.; Hueser, J. E.

    1976-01-01

    An analytical model, based on the kinetics theory of a drifting Maxwellian gas is used to determine the nonequilibrium molecular density distribution within a hemispherical shell open aft with its axis parallel to its velocity. The concept of a molecular shield in terrestrial orbit above 200 km is also analyzed using the kinetic theory of a drifting Maxwellian gas. Data are presented for the components of the gas density within the shield due to the free stream atmosphere, outgassing from the shield and enclosed experiments, and atmospheric gas scattered off a shield orbiter system. A description is given of a FORTRAN program for computating the three dimensional transition flow regime past the space shuttle orbiter that employs the Monte Carlo simulation method to model real flow by some thousands of simulated molecules.

  16. Applications of Quantum Theory of Atomic and Molecular Scattering to Problems in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Malik, F. Bary

    1995-01-01

    The general status of a grant to investigate the applications of quantum theory in atomic and molecular scattering problems in hypersonic flow is summarized. Abstracts of five articles and eleven full-length articles published or submitted for publication are included as attachments. The following topics are addressed in these articles: fragmentation of heavy ions (HZE particles); parameterization of absorption cross sections; light ion transport; emission of light fragments as an indicator of equilibrated populations; quantum mechanical, optical model methods for calculating cross sections for particle fragmentation by hydrogen; evaluation of NUCFRG2, the semi-empirical nuclear fragmentation database; investigation of the single- and double-ionization of He by proton and anti-proton collisions; Bose-Einstein condensation of nuclei; and a liquid drop model in HZE particle fragmentation by hydrogen.

  17. Tidal bending of ice shelves as a mechanism for large-scale temporal variations in ice flow

    NASA Astrophysics Data System (ADS)

    Rosier, Sebastian H. R.; Hilmar Gudmundsson, G.

    2018-05-01

    GPS measurements reveal strong modulation of horizontal ice shelf and ice stream flow at a variety of tidal frequencies, most notably a fortnightly (Msf) frequency not present in the vertical tides themselves. Current theories largely fail to explain the strength and prevalence of this signal over floating ice shelves. We show how well-known non-linear aspects of ice rheology can give rise to widespread, long-periodic tidal modulation in ice shelf flow, generated within ice shelves themselves through tidal flexure acting at diurnal and semidiurnal frequencies. Using full-Stokes viscoelastic modelling, we show that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of ice shelf flow. Furthermore, our model shows that, in the absence of vertical tidal forcing, the mean flow of the ice shelf is reduced by almost 30 % for the geometry that we consider.

  18. Estimating the waiting time of multi-priority emergency patients with downstream blocking.

    PubMed

    Lin, Di; Patrick, Jonathan; Labeau, Fabrice

    2014-03-01

    To characterize the coupling effect between patient flow to access the emergency department (ED) and that to access the inpatient unit (IU), we develop a model with two connected queues: one upstream queue for the patient flow to access the ED and one downstream queue for the patient flow to access the IU. Building on this patient flow model, we employ queueing theory to estimate the average waiting time across patients. Using priority specific wait time targets, we further estimate the necessary number of ED and IU resources. Finally, we investigate how an alternative way of accessing ED (Fast Track) impacts the average waiting time of patients as well as the necessary number of ED/IU resources. This model as well as the analysis on patient flow can help the designer or manager of a hospital make decisions on the allocation of ED/IU resources in a hospital.

  19. Vortices and turbulence (The 23rd Lanchester Memorial Lecture)

    NASA Astrophysics Data System (ADS)

    Lilley, G. M.

    1983-12-01

    A comprehensive discussion is presented concerning the phenomena characteristically treated in vortex and turbulence theory, as well as the degree of success achieved by various computation and visualization methods and theoretical models developed for vortex flow behavior prediction. Note is taken of the pioneering research conducted by F. W. Lanchester in 1893-1907, and attention is given to vortex tip and edge generation by rectangular and delta wings, the cool core effect of the Ranque-Hilsch vortex tube, the modeling of shear flows by means of vortex array methods, the classification and modelling of turbulent flows (together with a taxonomy of their calculation methods), and NASA ILLIAC IV computations of two-dimensional channel flow. Also noted are recent results concerning the boundary layer coherent structure of a flat plate at zero pressure gradient, including the regeneration structure and flow distortion and breakdown of a turbulent boundary layer.

  20. Traffic experiment reveals the nature of car-following.

    PubMed

    Jiang, Rui; Hu, Mao-Bin; Zhang, H M; Gao, Zi-You; Jia, Bin; Wu, Qing-Song; Wang, Bing; Yang, Ming

    2014-01-01

    As a typical self-driven many-particle system far from equilibrium, traffic flow exhibits diverse fascinating non-equilibrium phenomena, most of which are closely related to traffic flow stability and specifically the growth/dissipation pattern of disturbances. However, the traffic theories have been controversial due to a lack of precise traffic data. We have studied traffic flow from a new perspective by carrying out large-scale car-following experiment on an open road section, which overcomes the intrinsic deficiency of empirical observations. The experiment has shown clearly the nature of car-following, which runs against the traditional traffic flow theory. Simulations show that by removing the fundamental notion in the traditional car-following models and allowing the traffic state to span a two-dimensional region in velocity-spacing plane, the growth pattern of disturbances has changed qualitatively and becomes qualitatively or even quantitatively in consistent with that observed in the experiment.

  1. Traffic Experiment Reveals the Nature of Car-Following

    PubMed Central

    Jiang, Rui; Hu, Mao-Bin; Zhang, H. M.; Gao, Zi-You; Jia, Bin; Wu, Qing-Song; Wang, Bing; Yang, Ming

    2014-01-01

    As a typical self-driven many-particle system far from equilibrium, traffic flow exhibits diverse fascinating non-equilibrium phenomena, most of which are closely related to traffic flow stability and specifically the growth/dissipation pattern of disturbances. However, the traffic theories have been controversial due to a lack of precise traffic data. We have studied traffic flow from a new perspective by carrying out large-scale car-following experiment on an open road section, which overcomes the intrinsic deficiency of empirical observations. The experiment has shown clearly the nature of car-following, which runs against the traditional traffic flow theory. Simulations show that by removing the fundamental notion in the traditional car-following models and allowing the traffic state to span a two-dimensional region in velocity-spacing plane, the growth pattern of disturbances has changed qualitatively and becomes qualitatively or even quantitatively in consistent with that observed in the experiment. PMID:24740284

  2. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials

    NASA Astrophysics Data System (ADS)

    Revil, A.; Mahardika, H.

    2013-02-01

    A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy and Ohm constitutive equations of transport are extended to unsaturated conditions. This model accounts for inertial effects and for the polarization of porous materials. Rather than using the zeta potential, like in conventional theories for the saturated case, the key parameter used here is the quasi-static volumetric charge density of the pore space, which can be directly computed from the quasi-static permeability. The apparent permeability entering Darcy's law is also frequency dependent with a critical relaxation time that is, in turn, dependent on saturation. A decrease of saturation increases the associated relaxation frequency. The final form of the equations couples the Maxwell equations and a simplified form of two-fluid phases Biot theory accounting for water saturation. A generalized expression of the Richard equation is derived, accounting for the effect of the vibration of the skeleton during the passage of seismic waves and the electrical field. A new expression is obtained for the effective stress tensor. The model is tested against experimental data regarding the saturation and frequency dependence of the streaming potential coupling coefficient. The model is also adapted for two-phase flow conditions and a numerical application is shown for water flooding of a nonaqueous phase liquid (NAPL, oil) contaminated aquifer. Seismoelectric conversions are mostly taking place at the NAPL (oil)/water encroachment front and can be therefore used to remotely track the position of this front. This is not the case for other geophysical methods.

  3. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials

    PubMed Central

    Revil, A; Mahardika, H

    2013-01-01

    A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy and Ohm constitutive equations of transport are extended to unsaturated conditions. This model accounts for inertial effects and for the polarization of porous materials. Rather than using the zeta potential, like in conventional theories for the saturated case, the key parameter used here is the quasi-static volumetric charge density of the pore space, which can be directly computed from the quasi-static permeability. The apparent permeability entering Darcy's law is also frequency dependent with a critical relaxation time that is, in turn, dependent on saturation. A decrease of saturation increases the associated relaxation frequency. The final form of the equations couples the Maxwell equations and a simplified form of two-fluid phases Biot theory accounting for water saturation. A generalized expression of the Richard equation is derived, accounting for the effect of the vibration of the skeleton during the passage of seismic waves and the electrical field. A new expression is obtained for the effective stress tensor. The model is tested against experimental data regarding the saturation and frequency dependence of the streaming potential coupling coefficient. The model is also adapted for two-phase flow conditions and a numerical application is shown for water flooding of a nonaqueous phase liquid (NAPL, oil) contaminated aquifer. Seismoelectric conversions are mostly taking place at the NAPL (oil)/water encroachment front and can be therefore used to remotely track the position of this front. This is not the case for other geophysical methods. PMID:23741078

  4. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.

  5. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant, E-mail: prashant.valluri@ed.ac.uk

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analysesmore » based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.« less

  6. Monodomain dynamics for rigid rod and platelet suspensions in strongly coupled coplanar linear flow and magnetic fields. II. Kinetic theory

    NASA Astrophysics Data System (ADS)

    Forest, M. Gregory; Sircar, Sarthok; Wang, Qi; Zhou, Ruhai

    2006-10-01

    We establish reciprocity relations of the Doi-Hess kinetic theory for rigid rod macromolecular suspensions governed by the strong coupling among an excluded volume potential, linear flow, and a magnetic field. The relation provides a reduction of the flow and field driven Smoluchowski equation: from five parameters for coplanar linear flows and magnetic field, to two field parameters. The reduced model distinguishes flows with a rotational component, which map to simple shear (with rate parameter) subject to a transverse magnetic field (with strength parameter), and irrotational flows, for which the reduced model consists of a triaxial extensional flow (with two extensional rate parameters). We solve the Smoluchowski equation of the reduced model to explore: (i) the effect of introducing a coplanar magnetic field on each sheared monodomain attractor of the Doi-Hess kinetic theory and (ii) the coupling of coplanar extensional flow and magnetic fields. For (i), we show each sheared attractor (steady and unsteady, with peak axis in and out of the shearing plane, periodic and chaotic orbits) undergoes its own transition sequence versus magnetic field strength. Nonetheless, robust predictions emerge: out-of-plane degrees of freedom are arrested with increasing field strength, and a unique flow-aligning or tumbling/wagging limit cycle emerges above a threshold magnetic field strength or modified geometry parameter value. For (ii), irrotational flows coupled with a coplanar magnetic field yield only steady states. We characterize all (generically biaxial) equilibria in terms of an explicit Boltzmann distribution, providing a natural generalization of analytical results on pure nematic equilibria [P. Constantin, I. Kevrekidis, and E. S. Titi, Arch. Rat. Mech. Anal. 174, 365 (2004); P. Constantin, I. Kevrekidis, and E. S. Titi, Discrete and Continuous Dynamical Systems 11, 101 (2004); P. Constantin and J. Vukadinovic, Nonlinearity 18, 441 (2005); H. Liu, H. Zhang, and P. Zhang, Comm. Math. Sci. 3, 201 (2005); C. Luo, H. Zhang, and P. Zhang, Nonlinearity 18, 379 (2005); I. Fatkullin and V. Slastikov, Nonlinearity 18, 2565 (2005); H. Zhou, H. Wang, Q. Wang, and M. G. Forest, Nonlinearity 18, 2815 (2005)] and extensional flow-induced equilibria [Q. Wang, S. Sircar, and H. Zhou, Comm. Math. Sci. 4, 605 (2005)]. We predict large parameter regions of bi-stable equilibria; the lowest energy state always has principal axis aligned in the flow plane, while another minimum energy state often exists, with primary alignment transverse to the coplanar field.

  7. Facilitating Naval Knowledge Flow

    DTIC Science & Technology

    2001-07-01

    flow theory and its application to very-large enterprises such as the Navy. Without such basic understanding, one cannot expect to design effective...understanding knowledge flow? Informed by advances in knowledge-flow theory , this work can propel knowledge management toward the methods and tools...address the phenomenology of knowledge flow well, nor do we have the benefit of knowledge-flow theory and its application to very-large enterprises

  8. A shock-layer theory based on thirteen-moment equations and DSMC calculations of rarefied hypersonic flows

    NASA Technical Reports Server (NTRS)

    Cheng, H. K.; Wong, Eric Y.; Dogra, V. K.

    1991-01-01

    Grad's thirteen-moment equations are applied to the flow behind a bow shock under the formalism of a thin shock layer. Comparison of this version of the theory with Direct Simulation Monte Carlo calculations of flows about a flat plate at finite attack angle has lent support to the approach as a useful extension of the continuum model for studying translational nonequilibrium in the shock layer. This paper reassesses the physical basis and limitations of the development with additional calculations and comparisons. The streamline correlation principle, which allows transformation of the 13-moment based system to one based on the Navier-Stokes equations, is extended to a three-dimensional formulation. The development yields a strip theory for planar lifting surfaces at finite incidences. Examples reveal that the lift-to-drag ratio is little influenced by planform geometry and varies with altitudes according to a 'bridging function' determined by correlated two-dimensional calculations.

  9. Quantitative prediction of solute strengthening in aluminium alloys.

    PubMed

    Leyson, Gerard Paul M; Curtin, William A; Hector, Louis G; Woodward, Christopher F

    2010-09-01

    Despite significant advances in computational materials science, a quantitative, parameter-free prediction of the mechanical properties of alloys has been difficult to achieve from first principles. Here, we present a new analytic theory that, with input from first-principles calculations, is able to predict the strengthening of aluminium by substitutional solute atoms. Solute-dislocation interaction energies in and around the dislocation core are first calculated using density functional theory and a flexible-boundary-condition method. An analytic model for the strength, or stress to move a dislocation, owing to the random field of solutes, is then presented. The theory, which has no adjustable parameters and is extendable to other metallic alloys, predicts both the energy barriers to dislocation motion and the zero-temperature flow stress, allowing for predictions of finite-temperature flow stresses. Quantitative comparisons with experimental flow stresses at temperature T=78 K are made for Al-X alloys (X=Mg, Si, Cu, Cr) and good agreement is obtained.

  10. Numerical simulation of failure behavior of granular debris flows based on flume model tests.

    PubMed

    Zhou, Jian; Li, Ye-xun; Jia, Min-cai; Li, Cui-na

    2013-01-01

    In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC(3D)). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC(3D) can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.

  11. SAFSIM theory manual: A computer program for the engineering simulation of flow systems

    NASA Astrophysics Data System (ADS)

    Dobranich, Dean

    1993-12-01

    SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.

  12. Turbulence modeling: Near-wall turbulence and effects of rotation on turbulence

    NASA Technical Reports Server (NTRS)

    Shih, T.-H.

    1990-01-01

    Many Reynolds averaged Navier-Stokes solvers use closure models in conjunction with 'the law of the wall', rather than deal with a thin, viscous sublayer near the wall. This work is motivated by the need for better models to compute near wall turbulent flow. The authors use direct numerical simulation of fully developed channel flow and one of three dimensional turbulent boundary layer flow to develop new models. These direct numerical simulations provide detailed data that experimentalists have not been able to measure directly. Another objective of the work is to examine analytically the effects of rotation on turbulence, using Rapid Distortion Theory (RDT). This work was motivated by the observation that the pressure strain models in all current second order closure models are unable to predict the effects of rotation on turbulence.

  13. Rarefaction effects in gas flows over curved surfaces

    NASA Astrophysics Data System (ADS)

    Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.

    2012-11-01

    The fundamental test case of gas flow between two concentric rotating cylinders is considered in order to investigate rarefaction effects associated with the Knudsen layers over curved surfaces. We carry out direct simulation Monte Carlo simulations covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Numerical data is compared with classical slip flow theory and a new power-law (PL) wall scaling model. The PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. The limitations of both theoretical models are explored with respect to rarefaction and curvature effects. Torque and velocity profile comparisons also convey that mere prediction of integral flow parameters does not guarantee the accuracy of a theoretical model, and that it is important to ensure that prediction of the local flowfield is in agreement with simulation data.

  14. An extended macro model accounting for acceleration changes with memory and numerical tests

    NASA Astrophysics Data System (ADS)

    Cheng, Rongjun; Ge, Hongxia; Sun, Fengxin; Wang, Jufeng

    2018-09-01

    Considering effect of acceleration changes with memory, an improved continuum model of traffic flow is proposed in this paper. By applying the linear stability theory, we derived the new model's linear stability condition. Through nonlinear analysis, the KdV-Burgers equation is derived to describe the propagating behavior of traffic density wave near the neutral stability line. Numerical simulation is carried out to study the extended traffic flow model, which explores how acceleration changes with memory affected each car's velocity, density and fuel consumption and exhaust emissions. Numerical results demonstrate that acceleration changes with memory have significant negative effect on dynamic characteristic of traffic flow. Furthermore, research results verify that the effect of acceleration changes with memory will deteriorate the stability of traffic flow and increase cars' total fuel consumptions and emissions during the whole evolution of small perturbation.

  15. Rolling moments in a trailing vortex flow field

    NASA Technical Reports Server (NTRS)

    Mcmillan, O. J.; Schwind, R. G.; Nielsen, J. N.; Dillenius, M. F. E.

    1977-01-01

    Pressure distributions are presented which were measured on a wing in close proximity to a tip vortex of known structure generated by a larger, upstream semispan wing. Overall loads calculated by integration of these pressures are checked by independent measurements made with an identical model mounted on a force balance. Several conventional methods of wing analysis are used to predict the loads on the following wing. Strip theory is shown to give uniformly poor results for loading distribution, although predictions of overall lift and rolling moment are sometimes acceptable. Good results are obtained for overall coefficients and loading distribution by using linearized pressures in vortex-lattice theory in conjunction with a rectilinear vortex. The equivalent relation from reverse-flow theory that can be used to give economic predictions for overall loads is presented.

  16. Exact renormalization group in Batalin-Vilkovisky theory

    NASA Astrophysics Data System (ADS)

    Zucchini, Roberto

    2018-03-01

    In this paper, inspired by the Costello's seminal work [11], we present a general formulation of exact renormalization group (RG) within the Batalin-Vilkovisky (BV) quantization scheme. In the spirit of effective field theory, the BV bracket and Laplacian structure as well as the BV effective action (EA) depend on an effective energy scale. The BV EA at a certain scale satisfies the BV quantum master equation at that scale. The RG flow of the EA is implemented by BV canonical maps intertwining the BV structures at different scales. Infinitesimally, this generates the BV exact renormalization group equation (RGE). We show that BV RG theory can be extended by augmenting the scale parameter space R to its shifted tangent bundle T [1]ℝ. The extra odd direction in scale space allows for a BV RG supersymmetry that constrains the structure of the BV RGE bringing it to Polchinski's form [6]. We investigate the implications of BV RG supersymmetry in perturbation theory. Finally, we illustrate our findings by constructing free models of BV RG flow and EA exhibiting RG supersymmetry in the degree -1 symplectic framework and studying the perturbation theory thereof. We find in particular that the odd partner of effective action describes perturbatively the deviation of the interacting RG flow from its free counterpart.

  17. Theory and Experiment of Binary Diffusion Coefficient of n-Alkanes in Dilute Gases.

    PubMed

    Liu, Changran; McGivern, W Sean; Manion, Jeffrey A; Wang, Hai

    2016-10-10

    Binary diffusion coefficients were measured for n-pentane, n-hexane, and n-octane in helium and of n-pentane in nitrogen over the temperature range of 300 to 600 K, using reversed-flow gas chromatography. A generalized, analytical theory is proposed for the binary diffusion coefficients of long-chain molecules in simple diluent gases, taking advantage of a recently developed gas-kinetic theory of the transport properties of nanoslender bodies in dilute free-molecular flows. The theory addresses the long-standing question about the applicability of the Chapman-Enskog theory in describing the transport properties of nonspherical molecular structures, or equivalently, the use of isotropic potentials of interaction for a roughly cylindrical molecular structure such as large normal alkanes. An approximate potential energy function is proposed for the intermolecular interaction of long-chain n-alkane with typical bath gases. Using this potential and the analytical theory for nanoslender bodies, we show that the diffusion coefficients of n-alkanes in typical bath gases can be treated by the resulting analytical model accurately, especially for compounds larger than n-butane.

  18. Innovating Method of Existing Mechanical Product Based on TRIZ Theory

    NASA Astrophysics Data System (ADS)

    Zhao, Cunyou; Shi, Dongyan; Wu, Han

    Main way of product development is adaptive design and variant design based on existing product. In this paper, conceptual design frame and its flow model of innovating products is put forward through combining the methods of conceptual design and TRIZ theory. Process system model of innovating design that includes requirement analysis, total function analysis and decomposing, engineering problem analysis, finding solution of engineering problem and primarily design is constructed and this establishes the base for innovating design of existing product.

  19. Cardiovascular microbubble transport in vessel bifurcations with pulsatile flow: experimental model and theory

    NASA Astrophysics Data System (ADS)

    Valassis, Doug; Dodde, Robert; Eshpuniyani, Brijesh; Fowlkes, J. Brian; Bull, Joseph

    2008-11-01

    The behavior of long gas bubbles suspended in liquid flowing through successive bifurcations was investigated experimentally and theoretically as a model of cardiovascular bubble transport in gas embolotherapy. In this developmental cancer therapy, perflurocarbon droplets are vaporized in the vasculature and travel through a bifurcating network of vessels before lodging. The homogeneity of tumor necrosis is directly correlated with the transport and lodging of the emboli. An experimental model was used to explore the effects of flow pulsatility, frequency, gravity, and bifurcation roll angle on bubble splitting and lodging. At a bifurcation roll angle of 45-degrees, the most distinct difference in splitting ratios between three physiologic frequencies (1, 1.5, 2 Hz) was observed. As roll angle increased, lodged bubble volume in the first generation channel increased while bubble volume beyond the second bifurcation proportionately decreased. A corresponding time-dependent one-dimensional theoretical model was also developed. The results elucidate the effects of pulsatile flow and suggest the potential of gas embolotherapy to occlude blood flow to tumors.

  20. A continuum theory for two-phase flows of particulate solids: application to Poiseuille flows

    NASA Astrophysics Data System (ADS)

    Monsorno, Davide; Varsakelis, Christos; Papalexandris, Miltiadis V.

    2015-11-01

    In the first part of this talk, we present a novel two-phase continuum model for incompressible fluid-saturated granular flows. The model accounts for both compaction and shear-induced dilatancy and accommodates correlations for the granular rheology in a thermodynamically consistent way. In the second part of this talk, we exercise this two-phase model in the numerical simulation of a fully-developed Poiseuille flow of a dense suspension. The numerical predictions are shown to compare favorably against experimental measurements and confirm that the model can capture the important characteristics of the flow field, such as segregation and formation of plug zones. Finally, results from parametric studies with respect to the initial concentration, the magnitude of the external forcing and the width of the channel are presented and the role of these physical parameters is quantified. Financial Support has been provided by SEDITRANS, an Initial Training Network of the European Commission's 7th Framework Programme

  1. Analytical structure, dynamics, and coarse graining of a kinetic model of an active fluid

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Betterton, Meredith D.; Jhang, An-Sheng; Shelley, Michael J.

    2017-09-01

    We analyze one of the simplest active suspensions with complex dynamics: a suspension of immotile "extensor" particles that exert active extensile dipolar stresses on the fluid in which they are immersed. This is relevant to several experimental systems, such as recently studied tripartite rods that create extensile flows by consuming a chemical fuel. We first describe the system through a Doi-Onsager kinetic theory based on microscopic modeling. This theory captures the active stresses produced by the particles that can drive hydrodynamic instabilities, as well as the steric interactions of rodlike particles that lead to nematic alignment. This active nematic system yields complex flows and disclination defect dynamics very similar to phenomenological Landau-deGennes Q -tensor theories for active nematic fluids, as well as by more complex Doi-Onsager theories for polar microtubule-motor-protein systems. We apply the quasiequilibrium Bingham closure, used to study suspensions of passive microscopic rods, to develop a nonstandard Q -tensor theory. We demonstrate through simulation that this B Q -tensor theory gives an excellent analytical and statistical accounting of the suspension's complex dynamics, at a far reduced computational cost. Finally, we apply the B Q -tensor model to study the dynamics of extensor suspensions in circular and biconcave domains. In circular domains, we reproduce previous results for systems with weak nematic alignment, but for strong alignment we find unusual dynamics with activity-controlled defect production and absorption at the boundaries of the domain. In biconcave domains, a Fredericks-like transition occurs as the width of the neck connecting the two disks is varied.

  2. Implementation of a state-to-state analytical framework for the calculation of expansion tube flow properties

    NASA Astrophysics Data System (ADS)

    James, C. M.; Gildfind, D. E.; Lewis, S. W.; Morgan, R. G.; Zander, F.

