Sample records for flow outfall adcp

  1. Augmenting two-dimensional hydrodynamic simulations with measured velocity data to identify flow paths as a function of depth on Upper St. Clair River in the Great Lakes basin

    USGS Publications Warehouse

    Holtschlag, D.J.; Koschik, J.A.

    2005-01-01

    Upper St. Clair River, which receives outflow from Lake Huron, is characterized by flow velocities that exceed 7 feet per second and significant channel curvature that creates complex flow patterns downstream from the Blue Water Bridge in the Port Huron, Michigan, and Sarnia, Ontario, area. Discrepancies were detected between depth-averaged velocities previously simulated by a two-dimensional (2D) hydrodynamic model and surface velocities determined from drifting buoy deployments. A detailed ADCP (acoustic Doppler current profiler) survey was done on Upper St. Clair River during July 1–3, 2003, to help resolve these discrepancies. As part of this study, a refined finite-element mesh of the hydrodynamic model used to identify source areas to public water intakes was developed for Upper St. Clair River. In addition, a numerical procedure was used to account for radial accelerations, which cause secondary flow patterns near channel bends. The refined model was recalibrated to better reproduce local velocities measured in the ADCP survey. ADCP data also were used to help resolve the remaining discrepancies between simulated and measured velocities and to describe variations in velocity with depth. Velocity data from ADCP surveys have significant local variability, and statistical processing is needed to compute reliable point estimates. In this study, velocity innovations were computed for seven depth layers posited within the river as the differences between measured and simulated velocities. For each layer, the spatial correlation of velocity innovations was characterized by use of variogram analysis. Results were used with kriging to compute expected innovations within each layer at applicable model nodes. Expected innovations were added to simulated velocities to form integrated velocities, which were used with reverse particle tracking to identify the expected flow path near a sewage outfall as a function of flow depth. Expected particle paths generated by use of the integrated velocities showed that surface velocities in the upper layers tended to originate nearer the Canadian shoreline than velocities near the channel bottom in the lower layers. Therefore, flow paths to U.S. public water intakes located on the river bottom are more likely to be in the United States than withdrawals near the water surface. Integrated velocities in the upper layers are generally consistent with the surface velocities indicated by drifting-buoy deployments. Information in the 2D hydrodynamic model and the ADCP measurements was insufficient to describe the vertical flow component. This limitation resulted in the inability to account for vertical movements on expected flow paths through Upper St. Clair River. A three dimensional hydrodynamic model would be needed to account for these effects.

  2. Quantifying measurement uncertainties in ADCP measurements in non-steady, inhomogeneous flow

    NASA Astrophysics Data System (ADS)

    Schäfer, Stefan

    2017-04-01

    The author presents a laboratory study of fixed-platform four-beam ADCP and three-beam ADV measurements in the tailrace of a micro hydro power setup with a 35kW Kaplan-turbine and 2.5m head. The datasets discussed quantify measurement uncertainties of the ADCP measurement technique coming from non-steady, inhomogeneous flow. For constant discharge of 1.5m3/s, two different flow scenarios were investigated: one being the regular tailrace flow downstream the draft tube and the second being a straightened, less inhomogeneous flow, which was generated by the use of a flow straightening device: A rack of diameter 40mm pipe sections was mounted right behind the draft tube. ADCP measurements (sampling rate 1.35Hz) were conducted in three distances behind the draft tube and compared bin-wise to measurements of three simultaneously measuring ADV probes (sampling rate 64Hz). The ADV probes were aligned horizontally and the ADV bins were placed in the centers of two facing ADCP bins and in the vertical under the ADCP probe of the corresponding depth. Rotating the ADV probes by 90° allowed for measurements of the other two facing ADCP bins. For reasons of mutual probe interaction, ADCP and ADV measurements were not conducted at the same time. The datasets were evaluated by using mean and fluctuation velocities. Turbulence parameters were calculated and compared as far as applicable. Uncertainties coming from non-steady flow were estimated with the normalized mean square error und evaluated by comparing long-term measurements of 60 minutes to shorter measurement intervals. Uncertainties coming from inhomogeneous flow were evaluated by comparison of ADCP with ADV data along the ADCP beams where ADCP data were effectively measured and in the vertical under the ADCP probe where velocities of the ADCP measurements were displayed. Errors coming from non-steady flow could be compensated through sufficiently long measurement intervals with high enough sampling rates depending on the turbulence scales of the flow. In case of heterogeneous distributions of vertical velocity components in the ADCP beams, the resulting errors significantly biased the mean velocities and could not be recognized by sole ADCP measurements. For the straightened flow scenario, the results showed good agreement of ADCP and ADV data for mean velocities, whereas the ADCP data consistently overestimated turbulence intensities by a factor of 2. Reynolds stresses were in good agreement as well as were turbulent kinetic energies, apart from one measurement with outliers of up to 30%. For the tailrace flow scenario, the mean velocities from the ADCP data underestimated the ADV data by 23%. Turbulence intensities from the ADCP data were fluctuant, overestimated the ADV data by factors of up to 2.8 and showed spatial discrepancies over the depth. Reynolds stresses were only partly in good agreement and turbulent kinetic energies were over- and underestimated in a range of [-50; +30] %.

  3. Velocity bias induced by flow patterns around ADCPs and associated deployment platforms

    USGS Publications Warehouse

    Mueller, David S.

    2015-01-01

    Velocity measurements near the Acoustic Doppler Current Profiler (ADCP) are important for mapping surface currents, measuring velocity and discharge in shallow streams, and providing accurate estimates of discharge in the top unmeasured portion of the water column. Improvements to ADCP performance permit measurement of velocities much closer (5 cm) to the transducer than has been possible in the past (25 cm). Velocity profiles collected by the U.S. Geological Survey (USGS) with a 1200 kHz Rio Grande Zedhead ADCP in 2002 showed a negative bias in measured velocities near the transducers. On the basis of these results, the USGS initiated a study combining field, laboratory, and numerical modeling data to assess the effect of flow patterns caused by flow around the ADCP and deployment platforms on velocities measured near the transducers. This ongoing study has shown that the negative bias observed in the field is due to the flow pattern around the ADCP. The flow pattern around an ADCP violates the basic assumption of flow homogeneity required for an accurate three-dimensional velocity solution. Results, to date (2014), have indicated velocity biases within the measurable profile, due to flow disturbance, for the TRDI 1200 kHz Rio Grande Zedhead and the SonTek RiverSurveyor M9 ADCPs. The flow speed past the ADCP, the mount and the deployment platform have also been shown to play an important role in the magnitude and extent of the velocity bias.

  4. Evaluation of mean velocity and turbulence measurements with ADCPs

    USGS Publications Warehouse

    Nystrom, E.A.; Rehmann, C.R.; Oberg, K.A.

    2007-01-01

    To test the ability of acoustic Doppler current profilers (ADCPs) to measure turbulence, profiles measured with two pulse-to-pulse coherent ADCPs in a laboratory flume were compared to profiles measured with an acoustic Doppler velocimeter, and time series measured in the acoustic beam of the ADCPs were examined. A four-beam ADCP was used at a downstream station, while a three-beam ADCP was used at a downstream station and an upstream station. At the downstream station, where the turbulence intensity was low, both ADCPs reproduced the mean velocity profile well away from the flume boundaries; errors near the boundaries were due to transducer ringing, flow disturbance, and sidelobe interference. At the upstream station, where the turbulence intensity was higher, errors in the mean velocity were large. The four-beam ADCP measured the Reynolds stress profile accurately away from the bottom boundary, and these measurements can be used to estimate shear velocity. Estimates of Reynolds stress with a three-beam ADCP and turbulent kinetic energy with both ADCPs cannot be computed without further assumptions, and they are affected by flow inhomogeneity. Neither ADCP measured integral time scales to within 60%. ?? 2007 ASCE.

  5. Effects of non-homogeneous flow on ADCP data processing in a hydroturbine forebay

    DOE PAGES

    Harding, S. F.; Richmond, M. C.; Romero-Gomez, P.; ...

    2016-01-02

    Accurate modeling of the velocity field in the forebay of a hydroelectric power station is important for both power generation and fish passage, and is able to be increasingly well represented by computational fluid dynamics (CFD) simulations. Acoustic Doppler Current Profiler (ADCP) are investigated herein as a method of validating the numerical flow solutions, particularly in observed and calculated regions of non-homogeneous flow velocity. By using a numerical model of an ADCP operating in a velocity field calculated using CFD, the errors due to the spatial variation of the flow velocity are quantified. Furthermore, the numerical model of the ADCPmore » is referred to herein as a Virtual ADCP (VADCP).« less

  6. Evaluation of Acoustic Doppler Current Profiler to Measure Discharge at New York Power Authority's Niagara Power Project, Niagara Falls, New York

    USGS Publications Warehouse

    Zajd, Henry J.

    2007-01-01

    The need for accurate real-time discharge in the International Niagara River hydro power system requires reliable, accurate and reproducible data. The U.S. Geological Survey has been widely using Acoustic Doppler Current Profilers (ADCP) to accurately measure discharge in riverine channels since the mid-1990s. The use of the ADCP to measure discharge has remained largely untested at hydroelectric-generation facilities such as the New York Power Authority's (NYPA) Niagara Power Project in Niagara Falls, N.Y. This facility has a large, engineered diversion channel with the capacity of high volume discharges in excess of 100,000 cubic feet per second (ft3/s). Facilities such as this could benefit from the use of an ADCP, if the ADCP discharge measurements prove to be more time effective and accurate than those obtained from the flow-calculation techniques that are currently used. Measurements of diversion flow by an ADCP in the 'Pant Leg' diversion channel at the Niagara Power Project were made on November 6, 7, and 8, 2006, and compared favorably (within 1 percent) with those obtained concurrently by a conventional Price-AA current-meter measurement during one of the ADCP measurement sessions. The mean discharge recorded during each 2-hour individual ADCP measurement session compared favorably with (3.5 to 6.8 percent greater than) the discharge values computed by the flow-calculation method presently in use by NYPA. The use of ADCP technology to measure discharge could ultimately permit increased power-generation efficiency at the NYPA Niagara Falls Power Project by providing improved predictions of the amount of water (and thus the power output) available.

  7. Measurement of velocities with an acoustic velocity meter, one side-looking and two upward-looking acoustic Doppler current profilers in the Chicago Sanitary and Ship Canal, Romeoville, Illinois

    USGS Publications Warehouse

    Oberg, Kevin A.; Duncker, James J.

    1999-01-01

    In 1998, a prototype 300 kHz, side-looking Acoustic Doppler Current Profiler (ADCP) was deployed in the Chicago Sanitary and Ship Canal (CSSC) at Romeoville, Illinois. Additionally, two upward-looking ADCP's were deployed in the same acoustic path as the side-looking ADCP and in the reach defined by the upstream and downstream acoustic velocity meter (AVM) paths. All three ADCP's were synchronized to the AVM clock at the gaging station so that data were sampled simultaneously. The three ADCP's were deployed for six weeks measuring flow velocities from 0.0 to 2.5 ft/s. Velocities measured by each ADCP were compared to AVM path velocities and to velocities measured by the other ADCP's.

  8. Variance of discharge estimates sampled using acoustic Doppler current profilers from moving boats

    USGS Publications Warehouse

    Garcia, Carlos M.; Tarrab, Leticia; Oberg, Kevin; Szupiany, Ricardo; Cantero, Mariano I.

    2012-01-01

    This paper presents a model for quantifying the random errors (i.e., variance) of acoustic Doppler current profiler (ADCP) discharge measurements from moving boats for different sampling times. The model focuses on the random processes in the sampled flow field and has been developed using statistical methods currently available for uncertainty analysis of velocity time series. Analysis of field data collected using ADCP from moving boats from three natural rivers of varying sizes and flow conditions shows that, even though the estimate of the integral time scale of the actual turbulent flow field is larger than the sampling interval, the integral time scale of the sampled flow field is on the order of the sampling interval. Thus, an equation for computing the variance error in discharge measurements associated with different sampling times, assuming uncorrelated flow fields is appropriate. The approach is used to help define optimal sampling strategies by choosing the exposure time required for ADCPs to accurately measure flow discharge.

  9. Repeated surveys by acoustic Doppler current profiler for flow and sediment dynamics in a tidal river

    USGS Publications Warehouse

    Dinehart, R.L.; Burau, J.R.

    2005-01-01

    A strategy of repeated surveys by acoustic Doppler current profiler (ADCP) was applied in a tidal river to map velocity vectors and suspended-sediment indicators. The Sacramento River at the junction with the Delta Cross Channel at Walnut Grove, California, was surveyed over several tidal cycles in the Fall of 2000 and 2001 with a vessel-mounted ADCP. Velocity profiles were recorded along flow-defining survey paths, with surveys repeated every 27 min through a diurnal tidal cycle. Velocity vectors along each survey path were interpolated to a three-dimensional Cartesian grid that conformed to local bathymetry. A separate array of vectors was interpolated onto a grid from each survey. By displaying interpolated vector grids sequentially with computer animation, flow dynamics of the reach could be studied in three-dimensions as flow responded to the tidal cycle. Velocity streamtraces in the grid showed the upwelling of flow from the bottom of the Sacramento River channel into the Delta Cross Channel. The sequential display of vector grids showed that water in the canal briefly returned into the Sacramento River after peak flood tides, which had not been known previously. In addition to velocity vectors, ADCP data were processed to derive channel bathymetry and a spatial indicator for suspended-sediment concentration. Individual beam distances to bed, recorded by the ADCP, were transformed to yield bathymetry accurate enough to resolve small bedforms within the study reach. While recording velocity, ADCPs also record the intensity of acoustic backscatter from particles suspended in the flow. Sequential surveys of backscatter intensity were interpolated to grids and animated to indicate the spatial movement of suspended sediment through the study reach. Calculation of backscatter flux through cross-sectional grids provided a first step for computation of suspended-sediment discharge, the second step being a calibrated relation between backscatter intensity and sediment concentration. Spatial analyses of ADCP data showed that a strategy of repeated surveys and flow-field interpolation has the potential to simplify computation of flow and sediment discharge through complex waterways. The use of trade, product, industry, or firm names in this report is for descriptive purposes only and does not constitute endorsement of products by the US Government. ?? 2005 Elsevier B.V. All rights reserved.

  10. Velocity Mapping Toolbox (VMT): a processing and visualization suite for moving-vessel ADCP measurements

    USGS Publications Warehouse

    Parsons, D.R.; Jackson, P.R.; Czuba, J.A.; Engel, F.L.; Rhoads, B.L.; Oberg, K.A.; Best, J.L.; Mueller, D.S.; Johnson, K.K.; Riley, J.D.

    2013-01-01

    The use of acoustic Doppler current profilers (ADCP) for discharge measurements and three-dimensional flow mapping has increased rapidly in recent years and has been primarily driven by advances in acoustic technology and signal processing. Recent research has developed a variety of methods for processing data obtained from a range of ADCP deployments and this paper builds on this progress by describing new software for processing and visualizing ADCP data collected along transects in rivers or other bodies of water. The new utility, the Velocity Mapping Toolbox (VMT), allows rapid processing (vector rotation, projection, averaging and smoothing), visualization (planform and cross-section vector and contouring), and analysis of a range of ADCP-derived datasets. The paper documents the data processing routines in the toolbox and presents a set of diverse examples that demonstrate its capabilities. The toolbox is applicable to the analysis of ADCP data collected in a wide range of aquatic environments and is made available as open-source code along with this publication.

  11. Validation of Model Output versus ADCP Observations on the PR Insular Shelf, Part 2: Are all Sites the Same?

    NASA Astrophysics Data System (ADS)

    Ramos Valle, A.

    2016-02-01

    We have previously compared the output from three oceanographic models against observed data from an ADCP at a common grid point location on the zonally oriented, southwestern Puerto Rico shelf that extends into the northern Caribbean Sea. The three models were: 1) AMSEAS (NCOM), 2) Regional ROMS and 3) a higher resolution version of ROMS nested within the Regional ROMS. These models faced great difficulty in accurately depicting the bathymetry of the ocean in the PR-USVI archipelago which is characterized by small islands, narrow insular shelves, steep slopes and deep water beyond. The resulting validations of the three models versus the ADCP at the selected location were poor. However, the insight we gained into the behavior of the models during the validation process suggested that models might do a better job at simulating currents across the inter-island straits that connect the Atlantic Ocean with the Caribbean Sea than along the insular Caribbean or Atlantic coastlines. We therefore focused our attention on expanding our previous research by performing a similar analysis using the ROMS model against ADCP observations in the Mona Passage, west of PR. This new ADCP location exhibits bathymetric features that are smoother, less complex, and better represented in the Regional ROMS model while flows at the site are stronger than at the previous ADCP site at La Parguera. Statistical time-series analyses are performed on model and ADCP flow velocity time series to quantify the model's skill. Results indicate that ROMS does a much better job at simulating ocean currents at the Mona Passage site than at La Parguera. Dynamical and numerical differences that might explain the spatially varying model skill are considered. In summary: model skill validation sites around PR are not all the same.

  12. Dual-RiverSonde measurements of two-dimensional river flow patterns

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Stumpner, P.; Burau, J.R.

    2008-01-01

    Two-dimensional river flow patterns have been measured using a pair of RiverSondes in two experiments in the Sacramento-San Joaquin River Delta system of central California during April and October 2007. An experiment was conducted at Walnut Grove, California in order to explore the use of dual RiverSondes to measure flow patterns at a location which is important in the study of juvenile fish migration. The data available during the first experiment were limited by low wind, so a second experiment was conducted at Threemile Slough where wind conditions and surface turbulence historically have resulted in abundant data. Both experiments included ADCP near-surface velocity measurements from either manned or unmanned boats. Both experiments showed good comparisons between the RiverSonde and ADCP measurements. The flow conditions at both locations are dominated by tidal effects, with partial flow reversal at Walnut Grove and complete flow reversal at Threemile Slough. Both systems showed complex flow patterns during the flow reversals. Quantitative comparisons between the RiverSondes and an ADCP on a manned boat at Walnut Grove showed mean differences of 4.5 cm/s in the u (eastward) and 7.6 cm/s in the v (northward) components, and RMS differences of 14.7 cm/s in the u component and 21.0 cm/s in the v component. Quantitative comparisons between the RiverSondes and ADCPs on autonomous survey vessels at Threemile Slough showed mean differences of 0.007 cm/s in the u component and 0.5 cm/s in the v component, and RMS differences of 7.9 cm/s in the u component and 13.5 cm/s in the v component after obvious outliers were removed. ?? 2008 IEEE.

  13. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in suchmore » scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.« less

  14. Discharge measurements using a broad-band acoustic Doppler current profiler

    USGS Publications Warehouse

    Simpson, Michael R.

    2002-01-01

    The measurement of unsteady or tidally affected flow has been a problem faced by hydrologists for many years. Dynamic discharge conditions impose an unreasonably short time constraint on conventional current-meter discharge-measurement methods, which typically last a minimum of 1 hour. Tidally affected discharge can change more than 100 percent during a 10-minute period. Over the years, the U.S. Geological Survey (USGS) has developed moving-boat discharge-measurement techniques that are much faster but less accurate than conventional methods. For a bibliography of conventional moving-boat publications, see Simpson and Oltmann (1993, page 17). The advent of the acoustic Doppler current profiler (ADCP) made possible the development of a discharge-measurement system capable of more accurately measuring unsteady or tidally affected flow. In most cases, an ADCP discharge-measurement system is dramatically faster than conventional discharge-measurement systems, and has comparable or better accuracy. In many cases, an ADCP discharge-measurement system is the only choice for use at a particular measurement site. ADCP systems are not yet ?turnkey;? they are still under development, and for proper operation, require a significant amount of operator training. Not only must the operator have a rudimentary knowledge of acoustic physics, but also a working knowledge of ADCP operation, the manufacturer's discharge-measurement software, and boating techniques and safety.

  15. Predicting the physical effects of relocating Boston's sewage outfall

    USGS Publications Warehouse

    Signell, R.P.; Jenter, H.L.; Blumberg, A.F.

    2000-01-01

    Boston is scheduled to cease discharge of sewage effluent in Boston Harbor in Spring 2000 and begin discharge at a site 14 km offshore in Massachusetts Bay in a water depth of about 30 m. The effects of this outfall relocation on effluent dilution, salinity and circulation are predicted with a three-dimensional hydrodynamic model. The simulations predict that the new bay outfall will greatly decrease effluent concentrations in Boston Harbor (relative to the harbour outfall) and will not significantly change mean effluent concentrations over most of Massachusetts Bay. With the harbour outfall, previous observations and these simulations show that effluent concentrations exceed 0??5% throughout the harbour, with a harbour wide average of 1-2%. With the bay outfall, effluent concentrations exceed 0??5% only within a few km of the new outfall, and harbour concentrations drop to 0??1-0??2%, a 10-fold reduction. During unstratified winter conditions, the local increase in effluent concentration at the bay outfall site is predicted to exist throughout the water column. During stratified summer conditions, however, effluent released at the sea bed rises and is trapped beneath the pycnocline. The local increase in effluent concentration is limited to the lower layer, and as a result, surface layer effluent concentrations in the vicinity of the new outfall site are predicted to decrease (relative to the harbour outfall) during the summer. Slight changes are predicted for the salinity and circulation fields. Removing the fresh water associated with the effluent discharge in Boston Harbor is predicted to increase the mean salinity of the harbour by 0??5 and decrease the mean salinity by 0??10-0??15 within 2-3 km of the outfall. Relative to the existing mean flow, the buoyant discharge at the new outfall is predicted to generate density-driven mean currents of 2-4 cm s-1 that spiral out in a clockwise motion at the surface during winter and at the pycnocline (15-20 m depth) during summer. Compensating counterclockwise currents are predicted to spiral in toward the source at the bottom. Because the scale of the residual current structure induced by the new discharge is comparable to or smaller than typical subtidal water parcel excursions, Lagrangian trajectories will not follow the Eulerian residual flow. Thus, mean currents measured from moorings within 5 km of the bay outfall site will be more useful for model comparison than to indicate net transport pathways.

  16. Near-bottom energy cascade from subinertial flows to ocean mixing in the northeastern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, Z.; Zhao, Y.; Wang, W.; Li, J.; Xu, J.

    2013-12-01

    The motions with different scales in the bottom boundary layer are potentially important in controlling the water mass transportation. Many physical processes are involved in transferring energy from mesoscale to small-scale motions. Recent studies suggest that subinertial flows should be taken into account in the parameterization of deep-ocean mixing besides topography and tidal forcing. Here, we present the current velocity data obtained from 2 moored downward-looking ADCPs (Acoustic Doppler Current Profiler) and 1 RCM (Recording Current Meter) moored near the bottom boundary layer at a water depth of about 2000 m in the northeastern South China Sea from 2012 to 2013. Specifically, they include an ADCP 1200 kHz deployed at 30 m, an ADCP 300 kHz deployed at 110 m, and a RCM deployed at 40 m above the seafloor. Subinertial flows were calculated from the moored current velocity data by low-pass filtering with a cutoff frequency of 0.3 cycles per day (the local inertial period is about 35 hours). The horizontal subinertial flows were quite strong with average values of 2-5 cm/s. The strong downward vertical velocity with average values of 1-2 cm/s was observed during times of weak subinertial flows. The vertical propagation during both the times of weak and strong subinertial flows can also be shown by vector spectra of horizontal near-inertial current velocity. Turbulent kinetic energy production rate estimated indirectly with the variances of ADCP velocities will be compared with the subinertial kinetic energy to detect the processes of energy cascade from mesoscale motions to small-scale oscillations. The results presented in this study can provide an observational evidence for such energy cascade near the bottom boundary layer in the deep South China Sea.

  17. 3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River

    USGS Publications Warehouse

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.

  18. Anatomy of a turbidity current: Concentration and grain size structure of a deep-sea flow revealed by multiple-frequency acoustic profilers

    NASA Astrophysics Data System (ADS)

    Simmons, S.; Parsons, D. R.; Paull, C. K.; Barry, J.; Chaffey, M. R.; Gwiazda, R.; O'Reilly, T. C.; Maier, K. L.; Rosenberger, K. J.; Talling, P.; Xu, J.

    2017-12-01

    Turbidity currents are responsible for transporting large volumes of sediment to the deep ocean, yet remain poorly understood due to the limited number of field observations of these episodic, high energy events. As part of the Monterey Coordinated Canyon Experiment high resolution, sub-minute acoustic velocity and backscatter profiles were acquired with downward-looking acoustic Doppler current profilers (ADCPs) distributed along the canyon on moorings at depths ranging from 270 to 1,900 m over a period of 18 months. Additionally, three upward-looking ADCPs on different frequencies (300, 600 and 1200 kHz) profiled the water column above a seafloor instrument node (SIN) at 1850 m water depth. Traps on the moorings collected sediment carried by the flows at different heights above the seafloor and sediment cores were taken to determine the depositional record produced by the flows. Several sediment-laden turbidity flows were observed during the experiment, three of which ran out for more than 50 km to water depths of greater than 1,900 m and were observed on all of the moorings. Flow speeds of up to 6 m/s were observed and individual moorings, anchored by railroad wheels, moved up to 7.8 km down-canyon during these powerful events. We present results based on a novel analysis of the multiple-frequency acoustic data acquired by the ADCPs at the SIN integrated with grain size data from the sediment traps, close to the deepest mooring in the array where the flow thickened to the 70 m height of the ADCP above the bed. The analysis allows, for the first time, retrieval of the suspended sediment concentration and vertical distribution of grain size structure within a turbidity in spectacular detail. The details of the stratification and flow dynamics will be used to re-evaluate and discuss our existing models for these deep-sea flows.

  19. Outfall siting with dye-buoy remote sensing of coastal circulation

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Welch, C. S.; Gordon, H. H.

    1978-01-01

    A dye-buoy remote sensing technique has been applied to estuarine siting problems that involve fine-scale circulation. Small hard cakes of sodium fluorescein and polyvinyl alcohol, in anchored buoys and low-windage current followers, dissolve to produce dye marks resolvable in 1:60,000 scale color and color infrared imagery. Lagrangian current vectors are determined from sequential photo coverage. Careful buoy placement reveals surface currents and submergence near fronts and convergence zones. The technique has been used in siting two sewage outfalls in Hampton Roads, Virginia: In case one, the outfall region during flood tide gathered floating materials in a convergence zone, which then acted as a secondary source during ebb; for better dispersion during ebb, the proposed outfall site was moved further offshore. In case two, flow during late flood was found to divide, with one half passing over shellfish beds; the proposed outfall site was consequently moved to keep effluent in the other half.

  20. Measuring gravity currents in the Chicago River, Chicago, Illinois

    USGS Publications Warehouse

    Oberg, K.A.; Czuba, J.A.; Johnson, K.K.

    2008-01-01

    Recent studies of the Chicago River have determined that gravity currents are responsible for persistent bidirectional flows that have been observed in the river. A gravity current is the flow of one fluid within another caused by a density difference between the fluids. These studies demonstrated how acoustic Doppler current profilers (ADCP) can be used to detect and characterize gravity currents in the field. In order to better understand the formation and evolution of these gravity currents, the U.S. Geological Survey (USGS) has installed ADCPs and other instruments to continuously measure gravity currents in the Chicago River and the North Branch Chicago River. These instruments include stage sensors, thermistor strings, and both upward-looking and horizontal ADCPs. Data loggers and computers installed at gaging stations along the river are used to collect data from these instruments and transmit them to USGS offices. ?? 2008 IEEE.

  1. Observations of Inner Shelf Flows Influenced by a Small-Scale River Plume in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roth, M.; MacMahan, J.; Reniers, A.; Ozgokmen, T. M.

    2016-02-01

    Recent work has demonstrated that wind and waves are important forcing mechanisms for the inner shelf vertical current structure. Here, the inner shelf flows are evaluated away from an adjacent inlet where a small-scale buoyant plume emerges. The plume's nearshore extent, speed, vertical thickness, and density are controlled by the passage of low-pressure extratropical cyclones that are common in the northern Gulf of Mexico. The colder, brackish plume water provides vertical stratification and a cross-shore density gradient with the warmer, saline oceanic water. An Acoustic Doppler Current Profiler (ADCP) was deployed in 10m water depth as part of an intensive 2-week experiment (SCOPE), which also obtained wind and cross-shelf temperature, salinity, and velocity. The 10m ADCP remained collecting an additional year of velocity observations. The plume was not always present, but episodically influenced the experiment site. When the plume reached the site, the alongshore surface and subsurface typically flowed in opposite directions, likely caused by plume-induced pressure gradients. Plumes that extended into the subsurface appear to have caused depth-averaged onshore flow above that expected from wind and wave-driven forcing. Observations from SCOPE and the 1-year ADCP are used to describe seasonal full-depth flow patterns influenced by wind, waves, and plume presence.

  2. Recent applications of acoustic Doppler current profilers

    USGS Publications Warehouse

    Oberg, K.A.; Mueller, David S.

    1994-01-01

    A Broadband acoustic Doppler current profiler (BB-ADCP) is a new instrument being used by the U.S. Geological Survey (USGS) to measure stream discharge and velocities, and bathymetry. During the 1993 Mississippi River flood, more than 160 high-flow BB-ADCP measurements were made by the USGS at eight locations between Quincy and Cairo, Ill., from July 19 to August 20, 1993. A maximum discharge of 31,400 m3/s was measured at St. Louis, Mo., on August 2, 1993. A BB-ADCP also has been used to measure leakage through three control structures near Chicago, Ill. These measurements are unusual in that the average velocity for the measured section was as low as 0.03 m/s. BB-ADCP's are also used in support of studies of scour at bridges. During the recent Mississippi River flood, BB-ADCP's were used to measure water velocities and bathymetry upstream from, next to, and downstream from bridge piers at several bridges over the Mississippi River. Bathymetry data were collected by merging location data from Global Positioning System (GPS) receivers, laser tracking systems, and depths measured by the BB-ADCP. These techniques for collecting bathymetry data were used for documenting the channel formation downstream from the Miller City levee break and scour near two bridges on the Mississippi River.

  3. Comparison of spatio-temporal resolution of different flow measurement techniques for marine renewable energy applications

    NASA Astrophysics Data System (ADS)

    Lyon, Vincent; Wosnik, Martin

    2013-11-01

    Marine hydrokinetic (MHK) energy conversion devices are subject to a wide range of turbulent scales, either due to upstream bathymetry, obstacles and waves, or from wakes of upstream devices in array configurations. The commonly used, robust Acoustic Doppler Current Profilers (ADCP) are well suited for long term flow measurements in the marine environment, but are limited to low sampling rates due to their operational principle. The resulting temporal and spatial resolution is insufficient to measure all turbulence scales of interest to the device, e.g., ``blade-scale turbulence.'' The present study systematically characterizes the spatial and temporal resolution of ADCP, Acoustic Doppler Velocimetry (ADV), and Particle Image Velocimetry (PIV). Measurements were conducted in a large cross section tow tank (3.7m × 2.4m) for several benchmark cases, including low and high turbulence intensity uniform flow as well as in the wake of a cylinder, to quantitatively investigate the flow scales which each of the instruments can resolve. The purpose of the study is to supply data for mathematical modeling to improve predictions from ADCP measurements, which can help lead to higher-fidelity energy resource assessment and more accurate device evaluation, including wake measurements. Supported by NSF-CBET grant 1150797.

  4. Measuring discharge with ADCPs: Inferences from synthetic velocity profiles

    USGS Publications Warehouse

    Rehmann, C.R.; Mueller, D.S.; Oberg, K.A.

    2009-01-01

    Synthetic velocity profiles are used to determine guidelines for sampling discharge with acoustic Doppler current profilers (ADCPs). The analysis allows the effects of instrument characteristics, sampling parameters, and properties of the flow to be studied systematically. For mid-section measurements, the averaging time required for a single profile measurement always exceeded the 40 s usually recommended for velocity measurements, and it increased with increasing sample interval and increasing time scale of the large eddies. Similarly, simulations of transect measurements show that discharge error decreases as the number of large eddies sampled increases. The simulations allow sampling criteria that account for the physics of the flow to be developed. ?? 2009 ASCE.

  5. Evaluating the effect of river restoration techniques on reducing the impacts of outfall on water quality

    NASA Astrophysics Data System (ADS)

    Mant, Jenny; Janes, Victoria; Terrell, Robert; Allen, Deonie; Arthur, Scott; Yeakley, Alan; Morse, Jennifer; Holman, Ian

    2015-04-01

    Outfalls represent points of discharge to a river and often contain pollutants from urban runoff, such as heavy metals. Additionally, erosion around the outfall site results in increased sediment generation and the release of associated pollutants. Water quality impacts from heavy metals pose risks to the river ecosystem (e.g. toxicity to aquatic habitats). Restoration techniques including establishment of swales, and the re-vegetation and reinforcement of channel banks aim to decrease outfall flow velocities resulting in deposition of pollutants and removal through plant uptake. Within this study the benefits of river restoration techniques for the removal of contaminants associated with outfalls have been quantified within Johnson Creek, Portland, USA as part of the EPSRC funded Blue-Green Cities project. The project aims to develop new strategies for protecting hydrological and ecological values of urban landscapes. A range of outfalls have been selected which span restored and un-restored channel reaches, a variety of upstream land-uses, and both direct and set-back outfalls. River Habitat Surveys were conducted at each of the sites to assess the level of channel modification within the reach. Sediment samples were taken at the outfall location, upstream, and downstream of outfalls for analysis of metals including Nickel, Lead, Zinc, Copper, Iron and Magnesium. These were used to assess the impact of the level of modification at individual sites, and to compare the influence of direct and set-back outfalls. Concentrations of all metals in the sediments found at outfalls generally increased with the level of modification at the site. Sediment in restored sites had lower metal concentrations both at the outfall and downstream compared to unrestored sites, indicating the benefit of these techniques to facilitate the effective removal of pollutants by trapping of sediment and uptake of contaminants by vegetation. However, the impact of restoration measures varied between metal types. Restored sites also showed lower variability in metal concentrations than un-restored sites, which is linked to greater bank stability and hence lower bank erosion rates within restored sites as eroding banks were noted to be a source of metal contaminants. The success of pollutant removal by set-back outfalls was varied due to additional factors including the distance between the set-back outfall and the main channel, vegetation type, density and age. The study highlights the ability of restoration techniques to reduce metal contaminant concentrations at outfalls, and provides an indication of the potential benefits from wider application of similar techniques.

  6. High resolution mapping of riffle-pool dynamics based on ADCP and close-range remote sensing data

    NASA Astrophysics Data System (ADS)

    Salmela, Jouni; Kasvi, Elina; Alho, Petteri

    2017-04-01

    Present development of mobile laser scanning (MLS) and close-range photogrammetry with unmanned aerial vehicle (UAV) enable us to create seamless digital elevation models (DEMs) of the riverine environment. Remote-controlled flow measurement platforms have also improved spatio-temporal resolution of the flow field data. In this study, acoustic Doppler current profiler (ADCP) attached to remote-controlled mini-boat, UAV-based bathymetry and MLS techniques were utilized to create the high-resolution DEMs of the river channel. These high-resolution measurements can be used in many fluvial applications such as computational fluid dynamics, channel change detection, habitat mapping or hydro-electric power plant planning. In this study we aim: 1) to analyze morphological changes of river channel especially riffle and pool formations based on fine-scale DEMs and ADCP measurements, 2) to analyze flow fields and their effect on morphological changes. The interest was mainly focused on reach-scale riffle-pool dynamics within two-year period of 2013 and 2014. The study was performed in sub-arctic meandering Pulmankijoki River located in Northern Finland. The river itself has shallow and clear water and sandy bed sediment. Discharge remains typically below 10 m3s-1 most of the year but during snow melt period in spring the discharge may exceed 70 m3s-1. We compared DEMs and ADCP measurements to understand both magnitude and spatio-temporal change of the river bed. Models were accurate enough to study bed form changes and locations and persistence of riffles and pools. We analyzed their locations with relation to flow during the peak and low discharge. Our demonstrated method has improved significantly spatio-temporal resolution of riverine DEMs compared to other cross-sectional and photogrammetry based models. Together with flow field measurements we gained better understanding of riverbed-water interaction

  7. Use of acoustic technology to define hydraulic characteristics of an estuary near the Mississippi Gulf Coast

    USGS Publications Warehouse

    Van Wilson, K.

    2004-01-01

    An Acoustic Doppler Current Profiler (ADCP) was used on the Jourdan River at Interstate Highway 10 near Kiln, Mississippi, in 1996 to measure three-dimensional velocity vectors and water depths and in 1998, in combination with a global positioning system, to define channel bathymetry in the vicinity of the bridge. During a 25-hour period on September 19-20, 1996, 117 consecutive measurements of stage and discharge were obtained throughout a complete tidal cycle. These measurements were obtained during the time of year when headwater flows were minimal, and, therefore, the tidal-affected flow conditions were noticeable. The stage ranged from only 0.7 to 2.8 ft above sea level, but discharge ranged from 3,980 ft3/s flowing upstream to 5,580 ft 3/s flowing downstream. The average discharge during the 25-hour period was only 80 ft3/s flowing downstream. By using the ADCP, full downstream flow, bi-directional flow, and full upstream flow conditions were identified. If conventional measurement techniques had been used, the bi-directional flow conditions could not have been detected since flow direction would have been based on what was seen at the water surface. These measurements were used to define the lower range of the stage-storage-volume relation inland of the highway. On June 10, 1998, the ADCP, in combination with a global positional system, was used to define channel bathymetry for the river reach from about 3,500 ft upstream to about 2,500 ft downstream of the bridge. The bathymetry was compared to past soundings obtained in the vicinity of the bridge; as much as 18 ft of total scour was indicated to have occurred at a bridge pier. Copyright ASCE 2004.

  8. Remote measurement of surface-water velocity using infrared videography and PIV: a proof-of-concept for Alaskan rivers

    USGS Publications Warehouse

    Kinzel, Paul J.; Legleiter, Carl; Nelson, Jonathan M.; Conaway, Jeffrey S.

    2017-01-01

    Thermal cameras with high sensitivity to medium and long wavelengths can resolve features at the surface of flowing water arising from turbulent mixing. Images acquired by these cameras can be processed with particle image velocimetry (PIV) to compute surface velocities based on the displacement of thermal features as they advect with the flow. We conducted a series of field measurements to test this methodology for remote sensing of surface velocities in rivers. We positioned an infrared video camera at multiple stations across bridges that spanned five rivers in Alaska. Simultaneous non-contact measurements of surface velocity were collected with a radar gun. In situ velocity profiles were collected with Acoustic Doppler Current Profilers (ADCP). Infrared image time series were collected at a frequency of 10Hz for a one-minute duration at a number of stations spaced across each bridge. Commercial PIV software used a cross-correlation algorithm to calculate pixel displacements between successive frames, which were then scaled to produce surface velocities. A blanking distance below the ADCP prevents a direct measurement of the surface velocity. However, we estimated surface velocity from the ADCP measurements using a program that normalizes each ADCP transect and combines those normalized transects to compute a mean measurement profile. The program can fit a power law to the profile and in so doing provides a velocity index, the ratio between the depth-averaged and surface velocity. For the rivers in this study, the velocity index ranged from 0.82 – 0.92. Average radar and extrapolated ADCP surface velocities were in good agreement with average infrared PIV calculations.

  9. Ocean outfalls as an alternative to minimizing risks to human and environmental health.

    PubMed

    Feitosa, Renato Castiglia

    2017-06-01

    Submarine outfalls are proposed as an efficient alternative for the final destination of wastewater in densely populated coastal areas, due to the high dispersal capacity and the clearance of organic matter in the marine environment, and because they require small areas for implementation. This paper evaluates the probability of unsuitable bathing conditions in coastal areas nearby to the Ipanema, Barra da Tijuca and Icaraí outfalls based on a computational methodology gathering hydrodynamic, pollutant transport, and bacterial decay modelling. The results show a strong influence of solar radiation and all factors that mitigate its levels in the marine environment on coliform concentration. The aforementioned outfalls do not pollute the coastal areas, and unsuitable bathing conditions are restricted to nearby effluent launching points. The pollution observed at the beaches indicates that the contamination occurs due to the polluted estuarine systems, rivers and canals that flow to the coast.

  10. Role of turbulence fluctuations on uncertainties of acoutic Doppler current profiler discharge measurements

    USGS Publications Warehouse

    Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin

    2012-01-01

    This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).

  11. Validation of exposure time for discharge measurements made with two bottom-tracking acoustic doppler current profilers

    USGS Publications Warehouse

    Czuba, J.A.; Oberg, K.

    2008-01-01

    Previous work by Oberg and Mueller of the U.S. Geological Survey in 2007 concluded that exposure time (total time spent sampling the flow) is a critical factor in reducing measurement uncertainty. In a subsequent paper, Oberg and Mueller validated these conclusions using one set of data to show that the effect of exposure time on the uncertainty of the measured discharge is independent of stream width, depth, and range of boat speeds. Analysis of eight StreamPro acoustic Doppler current profiler (ADCP) measurements indicate that they fall within and show a similar trend to the Rio Grande ADCP data previously reported. Four special validation measurements were made for the purpose of verifying the conclusions of Oberg and Mueller regarding exposure time for Rio Grande and StreamPro ADCPs. Analysis of these measurements confirms that exposure time is a critical factor in reducing measurement uncertainty and is independent of stream width, depth, and range of boat speeds. Furthermore, it appears that the relation between measured discharge uncertainty and exposure time is similar for both Rio Grande and StreamPro ADCPs. These results are applicable to ADCPs that make use of broadband technology using bottom-tracking to obtain the boat velocity. Based on this work, a minimum of two transects should be collected with an exposure time for all transects greater than or equal to 720 seconds in order to achieve an uncertainty of ??5 percent when using bottom-tracking ADCPs. ?? 2008 IEEE.

  12. Using a 1200 kHz workhorse ADCP with mode 12 to measure near bottom mean currents

    USGS Publications Warehouse

    Martini, M.; ,

    2003-01-01

    Using high frequency Acoustic Doppler Current (ADCP) profiling technology, it is possible to make high-resolution measurements of mean current profiles within a few meters of the seabed. In coastal applications, mean current speeds may be 10 cm/s or less, and oscillatory wave currents may exceed 100 cm/s during storm events. To resolve mean flows of 10 cm/s or less under these conditions, accuracies of 1 cm/s or better are desirable.

  13. Discharge estimation from H-ADCP measurements in a tidal river subject to sidewall effects and a mobile bed

    NASA Astrophysics Data System (ADS)

    Sassi, M. G.; Hoitink, A. J. F.; Vermeulen, B.; Hidayat, null

    2011-06-01

    Horizontal acoustic Doppler current profilers (H-ADCPs) can be employed to estimate river discharge based on water level measurements and flow velocity array data across a river transect. A new method is presented that accounts for the dip in velocity near the water surface, which is caused by sidewall effects that decrease with the width to depth ratio of a channel. A boundary layer model is introduced to convert single-depth velocity data from the H-ADCP to specific discharge. The parameters of the model include the local roughness length and a dip correction factor, which accounts for the sidewall effects. A regression model is employed to translate specific discharge to total discharge. The method was tested in the River Mahakam, representing a large river of complex bathymetry, where part of the flow is intrinsically three-dimensional and discharge rates exceed 8000 m3 s-1. Results from five moving boat ADCP campaigns covering separate semidiurnal tidal cycles are presented, three of which are used for calibration purposes, whereas the remaining two served for validation of the method. The dip correction factor showed a significant correlation with distance to the wall and bears a strong relation to secondary currents. The sidewall effects appeared to remain relatively constant throughout the tidal cycles under study. Bed roughness length is estimated at periods of maximum velocity, showing more variation at subtidal than at intratidal time scales. Intratidal variations were particularly obvious during bidirectional flow conditions, which occurred only during conditions of low river discharge. The new method was shown to outperform the widely used index velocity method by systematically reducing the relative error in the discharge estimates.

  14. Application of acoustic doppler current profilers for measuring three-dimensional flow fields and as a surrogate measurement of bedload transport

    USGS Publications Warehouse

    Conaway, Jeffrey S.