    2018-03-01

    Expansion tubes are an important type of test facility for the study of planetary entry flow-fields, being the only type of impulse facility capable of simulating the aerothermodynamics of superorbital planetary entry conditions from 10 to 20 km/s. However, the complex flow processes involved in expansion tube operation make it difficult to fully characterise flow conditions, with two-dimensional full facility computational fluid dynamics simulations often requiring tens or hundreds of thousands of computational hours to complete. In an attempt to simplify this problem and provide a rapid flow condition prediction tool, this paper presents a validated and comprehensive analytical framework for the simulation of an expansion tube facility. It identifies central flow processes and models them from state to state through the facility using established compressible and isentropic flow relations, and equilibrium and frozen chemistry. How the model simulates each section of an expansion tube is discussed, as well as how the model can be used to simulate situations where flow conditions diverge from ideal theory. The model is then validated against experimental data from the X2 expansion tube at the University of Queensland.

  3. Optimal Concentrations in Transport Networks

    NASA Astrophysics Data System (ADS)

    Jensen, Kaare; Savage, Jessica; Kim, Wonjung; Bush, John; Holbrook, N. Michele

    2013-03-01

    Biological and man-made systems rely on effective transport networks for distribution of material and energy. Mass flow in these networks is determined by the flow rate and the concentration of material. While the most concentrated solution offers the greatest potential for mass flow, impedance grows with concentration and thus makes it the most difficult to transport. The concentration at which mass flow is optimal depends on specific physical and physiological properties of the system. We derive a simple model which is able to predict optimal concentrations observed in blood flows, sugar transport in plants, and nectar feeding animals. Our model predicts that the viscosity at the optimal concentration μopt =2nμ0 is an integer power of two times the viscosity of the pure carrier medium μ0. We show how the observed powers 1 <= n <= 6 agree well with theory and discuss how n depends on biological constraints imposed on the transport process. The model provides a universal framework for studying flows impeded by concentration and provides hints of how to optimize engineered flow systems, such as congestion in traffic flows.

  4. On recent developments in marginal separation theory.

    PubMed

    Braun, S; Scheichl, S

    2014-07-28

    Thin aerofoils are prone to localized flow separation at their leading edge if subjected to moderate angles of attack α. Although 'laminar separation bubbles' at first do not significantly alter the aerofoil performance, they tend to 'burst' if α is increased further or if perturbations acting upon the flow reach a certain intensity. This then either leads to global flow separation (stall) or triggers the laminar-turbulent transition process within the boundary layer flow. This paper addresses the asymptotic analysis of the early stages of the latter phenomenon in the limit as the characteristic Reynolds number [Formula: see text], commonly referred to as marginal separation theory. A new approach based on the adjoint operator method is presented that enables the fundamental similarity laws of marginal separation theory to be derived and the analysis to be extended to higher order. Special emphasis is placed on the breakdown of the flow description, i.e. the formation of finite-time singularities (a manifestation of the bursting process), and on its resolution being based on asymptotic arguments. The passage to the subsequent triple-deck stage is described in detail, which is a prerequisite for carrying out a future numerical treatment of this stage in a proper way. Moreover, a composite asymptotic model is developed in order for the inherent ill-posedness of the Cauchy problems associated with the current flow description to be resolved.

  5. Validation of vibration-dissociation coupling models in hypersonic non-equilibrium separated flows

    NASA Astrophysics Data System (ADS)

    Shoev, G.; Oblapenko, G.; Kunova, O.; Mekhonoshina, M.; Kustova, E.

    2018-03-01

    The validation of recently developed models of vibration-dissociation coupling is discussed in application to numerical solutions of the Navier-Stokes equations in a two-temperature approximation for a binary N2/N flow. Vibrational-translational relaxation rates are computed using the Landau-Teller formula generalized for strongly non-equilibrium flows obtained in the framework of the Chapman-Enskog method. Dissociation rates are calculated using the modified Treanor-Marrone model taking into account the dependence of the model parameter on the vibrational state. The solutions are compared to those obtained using traditional Landau-Teller and Treanor-Marrone models, and it is shown that for high-enthalpy flows, the traditional and recently developed models can give significantly different results. The computed heat flux and pressure on the surface of a double cone are in a good agreement with experimental data available in the literature on low-enthalpy flow with strong thermal non-equilibrium. The computed heat flux on a double wedge qualitatively agrees with available data for high-enthalpy non-equilibrium flows. Different contributions to the heat flux calculated using rigorous kinetic theory methods are evaluated. Quantitative discrepancy of numerical and experimental data is discussed.

  6. Supergranulation and multiscale flows in the solar photosphere. Global observations vs. a theory of anisotropic turbulent convection

    NASA Astrophysics Data System (ADS)

    Rincon, F.; Roudier, T.; Schekochihin, A. A.; Rieutord, M.

    2017-03-01

    The Sun provides us with the only spatially well-resolved astrophysical example of turbulent thermal convection. While various aspects of solar photospheric turbulence, such as granulation (one-Megameter horizontal scale), are well understood, the questions of the physical origin and dynamical organization of larger-scale flows, such as the 30-Megameters supergranulation and flows deep in the solar convection zone, remain largely open in spite of their importance for solar dynamics and magnetism. Here, we present a new critical global observational characterization of multiscale photospheric flows and subsequently formulate an anisotropic extension of the Bolgiano-Obukhov theory of hydrodynamic stratified turbulence that may explain several of their distinctive dynamical properties. Our combined analysis suggests that photospheric flows in the horizontal range of scales between supergranulation and granulation have a typical vertical correlation scale of 2.5 to 4 Megameters and operate in a strongly anisotropic, self-similar, nonlinear, buoyant dynamical regime. While the theory remains speculative at this stage, it lends itself to quantitative comparisons with future high-resolution acoustic tomography of subsurface layers and advanced numerical models. Such a validation exercise may also lead to new insights into the asymptotic dynamical regimes in which other, unresolved turbulent anisotropic astrophysical fluid systems supporting waves or instabilities operate.

  7. Collision partner selection schemes in DSMC: From micro/nano flows to hypersonic flows

    NASA Astrophysics Data System (ADS)

    Roohi, Ehsan; Stefanov, Stefan

    2016-10-01

    The motivation of this review paper is to present a detailed summary of different collision models developed in the framework of the direct simulation Monte Carlo (DSMC) method. The emphasis is put on a newly developed collision model, i.e., the Simplified Bernoulli trial (SBT), which permits efficient low-memory simulation of rarefied gas flows. The paper starts with a brief review of the governing equations of the rarefied gas dynamics including Boltzmann and Kac master equations and reiterates that the linear Kac equation reduces to a non-linear Boltzmann equation under the assumption of molecular chaos. An introduction to the DSMC method is provided, and principles of collision algorithms in the DSMC are discussed. A distinction is made between those collision models that are based on classical kinetic theory (time counter, no time counter (NTC), and nearest neighbor (NN)) and the other class that could be derived mathematically from the Kac master equation (pseudo-Poisson process, ballot box, majorant frequency, null collision, Bernoulli trials scheme and its variants). To provide a deeper insight, the derivation of both collision models, either from the principles of the kinetic theory or the Kac master equation, is provided with sufficient details. Some discussions on the importance of subcells in the DSMC collision procedure are also provided and different types of subcells are presented. The paper then focuses on the simplified version of the Bernoulli trials algorithm (SBT) and presents a detailed summary of validation of the SBT family collision schemes (SBT on transient adaptive subcells: SBT-TAS, and intelligent SBT: ISBT) in a broad spectrum of rarefied gas-flow test cases, ranging from low speed, internal micro and nano flows to external hypersonic flow, emphasizing first the accuracy of these new collision models and second, demonstrating that the SBT family scheme, if compared to other conventional and recent collision models, requires smaller number of particles per cell to obtain sufficiently accurate solutions.

  8. Breakup of a thin drop under a stagnation point flow

    NASA Astrophysics Data System (ADS)

    Hooshanginejad, Alireza; Lee, Sungyon; Shelley, Michael

    2017-11-01

    Recent studies by Hooshanginejad and Lee (2017) have demonstrated complex depinning behaviors of a partially wetting droplet under wind. Motivated by this study, we examine the coupled evolution of a 2D thin drop and external wind, when it is initially held against a fast stagnation point flow. Our drop lubrication model employs the potential flow and Prandtl boundary layer theory for outer flow to compute the internal drop flow corresponding to drop deformations. Furthermore, both the analytical and numerical steady state solutions provide a partial prediction for the drop's final shape and help identify the range of droplet sizes that undergo a breakup for the given flow condition.

  9. Barriers to front propagation in laminar, three-dimensional fluid flows

    NASA Astrophysics Data System (ADS)

    Doan, Minh; Simons, J. J.; Lilienthal, Katherine; Solomon, Tom; Mitchell, Kevin A.

    2018-03-01

    We present experiments on one-way barriers that block reaction fronts in a fully three-dimensional (3D) fluid flow. Fluorescent Belousov-Zhabotinsky reaction fronts are imaged with laser-scanning in a laminar, overlapping vortex flow. The barriers are analyzed with a 3D extension to burning invariant manifold (BIM) theory that was previously applied to two-dimensional advection-reaction-diffusion processes. We discover tube and sheet barriers that guide the front evolution. The experimentally determined barriers are explained by BIMs calculated from a model of the flow.

  10. Aeroacoustics. [analysis of properties of sound generated by aerodynamic forces

    NASA Technical Reports Server (NTRS)

    Goldstein, M., E.

    1974-01-01

    An analysis was conducted to determine the properties of sound generated by aerodynamic forces or motions originating in a flow, such as the unsteady aerodynamic forces on propellers or by turbulent flows around an aircraft. The acoustics of moving media are reviewed and mathematical models are developed. Lighthill's acoustic analogy and the application to turbulent flows are analyzed. The effects of solid boundaries are calculated. Theories based on the solution of linearized vorticity and acoustic field equations are explained. The effects of nonuniform mean flow on the generation of sound are reported.

  11. System model the processing of heterogeneous sensory information in robotized complex

    NASA Astrophysics Data System (ADS)

    Nikolaev, V.; Titov, V.; Syryamkin, V.

    2018-05-01

    Analyzed the scope and the types of robotic systems consisting of subsystems of the form "a heterogeneous sensors data processing subsystem". On the basis of the Queuing theory model is developed taking into account the unevenness of the intensity of information flow from the sensors to the subsystem of information processing. Analytical solution to assess the relationship of subsystem performance and uneven flows. The research of the obtained solution in the range of parameter values of practical interest.

  12. Self-Consistent Models of Accretion Disks

    NASA Technical Reports Server (NTRS)

    Narayan, Ramesh

    2000-01-01

    Research was carried out on several topics in the theory of astrophysical accretion flows around black holes, neutron stars and white dwarfs. The focus of our effort was the advection-dominated accretion flow (ADAF) model which the PI and his collaborators proposed and developed over the last several years. Our group completed a total of 46 papers, of which 36 are in refereed journals and 12 are in conference proceedings. All the papers have either already appeared in print or are in press.

  13. SCREENING MODEL FOR NONAQUEOUS PHASE-LIQUID TRANSPORT IN THE VADOSE ZONE USING GREEN-AMPT AND KINEMATIC WAVE THEORY

    EPA Science Inventory

    In this paper, a screening model for flow of a nonaqueous phase liquid (NAPL) and associated chemical transport in the vadose zone is developed. he model is based on kinematic approximation of the governing equations for both the NAPL and a partitionable chemical constituent. he ...

  14. Teaching Direct Current Theory Using a Field Model

    ERIC Educational Resources Information Center

    Stocklmayer, Susan

    2010-01-01

    Principles of direct current have long been recognised in the literature as presenting difficulties for learners. Most of these difficulties have been reported in the context of the traditional electron flow model. In this paper, an alternative approach for high school students using a field model is explored. Findings from a range of short pilot…

  15. Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping

    2010-01-01

    The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.

  16. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions

    NASA Astrophysics Data System (ADS)

    Reinken, Henning; Klapp, Sabine H. L.; Bär, Markus; Heidenreich, Sebastian

    2018-02-01

    In this paper, we systematically derive a fourth-order continuum theory capable of reproducing mesoscale turbulence in a three-dimensional suspension of microswimmers. We start from overdamped Langevin equations for a generic microscopic model (pushers or pullers), which include hydrodynamic interactions on both small length scales (polar alignment of neighboring swimmers) and large length scales, where the solvent flow interacts with the order parameter field. The flow field is determined via the Stokes equation supplemented by an ansatz for the stress tensor. In addition to hydrodynamic interactions, we allow for nematic pair interactions stemming from excluded-volume effects. The results here substantially extend and generalize earlier findings [S. Heidenreich et al., Phys. Rev. E 94, 020601 (2016), 10.1103/PhysRevE.94.020601], in which we derived a two-dimensional hydrodynamic theory. From the corresponding mean-field Fokker-Planck equation combined with a self-consistent closure scheme, we derive nonlinear field equations for the polar and the nematic order parameter, involving gradient terms of up to fourth order. We find that the effective microswimmer dynamics depends on the coupling between solvent flow and orientational order. For very weak coupling corresponding to a high viscosity of the suspension, the dynamics of mesoscale turbulence can be described by a simplified model containing only an effective microswimmer velocity.

  17. Un-reduction in field theory.

    PubMed

    Arnaudon, Alexis; López, Marco Castrillón; Holm, Darryl D

    2018-01-01

    The un-reduction procedure introduced previously in the context of classical mechanics is extended to covariant field theory. The new covariant un-reduction procedure is applied to the problem of shape matching of images which depend on more than one independent variable (for instance, time and an additional labelling parameter). Other possibilities are also explored: nonlinear [Formula: see text]-models and the hyperbolic flows of curves.

  18. Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory

    USGS Publications Warehouse

    Iverson, Richard M.; Chaojun Ouyang,

    2015-01-01

    Earth-surface mass flows such as debris flows, rock avalanches, and dam-break floods can grow greatly in size and destructive potential by entraining bed material they encounter. Increasing use of depth-integrated mass- and momentum-conservation equations to model these erosive flows motivates a review of the underlying theory. Our review indicates that many existing models apply depth-integrated conservation principles incorrectly, leading to spurious inferences about the role of mass and momentum exchanges at flow-bed boundaries. Model discrepancies can be rectified by analyzing conservation of mass and momentum in a two-layer system consisting of a moving upper layer and static lower layer. Our analysis shows that erosion or deposition rates at the interface between layers must in general satisfy three jump conditions. These conditions impose constraints on valid erosion formulas, and they help determine the correct forms of depth-integrated conservation equations. Two of the three jump conditions are closely analogous to Rankine-Hugoniot conditions that describe the behavior of shocks in compressible gasses, and the third jump condition describes shear traction discontinuities that necessarily exist across eroding boundaries. Grain-fluid mixtures commonly behave as compressible materials as they undergo entrainment, because changes in bulk density occur as the mixtures mobilize and merge with an overriding flow. If no bulk density change occurs, then only the shear-traction jump condition applies. Even for this special case, however, accurate formulation of depth-integrated momentum equations requires a clear distinction between boundary shear tractions that exist in the presence or absence of bed erosion.

  19. Rotary-wing aerodynamics. Volume 1: Basic theories of rotor aerodynamics with application to helicopters. [momentum, vortices, and potential theory

    NASA Technical Reports Server (NTRS)

    Stepniewski, W. Z.

    1979-01-01

    The concept of rotary-wing aircraft in general is defined. The energy effectiveness of helicopters is compared with that of other static thrust generators in hover, as well as with various air and ground vehicles in forward translation. The most important aspects of rotor-blade dynamics and rotor control are reviewed. The simple physicomathematical model of the rotor offered by the momentum theory is introduced and its usefulness and limitations are assessed. The combined blade-element and momentum theory approach, which provides greater accuracy in performance predictions, is described as well as the vortex theory which models a rotor blade by means of a vortex filament or vorticity surface. The application of the velocity and acceleration potential theory to the determination of flow fields around three dimensional, non-rotating bodies as well as to rotor aerodynamic problems is described. Airfoil sections suitable for rotors are also considered.

  20. The debris-flow rheology myth

    USGS Publications Warehouse

    Iverson, R.M.; ,

    2003-01-01

    Models that employ a fixed rheology cannot yield accurate interpretations or predictions of debris-flow motion, because the evolving behavior of debris flows is too complex to be represented by any rheological equation that uniquely relates stress and strain rate. Field observations and experimental data indicate that debris behavior can vary from nearly rigid to highly fluid as a consequence of temporal and spatial variations in pore-fluid pressure and mixture agitation. Moreover, behavior can vary if debris composition changes as a result of grain-size segregation and gain or loss of solid and fluid constituents in transit. An alternative to fixed-rheology models is provided by a Coulomb mixture theory model, which can represent variable interactions of solid and fluid constituents in heterogeneous debris-flow surges with high-friction, coarse-grained heads and low-friction, liquefied tails. ?? 2003 Millpress.

  1. A Particle Representation Model for the Deformation of Homogeneous Turbulence

    NASA Technical Reports Server (NTRS)

    Kassinos, S. C.; Reynolds, W. C.

    1996-01-01

    In simple flows, where the mean deformation rates are mild and the turbulence has time to come to equilibrium with the mean flow, the Reynolds stresses are determined by the applied strain rate. Hence in these flows, it is often adequate to use an eddy-viscosity representation. The modern family of kappa-epsilon models has been very useful in predicting near equilibrium turbulent flows, where the rms deformation rate S is small compared to the reciprocal time scale of the turbulence (epsilon/kappa). In modern engineering applications, turbulence models are quite often required to predict flows with very rapid deformations (large S kappa/epsilon). In these flows, the structure takes some time to respond and eddy viscosity models are inadequate. The response of turbulence to rapid deformations is given by rapid distortion theory (RDT). Under RDT the nonlinear effects due to turbulence-turbulence interactions are neglected in the governing equations, but even when linearized in this fashion, the governing equations are unclosed at the one-point level due to the non-locality of the pressure fluctuations.

  2. Modeling of the flow behavior of SAE 8620H combing microstructure evolution in hot forming

    NASA Astrophysics Data System (ADS)

    Fu, Xiaobin; Wang, Baoyu; Tang, Xuefeng

    2017-10-01

    With the development of net-shape forming technology, hot forming process is widely applied to manufacturing gear parts, during which, materials suffer severe plastic distortion and microstructure changes continually. In this paper, to understand and model the flow behavior and microstructure evolution, SAE 8620H, a widely used gear steel, is selected as the object and the flow behavior and microstructure evolution are observed by an isothermal hot compression tests at 1273-1373 K with a strain rate of 0.1-10 s-1. Depending on the results of the compression test, a set of internal-state-variable based unified constitutive equations is put forward to describe the flow behavior and microstructure evaluation of SAE 8620H. Moreover, the evaluation of the dislocation density and the fraction of dynamic recrystallization based on the theory of thermal activation is modeled and reincorporated into the constitutive law. The material parameters in the constitutive model are calculated based on the measured flow stress and dynamic recrystallization fraction. The predicted flow stress under different deformation conditions has a good agreement with the measured results.

  3. Potential flow theory and operation guide for the panel code PMARC

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.; Dudley, Michael R.; Iguchi, Steve K.; Browne, Lindsey; Katz, Joseph

    1991-01-01

    The theoretical basis for PMARC, a low-order potential-flow panel code for modeling complex three-dimensional geometries, is outlined. Several of the advanced features currently included in the code, such as internal flow modeling, a simple jet model, and a time-stepping wake model, are discussed in some detail. The code is written using adjustable size arrays so that it can be easily redimensioned for the size problem being solved and the computer hardware being used. An overview of the program input is presented, with a detailed description of the input available in the appendices. Finally, PMARC results for a generic wing/body configuration are compared with experimental data to demonstrate the accuracy of the code. The input file for this test case is given in the appendices.

  4. Continuum modeling of cooperative traffic flow dynamics

    NASA Astrophysics Data System (ADS)

    Ngoduy, D.; Hoogendoorn, S. P.; Liu, R.

    2009-07-01

    This paper presents a continuum approach to model the dynamics of cooperative traffic flow. The cooperation is defined in our model in a way that the equipped vehicle can issue and receive a warning massage when there is downstream congestion. Upon receiving the warning massage, the (up-stream) equipped vehicle will adapt the current desired speed to the speed at the congested area in order to avoid sharp deceleration when approaching the congestion. To model the dynamics of such cooperative systems, a multi-class gas-kinetic theory is extended to capture the adaptation of the desired speed of the equipped vehicle to the speed at the downstream congested traffic. Numerical simulations are carried out to show the influence of the penetration rate of the equipped vehicles on traffic flow stability and capacity in a freeway.

  5. Perturbation theory and numerical modelling of weakly and moderately nonlinear incompressible Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Herrmann, M.; Velikovich, A. L.; Abarzhi, S. I.

    2014-10-01

    A study of incompressible two-dimensional Richtmyer-Meshkov instability by means of high-order Eulerian perturbation theory and numerical simulations is reported. Nonlinear corrections to Richtmyer's impulsive formula for the bubble and spike growth rates have been calculated analytically for arbitrary Atwood number and an explicit formula has been obtained for it in the Boussinesq limit. Conditions for early-time acceleration and deceleration of the bubble and the spike have been derived. In our simulations we have solved 2D unsteady Navier-Stokes equations for immiscible incompressible fluids using the finite volume fractional step flow solver NGA developed by, coupled to the level set based interface solver LIT,. The impact of small amounts of viscosity and surface tension on the RMI flow dynamics is studied numerically. Simulation results are compared to the theory to demonstrate successful code verification and highlight the influence of the theory's ideal inviscid flow assumption. Theoretical time histories of the interface curvature at the bubble and spike tip and the profiles of vertical and horizontal velocities have been favorably compared to simulation results, which converge to the theoretical predictions as the Reynolds and Weber numbers are increased. Work supported by the US DOE/NNSA.

  6. Integrated water flow model and modflow-farm process: A comparison of theory, approaches, and features of two integrated hydrologic models

    USGS Publications Warehouse

    Dogrul, Emin C.; Schmid, Wolfgang; Hanson, Randall T.; Kadir, Tariq; Chung, Francis

    2016-01-01

    Effective modeling of conjunctive use of surface and subsurface water resources requires simulation of land use-based root zone and surface flow processes as well as groundwater flows, streamflows, and their interactions. Recently, two computer models developed for this purpose, the Integrated Water Flow Model (IWFM) from the California Department of Water Resources and the MODFLOW with Farm Process (MF-FMP) from the US Geological Survey, have been applied to complex basins such as the Central Valley of California. As both IWFM and MFFMP are publicly available for download and can be applied to other basins, there is a need to objectively compare the main approaches and features used in both models. This paper compares the concepts, as well as the method and simulation features of each hydrologic model pertaining to groundwater, surface water, and landscape processes. The comparison is focused on the integrated simulation of water demand and supply, water use, and the flow between coupled hydrologic processes. The differences in the capabilities and features of these two models could affect the outcome and types of water resource problems that can be simulated.

  7. Finite Element Methods and Multiphase Continuum Theory for Modeling 3D Air-Water-Sediment Interactions

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Miller, C. T.; Dimakopoulos, A.; Farthing, M.

    2016-12-01

    The last decade has seen an expansion in the development and application of 3D free surface flow models in the context of environmental simulation. These models are based primarily on the combination of effective algorithms, namely level set and volume-of-fluid methods, with high-performance, parallel computing. These models are still computationally expensive and suitable primarily when high-fidelity modeling near structures is required. While most research on algorithms and implementations has been conducted in the context of finite volume methods, recent work has extended a class of level set schemes to finite element methods on unstructured methods. This work considers models of three-phase flow in domains containing air, water, and granular phases. These multi-phase continuum mechanical formulations show great promise for applications such as analysis of coastal and riverine structures. This work will consider formulations proposed in the literature over the last decade as well as new formulations derived using the thermodynamically constrained averaging theory, an approach to deriving and closing macroscale continuum models for multi-phase and multi-component processes. The target applications require the ability to simulate wave breaking and structure over-topping, particularly fully three-dimensional, non-hydrostatic flows that drive these phenomena. A conservative level set scheme suitable for higher-order finite element methods is used to describe the air/water phase interaction. The interaction of these air/water flows with granular materials, such as sand and rubble, must also be modeled. The range of granular media dynamics targeted including flow and wave transmision through the solid media as well as erosion and deposition of granular media and moving bed dynamics. For the granular phase we consider volume- and time-averaged continuum mechanical formulations that are discretized with the finite element method and coupled to the underlying air/water flow via operator splitting (fractional step) schemes. Particular attention will be given to verification and validation of the numerical model and important qualitative features of the numerical methods including phase conservation, wave energy dissipation, and computational efficiency in regimes of interest.

  8. Near wakes of advanced turbopropellers

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Patrick, W. P.

    1989-01-01

    The flow in the wake of a model single rotation Prop-Fan rotor operating in a wind tunnel was traversed with a hot-wire anemometer system designed to determine the 3 periodic velocity components. Special data acquisition and data reduction methods were required to deal with the high data frequency, narrow wakes, and large fluctuating air angles in the tip vortex region. The model tip helical Mach number was 1.17, simulating the cruise condition. Although the flow field is complex, flow features such as viscous velocity defects, vortex sheets, tip vortices, and propagating acoustic pulses are clearly identified with the aid of a simple analytical wake theory.