    2005-01-01

    Acoustic Doppler current profilers (ADCPs) have been in use in the riverine environment for nearly 20 years. Their application primarily has been focused on the measurement of streamflow discharge. ADCPs emit high-frequency sound pulses and receive reflected sound echoes from sediment particles in the water column. The Doppler shift between transmitted and return signals is resolved into a velocity component that is measured in three dimensions by simultaneously transmitting four independent acoustical pulses. To measure the absolute velocity magnitude and direction in the water column, the velocity magnitude and direction of the instrument must also be computed. Typically this is accomplished by ensonifying the streambed with an acoustical pulse that also provides a depth measurement for each of the four acoustic beams. Sediment transport on or near the streambed will bias these measurements and requires external positioning such as a differentially corrected Global Positioning Systems (GPS). Although the influence of hydraulic structures such as spur dikes and bridge piers is typically only measured and described in one or two dimensions, the use of differentially corrected GPS with ADCPs provides a fully three-dimensional measurement of the magnitude and direction of the water column at such structures. The measurement of these flow disturbances in a field setting also captures the natural pulsations of river flow that cannot be easily quantified or modeled by numerical simulations or flumes. Several examples of measured three-dimensional flow conditions at bridge sites throughout Alaska are presented. The bias introduced to the bottom-track measurement is being investigated as a surrogate measurement of bedload transport. By fixing the position of the ADCP for a known period of time the apparent velocity of the streambed at that position can be determined. Initial results and comparison to traditionally measured bedload values are presented. These initial results and those by other researchers are helping to determine a direction for further research of noncontact measurements of sediment transport. Copyright ASCE 2005.

  15. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 2. Toxicity of aircraft and runway deicers.

    PubMed

    Corsi, S R; Hall, D W; Geis, S W

    2001-07-01

    Streams receiving runoff from General Mitchell International Airport (GMIA), Milwaukee, Wisconsin, USA, were studied to assess toxic impacts of aircraft and runway deicers. Elevated levels of constituents related to deicing (propylene glycol, ethylene glycol, and ammonia) were observed in stream samples. The LC50s of type I deicer for Ceriodaphnia dubia, Pimephelas promelas, Hyalela azteca, and Chironimus tentans and the EC50 for Microtox were less than 5,000 mg/L of propylene glycol. Concentrations up to 39,000 mg/L were observed at airport outfall sites in samples collected during deicing events. The IC25s of type I deicer for C. dubia and P. promelas were less than 1,500 mg/L of propylene glycol. Concentrations up to 960 mg/L were observed in low-flow samples at an airport outfall site. Measured toxicity of stream water was greatest during winter storms when deicers were applied. Chronic toxicity was observed at airport outfall samples from low-flow periods in the winter and the summer, with the greater toxic impacts from the winter sample. All forms of toxicity in stream-water samples decreased as downstream flows increased.

  16. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 2. Toxicity of aircraft and runway deicer

    USGS Publications Warehouse

    Corsi, Steven; Hall, David W.; Geis, Steven W.

    2001-01-01

    Streams receiving runoff from General Mitchell International Airport (GMIA), Milwaukee, Wisconsin, USA, were studied to assess toxic impacts of aircraft and runway deicers. Elevated levels of constituents related to deicing (propylene glycol, ethylene glycol, and ammonia) were observed in stream samples. The LC50s of type I deicer for Ceriodaphnia dubia, Pimephelas promelas, Hyalela azteca, and Chironimus tentans and the EC50 for Microtox® were less than 5,000 mg/L of propylene glycol. Concentrations up to 39,000 mg/L were observed at airport outfall sites in samples collected during deicing events. The IC25s of type I deicer for C. dubia and P. promelas were less than 1,500 mg/L of propylene glycol. Concentrations up to 960 mg/L were observed in low-flow samples at an airport outfall site. Measured toxicity of stream water was greatest during winter storms when deicers were applied. Chronic toxicity was observed at airport outfall samples from low-flow periods in the winter and the summer, with the greater toxic impacts from the winter sample. All forms of toxicity in stream-water samples decreased as downstream flows increased.

  17. Comparison of index velocity measurements made with a horizontal acoustic Doppler current profiler

    USGS Publications Warehouse

    Jackson, P. Ryan; Johnson, Kevin K.; Duncker, James J.

    2012-01-01

    The State of Illinois' annual withdrawal from Lake Michigan is limited by a U.S. Supreme Court decree, and the U.S. Geological Survey (USGS) is responsible for monitoring flows in the Chicago Sanitary and Ship Canal (CSSC) near Lemont, Illinois as a part of the Lake Michigan Diversion Accounting overseen by the U.S. Army Corps of Engineers, Chicago District. Every 5 years, a technical review committee consisting of practicing engineers and academics is convened to review the U.S. Geological Survey's streamgage practices in the CSSC near Lemont, Illinois. The sixth technical review committee raised a number of questions concerning the flows and streamgage practices in the CSSC near Lemont and this report provides answers to many of those questions. In addition, it is the purpose of this report to examine the index velocity meters in use at Lemont and determine whether the acoustic velocity meter (AVM), which is now the primary index velocity meter, can be replaced by the horizontal acoustic Doppler current profiler (H-ADCP), which is currently the backup meter. Application of the AVM and H-ADCP to index velocity measurements in the CSSC near Lemont, Illinois, has produced good ratings to date. The site is well suited to index velocity measurements in spite of the large range of velocities and highly unsteady flows at the site. Flow variability arises from a range of sources: operation of the waterway through control structures, lockage-generated disturbances, commercial and recreational traffic, industrial withdrawals and discharges, natural inflows, seiches, and storm events. The influences of these factors on the index velocity measurements at Lemont is examined in detail in this report. Results of detailed data comparisons and flow analyses show that use of bank-mounted instrumentation such as the AVM and H-ADCP appears to be the best option for index velocity measurement in the CSSC near Lemont. Comparison of the rating curves for the AVM and H-ADCP demonstrates that the H-ADCP is a suitable replacement for the AVM as the primary index velocity meter in the CSSC near Lemont. A key component to Lake Michigan Diversion Accounting is the USGS gaging station on the CSSC near Lemont, Illinois. The importance of this gaging station in monitoring withdrawals from Lake Michigan has made it one of the most highly scrutinized gaging stations in the country. Any changes in streamgaging practices at this gaging station requires detailed analysis to ensure the change will not adversely affect the ability of the USGS to accurately monitor flows. This report provides a detailed analysis of the flow structure and index velocity measurements in the CSSC near Lemont, Illinois, to ensure that decisions regarding the future of this streamgage are made with the best possible understanding of the site and the characteristics of the flow.

  18. Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah

    USGS Publications Warehouse

    Magirl, Christopher S.; Gartner, Jeffrey W.; Smart, Graeme M.; Webb, Robert H.

    2009-01-01

    Rapids are an integral part of bedrock‐controlled rivers, influencing aquatic ecology, geomorphology, and recreational value. Flow measurements in rapids and high‐gradient rivers are uncommon because of technical difficulties associated with positioning and operating sufficiently robust instruments. In the current study, detailed velocity, water surface, and bathymetric data were collected within rapids on the Colorado River in eastern Utah. With the water surface survey, it was found that shoreline‐based water surface surveys may misrepresent the water surface slope along the centerline of a rapid. Flow velocities were measured with an ADCP and an electronic pitot‐static tube. Integrating multiple measurements, the ADCP returned velocity data from the entire water column, even in sections of high water velocity. The maximum mean velocity measured with the ADCP was 3.7 m/s. The pitot‐static tube, while capable of only point measurements, quantified velocity 0.39 m below the surface. The maximum mean velocity measured with the pitot tube was 5.2 m/s, with instantaneous velocities up to 6.5 m/s. Analysis of the data showed that flow was subcritical throughout all measured rapids with a maximum measured Froude number of 0.7 in the largest measured rapids. Froude numbers were highest at the entrance of a given rapid, then decreased below the first breaking waves. In the absence of detailed bathymetric and velocity data, the Froude number in the fastest‐flowing section of a rapid was estimated from near‐surface velocity and depth soundings alone.

  19. Monitoring of well-controlled turbidity currents using the latest technology and a dredger

    NASA Astrophysics Data System (ADS)

    Vellinga, A. J.; Cartigny, M.; Clare, M. A.; Mastbergen, D. R.; Van den Ham, G.; Koelewijn, A. R.; de Kleine, M.; Hizzett, J. L.; Azpiroz, M.; Simmons, S.; Parsons, D. R.

    2017-12-01

    Recent advances in technology enable monitoring of turbidity currents at field scale. This now allows us to test models developed at small-scale in the laboratory. However, interpretation of field measurements is complicated, as the instruments used are not bespoke for monitoring turbidity currents. For example, Acoustic Doppler Current Profiles (ADCPs) are developed to measure clear water flows, and 3D multimode multibeam echosounders (M3s) are made to find shoals of fish. Calibration of field-scale measurements is complicated, as we often do not know fundamental information about the measured flows, such as grain size and initial sediment volume. We present field-scale measurements of two turbidity currents for which the pre- and post-flow bathymetry, grain size and initial sediment volume is known precisely. A dredger created two turbidity currents by twice discharging 500m3 of sediment on a slope in the Western Scheldt Estuary, the Netherlands. Flow velocity and echo intensity were directly measured using three frequencies of ADCPs, and two M3 sonars imaged the flow morphology in 3D. This experiment was part of the IJkdijk research program. The turbidity currents formed upstream-migrating crescentic shaped bedforms. The ADCPs measured peak flow velocities of 1-1.5 m/s. The M3s however suggest head velocities are 2-4 m/s. The two measured turbidity currents have thicknesses of about 3m, are up to 50m in width and travel downslope for about 150m. Flow dimensions, duration, and sediment discharge indicate a mean sediment concentration of 1-5 vol. %. Flow morphology evolves from a fast but thin, snout-like head, to a thicker body, and a dilute tail. The initial flow dynamics contrast with many laboratory experiments, but are coherent with direct measurements of much larger flows in the Congo Canyon. Well-constrained field studies, like this one, thus help to understand the validity of scaling from the laboratory to the deep sea.

  20. Suspended sediment dynamics in a large-scale turbidity current: Direct measurements from the deep-water Congo Canyon

    NASA Astrophysics Data System (ADS)

    Simmons, S.; Azpiroz, M.; Cartigny, M.; Clare, M. A.; Parsons, D. R.; Sumner, E.; Talling, P. J.

    2016-12-01

    Turbidity currents that transport sediment to the deep ocean deposit a greater volume of sediment than any other process on Earth. To date, only a handful of studies have directly measured turbidity currents, with flow durations ranging from a few minutes to a few hours. Our understanding of turbidity current dynamics is therefore largely derived from scaled laboratory experiments and numerical modelling. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements using acoustic Doppler current profilers (ADCPs) show that flows can last for many days, rather than hours as seen elsewhere, and provide the first quantification of concentration and grain size within deep-water turbidity currents.Velocity and backscatter were measured at 5 second intervals by an ADCP suspended 80 m above the canyon floor, at 2000 m water depth. A novel inversion method using multiple ADCP frequencies enabled quantification of sediment concentration and grain size within the flows. We identify high concentrations of coarse sediment within a thin frontal cell, which outruns a thicker, trailing body. Thus, the flows grow in length while propagating down-canyon. This is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended fine-grained sediment. The body mixes with the surrounding fluid leaving diffuse clouds of sediment that persist for days after initial entrainment. Ambient tidal flow also controls the mixing within the body and the surrounding fluid. Our results provide a new quantification of suspended sediment within flows and the interaction with the surrounding fluid.

  1. First steps in developing a multimetric macroinvertebrate index for the Ohio River

    USGS Publications Warehouse

    Applegate, J.M.; Baumann, P.C.; Emery, E.B.; Wooten, M.S.

    2007-01-01

    The causes of degradation of aquatic systems are often complex and stem from a variety of human influences. Comprehensive, multimetric biological indices have been developed to quantify this degradation and its effect on aquatic communities, and measure subsequent recovery from anthropogenic stressors. Traditionally, such indices have concentrated on small-to medium-sized streams. Recently, however, the Ohio River Fish Index (ORFIn) was created to assess biotic integrity in the Ohio River. The goal of the present project was to begin developing a companion Ohio River multimetric index using benthic macroinvertebrates. Hester-Dendy multiplate samplers were used to evaluate benthic macroinvertebrate assemblages in relation to a gradient of water quality disturbance, represented by varying distances downstream of industrial and municipal wastewater outfalls in the Ohio River. In August 1999 and 2000, samplers were set every 100 m downstream of outfalls (12 outfalls in 1999, 22 in 2000) for 300-1000 m, as well as at upstream reference sites. Candidate metrics (n = 55) were examined to determine which have potential to detect changes in water quality downstream of outfalls. These individual measures of community structure were plotted against distance downstream of each outfall to determine their response to water quality disturbance. Values at reference and outfall sites were also compared. Metrics that are ecologically relevant and showed a response to outfall disturbance were identified as potentially valuable in a multimetric index. Multiple box plots of index scores indicated greater response to outfall disturbance during periods of low-flow, and longitudinal river-wide trends. Evaluation of other types of anthropogenic disturbance, as well as continued analysis of the effects of chemical water quality on macroinvertebrate communities in future years will facilitate further development of a multimetric benthic macroinvertebrate index to evaluate biotic integrity in the Ohio River. Copyright ?? 2007 John Wiley & Sons, Ltd.

  2. ADCP measurements of gravity currents in the Chicago River, Illinois

    USGS Publications Warehouse

    Garcia, C.M.; Oberg, K.; Garcia, M.H.

    2007-01-01

    A unique set of observations of stratified flow phenomena in the Chicago River was made using an upward-looking acoustic Doppler current profiler (ADCP) during the period November 20, 2003 to February 1, 2004. Water density differences between the Chicago River and its North Branch (NB) seem to be responsible for the development of gravity currents. With the objective of characterizing the occurrence, frequency, and evolution of such currents, the ADCP was configured to continuously collect high-resolution water velocity and echo intensity profiles in the Chicago River at Columbus Drive. During the observation period, 28 gravity current events were identified, lasting a total of 77% of the time. Sixteen of these events were generated by underflows from the NB and 12 of these events were generated by overflows from the NB. On average, the duration of the underflow and overflow events was 52.3 and 42.1 h, respectively. A detailed analysis of one underflow event, which started on January 7, 2004, and lasted about 65h, was performed. This is the first time that ADCP technology has been used to continuously monitor gravity currents in a river. ?? 2007 ASCE.

  3. Quantification of non-stormwater flow entries into storm drains using a water balance approach.

    PubMed

    Xu, Zuxin; Yin, Hailong; Li, Huaizheng

    2014-07-15

    To make decisions about correcting illicit or inappropriate connections to storm drains, quantification of non-stormwater entries into storm drains was performed using a water flow balance approach, based on data analysis from 2008 to 2011 in a separate storm drainage system in a Shanghai downtown area of 374 ha. The study revealed severe sewage connections to storm drains; meanwhile, misconnections between surface water and storm drains were found to drive frequent non-stormwater pumping discharges at the outfall, producing a much larger volume of outfall flows in a short period. This paper presented a methodology to estimate quantities of inappropriate sewage flow, groundwater infiltration and river water backflow into the storm drains. It was concluded that inappropriate sewage discharge and groundwater seepage into storm drains were approximately 17,860 m(3)/d (i.e., up to 51% of the total sewage flow in the catchment) and 3,624 m(3)/d, respectively, and surface water backflow was up to an average 28,593 m(3)/d. On the basis of this work, end-of-storm pipe interceptor sewers of 0.25 m(3)/s (i.e., 21,600 m(3)/d) would be effective to tackle the problem of sewage connections and groundwater seepage to storm drains. Under this circumstance, the follow-up non-stormwater outfall pumping events indicate misconnections between surface water and storm drains, featuring pumping discharge equivalent to surface water backflow; hence the misconnections should be repaired. The information provided here is helpful in estimating the magnitude of non-stormwater flow entries into storm drains and designing the necessary pollution control activities, as well as combating city floods in storm events. Copyright © 2014. Published by Elsevier B.V.

  4. Morphodynamic change analysis of bedforms in the Lower Orinoco River, Venezuela

    NASA Astrophysics Data System (ADS)

    Yepez, Santiago Paul; Laraque, Alain; Gualtieri, Carlo; Christophoul, Frédéric; Marchan, Claudio; Castellanos, Bartolo; Azocar, Jose Manuel; Lopez, Jose Luis; Alfonso, Juan

    2018-04-01

    The Orinoco River has the third largest discharge in the world, with an annual mean flow of 37 600 m3 s-1 at its outlet to the Atlantic Ocean. Due to the presence of the Guiana Shield on the right bank, the lower reach of the Orinoco has a plan form characterized by contraction and expansion zones. Typical 1-1.5 km wide narrow reaches are followed by 7-8 km wide reaches. A complex pattern of bed aggradation and degradation processes takes place during the annual hydrological regime. A series of Acoustic Doppler Current Profiler (ADCP) transects were collected on an expansion channel in the Orinoco River, specifically over a fluvial island, representative of the lower Orinoco. In this study, temporal series of bathymetric cartography obtained by ADCP profiles combined with Differential Global Position System (DGPS) measurements (with dual-frequency), were used to recover the local displacement of bed forms in this island. The principal aims of this analysis were: (1) to understand the dynamics and evolution of sand waves and bars at this section and (2) to quantify the volume (erosion vs. accretion) of a mid-channel bar with dunes by applying DEM of Difference (DoD) maps on time series of bathymetric data. This required sampling with ADCP transects during the months of: May 2016; November 2016 and April 2017. Each bathymetric transect was measured twice, 1 day apart and on the same trajectory obtained by a GPS receptor. The spatial analysis of these ADCP transects is presented as a novel tool in the acquisition of time series of bathymetry for a relatively deep section ( ˜ 20 m) and under variable flow conditions.

  5. PILOT PEAT-BED TREATMENT SYSTEM FOR NPDES OUTFALL H-12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halverson, N; Ralph Nichols, R; Topher Berry, T

    2007-10-22

    A National Pollutant Discharge Elimination System (NPDES) Permit was issued to the Savannah River Site (SRS) by the South Carolina Department of Health and Environmental Control (SCDHEC) and became effective on December 1, 2003. The new permit contained revised limits for copper and zinc derived by adjusting the South Carolina aquatic life water quality standards in accordance with dissolved metals criteria. The new copper and zinc limits are very low and may not be met consistently at Outfall H-12. The outfall has periodically exceeded the new 6 {micro}g/l (0.006 mg/L) monthly average limit and the 8 {micro}g/l (0.008 mg/L) maximummore » limit for copper and recently has begun exceeding the 100 {micro}g/l (0.100 mg/L) limit for zinc. The compliance date for Outfall H-12 is November 1, 2008. A study was conducted on this outfall and other outfalls to evaluate possible alternatives for meeting the new permit limits (Shipman and Bugher 2004). The study team recommended construction of a peat bed for treatment of the Outfall H-12 effluent. This recommendation was repeated by a second alternatives study team in 2007 (WSRC 2007). A bench-scale laboratory study demonstrated the feasibility of peat-bed treatment for Outfall H-12 effluent, with the peat demonstrating excellent removal of copper (Nelson and Specht 2005). An additional study was performed in 2006 and early 2007 using vertical-flow peat columns to investigate the influence of water retention time (contact time) on the removal of copper and zinc from the water (Nelson 2007c). Analytical results indicated that copper removal was very high at each of the three retention times tested, ranging from 99.6% removal at five and three hours to 98.8% removal at one hour. Effluent copper levels from these studies were much lower than the new compliance limit for the outfall. Most divalent metals, including zinc, were removed to below their normal reporting detection limit. The H-Area Material Disposition organization requested a larger-scale study to investigate key design and operation parameters/issues, such as the possibility of rapid plugging of the piping or clogging of the peat bed, the effectiveness of the treatment, hydraulic conductivity, etc. The resulting pilot-scale facility was constructed adjacent to Outfall H-12 with SCDHEC approval (Mullinax 2007). The pilot-scale study was performed by the Savannah River National Laboratory's (SRNL) Environmental Science and Biotechnology Directorate personnel. Since the construction and operation of the pilot-scale peat bed facility, however, a new strategy for achieving compliance of Outfall H-12 effluent with the new permit limits has been selected. This new strategy incorporates a variety of efforts including source reduction, recalculation of limits using an aquatic species that is indigenous to the area instead of a standard species, and dissolved organic carbon addition to reduce copper toxicity. This report documents the construction and operation of the pilot-scale treatment system, the results obtained, and recommendations on the usefulness of this technology for Outfall H-12 or other outfalls at SRS.« less

  6. Characterizing Three-Dimensional Mixing Process in a River Confluence using Hydro-acoustical Backscatter and Flow Measurement

    NASA Astrophysics Data System (ADS)

    Son, Geunsoo; Kim, Dongsu; Kim, YoungDo; Lyu, Siwan; Kim, Seojun

    2017-04-01

    River confluences are zones where two rivers with different geomorphic and hydraulic characteristics amalgamate, resulting in rapid change in terms of flow regime, sediment entrainment and hydraulic geometry. In these confluence zones, the flow structure is basically complicated responded with concurrent mixing of physical and chemical aquatic properties, and continuous channel morphology could be changed due to erosion and sedimentation. In addition, the confluences are regions in which two rivers join and play an important role in river ecology. In order to characterize the mixing process of confluence for understanding the impacts of a river on the other river, therefore, it has been crucial to analyze the spatial mixing patterns for main streams depending on various inflow conditions of tributaries. However, most conventional studies have mostly relied upon hydraulic or water quality numerical models for understanding mixing pattern analysis of confluences, due to the difficulties to acquire a wide spatial range of in-situ data especially for characterizing this kind of mixing process. Even with intensive in-situ measurements, those researches tended to focus mainly on the hydraulic characteristics such as the flow and morphological complexity of confluence, so that very few studies comprehensively included sediment variation with flow at the same time. In this study, subsequently, flow and sediment mixing characteristics were concurrently investigated in the confluence between Nakdong and Nam river in South Korea, where it has been frequently questioned to determine how Nam river affects Nakdong river that recently have suffered various environmental problems such as green algae bloom and erosion/deposition in the confluence. We basically examined the mixing characteristics of confluence by using acoustic Doppler current profilers (ADCPs) which were used to measure hydraulic factors such as flow rate and depth, as well as measuring the suspended sediment concentration by using acoustic backscatter. Cross-sectional ADCP measurements in a confluence were collected with high spatial resolution in order to analyze the details of spatial distribution in the perspective of the three-dimensional mixing patterns of flow and sediment, where backscatters (or SNR) measured from ADCPs were used to track sediment mixing assuming that it could be a surrogate to estimate the suspended sediment concentration. Raw backscatter data were corrected by considering the beam spreading and absorption by water. Also, an optical Laser diffraction instrument (LISST) was used to verify the method of acoustic backscatter and to collect the particle size distribution of main stream and tributary. In addition, image-based spatial distributions of sediment mixture in the confluence were monitored in various flow conditions by using an unmanned aerial vehicle (UAV), which were compared with the spatial distribution of acoustic backscatter. As results, we found that when acoustic backscatter and flow measurements by ADCPs were well processed, they could be proper indicators to identify the spatial patterns of the three-dimensional mixing process between two rivers.

  7. Polychlorinated Biphenyls in suspended-sediment samples from outfalls to Meandering Road Creek at Air Force Plant 4, Fort Worth, Texas, 2003-08

    USGS Publications Warehouse

    Braun, Christopher L.; Wilson, Jennifer T.

    2010-01-01

    Meandering Road Creek is an intermittent stream and tributary to Lake Worth, a reservoir on the West Fork Trinity River on the western edge of Fort Worth, Texas. U.S. Air Force Plant 4 (AFP4) is on the eastern shore of Woods Inlet, an arm of Lake Worth. Meandering Road Creek gains inflow from several stormwater outfalls as it flows across AFP4. Several studies have characterized polychlorinated biphenyls (PCBs) in the water and sediments of Lake Worth and Meandering Road Creek; sources of PCBs are believed to originate primarily from AFP4. Two previous U.S. Geological Survey (USGS) reports documented elevated PCB concentrations in surficial sediment samples from Woods Inlet relative to concentrations in surficial sediment samples from other parts of Lake Worth. The second of these two previous reports also identified some of the sources of PCBs to Lake Worth. These reports were followed by a third USGS report that documented the extent of PCB contamination in Meandering Road Creek and Woods Inlet and identified runoff from outfalls 4 and 5 at AFP4 as prominent sources of these PCBs. This report describes the results of a fourth study by the USGS, in cooperation with the Lockheed Martin Corporation, to investigate PCBs in suspended-sediment samples in storm runoff from outfalls 4 and 5 at AFP4 following the implementation of engineering controls designed to potentially alleviate PCB contamination in the drainage areas of these outfalls. Suspended-sediment samples collected from outfalls 4 and 5 during storms on March 2 and November 10, 2008, were analyzed for selected PCBs. Sums of concentrations of 18 reported PCB congeners (Sigma PCBc) in suspended-sediment samples collected before and after implementation of engineering controls are compared. At both outfalls, the Sigma PCBc before engineering controls was higher than the Sigma PCBc after engineering controls. The Sigma PCBc in suspended-sediment samples collected at AFP4 before and after implementation of engineering controls also is compared to the threshold effect concentration (TEC), the concentration below which adverse effects to benthic biota rarely occur. Sigma PCBc exceeded the TEC for 75 percent of the samples collected at outfall 4 and 67 percent of the samples collected at outfall 5 before the implementation of engineering controls. Sigma PCBc did not exceed the TEC in samples collected at either outfall 4 or outfall 5 after the implementation of engineering controls. The relative prominence of 10 selected PCB congeners was evaluated by graphical analysis of ratios of individual concentrations of the 10 PCB congeners to the sum of these PCB congeners. An overall decrease in concentrations of PCB congeners at outfalls 4 and 5 after implementation of engineering controls, as well as a shift in prominence from lighter, less chlorinated congeners to a heavier, more chlorinated congener might have resulted from the implementation of engineering controls. Because of the small number of samples collected and lack of runoff and precipitation data to evaluate comparability of sampling conditions before and after implementation of engineering controls, all conclusions are preliminary.

  8. Direct sampling during multiple sediment density flows reveals dynamic sediment transport and depositional environment in Monterey submarine canyon

    NASA Astrophysics Data System (ADS)

    Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.

    2017-12-01

    Sediment density flows were directly sampled with a coupled sediment trap-ADCP-instrument mooring array to evaluate the character and frequency of turbidity current events through Monterey Canyon, offshore California. This novel experiment aimed to provide links between globally significant sediment density flow processes and their resulting deposits. Eight to ten Anderson sediment traps were repeatedly deployed at 10 to 300 meters above the seafloor on six moorings anchored at 290 to 1850 meters water depth in the Monterey Canyon axial channel during 6-month deployments (October 2015 - April 2017). Anderson sediment traps include a funnel and intervalometer (discs released at set time intervals) above a meter-long tube, which preserves fine-scale stratigraphy and chronology. Photographs, multi-sensor logs, CT scans, and grain size analyses reveal layers from multiple sediment density flow events that carried sediment ranging from fine sand to granules. More sediment accumulation from sediment density flows, and from between flows, occurred in the upper canyon ( 300 - 800 m water depth) compared to the lower canyon ( 1300 - 1850 m water depth). Sediment accumulated in the traps during sediment density flows is sandy and becomes finer down-canyon. In the lower canyon where sediment directly sampled from density flows are clearly distinguished within the trap tubes, sands have sharp basal contacts, normal grading, and muddy tops that exhibit late-stage pulses. In at least two of the sediment density flows, the simultaneous low velocity and high backscatter measured by the ADCPs suggest that the trap only captured the collapsing end of a sediment density flow event. In the upper canyon, accumulation between sediment density flow events is twice as fast compared to the lower canyon; it is characterized by sub-cm-scale layers in muddy sediment that appear to have accumulated with daily to sub-daily frequency, likely related to known internal tidal dynamics also measured in the experiment. The comprehensive scale of the Monterey Coordinated Canyon Experiment allows us to integrate sediment traps with ADCP instrument data and seafloor core samples, which provides important new data to constrain how, when, and what sediment is transported through submarine canyons and how this is archived in seafloor deposits.

  9. Temporal characteristics of coherent flow structures generated over alluvial sand dunes, Mississippi River, revealed by acoustic doppler current profiling and multibeam echo sounding

    USGS Publications Warehouse

    Czuba, John A.; Oberg, Kevin A.; Best, Jim L.; Parsons, Daniel R.; Simmons, S. M.; Johnson, K.K.; Malzone, C.

    2009-01-01

    This paper investigates the flow in the lee of a large sand dune located at the confluence of the Mississippi and Missouri Rivers, USA. Stationary profiles collected from an anchored boat using an acoustic Doppler current profiler (ADCP) were georeferenced with data from a real-time kinematic differential global positioning system. A multibeam echo sounder was used to map the bathymetry of the confluence and provided a morphological context for the ADCP measurements. The flow in the lee of a low-angle dune shows good correspondence with current conceptual models of flow over dunes. As expected, quadrant 2 events (upwellings of low-momentum fluid) are associated with high backscatter intensity. Turbulent events generated in the lower lee of a dune near the bed are associated with periods of vortex shedding and wake flapping. Remnant coherent structures that advect over the lower lee of the dune in the upper portion of the water column, have mostly dissipated and contribute little to turbulence intensities. The turbulent events that occupy most of the water column in the upper lee of the dune are associated with periods of wake flapping.

  10. Secondary flow structures in large rivers

    NASA Astrophysics Data System (ADS)

    Chauvet, H.; Devauchelle, O.; Metivier, F.; Limare, A.; Lajeunesse, E.

    2012-04-01

    Measuring the velocity field in large rivers remains a challenge, even with recent measurement techniques such as Acoustic Doppler Current Profiler (ADCP). Indeed, due to the diverging angle between its ultrasonic beams, an ADCP cannot detect small-scale flow structures. However, when the measurements are limited to a single location for a sufficient period of time, averaging can reveal large, stationary flow structures. Here we present velocity measurements in a straight reach of the Seine river in Paris, France, where the cross-section is close to rectangular. The transverse modulation of the streamwise velocity indicates secondary flow cells, which seem to occupy the entire width of the river. This observation is reminiscent of the longitudinal vortices observed in laboratory experiments (e.g. Blanckaert et al., Advances in Water Resources, 2010, 33, 1062-1074). Although the physical origin of these secondary structures remains unclear, their measured velocity is sufficient to significantly impact the distribution of streamwise momentum. We propose a model for the transverse profile of the depth-averaged velocity based on a crude representation of the longitudinal vortices, with a single free parameter. Preliminary results are in good agreement with field measurements. This model also provides an estimate for the bank shear stress, which controls bank erosion.

  11. The transverse dynamics of flow in a tidal channel within a greater strait

    NASA Astrophysics Data System (ADS)

    Khosravi, Maziar; Siadatmousavi, Seyed Mostafa; Vennell, Ross; Chegini, Vahid

    2018-02-01

    Vessel-mounted ADCP measurements were conducted to describe the transverse structure of flow between the two headland tips in Khuran Channel, south of Iran (26° 45' N), where the highest tidal velocities in spring tides were 1.8 m/s. Current profiles were obtained using a 614.4 kHz TRDI WorkHorse Broadband ADCP over nine repetitions of three cross-channel transects during one semidiurnal tidal cycle. The 2.2-km-long transects ran north/south across the channel. A least-square fit to semidiurnal, quarter-diurnal, and sixth diurnal harmonics was used to separate the tidal signals from the observed flow. Spatial gradients showed that the greatest lateral shears and convergences were found over the northern channel and near the northern headland tip due to very sharp bathymetric changes in this area. Contrary to the historical assumption, the across-channel momentum balance in the Khuran Channel was ageostrophic. The current study represents one of the few examples reported where the lateral friction influences the across-channel momentum balance.

  12. Consistent and efficient processing of ADCP streamflow measurements

    USGS Publications Warehouse

    Mueller, David S.; Constantinescu, George; Garcia, Marcelo H.; Hanes, Dan

    2016-01-01

    The use of Acoustic Doppler Current Profilers (ADCPs) from a moving boat is a commonly used method for measuring streamflow. Currently, the algorithms used to compute the average depth, compute edge discharge, identify invalid data, and estimate velocity and discharge for invalid data vary among manufacturers. These differences could result in different discharges being computed from identical data. Consistent computational algorithm, automated filtering, and quality assessment of ADCP streamflow measurements that are independent of the ADCP manufacturer are being developed in a software program that can process ADCP moving-boat discharge measurements independent of the ADCP used to collect the data.

  13. In Search of Easy-to-Use Methods for Calibrating ADCP's for Velocity and Discharge Measurements

    USGS Publications Warehouse

    Oberg, K.; ,

    2002-01-01

    A cost-effective procedure for calibrating acoustic Doppler current profilers (ADCP) in the field was presented. The advantages and disadvantages of various methods which are used for calibrating ADCP were discussed. The proposed method requires the use of differential global positioning system (DGPS) with sub-meter accuracy and standard software for collecting ADCP data. The method involves traversing a long (400-800 meter) course at a constant compass heading and speed, while collecting simultaneous DGPS and ADCP data.

  14. Southward flow on the western flank of the Florida Current

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander V.; Hirons, Amy; Maingot, Christopher; Dean, Cayla W.; Dodge, Richard E.; Yankovsky, Alexander E.; Wood, Jon; Weisberg, Robert H.; Luther, Mark E.; McCreary, Julian P.

    2017-07-01

    A suite of long-term in situ measurements in the Straits of Florida, including the ADCP bottom moorings at an 11-m isobath and 244-m isobath (Miami Terrace) and several ADCP ship transects, have revealed a remarkable feature of the ocean circulation - southward flow on the western, coastal flank of the Florida Current. We have observed three forms of the southward flow - a seasonally varying coastal countercurrent, an undercurrent jet attached to the Florida shelf, and an intermittent undercurrent on the Miami Terrace. According to a 13-year monthly climatology obtained from the near-shore mooring, the coastal countercurrent is a persistent feature from October through January. The southward flow in the form of an undercurrent jet attached to the continental slope was observed during five ship transects from April through September but was not observed during three transects in February, March, and November. This undercurrent jet is well mixed due to strong shear at its top associated with the northward direction of the surface flow (Florida Current) and friction at the bottom. At the same time, no statistically significant seasonal cycle has been observed in the undercurrent flow on the Miami Terrace. Theoretical considerations suggest that several processes could drive the southward current, including interaction between the Florida Current and the shelf, as well as forcing that is independent of the Florida Current. The exact nature of the southward flow on the western flank of the Florida Current is, however, unknown.

  15. Simulation of the cumulative hydrological response to green infrastructure

    NASA Astrophysics Data System (ADS)

    Avellaneda, P. M.; Jefferson, A. J.; Grieser, J. M.; Bush, S. A.

    2017-04-01

    In this study, we evaluated the cumulative hydrologic performance of green infrastructure in a residential area of the city of Parma, Ohio, draining to a tributary of the Cuyahoga River. Green infrastructure included the following spatially distributed devices: 16 street-side bioretention cells, 7 rain gardens, and 37 rain barrels. Data consisted of rainfall and outfall flow records for a wide range of storm events, including pretreatment and treatment periods. The Stormwater Management Model was calibrated and validated to predict the hydrologic response of green infrastructure. The calibrated model was used to quantify annual water budget alterations and discharge frequency over a 6 year simulation period. For the study catchment, we observed a treatment effect with increases of 1.4% in evaporation, 7.6% in infiltration, and a 9.0% reduction in surface runoff. The hydrologic performance of green infrastructure was evaluated by comparing the flow duration curve for pretreatment and treatment outfall flow scenarios. The flow duration curve shifted downward for the green infrastructure scenario. Discharges with a 0.5, 1, 2, and 5 year return period were reduced by an average of 29%. Parameter and predictive uncertainties were inspected by implementing a Bayesian statistical approach.

  16. The down canyon evolution of submarine sediment density flows

    NASA Astrophysics Data System (ADS)

    Parsons, D. R.; Barry, J.; Clare, M. A.; Cartigny, M.; Chaffey, M. R.; Gales, J. A.; Gwiazda, R.; Maier, K. L.; McGann, M.; Paull, C. K.; O'Reilly, T. C.; Rosenberger, K. J.; Simmons, S.; Sumner, E. J.; Talling, P.; Xu, J.

    2017-12-01

    Submarine density flows, known as turbidity currents, transfer globally significant volumes of terrestrial and shelf sediments, organic carbon, nutrients and fresher-water into the deep ocean. Understanding such flows has wide implications for global organic carbon cycling, the functioning of deep-sea ecosystems, seabed infrastructure hazard assessments, and interpreting geological archives of Earth history. Only river systems transport comparable volumes of sediment over such large areas of the globe. Despite their clear importance, there are remarkably few direct measurements of these oceanic turbidity currents in action. Here we present results from the multi-institution Coordinated Canyon Experiment (CCE) which deployed multiple moorings along the axis of Monterey Canyon (offshore California). An array of six moorings, with downward looking acoustic Doppler current profilers (ADCP) were positioned along the canyon axis from 290 m to 1850 m water depth. The ADCPs reveal the internal flow structure of submarine density flows at each site. We use a novel inversion method to reconstruct the suspended sediment concentration and flow stratification field during each event. Together the six moorings provide the first ever views of the internal structural evolution of turbidity current events as they evolve down system. Across the total 18-month period of deployment at least 15 submarine sediment density flows were measured with velocities up to 8.1 m/sec, with three of these flows extending 50 kms down the canyon beyond the 1850 m water depth mooring. We use these novel data to highlight the controls on ignition, interval structure and collapse of individual events and discuss the implications for the functioning and deposits produced by these enigmatic flows.

  17. Resource Evaluation and Energy Production Estimate for a Tidal Energy Conversion Installation using Acoustic Flow Measurements

    NASA Astrophysics Data System (ADS)

    Gagnon, Ian; Baldwin, Ken; Wosnik, Martin

    2015-11-01

    The ``Living Bridge'' project plans to install a tidal turbine at Memorial Bridge in the Piscataqua River at Portsmouth, NH. A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers ADCP. Two locations were evaluated: at the planned deployment location and mid-channel. The goal was to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Differences in the tidal characteristics between the two measurement locations are highlighted. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP ``bin'' vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. Supported by NSF-IIP grant 1430260.

  18. RESPONSE PATTERNS OF GREAT RIVER FISH ASSEMBLAGE METRICS TO OUTFALL EFFECTS FROM POINT SOURCE DISCHARGES

    EPA Science Inventory

    Human disturbance alters key attributes of aquatic ecosystems such as water quality, habitat structure, hydrological regime, energy flow, and biological interactions. In great rivers, this is particularly evident because they are disproportionately degraded by habitat alteration...

  19. Fish pass assessment by remote control: a novel framework for quantifying the hydraulics at fish pass entrances

    NASA Astrophysics Data System (ADS)

    Kriechbaumer, Thomas; Blackburn, Kim; Gill, Andrew; Breckon, Toby; Everard, Nick; Wright, Ros; Rivas Casado, Monica

    2014-05-01

    Fragmentation of aquatic habitats can lead to the extinction of migratory fish species with severe negative consequences at the ecosystem level and thus opposes the target of good ecological status of rivers defined in the EU Water Framework Directive (WFD). In the UK, the implementation of the EU WFD requires investments in fish pass facilities of estimated 532 million GBP (i.e. 639 million Euros) until 2027 to ensure fish passage at around 3,000 barriers considered critical. Hundreds of passes have been installed in the past. However, monitoring studies of fish passes around the world indicate that on average less than half of the fish attempting to pass such facilities are actually successful. There is a need for frameworks that allow the rapid identification of facilities that are biologically effective and those that require enhancement. Although there are many environmental characteristics that can affect fish passage success, past research suggests that variations in hydrodynamic conditions, reflected in water velocities, velocity gradients and turbulences, are the major cues that fish use to seek migration pathways in rivers. This paper presents the first steps taken in the development of a framework for the rapid field-based quantification of the hydraulic conditions downstream of fish passes and the assessment of the attractivity of fish passes for salmonids and coarse fish in UK rivers. For this purpose, a small-sized remote control platform carrying an acoustic Doppler current profiler (ADCP), a GPS unit, a stereo camera and an inertial measurement unit has been developed. The large amount of data on water velocities and depths measured by the ADCP within relatively short time is used to quantify the spatial and temporal distribution of water velocities. By matching these hydraulic features with known preferences of migratory fish, it is attempted to identify likely migration routes and aggregation areas at barriers as well as hydraulic features that may distract fish away from fish pass entrances. The initial steps of the framework development have focused on the challenge of precise spatial data referencing in areas with limited sky view to navigation satellites. Platform tracking with a motorised Total Station, various satellite-based positioning solutions and simultaneous localisation and mapping (SLAM) based on stereo images have been tested. The effect of errors in spatial data referencing on ADCP-derived maps of flow features and bathymetry will be quantified through simultaneous deployment of these navigation technologies and the ADCP. This will inform the selection of a cost-effective platform positioning system in practice. Further steps will cover the quantification of uncertainties in ADCP data caused by highly turbulent flows and the identification of suitable ADCP data sampling strategies at fish passes. The final framework for fish pass assessment can contribute to an improved understanding of the interaction of fish and the complex hydraulic river environment.

  20. Flow Structure and Channel Morphology at a Confluent-Meander Bend

    NASA Astrophysics Data System (ADS)

    Riley, J. D.; Rhoads, B. L.

    2009-12-01

    Flow structure and channel morphology in meander bends have been well documented. Channel curvature subjects flow through a bend to centrifugal acceleration, inducing a counterbalancing pressure-gradient force that initiates secondary circulation. Transverse variations in boundary shear stress and bedload transport parallel cross-stream movement of high velocity flow and determine spatial patterns of erosion along the outer bank and deposition along the inner bank. Laboratory experiments and numerical modeling of confluent-meander bends, a junction planform that develops when a tributary joins a meandering river along the outer bank of a bend, suggest that flow and channel morphology in such bends deviate from typical patterns. The purpose of this study is to examine three-dimensional (3-D) flow structure and channel morphology at a natural confluent-meander bend. Field data were collected in southeastern Illinois where Big Muddy Creek joins the Little Wabash River near a local maximum of curvature along an elongated meander loop. Measurements of 3-D velocity components were obtained with an acoustic Doppler current profiler (ADCP) for two flow events with differing momentum ratios. Channel bathymetry was also resolved from the four-beam depths of the ADCP. Analysis of velocity data reveals a distinct shear layer flanked by dual helical cells within the bend immediately downstream of the confluence. Flow from the tributary confines flow from the main channel along the inner part of the channel cross section, displacing the thalweg inward, limiting the downstream extent of the point bar, protecting the outer bank from erosion and enabling bar-building along this bank. Overall, this pattern of flow and channel morphology is quite different from typical patterns in meander bends, but is consistent with a conceptual model derived from laboratory experiments and numerical modeling.

  1. An acoustic doppler current profiler survey of flow velocities in St. Clair River, a connecting channel of the Great Lakes

    USGS Publications Warehouse

    Holtschlag, David J.; Koschik, John A.

    2003-01-01

    Acoustic Doppler current profilers (ADCP) were used to measure flow velocities in St. Clair River during a survey in May and June of 2002, as part of a study to assess the susceptibility of public water intakes to contaminants on the St. Clair-Detroit River Waterway. The survey provides 2.7 million point velocity measurements at 104 cross sections. Sections are spaced about 1,630 ft apart along the river from Port Huron to Algonac, Michigan, a distance of 28.6 miles. Two transects were obtained at each cross section, one in each direction across the river. Along each transect, velocity profiles were obtained 2-4 ft apart. At each velocity profile, average water velocity data were obtained at 1.64 ft intervals of depth. The raw position and velocity data from the ADCP field survey were adjusted for local magnetic anomalies using global positioning system (GPS) measurements at the end points of the transects. The adjusted velocity and ancillary data can be retrieved through the internet and extracted to column-oriented data files.

  2. Visualizing flow fields using acoustic Doppler current profilers and the Velocity Mapping Toolbox

    USGS Publications Warehouse

    Jackson, P. Ryan

    2013-01-01

    The purpose of this fact sheet is to provide examples of how the U.S. Geological Survey is using acoustic Doppler current profilers for much more than routine discharge measurements. These instruments are capable of mapping complex three-dimensional flow fields within rivers, lakes, and estuaries. Using the Velocity Mapping Toolbox to process the ADCP data allows detailed visualization of the data, providing valuable information for a range of studies and applications.

  3. 18 CFR 1304.402 - Wastewater outfalls.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Wastewater outfalls. 1304.402 Section 1304.402 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL... Miscellaneous § 1304.402 Wastewater outfalls. Applicants for a wastewater outfall shall provide copies of all...

  4. 18 CFR 1304.402 - Wastewater outfalls.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Wastewater outfalls. 1304.402 Section 1304.402 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL... Miscellaneous § 1304.402 Wastewater outfalls. Applicants for a wastewater outfall shall provide copies of all...

  5. 18 CFR 1304.402 - Wastewater outfalls.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Wastewater outfalls. 1304.402 Section 1304.402 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL... Miscellaneous § 1304.402 Wastewater outfalls. Applicants for a wastewater outfall shall provide copies of all...

  6. 18 CFR 1304.402 - Wastewater outfalls.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Wastewater outfalls. 1304.402 Section 1304.402 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL... Miscellaneous § 1304.402 Wastewater outfalls. Applicants for a wastewater outfall shall provide copies of all...

  7. 18 CFR 1304.402 - Wastewater outfalls.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Wastewater outfalls. 1304.402 Section 1304.402 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL... Miscellaneous § 1304.402 Wastewater outfalls. Applicants for a wastewater outfall shall provide copies of all...

  8. Measurements of Reynolds stress profiles in unstratified tidal flow

    USGS Publications Warehouse

    Stacey, M.T.; Monismith, Stephen G.; Burau, J.R.

    1999-01-01

    In this paper we present a method for measuring profiles of turbulence quantities using a broadband acoustic doppler current profiler (ADCP). The method follows previous work on the continental shelf and extends the analysis to develop estimates of the errors associated with the estimation methods. ADCP data was collected in an unstratified channel and the results of the analysis are compared to theory. This comparison shows that the method provides an estimate of the Reynolds stresses, which is unbiased by Doppler noise, and an estimate of the turbulent kinetic energy (TKE) which is biased by an amount proportional to the Doppler noise. The noise in each of these quantities as well as the bias in the TKE match well with the theoretical values produced by the error analysis. The quantification of profiles of Reynolds stresses simultaneous with the measurement of mean velocity profiles allows for extensive analysis of the turbulence of the flow. In this paper, we examine the relation between the turbulence and the mean flow through the calculation of u*, the friction velocity, and Cd, the coefficient of drag. Finally, we calculate quantities of particular interest in turbulence modeling and analysis, the characteristic lengthscales, including a lengthscale which represents the stream-wise scale of the eddies which dominate the Reynolds stresses. Copyright 1999 by the American Geophysical Union.

  9. Evaluation of Acoustic Doppler Current Profiler measurements of river discharge

    USGS Publications Warehouse

    Morlock, S.E.

    1996-01-01

    The standard deviations of the ADCP measurements ranged from approximately 1 to 6 percent and were generally higher than the measurement errors predicted by error-propagation analysis of ADCP instrument performance. These error-prediction methods assume that the largest component of ADCP discharge measurement error is instrument related. The larger standard deviations indicate that substantial portions of measurement error may be attributable to sources unrelated to ADCP electronics or signal processing and are functions of the field environment.

  10. Variability in Benthic Exchange Rate, Depth, and Residence Time Beneath a Shallow Coastal Estuary

    NASA Astrophysics Data System (ADS)

    Russoniello, Christopher J.; Heiss, James W.; Michael, Holly A.

    2018-03-01

    Hydrodynamically driven benthic exchange of water between the water column and shallow seabed aquifer is a significant and dynamic component of coastal and estuarine fluid budgets. Associated exchange of solutes promotes ecologically important chemical reactions, so quantifying benthic exchange rates, depths, and residence times constrains coastal chemical cycling estimates. We present the first combined field, numerical, and analytical modeling investigation of wave-induced exchange. Temporal variability of exchange was calculated with data collected by instruments deployed in a shallow estuary for 11 days. Differential pressure sensors recorded pressure gradients across the seabed, and up- and down-looking ADCPs recorded currents and pressures to determine wave parameters, surface-water currents, and water depth. Wave-induced exchange was calculated (1) directly from differential pressure measurements, and indirectly with an analytical model based on wave parameters from (2) ADCP and (3) wind data. Wave-induced exchange from pressure measurements and ADCP-measured wave parameters matched well, but both exceeded wind-based values. Exchange induced by tidal pumping and current-bed form interaction—the other primary drivers in shallow coastal waters were calculated from tidal stage variation and ADCP-measured currents. Exchange from waves (mean = 20.0 cm/d; range = 1.75-92.3 cm/d) greatly exceeded exchange due to tides (mean = 3.7 cm/d) and current-bed form interaction (mean = 6.5 × 10-2 cm/d). Groundwater flow models showed aquifer properties affect wave-driven benthic exchange: residence time and depth increased and exchange rates decreased with increasing hydraulic diffusivity (ratio of aquifer permeability to compressibility). This new understanding of benthic exchange will help managers assess its control over chemical fluxes to marine systems.

  11. Aquatic invertebrate sampling at selected outfalls in Operable Unit 1082; Technical areas 9, 11, 16 and 22

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, S.

    The Ecological Studies Team (EST) of ESH-20 at Los Alamos National Laboratory conducted preliminary aquatic sampling at outfalls within Operable Unit 1082 and nearby natural waterways. Eleven outfalls were sampled a total of eighteen times. Three natural waterways (upper Pajarito Canyon, Starmer`s Gulch, and Bulldog Spring) in the vicinity were sampled a total of six times. At most sites, EST recorded hydrological condition, physico-chemical parameters, wildlife uses, and vegetation. At each outfall with water and each natural waterway, EST collected an aquatic invertebrate sample which was analyzed by taxa composition, Wilhm`s biodiversity index, the community tolerance quotient (CTQ), and density.more » The physico-chemical parameters at most outfalls and natural waterways fell within the normal range of natural waters in the area. However, the outfalls are characterized by low biodiversity and severely stressed communities composed of a restricted number of taxa. The habitat at the other outfalls could probably support well-developed aquatic communities if sufficient water was available. At present, the hydrology at these outfalls is too slight and/or sporadic to support such a community in the foreseeable future. In contrast to the outfalls, the natural waterways of the area had greater densities of aquatic invertebrates, higher biodiversities, and lower CTQs.« less

  12. Analysis of mean velocity and turbulence measurements with ADCPs

    NASA Astrophysics Data System (ADS)

    De Serio, Francesca; Mossa, Michele

    2015-07-01

    The present study examines the vertical structure of the coastal current in the inner part of the Gulf of Taranto, located in the Ionian Sea (Southern Italy), including both the Mar Grande and Mar Piccolo basins. To this aim, different measuring stations investigated by both a Vessel Mounted Acoustic Doppler Current Profiler (VM-ADCP) and a bottom fixed ADCP were taken into consideration. Two surveys were carried out in the target area on 29.12.2006 and on 11.06.2007 by the research unit of the Technical University of Bari (DICATECh Department), using a VM-ADCP to acquire the three velocity components along the water column in selected stationing points. The measurements were taken in shallow waters, under non-breaking wave conditions, offshore the surf zone. Due to the recording frequency of the instrument time-averaged vertical velocity profiles could be evaluated in these measuring stations. Water temperature and salinity were also measured at the same time and locations by means of a CTD recorder. A rigidly mounted ADCP, located on the seabed in the North-Eastern area of the Mar Grande basin, provided current data relative to the period 10-20 February 2014. Set to acquire the three velocity components with higher frequency with respect to the VM-ADCP, it allowed us to estimate the turbulent quantities such as Reynolds stresses and turbulent kinetic energy by means of the variance method. Therefore, the present research is made up of two parts. The first part examines the current pattern measured by the VM-ADCP and verifies that, for each station, the classical log law reproduces well the vertical profile of the experimental streamwise velocities extending beyond its typical limit of validity up to the surface i.e. reaching great heights above the sea bed. This behavior is quite new and not always to be expected, being generally limited to boundary layers. It has been convincingly observed in only few limited experimental works. In the present study this occurred when two conditions were met: (i) the flow was mainly unidirectional along the vertical; (ii) the interested layer was non-stratified. The second part of the research studies the turbulent statistics derived from the beam signals of the fixed ADCP by means of the variance method. This technique had the advantage of being able to measure the time evolution of the turbulent mixing throughout the entire water column, thus making it possible to perform a detailed study on momentum transfer and turbulence. The deduced vertical profiles of the Reynolds stresses and of the turbulent kinetic energy TKE showed an increasing trend toward the surface, in agreement with previous results in literature. New data-sets of mean velocities and shear stresses, coming from field measurements, are always needed. In fact they represent the first step to derive reliable reference values of coefficients and parameters for the implementation and calibration of the used mathematical hydrodynamic models. Consequently, an effort was made to evaluate consistent bottom drag and wind drag coefficients, on the basis of the calculated bottom and surface shear stresses, respectively.

  13. Validation of streamflow measurements made with acoustic doppler current profilers

    USGS Publications Warehouse

    Oberg, K.; Mueller, D.S.

    2007-01-01

    The U.S. Geological Survey and other international agencies have collaborated to conduct laboratory and field validations of acoustic Doppler current profiler (ADCP) measurements of streamflow. Laboratory validations made in a large towing basin show that the mean differences between tow cart velocity and ADCP bottom-track and water-track velocities were -0.51 and -1.10%, respectively. Field validations of commercially available ADCPs were conducted by comparing streamflow measurements made with ADCPs to reference streamflow measurements obtained from concurrent mechanical current-meter measurements, stable rating curves, salt-dilution measurements, or acoustic velocity meters. Data from 1,032 transects, comprising 100 discharge measurements, were analyzed from 22 sites in the United States, Canada, Sweden, and The Netherlands. Results of these analyses show that broadband ADCP streamflow measurements are unbiased when compared to the reference discharges regardless of the water mode used for making the measurement. Measurement duration is more important than the number of transects for reducing the uncertainty of the ADCP streamflow measurement. ?? 2007 ASCE.

  14. Distribution of Escherichia coli and Enterococci in water, sediments, and bank soils along North Shore Channel between Bridge Street and Wilson Avenue, Metropolitan Water Reclamation District of Greater Chicago

    USGS Publications Warehouse

    Byappanahalli, Muruleedhara; Whitman, Richard L.; Shively, Dawn; Przybyla-Kelly, Katarzyna; Lukasik, Ashley M.

    2010-01-01

    The Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) wished to know the distribution and potential sources of fecal indicator bacteria, E. coli and enterococci, in water, sediments, and upland soils along an upstream and downstream portion of the North Shore Channel (NSC) that is the receiving stream for the District’s North Side Water Reclamation Plant (NSWRP) outfall. Biweekly water and sediment samples were collected between August and October 2008 and included the following locations upstream of the outfall: Bridge Street (UPS-1), Oakton Street (UPS-2), the NSWRP outfall (OF), and downstream: Foster Avenue (DNS-1), and Wilson Avenue (DNS-2). E. coli and enterococci were consistently found in water and sediments at all sampling locations, with bacterial densities in water increasing below the NSWRP outfall; bacterial densities in sediment were more variable. On a relative measurement basis (i.e., 100 ml=100 g), both E. coli and enterococci densities were significantly higher in sediments than water. E. coli and enterococci were consistently recovered from bank soil along wooded, grassy, erosional, and depositional areas at two recreational parks, as well as other riparian areas along the river. Thus, soils along the river basin are likely sources of these bacteria to the NSC channel, introduced through runoff or other physical processes. Tributaries, such as the North Branch of the Chicago River (NBCR) that flow into NSC near Albany Ave, may provide a constant source of E. coli and enterococci to the NSC. Additionally, storm sewer outfalls may increase E. coli loadings to NSC during wet weather conditions. Our findings suggest that the abundance of nonpoint sources contributing to the overall fecal indicator bacteria (FIB) load in the NSC channel may complicate bacteria source determination and remediation efforts to protect the stream water quality.

  15. Ecological surveys of the proposed high explosives wastewater treatment facility region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haarmann, T.

    1995-07-01

    Los Alamos National Laboratory (LANL) proposes to improve its treatment of wastewater from high explosives (HE) research and development activities. The proposed project would focus on a concerted waste minimization effort to greatly reduce the amount of wastewater needing treatment. The result would be a 99% decrease in the HE wastewater volume, from the current level of 6,760,000 L/mo (1,786,000 gal./mo) to 41,200 L/mo (11,000 gal./mo). This reduction would entail closure of HE wastewater outfalls, affecting some wetland areas that depend on HE wastewater effluents. The outfalls also provide drinking water for many wildlife species. Terminating the flow of effluentsmore » at outfalls would represent an improvement in water quality in the LANL region but locally could have a negative effect on some wetlands and wildlife species. None of the affected species are protected by any state or federal endangered species laws. The purpose of this report is to briefly discuss the different biological studies that have been done in the region of the project area. This report is written to give biological information and baseline data and the biota of the project area.« less

  16. Acoustic Imaging of a Turbidity Current Flowing along a Channel

    NASA Astrophysics Data System (ADS)

    Hughes Clarke, J. E.; Hiroji, A.; Cahill, L.; Fedele, J. J.

    2017-12-01

    As part of a 3 month sequence of repetitive surveys and ADCP monitoring, more than 30 turbidity currents have been identified modifying a lobe channel in 130 to 190m of water on the Squamish prodelta. For a 6 day period, daily surveys at low tide tried to capture the change resulting from a single flow. On the 8thof June three flows occurred within a half hour. Along channel multibeam images of the seabed and water column were obtained from a moving vessel immediately before, during and after the passage of the third flow. In this manner the spatial extent of the in-channel and overbank flow could be constrained. By following the flow, the spatial pattern of scattering from the flow upper surface could be examined over a 2 km length of the channel. Along channel bands of high scattering appear related to enhanced release of gas along the channel flanks. Notably, no signature of the underlying across-channel bedform modulations were evident, suggesting that the upper surface of the flow does not feel the influence of the channel floor. Overbank spillage of the flow could be detected by perturbation of a plankton scattering layer just above the seabed. Additionally, evidence of enhanced overbank deposition due to flow stripping on the outer corner of a bend was identified from backscatter changes. The specific seabed alteration due to this flow could be identified and compared with the cumulative change over three months in the channel and adjacent channel-lobe transition zone. As the flow passed under the ADCP, it had a peak velocity of over 2 m/s, a thickness of 4-5m and duration of 35 minutes. Based on the timing of the flow head when in view of the surface vessel, it was decelerating as it exited the mouth of the channel.

  17. Observations of ebb flows on tidal flats: Evidence of dewatering?

    NASA Astrophysics Data System (ADS)

    Rinehimer, J. P.; Thomson, J. M.; Chickadel, C.

    2010-12-01

    Incised channels are a common morphological feature of tidal flats. When the flats are inundated, flows are generally forced by the tidally varying sea surface height. During low tide, however, these channels continue to drain throughout flat exposure even without an upstream source of water. While the role of porewater is generally overlooked due to the low permeability of marine muds, it remains the only potential source of flows through the channels during low tide. In situ and remotely sensed observations (Figure 1) at an incised channel on a tidal flat in Willapa Bay from Spring 2010 indicate that dewatering of the flats may be driving these low tide flows. High resolution Aquadopp ADCP velocity profiles are combined with observations from tower-based infrared (IR) video to produce a complete time series of surface velocity measurements throughout low tide. The IR video observations provide a measurement of surface currents even when the channel depth is below the blanking distance of the ADCP (10 cm). As the depth within the channel drops from 50 cm to 10 cm surface velocities increase from 10 cm/s to 60 cm/s even as the tide level drops below the channel flanks and the flats are dry. As the drainage continues, the temperature of the flow rises throughout low tide, mirroring temperatures within the sediment bed on the tidal flat. Drainage salinity falls despite the lack of any freshwater input to the flat indicating that less saline porewater may be the source. The likely source of the drainage water is from the channel flanks where time-lapse video shows slumping and compaction of channel sediments. Velocity profiles, in situ temperatures, and IR observations also are consistent with the presence of fluid muds and a hyperpycnal, density driven outflow at the channel mouth highlighting a possible pathway for sediment delivery from the flats to the main distributary channels of the bay. Figure 1: Time series of tidal flat channel velocities and temperatures. Top: (soild) Water depth within the channel and (dashed) tidal flat elevation. Center: Channel surface velocities as measured by an (black) ADCP and (red) a Fourier technique using infrared video. Bottom: Temperatures of (blue) near bed water downstream of the incised channel, (black) channel outflow, and (red) tidal flat sediment at 10 cm depth within the bed.

  18. Using Machine Learning Techniques in the Analysis of Oceanographic Data

    NASA Astrophysics Data System (ADS)

    Falcinelli, K. E.; Abuomar, S.

    2017-12-01

    Acoustic Doppler Current Profilers (ADCPs) are oceanographic tools capable of collecting large amounts of current profile data. Using unsupervised machine learning techniques such as principal component analysis, fuzzy c-means clustering, and self-organizing maps, patterns and trends in an ADCP dataset are found. Cluster validity algorithms such as visual assessment of cluster tendency and clustering index are used to determine the optimal number of clusters in the ADCP dataset. These techniques prove to be useful in analysis of ADCP data and demonstrate potential for future use in other oceanographic applications.

  19. Measurements of velocity and discharge, Grand Canyon, Arizona, May 1994

    USGS Publications Warehouse

    Oberg, Kevin A.; Fisk, Gregory G.; ,

    1995-01-01

    The U.S. Geological Survey (USGS) evaluated the feasibility of utilizing an acoustic Doppler current profiler (ADCP) to collect velocity and discharge data in the Colorado River in Grand Canyon, Arizona, in May 1994. An ADCP is an instrument that can be used to measure water velocity and discharge from a moving boat. Measurements of velocity and discharge were made with an ADCP at 54 cross sections along the Colorado River between the Little Colorado River and Diamond Creek. Concurrent measurements of discharge with an ADCP and a Price-AA current meter were made at three U.S. Geological Survey streamflow-gaging stations: Colorado River above the Little Colorado River near Desert View, Colorado River near Grand Canyon, and Colorado River above Diamond Creek near Peach Springs. Discharges measured with an ADCP were within 3 percent of the rated discharge at each streamflow-gaging station. Discharges measured with the ADCP were within 4 percent of discharges measured with a Price-AA meter, except at the Colorado River above Diamond Creek. Vertical velocity profiles were measured with the ADCP from a stationary position at four cross sections along the Colorado River. Graphs of selected vertical velocity profiles collected in a cross section near National Canyon show considerable temporal variation among profile.

  20. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.

    In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less

  1. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

    DOE PAGES

    Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; ...

    2014-12-17

    In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less

  2. Influence of bedrock on river hydrodynamics and channel geometry

    NASA Astrophysics Data System (ADS)

    Rennie, C. D.; Church, M. A.; Venditti, J. G.; Bomhof, J.; Adderley, C.

    2013-12-01

    We present an acoustic Doppler current profiler (aDcp) survey of a 524 km long reach of Fraser River, British Columbia, Canada, as it passes through the Fraser Canyons. The channel alternates between gravel-bedded reaches that are incised into semi-consolidated glacial deposits and bedrock-bound reaches (7.7% of the reach between the towns of Quesnel and Hope). A continuous centreline aDcp survey was employed to measure longitudinal variation in slope, depth, depth-averaged velocity, and shear velocity. A total of 71 aDcp sectional surveys throughout the reach provided section widths (w), section-averaged depths (d), velocity distributions, and discharge (Q). Finally, air photo analysis using Google imagery provided channel widths at 0.5 km spacing. The survey reach was subdivided into 10 morphological sub-reaches, which ranged from alluvial gravel-bed reaches with relatively moderate slope to steep non-alluvial rock-walled canyons. The resulting data provide a unique opportunity to evaluate the influence of bedrock confinement on river hydrodynamics and channel geometry. Continuous centreline longitudinal aDcp data and the widths from air photo analysis were grouped within each sub-reach based on presence of bedrock confinement on both banks, either bank, or neither bank. The results demonstrate that river widths decreased and water depths, flow velocities, and shear velocities increased from the alluvial sub-reaches to the semi-alluvial reaches to the canyon reaches. Within each sub-reach, locations with bedrock encroachment on both banks were also narrower and deeper, but had lower depth-averaged velocity and shear velocity. Sectional geometry data were homogenized along the river (to compensate increasing flows at tributary junctions) by computing w/Q^{1/2} and d/Q^{1/3}, following commonly observed scaling relations. Alluvial reaches are 2.3x wider than rock-bound reaches (from the more abundant imagery data) and 0.60x as deep (from aDcp sections), implying that mean velocity is accelerated in rock reaches by 38%. There is also variation from reach to reach along the river controlled by variation in rock lithologies, with the narrowest canyons occurring in Fraser Canyon proper (w/Q^{1/2} = 0.083 compared with 1.4 elsewhere). The uppermost (';Marguerite') and lowermost (';Agassiz') alluvial reaches are considerably wider (w/Q^{1/2}= 3.9 and 7.1 respectively) than intervening ones ( 2.35). These reaches have lower gradients and exhibit wandering channels. Because of lithological control, the downstream hydraulic geometry of the river does not, in fact, conform with the common pattern, even when sections are analyzed according to boundary material. However, river gradient is well correlated with scaled width; inversely for gravel reaches and directly, but with little sensitivity, for rock-bound reaches.

  3. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    USGS Publications Warehouse

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  4. Observations of inner shelf cross-shore surface material transport adjacent to a coastal inlet in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roth, Mathias K.; MacMahan, Jamie; Reniers, Ad; Özgökmen, Tamay M.; Woodall, Kate; Haus, Brian

    2017-04-01

    Motivated by the Deepwater Horizon oil spill, the Surfzone and Coastal Oil Pathways Experiment obtained Acoustic Doppler Current Profiler (ADCP) Eulerian and GPS-drifter based Lagrangian "surface" (<1 m) flow observations in the northern Gulf of Mexico to describe the influence of small-scale river plumes on surface material transport pathways in the nearshore. Lagrangian paths are qualitatively similar to surface pathlines derived from non-traditional, near-surface ADCP velocities, but both differ significantly from depth-averaged subsurface pathlines. Near-surface currents are linearly correlated with wind velocities (r =0.76 in the alongshore and r =0.85 in the cross-shore) at the 95% confidence level, and are 4-7 times larger than theoretical estimates of wind and wave-driven surface flow in an un-stratified water column. Differences in near-surface flow are attributed to the presence of a buoyant river plume forced by winds from passing extratropical storms. Plume boundary fronts induce a horizontal velocity gradient where drifters deployed outside of the plume in oceanic water routinely converge, slow, and are re-directed. When the plume flows west parallel to the beach, the seaward plume boundary front acts as a coastal barrier that prevents 100% of oceanic drifters from beaching within 27 km of the inlet. As a result, small-scale, wind-driven river plumes in the northern Gulf of Mexico act as coastal barriers that prevent offshore surface pollution from washing ashore west of river inlets.

  5. An acoustic doppler current profiler survey of flow velocities in Detroit River, a connecting channel of the Great Lakes

    USGS Publications Warehouse

    Holtschlag, David J.; Koschik, John A.

    2003-01-01

    Acoustic Doppler current profilers (ADCP) were used to survey flow velocities in Detroit River from July 8-19, 2002, as part of a study to assess the susceptibility of public water intakes to contaminants on the St. Clair-Detroit River Waterway. More than 3.5 million point velocities were measured at 130 cross sections. Cross sections were generally spaced about 1,800 ft apart along the river from the head of Detroit River at the outlet of Lake St. Clair to the mouth of Detroit River on Lake Erie. Two transects were surveyed at each cross section, one in each direction across the river. Along each transect, velocity profiles were generally obtained 0.8-2.2 ft apart. At each velocity profile, average water velocity data were obtained at 1.64 ft intervals of depth. The raw position and velocity data from the ADCP field survey were adjusted for local magnetic anomalies using global positioning system (GPS) measurements at the end points of the transects. The adjusted velocity and ancillary data can be retrieved though the internet and extracted to column-oriented data files.

  6. Continuous measurements of flow rate in a shallow gravel-bed river by a new acoustic system

    NASA Astrophysics Data System (ADS)

    Kawanisi, K.; Razaz, M.; Ishikawa, K.; Yano, J.; Soltaniasl, M.

    2012-05-01

    The continuous measurement of river discharge for long periods of time is crucial in water resource studies. However, the accurate estimation of river discharge is a difficult and labor-intensive procedure; thus, a robust and efficient method of measurement is required. Continuous measurements of flowrate have been carried out in a wide, shallow gravel bed river (water depth ≈ 0.6 m under low-flow conditions, width ≈ 115 m) using Fluvial Acoustic Tomography System (FATS) that has 25 kHz broadband transducers with horizontally omnidirectional and vertically hemispherical beam patterns. Reciprocal sound transmissions were performed between the two acoustic stations located diagonally on both sides of the river. The horizontal distance between the transducers was 301.96 m. FATS enabled the measurement of the depth- and range-averaged sound speed and flow velocity along the ray path. In contrast to traditional point/transect measurements of discharge, in a fraction of a second, FATS covers the entire cross section of river in a single measurement. The flow rates measured by FATS were compared to those estimated by moving boat Acoustic Doppler Current Profiler (ADCP) and rating curve (RC) methods. FATS estimates were in good agreement with ADCP estimates over a range of 20 to 65 m3 s-1. The RMS of residual between the two measurements was 2.41 m3 s-1. On the other hand the flowrate by RC method fairly agreed with FATS estimates for greater discharges than around 40 m3 s-1. This inconsistency arises from biased RC estimates in low flows. Thus, the flow rates derived from FATS could be considered reliable.

  7. The effect of the new Massachusetts Bay sewage outfall on the concentrations of metals and bacterial spores in nearby bottom and suspended sediments

    USGS Publications Warehouse

    Bothner, Michael H.; Casso, M.A.; Rendigs, R. R.; Lamothe, P.J.

    2002-01-01

    Since the new outfall for Boston's treated sewage effluent began operation on September 6, 2000, no change has been observed in concentrations of silver or Clostridium perfringens spores (an ecologically benign tracer of sewage), in bottom sediments at a site 2.5 km west of the outfall. In suspended sediment samples collected with a time-series sediment trap located 1.3 km south of the outfall, silver and C. perfringens spores increased by 38% and 103%, respectively, in post-outfall samples while chromium, copper, and zinc showed no change. All metal concentrations in sediments are <50% of warning levels established by the Massachusetts Water Resources Authority. An 11-year data set of bottom sediment characteristics collected three times per year prior to outfall startup provides perspective for the interpretation of post-outfall data. A greater than twofold increase in concentrations of sewage tracers (silver and C. perfringens) was observed in muddy sediments following the exceptional storm of December 11-16, 1992 that presumably moved contaminated inshore sediment offshore. ?? 2002 Elsevier Science Ltd. All rights reserved.

  8. Visualization of a drifting buoy deployment on Lake St. Clair within the Great Lakes Waterway from August 12-15, 2002

    USGS Publications Warehouse

    Holtschlag, David J.; Syed, Atiq U.; Kennedy, Gregory W.

    2002-01-01

    Lake St. Clair is a 430 square mile lake between the state of Michigan and the province of Ontario, which forms part of the international boundary between the United States and Canada in the Great Lakes Basin. Lake St. Clair receives most of its inflow from Lake Huron through St. Clair River, which has an average flow of 182,000 cubic feet per second. The lake discharges to Detroit River, where it flows 32 miles to Lake Erie. Twelve drifting buoys were deployed on Lake St. Clair for 74 hours between August 12-15, 2002 to help investigate flow circulation patterns as part of a source water assessment study of the susceptibility of public water intakes. The buoys contained global positioning system (GPS) receivers to track their movements. Buoys were released in a transect between tethered buoys marking an 800-foot wide navigational channel in the north-central part of the lake just downstream of St. Clair River, and about 15.5 miles northeast of Detroit River. In addition, an acoustic Doppler current profiler (ADCP) was used to measure velocity profiles in a grid of 41 points that spanned the area through which the buoys drifted. Computer animations, which can be viewed through the Internet, were developed to help visualize the results of the buoy deployments and ADCP measurements.

  9. Validation of streamflow measurements made with M9 and RiverRay acoustic Doppler current profilers

    USGS Publications Warehouse

    Boldt, Justin A.; Oberg, Kevin A.

    2015-01-01

    The U.S. Geological Survey (USGS) Office of Surface Water (OSW) previously validated the use of Teledyne RD Instruments (TRDI) Rio Grande (in 2007), StreamPro (in 2006), and Broadband (in 1996) acoustic Doppler current profilers (ADCPs) for streamflow (discharge) measurements made by the USGS. Two new ADCPs, the SonTek M9 and the TRDI RiverRay, were first used in the USGS Water Mission Area programs in 2009. Since 2009, the OSW and USGS Water Science Centers (WSCs) have been conducting field measurements as part of their stream-gaging program using these ADCPs. The purpose of this paper is to document the results of USGS OSW analyses for validation of M9 and RiverRay ADCP streamflow measurements. The OSW required each participating WSC to make comparison measurements over the range of operating conditions in which the instruments were used until sufficient measurements were available. The performance of these ADCPs was evaluated for validation and to identify any present and potential problems. Statistical analyses of streamflow measurements indicate that measurements made with the SonTek M9 ADCP using firmware 2.00–3.00 or the TRDI RiverRay ADCP using firmware 44.12–44.15 are unbiased, and therefore, can continue to be used to make streamflow measurements in the USGS stream-gaging program. However, for the M9 ADCP, there are some important issues to be considered in making future measurements. Possible future work may include additional validation of streamflow measurements made with these instruments from other locations in the United States and measurement validation using updated firmware and software.

  10. Membrane lipid-protein interactions modify the regulatory role of adenosine-deaminase complexing protein: a phase fluorometry study of a malignancy marker

    NASA Astrophysics Data System (ADS)

    Parola, Abraham H.; Porat, Nurith; Caiolfa, Valeria R.; Gill, David; Kiesow, Lutz A.; Weisman, Mathew; Nemschitz, S.; Yaron, Dahlia; Singer, Karen; Solomon, Ethel

    1990-05-01

    The role of membrane lipid-protein interactions in malignant cell transformation was examined with adenosine deaminase (ADA) as a representative membrane protein. ADA's activity changes dramatically in transformed cells and accordingly it is a malignancy marker. Yet, the mechanisms controlling its variable activity are unknown. We undertook the spectroscopic deciphering of its interactions with its lipidic environment in normal and malignant cells. ADA exists in two interconvertible forms, small (45 KD) and large (21OKD). The large form consists of two small catalytic subunits (55-ADA) and a dimeric complexing protein ADCP. The physiological role of ADCP was not known either. Our studies were carried out at three levels.: 1. Solution enzyme kinetics, 2. The interaction of 55-ADA with ADCP reconstituted in liposomes: Effect of cholesterol and 3. Multifrequency phase modulation spectrofluorometry of pyrene-labeled 55-ADA bound to ADCP on the membranes of normal and RSV or RSV Ts68 transformed chick embryo fibroblasts. We found: 1. ADCP has an allosteric regulatory role on 55-ADA, which may be of physiological relevance: It inhibits 55-ADA activity at low physiological adenosine concentrations but accelerates deamination at high substrate concentration. 2. When reconstituted in DMPC liposomes, it retains 55-ADA activity (in its absence the activity is lost) and upon rigidification with cholesterol, a three fold increase in 55-ADA activity is attained, contrary to ADCP's regulatory activity when free of lipids. 3. The reduced ADA activity in transformed chick embryo fibroblasts is associated with increased membrane lipid fluidity (reduced order parameter), reduced accessibility of ADCP and increase rotational dynamics of the complex. We thus obtained spectroscopic deciphering of the vertical motion of ADCP, controlled by lipid-protein interaction, resulting in variable activity of this malignancy marker.

  11. Fine-scale hydrodynamics influence the spatio-temporal distribution of harbour porpoises at a coastal hotspot

    NASA Astrophysics Data System (ADS)

    Jones, A. R.; Hosegood, P.; Wynn, R. B.; De Boer, M. N.; Butler-Cowdry, S.; Embling, C. B.

    2014-11-01

    The coastal Runnelstone Reef, off southwest Cornwall (UK), is characterised by complex topography and strong tidal flows and is a known high-density site for harbour porpoise (Phocoena phocoena); a European protected species. Using a multidisciplinary dataset including: porpoise sightings from a multi-year land-based survey, Acoustic Doppler Current Profiling (ADCP), vertical profiling of water properties and high-resolution bathymetry; we investigate how interactions between tidal flow and topography drive the fine-scale porpoise spatio-temporal distribution at the site. Porpoise sightings were distributed non-uniformly within the survey area with highest sighting density recorded in areas with steep slopes and moderate depths. Greater numbers of sightings were recorded during strong westward (ebbing) tidal flows compared to strong eastward (flooding) flows and slack water periods. ADCP and Conductivity Temperature Depth (CTD) data identified fine-scale hydrodynamic features, associated with cross-reef tidal flows in the sections of the survey area with the highest recorded densities of porpoises. We observed layered, vertically sheared flows that were susceptible to the generation of turbulence by shear instability. Additionally, the intense, oscillatory near surface currents led to hydraulically controlled flow that transitioned from subcritical to supercritical conditions; indicating that highly turbulent and energetic hydraulic jumps were generated along the eastern and western slopes of the reef. The depression and release of isopycnals in the lee of the reef during cross-reef flows revealed that the flow released lee waves during upslope currents at specific phases of the tidal cycle when the highest sighting rates were recorded. The results of this unique, fine-scale field study provide new insights into specific hydrodynamic features, produced through tidal forcing, that may be important for creating predictable foraging opportunities for porpoises at a local scale. Information on the functional mechanisms linking porpoise distribution to static and dynamic physical habitat variables is extremely valuable to the monitoring and management of the species within the context of European conservation policies and marine renewable energy infrastructure development.

  12. Contributions of combined sewer overflows and treated effluents to the bacterial load released into a coastal area.

    PubMed

    Al Aukidy, M; Verlicchi, P

    2017-12-31

    The impact of combined sewer overflow (CSO) on the receiving water body is an issue of increasing concern, as it may lead to restrictions in the use and destination of the receiving body, such as bathing or recreational area closures, fish and shellfish consumption restrictions, and contamination of drinking water resources. Recent investigations have mainly referred to the occurrence and loads of suspended solids, organic compounds and, in some cases, micropollutants. Attempts have been made to find correlations between the discharged load and the size and characteristics of the catchment area, climate conditions, rainfall duration and intensity. This study refers to a touristic coastal area in the north-east of Italy, which is characterized by a combined sewer network including 5 CSO outfalls which, in the case of heavy rain events, directly discharge the exceeding water flow rate into channels which, after a short distance, reach the Adriatic Sea. The study analyzed: i) rainfall events during the summer period in 2014 which led to overflow in the different outfalls, ii) the inter- and intra-event variability with regard to E. coli, Enterococci and conductivity, and iii) the hydraulic and pollutant (E. coli and Enterococci) loads discharged by the local wastewater treatment plant and by all the CSO outfalls. Finally, it estimated the contribution of each source to the released hydraulic and pollutant loads into the receiving water body. Moreover, it was also found that the modest water volume discharged by all CSO outfalls (only 8% of the total volume discharged by the area) contains >90% of the microbial load. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-09-11

    The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL`s sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent.more » After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL`s outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE`s purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives.« less

  14. Development and Design of Cost-Effective, Real-Time Implementable Sediment and Contaminant Release Controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampson, Steve

    2007-08-01

    Alternative design options for integrated storm water and sediment control systems were developed and evaluated for Outfalls 008, 011 and 015 of the Paducah Gaseous Diffusion Plant. The remedial options were required to be cost effective and implementable in a relatively short timeframe. Additionally, construction activities were to minimize earth disturbance, especially with respect to excavation. The current database for storm water and effluent sediment oncentration was assessed for the three outfalls. It was concluded that there was a significant lack of data and recommendations for monitoring equipment were provided to initiate a comprehensive surface water and sediment data acquisitionmore » system. Modeling was completed for current conditions. Peak flow, runoff volume, peak sediment concentration and storm sediment load were modeled for storm events, ranging from 0.5 inches (12.7mm) to 3.0 inches (6.2mm). Predicted peak flows ranged from 2.5 cfs (0.071 m3/s) for Outfall 011 and a 0.5 inches (12.7mm) storm to 210 cfs (5.95 m3/s) for Outfall 008 and a 3.0 inches (76.2mm) storm. Additionally, the 100-yr 24-hr NRCS Type II storm was modeled. Storm sediment loads, for the corresponding outfalls and storm events, ranged from 0.1 to 9.0 tons (8.18 tonnes). Retention ponds were designed and evaluated for each of the three outfalls. The ponds had a dual function; 1) contain the storm runoff volume for smaller storm events and 2) passively treat and discharge runoff that was in excess of the pond’s storage capacity. Stored runoff was transferred to alternative secondary treatment systems. The expected performance of these treatment systems was evaluated. The performance of the outfall ponds was evaluated for storm events ranging from 0.5 inches (12.7mm) to 4.0 inches (101.6mm). Outfall 011 has a watershed of 33.3 acres. Pond 011 (Outfall 011) has the largest storage capacity of the three outfalls, and therefore the highest potential for effective treatment. The predicted sediment trapping efficiency for a 4.0 in (101.6mm) 24-hour storm was 99.7% with an initial empty pond condition. Stored runoff is expected to be transferred to the treatment plant located near Outfall 010. A 4-in storm event accounts for approximately 97% of the average annual precipitation. Pond 015 is relatively small due to the non-excavation restriction. Ninety eight percent and 72.3% sediment trap efficiencies were predicted for a 1.5 in and 3.0 in 24-hour storm; based on the pond being empty at the start of the storm and retained runoff being transferred to one of the secondary treatment systems. A 3-in storm event accounts for approximately 92% of the average annual precipitation. The watershed area of Pond 008 is 113.6 acres and the storage capacity is only 0.92 ac-ft. Sediment trap efficiencies of 96.7%, 77.2% and 67.6% were predicted for storms of 1, 1.5 and 2 inches, respectively. Thus, nearly a 70+% sediment trap efficiency is predicted for storm events of 2 inches or less; accounting for 82% of the average annual precipitation.The approximate quantity of runoff that can be retained and pumped to a secondary treatment system was determined on a storm and annual basis. On an annual basis, Ponds 008, 011 and 015 are expected to retain 20.2%, 83.1% and 34.7% of the generated runoff, respectively. Retained runoff will be pumped to alternative treatment systems. The alternative treatment systems designed and evaluated are: 1) evapotranspiration-only, 2) evapotranspiration - infiltration and 3) a combination weep berm – grass filter control system. The evapotranspiration-only method would result in complete treatment of the runoff transferred from the retention pond. The evapotranspiration - infiltration technique is expected to result in treatment through filtration and natural attenuation of soil and associated constituents. Both drip and micro-sprinklers were evaluated for the first two listed treatment systems. Outfall 015 was used to illustrate the evaporation –only and evapotranspiration – infiltration secondary treatment methods. Based on a 5 acre site and a very conservative evapotranspiration rate, i.e. a low value of 0.10 in/day, a completely full Pond 015 would take approximately 10 days to empty by the drip irrigation system design. For a 25 acre site, the dewatering time would, of course, be 2 days. For the micro-sprinkler irrigation system 8 and 1 ¾ days would be required for the 5 acre and 25 acre sites, respectively. When the evapotranspiration – infiltration treatment system was employed the drip irrigation system, based on a 5 acre site, would take 2 days to dewatering Pond 015; 1/10 of the evapotranspiration-only method. For the micro-sprinklers, with a 5 acre site the dewatering time would be 1 ¾ days. A comprehensive irrigation design was completed for each alternative scenario and a listing of all major system components was provided. Outfall 008 was used to illustrate the combination weep berm – grass filter treatment system. Such a system has proven to be very effective at other applied research and at international hard rock mines. Design considerations were provided encompassing dewatering pumping rate, sediment load and concentration, soil type, weep berm characteristics and grass filter length and infiltration rates. The expected performance of a combination weep berm – grass filter system design was illustrated through a detailed example and SEDCAD modeling. The retention pond – weep berm – grass filter, for the illustrated example, resulted in a peak effluent sediment concentration at the end of the grass filter of 2 mg« less

  15. Quantifying acoustic doppler current profiler discharge uncertainty: A Monte Carlo based tool for moving-boat measurements

    USGS Publications Warehouse

    Mueller, David S.

    2017-01-01

    This paper presents a method using Monte Carlo simulations for assessing uncertainty of moving-boat acoustic Doppler current profiler (ADCP) discharge measurements using a software tool known as QUant, which was developed for this purpose. Analysis was performed on 10 data sets from four Water Survey of Canada gauging stations in order to evaluate the relative contribution of a range of error sources to the total estimated uncertainty. The factors that differed among data sets included the fraction of unmeasured discharge relative to the total discharge, flow nonuniformity, and operator decisions about instrument programming and measurement cross section. As anticipated, it was found that the estimated uncertainty is dominated by uncertainty of the discharge in the unmeasured areas, highlighting the importance of appropriate selection of the site, the instrument, and the user inputs required to estimate the unmeasured discharge. The main contributor to uncertainty was invalid data, but spatial inhomogeneity in water velocity and bottom-track velocity also contributed, as did variation in the edge velocity, uncertainty in the edge distances, edge coefficients, and the top and bottom extrapolation methods. To a lesser extent, spatial inhomogeneity in the bottom depth also contributed to the total uncertainty, as did uncertainty in the ADCP draft at shallow sites. The estimated uncertainties from QUant can be used to assess the adequacy of standard operating procedures. They also provide quantitative feedback to the ADCP operators about the quality of their measurements, indicating which parameters are contributing most to uncertainty, and perhaps even highlighting ways in which uncertainty can be reduced. Additionally, QUant can be used to account for self-dependent error sources such as heading errors, which are a function of heading. The results demonstrate the importance of a Monte Carlo method tool such as QUant for quantifying random and bias errors when evaluating the uncertainty of moving-boat ADCP measurements.

  16. Measuring discharge with acoustic Doppler current profilers from a moving boat

    USGS Publications Warehouse

    Mueller, David S.; Wagner, Chad R.; Rehmel, Michael S.; Oberg, Kevin A.; Rainville, Francois

    2013-01-01

    The use of acoustic Doppler current profilers (ADCPs) from a moving boat is now a commonly used method for measuring streamflow. The technology and methods for making ADCP-based discharge measurements are different from the technology and methods used to make traditional discharge measurements with mechanical meters. Although the ADCP is a valuable tool for measuring streamflow, it is only accurate when used with appropriate techniques. This report presents guidance on the use of ADCPs for measuring streamflow; this guidance is based on the experience of U.S. Geological Survey employees and published reports, papers, and memorandums of the U.S. Geological Survey. The guidance is presented in a logical progression, from predeployment planning, to field data collection, and finally to post processing of the collected data. Acoustic Doppler technology and the instruments currently (2013) available also are discussed to highlight the advantages and limitations of the technology. More in-depth, technical explanations of how an ADCP measures streamflow and what to do when measuring in moving-bed conditions are presented in the appendixes. ADCP users need to know the proper procedures for measuring discharge from a moving boat and why those procedures are required, so that when the user encounters unusual field conditions, the procedures can be adapted without sacrificing the accuracy of the streamflow-measurement data.