  9. Computational Relativistic Astrophysics Using the Flowfield-Dependent Variation Theory

    NASA Technical Reports Server (NTRS)

    Richardson, G. A.; Chung, T. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Theoretical models, observations and measurements have preoccupied astrophysicists for many centuries. Only in recent years, has the theory of relativity as applied to astrophysical flows met the challenges of how the governing equations can be solved numerically with accuracy and efficiency. Even without the effects of relativity, the physics of magnetohydrodynamic flow instability, turbulence, radiation, and enhanced transport in accretion disks has not been completely resolved. Relativistic effects become pronounced in such cases as jet formation from black hole magnetized accretion disks and also in the study of Gamma-Ray bursts (GRB). Thus, our concern in this paper is to reexamine existing numerical simulation tools as to the accuracy and efficiency of computations and introduce a new approach known as the flowfield-dependent variation (FDV) method. The main feature of the FDV method consists of accommodating discontinuities of shock waves and high gradients of flow variables such as occur in turbulence and unstable motions. In this paper, the physics involved in the solution of relativistic hydrodynamics and solution strategies of the FDV theory are elaborated. The general relativistic astrophysical flow and shock solver (GRAFSS) is introduced, and some simple example problems for Computational Relativistic Astrophysics (CRA) are demonstrated.

  10. Gyrotactic swimmer dispersion in pipe flow: testing the theory

    NASA Astrophysics Data System (ADS)

    Croze, Ottavio A.; Bearon, Rachel N.; Bees, Martin A.

    2017-04-01

    Suspensions of microswimmers are a rich source of fascinating new fluid mechanics. Recently we predicted the active pipe flow dispersion of gyrotactic microalgae, whose orientation is biased by gravity and flow shear. Analytical theory predicts that these active swimmers disperse in a markedly distinct manner from passive tracers (Taylor dispersion). Dispersing swimmers display nonzero drift and effective diffusivity that is non-monotonic with P$\\'e$clet number. Such predictions agree with numerical simulations, but hitherto have not been tested experimentally. Here, to facilitate comparison, we obtain new solutions of the axial dispersion theory accounting both for swimmer negative buoyancy and a local nonlinear response of swimmers to shear, provided by two alternative microscopic stochastic descriptions. We obtain new predictions for suspensions of the model swimming alga $\\it Dunaliella\\,salina$, whose motility and buoyant mass we parametrise using tracking video microscopy. We then present a new experimental method to measure gyrotactic dispersion using fluorescently stained $\\it D. salina$ and provide a preliminary comparison with predictions of a nonzero drift above the mean flow for each microscopic stochastic description. Finally, we propose further experiments for a full experimental characterisation of gyrotactic dispersion measures and discuss implications of our results for algal dispersion in industrial photobioreactors.

  11. Drag reduction by a linear viscosity profile.

    PubMed

    De Angelis, Elisabetta; Casciola, Carlo M; L'vov, Victor S; Pomyalov, Anna; Procaccia, Itamar; Tiberkevich, Vasil

    2004-11-01

    Drag reduction by polymers in turbulent flows raises an apparent contradiction: the stretching of the polymers must increase the viscosity, so why is the drag reduced? A recent theory proposed that drag reduction, in agreement with experiments, is consistent with the effective viscosity growing linearly with the distance from the wall. With this self-consistent solution the reduction in the Reynolds stress overwhelms the increase in viscous drag. In this Rapid Communication we show, using direct numerical simulations, that a linear viscosity profile indeed reduces the drag in agreement with the theory and in close correspondence with direct simulations of the FENE-P model at the same flow conditions.

  12. Simulations of Fluvial Landscapes

    NASA Astrophysics Data System (ADS)

    Cattan, D.; Birnir, B.

    2013-12-01

    The Smith-Bretherton-Birnir (SBB) model for fluvial landsurfaces consists of a pair of partial differential equations, one governing water flow and one governing the sediment flow. Numerical solutions of these equations have been shown to provide realistic models in the evolution of fluvial landscapes. Further analysis of these equations shows that they possess scaling laws (Hack's Law) that are known to exist in nature. However, the simulations are highly dependent on the numerical methods used; with implicit methods exhibiting the correct scaling laws, but the explicit methods fail to do so. These equations, and the resulting models, help to bridge the gap between the deterministic and the stochastic theories of landscape evolution. Slight modifications of the SBB equations make the results of the model more realistic. By modifying the sediment flow equation, the model obtains more pronounced meandering rivers. Typical landsurface with rivers.

  13. Modelling food-web mediated effects of hydrological variability and environmental flows.

    PubMed

    Robson, Barbara J; Lester, Rebecca E; Baldwin, Darren S; Bond, Nicholas R; Drouart, Romain; Rolls, Robert J; Ryder, Darren S; Thompson, Ross M

    2017-11-01

    Environmental flows are designed to enhance aquatic ecosystems through a variety of mechanisms; however, to date most attention has been paid to the effects on habitat quality and life-history triggers, especially for fish and vegetation. The effects of environmental flows on food webs have so far received little attention, despite food-web thinking being fundamental to understanding of river ecosystems. Understanding environmental flows in a food-web context can help scientists and policy-makers better understand and manage outcomes of flow alteration and restoration. In this paper, we consider mechanisms by which flow variability can influence and alter food webs, and place these within a conceptual and numerical modelling framework. We also review the strengths and weaknesses of various approaches to modelling the effects of hydrological management on food webs. Although classic bioenergetic models such as Ecopath with Ecosim capture many of the key features required, other approaches, such as biogeochemical ecosystem modelling, end-to-end modelling, population dynamic models, individual-based models, graph theory models, and stock assessment models are also relevant. In many cases, a combination of approaches will be useful. We identify current challenges and new directions in modelling food-web responses to hydrological variability and environmental flow management. These include better integration of food-web and hydraulic models, taking physiologically-based approaches to food quality effects, and better representation of variations in space and time that may create ecosystem control points. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  14. Dynamic Characteristics of Regional Flows around the Pyrénées in View of the PYREX Experiment. Part I: Analysis of the Pressure and Wind Fields and Experimental Assessment of the Applicability of the Linear Theory.

    NASA Astrophysics Data System (ADS)

    Bénech, B.; Koffi, E.; Druilhet, A.; Durand, P.; Bessemoulin, P.; Campins, J.; Jansa, A.; Terliuc, B.

    1998-01-01

    regarding (a) the perturbation of the surface pressure field, which resembles the predicted bipolar distribution; (b) the dependence of the drag on Fr1, which enables the assessment of the linear theory and the definition of the conditions of applicability of two models [(i) a two-dimensional model, for which it was possible to define quantitatively the effective blocked area, and (ii) a three-dimensional model, for which a scaling function that combines the direction of incidence, the mountain shape, and the Coriolis effect was found almost constant, with an average value of 0.2 for all the cases under study]; (c) the extension of the area affected by the blocking effect, estimated to be 4.5-5 times the width of the barrier and the drift of the strong deceleration point due to the Coriolis effect; (d) the dependence of the wind velocities on Fr1 at the edges of the barrier; and (e) the asymmetric flow deviation induced by the Coriolis effect and biased by the departure of the flow from normal incidence.

  15. NEW MODEL AND MEASUREMENT PRINCIPLE OF FLOWING AND HEAT TRANSFER CHARACTERISTICS OF REGENERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y. Y.; Graduate University of the Chinese Academy of Sciences, Beijing, 100049; Luo, E. C.

    2008-03-16

    Regenerators play key role in oscillating-flow cryocoolers or thermoacoustic heat engine systems. However, their flowing and heat transfer mechanism is still not well understood. The complexities of the oscillating flow regenerator make traditional method of heat transfer research become difficult or helpless. In this paper, a model for porous media regenerator was given based on the linear thermoacoustic theory. Then the correlations for characteristic parameters were obtained by deducing universal expressions for thermoacoustic viscous function F{sub v} and thermal function F{sub T}. A simple acoustical method and experimental system to get F{sub v} and F{sub T} via measurements of isothermalmore » regenerators were presented. Some measurements of packed stainless screen regenerators were performed, and preliminary experimental results for flow and convective coefficients were derived, which showing flowing friction factor is approximately within 132/Re to 173/Re.« less

  16. Lattice Boltzmann simulations for wall-flow dynamics in porous ceramic diesel particulate filters

    NASA Astrophysics Data System (ADS)

    Lee, Da Young; Lee, Gi Wook; Yoon, Kyu; Chun, Byoungjin; Jung, Hyun Wook

    2018-01-01

    Flows through porous filter walls of wall-flow diesel particulate filter are investigated using the lattice Boltzmann method (LBM). The microscopic model of the realistic filter wall is represented by randomly overlapped arrays of solid spheres. The LB simulation results are first validated by comparison to those from previous hydrodynamic theories and constitutive models for flows in porous media with simple regular and random solid-wall configurations. We demonstrate that the newly designed randomly overlapped array structures of porous walls allow reliable and accurate simulations for the porous wall-flow dynamics in a wide range of solid volume fractions from 0.01 to about 0.8, which is beyond the maximum random packing limit of 0.625. The permeable performance of porous media is scrutinized by changing the solid volume fraction and particle Reynolds number using Darcy's law and Forchheimer's extension in the laminar flow region.

  17. Theoretical performance of hydrogen-bromine rechargeable SPE fuel cell

    NASA Technical Reports Server (NTRS)

    Savinell, Robert F.; Fritts, S. D.

    1987-01-01

    A mathematical model was formulated to describe the performance of a hydrogen-bromine fuel cell. Porous electrode theory was applied to the carbon felt flow-by electrode and was coupled to theory describing the solid polymer electrolyte (SPE) system. Parametric studies using the numerical solution to this model were performed to determine the effect of kinetic, mass transfer, and design parameters on the performance of the fuel cell. The results indicate that the cell performance is most sensitive to the transport properties of the SPE membrane. The model was also shown to be a useful tool for scale-up studies.

  18. Steady flow of smooth, inelastic particles on a bumpy inclined plane: Hard and soft particle simulations

    NASA Astrophysics Data System (ADS)

    Tripathi, Anurag; Khakhar, D. V.

    2010-04-01

    We study smooth, slightly inelastic particles flowing under gravity on a bumpy inclined plane using event-driven and discrete-element simulations. Shallow layers (ten particle diameters) are used to enable simulation using the event-driven method within reasonable computational times. Steady flows are obtained in a narrow range of angles (13°-14.5°) ; lower angles result in stopping of the flow and higher angles in continuous acceleration. The flow is relatively dense with the solid volume fraction, ν≈0.5 , and significant layering of particles is observed. We derive expressions for the stress, heat flux, and dissipation for the hard and soft particle models from first principles. The computed mean velocity, temperature, stress, dissipation, and heat flux profiles of hard particles are compared to soft particle results for different values of stiffness constant (k) . The value of stiffness constant for which results for hard and soft particles are identical is found to be k≥2×106mg/d , where m is the mass of a particle, g is the acceleration due to gravity, and d is the particle diameter. We compare the simulation results to constitutive relations obtained from the kinetic theory of Jenkins and Richman [J. T. Jenkins and M. W. Richman, Arch. Ration. Mech. Anal. 87, 355 (1985)] for pressure, dissipation, viscosity, and thermal conductivity. We find that all the quantities are very well predicted by kinetic theory for volume fractions ν<0.5 . At higher densities, obtained for thicker layers ( H=15d and H=20d ), the kinetic theory does not give accurate prediction. Deviations of the kinetic theory predictions from simulation results are relatively small for dissipation and heat flux and most significant deviations are observed for shear viscosity and pressure. The results indicate the range of applicability of soft particle simulations and kinetic theory for dense flows.

  19. Three dimensional rotating flow of Powell-Eyring nanofluid with non-Fourier's heat flux and non-Fick's mass flux theory

    NASA Astrophysics Data System (ADS)

    Ibrahim, Wubshet

    2018-03-01

    This article numerically examines three dimensional boundary layer flow of a rotating Powell-Eyring nanofluid. In modeling heat transfer processes, non-Fourier heat flux theory and for mass transfer non-Fick's mass flux theory are employed. This theory is recently re-initiated and it becomes the active research area to resolves some drawback associated with the famous Fourier heat flux and mass flux theory. The mathematical model of the flow problem is a system of non-linear partial differential equations which are obtained using the boundary layer analysis. The non-linear partial differential equations have been transformed into non-linear high order ordinary differential equations using similarity transformation. Employing bvp4c algorithm from matlab software routine, the numerical solution of the transformed ordinary differential equations is obtained. The governing equations are constrained by parameters such as rotation parameter λ , the non-Newtonian parameter N, dimensionless thermal relaxation and concentration relaxation parameters δt and δc . The impacts of these parameters have been discussed thoroughly and illustrated using graphs and tables. The findings show that thermal relaxation time δt reduces the thermal and concentration boundary layer thickness. Further, the results reveal that the rotational parameter λ has the effect of decreasing the velocity boundary layer thickness in both x and y directions. Further examination pinpoints that the skin friction coefficient along x-axis is an increasing and skin friction coefficient along y-axis is a decreasing function of rotation parameter λ . Furthermore, the non-Newtonian fluid parameter N has the characteristic of reducing the amount of local Nusselt numbers -f″ (0) and -g″ (0) both in x and y -directions.

  20. Is the von Kármán constant affected by sediment suspension?

    NASA Astrophysics Data System (ADS)

    Castro-Orgaz, Oscar; GiráLdez, Juan V.; Mateos, Luciano; Dey, Subhasish

    2012-12-01

    Is the von Kármán constant affected by sediment suspension? The presence of suspended sediment in channels and fluvial streams has been known for decades to affect turbulence transfer mechanism in sediment-laden flows, and, therefore, the transport and fate of sediments that determine the bathymetry of natural water courses. This study explores the density stratification effects on the turbulent velocity profile and its impact on the transport of sediment. There is as yet no consensus in the scientific community on the effect of sediment suspension on the von Kármán parameter,κ. Two different theories based on the empirical log-wake velocity profile are currently under debate: One supports a universal value ofκ = 0.41 and a strength of the wake, Π, that is affected by suspended sediment. The other suggests that both κ and Π could vary with suspended sediment. These different theories result in a conceptual problem regarding the effect of suspended sediment on κ, which has divided the research area. In this study, a new mixing length theory is proposed to describe theoretically the turbulent velocity profile. The analytical approach provides added insight defining κas a turbulent parameter which varies with the distance to the bed in sediment-laden flows. The theory is compared with previous experimental data and simulations using ak-ɛturbulence closure to the Reynolds averaged Navier Stokes equations model. The mixing length model indicates that the two contradictory theories incorporate the stratified flow effect into a different component of the log-wake law. The results of this work show that the log-wake fit with a reducedκ is the physically coherent approximation.

  1. N = 2 supersymmetry and Bailey pairs

    NASA Astrophysics Data System (ADS)

    Berkovich, Alexander; McCoy, Barry M.; Schilling, Anne

    1996-02-01

    We demonstrate that the Bailey pair formulation of Rogers-Ramanujan identities unifies the calculations of the characters of N = 1 and N = 2 supersymmetric conformal field theories with the counterpart theory with no supersymmetry. We illustrate this construction for the M(3,4) (Ising) model where the Bailey pairs have been given by Slater. We then present the general unitary case. We demonstrate that the model M( p,p + 1) is derived from M( p - 1, p) by a Bailey renormalization flow and conclude by obtaining the N = 1 model SM( p,p + 2) and the unitary N = 2 model with central charge c = 3(1 - 2/ p).

  2. The relationship between eddy-transport and second-order closure models for stratified media and for vortices

    NASA Technical Reports Server (NTRS)

    Donaldson, C. D.

    1973-01-01

    The question is considered of how complex a model should be used for the calculation of turbulent shear flows. At the present time there are models varying in complexity from very simple eddy-transport models to models in which all the equations for the nonzero second-order correlations are solved simultaneously with the equations for the mean variables. A discussion is presented of the relationship between these two models of turbulent shear flow. Two types of motion are discussed: first, turbulent shear flow in a stratified medium and, second, the motion in a turbulent line vortex. These two cases are instructive because in the first example eddy-transport methods have proven reasonably effective, whereas in the second, they have led to erroneous conclusions. It is not generally appreciated that the simplest form of eddy-transport theory can be derived from second-order closure models of turbulent flow by a suitably limiting process. This limiting process and the suitability of eddy-transport modeling for stratified media and line vortices are discussed.

  3. Neural contributions to flow experience during video game playing.

    PubMed

    Klasen, Martin; Weber, René; Kircher, Tilo T J; Mathiak, Krystyna A; Mathiak, Klaus

    2012-04-01

    Video games are an exciting part of new media. Although game play has been intensively studied, the underlying neurobiology is still poorly understood. Flow theory is a well-established model developed to describe subjective game experience. In 13 healthy male subjects, we acquired fMRI data during free play of a video game and analyzed brain activity based on the game content. In accordance with flow theory, we extracted the following factors from the game content: (i) balance between ability and challenge; (ii) concentration and focus; (iii) direct feedback of action results; (iv) clear goals; and (v) control over the situation/activity. We suggest that flow is characterized by specific neural activation patterns and that the latter can be assessed-at least partially-by content factors contributing to the emergence of flow. Each of the content factors was characterized by specific and distinguishable brain activation patterns, encompassing reward-related midbrain structures, as well as cognitive and sensorimotor networks. The activation of sensory and motor networks in the conjunction analyses underpinned the central role of simulation for flow experience. Flow factors can be validated with functional brain imaging which can improve the understanding of human emotions and motivational processes during media entertainment.

  4. Neural contributions to flow experience during video game playing

    PubMed Central

    Weber, René; Kircher, Tilo T. J.; Mathiak, Krystyna A.; Mathiak, Klaus

    2012-01-01

    Video games are an exciting part of new media. Although game play has been intensively studied, the underlying neurobiology is still poorly understood. Flow theory is a well-established model developed to describe subjective game experience. In 13 healthy male subjects, we acquired fMRI data during free play of a video game and analyzed brain activity based on the game content. In accordance with flow theory, we extracted the following factors from the game content: (i) balance between ability and challenge; (ii) concentration and focus; (iii) direct feedback of action results; (iv) clear goals; and (v) control over the situation/activity. We suggest that flow is characterized by specific neural activation patterns and that the latter can be assessed—at least partially—by content factors contributing to the emergence of flow. Each of the content factors was characterized by specific and distinguishable brain activation patterns, encompassing reward-related midbrain structures, as well as cognitive and sensorimotor networks. The activation of sensory and motor networks in the conjunction analyses underpinned the central role of simulation for flow experience. Flow factors can be validated with functional brain imaging which can improve the understanding of human emotions and motivational processes during media entertainment. PMID:21596764

  5. Application of the PROMETHEE technique to determine depression outlet location and flow direction in DEM

    NASA Astrophysics Data System (ADS)

    Chou, Tien-Yin; Lin, Wen-Tzu; Lin, Chao-Yuan; Chou, Wen-Chieh; Huang, Pi-Hui

    2004-02-01

    With the fast growing progress of computer technologies, spatial information on watersheds such as flow direction, watershed boundaries and the drainage network can be automatically calculated or extracted from a digital elevation model (DEM). The stubborn problem that depressions exist in DEMs has been frequently encountered while extracting the spatial information of terrain. Several filling-up methods have been proposed for solving depressions. However, their suitability for large-scale flat areas is inadequate. This study proposes a depression watershed method coupled with the Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEEs) theory to determine the optimal outlet and calculate the flow direction in depressions. Three processing procedures are used to derive the depressionless flow direction: (1) calculating the incipient flow direction; (2) establishing the depression watershed by tracing the upstream drainage area and determining the depression outlet using PROMETHEE theory; (3) calculating the depressionless flow direction. The developed method was used to delineate the Shihmen Reservoir watershed located in Northern Taiwan. The results show that the depression watershed method can effectively solve the shortcomings such as depression outlet differentiating and looped flow direction between depressions. The suitability of the proposed approach was verified.

  6. Relaxation approximation in the theory of shear turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert

    1995-01-01

    Leslie's perturbative treatment of the direct interaction approximation for shear turbulence (Modern Developments in the Theory of Turbulence, 1972) is applied to derive a time dependent model for the Reynolds stresses. The stresses are decomposed into tensor components which satisfy coupled linear relaxation equations; the present theory therefore differs from phenomenological Reynolds stress closures in which the time derivatives of the stresses are expressed in terms of the stresses themselves. The theory accounts naturally for the time dependence of the Reynolds normal stress ratios in simple shear flow. The distortion of wavenumber space by the mean shear plays a crucial role in this theory.

  7. Swirling Flow Computation at the Trailing Edge of Radial-Axial Hydraulic Turbines

    NASA Astrophysics Data System (ADS)

    Susan-Resiga, Romeo; Muntean, Sebastian; Popescu, Constantin

    2016-11-01

    Modern hydraulic turbines require optimized runners within a range of operating points with respect to minimum weighted average draft tube losses and/or flow instabilities. Tractable optimization methodologies must include realistic estimations of the swirling flow exiting the runner and further ingested by the draft tube, prior to runner design. The paper presents a new mathematical model and the associated numerical algorithm for computing the swirling flow at the trailing edge of Francis turbine runner, operated at arbitrary discharge. The general turbomachinery throughflow theory is particularized for an arbitrary hub-to-shroud line in the meridian half-plane and the resulting boundary value problem is solved with the finite element method. The results obtained with the present model are validated against full 3D runner flow computations within a range of discharge value. The mathematical model incorporates the full information for the relative flow direction, as well as the curvatures of the hub-to-shroud line and meridian streamlines, respectively. It is shown that the flow direction can be frozen within a range of operating points in the neighborhood of the best efficiency regime.

  8. Development of a recursion RNG-based turbulence model

    NASA Technical Reports Server (NTRS)

    Zhou, YE; Vahala, George; Thangam, S.

    1993-01-01

    Reynolds stress closure models based on the recursion renormalization group theory are developed for the prediction of turbulent separated flows. The proposed model uses a finite wavenumber truncation scheme to account for the spectral distribution of energy. In particular, the model incorporates effects of both local and nonlocal interactions. The nonlocal interactions are shown to yield a contribution identical to that from the epsilon-renormalization group (RNG), while the local interactions introduce higher order dispersive effects. A formal analysis of the model is presented and its ability to accurately predict separated flows is analyzed from a combined theoretical and computational stand point. Turbulent flow past a backward facing step is chosen as a test case and the results obtained based on detailed computations demonstrate that the proposed recursion -RNG model with finite cut-off wavenumber can yield very good predictions for the backstep problem.

  9. Comparison of gravimetric and mantle flow solutions for sub-lithopsheric stress modeling and their combination

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi; Steinberger, Bernhard; Tenzer, Robert; Tassara, Andrés

    2018-05-01

    Based on Hager and O'Connell's solution to mantle flow equations, the stresses induced by mantle convection are determined using the density and viscosity structure in addition to topographic data and a plate velocity model. The solution to mantle flow equations requires the knowledge of mantle properties that are typically retrieved from seismic information. Large parts of the world are, however, not yet covered sufficiently by seismic surveys. An alternative method of modeling the stress field was introduced by Runcorn. He formulated a direct relation between the stress field and gravity data, while adopting several assumptions, particularly disregarding the toroidal mantle flow component and mantle viscosity variations. A possible way to overcome theoretical deficiencies of Runcorn's theory as well as some practical limitations of applying Hager and O'Connell's theory (in the absence of seismic data) is to combine these two methods. In this study, we apply a least-squares analysis to combine these two methods based on the gravity data inversion constraint on mantle flow equations. In particular, we use vertical gravity gradients from the Gravity field and steady state Ocean Circulation Explorer that are corrected for the gravitational contribution of crustal density heterogeneities prior to applying a localized gravity-gradient inversion. This gravitational contribution is estimated based on combining the Vening Meinesz-Moritz and flexural isostatic theories. Moreover, we treat the non-isostatic effect implicitly by applying a band-limited kernel of the integral equation during the inversion. In numerical studies of modeling, the stress field within the South American continental lithosphere we compare the results obtained after applying Runcorn and Hager and O'Connell's methods as well as their combination. The results show that, according to Hager and O'Connell's (mantle flow) solution, the maximum stress intensity is inferred under the northern Andes. Additional large stress anomalies are detected along the central and southern Andes, while stresses under most of old, stable cratonic formations are much less pronounced or absent. A prevailing stress-vector orientation realistically resembles a convergent mantle flow and downward currents under continental basins that separate Andean Orogeny from the Amazonian Shield and adjacent cratons. Runcorn's (gravimetric) solution, on the other hand, reflects a tectonic response of the lithosphere to mantle flow, with the maximum stress intensity detected along the subduction zone between the Nazca and Altiplano plates and along the convergent tectonic margin between the Altiplano and South American plates. The results also reveal a very close agreement between the results obtained from the combined and Hager and O'Connell's solutions.

  10. Doubly self-consistent field theory of grafted polymers under simple shear in steady state.

    PubMed

    Suo, Tongchuan; Whitmore, Mark D

    2014-03-21

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkman equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.

  11. Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries.

    PubMed

    Spilker, Ryan L; Feinstein, Jeffrey A; Parker, David W; Reddy, V Mohan; Taylor, Charles A

    2007-04-01

    Patient-specific computational models could aid in planning interventions to relieve pulmonary arterial stenoses common in many forms of congenital heart disease. We describe a new approach to simulate blood flow in subject-specific models of the pulmonary arteries that consists of a numerical model of the proximal pulmonary arteries created from three-dimensional medical imaging data with terminal impedance boundary conditions derived from linear wave propagation theory applied to morphometric models of distal vessels. A tuning method, employing numerical solution methods for nonlinear systems of equations, was developed to modify the distal vasculature to match measured pressure and flow distribution data. One-dimensional blood flow equations were solved with a finite element method in image-based pulmonary arterial models using prescribed inlet flow and morphometry-based impedance at the outlets. Application of these methods in a pilot study of the effect of removal of unilateral pulmonary arterial stenosis induced in a pig showed good agreement with experimental measurements for flow redistribution and main pulmonary arterial pressure. Next, these methods were applied to a patient with repaired tetralogy of Fallot and predicted insignificant hemodynamic improvement with relief of the stenosis. This method of coupling image-based and morphometry-based models could enable increased fidelity in pulmonary hemodynamic simulation.

  12. Acoustic Absorption Characteristics of an Orifice With a Mean Bias Flow

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; DAgostino, M.; Jones, Mike (Technical Monitor)

    2000-01-01

    The objective of the study reported here was to acquire acoustic and flow data for numerical validation of impedance models that simulate bias flow through perforates. The impedance model is being developed by researchers at High Technology Corporation. This report documents normal incidence impedance measurements a singular circular orifice with mean flow passing through it. All measurements are made within a 1.12 inch (28.5 mm) diameter impedance tube. The mean flow is introduced upstream of the orifice (with the flow and incident sound wave travelling in the same direction) with an anechoic termination downstream of the orifice. Velocity profiles are obtained upstream of the orifice to characterize the inflow boundary conditions. Velocity in the center of the orifice is also obtained. All velocity measurements are made with a hot wire anemometer and subsequent checked with mass flow measurements made concurrently. All impedance measurements are made using the Two-Microphone Method. Although we have left the analysis of the data to the developers of the impedance models that simulate bias flow through perforate, our initial examination indicates that our results follow the trends consistent with published theory on impedance of perforates with a steady bias flow.

  13. N =1 Lagrangians for generalized Argyres-Douglas theories

    NASA Astrophysics Data System (ADS)

    Agarwal, Prarit; Sciarappa, Antonio; Song, Jaewon

    2017-10-01

    We find N = 1 Lagrangian gauge theories that flow to generalized ArgyresDouglas theories with N = 2 supersymmetry. We find that certain SU quiver gauge theories flow to generalized Argyres-Douglas theories of type ( A k-1 , A mk-1) and ( I m,km , S). We also find quiver gauge theories of SO/Sp gauge groups flowing to the ( A 2 m-1 , D 2 mk+1), ( A 2 m , D 2 m( k-1)+ k ) and D m(2 k + 2) m(2 k + 2) [ m] theories.

  14. Simulating stick-slip failure in a sheared granular layer using a physics-based constitutive model

    DOE PAGES

    Lieou, Charles K. C.; Daub, Eric G.; Guyer, Robert A.; ...

    2017-01-14

    In this paper, we model laboratory earthquakes in a biaxial shear apparatus using the Shear-Transformation-Zone (STZ) theory of dense granular flow. The theory is based on the observation that slip events in a granular layer are attributed to grain rearrangement at soft spots called STZs, which can be characterized according to principles of statistical physics. We model lab data on granular shear using STZ theory and document direct connections between the STZ approach and rate-and-state friction. We discuss the stability transition from stable shear to stick-slip failure and show that stick slip is predicted by STZ when the applied shearmore » load exceeds a threshold value that is modulated by elastic stiffness and frictional rheology. Finally, we also show that STZ theory mimics fault zone dilation during the stick phase, consistent with lab observations.« less

  15. Theory of advection-driven long range biotic transport

    USDA-ARS?s Scientific Manuscript database

    We propose a simple mechanistic model to examine the effects of advective flow on the spread of fungal diseases spread by wind-blown spores. The model is defined by a set of two coupled non-linear partial differential equations for spore densities. One equation describes the long-distance advectiv...

  16. A Study of Flow Theory in the Foreign Language Classroom

    ERIC Educational Resources Information Center

    Egbert, Joy

    2004-01-01

    This article focuses on the relationship between flow experiences and language learning. Flow Theory suggests that flow experiences (characterized by a balance between challenge and skills and by a person's interest, control, and focused attention during a task) can lead to optimal learning. This theory has not yet been tested in the area of…

  17. Active nematic gels as active relaxing solids

    NASA Astrophysics Data System (ADS)

    Turzi, Stefano S.

    2017-11-01

    I propose a continuum theory for active nematic gels, defined as fluids or suspensions of orientable rodlike objects endowed with active dynamics, that is based on symmetry arguments and compatibility with thermodynamics. The starting point is our recent theory that models (passive) nematic liquid crystals as relaxing nematic elastomers. The interplay between viscoelastic response and active dynamics of the microscopic constituents is naturally taken into account. By contrast with standard theories, activity is not introduced as an additional term of the stress tensor, but it is added as an external remodeling force that competes with the passive relaxation dynamics and drags the system out of equilibrium. In a simple one-dimensional channel geometry, we show that the interaction between nonuniform nematic order and activity results in either a spontaneous flow of particles or a self-organization into subchannels flowing in opposite directions.

  18. Using circuit theory to model connectivity in ecology, evolution, and conservation.

    PubMed

    McRae, Brad H; Dickson, Brett G; Keitt, Timothy H; Shah, Viral B

    2008-10-01

    Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.

  19. SCREENING MODEL FOR NONAQUEOUS PHASE LIQUID TRANS- PORT IN THE VADOSE ZONE USING GREEN-AMPT AND KINEMATIC WAVE THEORY

    EPA Science Inventory

    In this paper, a screening model for flow of a nonaqueous phase liquid (NAPL) and associated chemical transport in the vadose zone is developed. The model is based on kinematic approximation of the governing equations for both the NAPL and a partitionable chemical constituent. Th...

  20. The Mentoring Relationship as a Complex Adaptive System: Finding a Model for Our Experience

    ERIC Educational Resources Information Center

    Jones, Rachel; Brown, Dot

    2011-01-01

    Mentoring theory and practice has evolved significantly during the past 40 years. Early mentoring models were characterized by the top-down flow of information and benefits to the protege. This framework was reconceptualized as a reciprocal model when scholars realized mentoring was a mutually beneficial process. Recently, in response to rapidly…

  1. Aspects of Higher-Spin Conformal Field Theories and Their Renormalization Group Flows

    NASA Astrophysics Data System (ADS)

    Diab, Kenan S.

    In this thesis, we study conformal field theories (CFTs) with higher-spin symmetry and the renormalization group flows of some models with interactions that weakly break the higher-spin symmetry. When the higher-spin symmetry is exact, we will present CFT analogues of two classic results in quantum field theory: the Coleman-Mandula theorem, which is the subject of chapter 2, and the Weinberg-Witten theorem, which is the subject of chapter 3. Schematically, our Coleman-Mandula analogue states that a CFT that contains a symmetric conserved current of spin s > 2 in any dimension d > 3 is effectively free, and our Weinberg-Witten analogue states that the presence of certain short, higher-spin, "sufficiently asymmetric" representations of the conformal group is either inconsistent with conformal symmetry or leads to free theories in d = 4 dimensions. In both chapters, the basic strategy is to solve certain Ward identities in convenient kinematical limits and thereby show that the number of solutions is very limited. In the latter chapter, Hofman-Maldacena bounds, which constrain one-point functions of the stress tensor in general states, play a key role. Then, in chapter 4, we will focus on the particular examples of the O(N) and Gross-Neveu model in continuous dimensions. Using diagrammatic techniques, we explicitly calculate how the coefficients of the two-point function of a U(1) current and the two-point function of the stress tensor (CJ and CT, respectively) are renormalized in the 1/N and epsilon expansions. From the higher-spin perspective, these models are interesting since they are related via the AdS/CFT correspondence to Vasiliev gravity. In addition to checking and extending a number of previously-known results about CT and CJ in these theories, we find that in certain dimensions, CJ and CT are not monotonic along the renormalization group flow. Although it was already known that certain supersymmetric models do not satisfy a "CJ"- or " CT"-theorem, this shows that such a theorem is unlikely to hold even under more restrictive assumptions.

  2. Terminal Model Of Newtonian Dynamics

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1994-01-01

    Paper presents study of theory of Newtonian dynamics of terminal attractors and repellers, focusing on issues of reversibility vs. irreversibility and deterministic evolution vs. probabilistic or chaotic evolution of dynamic systems. Theory developed called "terminal dynamics" emphasizes difference between it and classical Newtonian dynamics. Also holds promise for explaining irreversibility, unpredictability, probabilistic behavior, and chaos in turbulent flows, in thermodynamic phenomena, and in other dynamic phenomena and systems.

  3. A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.

    2015-09-08

    A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales,more » as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.« less

  4. Intermediate Scale Experimental Design to Validate a Subsurface Inverse Theory Applicable to Date-sparse Conditions

    NASA Astrophysics Data System (ADS)

    Jiao, J.; Trautz, A.; Zhang, Y.; Illangasekera, T.

    2017-12-01

    Subsurface flow and transport characterization under data-sparse condition is addressed by a new and computationally efficient inverse theory that simultaneously estimates parameters, state variables, and boundary conditions. Uncertainty in static data can be accounted for while parameter structure can be complex due to process uncertainty. The approach has been successfully extended to inverting transient and unsaturated flows as well as contaminant source identification under unknown initial and boundary conditions. In one example, by sampling numerical experiments simulating two-dimensional steady-state flow in which tracer migrates, a sequential inversion scheme first estimates the flow field and permeability structure before the evolution of tracer plume and dispersivities are jointly estimated. Compared to traditional inversion techniques, the theory does not use forward simulations to assess model-data misfits, thus the knowledge of the difficult-to-determine site boundary condition is not required. To test the general applicability of the theory, data generated during high-precision intermediate-scale experiments (i.e., a scale intermediary to the field and column scales) in large synthetic aquifers can be used. The design of such experiments is not trivial as laboratory conditions have to be selected to mimic natural systems in order to provide useful data, thus requiring a variety of sensors and data collection strategies. This paper presents the design of such an experiment in a synthetic, multi-layered aquifer with dimensions of 242.7 x 119.3 x 7.7 cm3. Different experimental scenarios that will generate data to validate the theory are presented.

  5. Investigation of damping and radiation using full plane wave decomposition in ducts

    NASA Astrophysics Data System (ADS)

    Allam, Sabry; Åbom, Mats

    2006-05-01

    A general plane wave decomposition procedure that determines both the wave amplitudes (or the reflection coefficient) and the wavenumbers is proposed for in-duct measurements. To improve the quality of the procedure, overdetermination and a nonlinear least-squares procedure is used. The procedure has been tested using a six microphone array, and used for accurate measurements of the radiation from an open unflanged pipe with flow. The experimental results for the reflection coefficient magnitude and the end correction have been compared with the theory of Munt. The agreement is very good if the maximum speed rather than the average is used to compare measurements and theory. This result is the first complete experimental validation of the theory of Munt [Acoustic transmission properties of a jet pipe with subsonic jet flow, I: the cold jet reflection coefficient, Journal of Sound and Vibration 142(3) (1990) 413-436]. The damping of the plane wave (the imaginary part of the wavenumber) could also be obtained from the experimental data. It is found that the damping increases strongly, compared with the damping for a quiescent fluid, when the acoustic boundary layer becomes thicker than the viscous sublayer. This finding is in agreement with a few earlier measurements and is also in agreement with a theoretical model proposed by Howe [The damping of sound by wall turbulent sheer layers, Journal of Acoustic Society of America 98(3) (1995) 1723-1730]. The results reported here are the first experimental verifications of Howe's model. It is found that the model works well typically up to a normalized acoustic boundary layer thickness δA+ of 30-40. For values of a δA+ less than 10, corresponding to higher frequencies or lower flow speeds, the model proposed by Dokumaci [A note on transmission of sound in a wide pipe with mean flow and viscothermal attenuation, Journal of Sound and Vibration 208(4) (1997) 653-655] is also in good agreement with the experimental data.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieou, Charles K. C.; Daub, Eric G.; Guyer, Robert A.

    In this paper, we model laboratory earthquakes in a biaxial shear apparatus using the Shear-Transformation-Zone (STZ) theory of dense granular flow. The theory is based on the observation that slip events in a granular layer are attributed to grain rearrangement at soft spots called STZs, which can be characterized according to principles of statistical physics. We model lab data on granular shear using STZ theory and document direct connections between the STZ approach and rate-and-state friction. We discuss the stability transition from stable shear to stick-slip failure and show that stick slip is predicted by STZ when the applied shearmore » load exceeds a threshold value that is modulated by elastic stiffness and frictional rheology. Finally, we also show that STZ theory mimics fault zone dilation during the stick phase, consistent with lab observations.« less

  7. Flow phenomena on plates and airfoils of short span

    NASA Technical Reports Server (NTRS)

    Winter, H

    1936-01-01

    Investigations on the flow phenomena at plates and cambered models were carried out with the aid of force measurements, some pressure distribution measurements, and photographic observation. The experimental methods are described and the results given. Section III of this work gives a comprehensive account of the results and enables us to see how nearly the lift line and lift surface theories agree with the experimental results.

  8. Preliminary study of the effect of the turbulent flow field around complex surfaces on their acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Olsen, W. A.; Boldman, D.

    1978-01-01

    Fairly extensive measurements have been conducted of the turbulent flow around various surfaces as a basis for a study of the acoustic characteristics involved. In the experiments the flow from a nozzle was directed upon various two-dimensional surface configurations such as the three-flap model. A turbulent flow field description is given and an estimate of the acoustic characteristics is provided. The developed equations are based upon fundamental theories for simple configurations having simple flows. Qualitative estimates are obtained regarding the radiation pattern and the velocity power law. The effect of geometry and turbulent flow distribution on the acoustic emission from simple configurations are discussed.

  9. Predicting Statistical Response and Extreme Events in Uncertainty Quantification through Reduced-Order Models

    NASA Astrophysics Data System (ADS)

    Qi, D.; Majda, A.

    2017-12-01

    A low-dimensional reduced-order statistical closure model is developed for quantifying the uncertainty in statistical sensitivity and intermittency in principal model directions with largest variability in high-dimensional turbulent system and turbulent transport models. Imperfect model sensitivity is improved through a recent mathematical strategy for calibrating model errors in a training phase, where information theory and linear statistical response theory are combined in a systematic fashion to achieve the optimal model performance. The idea in the reduced-order method is from a self-consistent mathematical framework for general systems with quadratic nonlinearity, where crucial high-order statistics are approximated by a systematic model calibration procedure. Model efficiency is improved through additional damping and noise corrections to replace the expensive energy-conserving nonlinear interactions. Model errors due to the imperfect nonlinear approximation are corrected by tuning the model parameters using linear response theory with an information metric in a training phase before prediction. A statistical energy principle is adopted to introduce a global scaling factor in characterizing the higher-order moments in a consistent way to improve model sensitivity. Stringent models of barotropic and baroclinic turbulence are used to display the feasibility of the reduced-order methods. Principal statistical responses in mean and variance can be captured by the reduced-order models with accuracy and efficiency. Besides, the reduced-order models are also used to capture crucial passive tracer field that is advected by the baroclinic turbulent flow. It is demonstrated that crucial principal statistical quantities like the tracer spectrum and fat-tails in the tracer probability density functions in the most important large scales can be captured efficiently with accuracy using the reduced-order tracer model in various dynamical regimes of the flow field with distinct statistical structures.

  10. Putting the "ecology" into environmental flows: ecological dynamics and demographic modelling.

    PubMed

    Shenton, Will; Bond, Nicholas R; Yen, Jian D L; Mac Nally, Ralph

    2012-07-01

    There have been significant diversions of water from rivers and streams around the world; natural flow regimes have been perturbed by dams, barriers and excessive extractions. Many aspects of the ecological 'health' of riverine systems have declined due to changes in water flows, which has stimulated the development of thinking about the maintenance and restoration of these systems, which we refer to as environmental flow methodologies (EFMs). Most existing EFMs cannot deliver information on the population viability of species because they: (1) use habitat suitability as a proxy for population status; (2) use historical time series (usually of short duration) to forecast future conditions and flow sequences; (3) cannot, or do not, handle extreme flow events associated with climate variability; and (4) assume process stationarity for flow sequences, which means the past sequences are treated as good indicators of the future. These assumptions undermine the capacity of EFMs to properly represent risks associated with different flow management options; assumption (4) is untenable given most climate-change predictions. We discuss these concerns and advocate the use of demographic modelling as a more appropriate tool for linking population dynamics to flow regime change. A 'meta-species' approach to demographic modelling is discussed as a useful step from habitat based models towards modelling strategies grounded in ecological theory when limited data are available on flow-demographic relationships. Data requirements of demographic models will undoubtedly expose gaps in existing knowledge, but, in so doing, will strengthen future efforts to link changes in river flows with their ecological consequences.

  11. Putting the "Ecology" into Environmental Flows: Ecological Dynamics and Demographic Modelling

    NASA Astrophysics Data System (ADS)

    Shenton, Will; Bond, Nicholas R.; Yen, Jian D. L.; Mac Nally, Ralph

    2012-07-01

    There have been significant diversions of water from rivers and streams around the world; natural flow regimes have been perturbed by dams, barriers and excessive extractions. Many aspects of the ecological `health' of riverine systems have declined due to changes in water flows, which has stimulated the development of thinking about the maintenance and restoration of these systems, which we refer to as environmental flow methodologies (EFMs). Most existing EFMs cannot deliver information on the population viability of species because they: (1) use habitat suitability as a proxy for population status; (2) use historical time series (usually of short duration) to forecast future conditions and flow sequences; (3) cannot, or do not, handle extreme flow events associated with climate variability; and (4) assume process stationarity for flow sequences, which means the past sequences are treated as good indicators of the future. These assumptions undermine the capacity of EFMs to properly represent risks associated with different flow management options; assumption (4) is untenable given most climate-change predictions. We discuss these concerns and advocate the use of demographic modelling as a more appropriate tool for linking population dynamics to flow regime change. A `meta-species' approach to demographic modelling is discussed as a useful step from habitat based models towards modelling strategies grounded in ecological theory when limited data are available on flow-demographic relationships. Data requirements of demographic models will undoubtedly expose gaps in existing knowledge, but, in so doing, will strengthen future efforts to link changes in river flows with their ecological consequences.

  12. The flow of plasma in the solar terrestrial environment

    NASA Technical Reports Server (NTRS)

    Schunk, Robert W.; Banks, P.; Barakat, A. R.; Crain, D. J.; Demars, H. G.; Lemaire, J.; Ma, T.-Z.; Rasmussen, C. E.; Richards, P.; Sica, R.

    1990-01-01

    The overall goal of our NASA Theory Program was to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, with the funding from this NASA program, we concentrated on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we developed unique global models that allowed us to study the coupling between the different regions. These results are highlighted in the next section. Another important aspect of our NASA Theory Program concerned the effect that localized 'structure' had on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkland current patterns) or time variations in these input due to storms and substorms. Also, some of the plasma flows that we predicted with our macroscopic models could be unstable, and another one of our goals was to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another goal of our NASA Theory Program was to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This could involve a detailed comparison of kinetic, semi-kinetic, and hydrodynamic predictions for a given polar wind scenario or it could involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations provides insight into when the various models can be used with confidence.

  13. The flow of plasma in the solar terrestrial environment

    NASA Technical Reports Server (NTRS)

    Schunk, Robert W.

    1991-01-01

    The overall goal of our NASA Theory Program is to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative, manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, our immediate emphasis is on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we have developed unique global models that allow us to study the coupling between the different regions. These results are highlighted. Another important aspect of our NASA Theory Program concerns the effect that localized structure has on the macroscopic flow in the ionosphere, plasmasphere, thermosphere and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkeland current patterns) or time variations in these inputs due to storms and substorms. Also, some of the plasma flows that we predict with our macroscopic models may be unstable. Another one of our goals is to examine the stability of our predicted flows. Because time-dependent three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another long-range goal of our NASA Theory Program is to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This may involve a detailed comparison of kinetic, semikinetic, and hydrodynamic predictions for a given polar wind scenario or it may involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations will provide insight into when the various models can be used with confidence.

  14. Full equations utilities (FEQUTL) model for the approximation of hydraulic characteristics of open channels and control structures during unsteady flow

    USGS Publications Warehouse

    Franz, Delbert D.; Melching, Charles S.

    1997-01-01

    The Full EQuations UTiLities (FEQUTL) model is a computer program for computation of tables that list the hydraulic characteristics of open channels and control structures as a function of upstream and downstream depths; these tables facilitate the simulation of unsteady flow in a stream system with the Full Equations (FEQ) model. Simulation of unsteady flow requires many iterations for each time period computed. Thus, computation of hydraulic characteristics during the simulations is impractical, and preparation of function tables and application of table look-up procedures facilitates simulation of unsteady flow. Three general types of function tables are computed: one-dimensional tables that relate hydraulic characteristics to upstream flow depth, two-dimensional tables that relate flow through control structures to upstream and downstream flow depth, and three-dimensional tables that relate flow through gated structures to upstream and downstream flow depth and gate setting. For open-channel reaches, six types of one-dimensional function tables contain different combinations of the top width of flow, area, first moment of area with respect to the water surface, conveyance, flux coefficients, and correction coefficients for channel curvilinearity. For hydraulic control structures, one type of one-dimensional function table contains relations between flow and upstream depth, and two types of two-dimensional function tables contain relations among flow and upstream and downstream flow depths. For hydraulic control structures with gates, a three-dimensional function table lists the system of two-dimensional tables that contain the relations among flow and upstream and downstream flow depths that correspond to different gate openings. Hydraulic control structures for which function tables containing flow relations are prepared in FEQUTL include expansions, contractions, bridges, culverts, embankments, weirs, closed conduits (circular, rectangular, and pipe-arch shapes), dam failures, floodways, and underflow gates (sluice and tainter gates). The theory for computation of the hydraulic characteristics is presented for open channels and for each hydraulic control structure. For the hydraulic control structures, the theory is developed from the results of experimental tests of flow through the structure for different upstream and downstream flow depths. These tests were done to describe flow hydraulics for a single, steady-flow design condition and, thus, do not provide complete information on flow transitions (for example, between free- and submerged-weir flow) that may result in simulation of unsteady flow. Therefore, new procedures are developed to approximate the hydraulics of flow transitions for culverts, embankments, weirs, and underflow gates.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, M.D.; Arsenlis, A.; Bastasz, R.

    Titanium nitride (TiN) films deposited by chemical vapor deposition (CVD) techniques are of interest for a wide range of commercial applications. In this report, the authors describe a mechanism that predicts Tin film growth rates from TiCl{sub 4}/NH{sub 3} mixtures as a function of process parameters, including inlet reactant concentrations, substrate temperatures, reactor pressures, and total gas flow rates. Model predictions were verified by comparison with the results of TiN deposition experiments in the literature and with measurements made in a new stagnation-flow reactor developed for the purpose of testing deposition mechanisms such as this. In addition, they describe abmore » initio calculations that predict thermodynamic properties for titanium-containing compounds. The results of calculations using Moeller-Plesset perturbation theory, density functional theory, and coupled cluster theory are encouraging and suggest that these methods can be used to estimate thermodynamic data that are essential for the development of CVD models involving transition-metal compounds. Finally, measurements of the adsorption and desorption kinetics of NH{sub 3} on TiN films using temperature-programmed desorption are described and their relevance to TiN CVD and mechanism development are discussed.« less

  16. Laser transit anemometer and Pitot probe comparative measurements in a sharp cone boundary layer at Mach 4

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr.; Ocheltree, S. L.; Russ, C. E., Jr.

    1991-01-01

    Laser transit anemometer (LTA) measurements of a 7 degree sharp cone boundary layer were conducted in the Air Force/AEDC Supersonic Tunnel A Mach 4 flow field. These measurements are compared with Pitot probe measurements and tricone theory provided by AEDC staff. Measurements were made both in laminar and turbulent boundary layers of the model. Comparison of LTA measurements with theory showed agreement to better than 1 percent for the laminar boundary layer cases. This level of agreement was obtained after small position corrections, 0.01 to 0.6 mm, were applied to the experimental data sets. Pitot probe data when compared with theory also showed small positioning errors. The Pitot data value was also limited due to probe interference with the flow near the model. The LTA turbulent boundary layer data indicated a power law dependence of 6.3 to 6.9. The LTA data was analyzed in the time (Tau) domain in which it was obtained and in the velocity domain. No significant differences were noted between Tau and velocity domain results except in one turbulent boundary layer case.

  17. A New Similarity theory for Strongly Unstable Atmospheric Surface Layer

    NASA Astrophysics Data System (ADS)

    Ji, Yong; She, Zhen-Su

    2017-11-01

    We apply the structural ensemble dynamics (SED) theory to analyze mean velocity and streamwise turbulence intensity distribution in unstable atmospheric surface layer (ASL). The turbulent kinetic energy balance equation in ASL asserts that above a critical height zL, the buoyancy production cannot be neglected. The SED theory predicts that a stress length function displays a generalized scaling law from z to z 4 / 3. The zL derived from observational data show a two-regime form with Obukhov length L , including a linear dependence for moderate heat flux and a constant regime for large heat flux, extending the Monin-Obukhov similarity theory which is only valid for large | L | . This two-regime description is further extended to model turbulent intensity, with a new similarity coordinate Lz such that the observational data collapse for all L. Finally, we propose a phase diagram for characterizing different ASL flow regimes, and the corresponding flow structures are discussed. In summary, a new similarity theory for unstable atmosphere is constructed, and validated by observational data of the mean velocity and streamwise turbulence intensity distribution for all heat flux regimes.