  17. Estimation of suspended sediment concentration from Acoustic Doppler Current Profiler (ADCP) instrument: A case study of Lembeh Strait, North Sulawesi

    NASA Astrophysics Data System (ADS)

    Dwinovantyo, Angga; Manik, Henry M.; Prartono, Tri; Susilohadi; Ilahude, Delyuzar

    2017-01-01

    Measurement of suspended sediment concentration (SSC) is one of the parameters needed to determine the characteristics of sediment transport. However, the measurement of SSC nowadays still uses conventional technique and it has limitations; especially in temporal resolution. With advanced technology, the measurement can use hydroacoustic technology such as Acoustic Doppler Current Profiler (ADCP). ADCP measures the intensity of backscatter as echo intensity unit from sediment particles. The frequency of ADCP used in this study was 400 kHz. The samples were measured and collected from Lembeh Strait, North Sulawesi. The highest concentration of suspended sediment was 98.89 mg L-1 and the lowest was 45.20 mg L-1. Time series data showed the tidal condition affected the SSC. From the research, we also made correction from sound signal losses effect such as spherical spreading and sound absorption to get more accurate results by eliminating these parameters in echo intensity data. Simple linear regression analysis at echo intensity measured from ADCP to direct measurement of SSC was performed to obtain the estimation of the SSC. The comparison result of estimation of SSC from ADCP measurements and SSC from laboratory analyses was insignificantly different based on t-test statistical analysis with 95% confidence interval percentage.

  18. Radar observation of an along-front jet and transverse flow convergence associated with a North Sea front

    NASA Astrophysics Data System (ADS)

    Matthews, J. P.; Fox, A. D.; Prandle, D.

    1993-01-01

    This paper describes the first synoptic mapping of surface currents across a strong and stable tidal mixing front by HF radar. The radar deployment took place along the coast of northeast England during August and early September 1988 in parallel with extensive ship based CTD density and ADCP (Acoustic Doppler Current Profiler) measurements which provided data in the vertical plane to complement those of the HF radar. We describe two main results. Firstly, during a spring-tide period of strengthening inshore density gradients, an along-front jet with speeds of up to 14 cm s -1 was detected in the long term IIF radar residual field. The location and spatial form of this jet correspond with estimates of geostrophic currents derived from the measured density field. Secondly, a transverse "double-sided" surface flow convergence centred close to the frontal boundary and of net magnitude 4 cm s -1 accompanied the large along-front jet. Such a weaker cross-frontal component has been anticipated on theoretical grounds but never previously observed in this detailed fashion. The experiment underlines the power of a synergistic approach, based on HF remote sensing radar and ADCP, for the study of frontal circulation in coastal zones.

  19. Integrated Observations From Fixed and AUV Platforms in the Littoral Zone at the SFOMC Coastal Ocean Observatory

    NASA Astrophysics Data System (ADS)

    Dhanak, M. R.

    2001-12-01

    A 12-hour survey of the coastal waters off the east coast of Florida at the South Florida Ocean Measurement Center (SFOMC) coastal ocean observatory, during summer 1999, is described to illustrate the observatory's capabilities for ocean observation. The facility is located close to the Gulf Stream, the continental shelf break being only 3 miles from shore and is therefore influenced by the Gulf Stream meanders and the instability of the horizontal shear layer at its edge. As a result, both cross-shelf and along-shelf components of currents in the littoral zone can undergo dramatic +/- 0.5 m/s oscillations. Observations of surface currents from an OSCR, and of subsurface structure from an autonomous underwater vehicle (AUV) platform, a bottom-mounted ADCP and CT-chain arrays during the survey will be described and compared. The AUV on-board sensors included upward and downward looking 1200kHz ADCP, a CTD package and a small-scale turbulence package, consisting of two shear probes and a fast-response thermistor. Prevailing atmospheric conditions were recorded at an on-site buoy. The combined observations depict flows over a range of scales. Acknowledgements: The observations from the OSCR are due to Nick Shay and Tom Cook (University of Miami), and from the bottom-mounted ADCP, CT chain arrays and the surface buoy are due to Alex Soloviev (Nova Southeastern University) and Mark Luther and Bob Weisberg (University of South Florida).

  20. 76 FR 34971 - City of Dover, NH; Notice of Declaration of Intention and Soliciting Comments, Protests, and/or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... Hydraulic Energy Harvester Project (Outfall Project). f. Location: The Effluent Outfall Hydraulic Energy... hydraulic energy harvester, placed on the outfall pipe that discharges treated effluence from the city's... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. DI11-8-000] City of Dover...

  1. Environmental assessment for the A-01 outfall constructed wetlands project at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-10-01

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed A-01 outfall constructed wetlands project at the Savannah River site (SRS), located near aiken, South Carolina. The proposed action would include the construction and operation of an artificial wetland to treat effluent from the A-01 outfall located in A Area at SRS. The proposed action would reduce the outfall effluent concentrations in order to meet future outfall limits before these go into effect on October 1, 1999. This document was prepared in compliance with the National Environmental Policy Act (NEPA)more » of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Parts 1500--1508); and the DOE Regulations for Implementing NEPA (10 CFR Part 1021).« less

  2. Eddy forced variations in on- and off-margin summertime circulation along the 1000-m isobath of the northern Gulf of Mexico, 2000-2003, and links with sperm whale distributions along the middle slope

    NASA Astrophysics Data System (ADS)

    Biggs, Douglas C.; Jochens, Ann E.; Howard, Matthew K.; DiMarco, Steven F.; Mullin, Keith D.; Leben, Robert R.; Muller-Karger, Frank E.; Hu, Chuanmin

    In summers 2000-2003, NOAA Ship Gordon Gunter and TAMU R/V Gyre dropped XBTs and logged ADCP data while carrying out visual and passive-acoustic surveys for sperm whales along the 1000-m isobath of the northern Gulf of Mexico. The ships also made CTD casts, particularly when/where the XBT and ADCP data indicated the ships were passing into or out of anticyclonic and/or cyclonic slope eddies. The fine-scale resolution of the ship surveys, when combined with the meso-scale resolution of remote sensing surveys of sea surface height and ocean color, document the summer-to-summer variability in the intensity and geographic location of Loop Current eddies, warm slope eddies, and areas of cyclonic circulation over this middle slope region of the northern Gulf of Mexico. These variations forced striking year-to-year differences in the locations along the 1000-m isobath where there was on-margin and off-margin flow, and in locations where sperm whales were encountered along the 1000-m isobath. For example, when there was on-margin flow into the Mississippi Canyon region in early summer 2003, sperm whales were very rarely seen or heard there. In contrast, later that summer and during other summers when flow was along-margin or off-margin there, sperm whales were locally abundant. In this report we describe how eddy-forced variations in on-margin and off-margin flow changed the meso-scale circulation along the 1000-m isobath, and we show that most sperm whales were encountered in regions of negative SSH and/or higher-than-average surface chlorophyll.

  3. Site Specific Metal Criteria Developed Using Kentucky Division of Water Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kszos, L.A.; Phipps, T.L.

    1999-10-09

    Alternative limits for Cu, Ni, Pb, and Zn were developed for treated wastewater from four outfalls at a Gaseous Diffusion Plant. Guidance from the Kentucky Division of Water (KDOW) was used to (1) estimate the toxicity of the effluents using water fleas (Ceriodaphnia dubia) and fathead minnow (Pimephales promelas) larvae; (2) determine total recoverable and dissolved concentrations of Cu, Pb, Ni, and Zn ; (3) calculate ratios of dissolved metal (DM) to total recoverable metal (TRM); and (4) assess chemical characteristics of the effluents. Three effluent samples from each outfall were collected during each of six test periods; thus, amore » total of 18 samples from each outfall were evaluated for toxicity, DM and TRM. Subsamples were analyzed for alkalinity, hardness, pH, conductivity, and total suspended solids. Short-term (6 or 7 d), static renewal toxicity tests were conducted according to EPA methodology. Ceriodaphnia reproduction was reduced in one test of effluent from Outfall A , and effluent from Outfall B was acutely toxic to both test species during one test. However, the toxicity was not related to the metals present in the effluents. Of the 18 samples from each outfall, more than 65% of the metal concentrations were estimated quantities. With the exception of two total recoverable Cu values in Outfall C, all metal concentrations were below the permit limits and the federal water quality criteria. Ranges of TR for all outfalls were: Cd, ,0.1-0.4 {micro}g/L; Cr,1.07-3.93 {micro}g/L; Cu, 1.59-7.24 {micro}g/L; Pb, <0.1-3.20 {micro}g/L; Ni, 0.82-10.7 {micro}g/L, Zn, 4.75-67.3 {micro}g/L. DM:TRM ratios were developed for each outfall. The proportion of dissolved Cu in the effluents ranged from 67 to 82%; the proportion of dissolved Ni ranged from 84 to 91%; and the proportion of dissolved Zn ranged from 74 to 94%. The proportion of dissolved Pb in the effluents was considerably lower (37-51%). TRM and/or DM concentrations of Cu, Ni, Pb, or Zn differed significantly from outfall to outfall but the DM:TRM ratios for Cu, Ni, and Pb did not. Through the use of the KDOW method, the total recoverable metal measured in an effluent is adjusted by the proportion of dissolved metal present. The resulting alternative total recoverable metal concentration is reported in lieu of the measured total recoverable concentration for determining compliance with permit limits. For example, the monthly average permit limit for Pb in Outfall B (3 {micro}g/L) was exceeded at the Gaseous Diffusion Plant. Through the use of the KDOW method for calculating an alternative total recoverable metal concentration, 4.98 {micro}g Pb/L in Outfall B would be reported as 3.00 {micro}g/L, a difference of > 39%. Thus, the alternative, calculated total recoverable metal concentration provides the discharger with a ''cushion'' for meeting permit limits.« less

  4. Impact of a diversion of sewage effluent on a seaweed farm in the Seto Inland Sea, Japan

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Uchiyama, Y.; Suzue, Y.

    2016-12-01

    The Seto Inland Sea (SIS), Japan, is a partially stratified, tidally driven estuary, comprising several semi-enclosed basins with complex coastlines and thousands of islands as well as substantial influences from the Kuroshio. Even though water pollution has been improved adequately because of related policies enacted, Osaka Bay (OB), a part of SIS, still suffers mostly due to sewage effluent resulted from the densely populated hinterland. Tarumi Sewage Treatment Plant (TSTP) is one of the largest wastewater treatment plants in OB, located near Akashi Strait (AS) where energetic and complex tidal flow occurs. The surrounding area is famous for a seaweed farming industry, while the local fishermen keep claiming possible impacts of TSTP effluent on a farm. Thus a new outfall was constructed away from the farm as a remedy, although its effect has not been extensively investigated yet. Therefore, a numerical modeling is required to assess the present situation and to further utilize it for improvement of the outfall design. In the present study, we develop a quadruple-nested high-resolution ocean model based on ROMS. The sewage effluent capability is implemented into the innermost ROMS-L4 model with horizontal grid spacing of 20 m as an additional Eulerian passive tracer model based on Uchiyama et al. (2014). Non-dimensional concentration of sewage effluent is applied at the locations of the two existing outfalls as a bottom-released freshwater plume at a constant volume rate of 180,000 m3/day. The normal sewage discharge results in eastward transport with frequent intrusions into the seaweed farm to the east of TSTP. The diversion discharge from the new outfall evidently alters salinity and tracer concentration in the farm owing to counter-clockwise residual circulation formed near AS that promotes southward (offshore) transport. The eastward effluent transport is reduced significantly by about 50 % on and around the eastern shore including the farm.

  5. Fecal coliform accumulation within a river subject to seasonally-disinfected wastewater discharges.

    PubMed

    Mitch, Azalea A; Gasner, Katherine C; Mitch, William A

    2010-09-01

    As pathogen contamination is a leading cause of surface water impairment, there has been increasing interest in the implications of seasonal disinfection practices of wastewater effluents for meeting water quality goals. For receiving waters designated for recreational use, disinfection during the winter months is often considered unnecessary due to reduced recreational usage, and assumptions that lower temperatures may reduce pathogen accumulation. For a river subject to seasonal disinfection, we sought to evaluate whether fecal coliforms accumulate during the winter to concentrations that would impair river water quality. Samples were collected from municipal wastewater outfalls along the river, as well as upstream and downstream of each outfall during the winter, when disinfection is not practiced, and during the summer, when disinfection is practiced. During both seasons, fecal coliform concentrations reached 2000-5000 CFU/100 mL, nearly an order of magnitude higher than levels targeted for the river to achieve primary contact recreational uses. During the summer, wastewater effluents were not significant contributors to fecal coliform loadings to the river. During the winter, fecal coliform accumulated along the river predominantly due to loadings from successive wastewater outfalls. In addition to the exceedance of fecal coliform criteria within the river, the accumulation of wastewater-derived fecal coliform along the river during the winter season suggests that wastewater outfalls may contribute elevated loads of pathogens to the commercial shellfish operations occurring at the mouth of the river. Reductions in fecal coliform concentrations between wastewater outfalls were attributed to dilution or overall removal. Combining discharge measurements from gauging stations, tributaries and wastewater outfalls to estimate seepage, dilution between wastewater outfalls was estimated, along with the percentage of the river deriving from wastewater outfalls. After accounting for dilution, the residual reductions in fecal coliform concentrations observed between outfalls were attributed to actual fecal coliform removal. The estimated rate of removal of 1.52 d(-1) was significantly higher than die-off rates determined by previous researchers at similarly low temperatures in laboratory batch experiments, indicating the potential importance of other removal mechanisms, such as predation or sedimentation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999-2001)

    NASA Astrophysics Data System (ADS)

    Wang, Y. H.; Jan, S.; Wang, D. P.

    2003-05-01

    Tidal and mean flows in the Taiwan Strait are obtained from analysis of 2.5 years (1999-2001) of shipboard ADCP data using a spatial least-squares technique. The average tidal current amplitude is 0.46 ms -1, the maximum amplitude is 0.80 ms -1 at the northeast and southeast entrances and the minimum amplitude is 0.20 ms -1 in the middle of the Strait. The tidal current ellipses derived from the shipboard ADCP data compare well with the predictions of a high-resolution regional tidal model. For the mean currents, the average velocity is about 0.40 ms -1. The mean transport through the Strait is northward (into the East China Sea) at 1.8 Sv. The transport is related to the along Strait wind by a simple regression, transport (Sv)=2.42+0.12×wind (ms -1). Using this empirical formula, the maximum seasonal transport is in summer, about 2.7 Sv, the minimum transport is in winter, at 0.9 Sv, and the mean transport is 1.8 Sv. For comparison, this result indicates that the seasonal amplitude is almost identical to the classical estimate by Wyrtki (Physical oceanography of the southeast Asian waters, scientific results of marine investigations of the South China Sea and Gulf of Thailand, 1959-1961. Naga Report 2, Scripps Institute of Oceanography, 195 pp.) based on the mass balance in the South China Sea, while the mean is close to the recent estimate by Isobe [Continental Shelf Research 19 (1999) 195] based on the mass balance in the East China Sea.

  7. Variability in benthic exchange rate, depth, and residence time beneath a shallow coastal estuary

    NASA Astrophysics Data System (ADS)

    Russoniello, C. J.; Michael, H. A.; Heiss, J.

    2017-12-01

    Hydrodynamically-driven exchange of water between the water column and shallow seabed aquifer, benthic exchange, is a significant and dynamic component of coastal and estuarine fluid budgets, but wave-induced benthic exchange has not been measured in the field. Mixing between surface water and groundwater solutes promotes ecologically important chemical reactions, so quantifying benthic exchange rates, depths, and residence times, constrains estimates of coastal chemical cycling. In this study, we present the first field-based direct measurements of wave-induced exchange and compare it to exchange induced by the other primary drivers of exchange - tides, and currents. We deployed instruments in a shallow estuary to measure benthic exchange and temporal variability over an 11-day period. Differential pressure sensors recorded pressure gradients across the seabed, and up-and down-looking ADCPs recorded currents and pressures from which wave parameters, surface-water currents, and water depth were determined. Wave-induced exchange was calculated directly from 1) differential pressure measurements, and indirectly with an analytical solution based on wave parameters from 2) ADCP and 3) weather station data. Groundwater flow models were used to assess the effects of aquifer properties on benthic exchange depth and residence time. Benthic exchange driven by tidal pumping or current-bedform interaction was calculated from tidal stage variation and from ADCP-measured currents at the bed, respectively. Waves were the primary benthic exchange driver (average = 20.0 cm/d, maximum = 92.3 cm/d) during the measurement period. Benthic exchange due to tides (average = 3.7 cm/d) and current-bedform interaction (average = 6.5x10-2 cm/d) was much lower. Wave-induced exchange calculated from pressure measurements and ADCP-measured wave parameters matched well, but wind-based rates underestimated wave energy and exchange. Groundwater models showed that residence time and depth increased in high-permeability, incompressible aquifers, and exchange rates increased in low-permeability, compressible aquifers. These findings support and extend the utility of existing wave-induced exchange solutions and will help managers assess the importance of benthic exchange on coastal chemical cycling.

  8. Comparison of three inert markers in measuring apparent nutrient digestibility of juvenile abalone under different culture condition and temperature regimes

    NASA Astrophysics Data System (ADS)

    Nur, K. U.; Adams, L.; Stone, D.; Savva, N.; Adams, M.

    2018-03-01

    A comparative research using three inert markers, chromic oxide, yttrium and ytterbium to measure the apparent nutrient digestibility of experimental feed in juvenile Hybrid abalone (Haliotis rubra X H. laevigata) and Greenlip abalone (H.laevigata) revealed that apparent digestibility of crude protein (ADCP) measured using yttrium and ytterbium in hybrid abalone were significantly different across the treatments. Protein digestibility measured in experimental tanks was higher than those measured in indoor and outdoor commercial tanks, regardless of inert marker used. Chromic oxide led to overestimated ADCP compared to when measured using yttrium and ytterbium. There were no significant interactions between temperature and inert markers when measuring ADCP and apparent digestibility of gross energy (ADGE). However, there was a significant difference of ADCP amongst inert markers when measured in greenlip abalone cultured at two temperatures. While measurements of ADge calculated using three inert markers shared the same value.

  9. Electronic Out-fall Inspection Application - 12007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weymouth, A Kent III; Pham, Minh; Messick, Chuck

    2012-07-01

    In early 2009 an exciting opportunity was presented to the Geographic Information Systems (GIS) team at the Savannah River Site (SRS). The SRS maintenance group was directed to maintain all Out-falls on Site, increasing their workload from 75 to 183 out-falls with no additional resources. The existing out-fall inspection system consisted of inspections performed manually and documented via paper trail. The inspections were closed out upon completion of activities and placed in file cabinets with no central location for tracking/trending maintenance activities. A platform for meeting new improvements required for documentation by the Department of Health and Environmental Control (DHEC)more » out-fall permits was needed to replace this current system that had been in place since the 1980's. This was accomplished by building a geographically aware electronic application that improved reliability of site out-fall maintenance and ensured consistent standards were maintained for environmental excellence and worker efficiency. Inspections are now performed via tablet and uploaded to a central point. Work orders are completed and closed either in the field using tablets (mobile application) or in their offices (via web portal) using PCs. And finally completed work orders are now stored in a central database allowing trending of maintenance activities. (authors)« less

  10. Quality assurance testing of acoustic doppler current profiler transform matrices

    USGS Publications Warehouse

    Armstrong, Brandy; Fulford, Janice M.; Thibodeaux, Kirk G.

    2015-01-01

    The U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) is nationally responsible for the design, testing, evaluation, repair, calibration, warehousing, and distribution of hydrologic instrumentation in use within the USGS Water Mission Area (WMA). The HIF's Hydraulic Laboratory has begun routine quality assurance (QA) testing and documenting the performance of every USGS WMA acoustic Doppler current profiler (ADCP) used for making velocity and discharge measurements. All existing ADCPs are being registered and tracked in a database maintained by the HIF, and called for QA checks in the HIF's Hydraulic Laboratory on a 3- year cycle. All new ADCPs purchased directly from the manufacturer as well as ADCPs sent to the HIF or the manufacturer for repair are being registered and tracked in the database and QA checked in the laboratory before being placed into service. Meters failing the QA check are sent directly to the manufacturer for repairs and rechecked by HIF or removed from service. Although this QA program is specific to the SonTek1 and Teledyne RD Instruments1, ADCPs most commonly used within the WMA, it is the intent of the USGS Office of Surface Water and the HIF to expand this program to include all bottom tracking ADCPs as they become available and more widely used throughout the WMA. As part of the HIF QA process, instruments are inspected for physical damage, the instrument must pass the ADCP diagnostic self-check tests, the temperature probe must be within ± 2 degrees Celsius of a National Institute of Standards and Technology traceable reference thermometer and the distance made good over a fixed distance must meet the manufacturer's specifications (+/-0.25% or +/-1% difference). The transform matrix is tested by conducting distance-made-good (DMG) tests comparing the straight-line distance from bottom tracking to the measured tow-track distance. The DMG test is conducted on each instrument twice in the forward and reverse directions (4 tows) at four orientations (16 total tows); with beam 1 orientated 0 degrees to the towing direction; turned 45 degrees to the towing direction; turned 90 degrees to the towing direction; and turned 135 degrees to the towing direction. All QA data files and summary results are archived. This paper documents methodology, participation and preliminary results of WMA ADCP QA testing.

  11. From mobile ADCP to high-resolution SSC: a cross-section calibration tool

    USGS Publications Warehouse

    Boldt, Justin A.

    2015-01-01

    Sediment is a major cause of stream impairment, and improved sediment monitoring is a crucial need. Point samples of suspended-sediment concentration (SSC) are often not enough to provide an understanding to answer critical questions in a changing environment. As technology has improved, there now exists the opportunity to obtain discrete measurements of SSC and flux while providing a spatial scale unmatched by any other device. Acoustic instruments are ubiquitous in the U.S. Geological Survey (USGS) for making streamflow measurements but when calibrated with physical sediment samples, they may be used for sediment measurements as well. The acoustic backscatter measured by an acoustic Doppler current profiler (ADCP) has long been known to correlate well with suspended sediment, but until recently, it has mainly been qualitative in nature. This new method using acoustic surrogates has great potential to leverage the routine data collection to provide calibrated, quantitative measures of SSC which hold promise to be more accurate, complete, and cost efficient than other methods. This extended abstract presents a method for the measurement of high spatial and temporal resolution SSC using a down-looking, mobile ADCP from discrete cross-sections. The high-resolution scales of sediment data are a primary advantage and a vast improvement over other discrete methods for measuring SSC. Although acoustic surrogate technology using continuous, fixed-deployment ADCPs (side-looking) is proven, the same methods cannot be used with down-looking ADCPs due to the fact that the SSC and particle-size distribution variation in the vertical profile violates theory and complicates assumptions. A software tool was developed to assist in using acoustic backscatter from a down-looking, mobile ADCP as a surrogate for SSC. This tool has a simple graphical user interface that loads the data, assists in the calibration procedure, and provides data visualization and output options. This tool is designed to improve ongoing efforts to monitor and predict resource responses to a changing environment. Because ADCPs are used routinely for streamflow measurements, using acoustic backscatter from ADCPs as a surrogate for SSC has the potential to revolutionize sediment measurements by providing rapid measurements of sediment flux and distribution at spatial and temporal scales that are far beyond the capabilities of traditional physical samplers.

  12. Direct evidence of histopathological impacts of wastewater discharge on resident Antarctic fish (Trematomus bernacchii) at Davis Station, East Antarctica.

    PubMed

    Corbett, Patricia A; King, Catherine K; Stark, Jonathan S; Mondon, Julie A

    2014-10-15

    During the 2009/2010 summer, a comprehensive environmental impact assessment (EIA) of the wastewater discharge at Davis Station, East Antarctica was completed. As part of this, histological alteration of gill and liver tissue in Antarctic Rock-cod (Trematomus bernacchii) from four sites along a spatial gradient from the wastewater outfall were assessed. All fish within 800 m of the outfall exhibited significant histological changes in both tissues. Common pathologies observed in fish closest to the outfall include proliferation of epithelial cells with associated secondary lamellar fusion in the gills and multifocal granulomata with inflammation and necrosis as well as cysts in the liver. Fish from sites >800 m from the outfall also exhibited alterations but to a lesser degree, with prevalence and severity decreasing with increasing distance from the outfall. This study highlights the value of histopathological investigations as part of EIAs and provides the first evidence of sub-lethal alteration associated with wastewater discharge in East Antarctica. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Histogram analysis derived from apparent diffusion coefficient (ADC) is more sensitive to reflect serological parameters in myositis than conventional ADC analysis.

    PubMed

    Meyer, Hans Jonas; Emmer, Alexander; Kornhuber, Malte; Surov, Alexey

    2018-05-01

    Diffusion-weighted imaging (DWI) has the potential of being able to reflect histopathology architecture. A novel imaging approach, namely histogram analysis, is used to further characterize tissues on MRI. The aim of this study was to correlate histogram parameters derived from apparent diffusion coefficient (ADC) maps with serological parameters in myositis. 16 patients with autoimmune myositis were included in this retrospective study. DWI was obtained on a 1.5 T scanner by using the b-values of 0 and 1000 s mm - 2 . Histogram analysis was performed as a whole muscle measurement by using a custom-made Matlab-based application. The following ADC histogram parameters were estimated: ADCmean, ADCmax, ADCmin, ADCmedian, ADCmode, and the following percentiles ADCp10, ADCp25, ADCp75, ADCp90, as well histogram parameters kurtosis, skewness, and entropy. In all patients, the blood sample was acquired within 3 days to the MRI. The following serological parameters were estimated: alanine aminotransferase, aspartate aminotransferase, creatine kinase, lactate dehydrogenase, C-reactive protein (CRP) and myoglobin. All patients were screened for Jo1-autobodies. Kurtosis correlated inversely with CRP (p = -0.55 and 0.03). Furthermore, ADCp10 and ADCp90 values tended to correlate with creatine kinase (p = -0.43, 0.11, and p = -0.42, = 0.12 respectively). In addition, ADCmean, p10, p25, median, mode, and entropy were different between Jo1-positive and Jo1-negative patients. ADC histogram parameters are sensitive for detection of muscle alterations in myositis patients. Advances in knowledge: This study identified that kurtosis derived from ADC maps is associated with CRP in myositis patients. Furthermore, several ADC histogram parameters are statistically different between Jo1-positive and Jo1-negative patients.

  14. Acoustic Doppler current profiler applications used in rivers and estuaries by the U.S. Geological Survey

    USGS Publications Warehouse

    Gotvald, Anthony J.; Oberg, Kevin A.

    2009-01-01

    The U.S. Geological Survey (USGS) has collected streamflow information for the Nation's streams since 1889. Streamflow information is used to predict floods, manage and allocate water resources, design engineering structures, compute water-quality loads, and operate water-control structures. The current (2007) size of the USGS streamgaging network is over 7,400 streamgages nationwide. The USGS has progressively improved the streamgaging program by incorporating new technologies and techniques that streamline data collection while increasing the quality of the streamflow data that are collected. The single greatest change in streamflow measurement technology during the last 100 years has been the development and application of high frequency acoustic instruments for measuring streamflow. One such instrument, the acoustic Doppler current profiler (ADCP), is rapidly replacing traditional mechanical current meters for streamflow measurement (Muste and others, 2007). For more information on how an ADCP works see Simpson (2001) or visit http://hydroacoustics.usgs.gov/. The USGS has used ADCPs attached to manned or tethered boats since the mid-1990s to measure streamflow in a wide variety of conditions (fig. 1). Recent analyses have shown that ADCP streamflow measurements can be made with similar or greater accuracy, efficiency, and resolution than measurements made using conventional current-meter methods (Oberg and Mueller, 2007). ADCPs also have the ability to measure streamflow in streams where traditional current-meter measurements previously were very difficult or costly to obtain, such as streams affected by backwater or tides. In addition to streamflow measurements, the USGS also uses ADCPs for other hydrologic measurements and applications, such as computing continuous records of streamflow for tidally or backwater affected streams, measuring velocity fields with high spatial and temporal resolution, and estimating suspended-sediment concentrations. An overview of these applications is provided in the fact sheet.

  15. Vertical Structure and Dynamics of the Beaufort Gyre Subsurface Layer from ADCP Obervations

    NASA Astrophysics Data System (ADS)

    Torres, D. J.; Krishfield, R. A.; Proshutinsky, A. Y.; Timmermans, M. L. E.

    2014-12-01

    As part of the Beaufort Gyre Observing System (BGOS), several Acoustic Doppler Current Profilers (ADCPs) have been maintained at moorings in different locations in the Canada Basin since 2005 to measure upper ocean velocities and sea ice motion. The ADCP data have been analyzed to better understand relationships among different components of forcing driving the sea ice and upper ocean layer including: winds, tides, and horizontal and vertical density gradients in the ocean. Specific attention is paid to data processing and analysis to separate inertial and tidal motions in these regions in the vicinity of the critical latitudes. In addition, we describe the dynamic characteristics of halocline eddies and estimate their kinetic energy and their role in the total energy balance in this region. Ice-Tethered Profiler (ITP) data are used in conjunction with the ADCP measurements to identify relationships between T-S and vertical velocity structures in the mixed layer and deeper. Seasonal and interannual variability in all parameters are also discussed and causes of observed changes are suggested.

  16. From the CMV Oleander Project: A Study of the Shelfbreak Front of the Middle Atlantic Bight From Long-term ADCP and Hydrographic Data

    NASA Astrophysics Data System (ADS)

    Flagg, C. N.; Dunn, M.; Wang, D.

    2004-12-01

    Utilizing the first decade of shipboard ADCP data as well as XBT and surface salinity data obtained from the CMV Oleander, this study is focused on the mean structure, and seasonal and interannual variability of the frontal zone at the edge of the shelf of the Middle Atlantic Bight. The early analysis showed that more than half the data in the frontal zone were influenced by warm core rings and that removing the confounding influence of the rings was vital if the true structure of the front was to emerge. From the culled data set of 128 transects of the front with sufficient coverage we have proceeded to generate a velocity description following the core of the frontal jet showing a maximum, surface intensified velocity of more than 0.25 ms-1, a vertical extent of roughly 80 m, a half-amplitude width of about 20 km and an alongshore transport of ~0.34 Sv. The maximum mean relative vorticity of the jet is 0.56*f. The alongshore jet is accompanied by a substantial surface intensified convergent flow that implies a maximum down-welling in the center of the jet of ~30 m/day. The seasonally the shelfbreak jet has its minimal velocities during the summer months, increasing to maximal velocities during the winter before decreasing agin in the spring. An interesting feature that emerges from the ADCP data is that while the shelfbreak frontal jet is usually assumed to consist of a single high-speed core, in fact, the jet often exhibits multiple high velocity extrema, the existence of which appears to undergo a seasonal progression.

  17. Feasibility of Estimating Constituent Concentrations and Loads Based on Data Recorded by Acoustic Instrumentation

    USGS Publications Warehouse

    Lietz, A.C.

    2002-01-01

    The acoustic Doppler current profiler (ADCP) and acoustic Doppler velocity meter (ADVM) were used to estimate constituent concentrations and loads at a sampling site along the Hendry-Collier County boundary in southwestern Florida. The sampling site is strategically placed within a highly managed canal system that exhibits low and rapidly changing water conditions. With the ADCP and ADVM, flow can be gaged more accurately rather than by conventional field-data collection methods. An ADVM velocity rating relates measured velocity determined by the ADCP (dependent variable) with the ADVM velocity (independent variable) by means of regression analysis techniques. The coefficient of determination (R2) for this rating is 0.99 at the sampling site. Concentrations and loads of total phosphorus, total Kjeldahl nitrogen, and total nitrogen (dependent variables) were related to instantaneous discharge, acoustic backscatter, stage, or water temperature (independent variables) recorded at the time of sampling. Only positive discharges were used for this analysis. Discharges less than 100 cubic feet per second generally are considered inaccurate (probably as a result of acoustic ray bending and vertical temperature gradients in the water column). Of the concentration models, only total phosphorus was statistically significant at the 95-percent confidence level (p-value less than 0.05). Total phosphorus had an adjusted R2 of 0.93, indicating most of the variation in the concentration can be explained by the discharge. All of the load models for total phosphorus, total Kjeldahl nitrogen, and total nitrogen were statistically significant. Most of the variation in load can be explained by the discharge as reflected in the adjusted R2 for total phosphorus (0.98), total Kjeldahl nitrogen (0.99), and total nitrogen (0.99).

  18. Calculation of in situ acoustic sediment attenuation using off-the-shelf horizontal ADCPs in low concentration settings

    USGS Publications Warehouse

    Haught, Dan; Venditti, Jeremy G.; Wright, Scott A.

    2017-01-01

    The use of “off-the-shelf” acoustic Doppler velocity profilers (ADCPs) to estimate suspended sediment concentration and grain-size in rivers requires robust methods to estimate sound attenuation by suspended sediment. Theoretical estimates of sediment attenuation require a priori knowledge of the concentration and grain-size distribution (GSD), making the method impractical to apply in routine monitoring programs. In situ methods use acoustic backscatter profile slope to estimate sediment attenuation, and are a more attractive option. However, the performance of in situ sediment attenuation methods has not been extensively compared to theoretical methods. We used three collocated horizontally mounted ADCPs in the Fraser River at Mission, British Columbia and 298 observations of concentration and GSD along the acoustic beams to calculate theoretical and in situ sediment attenuation. Conversion of acoustic intensity from counts to decibels is influenced by the instrument noise floor, which affects the backscatter profile shape and therefore in situ attenuation. We develop a method that converts counts to decibels to maximize profile length, which is useful in rivers where cross-channel acoustic profile penetration is a fraction of total channel width. Nevertheless, the agreement between theoretical and in situ attenuation is poor at low concentrations because cross-stream gradients in concentration, sediment size or GSD can develop, which affect the backscatter profiles. We establish threshold concentrations below which in situ attenuation is unreliable in Fraser River. Our results call for careful examination of cross-stream changes in suspended sediment characteristics and acoustic profiles across a range of flows before in situ attenuation methods are applied in river monitoring programs.

  19. Extracting Prior Distributions from a Large Dataset of In-Situ Measurements to Support SWOT-based Estimation of River Discharge

    NASA Astrophysics Data System (ADS)

    Hagemann, M.; Gleason, C. J.

    2017-12-01

    The upcoming (2021) Surface Water and Ocean Topography (SWOT) NASA satellite mission aims, in part, to estimate discharge on major rivers worldwide using reach-scale measurements of stream width, slope, and height. Current formalizations of channel and floodplain hydraulics are insufficient to fully constrain this problem mathematically, resulting in an infinitely large solution set for any set of satellite observations. Recent work has reformulated this problem in a Bayesian statistical setting, in which the likelihood distributions derive directly from hydraulic flow-law equations. When coupled with prior distributions on unknown flow-law parameters, this formulation probabilistically constrains the parameter space, and results in a computationally tractable description of discharge. Using a curated dataset of over 200,000 in-situ acoustic Doppler current profiler (ADCP) discharge measurements from over 10,000 USGS gaging stations throughout the United States, we developed empirical prior distributions for flow-law parameters that are not observable by SWOT, but that are required in order to estimate discharge. This analysis quantified prior uncertainties on quantities including cross-sectional area, at-a-station hydraulic geometry width exponent, and discharge variability, that are dependent on SWOT-observable variables including reach-scale statistics of width and height. When compared against discharge estimation approaches that do not use this prior information, the Bayesian approach using ADCP-derived priors demonstrated consistently improved performance across a range of performance metrics. This Bayesian approach formally transfers information from in-situ gaging stations to remote-sensed estimation of discharge, in which the desired quantities are not directly observable. Further investigation using large in-situ datasets is therefore a promising way forward in improving satellite-based estimates of river discharge.

  20. Suspended sediment dynamics in a large-scale oceanic turbidity current: Direct measurements from the Congo Canyon

    NASA Astrophysics Data System (ADS)

    Simmons, Steve; Azpiroz, Maria; Cartigny, Matthieu; Clare, Mike; Parsons, Dan; Sumner, Esther; Talling, Pete

    2017-04-01

    Turbidity currents transport prodigious volumes of sediment to the deep ocean, depositing a greater volume of sediment than any other process on Earth. Thus far, only a handful of studies have reported direct measurements of turbidity currents, with typical flow durations ranging from a few minutes to a few hours. Consequently, our understanding of turbidity current dynamics is largely derived from scaled laboratory experiments and numerical models. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements of velocity and backscatter were acquired along profiles through the water column at five and six second intervals by two acoustic Doppler current profilers (ADCPs) on separate moorings suspended 80 m and 200 m above the canyon floor, at a water depth of 2000 m. We present a novel inversion method that combines the backscatter from the two ADCPs, acquired at different acoustic frequencies, which enables the first high resolution quantification of sediment concentration and grain size within an oceanic turbidity current. Our results demonstrate the presence of high concentrations of coarse sediment within a fast moving, thin frontal cell, which outruns a slower-moving, thicker, trailing body that can persist for several days. Thus, the flows stretch while propagating down-canyon, demonstrating a behavior that is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended clay-sized sediment and the flow structure is shown to be influenced by interactions with the internal tides in the canyon.

  1. Observations of transitional tidal boundary layers and their impact on sediment transport in the Great Bay, NH

    NASA Astrophysics Data System (ADS)

    Koetje, K. M.; Foster, D. L.; Lippmann, T. C.

    2017-12-01

    Observations of the vertical structure of tidal flows obtained in 2016 and 2017 in the Great Bay Estuary, NH show evidence of transitional tidal boundary layers at deployment locations on shallow mudflats. High-resolution bottom boundary layer currents, hydrography, turbidity, and bed characteristics were observed with an acoustic Doppler current profiler (ADCP), an acoustic Doppler velocimeter (ADV), conductivity-depth-temperature (CTD) sensors, optical backscatter sensors, multibeam bathymetric surveys, and sediment grab samples and cores. Over the 2.5 m tidal range and at water depths ranging from 0.3 m to 1.5 m at mean lower low water, peak flows ranged from 10 cm/s to 30 cm/s and were primarily driven by the tides. A downward-looking ADCP captured the velocity profile over the lowest 1 m of the water column. Results consistently show a dual-log layer system, with evidence of a lower layer within 15 cm of the bed, another layer above approximately 30 cm from the bed, and a transitional region where the flow field rotates between that the two layers that can be as much as 180 degrees out of phase. CTD casts collected over a complete tidal cycle suggest that the weak thermohaline stratification is not responsible for development of the two layers. On the other hand, acoustic and optical backscatter measurements show spatial and temporal variability in suspended sediments that are dependant on tidal phase. Current work includes an examination of the relationship between sediment concentrations in the water column and velocity profile characteristics, along with an effort to quantify the impact of rotation and dual-log layers on bed stress.

  2. Physical oceanographic investigation of Massachusetts and Cape Cod Bays

    USGS Publications Warehouse

    Geyer, W. Rockwell; Gardner, George B.; Brown, Wendell S.; Irish, James D.; Butman, Bradford; Loder, T.C.; Signell, Richard P.

    1992-01-01

    This physical oceanographic study of the Massachusetts Bays (fig. 1) was designed to provide for the first time a bay-wide description of the circulation and mixing processes on a seasonal basis. Most of the measurements were conducted between April 1990 and June 1991 and consisted of moored observations to study the current flow patterns (fig. 2), hydrographic surveys to document the changes in water properties (fig. 3), high-resolution surveys of velocity and water properties to provide information on the spatial variability of the flow, drifter deployments to measure the currents, and acquisition of satellite images to provide a bay-wide picture of the surface temperature and its spatial variability. A longterm objective of the Massachusetts Bays program is to develop an understanding of the transport of water, dissolved substances and particles throughout the bays. Because horizontal and vertical transport is important to biological, chemical, and geological processes in Massachusetts and Cape Cod Bays, this physical oceanographic study will have broad application and will improve the ability to manage and monitor the water and sediment quality of the Bays. Key results are:There is a marked seasonal variation in stratification in the bays, from well mixed conditions during the winter to strong stratification in the summertime. The stratification acts as a partial barrier to exchange between the surface waters and the deeper waters and causes the motion of the surface waters to be decoupled from the more sluggish flow of the deep waters. During much of the year, there is weak but persistent counterclockwise flow around the bays, made up of southwesterly flow past Cape Ann, southward flow along the western shore, and outflow north of Race Point. The data suggest that this residual flow pattern reverses in fall. Fluctuations caused by wind and density variations are typically larger than the long-term mean. With the exception of western Massachusetts Bay, flushing of the Bays is largely the result of the mean throughflow. Residence time estimates of the surface waters range from 20-45 days. The deeper water has a longer residence time, but its value is difficult to estimate. There is evidence that the deep waters in Stellwagen Basin are not renewed between the onset of stratification and the fall cooling period.Current measurements made near the new outfall site in western Massachusetts Bay suggest that water and material discharged there are not swept away in a consistent direction by a well-defined steady current but are mixed and transported by a variety of processes, including the action of tides, winds, and river inflow. One-day particle excursions are typically less than 10 km. The outfall is apparently located in a region to the west of the basin-wide residual flow pattern.Observations in western Massachusetts Bay, near the location of the future Boston sewage outfall, show that the surficial sediments are episodically resuspended from the seafloor during storms. The observations suggest onshore transport of suspended material during tranquil periods and episodic offshore and southerly alongshore transport of resuspended sediments during storms. The spatial complexity of the flow in the Massachusetts Bays is typical of nearshore areas that have irregular coastal shorelines and topography and currents that are forced locally by wind and river runoff as well as by the flow in adjacent regions. Numerical models are providing a mechanism to interpret the complex spatial flow patterns that cannot be completely resolved by field observations and to investigate key physical processes that control the physics of water and particle transport.

  3. Measurements of leakage from Lake Michigan through three control structures near Chicago, Illinois, April-October 1993

    USGS Publications Warehouse

    Oberg, K.A.; Schmidt, A.R.

    1994-01-01

    A total of 213 measurements of leakage were made at three control structures near Chicago, Ill.--the Chicago River Controlling Works (CRCW), Thomas J. O'Brien Lock and Dam (O'Brien), and Wilmette Pumping Station (Wilmette)--using acoustic Doppler current profilers (ADCP's) and dye-dilution techniques. The CRCW consists of the Chicago Lock and two sets of sluice gates connected by a network of harbor walls. Leakage measurements were made in April, May, July, September, and October 1993 using an ADCP. The mean and standard deviation of leakage measured by the ADCP for the Chicago Lock river gate were 133 and 39 cubic feet per second, respectively. The mean and standard deviation of the leakage measurements at CRCW were 204 and 70 cubic feet per second, respectively. The mean and standard deviation of leakage measurements at O'Brien on September 17, 1993, were 21 and 10 cubic feet per second, respectively. The mean and standard deviation leakage measured at Wilmette using the ADCP were 59 and 8 cubic feet per second, respectively, in April 1993. After the pump bays at Wilmette were sealed in July 1993, the leakage dropped to less than 15 cubic feet per second in September 1993. Discharge estimated by dye-dilution at the Chicago Lock on July 15, 1993, was 160 cubic feet per second, or within 8 percent of the discharge measured with the ADCP. (USGS)

  4. Tidal and residual currents across the northern Ryukyu Island chain observed by ferryboat ADCP

    NASA Astrophysics Data System (ADS)

    Liu, Zhao-Jun; Nakamura, Hirohiko; Zhu, Xiao-Hua; Nishina, Ayako; Dong, Menghong

    2017-09-01

    Ferryboat Acoustic Doppler Current Profiler (ADCP) data from 2003 to 2012 are used to estimate the tidal and residual currents across the northern Ryukyu Island chain (RIC) between the islands of Okinawa and Amamioshima. In this region, the M2 tide current is the strongest tidal component, and the K1 tide current is the strongest diurnal tidal component. The corresponding maximum amplitudes are 40 and 34 cm s-1, respectively. After removal of the tidal currents, the mean volume transport, 1.5 ± 2.7 Sv, flows into the East China Sea (ECS) from the western North Pacific through four channels in this area. In an empirical orthogonal function (EOF) analysis performed to clarify the temporal and spatial variability of currents through the four channels, the first two EOF modes account for 71% and 18% of the total variance, respectively. The EOF1 mode shows a clear bottom-intensified mode through the deep channel, which is likely to be formed by the propagation of bottom-trapped long topographic Rossby wave caused by the impingement of westward-propagating mesoscale eddies upon the eastern slope of the northern RIC. The EOF2 mode has significant seasonal variability and may be driven by the wind stress prevailing over the Kuroshio flow region around the northern RIC in October-November. This study provides observational evidence of the water exchanges across the northern RIC, which is essential for constructing a circulation scheme in the North Pacific subtropical western boundary region.

  5. Turbulence Measurements from a Moored Platform at Mid-Depth in a Swift Tidal Channel

    NASA Astrophysics Data System (ADS)

    Hay, Alex; Lueck, Rolf; Wolk, Fabian; McMillan, Justine

    2014-05-01

    Results are presented from a turbulence experiment with a 3-m long streamlined floatation body, instrumented with velocity shear probes, fast-response thermistors, a 1 MHz Acoustic Doppler Current Profiler (AD2CP), and an Acoustic Doppler Velocimeter (ADV). The system was deployed over seven tidal cycles at mid-depth in a 30-m deep tidal channel in the lower Bay of Fundy, Canada. Peak flow speeds exceeded 2 m s-1, and while 10-min time scale average speeds were similar between ebb and flood, the variances were markedly higher during flood. Turbulent kinetic energy (TKE) dissipation rates measured with the shear probes exhibit a pronounced flood/ebb contrast: O(10-4) W kg-1 peak values during flood, but lower by an order of magnitude during ebb. Dissipation rates follow u3 scaling over a wide range of flow speeds between 0.5 and 2.5 m s-1. Below 0.5 m s-1 an asymmetry in the mounting arrangement caused the floatation body to pitch upward, biasing the measured dissipation values high. The ADV on the platform registered mean speed - used to implement Taylor's hypothesis - which was corroborated with the platform-mounted ADCP. Additional ADCPs were also deployed on a nearby bottom pod, sampling at turbulence resolving rates - up to 8 Hz. Comparisons between the shear probe and acoustic estimates of the TKE spectrum and dissipation rate - at comparable depths - are presented.

  6. The atypical hydrodynamics of the Mayotte Lagoon (Indian Ocean): Effects on water age and potential impact on plankton productivity

    NASA Astrophysics Data System (ADS)

    Chevalier, C.; Devenon, J. L.; Pagano, M.; Rougier, G.; Blanchot, J.; Arfi, R.

    2017-09-01

    In mesotidal lagoons of the Indian Ocean, the coral reef barrier may be temporarily submerged at high tide and partially exposed at low tide, and this may cause unusual lagoon dynamics. A field measurement campaign was conducted in the north-east Mayotte Lagoon in order to understand these processes. An experimental approach was used, combining measurements taken by 1) a side-mounted Acoustic Doppler Current Profiler (ADCP) on a moving boat along transects through the reef passages (17 transects) and 2) by more conventional high-resolution moored ADCP measurements. A specific tidal analysis methodology was used to determine the spatial variability of the velocity. The tidal hydrodynamics within the lagoon were determined using a numerical model and then analyzed. The tide acted as a quasi-progressive forced wave in the lagoon: at low tide, water entered through the south passage, over the reef and left the lagoon through the north passage. This flow was reversed at high tide. The tide-driven quasi-progressive wave created a specific lagoon dynamics. Contrary to most other channel lagoons, the flow over the reef was mainly outward. This increases the inflow through the passages, which renews the water in the lagoon as shown by the indicators of age and origin of the water inside the lagoon. This study also showed the importance of these indicators for better understanding the variations and levels of plankton biomass (with chlorophyll concentration as proxy) which is quite high in this lagoon.

  7. Spectral Interpretation of Wave-vortex Duality in Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Cao, H.; Jing, Z.; Yan, T.

    2017-12-01

    The mesoscale to submesocale oceanic dynamics are characterized by a joint effect of vortex and wave component, which primarily declares the partition between geostrophic balanced and unbalanced flows. The spectral method is a favorable approach that can afford the muti-scale analysis. This study investigates the characteristics of horizontal wavenumber spectra in Nothern South China Sea using orbital altimeter data (SARA/AltiKa), 13-yr shipboard ADCP (Acoustic Doppler Current Profiler) measurements (2014-2016), and a high-resolution numerical simulation (llc4320 Mitgcm). The observed SSH (sea surface height) spectrum presents a conspicuous transition at scales of 50-100 km, which clearly shows the inconsistency with geostrophic balance. The Helmholtz decomposition separating the wave and vortex energy for the spectra of ADCP and numerical model data shows that ageostrophic flows should be responsible for the spectral discrepancy with the QG (qusi-geostrophic) turbulence theory. Generally, it is found that inertia-gravity waves (including internal tides) govern the significant kinetic energy in the submesoscale range in Northern South China Sea. More specific analysis suggests that the wave kinetic energy can extend to a large scale of 500 km or more from the zonal velocity spectra at the left-center of Luzon Strait, which appears to be dominated by inertia-gravity waves likely emitted by the intrusion of the west pacific at Luzon Strait. Instead, the development of eddy kinetic energy at this place is strictly constrained by the width of the strait.

  8. Field Data Collection Methods and Data Processing of the Influence of Low Momentum Ratio and the Rate of Sediment Transport Forcing on Confluence Hydrodynamics, Morphodynamics and Mixing

    NASA Astrophysics Data System (ADS)

    Moradi, Gelare; Cardot, Romain; Lane, Stuart; Rennie, Colin

    2017-04-01

    River confluences are zones where two or more rivers join and form a single channel downstream of their junction. Because of their essential role in the dynamic of fluvial networks, there has been an increase in the attention given to their hydrodynamics and morphodynamics during last three decades. Despite this increased understanding of the complex flow behavior and morphological aspects, few studies has been focused on low momentum ratio river confluences and mixing processes. As among these few studies, most of them have been driven by the mean of laboratory experiments and numerical models, a combination of field data collection and data processing is required to study the effect of low momentum ratio on flow dynamic, rive morphology and rate of mixing in river confluences. In the present poster, the flow discharge and velocity data of two upper Rhône river confluences in Switzerland, which are characterized by low momentum ratio and a varied rate of poorly sorted sediment transport is shown. The data set is mostly collected, using spatial distributed acoustic Doppler current profiling (aDcp) measurements. The morphological changes are studied using a combination of high-resolution aerial imagery data obtained by a phantom drone and acoustic bathymetric surveys. The mixing processes are investigated by measuring the surface water temperature with a thermic camera mounted on an E-bee drone [, whereas sediment pathways can be explored through the use of the 'bottom-tracking' feature of the aDcp device (not sure there will be such results at the conference time)]. These collected data is processed using a matlab code, Pix4D and visualization software. These processed data then can be used to describe the flow behavior, morphological aspects and mixing processes at river confluences characterized by low momentum ratio and to test laboratory derived conceptual models of flow processes at such junctions. The obtained results can be used under a wider range of forcing conditions to provide detailed data on the three-dimensional flow field and the morphology, to validate numerical models.

  9. Characterization of stormwater at selected South Carolina Department of Transportation maintenance yard and section shed facilities in Ballentine, Conway, and North Charleston, South Carolina, 2010-2012

    USGS Publications Warehouse

    Journey, Celeste A.; Conlon, Kevin J.

    2013-01-01

    The South Carolina Department of Transportation operates section shed and maintenance yard facilities throughout the State. The U.S. Geological Survey conducted a cooperative investigation with the South Carolina Department of Transportation to characterize water-quality constituents that are transported in stormwater from representative maintenance yard and section shed facilities in South Carolina. At a section shed in Ballentine, S.C., stormwater discharges to a retention pond outfall (Ballentine). At the Conway maintenance yard, stormwater in the southernmost section discharges to a pipe outfall (Conway1), and stormwater in the remaining area discharges to a grass-lined ditch (Conway2). At the North Charleston maintenance yard, stormwater discharges from the yard to Turkey Creek through a combination of pipes, ditches, and overland flow; therefore, samples were collected from the main channel of Turkey Creek at the upstream (North Charleston1) and downstream (North Charleston2) limits of the North Charleston maintenance yard facility. The storms sampled during this study had a wide range of rainfall amounts, durations, and intensities at each of the facilities and, therefore, were considered to be reasonably representative of the potential for contaminant transport. At all facilities, stormwater discharge was significantly correlated to rainfall amount and intensity. Event-mean unit-area stormwater discharge increased with increasing impervious surface at the Conway and North Charleston maintenance yards. The Ballentine facility with 79 percent impervious surface had a mean unit-area discharge similar to that of the North Charleston maintenance yard (62 percent impervious surface). That similarity may be attributed, in part, to the effects of the retention pond on the stormwater runoff at the Ballentine facility and to the greater rainfall intensities and amounts at the North Charleston facility. Stormwater samples from the facilities were analyzed for multiple constituents and characteristics. Concentrations of sediment and concentrations of nutrients and fecal indicator bacteria, which are commonly transported with the sediment in stormwater, were measured. Total and dissolved concentrations of six trace metals were determined in the samples. Stormwater samples also were analyzed for organic compounds including 10 herbicides, 18 organochlorine pesticides, 7 Aroclor or polychlorinated biphenyl congeners, 44 volatile organic compounds, and 16 polycyclic aromatic hydrocarbons. Stormwater often transports large quantities of sediment and sediment-bound contaminants, including nutrients and fecal indicator bacteria. Median event-mean concentrations of suspended sediment in stormwater at these facilities ranged from 54 milligrams per liter in Turkey Creek at North Charleston2 to 147 milligrams per liter in stormwater discharging from the Ballentine retention pond outfall. In general, event-mean concentrations of total nitrogen consisted mainly of total Kjeldahl nitrogen (organic nitrogen plus ammonia) rather than nitrate plus nitrite in stormwater, and the median event-mean concentrations of total nitrogen ranged from 1.59 milligrams per liter at the Conway1 pipe outfall to 2.00 milligrams per liter at the Ballentine retention pond outfall. Median event-mean concentrations of total phosphorus in stormwater ranged from 0.15 milligram per liter at the Conway1 outfall to 0.42 milligram per liter in Turkey Creek at North Charleston1. Escherichia coli and enterococcus concentrations often varied by 3 to 4 orders of magnitude in grab samples collected during the “first flush” of stormwater discharging to the sampled outfalls of Turkey Creek. Additionally, enterococcus concentrations consistently were greater than the corresponding Escherichia coli concentrations in stormwater. Specifically, median "first-flush" Escherichia coli concentrations ranged from 30 colonies per 100 milliliters at the Conway1 outfall to 4,359 colonies per 100 milliliters in Turkey Creek at North Charleston2, whereas enterococcus concentrations ranged from 512 colonies per 100 milliliters at the Conway1 outfall to 6,329 colonies per 100 milliliters in Turkey Creek at North Charleston2. In comparison to the proposed South Carolina Department of Health and Environmental Control primary and secondary body contact criterion of 349 colonies per 100 milliliter, stormwater had Escherichia coli concentrations that were greater than the criterion in 4 of the 9 storms at Ballentine retention pond outfall, 1 of the 8 storms at the Conway1 pipe outfall, 5 of the 7 storms at the Conway2 grass-lined ditch outfall, 2 of the 8 storms at North Charleston1 on Turkey Creek, and 8 of the 8 storms at North Charleston2 on Turkey Creek. Of the six trace metals measured in stormwater, only copper and zinc had event-mean concentrations greater than the hardness-dependent South Carolina Department of Health and Environmental Control aquatic life criteria maximum concentrations. Measured dissolved copper event-mean concentrations in stormwater were greater than the criterion in 5 of the samples at the Ballentine facility, 1 of the samples at Conway1, 2 of the samples at Conway2, and 1 of the samples at North Charleston2. Measured dissolved zinc event-mean concentrations in stormwater were greater than the criterion in 3 of the samples at the Ballentine facility, 1 of the samples at Conway1, 2 of the samples at Conway2, and 0 of the samples at North Charleston2. At North Charleston1 upstream from the North Charleston maintenance yard, the measured dissolved trace-metal concentrations were all less than the criterion maximum concentrations. Among the three facilities, Conway1 outfall had the greatest range in event-mean yields in stormwater for total phosphorus, total nitrogen, total suspended solids, and suspended sediment, and both Conway outfalls tended to have median event-mean yields greater than those of the Ballentine and North Charleston yard facilities. "First-flush” yields of Escherichia coli in stormwater were not statistically different among the three facilities. Median event-mean yields of suspended sediment, total nitrogen, total phosphorus, total copper, and total zinc in stormwater demonstrated a strong linear relation to impervious surface at the three facilities. However, median "first-flush" fecal indicator bacterial yields did not have a linear relation to impervious surface.

  10. Trends in polychlorinated biphenyl concentrations in Hudson River water five years after elimination of point sources

    USGS Publications Warehouse

    Schroeder, R.A.; Barnes, C.R.

    1983-01-01

    Industrial discharge of polychlorinated biphenyls (PCBs) to the Hudson River from 1950 to the mid-1970 's has resulted in serious degradation of the water. Contaminated river-bottom sediments continue to contribute PCBs to the river water. Concentrations in the sediment range from several hundred micrograms per gram near the outfall to less than 10 micrograms per gram in the lower estuary. PCBs are supplied by bottom sediments to the overlying water by two mechanisms--desorption and resuspension. Because desorption is a relatively constant process, concentrations of PCBs decrease as water discharge increases. At high flow, however, scouring by turbulence causes resuspension of PCB-laden sediment. Transport rates indicate that most PCBs enter the water from the most contaminated sediments, which are within 20 kilometers of the outfall. Mean daily transport from the upper river (except during high discharges) has decreased from 10 kilograms in 1976 to 5 kilograms in the late 1970 's and to 1 kilogram in 1981. This decrease probably results from the burial of highly contaminated sediments by cleaner sediments originating upstream. (USGS)

  11. Priority rating : stormwater outfall prioritization scheme

    DOT National Transportation Integrated Search

    1996-10-01

    The prioritization system, which compares the impacts of one outfall to another : and makes a determination of their overall impacts, was developed in the : Prioritization Method for Retrofitting Highways with Stormwater BMPs, prepared : by the Water...

  12. Most Detailed Direct Measurements Yet of Turbidity Currents in the Deep Ocean: Monterey Coordinated Canyon Experiment

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Anderson, K.; Barry, J. P.; Caress, D. W.; Chaffey, M. R.; Gales, J. A.; Gwiazda, R.; Kieft, B.; Lundsten, E. M.; Maier, K. L.; McCann, M. P.; McGann, M.; O'Reilly, T. C.; Parsons, D. R.; Rosenberger, K. J.; Sumner, E.; Talling, P. J.; Xu, J.

    2016-12-01

    Submarine sediment gravity flows (turbidity currents) are among the most important sediment transport processes on Earth, yet there are remarkably few direct measurements of these events in action. The ongoing multi-institution Coordinated Canyon Experiment (CCE) is providing detailed measurements of turbidity currents using multiple sensors and sediment traps deployed in the axis of Monterey Canyon, offshore California, in 6-month long deployments from October 2015 to April 2017 together with seafloor sampling and repeated mapping of seafloor morphology. No previous study has deployed such a dense array of sensors along a turbidity current pathway. Instrumentation includes: an array of 6 moorings carrying downward looking acoustic Doppler current profilers (ADCP) and sediment traps distributed along the canyon axis from 270 to 1,850 m water depth; a benthic instrument node at 1,840 m holding ADCPs of three different frequencies recording on a common time base, as well as salinity, temperature, and turbidity sensors; a McLane profiler at 1,830 m monitoring the lower 500 m of the water column; an array of benthic event detectors (smart boulders) that record their transport within the base of a flow; and precision triangulation beacons to assess creep within the canyon floor. Repeated mapping of the canyon floor at nested grid resolutions ranging from 1-m to 1-cm is being conducted to understand changes in canyon floor morphology. The first 6-month long deployment has been completed and 8 sediment transport events recorded. Seven of these events were restricted to <520 m water depths. However, on January 15th 2016 a sediment-laden turbidity flow ran out for >50 km from <279 m to >1,860 m water depth with an average velocity of 5.4 m/sec. Individual moorings and instruments moved down-canyon up to 7.8 km during this event. The novel instrument array and mapping tools have successfully recorded the down-canyon evolution of the powerful flow in spectacular detail.

  13. Observations of the sub-inertial, near-surface East India Coastal Current

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Shankar, D.; Aparna, S. G.; Mukherjee, A.

    2017-09-01

    We present surface current measurements made using two pairs of HF (high-frequency) radars deployed on the east coast of India. The radar data, used in conjunction with data from acoustic Doppler current profiler (ADCP) measurements on the shelf and slope off the Indian east coast, confirm that the East India Coastal Current (EICC) flows poleward as a deep current during February-March. During the summer monsoon, when the EICC flows poleward, and October-December, when the EICC flows equatorward, the current is shallow (< 40 m deep), except towards the northern end of the coast. Data from Argo floats confirm a shallow mixed layer that leads to a strong vertical shear off southeast India during October-December. A consequence of the strong stratification is that the upward propagation of phase evident in the ADCP data does not always extend to the surface. Even within the seasons, however, the poleward and equatorward flows show variability at periods of the order of 20-45 days, implying that the EICC direction is the same over the top ∼100 m for short durations. The high spatial resolution of the HF radar data brings out features at scales shorter than those resolved by the altimeter and the high temporal resolution captures short bursts that are not captured in satellite-derived estimates of surface currents. The radar data show that the EICC, which is a boundary current, leaves a strong imprint on the current at the coast. Since the EICC is known to be affected significantly by remote forcing, this correlation between the boundary and nearshore current implies the need to use large-domain models even for simulating the nearshore current. Comparison with a simulation by a state-of-the-art Ocean General Circulation Model, run at a resolution of 0.1 ° × 0.1 ° , shows that the model is able to simulate only the low-frequency variability.

  14. Synoptic eddy-resolving Ocean Surveys over the Slope of the Chukchi Sea 2016 and 2017

    NASA Astrophysics Data System (ADS)

    Muenchow, A.; Elmer, C.; Badiey, M.; Eickmeier, J.; Ryan, P. A.

    2017-12-01

    Mild weather and warm waters kept the outer continental shelf of the Chukchi Sea ice-free in 2016 when we conducted ocean surveys as part of the Canada Basin Acoustic Propagation Experiment (CANAPE). We used standard CTD and ADCP profiling systems aboard R/V Sikuliaq to describe ocean density and velocity fields at 3 km scales across and 6 km scales along the slope. Our survey covers 800 km2between the 100-m and 400-m isobaths and resolves the internal Rossby radius of deformation which represents the dominant spatial (or eddy) scale for a density-stratified ocean. Our early November 2016 data revealed Bering Sea Summer Waters with temperatures exceeding 1.0 C at 80-m depth near the 200-m isobath. Three-dimensional distribution of this water and associated density gradients suggests a current to the east. The flow is likely unstable, we speculate, because it spawns eddy-like features that we will describe. We will test this hypothesis with ocean current shear estimated from vessel-mounted ADCP profiles. A similar survey is planned for October 2017, when USCGC Healy will re-visit the area to recover ocean moorings deployed prior to the 2016 surveys.

  15. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams

    USGS Publications Warehouse

    Hladik, Michelle; Focazio, Michael J.; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L− 1 with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L− 1). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L− 1) and other organic DBP precursors (phenol at 15 μg L− 1). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L− 1) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L− 1 total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged.

  16. Single-ping ADCP measurements in the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Sammartino, Simone; García Lafuente, Jesús; Naranjo, Cristina; Sánchez Garrido, José Carlos; Sánchez Leal, Ricardo

    2016-04-01

    In most Acoustic Doppler Current Profiler (ADCP) user manuals, it is widely recommended to apply ensemble averaging of the single-pings measurements, in order to obtain reliable observations of the current speed. The random error related to the single-ping measurement is typically too high to be used directly, while the averaging operation reduces the ensemble error of a factor of approximately √N, with N the number of averaged pings. A 75 kHz ADCP moored in the western exit of the Strait of Gibraltar, included in the long-term monitoring of the Mediterranean outflow, has recently served as test setup for a different approach to current measurements. The ensemble averaging has been disabled, while maintaining the internal coordinate conversion made by the instrument, and a series of single-ping measurements has been collected every 36 seconds during a period of approximately 5 months. The huge amount of data has been fluently handled by the instrument, and no abnormal battery consumption has been recorded. On the other hand a long and unique series of very high frequency current measurements has been collected. Results of this novel approach have been exploited in a dual way: from a statistical point of view, the availability of single-ping measurements allows a real estimate of the (a posteriori) ensemble average error of both current and ancillary variables. While the theoretical random error for horizontal velocity is estimated a priori as ˜2 cm s-1 for a 50 pings ensemble, the value obtained by the a posteriori averaging is ˜15 cm s-1, with an asymptotical behavior starting from an averaging size of 10 pings per ensemble. This result suggests the presence of external sources of random error (e.g.: turbulence), of higher magnitude than the internal sources (ADCP intrinsic precision), which cannot be reduced by the ensemble averaging. On the other hand, although the instrumental configuration is clearly not suitable for a precise estimation of turbulent parameters, some hints of the turbulent structure of the flow can be obtained by the empirical computation of zonal Reynolds stress (along the predominant direction of the current) and rate of production and dissipation of turbulent kinetic energy. All the parameters show a clear correlation with tidal fluctuations of the current, with maximum values coinciding with flood tides, during the maxima of the outflow Mediterranean current.

  17. Application of acoustical methods for estimating water flow and constituent loads in Perdido Bay, Florida

    USGS Publications Warehouse

    Grubbs, J.W.; Pittman, J.R.

    1997-01-01

    Water flow and quality data were collected from December 1994 to September 1995 to evaluate variations in discharge, water quality, and chemical fluxes (loads) through Perdido Bay, Florida. Data were collected at a cross section parallel to the U.S. Highway 98 bridge. Discharges measured with an acoustic Doppler current profiler (ADCP) and computed from stage-area and velocity ratings varied roughly between + or - 10,000 cubic feet per second during a typical tidal cycle. Large reversals in flow direction occurred rapidly (less than 1 hour), and complete reversals (resulting in near peak net-upstream or downstream discharges) occurred within a few hours of slack water. Observations of simultaneous upstream and downstream flow (bidirectional flow) were quite common in the ADCP measurements, with opposing directions of flow occurring predominantly in vertical layers. Continuous (every 15 minutes) discharge data were computed for the period from August 18, 1995, to September 28, 1995, and filtered daily mean discharge values were computed for the period from August 19 to September 26, 1995. Data were not computed prior to August 18, 1995, either because of missing data or because the velocity rating was poorly defined (because of insufficient data) for the period prior to landfall of hurricane Erin (August 3, 1995). The results of the study indicate that acoustical techniques can yield useful estimates of continuous (instantaneous) discharge in Perdido Bay. Useful estimates of average daily net flow rates can also be obtained, but the accuracy of these estimates will be limited by small rating shifts that introduce bias into the instantaneous values that are used to compute the net flows. Instantaneous loads of total nitrogen ranged from -180 to 220 grams per second for the samples collected during the study, and instantaneous loads of total phosphorous ranged from -10 to 11 grams per second (negative loads indicate net upstream transport). The chloride concentrations from the water samples collected from Perdido Bay indicated a significant amount of mixing of saltwater and freshwater. Mixing effects could greatly reduce the accuracy of estimates of net loads of nutrients or other substances. The study results indicate that acoustical techniques can yield acceptable estimates of instantaneous loads in Perdido Bay. However, estimates of net loads should be interpreted with great caution and may have unacceptably large errors, especially when saltwater and freshwater concentrations differ greatly.

  18. Hydrokinetic canal measurements: inflow velocity, wake flow velocity, and turbulence

    DOE Data Explorer

    Gunawan, Budi

    2014-06-11

    The dataset consist of acoustic Doppler current profiler (ADCP) velocity measurements in the wake of a 3-meter diameter vertical-axis hydrokinetic turbine deployed in Roza Canal, Yakima, WA, USA. A normalized hub-centerline wake velocity profile and two cross-section velocity contours, 10 meters and 20 meters downstream of the turbine, are presented. Mean velocities and turbulence data, measured using acoustic Doppler velocimeter (ADV) at 50 meters upstream of the turbine, are also presented. Canal dimensions and hydraulic properties, and turbine-related information are also included.

  19. Rapid sewage pollution assessment by means of the coverage of epilithic taxa in a coastal area in the SW Atlantic.

    PubMed

    Becherucci, M E; Jaubet, M L; Saracho Bottero, M A; Llanos, E N; Elías, R; Garaffo, G V

    2018-07-01

    The sewage pollution impact over coastal environment represents one of the main reasons explaining the deterioration of marine coastal ecosystems around the globe. This paper aims to detect promptly a putative sewage pollution impact in a Southwestern Atlantic coastal area of Argentina as well as to identify a straightforward way for monitoring, based on the relative abundance coverage of the intertidal epilithic taxa. Four sampling sites were distributed at increased distances from the sewage outfall where the cover of individual epilithic species was visually estimated. The surrounded outfall area (i.e. outfall site) resulted polluted with high percentages of organic matter in sediment and Enterococcus concentration in seawater. The structure of the community showed a remarkable difference between the polluted site (outfall site) and the unpolluted sites. The polychaete Boccardia proboscidea dominated the outfall site with variable abundances of the green algae Ulva sp. during the period of study, decreasing the diversity of the community, while the mussel Brachidontes rodriguezii and variable abundances of several algae species dominated the unpolluted sites. The monitoring of the benthic community represents an effective, non-destructive, relative inexpensive and rapid method to assess the health of the coastal environment in the study area. The large abundance of B. proboscidea along with the absence of B. rodriguezii individuals at <300m to the sewage outfall discharge allowed the success of this classical monitoring method in a temperate marine-coastal ecosystem with certain gradient of pollution. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A field study of the confluence between Negro and Solimões Rivers. Part 1: Hydrodynamics and sediment transport

    NASA Astrophysics Data System (ADS)

    Gualtieri, Carlo; Filizola, Naziano; de Oliveira, Marco; Santos, Andrè Martinelli; Ianniruberto, Marco

    2018-01-01

    Confluences are a common feature of riverine systems, where are located converging flow streamlines and potential mixing of separate flows. The confluence of the Negro and Solimões Rivers ranks among the largest on Earth and its study may provide some general insights into large confluence dynamics and processes. An investigation was recently conducted about that confluence in both low and high-flow conditions using acoustic Doppler velocity profiling (ADCP), water quality sampling and high-resolution seismic data. First, the study gained insights into the characterization of the basic hydrodynamics parameters about the confluence as well as of those affecting sediments transport. Second, the analysis of the results showed that common hydrodynamic features noted in previous confluence studies were herein observed. Finally, some differences between low-flow and relatively high-flow conditions about the transfer of momentum from the Solimões to the Negro side of the Amazon Channel were identified.

  1. Independent University Study to Assess the Performance of a Humate Amendment for Copper Detoxification at the H-12 Outfall at Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, B.; Harmon, S.; King, J.

    2016-09-06

    The overarching objective of this study was to evaluate the effectiveness of the copper detoxification process that is in place at the Savannah River Site H-12 Outfall. The testing was performed in two phases; Phase 1 assessed the safety and potential for intrinsic toxicity of the humate amendment being used at the H-12 Outfall, Borregro HA-1, as well as an alternative amendment sodium humic acid. The second phase assessed the effectiveness of Borregro HA-1 in mitigating and reducing toxic effects of copper.

  2. Nonylphenol ethoxylates and other additives in aircraft deicers, antiicers, and waters receiving airport runoff.

    PubMed

    Corsi, Steven R; Zitomer, Daniel H; Field, Jennifer A; Cancilla, Devon A

    2003-09-15

    Samples of nine different formulations of aircraft deicer and antiicer fluids (ADAF) were screened for the presence of selected surfactants. Nonylphenol ethoxylates (NPnEO) were identified in three ADAF formulations, octylphenol ethoxylates were identified in two formulations, and six formulations contained alcohol ethoxylates. A preliminary field study was conducted at General Mitchell International Airport, Milwaukee, WI, to quantify NPnEO (n = 1-15) and one of its byproducts, nonylphenol (NP), in airport runoff. Samples were collected from two airport outfalls, from the receiving stream, and from an upstream reference site during intensive ADAF application events. NPnEO was measured at concentrations up to 1190microg/L in airport outfall samples, up to 77 ug/L in samples from the receiving stream and less than 5.0 microg/L from the upstream reference. Concentrations of glycol and other ADAF-related constituents, including NPnEO, were reduced by approximately 1 order of magnitude between the outfall sites and the receiving stream site; however, concentrations of NP in the receiving stream remained similar to those from the outfalls (< 0.04 microg/L at the upstream reference, 0.98 and 7.67 microg/L at outfalls, and 3.89 microg/L in the receiving stream). The field data suggest that NP is generated through degradation of NPnEO from airport runoff.

  3. Nonylphenol ethoxylates and other additives in aircraft deicers, antiicers, and waters receiving airport runoff

    USGS Publications Warehouse

    Corsi, Steven R.; Zitomer, Daniel H.; Field, Jennifer A.; Cancilla, Devon A.

    2003-01-01

    Samples of nine different formulations of aircraft deicer and antiicer fluids (ADAF) were screened for the presence of selected surfactants. Nonylphenol ethoxylates (NPnEO) were identified in three ADAF formulations, octylphenol ethoxylates were identified in two formulations, and six formulations contained alcohol ethoxylates. A preliminary field study was conducted at General Mitchell International Airport, Milwaukee, WI, to quantify NPnEO (n = 1-15) and one of its byproducts, nonylphenol (NP), in airport runoff. Samples were collected from two airport outfalls, from the receiving stream, and from an upstream reference site during intensive ADAF application events. NPnEO was measured at concentrations up to 1190microg/L in airport outfall samples, up to 77 ug/L in samples from the receiving stream and less than 5.0 microg/L from the upstream reference. Concentrations of glycol and other ADAF-related constituents, including NPnEO, were reduced by approximately 1 order of magnitude between the outfall sites and the receiving stream site; however, concentrations of NP in the receiving stream remained similar to those from the outfalls (< 0.04 microg/L at the upstream reference, 0.98 and 7.67 microg/L at outfalls, and 3.89 microg/L in the receiving stream). The field data suggest that NP is generated through degradation of NPnEO from airport runoff.

  4. Physical characteristics of stream subbasins in the Pomme de Terre River Basin, west-central Minnesota

    USGS Publications Warehouse

    Lorenz, D.L.; Payne, G.A.

    1994-01-01

    Data describing the physical characteristics of stream subbasins upstream from selected points on streams in the Pomme de Terre River Basin, located in west-central Minnesota, are presented in this report. The physical characteristics are the drainage area of the subbasin, the percentage area of the subbasin covered only by lakes, the percentage area of the subbasin covered by both lakes and wetlands, the main-channel length, and the main-channel slope. The points on the stream include outlets of subbasins of at least 5 square miles, outfalls of sewage treatment plants, and locations of U.S. Geological Survey low-flow, high-flow, and continuous-record gaging stations.

  5. Heat Transfer and Fluid Mechanics Institute, 24th, Oregon State University, Corvallis, Ore., June 12-14, 1974, Proceedings

    NASA Technical Reports Server (NTRS)

    Davis, L. R. (Editor); Wilson, R. E.

    1974-01-01

    Recent theoretical and experimental studies in heat transfer and fluid mechanics, including some environmental protection investigations, are presented in a number of papers. Some of the topics covered include condensation heat transfer, a model of turbulent momentum and heat transfer at points of separation and reattachment, an explicit scheme for calculations of confined turbulent flows with heat transfer, heat transfer effects on a delta wing in subsonic flow, fluid mechanics of ocean outfalls, thermal plumes from industrial cooling water, a photochemical air pollution model for the Los Angeles air basin, and a turbulence model of diurnal variations in the planetary boundary layer. Individual items are announced in this issue.

  6. Comparison of Microbial and Chemical Source Tracking Markers To Identify Fecal Contamination Sources in the Humber River (Toronto, Ontario, Canada) and Associated Storm Water Outfalls.

    PubMed

    Staley, Zachery R; Grabuski, Josey; Sverko, Ed; Edge, Thomas A

    2016-11-01

    Storm water runoff is a major source of pollution, and understanding the components of storm water discharge is essential to remediation efforts and proper assessment of risks to human and ecosystem health. In this study, culturable Escherichia coli and ampicillin-resistant E. coli levels were quantified and microbial source tracking (MST) markers (including markers for general Bacteroidales spp., human, ruminant/cow, gull, and dog) were detected in storm water outfalls and sites along the Humber River in Toronto, Ontario, Canada, and enumerated via endpoint PCR and quantitative PCR (qPCR). Additionally, chemical source tracking (CST) markers specific for human wastewater (caffeine, carbamazepine, codeine, cotinine, acetaminophen, and acesulfame) were quantified. Human and gull fecal sources were detected at all sites, although concentrations of the human fecal marker were higher, particularly in outfalls (mean outfall concentrations of 4.22 log 10 copies, expressed as copy numbers [CN]/100 milliliters for human and 0.46 log 10 CN/100 milliliters for gull). Higher concentrations of caffeine, acetaminophen, acesulfame, E. coli, and the human fecal marker were indicative of greater raw sewage contamination at several sites (maximum concentrations of 34,800 ng/liter, 5,120 ng/liter, 9,720 ng/liter, 5.26 log 10 CFU/100 ml, and 7.65 log 10 CN/100 ml, respectively). These results indicate pervasive sewage contamination at storm water outfalls and throughout the Humber River, with multiple lines of evidence identifying Black Creek and two storm water outfalls with prominent sewage cross-connection problems requiring remediation. Limited data are available on specific sources of pollution in storm water, though our results indicate the value of using both MST and CST methodologies to more reliably assess sewage contamination in impacted watersheds. Storm water runoff is one of the most prominent non-point sources of biological and chemical contaminants which can potentially degrade water quality and pose risks to human and ecosystem health. Therefore, identifying fecal contamination in storm water runoff and outfalls is essential for remediation efforts to reduce risks to public health. This study employed multiple methods of identifying levels and sources of fecal contamination in both river and storm water outfall sites, evaluating the efficacy of using culture-based enumeration of E. coli, molecular methods of determining the source(s) of contamination, and CST markers as indicators of fecal contamination. The results identified pervasive human sewage contamination in storm water outfalls and throughout an urban watershed and highlight the utility of using both MST and CST to identify raw sewage contamination. © Crown copyright 2016.

  7. Comparison of Microbial and Chemical Source Tracking Markers To Identify Fecal Contamination Sources in the Humber River (Toronto, Ontario, Canada) and Associated Storm Water Outfalls

    PubMed Central

    Grabuski, Josey; Sverko, Ed; Edge, Thomas A.

    2016-01-01

    ABSTRACT Storm water runoff is a major source of pollution, and understanding the components of storm water discharge is essential to remediation efforts and proper assessment of risks to human and ecosystem health. In this study, culturable Escherichia coli and ampicillin-resistant E. coli levels were quantified and microbial source tracking (MST) markers (including markers for general Bacteroidales spp., human, ruminant/cow, gull, and dog) were detected in storm water outfalls and sites along the Humber River in Toronto, Ontario, Canada, and enumerated via endpoint PCR and quantitative PCR (qPCR). Additionally, chemical source tracking (CST) markers specific for human wastewater (caffeine, carbamazepine, codeine, cotinine, acetaminophen, and acesulfame) were quantified. Human and gull fecal sources were detected at all sites, although concentrations of the human fecal marker were higher, particularly in outfalls (mean outfall concentrations of 4.22 log10 copies, expressed as copy numbers [CN]/100 milliliters for human and 0.46 log10 CN/100 milliliters for gull). Higher concentrations of caffeine, acetaminophen, acesulfame, E. coli, and the human fecal marker were indicative of greater raw sewage contamination at several sites (maximum concentrations of 34,800 ng/liter, 5,120 ng/liter, 9,720 ng/liter, 5.26 log10 CFU/100 ml, and 7.65 log10 CN/100 ml, respectively). These results indicate pervasive sewage contamination at storm water outfalls and throughout the Humber River, with multiple lines of evidence identifying Black Creek and two storm water outfalls with prominent sewage cross-connection problems requiring remediation. Limited data are available on specific sources of pollution in storm water, though our results indicate the value of using both MST and CST methodologies to more reliably assess sewage contamination in impacted watersheds. IMPORTANCE Storm water runoff is one of the most prominent non-point sources of biological and chemical contaminants which can potentially degrade water quality and pose risks to human and ecosystem health. Therefore, identifying fecal contamination in storm water runoff and outfalls is essential for remediation efforts to reduce risks to public health. This study employed multiple methods of identifying levels and sources of fecal contamination in both river and storm water outfall sites, evaluating the efficacy of using culture-based enumeration of E. coli, molecular methods of determining the source(s) of contamination, and CST markers as indicators of fecal contamination. The results identified pervasive human sewage contamination in storm water outfalls and throughout an urban watershed and highlight the utility of using both MST and CST to identify raw sewage contamination. PMID:27542934

  8. Storm water runoff for the Y-12 Plant and selected parking lots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, E.T.

    1996-01-01

    A comparison of storm water runoff from the Y-12 Plant and selected employee vehicle parking lots to various industry data is provided in this document. This work is an outgrowth of and part of the continuing Non-Point Source Pollution Elimination Project that was initiated in the late 1980s. This project seeks to identify area pollution sources and remediate these areas through the Resource Conservation and Recovery Act/Comprehensive Environmental Response, Compensation, and Liability Act (RCRA/CERCLA) process as managed by the Environmental Restoration Organization staff. This work is also driven by the Clean Water Act Section 402(p) which, in part, deals withmore » establishing a National Pollutant Discharge Elimination System (NPDES) permit for storm water discharges. Storm water data from events occurring in 1988 through 1991 were analyzed in two reports: Feasibility Study for the Best Management Practices to Control Area Source Pollution Derived from Parking Lots at the DOE Y-12 Plant, September 1992, and Feasibility Study of Best Management Practices for Non-Point Source Pollution Control at the Oak Ridge Y-12 Plant, February 1993. These data consisted of analysis of outfalls discharging to upper East Fork Poplar Creek (EFPC) within the confines of the Y-12 Plant (see Appendixes D and E). These reports identified the major characteristics of concern as copper, iron, lead, manganese, mercury, nitrate (as nitrogen), zinc, biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), fecal coliform, and aluminum. Specific sources of these contaminants were not identifiable because flows upstream of outfalls were not sampled. In general, many of these contaminants were a concern in many outfalls. Therefore, separate sampling exercises were executed to assist in identifying (or eliminating) specific suspected sources as areas of concern.« less

  9. DIVERSE MODELS FOR SOLVING CONTRASTING OUTFALL PROBLEMS

    EPA Science Inventory

    Mixing zone initial dilution and far-field models are useful for assuring that water quality criteria will be met when specific outfall discharge criteria are applied. Presented here is a selective review of mixing zone initial dilution models and relatively simple far-field tran...

  10. Effects of wastewater effluent on the South Platte River from Littleton to Denver

    USGS Publications Warehouse

    Spahr, N.E.; Blakely, S.R.

    1985-01-01

    The U.S. Geological Survey 's one-dimensional steady-state water quality model was used to investigate the effects of the effluent from the Bi-City WWTP (Wastewater Treatment Plant) on the South Platte River. The Bi-City WWTP is operated by the Cities of Littleton and Englewood. The model was calibrated from a 14.5 mile reach for 5-day carbonaceous biochemical oxygen demand, organic, ammonia, nitrite and nitrate using data collected during September 1983. Model verification was completed using data collected during October 1982 and January 1984 for all constituents except nitrite nitrogen. Nitrite nitrogen could not be verified for the cold temperature conditions of January of 1984. Measured benthic sediment oxygen demand used in model ranged from 1.01 to 2.77 grams per square meter per day. Model simulations were made for an estimated 7-day, 10-year discharge of 18 cubic feet per second, upstream from the outfall of the WWTP. Two groups of simulations were made for both warm and cold temperature conditions. In the first group of simulation variations were made in effluent 5-day carbonaceous biochemical oxygen demand concentrations and flow rates. The second group of simulations varied the amount of nitrogen discharged as ammonia and nitrate. The extent of the mixing zone downstream of the WWTP outfall was determined by injecting Rhodamine WT dye into the effluent. The mixing zone was found to extend 0.8 miles during low-flow conditions. (USGS)

  11. A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure

    NASA Astrophysics Data System (ADS)

    Choi, Yosoon; Yi, Huiuk; Park, Hyeong-Dong

    2011-08-01

    We developed a new algorithm, the Adaptive Stormwater Infrastructure (ASI) algorithm, to incorporate ancillary data sets related to stormwater infrastructure into the grid-based hydrologic analysis. The algorithm simultaneously considers the effects of the surface stormwater collector network (e.g., diversions, roadside ditches, and canals) and underground stormwater conveyance systems (e.g., waterway tunnels, collector pipes, and culverts). The surface drainage flows controlled by the surface runoff collector network are superimposed onto the flow directions derived from a DEM. After examining the connections between inlets and outfalls in the underground stormwater conveyance system, the flow accumulation and delineation of watersheds are calculated based on recursive computations. Application of the algorithm to the Sangdong tailings dam in Korea revealed superior performance to that of a conventional D8 single-flow algorithm in terms of providing reasonable hydrologic information on watersheds with stormwater infrastructure.

  12. Quantifying fluid and bed dynamics for characterizing benthic physical habitat in large rivers

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2007-01-01

    Sturgeon use benthic habitats in and adjacent to main channels where environmental conditions can include bedload sediment transport and high near-bed flow velocities. Bed velocity measurements obtained with acoustic Doppler instruments provide a means to assess the concentration and velocity of sediment moving near the streambed, and are thus indicative of the bedload sediment transport rate, the near-bed flow velocity, and the stability of the substrate. Acoustic assessments of benthic conditions in the Missouri River were conducted at scales ranging from the stream reach to individual bedforms. Reach-scale results show that spatially-averaged bed velocities in excess of 0.5 m s-1 frequently occur in the navigation channel. At the local scale, bed velocities are highest near bedform crests, and lowest in the troughs. Low-velocity zones can persist in areas with extremely high mean bed velocities. Use of these low-velocity zones may allow sturgeon to make use of portions of the channel where the average conditions near the bed are severe. To obtain bed velocity measurements of the highest possible quality, it is necessary to extract bottom-track and GPS velocity information from the raw ADCP data files on a ping-by-ping basis. However, bed velocity measured from a point can also be estimated using a simplified method that is more easily implemented in the context of routine monitoring. The method requires only the transect distance and direction data displayed in standard ADCP data-logging software. Bed velocity estimates obtained using this method are usually within 5-10% of estimates obtained from ping-by-ping processing. ?? 2007 Blackwell Verlag.