  18. Prospectus: towards the development of high-fidelity models of wall turbulence at large Reynolds number

    PubMed Central

    Klewicki, J. C.; Chini, G. P.; Gibson, J. F.

    2017-01-01

    Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier–Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167585

  19. Prospectus: towards the development of high-fidelity models of wall turbulence at large Reynolds number.

    PubMed

    Klewicki, J C; Chini, G P; Gibson, J F

    2017-03-13

    Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier-Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  20. Evaluation and Validation of a TCAT Model to Describe Non-Dilute Flow and Species Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Weigand, T. M.; Harrison, E.; Miller, C. T.

    2017-12-01

    A thermodynamically constrained averaging theory (TCAT) model has been developed to simulate non-dilute flow and species transport in porous media. This model has the advantages of a firm connection between the microscale, or pore scale, and the macroscale; a thermodynamically consistent basis; the explicit inclusion of dissipative terms that arise from spatial gradients in pressure and chemical activity; and the ability to describe both high and low concentration displacement. The TCAT model has previously been shown to provide excellent agreement for a set of laboratory data and outperformed existing macroscale models that have been used for non-dilute flow and transport. The examined experimental dataset consisted of stable brine displacements for a large range of fluid properties. This dataset however only examined one type of porous media and had a fixed flow rate for all experiments. In this work, the TCAT model is applied to a dataset that consists of two different porous media types, constant head and flow rate conditions, varying resident fluid concentrations, and internal probes that measured the pressure and salt mass fraction. Parameter estimation is performed on a subset of the experimental data for the TCAT model as well as other existing non-dilute flow and transport models. The optimized parameters are then used for forward simulations and the accuracy of the models is compared.

  1. Anisotropic constitutive modeling for nickel base single crystal superalloys using a crystallographic approach

    NASA Technical Reports Server (NTRS)

    Stouffer, D. C.; Sheh, M. Y.

    1988-01-01

    A micromechanical model based on crystallographic slip theory was formulated for nickel-base single crystal superalloys. The current equations include both drag stress and back stress state variables to model the local inelastic flow. Specially designed experiments have been conducted to evaluate the effect of back stress in single crystals. The results showed that (1) the back stress is orientation dependent; and (2) the back stress state variable in the inelastic flow equation is necessary for predicting anelastic behavior of the material. The model also demonstrated improved fatigue predictive capability. Model predictions and experimental data are presented for single crystal superalloy Rene N4 at 982 C.

  2. Convection without eddy viscosity: An attempt to model the interiors of giant planets

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.

    1986-01-01

    In the theory of hydrostatic quasi-geostrophic flow in the Earth's atmosphere the principal results do not depend on the eddy viscosity. This contrasts with published theories of convection in deep rotating fluid spheres, where the wavelength of the fastest growing disturbance varies as E sup 1/3, where E, the Ekman number, is proportional to the eddy viscosity. A new theory of quasi-columnar motions in stably stratified fluid spheres attempts to capture the luck of the meteorologists. The theory allows one to investigate the stability of barotropic and baroclinic zonal flows that extend into the planetary interior. It is hypothesized that the internal heat Jupiter and Saturn comes out not radially but on sloping surfaces defined by the internal entropy distribution. To test the hypothesis one searches for basic states in which the wavelength of the fastest-growing disturbance remains finite as E tends to zero, and is which the heat flux vector is radially outward and poleward.

  3. Calculation and measurement of the influence of flow parameters on rotordynamic coefficients in labyrinth seals

    NASA Technical Reports Server (NTRS)

    Kwanka, K.; Ortinger, W.; Steckel, J.

    1994-01-01

    First experimental investigations performed on a new test rig are presented. For a staggered labyrinth seal with fourteen cavities the stiffness coefficient and the leakage flow are measured. The experimental results are compared to calculated results which are obtained by a one-volume bulk-flow theory. A perturbation analysis is made for seven terms. It is found out that the friction factors have great impact on the dynamic coefficients. They are obtained by turbulent flow computation by a finite-volume model with the Reynolds equations used as basic equations.

  4. Hořava Gravity is Asymptotically Free in 2+1 Dimensions.

    PubMed

    Barvinsky, Andrei O; Blas, Diego; Herrero-Valea, Mario; Sibiryakov, Sergey M; Steinwachs, Christian F

    2017-11-24

    We compute the β functions of marginal couplings in projectable Hořava gravity in 2+1 spacetime dimensions. We show that the renormalization group flow has an asymptotically free fixed point in the ultraviolet (UV), establishing the theory as a UV-complete model with dynamical gravitational degrees of freedom. Therefore, this theory may serve as a toy model to study fundamental aspects of quantum gravity. Our results represent a step forward towards understanding the UV properties of realistic versions of Hořava gravity.

  5. Modeling Remineralization of Desalinated Water by Micronized Calcite Dissolution.

    PubMed

    Hasson, David; Fine, Larissa; Sagiv, Abraham; Semiat, Raphael; Shemer, Hilla

    2017-11-07

    A widely used process for remineralization of desalinated water consists of dissolution of calcite particles by flow of acidified desalinated water through a bed packed with millimeter-size calcite particles. An alternative process consists of calcite dissolution by slurry flow of micron-size calcite particles with acidified desalinated water. The objective of this investigation is to provide theoretical models enabling design of remineralization by calcite slurry dissolution with carbonic and sulfuric acids. Extensive experimental results are presented displaying the effects of acid concentration, slurry feed concentration, and dissolution contact time. The experimental data are shown to be in agreement within less than 10% with theoretical predictions based on the simplifying assumption that the slurry consists of uniform particles represented by the surface mean diameter of the powder. Agreement between theory and experiment is improved by 1-8% by taking into account the powder size distribution. Apart from the practical value of this work in providing a hitherto lacking design tool for a novel technology. The paper has the merit of being among the very few publications providing experimental confirmation to the theory describing reaction kinetics in a segregated flow system.

  6. Physics of Traffic Flow

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2015-03-01

    The Texas A&M Transportation Institute estimated that traffic congestion cost the United States 121 billion in 2011 (the latest data available). The cost is due to wasted time and fuel. In addition to accidents and road construction, factors contributing to congestion include large demand, instability of high-density free flow and selfish behavior of drivers, which produces self-organized traffic bottlenecks. Extensive data collected on instrumented highways in various countries have led to a better understanding of traffic dynamics. From these measurements, Boris Kerner and colleagues developed a new theory called three-phase theory. They identified three major phases of flow observed in the data: free flow, synchronous flow and wide moving jams. The intermediate phase is called synchronous because vehicles in different lanes tend to have similar velocities. This congested phase, characterized by lower velocities yet modestly high throughput, frequently occurs near on-ramps and lane reductions. At present there are only two widely used methods of congestion mitigation: ramp metering and the display of current travel-time information to drivers. To find more effective methods to reduce congestion, researchers perform large-scale simulations using models based on the new theories. An algorithm has been proposed to realize Wardrop equilibria with real-time route information. Such equilibria have equal travel time on alternative routes between a given origin and destination. An active area of current research is the dynamics of connected vehicles, which communicate wirelessly with other vehicles and the surrounding infrastructure. These systems show great promise for improving traffic flow and safety.

  7. A hydrodynamic model for cooperating solidary countries

    NASA Astrophysics Data System (ADS)

    De Luca, Roberto; Di Mauro, Marco; Falzarano, Angelo; Naddeo, Adele

    2017-07-01

    The goal of international trade theories is to explain the exchange of goods and services between different countries, aiming to benefit from it. Albeit the idea is very simple and known since ancient history, smart policy and business strategies need to be implemented by each subject, resulting in a complex as well as not obvious interplay. In order to understand such a complexity, different theories have been developed since the sixteenth century and today new ideas still continue to enter the game. Among them, the so called classical theories are country-based and range from Absolute and Comparative Advantage theories by A. Smith and D. Ricardo to Factor Proportions theory by E. Heckscher and B. Ohlin. In this work we build a simple hydrodynamic model, able to reproduce the main conclusions of Comparative Advantage theory in its simplest setup, i.e. a two-country world with country A and country B exchanging two goods within a genuine exchange-based economy and a trade flow ruled only by market forces. The model is further generalized by introducing money in order to discuss its role in shaping trade patterns. Advantages and drawbacks of the model are also discussed together with perspectives for its improvement.

  8. Microfluidic circuit analysis II: implications of ion conservation for microchannels connected in series.

    PubMed

    Biscombe, Christian J C; Davidson, Malcolm R; Harvie, Dalton J E

    2012-01-01

    A mathematical framework for analysing electrokinetic flow in microchannel networks is outlined. The model is based on conservation of volume and total charge at network junctions, but in contrast to earlier theories also incorporates conservation of ion charge there. The model is applied to mixed pressure-driven/electro-osmotic flows of binary electrolytes through homogeneous microchannels as well as a 4:1:4 contraction-expansion series network. Under conditions of specified volumetric flow rate and ion currents, non-linear steady-state phenomena may arise: when the direction of the net co-ion flux is opposite to the direction of the net volumetric flow, two different fully developed, steady-state flow solutions may be obtained. Model predictions are compared with two-dimensional computational fluid dynamics (CFD) simulations. For systems where two steady states are realisable, the ultimate steady behaviour is shown to depend in part upon the initial state of the system. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Direct Numerical Simulation and Theories of Wall Turbulence with a Range of Pressure Gradients

    NASA Technical Reports Server (NTRS)

    Coleman, G. N.; Garbaruk, A.; Spalart, P. R.

    2014-01-01

    A new Direct Numerical Simulation (DNS) of Couette-Poiseuille flow at a higher Reynolds number is presented and compared with DNS of other wall-bounded flows. It is analyzed in terms of testing semi-theoretical proposals for universal behavior of the velocity, mixing length, or eddy viscosity in pressure gradients, and in terms of assessing the accuracy of two turbulence models. These models are used in two modes, the traditional one with only a dependence on the wall-normal coordinate y, and a newer one in which a lateral dependence on z is added. For pure Couette flow and the Couette-Poiseuille case considered here, this z-dependence allows some models to generate steady streamwise vortices, which generally improves the agreement with DNS and experiment. On the other hand, it complicates the comparison between DNS and models.

  10. Theory of the electron sheath and presheath

    DOE PAGES

    Scheiner, Brett; Baalrud, Scott D.; Yee, Benjamin T.; ...

    2015-12-30

    Here, electron sheaths are commonly found near Langmuir probes collecting the electron saturation current. The common assumption is that the probe collects the random flux of electrons incident on the sheath, which tacitly implies that there is no electron presheath and that the flux collected is due to a velocity space truncation of the electron velocity distribution function (EVDF). This work provides a dedicated theory of electron sheaths, which suggests that they are not so simple. Motivated by EVDFs observed in particle-in-cell(PIC) simulations, a 1D model for the electron sheath and presheath is developed. In the model, under low temperaturemore » plasma conditions (T e >> T i), an electron pressure gradient accelerates electrons in the presheath to a flow velocity that exceeds the electron thermal speed at the sheath edge. This pressure gradient generates large flow velocities compared to what would be generated by ballistic motion in response to the electric field. It is found that in many situations, under common plasma conditions, the electron presheath extends much further into the plasma than an analogous ion presheath. PIC simulations reveal that the ion density in the electron presheath is determined by a flow around the electron sheath and that this flow is due to 2D aspects of the sheath geometry. Simulations also indicate the presence of ion acoustic instabilities excited by the differential flow between electrons and ions in the presheath, which result in sheath edge fluctuations. The 1D model and time averaged PIC simulations are compared and it is shown that the model provides a good description of the electron sheath and presheath.« less

  11. Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow.

    PubMed

    Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael

    2011-10-01

    We present a simple cellular automaton (CA) model for two-lane roads explaining the physics of traffic breakdown, highway capacity, and synchronized flow. The model consists of the rules "acceleration," "deceleration," "randomization," and "motion" of the Nagel-Schreckenberg CA model as well as "overacceleration through lane changing to the faster lane," "comparison of vehicle gap with the synchronization gap," and "speed adaptation within the synchronization gap" of Kerner's three-phase traffic theory. We show that these few rules of the CA model can appropriately simulate fundamental empirical features of traffic breakdown and highway capacity found in traffic data measured over years in different countries, like characteristics of synchronized flow, the existence of the spontaneous and induced breakdowns at the same bottleneck, and associated probabilistic features of traffic breakdown and highway capacity. Single-vehicle data derived in model simulations show that synchronized flow first occurs and then self-maintains due to a spatiotemporal competition between speed adaptation to a slower speed of the preceding vehicle and passing of this slower vehicle. We find that the application of simple dependences of randomization probability and synchronization gap on driving situation allows us to explain the physics of moving synchronized flow patterns and the pinch effect in synchronized flow as observed in real traffic data.

  12. Temporal flow instability for Magnus-Robins effect at high rotation rates

    NASA Astrophysics Data System (ADS)

    Sengupta, T. K.; Kasliwal, A.; de, S.; Nair, M.

    2003-06-01

    The lift and drag coefficients of a circular cylinder, translating and spinning at a supercritical rate is studied theoretically to explain the experimentally observed violation of maximum mean lift coefficient principle, that was proposed heuristically by Prandtl on the basis of inviscid flow model. It is also noted experimentally that flow past a rotating and translating cylinder experiences temporal instability-a fact not corroborated by any theoretical studies so far. In the present paper we report very accurate solution of Navier-Stokes equation that displays the above-mentioned instability and the violation of the maximum limit. The calculated lift coefficient exceeds the limit of /4π, instantaneously as well as in time-averaged sense. The main purpose of the present paper is to explain the observed temporal instability sequence in terms of a new theory of instability based on full Navier-Stokes equation that does not require making any assumption about the flow field, unlike other stability theories.

  13. Sound transmission through a double-panel construction lined with poroelastic material in the presence of mean flow

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2013-08-01

    This paper investigates the sound transmission characteristics through a system of double-panel lined with poroelastic material in the core. The panels are surrounded by external and internal fluid media where a uniform external mean flow exists on one side. Biot's theory is used to model the porous material. Three types of constructions—bonded-bonded, bonded-unbonded and unbonded-unbonded—are considered. The effect of Mach number of the external flow on the sound transmission over a wide frequency range in a diffuse sound field is examined. External mean flow is shown to give a modest increase in transmission loss at low frequency, but a significant increase at high frequency. It is brought out that calculations based on static air on the incidence side provide a conservative estimate of sound transmission through the sandwich structure. The acoustic performance of the sandwich panel for different configurations is presented. The effect of curvature of the panel is also brought out by using shallow shell theory.

  14. Unconventional Liquid Flow in Low-Permeability Media: Theory and Revisiting Darcy's Law

    NASA Astrophysics Data System (ADS)

    Liu, H. H.; Chen, J.

    2017-12-01

    About 80% of fracturing fluid remains in shale formations after hydraulic fracturing and the flow back process. It is critical to understand and accurately model the flow process of fracturing fluids in a shale formation, because the flow has many practical applications for shale gas recovery. Owing to the strong solid-liquid interaction in low-permeability media, Darcy's law is not always adequate for describing liquid flow process in a shale formation. This non-Darcy flow behavior (characterized by nonlinearity of the relationship between liquid flux and hydraulic gradient), however, has not been given enough attention in the shale gas community. The current study develops a systematic methodology to address this important issue. We developed a phenomenological model for liquid flow in shale (in which liquid flux is a power function of pressure gradient), an extension of the conventional Darcy's law, and also a methodology to estimate parameters for the phenomenological model from spontaneous imbibition tests. The validity of our new developments is verified by satisfactory comparisons of theoretical results and observations from our and other research groups. The relative importance of this non-Darcy liquid flow for hydrocarbon production in unconventional reservoirs remains an issue that needs to be further investigated.

  15. Asymptotic theory of neutral stability of the Couette flow of a vibrationally excited gas

    NASA Astrophysics Data System (ADS)

    Grigor'ev, Yu. N.; Ershov, I. V.

    2017-01-01

    An asymptotic theory of the neutral stability curve for a supersonic plane Couette flow of a vibrationally excited gas is developed. The initial mathematical model consists of equations of two-temperature viscous gas dynamics, which are used to derive a spectral problem for a linear system of eighth-order ordinary differential equations within the framework of the classical linear stability theory. Unified transformations of the system for all shear flows are performed in accordance with the classical Lin scheme. The problem is reduced to an algebraic secular equation with separation into the "inviscid" and "viscous" parts, which is solved numerically. It is shown that the thus-calculated neutral stability curves agree well with the previously obtained results of the direct numerical solution of the original spectral problem. In particular, the critical Reynolds number increases with excitation enhancement, and the neutral stability curve is shifted toward the domain of higher wave numbers. This is also confirmed by means of solving an asymptotic equation for the critical Reynolds number at the Mach number M ≤ 4.

  16. Unsteady-flow-field predictions for oscillating cascades

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    1991-01-01

    The unsteady flow field around an oscillating cascade of flat plates with zero stagger was studied by using a time marching Euler code. This case had an exact solution based on linear theory and served as a model problem for studying pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step size was shown for a moderate reduced frequency. Results show that an approximate nonreflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer to the airfoils than when reflective boundaries are used. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates captures the unsteady flow field better than when uniform grids are used as long as the 'Courant Friedrichs Levy' (CFL) number is less than 1 for a sufficient portion of the grid. Finally, a solution based on an optimization of grid, CFL number, and boundary conditions shows good agreement with linear theory.

  17. A first-order statistical smoothing approximation for the coherent wave field in random porous random media

    NASA Astrophysics Data System (ADS)

    Müller, Tobias M.; Gurevich, Boris

    2005-04-01

    An important dissipation mechanism for waves in randomly inhomogeneous poroelastic media is the effect of wave-induced fluid flow. In the framework of Biot's theory of poroelasticity, this mechanism can be understood as scattering from fast into slow compressional waves. To describe this conversion scattering effect in poroelastic random media, the dynamic characteristics of the coherent wavefield using the theory of statistical wave propagation are analyzed. In particular, the method of statistical smoothing is applied to Biot's equations of poroelasticity. Within the accuracy of the first-order statistical smoothing an effective wave number of the coherent field, which accounts for the effect of wave-induced flow, is derived. This wave number is complex and involves an integral over the correlation function of the medium's fluctuations. It is shown that the known one-dimensional (1-D) result can be obtained as a special case of the present 3-D theory. The expression for the effective wave number allows to derive a model for elastic attenuation and dispersion due to wave-induced fluid flow. These wavefield attributes are analyzed in a companion paper. .

  18. User's guide of TOUGH2-EGS-MP: A Massively Parallel Simulator with Coupled Geomechanics for Fluid and Heat Flow in Enhanced Geothermal Systems VERSION 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yi; Fakcharoenphol, Perapon; Wang, Shihao

    2013-12-01

    TOUGH2-EGS-MP is a parallel numerical simulation program coupling geomechanics with fluid and heat flow in fractured and porous media, and is applicable for simulation of enhanced geothermal systems (EGS). TOUGH2-EGS-MP is based on the TOUGH2-MP code, the massively parallel version of TOUGH2. In TOUGH2-EGS-MP, the fully-coupled flow-geomechanics model is developed from linear elastic theory for thermo-poro-elastic systems and is formulated in terms of mean normal stress as well as pore pressure and temperature. Reservoir rock properties such as porosity and permeability depend on rock deformation, and the relationships between these two, obtained from poro-elasticity theories and empirical correlations, are incorporatedmore » into the simulation. This report provides the user with detailed information on the TOUGH2-EGS-MP mathematical model and instructions for using it for Thermal-Hydrological-Mechanical (THM) simulations. The mathematical model includes the fluid and heat flow equations, geomechanical equation, and discretization of those equations. In addition, the parallel aspects of the code, such as domain partitioning and communication between processors, are also included. Although TOUGH2-EGS-MP has the capability for simulating fluid and heat flows coupled with geomechanical effects, it is up to the user to select the specific coupling process, such as THM or only TH, in a simulation. There are several example problems illustrating applications of this program. These example problems are described in detail and their input data are presented. Their results demonstrate that this program can be used for field-scale geothermal reservoir simulation in porous and fractured media with fluid and heat flow coupled with geomechanical effects.« less

  19. A three-dimensional turbulent compressible flow model for ejector and fluted mixers

    NASA Technical Reports Server (NTRS)

    Rushmore, W. L.; Zelazny, S. W.

    1978-01-01

    A three dimensional finite element computer code was developed to analyze ejector and axisymmetric fluted mixer systems whose flow fields are not significantly influenced by streamwise diffusion effects. A two equation turbulence model was used to make comparisons between theory and data for various flow fields which are components of the ejector system, i.e., (1) turbulent boundary layer in a duct; (2) rectangular nozzle (free jet); (3) axisymmetric nozzle (free jet); (4) hypermixing nozzle (free jet); and (5) plane wall jet. Likewise, comparisons of the code with analytical results and/or other numerical solutions were made for components of the axisymmetric fluted mixer system. These included: (1) developing pipe flow; (2) developing flow in an annular pipe; (3) developing flow in an axisymmetric pipe with conical center body and no fluting and (4) developing fluted pipe flow. Finally, two demonstration cases are presented which show the code's ability to analyze both the ejector and axisymmetric fluted mixers.

  20. Weighted complex network analysis of the Beijing subway system: Train and passenger flows

    NASA Astrophysics Data System (ADS)

    Feng, Jia; Li, Xiamiao; Mao, Baohua; Xu, Qi; Bai, Yun

    2017-05-01

    In recent years, complex network theory has become an important approach to the study of the structure and dynamics of traffic networks. However, because traffic data is difficult to collect, previous studies have usually focused on the physical topology of subway systems, whereas few studies have considered the characteristics of traffic flows through the network. Therefore, in this paper, we present a multi-layer model to analyze traffic flow patterns in subway networks, based on trip data and an operation timetable obtained from the Beijing Subway System. We characterize the patterns in terms of the spatiotemporal flow size distributions of both the train flow network and the passenger flow network. In addition, we describe the essential interactions between these two networks based on statistical analyses. The results of this study suggest that layered models of transportation systems can elucidate fundamental differences between the coexisting traffic flows and can also clarify the mechanism that causes these differences.

  1. Energy density and energy flow of surface waves in a strongly magnetized graphene

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2018-01-01

    General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.

  2. Task II: Three-dimensional Rotating Stall Inception and Effects of Rotating Tip Clearance Asymmetry in Axial Compressors

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth (Technical Monitor); Tan, Choon-Sooi

    2003-01-01

    The effects of two types of flow non-uniformity on stall inception behavior were assessed with linearized stability analyses of two compressor flow models. Response to rotating tip clearance asymmetries induced by a whirling rotor shaft or rotor height variations were investigated with a two-dimensional flow model. A 3-D compressor model was also developed to study the stability of both full-span and part-span rotating stall modes in annular geometries with radial flow variations. The studies focussed on (1) understanding what compressor designs were sensitive to these types of circumferential and spanwise flow non-uniformities, and (2) situations where 2-D stability theories were inadequate because of 3-D flow effects. Rotating tip clearance non-uniformity caused the greatest performance loss for shafts whirling at the rotating stall frequency. A whirling shaft displacement of 1 percent chord caused the stalling mass flow to rise by as much as 10 percent and the peak pressure rise to decrease by 6 percent. These changes were an order of magnitude larger than for equivalent-sized stationary or rotor-locked clearance asymmetries. Spanwise flow non-uniformity always destabilized the compressor, so that 2-D models over-predicted that stall margin compared to 3-D theory. The difference increased for compressors with larger spanwise variations of characteristic slope and reduced characteristic curvature near the peak. Differences between 2-D and 3-D stall point predictions were generally unacceptable (2 - 4 percent of flow coefficient) for single-stage configurations, but were less than 1 percent for multistage compressors. 2-D analyses predicted the wrong stall mode for specific cases of radial inlet flow distortion, mismatching and annulus area contraction, where higher-order radial modes led to stall. The stability behavior of flows with circumferential or radial non-uniformity was unified through a single stability criterion. The stall point for both cases was set by the integral around the annulus of the pressure rise characteristic slope, weighted by the amplitude of the mode shape. For the case of steady circumferential variations, this criterion reduced to the integrated mean slope (IMS) condition associated with steady inlet distortions. The rotating tip clearance asymmetry model was also used to demonstrate the feasibility of actively controlling the shaft position to suppress rotating stall. In axisymmetric mean flow, this method only stabilized the first harmonic mode, increasing the operating range until surge or higher harmonic modes became unstable.