  13. Phase I Source Investigation, Heckathorn Superfund Site, Richmond, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohn, Nancy P; Evans, Nathan R

    This report represents Phase I of a multi-phase approach to a source investigation of DDT at the Heckathorn Superfund Site, Richmond, California, the former site of a pesticide packaging plant, and the adjacent waterway, the Lauritzen Channel. Potential identified sources of contamination were from sloughed material from undredged areas (such as side banks) and from outfall pipes. Objectives of Phase I included the (1) evaluation of pesticide concentrations associated with discharge from outfalls, (2) identification of additional outfalls in the area, (3) identification of type, quantity, and distribution of sediment under the Levin pier, (4) quantification of pesticide concentrations inmore » sediment under the pier, and (5) evaluation of sediment structure and slope stability under the pier. Field operations included the collection of sediment directly from inside the mouths of outfall pipes, when possible, or the deployment of specially designed particle traps where direct sampling was problematic. Passive water samplers were placed at the end of known outfall pipes and analyzed for DDT and other pesticides of concern. Underwater dive surveys were conducted beneath the Levin pier to document type, slope, and thickness of sediment. Samples were collected at locations of interest and analyzed for contaminants. Also sampled was soil from bank areas, which were suspected of potentially contributing to continued DDT contamination of the Lauritzen Channel through erosion and groundwater leaching. The Phase I Source Investigation was successful in identifying significant sources of DDT contamination to Lauritzen Channel sediment. Undredged sediment beneath the Levin pier that has been redistributed to the channel is a likely source. Two outfalls tested bear further investigation. Not as well-defined are the contributions of bank erosional material and groundwater leaching. Subsequent investigations will be based on the results of this first phase.« less

  14. Criteria for reducing predation by northern squawfish near juvenile salmonid bypass outfalls at Columbia River dams

    USGS Publications Warehouse

    Shively, Rip S.; Poe, Thomas P.; Sheer, Mindi B.; Peters, Rock

    1996-01-01

    Predation by northern squawfish (Ptychocheilus oregonensis) has been documented to be significant on emigrating juvenile salmonids near juvenile bypass outfalls at hydroelectric dams on the Columbia River. Criteria for siting juvenile fish bypass outfalls to reduce predation were developed using locational data from radio-tagged northern squawfish in The Dalles Dam trailrace, Columbia River. Radio transmitters were surgically implanted in 164 northern squawfish in 1993 and 1994, and their movements and distribution were monitored. Position estimates of northern squawfish were compared with data from a physical hydraulic model of the dam to estimate water velocities where northern squawfish were located. Eighty-two percent of northern squawfish position estimates were in water velocities ≤110 cm/s in 1993 and ≤90 cm/s in 1994. Fish locations were usually associated with water depths ≤10 m (84% in 1993 and 82% in 1994); 90% were within 110 m of the shore or dam structure in 1993, and 86% were within 80 m in 1994. In a related study at John Day Dam, Columbia River, where the juvenile bypass outfall is located 40 m from shore, water depth is 10 m and water velocities typically exceed 75 cm/s, only 13 of 1443 (0.9%) contacts on radio-tagged northern squawfish were located within 200 m of the bypass outfall. We recommend that new or modified juvenile bypass outfalls on the Columbia River be located in water velocities of ≥100 cm/s, ≥75 m from the shore or dam structure, and in water ≥10 m deep.

  15. Tidal currents and Kuroshio transport variations in the Tokara Strait estimated from ferryboat ADCP data

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Hua; Nakamura, Hirohiko; Dong, Menghong; Nishina, Ayako; Yamashiro, Toru

    2017-03-01

    From 2003 to 2011, current surveys, using an acoustic Doppler current profiler (ADCP) mounted on the Ferry Naminoue, were conducted across the Tokara Strait (TkS). Resulting velocity sections (1234) were used to estimate major tidal current constituents in the TkS. The semidiurnal M2 tidal current (maximum amplitude 27 cm s-1) was dominant among all the tidal constituents, and the diurnal K1 tidal current (maximum amplitude 21 cm s-1) was the largest among all the diurnal tidal constituents. Over the section, the ratios, relative to M2, of averaged amplitudes of M2, S2, N2, K2, K1, O1, P1, and Q1 tidal currents were 1.00:0.44:0.21:0.12:0.56:0.33:0.14:0.10. Tidal currents estimated from the ship-mounted ADCP data were in good agreement with those from the mooring ADCP data. Their root-mean-square difference for the M2 tidal current amplitude was 2.0 cm s-1. After removing the tidal currents, the annual-mean of the net volume transport (NVT) through the TkS ± its standard derivation was 23.03 ± 3.31 Sv (Sv = 106 m3 s-1). The maximum (minimum) monthly mean NVT occurred in July (November) with 24.60 (21.47) Sv. NVT values from the ship-mounted ADCP were in good agreement with previous geostrophic volume transports calculated from conductivity temperature depth data, but the former showed much finer temporal structure than those from the geostrophic calculation.

  16. Field assessment of alternative bed-load transport estimators

    USGS Publications Warehouse

    Gaeuman, G.; Jacobson, R.B.

    2007-01-01

    Measurement of near-bed sediment velocities with acoustic Doppler current profilers (ADCPs) is an emerging approach for quantifying bed-load sediment fluxes in rivers. Previous investigations of the technique have relied on conventional physical bed-load sampling to provide reference transport information with which to validate the ADCP measurements. However, physical samples are subject to substantial errors, especially under field conditions in which surrogate methods are most needed. Comparisons between ADCP bed velocity measurements with bed-load transport rates estimated from bed-form migration rates in the lower Missouri River show a strong correlation between the two surrogate measures over a wide range of mild to moderately intense sediment transporting conditions. The correlation between the ADCP measurements and physical bed-load samples is comparatively poor, suggesting that physical bed-load sampling is ineffective for ground-truthing alternative techniques in large sand-bed rivers. Bed velocities measured in this study became more variable with increasing bed-form wavelength at higher shear stresses. Under these conditions, bed-form dimensions greatly exceed the region of the bed ensonified by the ADCP, and the magnitude of the acoustic measurements depends on instrument location with respect to bed-form crests and troughs. Alternative algorithms for estimating bed-load transport from paired longitudinal profiles of bed topography were evaluated. An algorithm based on the routing of local erosion and deposition volumes that eliminates the need to identify individual bed forms was found to give results similar to those of more conventional dune-tracking methods. This method is particularly useful in cases where complex bed-form morphology makes delineation of individual bed forms difficult. ?? 2007 ASCE.

  17. Sewage outfall plume dispersion observations with an autonomous underwater vehicle.

    PubMed

    Ramos, P; Cunha, S R; Neves, M V; Pereira, F L; Quintaneiro, I

    2005-01-01

    This work represents one of the first successful applications of Autonomous Underwater Vehicles (AUVs) for interdisciplinary coastal research. A monitoring mission to study the shape and estimate the initial dilution of the S. Jacinto sewage outfall plume using an AUV was performed on July 2002. An efficient sampling strategy enabling greater improvements in spatial and temporal range of detection demonstrated that the sewage effluent plume can be clearly traced using naturally occurring tracers in the wastewater. The outfall plume was found at the surface highly influenced by the weak stratification and low currents. Dilution varying with distance downstream was estimated from the plume rise over the outfall diffuser until a nearly constant value of 130:1, 60 m from the diffuser, indicating the near field end. Our results demonstrate that AUVs can provide high-quality measurements of physical properties of effluent plumes in a very effective manner and valuable considerations about the initial mixing processes under real oceanic conditions can be further investigated.

  18. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams.

    PubMed

    Hladik, Michelle L; Focazio, Michael J; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L(-1) with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L(-1)). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L(-1)) and other organic DBP precursors (phenol at 15 μg L(-1)). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L(-1)) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L(-1) total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged. © 2013.

  19. Current variability and momentum balance in the along-shore flow for the Catalan inner-shelf.

    NASA Astrophysics Data System (ADS)

    Grifoll, M.; Aretxabaleta, A.; Espino, M.; Warner, J. C.

    2012-04-01

    This contribution examines the circulation of the inner-shelf of the Catalan Sea from an observational perspective. Measurements were obtained from a set of ADCPs deployed during March and April 2011 at 25 and 50 meters depth. Analysis reveals a strongly polarized low-frequency flow following the isobaths predominantly in the south-westward direction. The current variance is mostly explained by the two principal modes of an empirical orthogonal decomposition. The first mode represents almost 80% of the variability. Correlation values of 0.4 to 0.7 have been found between the depth-averaged along-shelf flow and the local wind and the Adjusted Sea-level Slope. The momentum balance in the along-shore direction reveals strong frictional effects and an influence of the barotropic pressure gradients. This research provides a physical framework for ongoing numerical modelling activities and climatological studies in the Catalan inner-shelf.

  20. The environmental impact of sewage and wastewater outfalls in Antarctica: An example from Davis station, East Antarctica.

    PubMed

    Stark, Jonathan S; Corbett, Patricia A; Dunshea, Glenn; Johnstone, Glenn; King, Catherine; Mondon, Julie A; Power, Michelle L; Samuel, Angelingifta; Snape, Ian; Riddle, Martin

    2016-11-15

    We present a comprehensive scientific assessment of the environmental impacts of an Antarctic wastewater ocean outfall, at Davis station in East Antarctica. We assessed the effectiveness of current wastewater treatment and disposal requirements under the Protocol on Environmental Protection to the Antarctic Treaty. Macerated wastewater has been discharged from an outfall at Davis since the failure of the secondary treatment plant in 2005. Water, sediment and wildlife were tested for presence of human enteric bacteria and antibiotic resistance mechanisms. Epibiotic and sediment macrofaunal communities were tested for differences between sites near the outfall and controls. Local fish were examined for evidence of histopathological abnormalities. Sediments, fish and gastropods were tested for uptake of sewage as measured by stable isotopes of N and C. Escherichia coli carrying antibiotic resistance determinants were found in water, sediments and wildlife (the filter feeding bivalve Laternula eliptica). Fish (Trematomus bernacchii) within close proximity to the outfall had significantly more severe and greater occurrences of histopathological abnormalities than at controls, consistent with exposure to sewage. There was significant enrichment of 15 N in T. bernacchii and the predatory gastropod Neobuccinum eatoni around the outfall, providing evidence of uptake of sewage. There were significant differences between epibiotic and sediment macrofaunal communities at control and outfall sites (<1.5 km), when sites were separated into groups of similar habitat types. Benthic community composition was also strongly related to habitat and environmental drivers such as sea ice. The combined evidence indicated that the discharge of wastewater from the Davis outfall is causing environmental impacts. These findings suggest that conditions in Antarctic coastal locations, such as Davis, are unlikely to be conducive to initial dilution and rapid dispersal of wastewater as required under the Protocol on Environmental Protection to the Antarctic Treaty. Current minimum requirements for wastewater treatment and disposal in Antarctica are insufficient to ameliorate these risks and are likely to lead to accumulation of contaminants and introduction of non-native microbes and associated genetic elements. This new understanding suggests that modernised approaches to the treatment and disposal of wastewater are required in Antarctica. The most effective solution is advanced levels of wastewater treatment, which are now possible, feasible and a high priority for installation. As a direct outcome of the study, a new advanced treatment system is being installed at Davis, effectively avoiding environmental risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of receiving environment on the transport and fate of polybrominated diphenyl ethers near two submarine municipal outfalls.

    PubMed

    Dinn, Pamela M; Johannessen, Sophia C; Macdonald, Robie W; Lowe, Christopher J; Whiticar, Michael J

    2012-03-01

    The fate of contaminants entering the marine environment through wastewater outfalls depends on the contaminant's persistence and affinity for particles. However, the physical characteristics of the receiving environment, for example, current velocity and sedimentary processes, may be even more important. Because of the complexity of natural settings and the lack of appropriate comparative settings, this is not frequently evaluated quantitatively. The authors investigated the near-field accumulation of particle-reactive polybrominated diphenyl ethers (PBDEs) entering coastal waters by way of two municipal outfalls: one discharging into a high-energy, low-sedimentation environment near Victoria, BC, Canada; the other into a low-energy, high-sedimentation environment, near Vancouver, BC. The authors used ²¹⁰Pb profiles in box cores together with an advection-diffusion model to determine surface mixing and sedimentation rates, and to model the depositional history of PBDEs at these sites. Surprisingly, 88 to 99% of PBDEs were dispersed beyond the near-field at both sites, but a greater proportion of PBDEs was captured in the sediment near the Vancouver outfall where rapid burial was facilitated by inorganic sediment supplied from the nearby Fraser River. Although the discharge of PBDEs was much lower from the Victoria outfall than from Vancouver, some sediment PBDE concentrations were higher near Victoria. Copyright © 2011 SETAC.

  2. Model velocities assessment and HF radar data assimilation in the Ibiza Channel

    NASA Astrophysics Data System (ADS)

    Hernandez Lasheras, Jaime; Mourre, Baptiste; Reyes, Emma; Marmain, Julien; Orfila, Alejandro; Tintoré, Joaquin

    2017-04-01

    High Frequency Radar (HFR) provides continuous and high-resolution surface current measurements over wide coastal areas, enabling the observation of dynamic processes at the atmosphere-ocean interface, where a lot of momentum and heat exchange takes place, which is still not fully understood. Furthermore, HFR data provide critical information to improve numerical model predictions through data assimilation. However, the routine assimilation of HFR surface current data in operational models is still a challenge from both the methodological and computational points of view. Since 2012, SOCIB, the Balearic Islands Coastal Observing and Forecasting System, operates two coastal HFR sites with the purpose of monitoring the surface currents of the Ibiza Channel (Western Mediterranean Sea). It is an area characterized by important meridional flow exchanges with significant impacts on ecosystems. The circulation in the Ibiza Channel results from the complex interaction of different water masses under strong topographic constraints. This makes the area very challenging from the point of view of numerical modeling. Indeed, models are generally found to represent erroneous flows across this section. In this work, we perform the first steps to evaluate the potential of HFR data to improve the model circulation in the Ibiza Channel area with data assimilation. A multimodel Ensemble Optimal Interpolation scheme has been coupled to the SOCIB Western Mediterranean Operational Model (WMOP) to assimilate multiplatform observations, including the HFR surface velocities. WMOP is a 2-km resolution configuration of the ROMS model using CMEMS numerical products as initial and boundary conditions and high-resolution surface forcing from the Spanish Meteorological Agency. To evaluate whether the model properly captures the main dynamical features observed in the Ibiza Channel (which is a prerequisite for a successful data assimilation), comparison of spatial empirical orthogonal function (EOF) patterns from HFR observations and from model results have been performed. Results show good agreement between the two first modes of variability of both data sets, which explain the north-south and east-west flows, respectively. The comparison with ADCP data in the HFR coverage area shows also good agreement with the main vertical modes of the model at the first 120 m. In our approach, model error covariances are estimated by sampling three long-run simulations of the WMOP system with different initial/boundary forcing and mixing parameters. Vertical correlations in the HFR coverage area are validated using ADCP measurements at the mooring. As expected, correlations decrease with depth both in the model as well as with the ADCP data. The agreement is found to vary with the season and the velocity component under consideration. The first results of multiplatform data assimilation experiments using this modelling setup and including HFR, SST, SSH and in situ profiles will then be presented.

  3. Tide-driven fluid mud transport in the Ems estuary

    NASA Astrophysics Data System (ADS)

    Becker, Marius; Maushake, Christian; Winter, Christian

    2014-05-01

    The Ems estuary, located at the border between The Netherlands and Germany, experienced a significant change of the hydrodynamic regime during the past decades, as a result of extensive river engineering. With the net sediment transport now being flood-oriented, suspended sediment concentrations have increased dramatically, inducing siltation and formation of fluid mud layers, which, in turn, influence hydraulic flow properties, such as turbulence and the apparent bed roughness. Here, the process-based understanding of fluid mud is essential to model and predict mud accumulation, not only regarding the anthropogenic impact, but also in view of the expected changes of environmental boundary conditions, i.e., sea level rise. In the recent past, substantial progress has been made concerning the understanding of estuarine circulation and influence of tidal asymmetry on upstream sediment accumulation. While associated sediment transport formulations have been implemented in the framework of numerical modelling systems, in-situ data of fluid mud are scarce. This study presents results on tide-driven fluid mud dynamics, measured during four tidal cycles aside the navigation channel in the Ems estuary. Lutoclines, i.e., strong vertical density gradients, were detected by sediment echo sounder (SES). Acoustic Doppler current profiles (ADCP) of different acoustic frequencies were used to determine hydrodynamic parameters and the vertical distribution of suspended sediment concentrations in the upper part of the water column. These continuous profiling measurements were complemented by CTD, ADV, and OBS casts. SES and ADCP profiles show cycles of fluid mud entrainment during accelerating flow, and subsequent settling, and the reformation of a lutocline during decelerating flow and slack water. Significant differences are revealed between flood and ebb phase. Highest entrainment rates are measured at the beginning of the flood phase, associated with strong current shear and rapid vertical mixing, inducing the highest instantaneous suspended sediment flux measured during the tidal cycle. During decelerating flood currents a lutocline is again established at a certain distance above the consolidated river bed. During slack water after the flood phase the concentration gradient increases and the thickness of the fluid mud layer below is constant, also during a significant part of the ebb phase. As water depth decreases during ebb, entrainment occurs only at the upper part of the fluid mud layer. The suspended sediment flux is low compared to the flood phase. These observations are further elaborated using turbulence parameters obtained from ADV and ADCP, explaining the difference between ebb and flood concerning the vertical location of the maximum concentration gradient. This study is funded through DFG-Research Center / Excellence Cluster "The Ocean in the Earth System". The Senckenberg Institute and the Federal Waterways Engineering and Research Institute are acknowledged for technical support.

  4. A numerical model investigation of the formation and persistence of an erosion hotspot

    USGS Publications Warehouse

    Hansen, Jeff E.; Elias, Edwin; List, Jeffrey H.; Barnard, Patrick L.

    2011-01-01

    A Delft3D-SWAN coupled flow and wave model was constructed for the San Francisco Bight with high-resolution at 7 km-long Ocean Beach, a high-energy beach located immediately south of the Golden Gate, the sole entrance to San Francisco Bay. The model was used to investigate tidal and wave-induced flows, basic forcing terms, and potential sediment transport in an area in the southern portion of Ocean Beach that has eroded significantly over the last several decades. The model predicted flow patterns that were favorable for sediment removal from the area and net erosion from the surf-zone. Analysis of the forcing terms driving surf-zone flows revealed that wave refraction over an exposed wastewater outfall pipe between the 12 and 15 m isobaths introduces a perturbation in the wave field that results in erosion-causing flows. Modeled erosion agreed well with five years of topographic survey data from the area.

  5. Measuring the Bed Load velocity in Laboratory flumes using ADCP and Digital Cameras

    NASA Astrophysics Data System (ADS)

    Conevski, Slaven; Guerrero, Massimo; Rennie, Colin; Bombardier, Josselin

    2017-04-01

    Measuring the transport rate and apparent velocity of the bedload is notoriously hard and there is not a certain technique that would obtain continues data. There are many empirical models, based on the estimation of the shear stress, but only few involve direct measurement of the bed load velocity. The bottom tracking (BT) mode of an acoustic Doppler current profiler (ADCP) has been used many times to estimate the apparent velocity of the bed load. Herein is the basic idea, to exploit the bias of the BT signal towards the bed load movement and to calibrate this signal with traditional measuring techniques. These measurements are quite scarce and seldom reliable since there are not taken in controlled conditions. So far, no clear confirmation has been conducted in laboratory-controlled conditions that would attest the assumptions made in the estimation of the apparent bed load velocity, nor in the calibration of the empirical equations. Therefore, this study explores several experiments under stationary conditions, where the signal of the ADCP BT mode is recorded and compared to the bed load motion recorded by digital camera videography. The experiments have been performed in the hydraulic laboratories of Ottawa and Bologna, using two different ADCPs and two different high resolution cameras. In total, more then 30 experiments were performed for different sediment mixtures and different hydraulic conditions. In general, a good match is documented between the apparent bed load velocity measured by the ADCP and the videography. The slight deviation in single experiments can be explained by gravel particles inhomogeneity, difficult in reproducing the same hydro-sedimentological conditions and the randomness of the backscattering strength.

  6. Validation of a spatial model used to locate fish spawning reef construction sites in the St. Clair–Detroit River system

    USGS Publications Warehouse

    Fischer, Jason L.; Bennion, David; Roseman, Edward F.; Manny, Bruce A.

    2015-01-01

    Lake sturgeon (Acipenser fulvescens) populations have suffered precipitous declines in the St. Clair–Detroit River system, following the removal of gravel spawning substrates and overfishing in the late 1800s to mid-1900s. To assist the remediation of lake sturgeon spawning habitat, three hydrodynamic models were integrated into a spatial model to identify areas in two large rivers, where water velocities were appropriate for the restoration of lake sturgeon spawning habitat. Here we use water velocity data collected with an acoustic Doppler current profiler (ADCP) to assess the ability of the spatial model and its sub-models to correctly identify areas where water velocities were deemed suitable for restoration of fish spawning habitat. ArcMap 10.1 was used to create raster grids of water velocity data from model estimates and ADCP measurements which were compared to determine the percentage of cells similarly classified as unsuitable, suitable, or ideal for fish spawning habitat remediation. The spatial model categorized 65% of the raster cells the same as depth-averaged water velocity measurements from the ADCP and 72% of the raster cells the same as surface water velocity measurements from the ADCP. Sub-models focused on depth-averaged velocities categorized the greatest percentage of cells similar to ADCP measurements where 74% and 76% of cells were the same as depth-averaged water velocity measurements. Our results indicate that integrating depth-averaged and surface water velocity hydrodynamic models may have biased the spatial model and overestimated suitable spawning habitat. A model solely integrating depth-averaged velocity models could improve identification of areas suitable for restoration of fish spawning habitat.

  7. 2013 Mt. Etna Pyroclastic Activity through the ADCP Recordings of NEMO-SN1 Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Lo Bue, N.; Sgroi, T.; Giovinetti, G.; Marinaro, G.; Favali, P.

    2014-12-01

    The Acoustic Doppler Current Profiler (ADCP) is one of the most useful sensor used to measure speed and direction of sea currents in the water column. More often ADCPs are being also used to monitor concentration of suspended matter in rivers or in marine environments by the analysis of the acoustic backscatter intensity. In the framework of the European Research Infrastructure EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org), its cabled node, the NEMO-SN1 multidisciplinary seafloor observatory, was deployed in the Western Ionian Sea (Southern Italy) at a depth of 2100 m, about 25 km off-shore Eastern Sicily close to the submarine slope of the Mt. Etna volcano. Starting from February 2013, the Mt. Etna was interested by thirteen different parossistic events producing intense eruption followed by pyroclastic fallout that reached distances of tens kilometres from the eruptive centre. Four of these events affected the ESE sector with a consequent fallout in the Western Ionian Sea and they were detected by NEMO-SN1. In fact, its scientific payload also included an ADCP (RDI WorkHorse 600 kHz) with the main aim to monitor the hydrodynamic conditions of about 30 metres of the water column above the station. Surprisingly, this sensor offered spectacular recordings of the Mt. Etna pyroclastic activity occurred on 2013 wich affected the ESE sector. This work aims to present new records of pyroclastic fallout associated to explosive events observed at sea bottom by the analysis of backscatter signal of the ADCP. A multidisciplinary approach taking into account the Mt. Etna eruptive activity as well as the local oceanographic dynamic is necessary to describe marine processes involved in volcanic ash sedimentation.

  8. Inferring Upper Ocean Dynamics from Horizontal Wavenumber Spectra in the Southern California Current System

    NASA Astrophysics Data System (ADS)

    Chereskin, T. K.; Gille, S. T.; Rocha, C. B.; Menemenlis, D.

    2016-02-01

    At the largest horizontal scales (> 100 km), the surface kinetic energy of the ocean appears dominated by a regime of balanced geostrophic motions. At the smallest scales, it transitions to a regime where unbalanced motions (such as internal waves, mixed-layer instabilities, etc.) dominate the surface kinetic energy. The length scale at which the transition occurs depends on the relative energies of balanced and unbalanced motions, which in turn display significant geographic variability. Wavenumber spectra in the upper ocean have been hypothesized to have slopes consistent with either quasi-geostrophic (QG) or surface quasi-geostrophic (SQG) theory. In previous analyses of repeat-track shipboard acoustic Doppler Current profiler (ADCP) velocity observations in the Gulf Stream and the Antarctic Circumpolar Current, spectral slopes were more consistent with QG than SQG theory for length scales between 40 km and 200 km. For scales less than 40 km, the spectra deviated from both QG and SQG theory, and this was attributed in part to internal wave effects. A spectral Helmholtz decomposition was used to split the kinetic energy spectra into rotational and divergent components, identified with balanced and ageostrophic motions, respectively. The California Current System (CCS) provides a contrasting environment characterized by a weak mean flow and an energetic meso- and submeso- scale. It is a nonlinear regime where the amplitude of eddies can be as large as the total steric height increase across the California Current, and hence southward flow in the CCS can, and often is, disrupted by its eddies. This study uses 10 years of shipboard ADCP observations collected on the quarterly cruises of the California Cooperative Oceanic Fisheries Investigations. Horizontal wavenumber spectra from 36 cruises along 6 repeated tracks in the southern CCS that extend from the coast to the subtropical gyre are used to diagnose the dominant governing dynamics at meso- to submeso- scales (10-200 km), with particular attention to the partition into balanced and ageostrophic flows.

  9. 5-Beam ADCP Deployment Strategy Considerations

    NASA Astrophysics Data System (ADS)

    Moore, T.; Savidge, D. K.; Gargett, A.

    2016-02-01

    With the increasing availability of 5 beam ADCPs and expanding opportunities for their deployment within both observatory and dedicated process study settings, refinements in deployment strategies are needed.Measuring vertical velocities directly with a vertically oriented acoustic beam requires that the instrument be stably mounted and leveled within fractions of a degree. Leveled shallow water deployments to date have utilized divers to jet pipes into the sand for stability, manually mount the instruments on the pipes, and level them. Leveling has been guided by the deployed instrument's pitch and roll output, available in real-time because of the observatory settings in which the deployments occurred. To expand the range of feasible deployments to deeper, perhaps non-real-time capable settings, alternatives to diver deployment and leveling must be considered. To determine stability requirements, mooring motion (heading, pitch and roll) has been sampled at 1Hz by gimballed ADCPs at a range of instrument deployment depths, and in shrouded and unshrouded cages. Conditions under which ADCP cages resting on the bottom experience significant shifts in tilt, roll or heading are assessed using co-located wind and wave measurements. The accuracy of estimating vertical velocities using all five beams relative to a well leveled vertical single beam is assessed from archived high frequency five beam data, to explore whether easing the leveling requirement is feasible.

  10. A modified beam-to-earth transformation to measure short-wavelength internal waves with an acoustic Doppler current profiler

    USGS Publications Warehouse

    Scotti, A.; Butman, B.; Beardsley, R.C.; Alexander, P.S.; Anderson, S.

    2005-01-01

    The algorithm used to transform velocity signals from beam coordinates to earth coordinates in an acoustic Doppler current profiler (ADCP) relies on the assumption that the currents are uniform over the horizontal distance separating the beams. This condition may be violated by (nonlinear) internal waves, which can have wavelengths as small as 100-200 m. In this case, the standard algorithm combines velocities measured at different phases of a wave and produces horizontal velocities that increasingly differ from true velocities with distance from the ADCP. Observations made in Massachusetts Bay show that currents measured with a bottom-mounted upward-looking ADCP during periods when short-wavelength internal waves are present differ significantly from currents measured by point current meters, except very close to the instrument. These periods are flagged with high error velocities by the standard ADCP algorithm. In this paper measurements from the four spatially diverging beams and the backscatter intensity signal are used to calculate the propagation direction and celerity of the internal waves. Once this information is known, a modified beam-to-earth transformation that combines appropriately lagged beam measurements can be used to obtain current estimates in earth coordinates that compare well with pointwise measurements. ?? 2005 American Meteorological Society.

  11. Amplitude calibration of an acoustic backscattered signal from a bottom-moored ADCP based on long-term measurement series

    NASA Astrophysics Data System (ADS)

    Piotukh, V. B.; Zatsepin, A. G.; Kuklev, S. B.

    2017-05-01

    A possible approach to, and preliminary results of, amplitude calibration of acoustic signals backscattered from an ADCP moored at the bottom of the near-shelf zone of the Black Sea is considered. The aim of this work is to obtain vertical profiles of acoustic scattering signal levels, showing the real characteristics of the volume content of suspended sediments in sea water in units of conventional acoustic turbidity for a given signal frequency. In this case, the assumption about the intervals of maximum acoustic transparency and vertical homogeneity of the marine environment in long-term series of ADCP measurements is used. According to this hypothesis, the intervals of the least values of acoustic backscattered signals are detected, an empirical transfer function of the ADCP reception path is constructed, and it is calibrated. Normalized sets of acoustic backscattered signals relative to a signal from a level of conventionally clear water are obtained. New features in the behavior of vertical profiles of an acoustic echo-signal are revealed due to the calibration. The results of this work will be used in subsequent analysis of the vertical and time variations in suspended sediment content in the near-shelf zone of the Black Sea.

  12. IMPACT OF STORM-WATER OUTFALLS ON SEDIMENT QUALITY IN CORPUS CHRISTI BAY, TEXAS, USA

    EPA Science Inventory

    To determine the quality of sediments and extent of contaminant impacts, a Sediment Quality Triad (SQT) study was conducted at 36 sites in the Corpus Christi Bay, Texas, USA, system. Fifteen of the 36 sites were located near storm-water outfalls, but 13 other sites (i.e., industr...

  13. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil).

    PubMed

    Roth, F; Lessa, G C; Wild, C; Kikuchi, R K P; Naumann, M S

    2016-05-15

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ(13)Corg and δ(15)N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Seasonal variations of marine algal community in the vicinity of Uljin nuclear power plant, Korea.

    PubMed

    Kim, Y S; Choi, H G; Nam, K W

    2008-07-01

    Three marine algal sites were examined seasonally in an area of thermal discharge from the Uljin nuclear power plant in Korea to assess possible impacts from thermal stress. Quadrat samples were taken at three sites: cooling water intake, outfall and Chukbyon. The degree of wave exposure increased from intake, outfallto Chukbyon. Percent cover and biomass were response variables. All sites were, by numbers red algae, followed by brown and green algae. Over the year the maximum species diversity was also found at the Chukbyon (2.39), but the minimal one (1.67) was observed at the outfall. Seasonally generally among algal form-functional groups, filamentous and coarsely branched algae were most abundant throughout the year at the three sites. The numberof species in the jointed calcareous groups increased remarkably at the outfall. Based on these results, species richness appears tobe strongly affected by wave exposure and thermal stress. The higher proportion of calcareous form groups at the outfall sites indicates that these species are better adapted morphologically to thermal stress such as high temperatures.

  15. Occurrence and degree of intersex (testis-ova) in darters (Etheostoma SPP.) across an urban gradient in the Grand River, Ontario, Canada.

    PubMed

    Tanna, Rajiv N; Tetreault, Gerald R; Bennett, Charles J; Smith, Brendan M; Bragg, Leslie M; Oakes, Ken D; McMaster, Mark E; Servos, Mark R

    2013-09-01

    The variability and extent of the intersex condition (oocytes in testes, or testis-ova) was documented in fish along an urban gradient in the Grand River, Ontario, Canada, that included major wastewater treatment plant outfalls. A method for rapid enumeration of testis-ova was developed and applied that increased the capacity to quantify intersex prevalence and severity. Male rainbow darters (Etheostoma caeruleum) sampled downstream of the first major wastewater outfall (Waterloo) had a significant increase, relative to 4 upstream reference sites, in the mean proportion of fish with at least 1 testis-oocyte per lobe of testes (9-20% proportion with ≤ 1 testis-oocyte/lobe vs 32-53% and >1.4 testis-oocyte/lobe). A much higher mean incidence of intersex proportion and degree was observed immediately downstream of the second wastewater outfall (Kitchener; 73-100% and 8-70 testis-oocyte/lobe); but only 6.3 km downstream of the Kitchener outfall, the occurrence of intersex dropped to those of the reference sites. In contrast, downstream of a tertiary treated wastewater outfall on a small tributary, intersex was similar to reference sites. Estrogenicity, measured using a yeast estrogen screen, followed a similar pattern, increasing from 0.81 ± 0.02 ng/L 17b-estradiol equivalents (EEq) (Guelph), to 4.32 ± 0.07 ng/L (Waterloo), and 16.99 ± 0.40 ng/L (Kitchener). Female rainbow darter downstream of the Kitchener outfall showed significant decreases in gonadosomatic index and liver somatic index, and increases in condition factor (k) relative to corresponding reference sites. The prevalence of intersex and alterations in somatic indices suggest that exposure to municipal wastewater effluent discharges can impact endocrine function, energy use, and energy storage in wild fish. Copyright © 2013 SETAC.

  16. Seawater quality and microbial communities at a desalination plant marine outfall. A field study at the Israeli Mediterranean coast.

    PubMed

    Drami, Dror; Yacobi, Yosef Z; Stambler, Noga; Kress, Nurit

    2011-11-01

    Global desalination quadrupled in the last 15 years and the relative importance of seawater desalination by reverse osmosis (SWRO) increased as well. While the technological aspects of SWRO plants are extensively described, studies on the environmental impact of brine discharge are lacking, in particular in situ marine environmental studies. The Ashqelon SWRO plant (333,000 m(3) d(-1) freshwater) discharges brine and backwash of the pre-treatment filters (containing ferric hydroxide coagulant) at the seashore, next to the cooling waters of a power plant. At the time of this study brine and cooling waters were discharged continuously and the backwash discharge was pulsed, with a frequency dependent on water quality at the intake. The effects of the discharges on water quality and neritic microbial community were identified, quantified and attributed to the different discharges. The mixed brine-cooling waters discharge increased salinity and temperature at the outfall, were positively buoyant, and dispersed at the surface up to 1340 m south of the outfall. Nutrient concentrations were higher at the outfall while phytoplankton densities were lower. Chlorophyll-a and picophytoplankton cell numbers were negatively correlated with salinity, but more significantly with temperature probably as a result of thermal pollution. The discharge of the pulsed backwash increased turbidity, suspended particulate matter and particulate iron and decreased phytoplankton growth efficiency at the outfall, effects that declined with distance from the outfall. The discharges clearly reduced primary production but we could not attribute the effect to a specific component of the discharge. Bacterial production was also affected but differently in the three surveys. The combined and possible synergistic effects of SWRO desalination along the Israeli shoreline should be taken into account when the three existing plants and additional ones are expected to produce 2 Mm(3) d(-1) freshwater by 2020. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Origins and fates of PAHs in the coastal marine environment off San Diego (California)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, E.Y.; Yu, C.C.; Vista, C.L.

    1995-12-31

    The main inputs of anthropogenic hydrocarbons to the coastal marine environment off San Diego include the Point Lama wastewater outfall (City of San Diego), Tijuana River (crossing the boarder between the US and Mexico) and several storm drains along the coastline and in San Diego Bay, inadvertent spills, and aerial deposition. Samples collected (in January and June 1994) from the Point Loma wastewater effluent, Tijuana River runoff, and microlayer, sediment trap, and surface sediment at several locations adjacent to the Point Loma outfall, entrance of Tijuana River into the ocean, and San Diego Bay (near the San Diego International Airport)more » were analyzed to determine the origins and fates of PAHs in the coastal marine environment. Alkyl homologue distributions (AHDS) for naphthalene indicated a mainly petrogenic origin for low molecular-weight PAHs in the effluent, water column particle, and sediment near the outfall. Parent compound distributions (PCDS) for PAHs with molecular weights 178, 202, 228, 252, 276, and 278 showed combustion-related inputs in the water column particle and sediment, especially for mid to high molecular-weight PAHs. PAHs with molecular weight equal to or higher than 252 were not detected in the effluent. The compositions of PAHs were substantially different in the effluent particulates and filtrates, implying a great deal about the fates of PAHs from the outfall and their bioaccumulation by organisms. PAHs detected in Tijuana River runoff had similar AHDs and PCDs to those of the Point Loma outfall effluent. AHDs in the San Diego Bay sediment exhibited marked seasonal variation; low molecular-weight PAHs were significantly combustion-related in January and more petrogenic in June. Microlayer samples generally contained dominant combustion-generated PAHs. The impact of the wastewater outfall discharge on the nearby water column and sediment appeared compromised by other non-point source inputs.« less

  18. Cross-shore flow on the inner-shelf off southwest Portugal

    NASA Astrophysics Data System (ADS)

    Lamas, L.; Peliz, A.; Oliveira, P.; Dias, J.

    2012-04-01

    Velocity measurements from 4 bottom-mounted ADCP deployments (summers of 2006, 2007, 2008 and 2011) at a 12-m depth site off Sines, Portugal, complemented with time series of winds, waves and tides, are used to study the inner-shelf cross-shore flow dependence on wave, tidal and wind forcings. During these four summers, the dominating winds are from the north (upwelling-favorable), with strong diurnal sea breeze cycle throughout these periods. This quasi-steady wind circulation is sometimes interrupted by short event-like reversals. The observed records were split in different subsets according to tidal amplitude, wave height, cross- and along-shore wind magnitudes, and the vertical structure of the cross-shore flow was studied for each of these subsets. Despite different forcing conditions, the cross-shore velocity profiles usually show a vertical parabolic structure with maximum onshore flow at mid-depth, resembling the upwelling return flow for mid-shelf conditions, but atypical for the inner-shelf and in disagreement with other inner-shelf studies from other sites. We compare the observations with simplified 2D inner-shelf models and with results from other studies.

  19. Near-field Oblique Remote Sensing of Stream Water-surface Elevation, Slope, and Surface Velocity

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Kinzel, P. J.; Nelson, J. M.; McDonald, R.; Wright, S. A.

    2014-12-01

    A major challenge for estimating discharges during flood events or in steep channels is the difficulty and hazard inherent in obtaining in-stream measurements. One possible solution is to use near-field remote sensing to obtain simultaneous water-surface elevations, slope, and surface velocities. In this test case, we utilized Terrestrial Laser Scanning (TLS) to remotely measure water-surface elevations and slope in combination with surface velocities estimated from particle image velocimetry (PIV) obtained by video-camera and/or infrared camera. We tested this method at several sites in New Mexico and Colorado using independent validation data consisting of in-channel measurements from survey-grade GPS and Acoustic Doppler Current Profiler (ADCP) instruments. Preliminary results indicate that for relatively turbid or steep streams, TLS collects tens of thousands of water-surface elevations and slopes in minutes, much faster than conventional means and at relatively high precision, at least as good as continuous survey-grade GPS measurements. Estimated surface velocities from this technique are within 15% of measured velocity magnitudes and within 10 degrees from the measured velocity direction (using extrapolation from the shallowest bin of the ADCP measurements). Accurately aligning the PIV results into Cartesian coordinates appears to be one of the main sources of error, primarily due to the sensitivity at these shallow oblique look angles and the low numbers of stationary objects for rectification. Combining remotely-sensed water-surface elevations, slope, and surface velocities produces simultaneous velocity measurements from a large number of locations in the channel and is more spatially extensive than traditional velocity measurements. These factors make this technique useful for improving estimates of flow measurements during flood flows and in steep channels while also decreasing the difficulty and hazard associated with making measurements in these conditions.

  20. High-frequency measurements reveal spatial and temporal patterns of dissolved organic matter in an urban water conveyance.

    PubMed

    Mihalevich, Bryce A; Horsburgh, Jeffery S; Melcher, Anthony A

    2017-10-30

    Stormwater runoff in urban areas can contribute high concentrations of dissolved organic matter (DOM) to receiving waters, potentially causing impairment to the aquatic ecosystem of urban streams and downstream water bodies. Compositional changes in DOM due to storm events in forested, agricultural, and urban landscapes have been well studied, but in situ sensors have not been widely applied to monitor stormwater contributions in urbanized areas, leaving the spatial and temporal characteristics of DOM within these systems poorly understood. We deployed fluorescent DOM (FDOM) sensors at upstream and downstream locations within a study reach to characterize the spatial and temporal changes in DOM quantity and sources within an urban water conveyance that receives stormwater runoff. Baseflow FDOM decreased over the summer season as seasonal flows upstream transported less DOM. FDOM fluctuated diurnally, the amplitude of which also declined as the summer season progressed. During storms, FDOM concentrations were rapidly elevated to values orders of magnitude greater than baseflow measurements, with greater concentrations at the downstream monitoring site, revealing high contributions from stormwater outfalls between the two locations. Observations from custom, in situ fluorometers resembled results obtained using laboratory methods for identifying DOM source material and indicated that DOM transitioned to a more microbially derived composition as the summer season progressed, while stormwater contributions contributed DOM from terrestrial sources. Deployment of a mobile sensing platform during varying flow conditions captured spatial changes in DOM concentration and composition and revealed contributions of DOM from outfalls during stormflows that would have otherwise been unobserved.

  1. Hatteras Breach, North Carolina

    DTIC Science & Technology

    2010-07-01

    1400 EST. Cross channel ADCP transects were also made from an instrumented Zodiac inflatable boat on 16, 17, and 24 October. The ADCP employed for...of the breach, near the middle, and on the sound side (Figure 11). The Zodiac crabbed (at an angle to the cur- rent) across the breach at a best...Coastal and Hydraulics Engineering Technical Note (CHETN) is intended to document the rapid response of the U.S. Army Corps of Engineers to engineer and

  2. Mixing zones studies of the waste water discharge from the Consolidated Paper Company into the Wisconsin River at Wisconsin Rapids, Wisconsin

    NASA Technical Reports Server (NTRS)

    Hoopes, J. A.; Wu, D. S.; Ganatra, R.

    1973-01-01

    Effluent concentration distributions from the waste water discharge of the Kraft Division Mill, Consolidated Paper Company, into the Wisconsin River at Wisconsin Rapids, Wisconsin, is investigated. Effluent concentrations were determined from measurements of the temperature distribution, using temperature as a tracer. Measurements of the velocity distribution in the vicinity of the outfall were also made. Due to limitations in the extent of the field observations, the analysis and comparison of the measurements is limited to the region within about 300 feet from the outfall. Effects of outfall submergence, of buoyancy and momentum of the effluent and of the pattern and magnitude of river currents on these characteristics are considered.

  3. CHRONIC ZINC SCREENING WATER EFFECT RATIO FOR THE H-12 OUTFALL, SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughlin, D.; Looney, B.; Millings, M.

    2009-01-13

    In response to proposed Zn limits for the NPDES outfall H-12, a Zn screening Water Effects Ratio (WER) study was conducted to determine if a full site-specific WER is warranted. Using standard assumptions for relating the lab results to the stream, the screening WER data were consistent with the proposed Zn limit and suggest that a full WER would result in a similar limit. Addition of a humate amendment to the outfall water reduced Zn toxicity, but the toxicity reduction was relatively small and unlikely to impact proposed Zn limits. The screening WER data indicated that the time and expensemore » required to perform a full WER for Zn is not warranted.« less

  4. CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, E.

    2010-07-19

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m{sup 3} per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volumemore » and be able to handle 83,280 m{sup 3} of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m{sup 3} per day, and be able to handle 9,690 m{sup 3} of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during the first season of growth of each system. Sediment samples after the first and third years of operation indicated that copper was being bound in the sediments very rapidly after entering the treatment system. The design of the system encourages low redox and sulfide production in the sediments. The objective is to stabilize metals, including mercury, as sulfide compounds in the sediments. Costs for maintenance and operation of the systems are minimal, consisting primarily of ensuring that the pipes are not clogged and that water is flowing through the system. The treatment cost per thousand gallons is many times less than conventional wastewater treatment facilities. Life expectancy and function of the biological system is based on the life of the engineering aspects and not the wetland ecology.« less

  5. Tempest in Vailulu'u Crater

    NASA Astrophysics Data System (ADS)

    Hart, S. R.; Staudigel, H.; Koppers, A.; Young, C.; Baker, E.

    2005-12-01

    The summit crater of the Samoan submarine volcano, Vailulu'u, has been actively erupting since 2001. Based on water chemistry, CTD and temperature logger data from 2000 and 2001, we formulated a model for the hydrothermal system in the crater involving a tidally-modulated "breathing" (Staudigel et al., 2004). During low stands of internal waves (exterior to the crater), the crater exhales warm buoyant hydrothermal water that forms a "halo" around the crater rich in Mn, 3He, and particulates. During "high tides", cold dense external water is inhaled into the crater through the three breaches, and cascades to the crater floor. In April 2005, we used the HURL PISCES V submersible to deploy various temperature and particulate loggers and current meters in and around the crater; these were retrieved by Pisces V in July 2005. In addition, continuous CTD profiling was carried out over 12 hour tidal cycles at one location inside, and one outside, the crater. The accumulated data set fully reinforces our "breathing" model. An ADCP, deployed for 93 days in the NW breach at 752m, showed dominant easterly inflow currents and westerly outflow currents, with maximum velocities of approximately 25 cm/s. The flows were coherent for distances up to 50-60m above the ADCP; the mean inflow velocity and azimuth (20-40 m interval above the ADCP) was 7 cm/s due east; the mean outflow velocity and azimuth was 5 cm/s at 260 degrees. Mean inflows were consistently colder than outflows (5.00 C vs 5.20 C); the maximum observed range in temperature was 1.1 C, correlated with peak flow velocities. The coldest inflows would require very large regional internal wave amplitudes, up to 50-100 meters. A 2-D acoustic current meter was deployed on top of the west crater rim summit (582m) for 90 days, and in the S breach (697m) for 4 days. The summit flows are presumed to represent the regional scale currents; these were largely from the SW quadrant, with typical velocities of 8-15 cm/s, and peaks to 25 cm/s. The S breach flows had a clear semi-diurnal tidal modulation, with strong NE quadrant inflows at high velocity (15-30 cm/s), separated by short outflow spikes of 1-2 hour duration at much lower velocity (greater than10 cm/s). The outflow water was typically warmer by 0.1-0.2 C; the maximum temperature range was 0.6 C, about half of that observed at the NW breach. A 12-hour continuous profiling CTD-LBSS station was serendipitously sited on top of a large diffuse-venting hydrothermal field, in the crater moat just north of the new volcanic cone. The water column here was incredibly dynamic, with a 5-10m bottom boundary layer, 1 C above ambient, forming by diffuse flow from the basalt substrate in a matter of minutes; this layer would destabilize, detach, and rise with velocities of ~ 1 cm/sec. This buoyant water was both warmer and less saline than either the ambient crater water, or the cold outside water which occasionally cascaded onto this site from the nearby NW breach; it was also laden with particulates, with LBSS readings up to 1.7 NTU. Water chemistry and He isotope analyses are in progress.

  6. Distribution of enteric bacteria in Antarctic seawater surrounding the Port-aux-Français permanent station (Kerguelen Island).

    PubMed

    Delille, D; Gleizon, F

    2003-09-01

    Untreated sewage has been released from Port-aux Français station, Kerguelen Island, into the Southern Ocean for more than 50 years. We investigated the spatial distribution of faecal bacteria indicators during a one-year survey conducted in seawater off Morbihan Bay near the French permanent station of the Kerguelen Island (49 degrees 21(')S, 70 degrees 30(')E). Seawater samples were taken bimonthly from nine stations evenly distributed around the sewage outfalls of the station. Escherichia coli and enterococci were estimated using specific microplates (Miniaturized method for the enumeration of E. coli or enterococci in surface and waste waters, "MU/EC or MU/SF methods", BIO-RAD( Copyright)). In order to evaluate the role of seasonal changes of environmental parameters on the survival of enteric bacteria, total and saprophytic bacterial abundances were also estimated in all seawater samples. High densities of faecal bacteria (maximum 10(4) cells 100 ml(-1)) were found in seawater surrounding the sewage outfall. However, enteric bacterial counts decreased rapidly with increasing distance from the outfall. In all samples collected further than 2 km from the outfall, the bacterial indicators were absent or present in small numbers (<10 cells 100 ml(-1)). Faecal coliforms were not detected in samples collected at pristine sites located 10 km from Port-aux-Français. Despite these low contamination levels, faecal bacteria were always detected in the vicinity of the sewage outfall during the seasonal survey. The concentration of faecal bacteria may be related to the number of people inhabiting the station.

  7. Monitoring Tidal Currents with a Towed ADCP System

    DTIC Science & Technology

    2015-12-22

    these make tidal stream energy a more reliable source than other forms of ma- rine energy, such as waves and offshore wind. The place of tidal stream...big tidal range (9 m), relatively strong (2 m/s) currents, and moderate wind waves (less than 3 m in the an- nual mean), it is considered to be a...Monitoring tidal currents with a towed ADCP system Alexei Sentchev1 & Max Yaremchuk2 Received: 22 September 2015 /Accepted: 10 December 2015

  8. Evaluation of ADCP apparent bed load velocity in a large sand-bed river: Moving versus stationary boat conditions

    USGS Publications Warehouse

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and apparent bed load velocity using a boat-mounted acoustic Doppler current profiler (ADCP) was carried out along a 388-m section of the lower Missouri River near Columbia, Missouri. Sampling transects (moving boat) were completed at 5- and 20-m spacing along the study section. Stationary (fixed-boat) measurements were made by maintaining constant boat position over a target point where the position of the boat did not deviate more than 3 m in any direction. For each transect and stationary measurement, apparent bed load velocity (vb) was estimated using ADCP bottom tracking data and high precision real-time kinematic (RTK) global positioning system (GPS). The principal objectives of this research are to (1) determine whether boat motion introduces a bias in apparent bed load velocity measurements; and (2) evaluate the reliability of ADCP bed velocity measurements for a range of sediment transport environments. Results indicate that both high transport (vb>0.6 m/s) and moving-boat conditions (for both high and low transport environments) increase the relative variability in estimates of mean bed velocity. Despite this, the spatially dense single-transect measurements were capable of producing detailed bed velocity maps that correspond closely with the expected pattern of sediment transport over large dunes. ?? 2011 American Society of Civil Engineers.

  9. Evaluation of multiple-frequency, active and passive acoustics as surrogates for bedload transport

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Pachman, Gregory; Lorang, Mark; Tonolla, Diego

    2015-01-01

    The use of multiple-frequency, active acoustics through deployment of acoustic Doppler current profilers (ADCPs) shows potential for estimating bedload in selected grain size categories. The U.S. Geological Survey (USGS), in cooperation with the University of Montana (UM), evaluated the use of multiple-frequency, active and passive acoustics as surrogates for bedload transport during a pilot study on the Kootenai River, Idaho, May 17-18, 2012. Four ADCPs with frequencies ranging from 600 to 2000 kHz were used to measure apparent moving bed velocities at 20 stations across the river in conjunction with physical bedload samples. Additionally, UM scientists measured the sound frequencies of moving particles with two hydrophones, considered passive acoustics, along longitudinal transects in the study reach. Some patterns emerged in the preliminary analysis which show promise for future studies. Statistically significant relations were successfully developed between apparent moving bed velocities measured by ADCPs with frequencies 1000 and 1200 kHz and bedload in 0.5 to 2.0 mm grain size categories. The 600 kHz ADCP seemed somewhat sensitive to the movement of gravel bedload in the size range 8.0 to 31.5 mm, but the relation was not statistically significant. The passive hydrophone surveys corroborated the sample results and could be used to map spatial variability in bedload transport and to select a measurement cross-section with moving bedload for active acoustic surveys and physical samples.

  10. 76 FR 22880 - Notice of Commission Meeting and Public Hearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... continue a TDS Determination that allows TDS effluent concentrations of up to 1,100 mg/l as a monthly average; 2,200 mg/l as a daily maximum; and 2,750 mg/l as an instantaneous maximum, via combined Outfall... requested that the intermittent discharge from Outfall 004 continue to have an effluent limit of 3,500 mg/l...

  11. The Characteristics of Marine Environment around the Ieodo in Aug. 2016

    NASA Astrophysics Data System (ADS)

    Choi, E.; KIM, S. H.; KIM, E.; KIM, B. N.; CHOI, B. K.

    2017-12-01

    The sea area around Ieodo is analyzed from the CTD data and the S-ADCP data observed in 23 Aug. 2016. Ieodo, an underwater reef, is located 149 km southwest of Marado in Republic of Korea. It has 4 peaks and is about 4.6 meter below sea level. It stretches about 600m north to south and 750m east to west from its top. It has the same geographical characteristics as the seamount. In the sea area around Ieodo, the northward flow appeared during the ebb tide, the southward flow appeared during the flood tide. The strong stratification formed in summer seems to change the depth depending on the sea water current. The thermocline depth becomes deeper at the north of the Ieodo when the northward current flows and the upwelling flow occurs. And the thermocline depth becomes shallower at the south when the southward current flows and the downwelling flow occurs. In this way, the upwelling and downwelling seems to be according to the tide's direction. Acknowledgements This research was a part of the projects entitled "Construction of Ocean Research Stations and their application Studies, Phase 2", funded by the Ministry of Oceans and Fisheries, Korea.

  12. Three sensitive species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calix, R.E.; Diener, D.

    1995-12-31

    MEC Analytical Systems, Inc., has conducted marine monitoring of a large ocean wastewater outfall since 1985. This EPA mandated monitoring program was designed to measure the spatial and temporal variability of the biological communities and assess the impact associated with the discharge. The ostracod Euphilomedes carcarodonta, has shown enhanced abundances centered at the outfall since the late 70`s. While flow rates continue to increase the concentration of solids and contaminants has been decreasing with improve treatment levels. However the abundance and spatial distribution of this species has remain relatively unchanged. It is hypothesized that this species feeds on the smallmore » organic particles. In contrast, the abundance of the polychaete Capitella capitata, an indicator of disturbed habitat and organic enrichment, has decreased significantly. This decrease correlates with decreasing concentrations of wastewater solids and decreasing sediment organic carbon concentrations. The brittle star, Amphiodia urtica, has been found to be one of the most sensitive species to wastewater discharges and its abundance was significantly decreased over a large area in the 70`s. Since 1985 this species has shown a steady recovery of abundance to areas near the discharge. This recovery correlates with lower sediment contaminant levels and decreased solid concentrations, and indicates that the environmental quality near the discharge is similar to reference areas.« less

  13. Minor improvement for intertidal seaweeds and invertebrates after acid mine drainage diversion at Britannia Beach, Pacific Canada.

    PubMed

    Zis, Thalia; Ronningen, Vera; Scrosati, Ricardo

    2004-06-01

    In December 2001, acid mine drainage (AMD) from an abandoned copper mine at Britannia Beach (British Columbia, Canada) was diverted to flow from Britannia Creek into an outfall at 30 m depth in Howe Sound. Britannia Beach was studied in early 2003 to determine whether AMD diversion resulted in improved conditions for intertidal organisms. Species number and abundance have increased at the intertidal zone since AMD diversion, although they were still lower than at an unpolluted control site nearby (Furry Creek). Survivorship and growth rates of transplanted Mytilus trossulus (mussel) have increased since AMD diversion, although they were still significantly lower than at the control site. Transplanted Fucus gardneri (seaweed) performed better than before the AMD diversion; at Britannia Beach the chlorophyll a concentration in tissues was not significantly different from that at the control site, although the concentration of chlorophyll c in tissues and the chlorophyll c to a ratio was lower than at the control site six weeks after transplantation. Britannia Beach is still subject to leaching of metals from surrounding soils, low levels of AMD coming down the creek, and AMD discharge from the deep outfall. Although there has been an improvement, the intertidal environment at Britannia Beach still seems unable to support normal growth and survival of organisms.

  14. Seasonality of Arctic Mediterranean Exchanges

    NASA Astrophysics Data System (ADS)

    Rieper, Christoph; Quadfasel, Detlef

    2015-04-01

    The Arctic Mediterranean communicates through a number of passages with the Atlantic and the Pacific Oceans. Most of the volume exchange happens at the Greenland-Scotland-Ridge: warm and saline Atlantic Water flows in at the surface, cold, dense Overflow Water flows back at the bottom and fresh and cold Polar Water flows out along the East Greenland coast. All surface inflows show a seasonal signal whereas only the outflow through the Faroe Bank Channel exhibits significant seasonality. Here we present a quantification of the seasonal cycle of the exchanges across the Greenland-Scotland ridge based on volume estimates of the in- and outflows within the last 20 years (ADCP and altimetry). Our approach is comparatistic: we compare different properties of the seasonal cycle like the strength or the phase between the different in- and outflows. On the seasonal time scale the in- and outflows across the Greenland-Scotland-Ridge are not balanced. The net flux thus has to be balanced by the other passages on the Canadian Archipelago, Bering Strait as well as runoff from land.

  15. North Adriatic Tides: Observations, Variational Data Assimilation Modeling, and Linear Tide Dynamics

    DTIC Science & Technology

    2009-12-01

    of the North Adriatic ( Lee et al., 2005). In addition to the ADCP measurements of currents through- out the water column, bottom pressure (by ADCP or...of the year with low levels of stratification (Figure 2, Jeffries and Lee , 2007). Actual generation of internal tides in the North Adriatic would...Thompson, K.R., Teague, W. J., Jacobs, G.A., Suk, M.-S., Chang, K.-I., Lee , J.-C. and Choi, B.H. (2004): Data assimilation modeling of the barotropic

  16. Graphical method for estimating occurrence and duration of a critical low flow in the Sacramento River at Freeport, California

    USGS Publications Warehouse

    Harmon, J.G.

    1983-01-01

    Sacramento County expects to begin operation of the Sacramento Regional Wastewater Treatment Plant in 1982. The California State Water Resources Control Board has ruled that the plant will not be allowed to release effluent into the Sacramento River when flow in the river is 4,000 cubic feet per second or less. Depending on tide condition, flows less than 4,000 cubic feet per second may occur either once or twice during each 24-hour 50-minute tide cycle when the daily mean flow is less than about 12,000 cubic feet per second. Daily means flows less than 12,000 cubic feet per second occur about 28% of the time. Riverflow at the plant outfall is monitored by an acoustic streamflow-measuring system. Regulation of effluent released from the plant will normally be based on real-time flow data computed by the acoustic system. A graphical method for determining the occurrence and duration of flows of 4,000 cubic feet per second and less was developed as a backup system to be used if a temporary failure in the acoustic system occurs. (USGS)

  17. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida

    PubMed Central

    Campbell, Alexandra M; Fleisher, Jay; Sinigalliano, Christopher; White, James R; Lopez, Jose V

    2015-01-01

    Coastal waters adjacent to populated southeast Florida possess different habitats (reefs, oceanic inlets, sewage outfalls) that may affect the composition of their inherent microbiomes. To determine variation according to site, season, and depth, over the course of 1 year, we characterized the bacterioplankton communities within 38 nearshore seawater samples derived from the Florida Area Coastal Environment (FACE) water quality survey. Six distinct coastal locales were profiled – the Port Everglades and Hillsboro Inlets, Hollywood and Broward wastewater outfalls, and associated reef sites using culture-independent, high-throughput pyrosequencing of the 16S rRNA V4 region. More than 227,000 sequences helped describe longitudinal taxonomic profiles of marine bacteria and archaea. There were 4447 unique operational taxonomic units (OTUs) identified with a mean OTU count of 5986 OTUs across all sites. Bacterial taxa varied significantly by season and by site using weighted and unweighted Unifrac, but depth was only supported by weighted Unifrac, suggesting a change due to presence/absence of certain OTUs. Abundant microbial taxa across all samples included Synechococcus, Pelagibacteraceae, Bacteroidetes, and various Proteobacteria. Unifrac analysis confirmed significant differences at inlet sites relative to reef and outfalls. Inlet-based bacterioplankton significantly differed in greater abundances of Rhodobacteraceae and Cryomorphaceae, and depletion of SAR406 sequences. This study also found higher counts of Firmicutes, Chloroflexi, and wastewater associated SBR1093 bacteria at the outfall and reef sites compared to inlet sites. This study profiles local bacterioplankton populations in a much broader context, beyond culturing and quantitative PCR, and expands upon the work completed by the National Oceanic and Atmospheric Administration FACE program. PMID:25740409

  18. Rapid nitrification of wastewater ammonium near coastal ocean outfalls, Southern California, USA

    NASA Astrophysics Data System (ADS)

    McLaughlin, Karen; Nezlin, Nikolay P.; Howard, Meredith D. A.; Beck, Carly D. A.; Kudela, Raphael M.; Mengel, Michael J.; Robertson, George L.

    2017-02-01

    In the southern California Bight (SCB), there has been a longstanding hypothesis that anthropogenic nutrient loading is insignificant compared to the nutrient loading from upwelling. However, recent studies have demonstrated that, in the nearshore environment, nitrogen (N) flux from wastewater effluent is equivalent to the N flux from upwelling. The composition of the N pool and N:P ratios of wastewater and upwelled water are very different and the environmental effects of wastewater discharges on coastal systems are not well characterized. Capitalizing on routine maintenance of the Orange County Sanitation District's ocean outfall, wherein a wastewater point source was "turned off" in one area and "turned on" in another for 23 days, we were able to document changes in coastal N cycling, specifically nitrification, related to wastewater effluent. A "hotspot" of ammonium (NH4+) and nitrite (NO2-) occurred over the ocean outfall under normal operations and nitrification rates were significantly higher offshore when the deeper outfall pipe was operating. These rates were sufficiently high to transform all effluent NH4+ to nitrate (NO3-). The dual isotopic composition of dissolved NO3- (δ15NNO3 and δ18ONO3) indicated that N-assimilation and denitrification were low relative to nitrification, consistent with the relatively low chlorophyll and high dissolved oxygen levels in the region during the study. The isotopic composition of suspended particulate organic matter (POM) recorded low δ15NPN and δ13CPN values around the outfall under normal operations suggesting the incorporation of "nitrified" NO3- and wastewater dissolved organic carbon into POM. Our results demonstrate the critical role of nitrification in nitrogen cycling in the nearshore environment of urban oceans.

  19. Wakes from submerged obstacles in an open channel flow

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey B.; Marmorino, George; Dong, Charles; Miller, W. D.; Mied, Richard

    2015-11-01

    Wakes from several submerged obstacles are examined via airborne remote sensing. The primary focus will be bathymetric features in the tidal Potomac river south of Washington, DC, but others may be included as well. In the Potomac the water depth is nominally 10 m with an obstacle height of 8 m, or 80% of the depth. Infrared imagery of the water surface reveals thermal structure suitable both for interpretation of the coherent structures and for estimating surface currents. A novel image processing technique is used to generate two independent scenes with a known time offset from a single overpass from the infrared imagery, suitable for velocity estimation. Color imagery of the suspended sediment also shows suitable texture. Both the `mountain wave' regime and a traditional turbulent wake are observed, depending on flow conditions. Results are validated with in-situ ADCP transects. A computational model is used to further interpret the results.

  20. Evaluation of ship-based sediment flux measurements by ADCPs in tidal flows

    NASA Astrophysics Data System (ADS)

    Becker, Marius; Maushake, Christian; Grünler, Steffen; Winter, Christian

    2017-04-01

    In the past decades acoustic backscatter calibration developed into a frequently applied technique to measure fluxes of suspended sediments in rivers and estuaries. Data is mainly acquired using single-frequency profiling devices, such as ADCPs. In this case, variations of acoustic particle properties may have a significant impact on the calibration with respect to suspended sediment concentration, but associated effects are rarely considered. Further challenges regarding flux determination arise from incomplete vertical and lateral coverage of the cross-section, and the small ratio of the residual transport to the tidal transport, depending on the tidal prism. We analyzed four sets of 13h cross-sectional ADCP data, collected at different locations in the range of the turbidity zone of the Weser estuary, North Sea, Germany. Vertical LISST, OBS and CTD measurements were taken very hour. During the calibration sediment absorption was taken into account. First, acoustic properties were estimated using LISST particle size distributions. Due to the tidal excursion and displacement of the turbidity zone, acoustic properties of particles changed during the tidal cycle, at all locations. Applying empirical functions, the lowest backscattering cross-section and highest sediment absorption coefficient were found in the center of the turbidity zone. Outside the tidally averaged location of the turbidity zone, changes of acoustic parameters were caused mainly by advection. In the turbidity zone, these properties were also affected by settling and entrainment, inducing vertical differences and systematic errors in concentration. In general, due to the iterative correction of sediment absorption along the acoustic path, local errors in concentration propagate and amplify exponentially. Based on reference concentration obtained from water samples and OBS data, we quantified these errors and their effect on cross-sectional averaged concentration and sediment flux. We found that errors are effectively decreased by applying calibration parameters interpolated in time, and by an optimization of the sediment absorption coefficient. We further discuss practical aspects of residual flux determination in tidal environments and of measuring strategies in relation to site-specific tidal dynamics.

  1. Estimation of the dilution field near a marine outfall by using effluent turbidity as an environmental tracer and comparison with dye tracer data.

    PubMed

    Pecly, José Otavio Goulart

    2018-01-01

    The alternative use of effluent turbidity to determine the dilution field of a domestic marine outfall located off the city of Rio de Janeiro was evaluated through field work comprising fluorescent dye tracer injection and tracking with simultaneous monitoring of sea water turbidity. A preliminary laboratory assessment was carried out with a sample of the outfall effluent whose turbidity was measured by the nephelometric method before and during a serial dilution process. During the field campaign, the dye tracer was monitored with field fluorometers and the turbidity was observed with an optical backscattering sensor interfaced to an OEM data acquisition system. About 4,000 samples were gathered, covering an area of 3 km × 3 km near the outfall diffusers. At the far field - where a drift towards the coastline was observed - the effluent plume was adequately labeled by the dye tracer. The turbidity plume was biased due to the high and variable background turbidity of sea water. After processing the turbidity dataset with a baseline detrending method, the plume presented high correlation with the dye tracer plume drawn on the near dilution field. However, dye tracer remains more robust than effluent turbidity.

  2. How was the deep scattering layers (DSLs) influenced by the Deepwater Horizon Spill? - Evidences from 10-year NTL oil/gas ADCP backscattering data collected at the spill site

    NASA Astrophysics Data System (ADS)

    Wang, Z.; DiMarco, S. F.; Socolofsky, S. A.

    2016-02-01

    There are suspicions that the 2010 DWH oil spill might have affected the biomass in the deep scattering layers (DSLs), at least during the period in which the spill was active and oil dispersants were used. The acoustic backscattering intensity (ABI) data from acoustic Doppler current profilers (ADCPs) have been shown to detect and monitor the spatial and temporal evolution of DSLs in many oceans. Since 2005 with the issue of a Notice of Lessees and Operators (NTL), namely, NTL No. 2005-G5, large amounts of continuous ADCP data have been collected by oil/gas companies in the Northern Gulf at more than 100 stations and made publically available via the National Data Buoyancy Center (NDBC) website. NTL ADCPs data have also been collected prior to, during and after the DWH spill at the spill site. The ADCP with station # 42872 was mounted on the DWH rig and collected ABI data from 2005 until the rig sank in April 2010. ADCPs with station # 42916 and 42868 were then moved into the spill region and collected ABI data during and after the spill. The deep scattering layers were well resolved by those 38 kHz with vertical range of 1000m. The SSL provides key food for many large sea-animals, including whales, dolphins, billfishes and giant tunas and therefore have important roles in the ecosystem of the deep Gulf. By carefully applying calibrations and corrections, the ABI data can be converted to biologically meaningful mean volume backscattering strength (MVBS) and areal backscattering strength (ABS). This is an effective and powerful way to study the pelagic communality dynamics in the deep scattering layers and to investigate greater details that were previously inaccessible. Utilizing the NTL data collected during the past 10 years around the DWH site, we investigate the spill influence on deep scattering layers by comparing the biomass pre- and post BP spill and comparing biomass variations in areas with and without oil contamination. Preliminary results have shown that there is a clear decrease trend of relative biomass in the deep scattering layer in 2010 after the spill. We also find extremely dense scattering patches at the depth of DSLs, which appear only during the spill and are likely formed by spill materials. Statistical analysis on the layer depth, intensity, and thickness and their variations over time are also investigated.

  3. The influence of tributary flow density differences on the hydrodynamic behavior of a confluent meander bend and implications for flow mixing

    NASA Astrophysics Data System (ADS)

    Herrero, Horacio S.; Díaz Lozada, José M.; García, Carlos M.; Szupiany, Ricardo N.; Best, Jim; Pagot, Mariana

    2018-03-01

    The goal of this study is to evaluate the influence of tributary flow density differences on hydrodynamics and mixing at a confluent meander bend. A detailed field characterization is performed using an Acoustic Doppler Current Profiler (ADCP) for quantification of the 3D flow field, flow discharge and bathymetry, as well as CTD measurements (conductivity, temperature, depth) to characterize the patterns of mixing. Satellite images of the confluence taken at complementary times to the field surveys were analyzed to evaluate the confluence hydrodynamics at different flow conditions. The results illustrate the differences in hydrodynamics and mixing length in relation to confluences with equal density tributaries. At low-density differences, and higher discharge ratio (Qr) between the two rivers, the flow is similar to equi-density confluent meander bends. In contrast, at high-density differences (low Qr), the tributary flow is confined to near the confluence but the density difference causes the flow to move across channel. In this case, the density difference causes the lateral spread of the tributary flow to be greater than at a greater Qr when the density difference is less. These results illustrate the potential importance of density differences between tributaries in determining the rate and spatial extent of mixing and sediment dispersal at confluent meander bends.

  4. Technology Evaluation for the Big Spring Water Treatment System at the Y-12 National Security Complex, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becthel Jacobs Company LLC

    2002-11-01

    The Y-12 National Security Complex (Y-12 Complex) is an active manufacturing and developmental engineering facility that is located on the U.S. Department of Energy (DOE) Oak Ridge Reservation. Building 9201-2 was one of the first process buildings constructed at the Y-12 Complex. Construction involved relocating and straightening of the Upper East Fork Poplar Creek (UEFPC) channel, adding large quantities of fill material to level areas along the creek, and pumping of concrete into sinkholes and solution cavities present within the limestone bedrock. Flow from a large natural spring designated as ''Big Spring'' on the original 1943 Stone & Webster Buildingmore » 9201-2 Field Sketch FS6003 was captured and directed to UEFPC through a drainpipe designated Outfall 51. The building was used from 1953 to 1955 for pilot plant operations for an industrial process that involved the use of large quantities of elemental mercury. Past operations at the Y-12 Complex led to the release of mercury to the environment. Significant environmental media at the site were contaminated by accidental releases of mercury from the building process facilities piping and sumps associated with Y-12 Complex mercury handling facilities. Releases to the soil surrounding the buildings have resulted in significant levels of mercury in these areas of contamination, which is ultimately transported to UEFPC, its streambed, and off-site. Bechtel Jacobs Company LLC (BJC) is the DOE-Oak Ridge Operations prime contractor responsible for conducting environmental restoration activities at the Y-12 Complex. In order to mitigate the mercury being released to UEFPC, the Big Spring Water Treatment System will be designed and constructed as a Comprehensive Environmental Response, Compensation, and Liability Act action. This facility will treat the combined flow from Big Spring feeding Outfall 51 and the inflow now being processed at the East End Mercury Treatment System (EEMTS). Both discharge to UEFPC adjacent to Bldg. 9201-2. The EEMTS treats mercury-contaminated groundwater that collects in sumps in the basement of Bldg. 9201-2. A pre-design study was performed to investigate the applicability of various treatment technologies for reducing mercury discharges at Outfall 51 in support of the design of the Big Spring Water Treatment System. This document evaluates the results of the pre-design study for selection of the mercury removal technology for the treatment system.« less

  5. Observed Near-Surface Currents Four Super Typhoons

    DTIC Science & Technology

    2014-07-16

    floats under category-4 hur- ricane Frances 2004 (D’Asaro et al., 2007 ; Sanford et al., 2011). Maximum current velocities of 2.0 m s−1 and 1.7 m s−1...Teague et al., 2007 ). The observed maximum current velocities and the storm’s track in the earlier studies are listed in Table 1. In addition to current...2011) 1.5 Ivan (2004), Gulf of Mexico Category-4 5.8 ADCP 15 6 Teague et al. ( 2007 ) 2.1 Harvey (2005), Atlantic Tropical storm 6.3 ADCP 5 18 Black

  6. Quality assurance plan for discharge measurements using broadband acoustic Doppler current profilers

    USGS Publications Warehouse

    Lipscomb, S.W.

    1995-01-01

    The recent introduction of the Acoustic Doppler Current Profiler (ADCP) as an instrument for measuring velocities and discharge in the riverine and estuarine environment promises to revolutionize the way these data are collected by the U.S. Geological Survey. The ADCP and associated software, however, compose a complex system and should be used only by qualifies personnel. Standard procedures should be rigorously followed to ensure that the quality of data collected is commensurate with the standards set by the Water Resources Division for all its varied activities in hydrologic investigations.

  7. Fifth Annual Report: 2008 Pre-Construction Eelgrass Monitoring and Propagation for King County Outfall Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, Dana L.; Judd, Chaeli; Thom, Ronald M.

    2010-01-01

    This is the fifth and final report in a series documenting progress of the pre-construction eelgrass restoration and mitigation activities for the proposed King County Brightwater marine outfall, discharging to Puget Sound near Point Wells, Washington. King County began implementing a multiyear eelgrass monitoring and restoration program in 2004, with the primary goal of returning intertidal and shallow subtidal habitat and eelgrass to pre-construction conditions, after construction of the outfall. Major eelgrass mitigation program elements include: a) pre-construction monitoring, i.e., documenting initial eelgrass conditions and degree of fluctuation over a 5 year period prior to construction, b) eelgrass transplanting, includingmore » harvesting, offsite propagation and stockpiling of local plants for post-construction planting, and c) post-construction planting and subsequent monitoring, occurring in 2009 and beyond. The overall program is detailed in the Eelgrass Restoration and Biological Resources Implementation Workplan (King County 2008).« less

  8. Observations of near-bottom currents in Bornholm Basin, Slupsk Furrow and Gdansk Deep

    NASA Astrophysics Data System (ADS)

    Bulczak, A. I.; Rak, D.; Schmidt, B.; Beldowski, J.

    2016-06-01

    Dense bottom currents are responsible for transport of the salty inflow waters from the North Sea driving ventilation and renewal of Baltic deep waters. This study characterises dense currents in three deep locations of the Baltic Proper: Bornholm Basin (BB), Gdansk Basin (GB) and Slupsk Furrow (SF). These locations are of fundamental importance for the transport and pollution associated with chemical munitions deposited in BB and GB after 2nd World War. Of further importance the sub-basins are situated along the pathway of dense inflowing water.Current velocities were measured in the majority of the water column during regular cruises of r/v Oceania and r/v Baltica in 2001-2012 (38 cruises) by 307 kHz vessel mounted (VM), downlooking ADCP. Additionally, the high-resolution CTD and oxygen profiles were collected. Three moorings measured current velocity profiles in SF and GB over the summer 2012. In addition, temperature, salinity, oxygen and turbidity were measured at about 1 m above the bottom in GB. The results showed that mean current speed across the Baltic Proper was around 12 cm s-1 and the stronger flow was characteristic to the regions located above the sills, in the Bornholm and Slupsk Channels, reaching on average about 20 cm s-1. The results suggest that these regions are important for the inflow of saline waters into the eastern Baltic and are the areas of intense vertical mixing. The VM ADCP observations indicate that the average near-bottom flow across the basin can reach 35±6 cm s-1. The mooring observations also showed similar near-bottom flow velocities. However, they showed that the increased speed of the near-bottom layer occurred frequently in SF and GB during short time periods lasting for about few to several days or 10-20% of time. The observations showed that the bottom mixed layer occupies at least 10% of the water column and the turbulent mixing induced by near-bottom currents is likely to produce sediment resuspension and transport within the layer in all three sub-basins. The turbidity measurements, performed for 5-month-long time period over the summer 2012 in GB show that increased sediment resuspension is associated with a faster near-bottom flow.

  9. Numerical Estimation of the Outer Bank Resistance Characteristics in AN Evolving Meandering River

    NASA Astrophysics Data System (ADS)

    Wang, D.; Konsoer, K. M.; Rhoads, B. L.; Garcia, M. H.; Best, J.

    2017-12-01

    Few studies have examined the three-dimensional flow structure and its interaction with bed morphology within elongate loops of large meandering rivers. The present study uses a numerical model to simulate the flow pattern and sediment transport, especially the flow close to the outer-bank, at two elongate meandering loops in Wabash River, USA. The numerical grid for the model is based on a combination of airborne LIDAR data on floodplains and the multibeam data within the river channel. A Finite Element Method (FEM) is used to solve the non-hydrostatic RANS equation using a K-epsilon turbulence closure scheme. High-resolution topographic data allows detailed numerical simulation of flow patterns along the outer bank and model calibration involves comparing simulated velocities to ADCP measurements at 41 cross sections near this bank. Results indicate that flow along the outer bank is strongly influenced by large resistance elements, including woody debris, large erosional scallops within the bank face, and outcropping bedrock. In general, patterns of bank migration conform with zones of high near-bank velocity and shear stress. Using the existing model, different virtual events can be simulated to explore the impacts of different resistance characteristics on patterns of flow, sediment transport, and bank erosion.

  10. Field Measurements to Characterize Turbulent Inflow for Marine Hydrokinetic Devices - Marrowstone Island, WA

    NASA Astrophysics Data System (ADS)

    Richmond, M. C.; Thomson, J. M.; Durgesh, V.; Polagye, B. L.

    2011-12-01

    Field measurements are essential for developing an improved understanding of turbulent inflow conditions that affect the design and operation of marine and hydrokinetic (MHK) devices. The Marrowstone Island site in Puget Sound, Washington State is a potential location for installing MHK devices, as it experiences strong tides and associated currents. Here, field measurements from Nodule Point on the eastern side of Marrowstone Island are used to characterize the turbulence in terms of velocity variance as a function of length and time scales. The field measurements were performed using Acoustic Doppler Velocimetry (ADV) and Acoustic Doppler Current Profiler (ADCP) instruments. Both were deployed on a bottom-mounted tripod at the site by the Applied Physics Lab at the University of Washington (APL-UW). The ADV acquired single point, temporally resolved velocity data from 17-21 Feb 2011, at a height of 4.6 m above the seabed at a sampling frequency of 32 Hz. The ADCP measured the velocity profile over the water column from a height of 2.6 m above the seabed up to the sea-surface in 36 bins, with each bin of 0.5 m size. The ADCP acquired data from 11-27 Feb 2011 at a sampling frequency of 2 Hz. Analysis of the ADV measurements shows distinct dynamic regions by scale: anisotropic eddies at large scales, an isotropic turbulent cascade (-5/3 slope in frequency spectra) at mesoscales, and contamination by Doppler noise at small scales. While Doppler noise is an order of magnitude greater for the ADCP measurements, the turbulence bulk statistics are consistent between the two instruments. There are significant variations in turbulence statistics with stage of the tidal currents (i.e., from slack to non-slack tidal conditions), however an average turbulent intensity of 10% is a robust, canonical value for this site. The ADCP velocity profiles are useful in quantifying the variability in velocity along the water column, and the ensemble averaged velocity profiles may be described by a power law, commonly used to characterize boundary layers.

  11. Improving LADCP Velocity Profiles with External Attitude Sensors

    NASA Astrophysics Data System (ADS)

    Thurnherr, A. M.; Goszczko, I.

    2016-12-01

    Data collected with Acoustic Doppler Current Profilers installed on CTD rosettes and lowered through the water column (LADCP systems) are routinely used to derive full-depth profiles of ocean velocity. In addition to the uncertainties arising from random noise in the along-beam velocity measurements, LADCP derived velocities are commonly contaminated by bias errors due to imperfectly measured instrument attitude (pitch, roll and heading). Of particular concern are the heading measurements because it is not usually feasible to calibrate the internal ADCP compasses with the instruments installed on a CTD rosette, away from the magnetic disturbances of the ship as well as the current-carrying winch wire. Heading data from dual-headed LADCP systems, which consist of upward and downward-pointing ADCPs installed on the same rosette, commonly indicate heading-dependent compass errors with amplitudes exceeding 10 degrees. In an attempt to reduce LADCP velocity errors, over 200 full-depth profiles were collected during several recent projects, including GO-SHIP, DIMES and ECOGIG, with an inexpensive (<$200) external magnetometer/accelerometer package. The resulting data permit full compass calibrations (for both hard- and soft-iron effects) from in-situ profile data and yields improved pitch and roll measurements. Results indicate greatly reduced inconsistencies between the data from the two ADCPs (horizontal-velocity processing residuals), as well as smaller biases in vertical -velocity (w) measurements. In addition, the external magnetometer package allows processing of some LADCP data collected in regions where the horizontal magnitude of the earth's magnetic field is insufficient for the ADCPs internal compasses to work at all.

  12. Acoustic Doppler Current Profiler Data Processing System manual [ADCP

    USGS Publications Warehouse

    Cote, Jessica M.; Hotchkiss, Frances S.; Martini, Marinna A.; Denham, Charles R.; revisions by Ramsey, Andree L.; Ruane, Stephen

    2000-01-01

    This open-file report describes the data processing software currently in use by the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), to process time series of acoustic Doppler current data obtained by Teledyne RD Instruments Workhorse model ADCPs. The Sediment Transport Instrumentation Group (STG) at the WHCMSC has a long-standing commitment to providing scientists high quality oceanographic data published in a timely manner. To meet this commitment, STG has created this software to aid personnel in processing and reviewing data as well as evaluating hardware for signs of instrument malfunction. The output data format for the data is network Common Data Form (netCDF), which meets USGS publication standards. Typically, ADCP data are recorded in beam coordinates. This conforms to the USGS philosophy to post-process rather than internally process data. By preserving the original data quality indicators as well as the initial data set, data can be evaluated and reprocessed for different types of analyses. Beam coordinate data are desirable for internal and surface wave experiments, for example. All the code in this software package is intended to run using the MATLAB program available from The Mathworks, Inc. As such, it is platform independent and can be adapted by the USGS and others for specialized experiments with non-standard requirements. The software is continuously being updated and revised as improvements are required. The most recent revision may be downloaded from: http://woodshole.er.usgs.gov/operations/stg/Pubs/ADCPtools/adcp_index.htm The USGS makes this software available at the user?s discretion and responsibility.

  13. Nearshore circulation and water-column properties in the Skagit River Delta, northern Puget Sound, Washington: juvenile Chinook Salmon habitat availability in the Swinomish Channel

    USGS Publications Warehouse

    Grossman, Eric E.; Stevens, Andrew W.; Gelfenbaum, Guy; Curran, Christopher

    2007-01-01

    Time-series and spatial measurements of nearshore hydrodynamic processes and water properties were made in the Swinomish Channel to quantify the net direction and rates of surface water transport that influence habitat for juvenile Chinook salmon along their primary migratory corridor between the Skagit River and Padilla Bay in northern Puget Sound, Washington. During the spring outmigration of Skagit River Chinook between March and June 2007, currents measured with fixed acoustic doppler current profilers (ADCP) at the south and north end of the Swinomish Channel and with roving ADCP revealed that the currents are highly asymmetric with a dominant flow to the north (toward Padilla Bay). Maximum surface current velocities reached 1.5 m/s and were generally uniform across the channel near McGlinn Island Causeway. Transport times for surface water to travel the 11 km from the southern end of Swinomish Channel at McGlinn Island to Padilla Bay ranged from 2.1 hours to 5.5 days. The mean travel time was ~1 day, while 17 percent of the time, transport of water and passive particles occurred within 3.75 hours. Surface water in the Swinomish Channel during this time was generally very saline 20-27 psu, except south of the Rainbow Bridge in the town of La Conner where it ranged 0-15 psu depending on tide and Skagit River discharge. This salinity regime restricts suitable low salinity (

  14. Aquatic habitat mapping with an acoustic doppler current profiler: Considerations for data quality

    USGS Publications Warehouse

    Gaeuman, David; Jacobson, Robert B.

    2005-01-01

    When mounted on a boat or other moving platform, acoustic Doppler current profilers (ADCPs) can be used to map a wide range of ecologically significant phenomena, including measures of fluid shear, turbulence, vorticity, and near-bed sediment transport. However, the instrument movement necessary for mapping applications can generate significant errors, many of which have not been inadequately described. This report focuses on the mechanisms by which moving-platform errors are generated, and quantifies their magnitudes under typical habitat-mapping conditions. The potential for velocity errors caused by mis-alignment of the instrument?s internal compass are widely recognized, but has not previously been quantified for moving instruments. Numerical analyses show that even relatively minor compass mis-alignments can produce significant velocity errors, depending on the ratio of absolute instrument velocity to the target velocity and on the relative directions of instrument and target motion. A maximum absolute instrument velocity of about 1 m/s is recommended for most mapping applications. Lower velocities are appropriate when making bed velocity measurements, an emerging application that makes use of ADCP bottom-tracking to measure the velocity of sediment particles at the bed. The mechanisms by which heterogeneities in the flow velocity field generate horizontal velocities errors are also quantified, and some basic limitations in the effectiveness of standard error-detection criteria for identifying these errors are described. Bed velocity measurements may be particularly vulnerable to errors caused by spatial variability in the sediment transport field.

  15. extrap: Software to assist the selection of extrapolation methods for moving-boat ADCP streamflow measurements

    NASA Astrophysics Data System (ADS)

    Mueller, David S.

    2013-04-01

    Selection of the appropriate extrapolation methods for computing the discharge in the unmeasured top and bottom parts of a moving-boat acoustic Doppler current profiler (ADCP) streamflow measurement is critical to the total discharge computation. The software tool, extrap, combines normalized velocity profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers' software.

  16. Interaction between Fresh and Sea Water in Tidal Influenced Navigation Channel

    NASA Astrophysics Data System (ADS)

    Hwang, J. H. H.; Nam-Hoon, K.

    2016-02-01

    Nam-Hoon, Kim 1, Jin-Hwan, Hwang 2, Hyeyun-Ku 31,2,3 Department of Civil and Environmental Engineering, Seoul National University, Republic of Korea; 1nhkim0426@snu.ac.kr; 2jinhwang@snu.ac.kr; 3hyeyun.ku@gmail.com; We have conducted field observations after freshwater discharges of sea dike during ebb tide in Geum River Estuary, Korea to understand the interaction between fresh and sea water. To measure spatial variability of the stratified flow, an Acoustic Doppler Current Profiler (ADCP) and a portable free-fall tow-yo instrument, Yoing Ocean Data Acquisition Profiler (YODA profiler) which can continuously measures three-dimensional velocity profiles and vertical profiles of the fine-scale features, respectively, within water column were used in a vessel moving at a speed of 1-2 m/s. The flow observations show the strong stratification and dispersion occurred near field region because of the ebb tide advection (Fig. 1). As moving toward the far field region, the stratification and dispersion was getting thin and weak but still remaining. The presence of mixing process between fresh and sea water was represented by the gradient Richardson Number. The mixing occurred throughout the near field region and potentially mixed in the far field region. This study have been conducted to serve as a basic research of understanding the Region Of Freshwater Influence (ROFI) in the tidal influenced navigation channel. We are going to perform a few more observations in the future. Key words: Richardson number, stratification, mixing, ROFI, ADCP, CTDFigure 1. High-resolution observation data of salinity (psu) from YODA Profiler Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled as "Developing total management system for the Keum river estuary and coast" and "Integrated management of marine environment and ecosystems around Saemangeum". We also thank to the administrative supports of Integrated Research Institute of Construction and Environmental Engineering at Seoul National University.

  17. Decision Document for the Storm Water Outfalls/Industrial Wastewater Treatment Plant, Pesticide Rinse Area, Old Fire Fighting Training Pit, Illicit PCB Dump Site, and the Battery Acid Pit Fort Lewis, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J; Liikala, Terry L; Strenge, Dennis L

    PNNL conducted independent site evaluations for four sites at Fort Lewis, Washington, to determine their suitability for closure on behalf of the installation. These sites were recommended for ''No Further Action'' by previous investigators and included the Storm Water Outfalls/Industrial Waste Water Treatment Plant (IWTP), the Pesticide Rinse Area, the Old Fire Fighting Training Pit, and the Illicit PCB Dump Site.

  18. Decision Document for the Storm Water Outfalls/Industrial Wastewater Treatment Plant, Pesticide Rinse Area, Old Fire Fighting Training Pit, Illicit PCB Dump Site, and the Battery Acid Pit Fort Lewis, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Liikala, Terry L.; Strenge, Dennis L.

    PNNL conducted independent site evaluations for four sites at Fort Lewis, Washington, to determine their suitability for closure on behalf of the installation. These sites were recommended for "No Further Action" by previous invesitgators and included the Storm Water Outfalls/Industrial Waste Water Treatment Plant (IWTP), the Pesticide Rinse Area, the Old Fire Fighting Training Pit, and the Illicit PCB Dump Site.

  19. Region 9 NPDES Outfalls 2012

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES outfalls/dischargers for facilities which generally represent the site of the discharge. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from treated waste water that is discharged into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more dischargers. The location represents the discharge point of a discrete conveyance such as a pipe or man made ditch.