  3. XFEM modeling of hydraulic fracture in porous rocks with natural fractures

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo

    2017-08-01

    Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

  4. Abnormal arterial flows by a distributed model of the fetal circulation.

    PubMed

    van den Wijngaard, Jeroen P H M; Westerhof, Berend E; Faber, Dirk J; Ramsay, Margaret M; Westerhof, Nico; van Gemert, Martin J C

    2006-11-01

    Modeling the propagation of blood pressure and flow along the fetoplacental arterial tree may improve interpretation of abnormal flow velocity waveforms in fetuses. The current models, however, either do not include a wide range of gestational ages or do not account for variation in anatomical, vascular, or rheological parameters. We developed a mathematical model of the pulsating fetoumbilical arterial circulation using Womersley's oscillatory flow theory and viscoelastic arterial wall properties. Arterial flow waves are calculated at different arterial locations from which the pulsatility index (PI) can be determined. We varied blood viscosity, placental and brain resistances, placental compliance, heart rate, stiffness of the arterial wall, and length of the umbilical arteries. The PI increases in the umbilical artery and decreases in the cerebral arteries, as a result of increasing placental resistance or decreasing brain resistance. Both changes in resistance decrease the flow through the placenta. An increased arterial stiffness increases the PIs in the entire fetoplacental circulation. Blood viscosity and peripheral bed compliance have limited influence on the flow profiles. Bradycardia and tachycardia increase and decrease the PI in all arteries, respectively. Umbilical arterial length has limited influence on the PI but affects the mean arterial pressure at the placental cord insertion. The model may improve the interpretation of arterial flow pulsations and thus may advance both the understanding of pathophysiological processes and clinical management.

  5. The applied model of imagery use: Examination of moderation and mediation effects.

    PubMed

    Koehn, S; Stavrou, N A M; Young, J A; Morris, T

    2016-08-01

    The applied model of mental imagery use proposed an interaction effect between imagery type and imagery ability. This study had two aims: (a) the examination of imagery ability as a moderating variable between imagery type and dispositional flow, and (b) the testing of alternative mediation models. The sample consisted of 367 athletes from Scotland and Australia, who completed the Sport Imagery Questionnaire, Sport Imagery Ability Questionnaire, and Dispositional Flow Scale-2. Hierarchical regression analysis showed direct effects of imagery use and imagery ability on flow, but no significant interaction. Mediation analysis revealed a significant indirect path, indicating a partially mediated relationship (P = 0.002) between imagery use, imagery ability, and flow. Partial mediation was confirmed when the effect of cognitive imagery use and cognitive imagery ability was tested, and a full mediation model was found between motivational imagery use, motivational imagery ability, and flow. The results are discussed in conjunction with potential future research directions on advancing theory and applications. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Effect of film slicks on near-surface wind

    NASA Astrophysics Data System (ADS)

    Charnotskii, Mikhail; Ermakov, Stanislav; Ostrovsky, Lev; Shomina, Olga

    2016-09-01

    The transient effects of horizontal variation of sea-surface wave roughness due to surfactant films on near-surface turbulent wind are studied theoretically and experimentally. Here we suggest two practical schemes for calculating variations of wind velocity profiles near the water surface, the average short-wave roughness of which is varying in space and time when a film slick is present. The schemes are based on a generalized two-layer model of turbulent air flow over a rough surface and on the solution of the continuous model involving the equation for turbulent kinetic energy of the air flow. Wave tank studies of wind flow over wind waves in the presence of film slicks are described and compared with theory.

  7. LOW-VELOCITY COMPRESSIBLE FLOW THEORY

    EPA Science Inventory

    The widespread application of incompressible flow theory dominates low-velocity fluid dynamics, virtually preventing research into compressible low-velocity flow dynamics. Yet, compressible solutions to simple and well-defined flow problems and a series of contradictions in incom...

  8. Flow of Funds Modeling for Localized Financial Markets: An Application of Spatial Price and Allocation Activity Analysis Models.

    DTIC Science & Technology

    1981-01-01

    on modeling the managerial aspects of the firm. The second has been the application to economic theory led by ...individual portfolio optimization problems which were embedded in a larger global optimization problem. In the global problem, portfolios were linked by market ...demand quantities or be given by linear demand relationships. As in~ the source markets , the model

  9. PAINeT: An object-oriented software package for simulations of flow-field, transport coefficients and flux terms in non-equilibrium gas mixture flows

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.

    2018-05-01

    The software package Planet Atmosphere Investigator of Non-equilibrium Thermodynamics (PAINeT) has been devel-oped for studying the non-equilibrium effects associated with electronic excitation, chemical reactions and ionization. These studies are necessary for modeling process in shock tubes, in high enthalpy flows, in nozzles or jet engines, in combustion and explosion processes, in modern plasma-chemical and laser technologies. The advantages and possibilities of the package implementation are stated. Within the framework of the package implementation, based on kinetic theory approximations (one-temperature and state-to-state approaches), calculations are carried out, and the limits of applicability of a simplified description of shock-heated air flows and any other mixtures chosen by the user are given. Using kinetic theory algorithms, a numerical calculation of the heat fluxes and relaxation terms can be performed, which is necessary for further comparison of engineering simulation with experi-mental data. The influence of state-to-state distributions over electronic energy levels on the coefficients of thermal conductivity, diffusion, heat fluxes and diffusion velocities of the components of various gas mixtures behind shock waves is studied. Using the software package the accuracy of different approximations of the kinetic theory of gases is estimated. As an example state-resolved atomic ionized mixture of N/N+/O/O+/e- is considered. It is shown that state-resolved diffusion coefficients of neutral and ionized species vary from level to level. Comparing results of engineering applications with those given by PAINeT, recommendations for adequate models selection are proposed.

  10. User's Guide of TOUGH2-EGS. A Coupled Geomechanical and Reactive Geochemical Simulator for Fluid and Heat Flow in Enhanced Geothermal Systems Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fakcharoenphol, Perapon; Xiong, Yi; Hu, Litang

    TOUGH2-EGS is a numerical simulation program coupling geomechanics and chemical reactions for fluid and heat flows in porous media and fractured reservoirs of enhanced geothermal systems. The simulator includes the fully-coupled geomechanical (THM) module, the fully-coupled geochemical (THC) module, and the sequentially coupled reactive geochemistry (THMC) module. The fully-coupled flow-geomechanics model is developed from the linear elastic theory for the thermo-poro-elastic system and is formulated with the mean normal stress as well as pore pressure and temperature. The chemical reaction is sequentially coupled after solution of flow equations, which provides the flow velocity and phase saturation for the solute transportmore » calculation at each time step. In addition, reservoir rock properties, such as porosity and permeability, are subjected to change due to rock deformation and chemical reactions. The relationships between rock properties and geomechanical and chemical effects from poro-elasticity theories and empirical correlations are incorporated into the simulator. This report provides the user with detailed information on both mathematical models and instructions for using TOUGH2-EGS for THM, THC or THMC simulations. The mathematical models include the fluid and heat flow equations, geomechanical equation, reactive geochemistry equations, and discretization methods. Although TOUGH2-EGS has the capability for simulating fluid and heat flows coupled with both geomechanical and chemical effects, it is up to the users to select the specific coupling process, such as THM, THC, or THMC in a simulation. There are several example problems illustrating the applications of this program. These example problems are described in details and their input data are presented. The results demonstrate that this program can be used for field-scale geothermal reservoir simulation with fluid and heat flow, geomechanical effect, and chemical reaction in porous and fractured media.« less

  11. Ductile crustal flow in Europe's lithosphere

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Burov, Evgene B.; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.

    2011-12-01

    Potential gravity theory (PGT) predicts the presence of significant gravity-induced horizontal stresses in the lithosphere associated with lateral variations in plate thickness and composition. New high resolution crustal thickness and density data provided by the EuCRUST-07 model are used to compute the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. To investigate relationships between crustal and mantle lithospheric movements, we compare these results with the observed directions of mantle lithospheric anisotropy and GPS velocity vectors. We identify areas whose evolution could have been significantly affected by gravity-driven ductile crustal flow. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Gravitational forces directed from areas of high gravitational potential energy to subsiding basin areas can strongly reduce lithospheric extension in the latter, leading to a gradual late stage inversion of the entire system. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. In particular, in a number of regions the predicted strain rates are comparable to tectonically induced strain rates. These results are also important for quantifying the thickness of the low viscosity zones in the lowermost part of the crustal layers.

  12. Solid Rocket Motor Combustion Instability Modeling in COMSOL Multiphysics

    NASA Technical Reports Server (NTRS)

    Fischbach, S. R.

    2015-01-01

    Combustion instability modeling of Solid Rocket Motors (SRM) remains a topic of active research. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process, acoustics, and steady-state gas dynamics. Recent advances in defining the energy transport of disturbances within steady flow-fields have been applied by combustion stability modelers to improve the analysis framework. Employing this more accurate global energy balance requires a higher fidelity model of the SRM flow-field and acoustic mode shapes. The current industry standard analysis tool utilizes a one dimensional analysis of the time dependent fluid dynamics along with a quasi-three dimensional propellant grain regression model to determine the SRM ballistics. The code then couples with another application that calculates the eigenvalues of the one dimensional homogenous wave equation. The mean flow parameters and acoustic normal modes are coupled to evaluate the stability theory developed and popularized by Culick. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The current study employs the COMSOL Multiphysics finite element framework to model the steady flow-field parameters and acoustic normal modes of a generic SRM. This work builds upon previous efforts to verify the use of the acoustic velocity potential equation (AVPE) laid out by Campos. The acoustic velocity potential (psi) describing the acoustic wave motion in the presence of an inhomogeneous steady high-speed flow is defined by, del squared psi - (lambda/c) squared psi - M x [M x del((del)(psi))] - 2((lambda)(M)/c + M x del(M) x (del)(psi) - 2(lambda)(psi)[M x del(1/c)] = 0. with M as the Mach vector, c as the speed of sound, and ? as the complex eigenvalue. The study requires one way coupling of the CFD High Mach Number Flow (HMNF) and mathematics module. The HMNF module evaluates the gas flow inside of a SRM using St. Robert's law to model the solid propellant burn rate, slip boundary conditions, and the supersonic outflow condition. Results from the HMNF model are verified by comparing the pertinent ballistics parameters with the industry standard code outputs (i.e. pressure drop, axial velocity, exit velocity). These results are then used by the coefficient form of the mathematics module to determine the complex eigenvalues of the AVPE. The mathematics model is truncated at the nozzle sonic line, where a zero flux boundary condition is self-satisfying. The remaining boundaries are modeled with a zero flux boundary condition, assuming zero acoustic absorption on all surfaces. The one way coupled analysis is perform four times utilizing geometries determined through traditional SRM modeling procedures. The results of the steady-state CFD and AVPE analyses are used to calculate the linear acoustic growth rate as is defined by Flandro and Jacob. In order to verify the process implemented within COMSOL we first employ the Culick theory and compare the results with the industry standard. After the process is verified, the Flandro/Jacob energy balance theory is employed and results displayed.

  13. An extended continuum model considering optimal velocity change with memory and numerical tests

    NASA Astrophysics Data System (ADS)

    Qingtao, Zhai; Hongxia, Ge; Rongjun, Cheng

    2018-01-01

    In this paper, an extended continuum model of traffic flow is proposed with the consideration of optimal velocity changes with memory. The new model's stability condition and KdV-Burgers equation considering the optimal velocities change with memory are deduced through linear stability theory and nonlinear analysis, respectively. Numerical simulation is carried out to study the extended continuum model, which explores how optimal velocity changes with memory affected velocity, density and energy consumption. Numerical results show that when considering the effects of optimal velocity changes with memory, the traffic jams can be suppressed efficiently. Both the memory step and sensitivity parameters of optimal velocity changes with memory will enhance the stability of traffic flow efficiently. Furthermore, numerical results demonstrates that the effect of optimal velocity changes with memory can avoid the disadvantage of historical information, which increases the stability of traffic flow on road, and so it improve the traffic flow stability and minimize cars' energy consumptions.

  14. A weakly nonlinear theory for wave-vortex interactions in curved channel flow

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Erlebacher, Gordon; Zang, Thomas A.

    1992-01-01

    A weakly nonlinear theory is developed to study the interaction of Tollmien-Schlichting (TS) waves and Dean vortices in curved channel flow. The predictions obtained from the theory agree well with results obtained from direct numerical simulations of curved channel flow, especially for low amplitude disturbances. Some discrepancies in the results of a previous theory with direct numerical simulations are resolved.

  15. Transonic aerodynamics of dense gases. M.S. Thesis - Virginia Polytechnic Inst. and State Univ., Apr. 1990

    NASA Technical Reports Server (NTRS)

    Morren, Sybil Huang

    1991-01-01

    Transonic flow of dense gases for two-dimensional, steady-state, flow over a NACA 0012 airfoil was predicted analytically. The computer code used to model the dense gas behavior was a modified version of Jameson's FL052 airfoil code. The modifications to the code enabled modeling the dense gas behavior near the saturated vapor curve and critical pressure region where the fundamental derivative, Gamma, is negative. This negative Gamma region is of interest because the nonclassical gas behavior such as formation and propagation of expansion shocks, and the disintegration of inadmissible compression shocks may exist. The results indicated that dense gases with undisturbed thermodynamic states in the negative Gamma region show a significant reduction in the extent of the transonic regime as compared to that predicted by the perfect gas theory. The results support existing theories and predictions of the nonclassical, dense gas behavior from previous investigations.

  16. Steady flow on to a conveyor belt - Causal viscosity and shear shocks

    NASA Technical Reports Server (NTRS)

    Syer, D.; Narayan, Ramesh

    1993-01-01

    Some hydrodynamical consequences of the adoption of a causal theory of viscosity are explored. Causality is introduced into the theory by letting the coefficient of viscosity go to zero as the flow velocity approaches a designated propagation speed for viscous signals. Consideration is given to a model of viscosity which has a finite propagation speed of shear information, and it is shown that it produces two kinds of shear shock. A 'pure shear shock' corresponds to a transition from a superviscous to a subviscous state with no discontinuity in the velocity. A 'mixed shear shock' has a shear transition occurring at the same location as a normal adiabatic or radiative shock. A generalized version of the Rankine-Hugoniot conditions for mixed shear shocks is derived, and self-consistent numerical solutions to a model 2D problem in which an axisymmetric radially infalling stream encounters a spinning star are presented.

  17. Pore-scale modeling of phase change in porous media

    NASA Astrophysics Data System (ADS)

    Juanes, Ruben; Cueto-Felgueroso, Luis; Fu, Xiaojing

    2017-11-01

    One of the main open challenges in pore-scale modeling is the direct simulation of flows involving multicomponent mixtures with complex phase behavior. Reservoir fluid mixtures are often described through cubic equations of state, which makes diffuse interface, or phase field theories, particularly appealing as a modeling framework. What is still unclear is whether equation-of-state-driven diffuse-interface models can adequately describe processes where surface tension and wetting phenomena play an important role. Here we present a diffuse interface model of single-component, two-phase flow (a van der Waals fluid) in a porous medium under different wetting conditions. We propose a simplified Darcy-Korteweg model that is appropriate to describe flow in a Hele-Shaw cell or a micromodel, with a gap-averaged velocity. We study the ability of the diffuse-interface model to capture capillary pressure and the dynamics of vaporization/condensation fronts, and show that the model reproduces pressure fluctuations that emerge from abrupt interface displacements (Haines jumps) and from the break-up of wetting films.

  18. Propulsion of a fin whale (Balaenoptera physalus): why the fin whale is a fast swimmer.

    PubMed

    Bose, N; Lien, J

    1989-07-22

    Measurements of an immature fin whale (Balaenoptera physalus), which died as a result of entrapment in fishing gear near Frenchmans Cove, Newfoundland (47 degrees 9' N, 55 degrees 25' W), were made to obtain estimates of volume and surface area of the animal. Detailed measurements of the flukes, both planform and sections, were also obtained. A strip theory was developed to calculate the hydrodynamic performance of the whale's flukes as an oscillating propeller. This method is based on linear, two-dimensional, small-amplitude, unsteady hydrofoil theory with correction factors used to account for the effects of finite span and finite amplitude motion. These correction factors were developed from theoretical results of large-amplitude heaving motion and unsteady lifting-surface theory. A model that makes an estimate of the effects of viscous flow on propeller performance was superimposed on the potential-flow results. This model estimates the drag of the hydrofoil sections by assuming that the drag is similar to that of a hydrofoil section in steady flow. The performance characteristics of the flukes of the fin whale were estimated by using this method. The effects of the different correction factors, and of the frictional drag of the fluke sections, are emphasized. Frictional effects in particular were found to reduce the hydrodynamic efficiency of the flukes significantly. The results are discussed and compared with the known characteristics of fin-whale swimming.

  19. Probing heat transfer, fluid flow and microstructural evolution during fusion welding of alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    The composition, geometry, structure and properties of the welded joints are affected by the various physical processes that take place during fusion welding. Understanding these processes has been an important goal in the contemporary welding research to achieve structurally sound and reliable welds. In the present thesis research, several important physical processes including the heat transfer, fluid flow and microstructural evolution in fusion welding were modeled based on the fundamentals of transport phenomena and phase transformation theory. The heat transfer and fluid flow calculation is focused on the predictions of the liquid metal convection in the weld pool, the temperature distribution in the entire weldment, and the shape and size of the fusion zone (FZ) and heat affected zone (HAZ). The modeling of microstructural evolution is focused on the quantitative understanding of phase transformation kinetics during welding of several important alloys under both low and high heating and cooling conditions. Three numerical models were developed in the present thesis work: (1) a three-dimensional heat transfer and free surface flow model for the gas metal arc (GMA) fillet welding considering the complex weld joint geometry, (2) a phase transformation model based on the Johnson-Mehl-Avrami (JMA) theory, and (3) a one-dimensional numerical diffusion model considering multiple moving interfaces. To check the capabilities of the developed models, several cases were investigated, in which the predictions from the models were compared with the experimental results. The cases studied are the follows. For the modeling of heat transfer and fluid flow, the welding processes studied included gas tungsten arc (GTA) linear welding, GTA transient spot welding, and GMA fillet welding. The calculated weldment geometry and thermal cycles was validated against the experimental data under various welding conditions. For the modeling of microstructural evolution, the welded materials investigated included AISI 1005 low-carbon steel, 1045 medium-carbon steel, 2205 duplex stainless steel (DSS) and Ti-6Al-4V alloy. The calculated phase transformation kinetics were compared with the experimental results obtained using an x-ray diffraction technique by Dr. John W. Elmer of Lawrence Livermore National Laboratory. (Abstract shortened by UMI.)

  20. Logic Models in Out-of-School Time Programs: What Are They and Why Are They Important? Research-to-Results Brief. Publication #2007-01

    ERIC Educational Resources Information Center

    Hamilton, Jenny; Bronte-Tinkew, Jacinta

    2007-01-01

    A logic model, also called a conceptual model and theory-of-change model, is a visual representation of how a program is expected to "work." It relates resources, activities, and the intended changes or impacts that a program is expected to create. Typically, logic models are diagrams or flow charts with illustrations, text, and arrows that…

  1. The Relationship of Magnetotail Flow Bursts and Ground Onset Signatures

    NASA Technical Reports Server (NTRS)

    Kepko, Larry; Spanswick, Emma; Angelopoulos, Vassilis; Donovan, Eric

    2010-01-01

    It has been known for decades that auroral substorm onset occurs on (or at least near) the most equatorward auroral arc, which is thought to map to the near geosynchronous region. The lack of auroral signatures poleward of this arc prior to onset has been a major criticism of flow-burst driven models of substorm onset. The combined THEMIS 5 spacecraft in-situ and ground array measurements provide an unprecedented opportunity to examine the causal relationship between midtail plasma flows, aurora, and ground magnetic signatures. I first present an event from 2008 using multi-spectral all sky imager data from Gillam and in-situ data from THEMIS. The multispectral data indicate an equatorward moving auroral form prior to substorm onset. When this forms reaches the most equatorward arc, the arc brightens and an auroral substorm begins. The THEMIS data show fast Earthward flows prior to onset as well. I discuss further the association of flow bursts and Pi2 pulsations, in the con text of the directly-driven Pi2 model. This model directly links flows and Pi2 pulsations, providing an important constraint on substorm onset theories.

  2. Information flow dynamics in the brain

    NASA Astrophysics Data System (ADS)

    Rabinovich, Mikhail I.; Afraimovich, Valentin S.; Bick, Christian; Varona, Pablo

    2012-03-01

    Timing and dynamics of information in the brain is a hot field in modern neuroscience. The analysis of the temporal evolution of brain information is crucially important for the understanding of higher cognitive mechanisms in normal and pathological states. From the perspective of information dynamics, in this review we discuss working memory capacity, language dynamics, goal-dependent behavior programming and other functions of brain activity. In contrast with the classical description of information theory, which is mostly algebraic, brain flow information dynamics deals with problems such as the stability/instability of information flows, their quality, the timing of sequential processing, the top-down cognitive control of perceptual information, and information creation. In this framework, different types of information flow instabilities correspond to different cognitive disorders. On the other hand, the robustness of cognitive activity is related to the control of the information flow stability. We discuss these problems using both experimental and theoretical approaches, and we argue that brain activity is better understood considering information flows in the phase space of the corresponding dynamical model. In particular, we show how theory helps to understand intriguing experimental results in this matter, and how recent knowledge inspires new theoretical formalisms that can be tested with modern experimental techniques.

  3. Nonlinear problems in flight dynamics

    NASA Technical Reports Server (NTRS)

    Chapman, G. T.; Tobak, M.

    1984-01-01

    A comprehensive framework is proposed for the description and analysis of nonlinear problems in flight dynamics. Emphasis is placed on the aerodynamic component as the major source of nonlinearities in the flight dynamic system. Four aerodynamic flows are examined to illustrate the richness and regularity of the flow structures and the nature of the flow structures and the nature of the resulting nonlinear aerodynamic forces and moments. A framework to facilitate the study of the aerodynamic system is proposed having parallel observational and mathematical components. The observational component, structure is described in the language of topology. Changes in flow structure are described via bifurcation theory. Chaos or turbulence is related to the analogous chaotic behavior of nonlinear dynamical systems characterized by the existence of strange attractors having fractal dimensionality. Scales of the flow are considered in the light of ideas from group theory. Several one and two degree of freedom dynamical systems with various mathematical models of the nonlinear aerodynamic forces and moments are examined to illustrate the resulting types of dynamical behavior. The mathematical ideas that proved useful in the description of fluid flows are shown to be similarly useful in the description of flight dynamic behavior.

  4. On the attenuating effect of permeability on the low frequency sound of an airfoil

    NASA Astrophysics Data System (ADS)

    Weidenfeld, M.; Manela, A.

    2016-08-01

    The effect of structure permeability on the far-field radiation of a thin airfoil is studied. Assuming low-Mach and high-Reynolds number flow, the near- and far-field descriptions are investigated at flapping-flight and unsteady flow conditions. Analysis is carried out using thin-airfoil theory and compact-body-based calculations for the hydrodynamic and acoustic fields, respectively. Airfoil porosity is modeled via Darcy's law, governed by prescribed distribution of surface intrinsic permeability. Discrete vortex model is applied to describe airfoil wake evolution. To assess the impact of penetrability, results are compared to counterpart predictions for the sound of an impermeable airfoil. Considering the finite-chord airfoil as "acoustically transparent", the leading-order contribution of surface porosity is obtained in terms of an acoustic dipole. It is shown that, at all flow conditions considered, porosity causes attenuation in outcome sound level. This is accompanied by a time-delay in the pressure signal, reflecting the mediating effect of permeability on the interaction of fluid flow with airfoil edge points. To the extent that thin-airfoil theory holds (requiring small normal-to-airfoil flow velocities), the results indicate on a decrease of ~ 10 percent and more in the total energy radiated by a permeable versus an impermeable airfoil. This amounts to a reduction in system sound pressure level of 3 dB and above at pitching flight conditions, where the sound-reducing effect of the seepage dipole pressure becomes dominant. The applicability of Darcy's law to model the effect of material porosity is discussed in light of existing literature.

  5. Flow Velocity Profiles in Actively-Driven 2D Nozzle Experiments using Freely-Suspended Smectic Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Dutch, Evan; Briggs, Corrina; Ferguson, Kyle; Green, Adam; Park, Cheol; Glaser, Matt; Maclennan, Joe; Clark, Noel

    Freely-suspended smectic A liquid crystal films have been used to explore a large range of interesting flow phenomena. Passive microrheology experiments have confirmed previously that such films are ideal systems with which to investigate two-dimensional (2D) hydrodynamics. Here we describe an experiment that uses smectic films to study actively-driven 2D flows. Flow excited by blowing air over a film of smectic liquid crystal material containing small inclusions is captured using digital video microscopy. The flow fields are extracted using particle imaging velocimetry. We have measured the velocity field generated by flow through a thin nozzle into a large rectangular reservoir and compared this to a theoretical model based on 2D complex potential flows. The observations confirm that there is parabolic flow in straight channels, and that the theory accurately models the film velocity flow field in the reservoir. This work was supported by NASA Grant No. NNX-13AQ81G, and NSF MRSEC Grants No. DMR-0820579 and DMR-1420736.

  6. Vortex model of open channel flows with gravel beds

    NASA Astrophysics Data System (ADS)

    Belcher, Brian James

    Turbulent structures are known to be important physical processes in gravel-bed rivers. A number of limitations exist that prohibit the advancement and prediction of turbulence structures for optimization of civil infrastructure, biological habitats and sediment transport in gravel-bed rivers. This includes measurement limitations that prohibit characterization of size and strength of turbulent structures in the riverine environment for different case studies as well as traditional numerical modeling limitations that prohibit modeling and prediction of turbulent structure for heterogeneous beds under high Reynolds number flows using the Navier-Stokes equations. While these limitations exist, researchers have developed various theories for the structure of turbulence in boundary layer flows including large eddies in gravel-bed rivers. While these theories have varied in details and applicable conditions, a common hypothesis has been a structural organization in the fluid which links eddies formed at the wall to coherent turbulent structures such as large eddies which may be observed vertically across the entire flow depth in an open channel. Recently physics has also seen the advancement of topological fluid mechanical ideas concerned with the study of vortex structures, braids, links and knots in velocity vector fields. In the present study the structural organization hypothesis is investigated with topological fluid mechanics and experimental results which are used to derive a vortex model for gravel-bed flows. Velocity field measurements in gravel-bed flow conditions in the laboratory were used to characterize temporal and spatial structures which may be attributed to vortex motions and reconnection phenomena. Turbulent velocity time series data were measured with ADV and decomposed using statistical decompositions to measure turbulent length scales. PIV was used to measure spatial velocity vector fields which were decomposed with filtering techniques for flow visualization. Under the specific conditions of a turbulent burst the fluid domain is organized as a braided flow of vortices connected by prime knot patterns of thin-cored flux tubes embedded on an abstract vortex surface itself having topology of a Klein bottle. This model explains observed streamline patterns in the vicinity of a strong turbulent burst in a gravel-bed river as a coherent structure in the turbulent velocity field. KEY WORDS: Open channel flow, turbulence, gravel-bed rivers, coherent structures, velocity distributions

  7. Impeller leakage flow modeling for mechanical vibration control

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.

    1996-01-01

    HPOTP and HPFTP vibration test results have exhibited transient and steady characteristics which may be due to impeller leakage path (ILP) related forces. For example, an axial shift in the rotor could suddenly change the ILP clearances and lengths yielding dynamic coefficient and subsequent vibration changes. ILP models are more complicated than conventional-single component-annular seal models due to their radial flow component (coriolis and centrifugal acceleration), complex geometry (axial/radial clearance coupling), internal boundary (transition) flow conditions between mechanical components along the ILP and longer length, requiring moment as well as force coefficients. Flow coupling between mechanical components results from mass and energy conservation applied at their interfaces. Typical components along the ILP include an inlet seal, curved shroud, and an exit seal, which may be a stepped labyrinth type. Von Pragenau (MSFC) has modeled labyrinth seals as a series of plain annular seals for leakage and dynamic coefficient prediction. These multi-tooth components increase the total number of 'flow coupled' components in the ILP. Childs developed an analysis for an ILP consisting of a single, constant clearance shroud with an exit seal represented by a lumped flow-loss coefficient. This same geometry was later extended to include compressible flow. The objective of the current work is to: supply ILP leakage-force impedance-dynamic coefficient modeling software to MSFC engineers, base on incompressible/compressible bulk flow theory; design the software to model a generic geometry ILP described by a series of components lying along an arbitrarily directed path; validate the software by comparison to available test data, CFD and bulk models; and develop a hybrid CFD-bulk flow model of an ILP to improve modeling accuracy within practical run time constraints.

  8. A Unified Model of Student Engagement in Classroom Learning and Classroom Learning Environment: One Measure and One Underlying Construct

    ERIC Educational Resources Information Center

    Cavanagh, Robert F.

    2015-01-01

    This study employed the capabilities-expectations model of engagement in classroom learning based on bio-ecological frameworks of intellectual development and flow theory. According to the capabilities-expectations model, engagement requires a balance between the capabilities of a student for learning in a particular situation and what is expected…

  9. The physics of confined flow and its application to water leaks, water permeation and water nanoflows: a review.

    PubMed

    Lei, Wenwen; Rigozzi, Michelle K; McKenzie, David R

    2016-02-01

    This review assesses the current state of understanding of the calculation of the rate of flow of gases, vapours and liquids confined in channels, in porous media and in permeable materials with an emphasis on the flow of water and its vapour. One motivation is to investigate the relation between the permeation rate of moisture and that of a noncondensable test gas such as helium, another is to assist in unifying theory and experiment across disparate fields. Available theories of single component ideal gas flows in channels of defined geometry (cylindrical, rectangular and elliptical) are described and their predictions compared with measurement over a wide range of conditions defined by the Knudsen number. Theory for two phase flows is assembled in order to understand the behaviour of four standard water leak configurations: vapour, slug, Washburn and liquid flow, distinguished by the number and location of phase boundaries (menisci). Air may or may not be present as a background gas. Slip length is an important parameter that greatly affects leak rates. Measurements of water vapour flows confirm that water vapour shows ideal gas behaviour. Results on carbon nanotubes show that smooth walls may lead to anomalously high slip lengths arising from the properties of 'confined' water. In porous media, behaviour can be matched to the four standard leaks. Traditional membrane permeation models consider that the permeant dissolves, diffuses and evaporates at the outlet side, ideas we align with those from channel flow. Recent results on graphite oxide membranes show examples where helium which does not permeate while at the same time moisture is almost unimpeded, again a result of confined water. We conclude that while there is no a priori relation between a noncondensable gas flow and a moisture flow, measurements using helium will give results within two orders of magnitude of the moisture flow rate, except in the case where there is anomalous slip or confined water, when moisture specific measurements are essential.

  10. Continuum-mechanics-based rheological formulation for debris flow

    USGS Publications Warehouse

    Chen, Cheng-lung; Ling, Chi-Hai; ,

    1993-01-01

    This paper aims to assess the validity of the generalized viscoplastic fluid (GVF) model in the light of both the classical relative-viscosity versus concentration relation and the dimensionless stress versus shear-rate squared relations based on kinetic theory, thereby addressing how to evaluate the rheological parameters of the GVF model using Bagnold's data.

  11. U1108 performance model

    NASA Technical Reports Server (NTRS)

    Trachta, G.

    1976-01-01

    A model of Univac 1108 work flow has been developed to assist in performance evaluation studies and configuration planning. Workload profiles and system configurations are parameterized for ease of experimental modification. Outputs include capacity estimates and performance evaluation functions. The U1108 system is conceptualized as a service network; classical queueing theory is used to evaluate network dynamics.

  12. Fan Affinity Laws from a Collision Model

    ERIC Educational Resources Information Center

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  13. Impact of Facebook Usage on Students' Academic Achievement: Role of Self-Regulation and Trust

    ERIC Educational Resources Information Center

    Rouis, Sana; Limayem, Moez; Salehi-Sangari, Esmail

    2011-01-01

    Introduction: The paper provides a preliminary analysis of the effects of Facebook usage by undergraduate students at Lulea University of Technology in Sweden. The proposed research model tests the perceived effect of personality traits, self-regulation, and trust on students' achievements. Based on flow theory, the model suggests negative…

  14. A stress sensitivity model for the permeability of porous media based on bi-dispersed fractal theory

    NASA Astrophysics Data System (ADS)

    Tan, X.-H.; Liu, C.-Y.; Li, X.-P.; Wang, H.-Q.; Deng, H.

    A stress sensitivity model for the permeability of porous media based on bidispersed fractal theory is established, considering the change of the flow path, the fractal geometry approach and the mechanics of porous media. It is noted that the two fractal parameters of the porous media construction perform differently when the stress changes. The tortuosity fractal dimension of solid cluster DcTσ become bigger with an increase of stress. However, the pore fractal dimension of solid cluster Dcfσ and capillary bundle Dpfσ remains the same with an increase of stress. The definition of normalized permeability is introduced for the analyzation of the impacts of stress sensitivity on permeability. The normalized permeability is related to solid cluster tortuosity dimension, pore fractal dimension, solid cluster maximum diameter, Young’s modulus and Poisson’s ratio. Every parameter has clear physical meaning without the use of empirical constants. Predictions of permeability of the model is accordant with the obtained experimental data. Thus, the proposed model can precisely depict the flow of fluid in porous media under stress.

  15. Kinetic theory of situated agents applied to pedestrian flow in a corridor

    NASA Astrophysics Data System (ADS)

    Rangel-Huerta, A.; Muñoz-Meléndez, A.

    2010-03-01

    A situated agent-based model for simulation of pedestrian flow in a corridor is presented. In this model, pedestrians choose their paths freely and make decisions based on local criteria for solving collision conflicts. The crowd consists of multiple walking agents equipped with a function of perception as well as a competitive rule-based strategy that enables pedestrians to reach free access areas. Pedestrians in our model are autonomous entities capable of perceiving and making decisions. They apply socially accepted conventions, such as avoidance rules, as well as individual preferences such as the use of specific exit points, or the execution of eventual comfort turns resulting in spontaneous changes of walking speed. Periodic boundary conditions were considered in order to determine the density-average walking speed, and the density-average activity with respect to specific parameters: comfort angle turn and frequency of angle turn of walking agents. The main contribution of this work is an agent-based model where each pedestrian is represented as an autonomous agent. At the same time the pedestrian crowd dynamics is framed by the kinetic theory of biological systems.

  16. Analysis of the injection of a heated turbulent jet into a cross flow

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.; Schetz, J. A.

    1973-01-01

    The development of a theoretical model is investigated of the incompressible jet injection process. The discharge of a turbulent jet into a cross flow was mathematically modeled by using an integral method which accounts for natural fluid mechanisms such as turbulence, entrainment, buoyancy, and heat transfer. The analytical results are supported by experimental data and demonstrate the usefulness of the theory for estimating the trajectory and flow properties of the jet for a variety of injection conditions. The capability of predicting jet flow properties, as well as two- and three-dimensional jet paths, was enhanced by obtaining the jet cross-sectional area during the solution of the conservation equations. Realistic estimates of temperature in the jet fluid were acquired by accounting for heat losses in the jet flow due to forced convection and to entrainment of free-stream fluid into the jet.

  17. An engineering analysis of a closed cycle plant growth module

    NASA Technical Reports Server (NTRS)

    Stickford, G. H., Jr.; Jakob, F. E.; Landstrom, D. K.

    1986-01-01

    The SOLGEM model is a numerical engineering model which solves the flow and energy balance equations for the air flowing through a growing environment, assuming quasi-steady state conditions within the system. SOLGEM provides a dynamic simulation of the controlled environment system in that the temperature and flow conditions of the growing environment are estimated on an hourly basis in response to the weather data and the plant growth parameters. The flow energy balance considers the incident solar flux; incoming air temperature, humidity, and flow rate; heat exchange with the roof and floor; and heat and moisture exchange with the plants. A plant transpiration subroutine was developed based plant growth research facility, intended for the study of bioregenerative life support theories. The results of a performance analysis of the plant growth module are given. The estimated energy requirements of the module components and the total energy are given.

  18. Conceptualizing Group Flow: A Framework

    ERIC Educational Resources Information Center

    Duncan, Jana; West, Richard E.

    2018-01-01

    This literature review discusses the similarities in main themes between Csikszentmihályi theory of individual flow and Sawyer theory of group flow, and compares Sawyer's theory with existing concepts in the literature on group work both in education and business. Because much creativity and innovation occurs within groups, understanding group…

  19. The evaluation model of the design of toll

    NASA Astrophysics Data System (ADS)

    Feng, Shuting

    2018-04-01

    In recent years, the dramatic increase in traffic burden has highlighted the necessity of rational allocation of toll plaza. At the same time, the need to consider a lot of factors has enhanced the design requirements. In this background, we carry out research on this subject. We propose a reasonable assumption, and abstract the toll plaza into a model only related to B and L. By using the queuing theory and traffic flow theory, we define the throughput, cost and accident prevent with B and L to acquire the base model. By using the method of linear weighting in economics to calculate this model, the optimal B and L strategies are obtained.

  20. Steady states and linear stability analysis of precipitation pattern formation at geothermal hot springs.

    PubMed

    Chan, Pak Yuen; Goldenfeld, Nigel

    2007-10-01

    A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match the measured shapes near the vent at the top of observed travertine domes well. Closer to the base of the dome, the solutions deviate from observations and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs.

  1. Steady states and linear stability analysis of precipitation pattern formation at geothermal hot springs

    NASA Astrophysics Data System (ADS)

    Chan, Pak Yuen; Goldenfeld, Nigel

    2007-10-01

    A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match the measured shapes near the vent at the top of observed travertine domes well. Closer to the base of the dome, the solutions deviate from observations and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs.

  2. Theoretical performance of hydrogen-bromine rechargeable SPE fuel cell. [Solid Polymer Electrolyte

    NASA Technical Reports Server (NTRS)

    Savinell, R. F.; Fritts, S. D.

    1988-01-01

    A mathematical model was formulated to describe the performance of a hydrogen-bromine fuel cell. Porous electrode theory was applied to the carbon felt flow-by electrode and was coupled to theory describing the solid polymer electrolyte (SPE) system. Parametric studies using the numerical solution to this model were performed to determine the effect of kinetic, mass transfer, and design parameters on the performance of the fuel cell. The results indicate that the cell performance is most sensitive to the transport properties of the SPE membrane. The model was also shown to be a useful tool for scale-up studies.

  3. Modeling and analysis of the TF30-P-3 compressor system with inlet pressure distortion

    NASA Technical Reports Server (NTRS)

    Mazzawy, R. S.; Banks, G. A.

    1976-01-01

    Circumferential inlet distortion testing of a TF30-P-3 afterburning turbofan engine was conducted at NASA-Lewis Research Center. Pratt and Whitney Aircraft analyzed the data using its multiple segment parallel compressor model and classical compressor theory. Distortion attenuation analysis resulted in a detailed flow field calculation with good agreement between multiple segment model predictions and the test data. Sensitivity of the engine stall line to circumferential inlet distortion was calculated on the basis of parallel compressor theory to be more severe than indicated by the data. However, the calculated stall site location was in agreement with high response instrumentation measurements.

  4. Hopf solitons in the Nicole model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillard, Mike; Sutcliffe, Paul

    2010-12-15

    The Nicole model is a conformal field theory in a three-dimensional space. It has topological soliton solutions classified by the integer-valued Hopf charge, and all currently known solitons are axially symmetric. A volume-preserving flow is used to construct soliton solutions numerically for all Hopf charges from 1 to 8. It is found that the known axially symmetric solutions are unstable for Hopf charges greater than 2 and new lower energy solutions are obtained that include knots and links. A comparison with the Skyrme-Faddeev model suggests many universal features, though there are some differences in the link types obtained in themore » two theories.« less

  5. Survey of Human Systems Integration (HSI) Tools for USCG Acquisitions

    DTIC Science & Technology

    2009-04-01

    an IMPRINT HPM. IMPRINT uses task network modeling to represent human performance. As the name implies, task networks use a flowchart type format...tools; and built-in tutoring support for beginners . A perceptual/motor layer extending ACT-R’s theory of cognition to perception and action is also...chisystems.com B.8 Information and Functional Flow Analysis Description In information flow analysis, a flowchart of the information and decisions

  6. Application of the Bernoulli enthalpy concept to the study of vortex noise and jet impingement noise

    NASA Technical Reports Server (NTRS)

    Yates, J. E.

    1978-01-01

    A complete theory of aeroacoustics of homentropic fluid media is developed and compared with previous theories. The theory is applied to study the interaction of sound with vortex flows, for the DC-9 in a standard take-off configuration. The maximum engine-wake interference noise is estimated to be 3 or 4 db in the ground plane. It is shown that the noise produced by a corotating vortex pair departs significantly from the compact M scaling law for eddy Mach numbers (M) greater than 0.1. An estimate of jet impingement noise is given that is in qualitative agreement with experimental results. The increased noise results primarily from the nonuniform acceleration of turbulent eddies through the stagnation point flow. It is shown that the corotating vortex pair can be excited or de-excited by an externally applied sound field. The model is used to qualitatively explain experimental results on excited jets.

  7. Circuit theory and model-based inference for landscape connectivity

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.

    2013-01-01

    Circuit theory has seen extensive recent use in the field of ecology, where it is often applied to study functional connectivity. The landscape is typically represented by a network of nodes and resistors, with the resistance between nodes a function of landscape characteristics. The effective distance between two locations on a landscape is represented by the resistance distance between the nodes in the network. Circuit theory has been applied to many other scientific fields for exploratory analyses, but parametric models for circuits are not common in the scientific literature. To model circuits explicitly, we demonstrate a link between Gaussian Markov random fields and contemporary circuit theory using a covariance structure that induces the necessary resistance distance. This provides a parametric model for second-order observations from such a system. In the landscape ecology setting, the proposed model provides a simple framework where inference can be obtained for effects that landscape features have on functional connectivity. We illustrate the approach through a landscape genetics study linking gene flow in alpine chamois (Rupicapra rupicapra) to the underlying landscape.

  8. Subgrid-scale scalar flux modelling based on optimal estimation theory and machine-learning procedures

    NASA Astrophysics Data System (ADS)

    Vollant, A.; Balarac, G.; Corre, C.

    2017-09-01

    New procedures are explored for the development of models in the context of large eddy simulation (LES) of a passive scalar. They rely on the combination of the optimal estimator theory with machine-learning algorithms. The concept of optimal estimator allows to identify the most accurate set of parameters to be used when deriving a model. The model itself can then be defined by training an artificial neural network (ANN) on a database derived from the filtering of direct numerical simulation (DNS) results. This procedure leads to a subgrid scale model displaying good structural performance, which allows to perform LESs very close to the filtered DNS results. However, this first procedure does not control the functional performance so that the model can fail when the flow configuration differs from the training database. Another procedure is then proposed, where the model functional form is imposed and the ANN used only to define the model coefficients. The training step is a bi-objective optimisation in order to control both structural and functional performances. The model derived from this second procedure proves to be more robust. It also provides stable LESs for a turbulent plane jet flow configuration very far from the training database but over-estimates the mixing process in that case.

  9. Dynamical properties and acceleration of hierarchical dust in the vicinity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Skorov, Yu; Reshetnyk, V.; Rezac, L.; Zhao, Y.; Marschall, R.; Blum, J.; Hartogh, P.

    2018-07-01

    A significant fraction of cometary dust grains leaving the nucleus surface are extremely porous and fluffy particles as revealed by recent observation from the Rosetta mission. In this paper our aim is to investigate the dynamics of such grains when subjected to a gas flow, representing the cometary outgassing. We perform numerical experiments to quantify how the internal porous texture is reflected in quantities such as effective cross-section, gas drag coefficient, and light scattering efficiency. We also derive particle speeds for the different types of aggregates as a function of radial distance and compare them to the observations by the GIADA instrument. Using our original method for constructing hierarchical aggregates we increase the level of aggregation to reach particle sizes up to few millimeters, consistent with the observations. In addition, a non-constant gas velocity is now considered in the framework of free molecular as well as fully collisional flow models, and radiation pressure calculations use the effective medium theory appropriate for such particles. These improvements lead us to conclude that dynamical models should account for accelerating gas flow, which leads to a smaller terminal speed of fluffy dust grains. Secondly, solar radiation pressure calculated based on the Mie theory approximation can lead to orders of magnitude error for the very porous particles, instead the effective medium theory should be used. Finally, although numerical simulations can reproduce the GIADA measurements of dust speeds, we cannot conclude that there exists a preferred model of porous particles build as a ballistic cluster aggregate.

  10. Dynamical properties and acceleration of hierarchical dust in the vicinity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Skorov, Yu; Reshetnyk, V.; Rezac, L.; Zhao, Y.; Marschall, R.; Blum, J.; Hartogh, P.

    2018-04-01

    A significant fraction of cometary dust grains leaving the nucleus surface are extremely porous and fluffy particles as recent observation from the Rosetta mission revealed. In this paper our aim is to investigate the dynamics of such grains when subjected to a gas flow, representing the cometary outgassing. We perform numerical experiments to quantify how the internal porous texture is reflected in quantities such as: effective cross-section, gas drag coefficient, and light scattering efficiency. We also derive particle speeds for the different types of aggregates as a function of radial distance and compare them to the observations by the GIADA instrument. Using our original method for constructing hierarchical aggregates we increase the level of aggregation to reach particle sizes up to few millimeters, consistent with the observations. In addition, a non-constant gas velocity is now considered in the framework of free molecular as well as fully collisional flow models, and radiation pressure calculations use the effective medium theory appropriate for such particles. These improvements lead us to conclude that dynamical models should account for accelerating gas flow, which leads to a smaller terminal speed of fluffy dust grains. Second, solar radiation pressure calculated based on the Mie theory approximation can lead to orders of magnitude error for the very porous particles, instead the effective medium theory should be used. Finally, although numerical simulations can reproduce the GIADA measurements of dust speeds, we cannot conclude that there exists a preferred model of porous particles build as a ballistic cluster aggregate.

  11. Impact of current speed on mass flux to a model flexible seagrass blade

    NASA Astrophysics Data System (ADS)

    Lei, Jiarui; Nepf, Heidi

    2016-07-01

    Seagrass and other freshwater macrophytes can acquire nutrients from surrounding water through their blades. This flux may depend on the current speed (U), which can influence both the posture of flexible blades (reconfiguration) and the thickness of the flux-limiting diffusive layer. The impact of current speed (U) on mass flux to flexible blades of model seagrass was studied through a combination of laboratory flume experiments, numerical modeling and theory. Model seagrass blades were constructed from low-density polyethylene (LDPE), and 1, 2-dichlorobenzene was used as a tracer chemical. The tracer mass accumulation in the blades was measured at different unidirectional current speeds. A numerical model was used to estimate the transfer velocity (K) by fitting the measured mass uptake to a one-dimensional diffusion model. The measured transfer velocity was compared to predictions based on laminar and turbulent boundary layers developing over a flat plate parallel to flow, for which K∝U0.5 and ∝U, respectively. The degree of blade reconfiguration depended on the dimensionless Cauchy number, Ca, which is a function of both the blade stiffness and flow velocity. For large Ca, the majority of the blade was parallel to the flow, and the measured transfer velocity agreed with laminar boundary layer theory, K∝U0.5. For small Ca, the model blades remained upright, and the flux to the blade was diminished relative to the flat-plate model. A meadow-scale analysis suggests that the mass exchange at the blade scale may control the uptake at the meadow scale.

  12. Stability and dynamical properties of material flow systems on random networks

    NASA Astrophysics Data System (ADS)

    Anand, K.; Galla, T.

    2009-04-01

    The theory of complex networks and of disordered systems is used to study the stability and dynamical properties of a simple model of material flow networks defined on random graphs. In particular we address instabilities that are characteristic of flow networks in economic, ecological and biological systems. Based on results from random matrix theory, we work out the phase diagram of such systems defined on extensively connected random graphs, and study in detail how the choice of control policies and the network structure affects stability. We also present results for more complex topologies of the underlying graph, focussing on finitely connected Erdös-Réyni graphs, Small-World Networks and Barabási-Albert scale-free networks. Results indicate that variability of input-output matrix elements, and random structures of the underlying graph tend to make the system less stable, while fast price dynamics or strong responsiveness to stock accumulation promote stability.

  13. Numerical simulation of three-component multiphase flows at high density and viscosity ratios using lattice Boltzmann methods

    NASA Astrophysics Data System (ADS)

    Haghani Hassan Abadi, Reza; Fakhari, Abbas; Rahimian, Mohammad Hassan

    2018-03-01

    In this paper, we propose a multiphase lattice Boltzmann model for numerical simulation of ternary flows at high density and viscosity ratios free from spurious velocities. The proposed scheme, which is based on the phase-field modeling, employs the Cahn-Hilliard theory to track the interfaces among three different fluid components. Several benchmarks, such as the spreading of a liquid lens, binary droplets, and head-on collision of two droplets in binary- and ternary-fluid systems, are conducted to assess the reliability and accuracy of the model. The proposed model can successfully simulate both partial and total spreadings while reducing the parasitic currents to the machine precision.

  14. Influence of collision on the flow through in-vitro rigid models of the vocal folds

    NASA Astrophysics Data System (ADS)

    Deverge, M.; Pelorson, X.; Vilain, C.; Lagrée, P.-Y.; Chentouf, F.; Willems, J.; Hirschberg, A.

    2003-12-01

    Measurements of pressure in oscillating rigid replicas of vocal folds are presented. The pressure upstream of the replica is used as input to various theoretical approximations to predict the pressure within the glottis. As the vocal folds collide the classical quasisteady boundary layer theory fails. It appears however that for physiologically reasonable shapes of the replicas, viscous effects are more important than the influence of the flow unsteadiness due to the wall movement. A simple model based on a quasisteady Bernoulli equation corrected for viscous effect, combined with a simple boundary layer separation model does globally predict the observed pressure behavior.

  15. Modeling of Inhomogeneous Compressible Turbulence Using a Two-Scale Statistical Theory

    NASA Technical Reports Server (NTRS)

    Hamba, Fujihiro

    1996-01-01

    Turbulence modeling plays an important role in the study of high-speed flows in engineering and aerodynamic problems; they include flows in supersonic combustion engines and over hypersonic transport aircraft. The enhancement of the kinetic energy dissipation by the dilatational terms is one of the typical compressibility effects. Zeman (1990) and Sarkar et al. (1991) proposed that the dilatation dissipation is proportional to the solenoidal dissipation and is a function of the turbulent Mach number. Sarkar (1992) also modeled the pressure-dilatation correlation using the turbulent Mach number. Zeman (1991) related the correlation to the rate of change of the pressure variance.

  16. Development and application of theoretical models for Rotating Detonation Engine flowfields

    NASA Astrophysics Data System (ADS)

    Fievisohn, Robert

    As turbine and rocket engine technology matures, performance increases between successive generations of engine development are becoming smaller. One means of accomplishing significant gains in thermodynamic performance and power density is to use detonation-based heat release instead of deflagration. This work is focused on developing and applying theoretical models to aid in the design and understanding of Rotating Detonation Engines (RDEs). In an RDE, a detonation wave travels circumferentially along the bottom of an annular chamber where continuous injection of fresh reactants sustains the detonation wave. RDEs are currently being designed, tested, and studied as a viable option for developing a new generation of turbine and rocket engines that make use of detonation heat release. One of the main challenges in the development of RDEs is to understand the complex flowfield inside the annular chamber. While simplified models are desirable for obtaining timely performance estimates for design analysis, one-dimensional models may not be adequate as they do not provide flow structure information. In this work, a two-dimensional physics-based model is developed, which is capable of modeling the curved oblique shock wave, exit swirl, counter-flow, detonation inclination, and varying pressure along the inflow boundary. This is accomplished by using a combination of shock-expansion theory, Chapman-Jouguet detonation theory, the Method of Characteristics (MOC), and other compressible flow equations to create a shock-fitted numerical algorithm and generate an RDE flowfield. This novel approach provides a numerically efficient model that can provide performance estimates as well as details of the large-scale flow structures in seconds on a personal computer. Results from this model are validated against high-fidelity numerical simulations that may require a high-performance computing framework to provide similar performance estimates. This work provides a designer a new tool to conduct large-scale parametric studies to optimize a design space before conducting computationally-intensive, high-fidelity simulations that may be used to examine additional effects. The work presented in this thesis not only bridges the gap between simple one-dimensional models and high-fidelity full numerical simulations, but it also provides an effective tool for understanding and exploring RDE flow processes.

  17. Predictive model for local scour downstream of hydrokinetic turbines in erodible channels

    NASA Astrophysics Data System (ADS)

    Musa, Mirko; Heisel, Michael; Guala, Michele

    2018-02-01

    A modeling framework is derived to predict the scour induced by marine hydrokinetic turbines installed on fluvial or tidal erodible bed surfaces. Following recent advances in bridge scour formulation, the phenomenological theory of turbulence is applied to describe the flow structures that dictate the equilibrium scour depth condition at the turbine base. Using scaling arguments, we link the turbine operating conditions to the flow structures and scour depth through the drag force exerted by the device on the flow. The resulting theoretical model predicts scour depth using dimensionless parameters and considers two potential scenarios depending on the proximity of the turbine rotor to the erodible bed. The model is validated at the laboratory scale with experimental data comprising the two sediment mobility regimes (clear water and live bed), different turbine configurations, hydraulic settings, bed material compositions, and migrating bedform types. The present work provides future developers of flow energy conversion technologies with a physics-based predictive formula for local scour depth beneficial to feasibility studies and anchoring system design. A potential prototype-scale deployment in a large sandy river is also considered with our model to quantify how the expected scour depth varies as a function of the flow discharge and rotor diameter.

  18. High altitude chemically reacting gas particle mixtures. Volume 1: A theoretical analysis and development of the numerical solution. [rocket nozzle and orbital plume flow fields

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1984-01-01

    The overall contractual effort and the theory and numerical solution for the Reacting and Multi-Phase (RAMP2) computer code are described. The code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. Fundamental equations for steady flow of reacting gas-particle mixtures, method of characteristics, mesh point construction, and numerical integration of the conservation equations are considered herein.

  19. Flow of rarefied gases over two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Jeng, Duen-Ren; De Witt, Kenneth J.; Keith, Theo G., Jr.; Chung, Chan-Hong

    1989-01-01

    A kinetic-theory analysis is made of the flow of rarefied gases over two-dimensional bodies of arbitrary curvature. The Boltzmann equation simplified by a model collision integral is written in an arbitrary orthogonal curvilinear coordinate system, and solved by means of finite-difference approximation with the discrete ordinate method. A numerical code is developed which can be applied to any two-dimensional submerged body of arbitrary curvature for the flow regimes from free-molecular to slip at transonic Mach numbers. Predictions are made for the case of a right circular cylinder.

  20. Anomaly Detection in Test Equipment via Sliding Mode Observers

    NASA Technical Reports Server (NTRS)

    Solano, Wanda M.; Drakunov, Sergey V.

    2012-01-01

    Nonlinear observers were originally developed based on the ideas of variable structure control, and for the purpose of detecting disturbances in complex systems. In this anomaly detection application, these observers were designed for estimating the distributed state of fluid flow in a pipe described by a class of advection equations. The observer algorithm uses collected data in a piping system to estimate the distributed system state (pressure and velocity along a pipe containing liquid gas propellant flow) using only boundary measurements. These estimates are then used to further estimate and localize possible anomalies such as leaks or foreign objects, and instrumentation metering problems such as incorrect flow meter orifice plate size. The observer algorithm has the following parts: a mathematical model of the fluid flow, observer control algorithm, and an anomaly identification algorithm. The main functional operation of the algorithm is in creating the sliding mode in the observer system implemented as software. Once the sliding mode starts in the system, the equivalent value of the discontinuous function in sliding mode can be obtained by filtering out the high-frequency chattering component. In control theory, "observers" are dynamic algorithms for the online estimation of the current state of a dynamic system by measurements of an output of the system. Classical linear observers can provide optimal estimates of a system state in case of uncertainty modeled by white noise. For nonlinear cases, the theory of nonlinear observers has been developed and its success is mainly due to the sliding mode approach. Using the mathematical theory of variable structure systems with sliding modes, the observer algorithm is designed in such a way that it steers the output of the model to the output of the system obtained via a variety of sensors, in spite of possible mismatches between the assumed model and actual system. The unique properties of sliding mode control allow not only control of the model internal states to the states of the real-life system, but also identification of the disturbance or anomaly that may occur.

  1. Actual Romanian research in post-newtonian dynamics

    NASA Astrophysics Data System (ADS)

    Mioc, V.; Stavinschi, M.

    2007-05-01

    We survey the recent Romanian results in the study of the two-body problem in post-Newtonian fields. Such a field is characterized, in general, by a potential of the form U(q)=|q|^{-1}+ something (small, but not compulsorily). We distinguish some classes of post-Newtonian models: relativistic (Schwarzschild, Fock, Einstein PN, Reissner-Nordström, Schwarzschild - de Sitter, etc.) and nonrelativistic (Manev, Mücket-Treder, Seeliger, gravito-elastic, etc.). Generalized models (the zonal-satellite problem, quasihomogeneous fields), as well as special cases (anisotropic Manev-type and Schwarzschild-type models, Popovici or Popovici-Manev photogravitational problem), were also tackled. The methods used in such studies are various: analytical (using mainly the theory of perturbations, but also other theories: functions of complex variable, variational calculus, etc.), geometric (qualitative approach of the theory of dynamical systems), and numerical (especially using the Poincaré-section technique). The areas of interest and the general results obtained focus on: exact or approximate analytical solutions; characteristics of local flows (especially at limit situations: collision and escape); quasiperiodic and periodic orbits; equilibria; symmetries; chaoticity; geometric description of the global flow (and physical interpretation of the phase-space structure). We emphasize some special features, which cannot be met within the Newtonian framework: black-hole effect, oscillatory collisions, radial librations, bounded orbits for nonnegative energy, existence of unstable circular motion (or unstable rest), symmetric periodic orbits within anisotropic models, etc.

  2. Client-controlled case information: a general system theory perspective.

    PubMed

    Fitch, Dale

    2004-07-01

    The author proposes a model for client control of case information via the World Wide Web built on principles of general system theory. It incorporates the client into the design, resulting in an information structure that differs from traditional human services information-sharing practices. Referencing general system theory, the concepts of controller and controlled system, as well as entropy and negentropy, are applied to the information flow and autopoietic behavior as they relate to the boundary-maintaining functions of today's organizations. The author's conclusions synthesize general system theory and human services values to lay the foundation for an information-sharing framework for human services in the 21st century.

  3. Debris flow impact estimation on a rigid barrier

    NASA Astrophysics Data System (ADS)

    Vagnon, Federico; Segalini, Andrea

    2016-07-01

    The aim of this paper is to analyse debris flow impact against rigid and undrained barrier in order to propose a new formulation for the estimation of acting force after the flow impact to safe design protection structures. For this reason, this work concentrates on the flow impact, by performing a series of small scale tests in a specifically created flume. Flow characteristics (flow height and velocity) and applied loads (dynamic and static) on barrier were measured using four ultrasonic devices, four load cells and a contact surface pressure gauge. The results obtained were compared with main existing models and a new equation is proposed. Furthermore, a brief review of the small scale theory was provided to analyse the scale effects that can affect the results.

  4. A mercury flow meter for ion thruster testing. [response time, thermal sensitivity

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    The theory of operation of the thermal flow meter is presented, and a theoretical model is used to determine design parameters for a device capable of measuring mercury flows in the range of 0 to 5 gm/hr. Flow meter construction is described. Tests performed using a positive displacement mercury pump as well as those performed with the device in the feed line of an operating thruster are discussed. A flow meter response time of about a minute and a sensitivity of about 10 mv/gm/hr are demonstrated. Additional work to relieve a sensitivity of the device to variations in ambient temperature is indicated to improve its quantitative performance.

  5. Modelling information flow along the human connectome using maximum flow.

    PubMed

    Lyoo, Youngwook; Kim, Jieun E; Yoon, Sujung

    2018-01-01

    The human connectome is a complex network that transmits information between interlinked brain regions. Using graph theory, previously well-known network measures of integration between brain regions have been constructed under the key assumption that information flows strictly along the shortest paths possible between two nodes. However, it is now apparent that information does flow through non-shortest paths in many real-world networks such as cellular networks, social networks, and the internet. In the current hypothesis, we present a novel framework using the maximum flow to quantify information flow along all possible paths within the brain, so as to implement an analogy to network traffic. We hypothesize that the connection strengths of brain networks represent a limit on the amount of information that can flow through the connections per unit of time. This allows us to compute the maximum amount of information flow between two brain regions along all possible paths. Using this novel framework of maximum flow, previous network topological measures are expanded to account for information flow through non-shortest paths. The most important advantage of the current approach using maximum flow is that it can integrate the weighted connectivity data in a way that better reflects the real information flow of the brain network. The current framework and its concept regarding maximum flow provides insight on how network structure shapes information flow in contrast to graph theory, and suggests future applications such as investigating structural and functional connectomes at a neuronal level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Doubly self-consistent field theory of grafted polymers under simple shear in steady state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo, Tongchuan; Whitmore, Mark D., E-mail: mark-whitmore@umanitoba.ca

    2014-03-21

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkmanmore » equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.« less

  7. Phenemenological vs. biophysical models of thermal stress in aquatic eggs

    NASA Astrophysics Data System (ADS)

    Martin, B.

    2016-12-01

    Predicting species responses to climate change is a central challenge in ecology, with most efforts relying on lab derived phenomenological relationships between temperature and fitness metrics. We tested one of these models using the embryonic stage of a Chinook salmon population. We parameterized the model with laboratory data, applied it to predict survival in the field, and found that it significantly underestimated field-derived estimates of thermal mortality. We used a biophysical model based on mass-transfer theory to show that the discrepancy was due to the differences in water flow velocities between the lab and the field. This mechanistic approach provides testable predictions for how the thermal tolerance of embryos depends on egg size and flow velocity of the surrounding water. We found support for these predictions across more than 180 fish species, suggesting that flow and temperature mediated oxygen limitation is a general mechanism underlying the thermal tolerance of embryos.

  8. An advanced kinetic theory for morphing continuum with inner structures

    NASA Astrophysics Data System (ADS)

    Chen, James

    2017-12-01

    Advanced kinetic theory with the Boltzmann-Curtiss equation provides a promising tool for polyatomic gas flows, especially for fluid flows containing inner structures, such as turbulence, polyatomic gas flows and others. Although a Hamiltonian-based distribution function was proposed for diatomic gas flow, a general distribution function for the generalized Boltzmann-Curtiss equations and polyatomic gas flow is still out of reach. With assistance from Boltzmann's entropy principle, a generalized Boltzmann-Curtiss distribution for polyatomic gas flow is introduced. The corresponding governing equations at equilibrium state are derived and compared with Eringen's morphing (micropolar) continuum theory derived under the framework of rational continuum thermomechanics. Although rational continuum thermomechanics has the advantages of mathematical rigor and simplicity, the presented statistical kinetic theory approach provides a clear physical picture for what the governing equations represent.

  9. Measurement of crossflow vortices, attachment-line flow, and transition using microthin hot films

    NASA Technical Reports Server (NTRS)

    Mangalam, S. M.; Agarwal, N. K.; Maddalon, D. V.; Saric, W. S.

    1990-01-01

    A flow diagnostic experiment was conducted on a 45-deg swept-wing model using surface-mounted, multielement, microthin, hot-film sensors. The cross-flow vortex spacing, the attachment-line flow characteristics, and the transition region were all determined using an advanced data acquisition and instrumentation system. In addition to the frequencies of traveling waves predicted by linear stability theory, amplified disturbances at much higher frequencies were observed. Simultaneous measurements from sensors located at a number of chord and span locations highlighted the strong three-dimensionality of the boundary-layer flow in the presence of cross-flow vortices. The state of the attachment-line boundary layer was determined using a multielement sensor wrapped around the wing leading edge. The transition region flow characteristics were also identified.

  10. A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Zheng, Wei-Fan; Jiang, Bao-Shan; Zhang, Ji-Ye

    2016-10-01

    With the development of traffic systems, some issues such as traffic jams become more and more serious. Efficient traffic flow theory is needed to guide the overall controlling, organizing and management of traffic systems. On the basis of the cellular automata model and the traffic flow model with look-ahead potential, a new cellular automata traffic flow model with negative exponential weighted look-ahead potential is presented in this paper. By introducing the negative exponential weighting coefficient into the look-ahead potential and endowing the potential of vehicles closer to the driver with a greater coefficient, the modeling process is more suitable for the driver’s random decision-making process which is based on the traffic environment that the driver is facing. The fundamental diagrams for different weighting parameters are obtained by using numerical simulations which show that the negative exponential weighting coefficient has an obvious effect on high density traffic flux. The complex high density non-linear traffic behavior is also reproduced by numerical simulations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11572264, 11172247, 11402214, and 61373009).

  11. Evaporating Spray in Supersonic Streams Including Turbulence Effects

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.

    2006-01-01

    Evaporating spray plays an important role in spray combustion processes. This paper describes the development of a new finite-conductivity evaporation model, based on the two-temperature film theory, for two-phase numerical simulation using Eulerian-Lagrangian method. The model is a natural extension of the T-blob/T-TAB atomization/spray model which supplies the turbulence characteristics for estimating effective thermal diffusivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating sprays. High speed cross flow spray results indicate the effectiveness of the T-blob/T-TAB model and point to the needed improvements in high speed evaporating spray modeling.

  12. Electroosmotic Flow Reversal Outside Glass Nanopores

    PubMed Central

    2015-01-01

    We report observations of a striking reversal in the direction of electroosmotic flow (EOF) outside a conical glass nanopore as a function of salt concentration. At high ionic strengths (>100 mM), we observe EOF in the expected direction as predicted by classical electrokinetic theory, while at low salt concentrations (<1 mM) the direction of the flow is reversed. The critical crossover salt concentration depends on the pore diameter. Finite-element simulations indicate a competition between the EOF generated from the inner and outer walls of the pore, which drives flows in opposite directions. We have developed a simple analytical model which reveals that, as the salt concentration is reduced, the flow rates inside the pore are geometrically constrained, whereas there is no such limit for flows outside the pore. This model captures all of the essential physics of the system and explains the observed data, highlighting the key role the external environment plays in determining the overall electroosmotic behavior. PMID:25490120

  13. Modeling of surface roughness effects on Stokes flow in circular pipes

    NASA Astrophysics Data System (ADS)

    Song, Siyuan; Yang, Xiaohu; Xin, Fengxian; Lu, Tian Jian

    2018-02-01

    Fluid flow and pressure drop across a channel are significantly influenced by surface roughness on a channel wall. The present study investigates the effects of periodically structured surface roughness upon flow field and pressure drop in a circular pipe at low Reynolds numbers. The periodic roughness considered exhibits sinusoidal, triangular, and rectangular morphologies, with the relative roughness (i.e., ratio of the amplitude of surface roughness to hydraulic diameter of the pipe) no more than 0.2. Based upon a revised perturbation theory, a theoretical model is developed to quantify the effect of roughness on fully developed Stokes flow in the pipe. The ratio of static flow resistivity and the ratio of the Darcy friction factor between rough and smooth pipes are expressed in four-order approximate formulations, which are validated against numerical simulation results. The relative roughness and the wave number are identified as the two key parameters affecting the static flow resistivity and the Darcy friction factor.

  14. Ionospheres of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Nagy, A. F.

    1980-11-01

    The theory and observations relating to the ionospheres of the terrestrial planets Venus, the earth, and Mars are reviewed. Emphasis is placed on comparing the basic differences and similarities between the planetary ionospheres. The review covers the plasma and electric-magnetic field environments that surround the planets, the theory leading to the creation and transport of ionization in the ionospheres, the relevant observations, and the most recent model calculations. The theory section includes a discussion of ambipolar diffusion in a partially ionized plasma, diffusion in a fully ionized plasma, supersonic plasma flow, photochemistry, and heating and cooling processes. The sections on observations and model calculations cover the neutral atmosphere composition, the ion composition, the electron density, and the electron, ion, and neutral temperatures.

  15. Quantum phases of a vortex string.

    PubMed

    Auzzi, Roberto; Prem Kumar, S

    2009-12-04

    We argue that the world sheet dynamics of magnetic k strings in the Higgs phase of the mass-deformed N = 4 theory is controlled by a bosonic O(3) sigma model with anisotropy and a topological theta term. The theory interpolates between a massless O(2) symmetric regime, a massive O(3) symmetric phase, and another massive phase with a spontaneously broken Z(2) symmetry. The first two phases are separated by a Kosterlitz-Thouless transition. When theta = pi, the O(3) symmetric phase flows to an interacting fixed point; sigma model kinks and their dyonic partners become degenerate, mirroring the behavior of monopoles in the parent gauge theory. This leads to the identification of the kinks with monopoles confined on the string.

  16. Ducted turbine theory with right angled ducts

    NASA Astrophysics Data System (ADS)

    McLaren-Gow, S.; Jamieson, P.; Graham, J. M. R.

    2014-06-01

    This paper describes the use of an inviscid approach to model a ducted turbine - also known as a diffuser augmented turbine - and a comparison of results with a particular one-dimensional theory. The aim of the investigation was to gain a better understanding of the relationship between a real duct and the ideal diffuser, which is a concept that is developed in the theory. A range of right angled ducts, which have a rim for a 90° exit angle, were modelled. As a result, the performance of right angled ducts has been characterised in inviscid flow. It was concluded that right angled ducts cannot match the performance of their associated ideal diffuser and that the optimum rotor loading for these turbines varies with the duct dimensions.

  17. Generalised ballooning theory of two-dimensional tokamak modes

    NASA Astrophysics Data System (ADS)

    Abdoul, P. A.; Dickinson, D.; Roach, C. M.; Wilson, H. R.

    2018-02-01

    In this work, using solutions from a local gyrokinetic flux-tube code combined with higher order ballooning theory, a new analytical approach is developed to reconstruct the global linear mode structure with associated global mode frequency. In addition to the isolated mode (IM), which usually peaks on the outboard mid-plane, the higher order ballooning theory has also captured other types of less unstable global modes: (a) the weakly asymmetric ballooning theory (WABT) predicts a mixed mode (MM) that undergoes a small poloidal shift away from the outboard mid-plane, (b) a relatively more stable general mode (GM) balloons on the top (or bottom) of the tokamak plasma. In this paper, an analytic approach is developed to combine these disconnected analytical limits into a single generalised ballooning theory. This is used to investigate how an IM behaves under the effect of sheared toroidal flow. For small values of flow an IM initially converts into a MM where the results of WABT are recaptured, and eventually, as the flow increases, the mode asymptotically becomes a GM on the top (or bottom) of the plasma. This may be an ingredient in models for understanding why in some experimental scenarios, instead of large edge localised modes (ELMs), small ELMs are observed. Finally, our theory can have other important consequences, especially for calculations involving Reynolds stress driven intrinsic rotation through the radial asymmetry in the global mode structures. Understanding the intrinsic rotation is significant because external torque in a plasma the size of ITER is expected to be relatively low.

  18. Numerical investigations on flow dynamics of prismatic granular materials using the discrete element method

    NASA Astrophysics Data System (ADS)

    Hancock, W.; Weatherley, D.; Wruck, B.; Chitombo, G. P.

    2012-04-01

    The flow dynamics of granular materials is of broad interest in both the geosciences (e.g. landslides, fault zone evolution, and brecchia pipe formation) and many engineering disciplines (e.g chemical engineering, food sciences, pharmaceuticals and materials science). At the interface between natural and human-induced granular media flow, current underground mass-mining methods are trending towards the induced failure and subsequent gravitational flow of large volumes of broken rock, a method known as cave mining. Cave mining relies upon the undercutting of a large ore body, inducement of fragmentation of the rock and subsequent extraction of ore from below, via hopper-like outlets. Design of such mines currently relies upon a simplified kinematic theory of granular flow in hoppers, known as the ellipsoid theory of mass movement. This theory assumes that the zone of moving material grows as an ellipsoid above the outlet of the silo. The boundary of the movement zone is a shear band and internal to the movement zone, the granular material is assumed to have a uniformly high bulk porosity compared with surrounding stagnant regions. There is however, increasing anecdotal evidence and field measurements suggesting this theory fails to capture the full complexity of granular material flow within cave mines. Given the practical challenges obstructing direct measurement of movement both in laboratory experiments and in-situ, the Discrete Element Method (DEM [1]) is a popular alternative to investigate granular media flow. Small-scale DEM studies (c.f. [3] and references therein) have confirmed that movement within DEM silo flow models matches that predicted by ellipsoid theory, at least for mono-disperse granular material freely outflowing at a constant rate. A major draw-back of these small-scale DEM studies is that the initial bulk porosity of the simulated granular material is significantly higher than that of broken, prismatic rock. In this investigation, more realistic granular material geometries are simulated using the ESyS-Particle [2] DEM simulation software on cluster supercomputers. Individual grains of the granular material are represented as convex polyhedra. Initially the polyhedra are packed in a low bulk porosity configuration prior to commencing silo flow simulations. The resultant flow dynamics are markedly different to that predicted by ellipsoid theory. Initially shearing occurs around the silo outlet however rapidly shear localization in a particular direction dominates other directions, causing preferential movement in that direction. Within the shear band itself, the granular material becomes hgihly dilated however elsewhere the bulk porosity remains low. The low porosity within these regions promotes entrainment whereby large volumes of granular material interlock and begin to rotate and translate as a single rigid body. In some cases, entrainment may result in complete overturning of a large volume of material. The consequences of preferential shear localization and in particular, entrainment, for granular media flow in cave mines and natural settings (such as brecchia pipes) is a topic of ongoing research to be presented at the meeting.

  19. Proceedings of the Organization of 1990 Meeting of International Neural Network Society Jointed with IEEE Held in Washington, DC on January 15 - 19, 1990. Volume 1. Theory Track Neural and cognitive Sciences Track

    DTIC Science & Technology

    1990-11-30

    signaI flow , xi. The learning" of such statistics could result from synaptic modification rules similar to those known to exist in the brain 7 " 1 0,1 1...in figure 1 had been established. If the series are appro\\imat.ed by Gaussian process. the information flow from X to Y can be expressed by the...Based on this model. the information flow in different direction were calculated by using eq.(1). RESULTS Figures 2 illustrates the information flow

  20. Investigation of representing hysteresis in macroscopic models of two-phase flow in porous media using intermediate scale experimental data

    NASA Astrophysics Data System (ADS)

    Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; Gonzalez-Nicolas, Ana; Illangasekare, Tissa

    2017-01-01

    Incorporating hysteresis into models is important to accurately capture the two phase flow behavior when porous media systems undergo cycles of drainage and imbibition such as in the cases of injection and post-injection redistribution of CO2 during geological CO2 storage (GCS). In the traditional model of two-phase flow, existing constitutive models that parameterize the hysteresis associated with these processes are generally based on the empirical relationships. This manuscript presents development and testing of mathematical hysteretic capillary pressure—saturation—relative permeability models with the objective of more accurately representing the redistribution of the fluids after injection. The constitutive models are developed by relating macroscopic variables to basic physics of two-phase capillary displacements at pore-scale and void space distribution properties. The modeling approach with the developed constitutive models with and without hysteresis as input is tested against some intermediate-scale flow cell experiments to test the ability of the models to represent movement and capillary trapping of immiscible fluids under macroscopically homogeneous and heterogeneous conditions. The hysteretic two-phase flow model predicted the overall plume migration and distribution during and post injection reasonably well and represented the postinjection behavior of the plume more accurately than the nonhysteretic models. Based on the results in this study, neglecting hysteresis in the constitutive models of the traditional two-phase flow theory can seriously overpredict or underpredict the injected fluid distribution during post-injection under both homogeneous and heterogeneous conditions, depending on the selected value of the residual saturation in the nonhysteretic models.

Top