  20. Final Environmental Assessment for Stormwater Drainage Project on F. E. Warren Air Force Base, Wyoming

    DTIC Science & Technology

    2005-05-01

    Colorado Butterfly Habitat on F. E. Warren AFB Stormwater Drainage Project, Final Environmental Assessment April 2005 F. E. Warren AFB iii Figure...A.11 Colorado Butterfly Plant Populations Near Outfall 1 Figure A.12 Preble’s Habitat on F. E. Warren AFB Figure A.13 Preble’s Captures on F. E...to threatened species habitat in the vicinity of the outfalls to Crow Creek, the base will do the following: Colorado butterfly plant: 1

  1. Detections, concentrations, and distributional patterns of compounds of emerging concern in the San Antonio River Basin, Texas, 2011-12

    USGS Publications Warehouse

    Opsahl, Stephen P.; Lambert, Rebecca B.

    2013-01-01

    The distributional patterns of detections and concentrations of individual compounds and compound classes show the influence of wastewater-treatment plant (WWTP) outfalls on the quality of water in the San Antonio River Basin. In the Medina River Subbasin, the minimal influence of wastewater is evident as far downstream as the Macdona site. Downstream from the Macdona site, the Medina River receives treated municipal wastewater from both the Medio Creek Water Recycling Center site from an unnamed tributary at the plant and the Leon Creek Water Recycling Center site from Comanche Creek at the plant, and corresponding increases in both the number of detections and the total concentrations of all measured compounds at all downstream sampling sites were evident. Similarly, the San Antonio River receives treated municipal wastewater as far upstream as the SAR Witte site (San Antonio River at Witte Museum, San Antonio, Tex.) and additional WWTP outfalls along the Medina River upstream from the confluence of the Medina and San Antonio Rivers. Consequently, all samples collected along the main stem of the San Antonio River had higher concentrations of CECs in comparison to sites without upstream WWTPs. Sites in urbanized areas without upstream WWTPs include the Leon 35 site (Leon Creek at Interstate Highway 35, San Antonio, Tex.), the Alazan site (Alazan Creek at Tampico Street, San Antonio, Tex.), and the San Pedro site (San Pedro Creek at Probandt Street, at San Antonio, Tex.). The large number of detections at sites with no upstream wastewater source demonstrated that CECs can be detected in streams flowing through urbanized areas without a large upstream source of treated municipal wastewater. A general lack of detection of pharmaceuticals in streams without upstream outfalls of treated wastewater appears to be typical for streams throughout the San Antonio River Basin and may be a useful indicator of point-source versus nonpoint-source contributions of these compounds in urban streams. Observations of lower concentrations of compounds at the furthest downstream sampling sites in the basin indicate some natural attenuation of these compounds during transport; however, a more focused assessment is needed to make this determination.

  2. Intermittent large amplitude internal waves observed in Port Susan, Puget Sound

    NASA Astrophysics Data System (ADS)

    Harris, J. C.; Decker, L.

    2017-07-01

    A previously unreported internal tidal bore, which evolves into solitary internal wave packets, was observed in Port Susan, Puget Sound, and the timing, speed, and amplitude of the waves were measured by CTD and visual observation. Acoustic Doppler current profiler (ADCP) measurements were attempted, but unsuccessful. The waves appear to be generated with the ebb flow along the tidal flats of the Stillaguamish River, and the speed and width of the resulting waves can be predicted from second-order KdV theory. Their eventual dissipation may contribute significantly to surface mixing locally, particularly in comparison with the local dissipation due to the tides. Visually the waves appear in fair weather as a strong foam front, which is less visible the farther they propagate.

  3. Ocean outfall plume characterization using an Autonomous Underwater Vehicle.

    PubMed

    Rogowski, Peter; Terrill, Eric; Otero, Mark; Hazard, Lisa; Middleton, William

    2013-01-01

    A monitoring mission to map and characterize the Point Loma Ocean Outfall (PLOO) wastewater plume using an Autonomous Underwater Vehicle (AUV) was performed on 3 March 2011. The mobility of an AUV provides a significant advantage in surveying discharge plumes over traditional cast-based methods, and when combined with optical and oceanographic sensors, provides a capability for both detecting plumes and assessing their mixing in the near and far-fields. Unique to this study is the measurement of Colored Dissolved Organic Matter (CDOM) in the discharge plume and its application for quantitative estimates of the plume's dilution. AUV mission planning methodologies for discharge plume sampling, plume characterization using onboard optical sensors, and comparison of observational data to model results are presented. The results suggest that even under variable oceanic conditions, properly planned missions for AUVs equipped with an optical CDOM sensor in addition to traditional oceanographic sensors, can accurately characterize and track ocean outfall plumes at higher resolutions than cast-based techniques.

  4. Assessing sewage impact in a South-West Atlantic rocky shore intertidal algal community.

    PubMed

    Becherucci, Maria Eugenia; Santiago, Lucerito; Benavides, Hugo Rodolfo; Vallarino, Eduardo Alberto

    2016-05-15

    The spatial and seasonal variation of the specific composition and community parameters (abundance, diversity, richness and evenness) of the intertidal algal assemblages was studied at four coastal sampling sites, distributed along an environmental gradient from the sewage water outfall of Mar del Plata, Buenos Aires, Argentina. Two of them were located close to the sewage outfall (<800m) (impacted area) and the two other were 8 and 9km distant (non-impacted area). The algal abundance was monthly analyzed from October 2008 to May 2009. The algal assemblages varied according to the pollution gradient in spring, summer and autumn, being autumn the season when the highest difference was observed. Ceramium uruguayense was recognized as an indicator species for the non-impacted areas, while Berkeleya sp. represented an indicator species for the sewage outfall impact. Ulva spp. did not reflect the typical pattern observed for other sewage pollution areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Circulation in the region of the Reykjanes Ridge in June-July 2015

    NASA Astrophysics Data System (ADS)

    Tillys, Petit; Herle, Mercier; Virginie, Thierry

    2017-04-01

    The Reykjanes Ridge is a major topographic feature of the North-Atlantic Ocean lying south of Iceland that strongly influences the pathways of the upper and lower limbs of the meridional overturning cell. The circulation in the vicinity of the Reykjanes Ridge is anticyclonic and characterized by a southwestward flow (the East Reykjanes Ridge Current, ERRC) along the eastern flank and a northeastward flow (the Irminger Current, IC) along the western flank. Even if it is admitted that the ERRC feeds the IC through a cross-ridge flow, details and magnitude of this circulation remain unclear. In this study, the circulation in the region of the Reykjanes Ridge was investigated based on ADCP and CTDO2 measurements carried out from the R/V Thalassa during the RREX cruise, which provided a snapshot of the water mass distribution and circulation during summer 2015. One hydrographic section followed the top of the Reykjanes Ridge between Iceland and 50˚ N and three other sections were carried out perpendicularly to the ridge at 62˚ N, 58.5˚ N and 56˚ N. Geostrophic transports were estimated by combining ADCP and hydrographic data. Those observations were used to provide an estimate of the circulation around the Ridge and to discuss the meridional evolutions of the ERRC and IC transports along the Ridge and their connection to the cross-Ridge flows. The section along the top of the Reykjanes Ridge allowed us to describe the cross ridge exchanges. A westward flow crossed the Ridge between Iceland and 53˚ N. Its top to bottom integrated transport was estimated at 17.7 Sv. Two main passages were identified for the westward crossing. A first passage is located near 57˚ N (Bight Fracture Zone, BFZ) in agreement with previous studies. More surprisingly, a second passage is located near 59˚ N. The top-to-bottom transports of those two main flows were estimated at 6.5 and 8 Sv respectively. The IC and ERRC top-to-bottom integrated transports were maximum at 58.5˚ N and estimated at 24.7 Sv and 17.6 Sv respectively. At 58.5˚ N, the IC was composed of two baroclinic branches while the ERRC was composed of one barotropic branch. The analysis also suggested that the IC was partly fed by the subpolar branch of the North Atlantic Current characterized by relatively low salinity and temperature. This subpolar branch would directly feed the IC without entering in the Iceland Basin. The northward increase in salinity and temperature of the IC core between 56˚ N and 62˚ N highlights the entrainment in the IC of saltier and warmer subtropical waters coming from the eastern side of the Ridge.

  6. Wave-current interactions in megatidal environment

    NASA Astrophysics Data System (ADS)

    Bennis, A. C.; Pascal, B. D. B.; Feddy, A.; Garnier, V.; Accenti, M.; Dumas, F.; Ardhuin, F.

    2016-12-01

    The strongest tidal current in western Europe (up to 12 knots) occurs in Raz Blanchard (Normandy, France). High winds occur over six months which generate energetic wave conditions with breaking waves, hence the name of `Blanchard'. However, few studies have been conducted on the wave effects on the tidal current at this location because of the lack of measurements. Studies are now required to aid the creation of tidal farms. For this purpose, the 3D fully-coupled model MARS-WW3 is used with three nested ranks which are forced at boundaries by wave spectra from HOMERE database (Boudière et al., 2013) and by sea level from the French Navy (SHOM). The model is tested against ADCP data of IRSN at three locations near Raz Blanchard. Time series of current velocity and of mean sea level are consistent with ADCP data. A rephasing by waves of the tidal current is observed in comparison with simulations without waves, which fits the ADCP data. A strong dependence of the tidal current on bottom roughness is shown as well as the necessity to take into account its spatial heterogeneity. The simulated mean sea level is close to the measured one while it was underestimated for high tide in simulations without wave effects. The vertical shape of the tidal current is especially modified near the surface by waves as expected. Depending on the tidal cycle and wave direction, acceleration or deceleration of the surface current due to waves is observed. Lastly, several hydrodynamical scenarios for Raz Blanchard are carried out for different tidal and wave conditions pending the HYD2M'17 data (ADCP, ADV, drifting wave buoys, HF and VHF and X-Band radars). First results show the impacts of refractive, shoaling and blocking effects on the flood and ebb currents.

  7. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements

    NASA Astrophysics Data System (ADS)

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe

    2017-04-01

    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  8. Drake Passage-Antarctic Peninsula Ecosystem Research: Spring and Fall Zooplankton and Seabird Assemblages

    NASA Astrophysics Data System (ADS)

    Loeb, V. J.; Chereskin, T. K.; Santora, J. A.

    2016-02-01

    Acoustic Doppler Current Profiler (ADCP) records from multiple "L.M. Gould" supply transits of Drake Passage from 1999 to present demonstrate spatial and temporal (diel, seasonal, annual and longer term) variability in acoustics backscattering. Acoustics backscattering strength in the upper water column corresponds to zooplankton and nekton biomass that relates to seabird and mammal distribution and abundance. Recent results indicate that interannual variability in backscattering strength is correlated to climate indices. The interpretation of these ecological changes is severely limited because the sound scatterers previously had not been identified and linkages to upper trophic level predators are unknown. Net-tows, depth-referenced underwater videography and seabird/mammal visual surveys during spring 2014 and fall 2015 transits provided information on the taxonomic-size composition, distribution, aggregation and behavioral patterns of dominant ADCP backscattering organisms and relate these to higher level predator populations. The distribution and composition of zooplankton species and seabird assemblages conformed to four biogeographic regions. Areas of elevated secondary productivity coincided with increased ADCP target strength with highest concentrations off Patagonia and Antarctic Peninsula and secondary peaks around the Polar Front. Small sized zooplankton taxa dominated north of the Polar Front while larger taxa dominated to the south. Regionally important prey items likely are: copepods, amphipods, small euphausiids and fish (Patagonia); copepods, myctophids, shelled pteropods and squid (Polar Front); large euphausiids (Antarctic Peninsula). This study demonstrates that biological observations during "L.M. Gould" supply transits greatly augment the value of routinely collected ADCP and XBT data and provide basic information relevant to the impacts of climate change in this rapidly warming portion of the Southern Ocean

  9. Molecular Analysis of Endocrine Disruption in Hornyhead Turbot at Wastewater Outfalls in Southern California Using a Second Generation Multi-Species Microarray

    PubMed Central

    Baker, Michael E.; Vidal-Dorsch, Doris E.; Ribecco, Cataldo; Sprague, L. James; Angert, Mila; Lekmine, Narimene; Ludka, Colleen; Martella, Andrea; Ricciardelli, Eugenia; Bay, Steven M.; Gully, Joseph R.; Kelley, Kevin M.; Schlenk, Daniel; Carnevali, Oliana; Šášik, Roman; Hardiman, Gary

    2013-01-01

    Sentinel fish hornyhead turbot ( Pleuronichthys verticalis ) captured near wastewater outfalls are used for monitoring exposure to industrial and agricultural chemicals of ~ 20 million people living in coastal Southern California. Although analyses of hormones in blood and organ morphology and histology are useful for assessing contaminant exposure, there is a need for quantitative and sensitive molecular measurements, since contaminants of emerging concern are known to produce subtle effects. We developed a second generation multi-species microarray with expanded content and sensitivity to investigate endocrine disruption in turbot captured near wastewater outfalls in San Diego, Orange County and Los Angeles California. Analysis of expression of genes involved in hormone [e.g., estrogen, androgen, thyroid] responses and xenobiotic metabolism in turbot livers was correlated with a series of phenotypic end points. Molecular analyses of turbot livers uncovered altered expression of vitellogenin and zona pellucida protein, indicating exposure to one or more estrogenic chemicals, as well as, alterations in cytochrome P450 (CYP) 1A, CYP3A and glutathione S-transferase-α indicating induction of the detoxification response. Molecular responses indicative of exposure to endocrine disruptors were observed in field-caught hornyhead turbot captured in Southern California demonstrating the utility of molecular methods for monitoring environmental chemicals in wastewater outfalls. Moreover, this approach can be adapted to monitor other sites for contaminants of emerging concern in other fish species for which there are few available gene sequences. PMID:24086568

  10. Impact of storm-water outfalls on sediment quallity in corpus Christi Bay, Texas, USA

    USGS Publications Warehouse

    Carr, R. Scott; Montagna, Paul A.; Biedenbach, James M.; Kalke, Rick; Kennicutt, Mahlon C.; Hooten, Russell L.; Cripe, Geraldine

    2000-01-01

    To determine the quality of sediments and extent of contaminant impacts, a Sediment Quality Triad (SQT) study was conducted at 36 sites in the Corpus Christi Bay, Texas, USA, system. Fifteen of the 36 sites were located near storm-water outfalls, but 13 other sites (i.e., industrial and domestic outfalls, oil field–produced water discharges, and dredging activity) and eight reference sites were also evaluated. Sediment samples were collected and analyzed for physical–chemical characteristics, contaminant concentrations (metals, polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], and pesticides), toxicity (amphipod and mysid solid phase and sea urchin pore-water fertilization and embryological development tests), and a benthic index of biotic integrity (BIBI) composed of 10 independent metrics calculated for each site. This large data matrix was reduced using multivariate analysis to create new variables for each component representing overall means and containing most of the variance in the larger data set. The new variables were used to conduct the correlation analysis. Toxicity was significantly correlated with both chemistry and ecological responses, whereas no correlations between the benthic metrics and sediment chemistry were observed. Using the combined information from the SQT, four of the five most degraded sites were storm-water outfall sites. Although estuaries are naturally stressful environments because of salinity and temperature fluctuations, this ecosystem appears to have been compromised by anthropogenic influences similar to what has been observed for other heavily urbanized bay systems along the Texas and Gulf coast.

  11. The effect of channel shape, bed morphology, and shipwrecks on flow velocities in the Upper St. Clair River

    USGS Publications Warehouse

    Czuba, Jonathan A.; Oberg, Kevin; Best, Jim; Parsons, Daniel R.

    2009-01-01

    In the Great Lakes of North America, the St. Clair River is the major outlet of Lake Huron and conveys water to Lake St. Clair which then flows to Lake Erie. One major topic of interest is morphological change in the St. Clair River and its impact on water levels in the Upper Great Lakes and connecting channel flows. A combined multibeam echosounder (MBES) bathymetric survey and acoustic Doppler current profiler (ADCP) flow survey of the outlet of Lake Huron and the Upper St. Clair River was conducted July 21 – 25, 2008. This paper presents how channel morphology and shipwrecks affect the flow in the Upper St. Clair River. The river is most constricted at the Blue Water Bridge near Port Huron, Michigan, with water velocities over 2 ms-1 for a flow of 5,200 m3s-1. Downstream of this constriction, the river flows around a bend and expands creating a large recirculation zone along the left bank due to flow separation. This recirculation zone reduces the effective channel width, and thus increases flow velocities to over 2 ms-1 in this region. The surveys reveal several shipwrecks on the bed of the St. Clair River, which possess distinct wakes in their flow velocity downstream of the wrecks. The constriction and expansion of the channel, combined with forcing of the flow by bed topography, initiates channel-scale secondary flow, creating streamwise vortices that maintain coherence downstream over a distance of several channel widths.

  12. Surveys of water velocities in the vicinity of the discharge-release gates of Salamonie Lake Dam, northeastern Indiana, spring and winter 1998

    USGS Publications Warehouse

    Morlock, Scott E.; Stewart, James A.

    2000-01-01

    An acoustic Doppler current profiler (ADCP) mounted on a boat was used to collect velocity and depth data and to compute positions of the velocity and depth data relative to the boat track. A global positioning system (GPS) was used to collect earth-referenced position data, and a GPS base station receiver was used to improve the accuracy of the earth-referenced position data. The earth-referenced position data were used to transform the ADCP-computed positions (which were relative to boat tracks) to positions referenced to a point on the spillway tower.

  13. Modeling streamflow from coupled airborne laser scanning and acoustic Doppler current profiler data

    USGS Publications Warehouse

    Norris, Lam; Kean, Jason W.; Lyon, Steve

    2016-01-01

    The rating curve enables the translation of water depth into stream discharge through a reference cross-section. This study investigates coupling national scale airborne laser scanning (ALS) and acoustic Doppler current profiler (ADCP) bathymetric survey data for generating stream rating curves. A digital terrain model was defined from these data and applied in a physically based 1-D hydraulic model to generate rating curves for a regularly monitored location in northern Sweden. Analysis of the ALS data showed that overestimation of the streambank elevation could be adjusted with a root mean square error (RMSE) block adjustment using a higher accuracy manual topographic survey. The results of our study demonstrate that the rating curve generated from the vertically corrected ALS data combined with ADCP data had lower errors (RMSE = 0.79 m3/s) than the empirical rating curve (RMSE = 1.13 m3/s) when compared to streamflow measurements. We consider these findings encouraging as hydrometric agencies can potentially leverage national-scale ALS and ADCP instrumentation to reduce the cost and effort required for maintaining and establishing rating curves at gauging station sites similar to the Röån River.

  14. Vessel-Mounted ADCP Data Calibration and Correction

    NASA Astrophysics Data System (ADS)

    de Andrade, A. F.; Barreira, L. M.; Violante-Carvalho, N.

    2013-05-01

    A set of scripts for vessel-mounted ADCP (Acoustic Doppler Current Profiler) data processing is presented. The need for corrections in the data measured by a ship-mounted ADCP and the complexities found during installation, implementation and identification of tasks performed by currently available systems for data processing consist the main motivating factors for the development of a system that would be more practical in manipulation, open code and more manageable for the user. The proposed processing system consists of a set of scripts developed in Matlab TM programming language. The system is able to read the binary files provided by the data acquisition program VMDAS (Vessel Mounted Data Acquisition System), Teledyne RDInstruments proprietary, and calculate calibration factors to correct the data and visualize them after correction. For use the new system, it is only necessary that the ADCP data collected with VMDAS program is in a processing diretory and Matlab TM software be installed on the user's computer. Developed algorithms were extensively tested with ADCP data obtained during Oceano Sul III (Southern Ocean III - OSIII) cruise, conducted by Brazilian Navy aboard the R/V "Antares", from March 26th to May 10th 2007, in the oceanic region between the states of São Paulo and Rio Grande do Sul. For read the data the function rdradcp.m, developed by Rich Pawlowicz and available on his website (http://www.eos.ubc.ca/~rich/#RDADCP), was used. To calculate the calibration factors, alignment error (α) and sensitivity error (β) in Water Tracking and Bottom Tracking Modes, equations deduced by Joyce (1998), Pollard & Read (1989) and Trump & Marmorino (1996) were implemented in Matlab. To validate the calibration factors obtained in the processing system developed, the parameters were compared with the factors provided by CODAS (Common Ocean Data Access System, available at http://currents.soest.hawaii.edu/docs/doc/index.html), post-processing program. For the same data analyzed, the factors provided by both systems were similar. Thereafter, the values obtained were used to correct the data and finally matrices were saved with data corrected and they can be plotted. The values of volume transport of the Brazil Current (BC) were calculated using the corrected data by the two systems and proved quite close, confirming the quality of the correction of the system.

  15. Comparison of turbulence estimation for four- and five-beam ADCP configurations

    NASA Astrophysics Data System (ADS)

    Togneri, Michael; Masters, Ian; Jones, Dale

    2017-04-01

    Turbulence is a vital consideration for tidal power generation, as the resulting fluctuating loads greatly impact the fatigue life of tidal turbines and their components. Acoustic Doppler current profilers (ADCPs) are one of the most common tools for measurement of currents in tidal power applications, and although most often used for assessment of mean current properties they are also capable of measuring turbulence parameters. Conventional ADCPs use four diverging beams in a so-called 'Janus' configuration, but more recent models employ an additional vertical beam. In this paper we explore the improvements to turbulence measurements that are made possible by the addition of the fifth beam, with a focus on estimation of turbulent kinetic energy (TKE) density. The standard approach for estimating TKE density from ADCP measurements is the variance method. As each of the diverging beams measures a single velocity component at spatially-separated points, it is not possible to find the TKE density by a straightforward combination of beam measurements. Instead, we must assume that the statistical properties of the turbulence are uniform across the spatial extent of the beams; it is then possible to express the TKE density as a linear combination of the velocity variance as measured by each beam. In the four-beam configuration, an additional assumption regarding the magnitude of the turbulent anisotropy: a parameter ξ is introduced that characterises the proportion of TKE in the vertical fluctuations. With the five-beam configuration, direct measurements of the vertical component are available and this assumption is no longer required. In this paper, turbulence measurements from a five-beam ADCP deployed off the coast of Anglesey in 2014 are analysed. We compare turbulence estimates using all five beams to estimates obtained using only the conventional four-beam setup by discarding the vertical beam data. This allows us to quantify the error in the standard value of ξ. We find that it is on average within 3.4% of the real value, although there are times for which it is much greater. We also discuss the Doppler noise correction in the five-beam case, which is more complex than the four-beam case due to the different noise properties of the vertical beam.

  16. Third Annual Report: 2006 Pre-Construction Eelgrass Monitoring and Propagation for King County Outfall Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, Dana L.; Southard, Susan S.; Cullinan, Valerie I.

    2007-02-01

    King County proposes to build a new sewer outfall discharging to Puget Sound near Point Wells, Washington. Construction is scheduled for 2008. The Point Wells site was selected to minimize effects on the nearshore marine environment, but unavoidable impacts to eelgrass (Zostera marina) beds are anticipated during construction. To mitigate for these impacts and prepare for post-construction restoration, King County began implementation of a multi-year eelgrass monitoring and restoration program in 2004, with the primary goal of returning intertidal and shallow subtidal habitat and eelgrass to pre-construction conditions. Major program elements are a) pre-construction monitoring, i.e., documenting initial eelgrass conditionsmore » and degree of fluctuation over 5 years prior to construction, b) eelgrass transplanting, including harvesting, offsite propagating and stockpiling of local plantstock, and post-construction planting, and c) post-construction monitoring. The program is detailed in the Eelgrass Restoration and Biological Resources Implementation Workplan (King County 2006). This report describes calendar year 2006 pre-construction activities conducted by Pacific Northwest National Laboratory (PNNL) in support of King County. Activities included continued propagation of eelgrass shoots and monitoring of the experimental harvest plots in the marine outfall corridor area to evaluate recovery rates relative to harvest rates. Approximately 1500 additional shoots were harvested from the marine outfall corridor in August 2006 to supplement the plants in the propagation tank at the PNNL Marine Sciences Laboratory in Sequim, Washington, bringing the total number of shoots to 4732. Eelgrass densities were monitored in the five experimental harvest plots established in the marine outfall corridor. Changes in eelgrass density were evaluated in year-to-year comparisons with initial harvest rates. Net eelgrass density decreased from 2004 post-harvest to 2006 in all plots, despite density increases observed in 2005 in some plots and at some harvest rates. Eelgrass densities within individual subplots were highly variable from year to year, and the change in density in any interannual period did not correlate to the initial 2004 harvest rate. Continued monitoring should help project managers determine an optimum harvest rate that supports rapid recovery of donor eelgrass beds.« less

  17. Effect of wastewater treatment facility closure on endocrine disrupting chemicals in a Coastal Plain stream

    USGS Publications Warehouse

    Bradley, Paul M.; Journey, Celeste A.; Clark, Jimmy M.

    2016-01-01

    Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insight into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The U.S. Geological Survey assessed the fate of select endocrine disrupting chemicals (EDC) in surface water and streambed sediment one year before and one year after closure of a long-term WWTF located within the Spirit Creek watershed at Fort Gordon, Georgia. Sample sites included a WWTF-effluent control located upstream from the outfall, three downstream effluent-impacted sites located between the outfall and Spirit Lake, and one downstream from the lake's outfall. Prior to closure, the 2.2-km stream segment downstream from the WWTF outfall was characterized by EDC concentrations significantly higher (α = 0.05) than at the control site; indicating substantial downstream transport and limited in-stream attenuation of EDC, including pharmaceuticals, estrogens, alkylphenol ethoxylate (APE) metabolites, and organophosphate flame retardants (OPFR). Wastewater-derived pharmaceutical, APE metabolites, and OPFR compounds were also detected in the outflow of Spirit Lake, indicating the potential for EDC transport to aquatic ecosystems downstream of Fort Gordon under effluent discharge conditions. After the WWTF closure, no significant differences in concentrations or numbers of detected EDC compounds were observed between control and downstream locations. The results indicated EDC pseudo-persistence under preclosure, continuous supply conditions, with rapid attenuation following WWTF closure. Low concentrations of EDC at the control site throughout the study and comparable concentrations in downstream locations after WWTF closure indicated additional, continuing, upstream contaminant sources within the Spirit Creek watershed. 

  18. Impacts of aircraft deicer and anti-icer runoff on receiving waters from Dallas/Fort Worth International Airport, Texas, USA

    USGS Publications Warehouse

    Corsi, S.R.; Harwell, G.R.; Geis, S.W.; Bergman, D.

    2006-01-01

    From October 2002 to April 2004, data were collected from Dallas/Fort Worth (DFW) International Airport (TX, USA) outfalls and receiving waters (Trigg Lake and Big Bear Creek) to document the magnitude and potential effects of aircraft deicer and anti-icer fluid (ADAF) runoff on water quality. Glycol concentrations at outfalls ranged from less than 18 to 23,800 mg/L, whereas concentrations in Big Bear Creek were less because of dilution, dispersion, and degradation, ranging from less than 18 to 230 mg/L. Annual loading results indicate that 10 and 35% of what was applied to aircraft was discharged to Big Bear Creek in 2003 and 2004, respectively. Glycol that entered Trigg Lake was diluted and degraded before reaching the lake outlet. Dissolved oxygen (DO) concentrations at airport outfalls sometimes were low (5.0 mg/L). Results of toxicity tests indicate that effects on Ceriodaphnia dubia, Pimephales promelas, and Selanastrum capricornutum are influenced by type IV ADAF (anti-icer), not just type I ADAF (deicer) as is more commonly assumed. ?? 2006 SETAC.

  19. The effects of wastewater effluent and river discharge on benthic heterotrophic production, organic biomass and respiration in marine coastal sediments.

    PubMed

    Burd, B; Macdonald, T; Bertold, S

    2013-09-15

    We examine effects of high river particulate flux and municipal wastewater effluent on heterotrophic organic carbon cycling in coastal subtidal sediments. Heterotrophic production was a predictable (r(2)=0.95) proportion (56%) of oxidized OC flux and strongly correlated with organic/inorganic flux. Consistent growth efficiencies (36%) occurred at all stations. Organic biomass was correlated with total, OC and buried OC fluxes, but not oxidized OC flux. Near the river, production was modest and biomass high, resulting in low P/B. Outfall deposition resulted in depleted biomass and high bacterial production, resulting in the highest P/B. These patterns explain why this region is production "saturated". The δ(15)N in outfall effluent, sediments and dominant taxa provided insight into where, and which types of organisms feed directly on fresh outfall particulates, on older, refractory material buried in sediments, or utilize chemosynthetic symbiotic bacteria. Results are discussed in the context of declining bottom oxygen conditions along the coast. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  20. Application of a quantitative histological health index for Antarctic rock cod (Trematomus bernacchii) from Davis Station, East Antarctica.

    PubMed

    Corbett, Patricia A; King, Catherine K; Mondon, Julie A

    2015-08-01

    A quantitative Histological Health Index (HHI) was applied to Antarctic rock cod (Trematomus bernacchii) using gill, liver, spleen, kidney and gonad to assess the impact of wastewater effluent from Davis Station, East Antarctica. A total of 120 fish were collected from 6 sites in the Prydz Bay region of East Antarctica at varying distances from the wastewater outfall. The HHI revealed a greater severity of alteration in fish at the wastewater outfall, which decreased stepwise with distance. Gill and liver displayed the greatest severity of alteration in fish occurring in close proximity to the wastewater outfall, showing severe and pronounced alteration respectively. Findings of the HHI add to a growing weight of evidence indicating that the current level of wastewater treatment at Davis Station is insufficient to prevent impact to the surrounding environment. The HHI for T. bernacchii developed in this study is recommended as a useful risk assessment tool for assessing in situ, sub-lethal impacts from station-derived contamination in coastal regions throughout Antarctica. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Temporal variations of volume transport through the Taiwan Strait, as identified by three-year measurements

    NASA Astrophysics Data System (ADS)

    Chen, Hsien-Wen; Liu, Cho-Teng; Matsuno, Takeshi; Ichikawa, Kaoru; Fukudome, Ken-ichi; Yang, Yih; Doong, Dong-Jiing; Tsai, Wei-Ling

    2016-02-01

    The water characteristics of the East China Sea depend on influxes from river run-off, the Kuroshio, and the Taiwan Strait. A three-year observation using an acoustic Doppler current profiler (ADCP) operated on a ferry provides the first nearly continuous data set concerning the seasonal flow pattern and the volume transport from the Taiwan Strait to the East China Sea. The observed volume transport shows strong seasonality and linkage to the along-strait wind stress. An empirical regression formula between the volume transport and wind was derived to fill the gaps of observation so as to obtain a continuous data set. Based on this unique data set, the three-year mean of monthly volume transport is northeastward throughout the year, large (nearly 3 Sv) in summer and low (nearly zero) in winter. The China Coastal Current flows southward in winter, while the northward-flowing Taiwan Strait Current may reverse direction during severe northeasterly winds in the winter or under typhoons. The sea level difference across Taiwan Strait is closely correlated to the transport through the strait, and their relation is found seasonally nearly stable.

  2. Water Velocities and the Potential for the Movement of Bed Sediments in Sinclair Inlet of Puget Sound, Washington

    USGS Publications Warehouse

    Gartner, Jeffrey W.; Prych, E.A.; Tate, G.B.; Cacchione, D.A.; Cheng, R.T.; Bidlake, W.R.; Ferreira, J.T.

    1998-01-01

    Sinclair Inlet is a small embayment of Puget Sound in the State of Washington. The inlet, about 6.5 kilometers long and 1.5 kilometers wide, is the site of Puget Sound Naval Shipyard. There are concerns that bed sediments in the inlet may have been contaminated as a result of activities at the shipyard, and that these sediments could be resuspended by tide- and wind-driven currents and transported within the inlet or out of the inlet to other parts of Puget Sound. This study was conducted to provide information concerning the potential for sediment resuspension in the inlet. To obtain the necessary data, vertical profiles of water current from about 2 meters above the bed to 2 meters below the water surface were monitored with acoustic Doppler current profilers (ADCPs) at three locations during a 6.5-week winter period and a 4.5-week summer period in 1994. In addition, during the winter period, water velocites between 0.19 and 1.20 meters above the bed were measured with current meters using an instrument package called Geoprobe, which was deployed near one of the ADCPs. Other instruments on the Geoprobe measured light transmissivity, and a camera periodically took photographs of the bottom. Instruments on the Geoprobe and on the ADCPs also measured conductivity (for determining salinity), temperature, and pressure (for determinining tide). Samples of bed sediment and water samples for determining suspended-sediment concentration were collected at each of the current-measurement stations. Wind speed and direction were measured at three stations during a 12-month period, and tide was measured at one of these stations. Water currents measured at the three locations in Sinclair Inlet were relatively weak. Typical speeds were 5 to 10 centimeters per second, and the RMS (root-mean-square) speeds were less than 8 centimeters per second. Tidal and residual currents were of similar magnitude. Residual currents near the bottom typically were flowing in the opposite direction of the prevailing wind, while surface currents were in the same direction as the prevailing wind. During most of the year, the prevailing wind was from the soutwest quadrant; however, during July and August, the prevailing wind was usually from the northeast quadrant. The RMS of the total shear velocity for each ADCP station and measurement period, which was estimated from observed profiles of current velocity, ranged from 0.31 centimeters per second to 0.44 centimeters per second. The skin-friction component of the shear velocity was estimated to be no more than half the total. Critical shear velocity, estimated from particle sizes and density of the bed material, was 0.39 centimeters per second or larger. Comparisons of the skin-friction components of total bottom shear velocities with estimates of the critical shear velocity necessary for resuspension of the bed sediments indicate that resuspension occurs only infrequently, usually at times of maximum current during the tidal cycle. This conclusion is supported by measurements near the bed of light transmissivity, which is related to suspended-sediment concentration.

  3. Variability of stratification according to operation of the tidal power plant in Lake Sihwa, South Korea.

    NASA Astrophysics Data System (ADS)

    Woo, S. B.; Song, J. I.; Jang, T. H.; Park, C. J.; Kwon, H. K.

    2017-12-01

    Artificial forcing according to operation of the tidal power plant (TPP) affects the physical environmental changes near the power plant. Strong turbulence by generation is expected to change the stratification structure of the Lake Sihwa inside. In order to examine the stratification changes by the power plant operation, ship bottom mounted observation were performed for 13 hours using an acoustic Doppler current profiler (ADCP) and Conductivity-Temperature-Depth (CTD) in Lake Sihwa at near TPP. The strong stratification in Sihwa Lake is maintained before TPP operation. The absence of external forces and freshwater inflow from the land forms the stratification in the Lake. Strong winds in a stratification statement lead to two-layer circulation. After wind event, multi-layer velocity structure is formed which lasted for approximately 4 h. After TPP operation, the jet flow was observed in entire water column at the beginning of the power generation. Vortex is formed by strong jet flow and maintained throughout during power generation period. Strong turbulence flow is generated by the turbine blades, enhancing vertical mixing. External forces, which dominantly affect Lake Sihwa, have changed from the wind to the turbulent flow. The stratification was extinguished by strong turbulent flow and becomes fully-mixed state. Changes in stratification structure are expected to affect material transport and ecological environment change continuously.

  4. Estimation of Freshwater Flow to Joe Bay, South Florida.

    NASA Astrophysics Data System (ADS)

    Zucker, M. A.; Hittle, C. D.

    2002-05-01

    During the last century, drainage canals were constructed as part of the Central and Southern Flood Control (C&SF) project. Flood control was achieved but degradation to the Everglades ecosystem was evident. Problems related to Florida Bay include sea grass die off, algae blooms, and extreme salinity conditions. Modifications to the C&SF project are proposed as part of the Comprehensive Everglades Restoration Plan (CERP). One objective of CERP is to improve the timing and distribution of freshwater flow within the Everglades ecosystem and to Florida Bay. Several CERP projects propose changes to the existing canal network that borders Everglades National Park (ENP) in southern Miami-Dade County. An examination of flows to Joe Bay, a small embayment on the northeastern shores of Florida Bay, has provided baseline information on current spatial and temporal water deliveries prior to CERP modifications. Understanding the existing complex water delivery system and the effects the system has on Everglades hydrology will provide a necessary benchmark against which to measure restoration success. The study was initiated by the U.S. Geological Survey (USGS) in May 1999 to estimate creek flows to Joe Bay and determine the relative amounts derived from Taylor Slough and overflow from the C-111 Canal. It is important to understand the source of freshwater to Joe Bay before it enters Florida Bay. Taylor Slough transports freshwater to northeastern Florida Bay from the northwest while overflow from the C-111 Canal provides freshwater to northeastern Florida Bay from the northeast. Joe Bay, receives part of the freshwater from each of these sources via sheet flow and small estuarine creeks, and subsequently discharges southward to northeastern Florida Bay via Trout Creek. Trout Creek contributes approximately 50 percent of the total freshwater flow to northeastern Florida Bay (Hittle 2001). Eight non-gaged creeks entering Joe Bay were selected for acoustic Doppler current profiler (ADCP) measurements. The ADCP discharge measurements were then correlated with computed real-time discharge measurements from nearby USGS flow stations. Regression analysis was used to estimate flow at the Joe Bay creeks from June 1999 to April 2000. The R2 values for the estimated flow at eight Joe Bay creeks ranged between 0.51 and 0.93. From June 1999 to April 2000, flow volumes to eastern and western Joe Bay equaled 6.8 x 107m3 and 5.6 x 107 m3 respectively; flow into eastern Joe Bay was 21 percent greater than flow into western Joe Bay. Maximum freshwater discharge to Florida Bay occurred following Tropical Storm Harvey and Hurricane Irene, which occurred on September 21 1999, and October 15, 1999, respectively. Flow into western Joe Bay (3.5 x 107 m3) during the storms was 26 percent greater than flow into eastern Joe Bay (2.7 x 107 m3). However, dry season flow (January to April 2000) into eastern Joe Bay (2.6 x 107 m3) which was supplied primarily by the C-111 Canal, was much greater than flow into western Joe Bay (2.5 x 106 m3). Thus, the total flow into eastern Joe Bay exceeded total flow into western Joe Bay, even though western Joe Bay received more freshwater during storm events. During the storms, the S-197 structure was opened to allow the C-111 Canal to discharge outside of Florida Bay. This reduced the overflow from the C-111 Canal to both Joe and northeastern Florida Bays. Hittle, C.D., Patino, E, and Zucker, M. 2000, Freshwater Flow From Estuarine Creeks into Northeastern Florida Bay. U.S. Geological Survey Water-Resources Investigation 01-4164,p.32.

  5. The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod

    NASA Astrophysics Data System (ADS)

    Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.

    1991-07-01

    Measurements of near-surface velocity and concurrent sea level along an ascending Geosat subtrack were used to estimate the mean sea surface height and the Earth's gravitational geoid. Velocity measurements were made on three traverses of a Geosat subtrack within 10 days, using an acoustic Doppler current profiler (ADCP). A small bias in the ADCP velocity was removed by considering a mass balance for two pairs of triangles for which expendable bathythermograph measurements were also made. Because of the large curvature of the Gulf Stream, the gradient wind balance was used to estimate the cross-track component of geostrophic velocity from the ADCP vectors; this component was then integrated to obtain the sea surface height profile. The mean sea surface height was estimated as the difference between the instantaneous sea surface height from ADCP and the Geosat residual sea level, with mesoscale errors reduced by low-pass filtering. The error estimates were divided into a bias, tilt, and mesoscale residual; the bias was ignored because profiles were only determined within a constant of integration. The calculated mean sea surface height estimate agreed with an independent estimate of the mean sea surface height from Geosat, obtained by modeling the Gulf Stream as a Gaussian jet, within the expected errors in the estimates: the tilt error was 0.10 m, and the mesoscale error was 0.044 m. To minimize mesoscale errors in the estimate, the alongtrack geoid estimate was computed as the difference between the mean sea level from the Geosat Exact Repeat Mission and an estimate of the mean sea surface height, rather than as the difference between instantaneous profiles of sea level and sea surface height. In the critical region near the Gulf Stream the estimated error reduction using this method was about 0.07 m. Differences between the geoid estimate and a gravimetric geoid were not within the expected errors: the rms mesoscale difference was 0.24 m rms.

  6. Transport processes near coastal ocean outfalls

    USGS Publications Warehouse

    Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.

    2001-01-01

    The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.

  7. Effects of an oil production effluent on gametogenesis and gamete performance in the purple sea urchin (Strongylocentrotus purpuratus Stimpson)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, P.R.

    1994-07-01

    Adult organisms subjected to chronic discharges from a point source of pollution may exhibit several sublethal responses. One such response is the impairment of gamete production. This may be expressed in the amount and/or quality of gametes produced by adults. In this study the effects of chronic exposure to produced water (an oil production effluent) on the gametogenesis and gamete performance of the purple sea urchin (Strongylocentrotus purpuratus Stimpson) were examined using an in situ caging experiment. Adult purple sea urchins were kept in benthic cages arrayed down-field from a discharging diffuser at 13 sites, with distances ranging from 5more » to 1,000 m. Cage exposures were maintained in the field for eight weeks, and each cage held 25 animals. Gametogenesis was examined for each sex by comparing a size-independent measure of relative gonads ass as determined by analysis of covariance. Results showed that there was a significant negative relationship between these estimates of relative gonad mass and distance from the outfall for both sexes, indicating that sea urchins living closer to the outfall produced significantly larger gonads. Gamete performance was measured through a fertilization kinetics bioassay that held the concentration of eggs constant and varied the amount of sperm added. The proportion of eggs fertilized under each sperm concentration was determined and the response fit to a model of fertilizability showed a positive relationship with distance away from the outfall. These findings indicate that although adult sea urchins exposed to a produced water outfall exhibit larger gonads, they suffer a marked decrease in a gamete performance.« less

  8. Distribution and sources of surfzone bacteria at Huntington Beach before and after disinfection on an ocean outfall-- a frequency-domain analysis.

    PubMed

    Noble, M A; Xu, J P; Robertson, G L; Rosenfeld, L K

    2006-06-01

    Fecal indicator bacteria (FIB) were measured approximately 5 days a week in ankle-depth water at 19 surfzone stations along Huntington Beach and Newport Beach, California, from 1998 to the end of 2003. These sampling periods span the time before and after treated sewage effluent, discharged into the coastal ocean from the local outfall, was disinfected. Bacterial samples were also taken in the vicinity of the outfall during the pre- and post-disinfection periods. Our analysis of the results from both data sets suggest that land-based sources, rather than the local outfall, were the source of the FIB responsible for the frequent closures and postings of local beaches in the summers of 2001 and 2002. Because the annual cycle is the dominant frequency in the fecal and total coliform data sets at most sampling stations, we infer that sources associated with local runoff were responsible for the majority of coliform contamination along wide stretches of the beach. The dominant fortnightly cycle in enterococci at many surfzone sampling stations suggests that the source for these relatively frequent bacteria contamination events in summer is related to the wetting and draining of the land due to the large tidal excursions found during spring tides. Along the most frequently closed section of the beach at stations 3N-15N, the fortnightly cycle is dominant in all FIBs. The strikingly different spatial and spectral patterns found in coliform and in enterococci suggest the presence of different sources, at least for large sections of beach. The presence of a relatively large enterococci fortnightly cycle along the beaches near Newport Harbor indicates that contamination sources similar to those found off Huntington Beach are present, though not at high enough levels to close the Newport beaches.

  9. Flows in the Tasman Front south of Norfolk Island

    NASA Astrophysics Data System (ADS)

    Sutton, Philip J. H.; Bowen, Melissa

    2014-05-01

    The Tasman Front is a narrow band of eastward flowing subtropical water crossing the Tasman Sea from Australia to North Cape, New Zealand. It is the link between the two subtropical western boundary currents of the South Pacific, the East Australian Current (EAC) off eastern Australia, and the East Auckland Current (EAUC) off northeastern New Zealand. Here we report the first direct measurements of flow in the Tasman Front from a moored array deployed across gaps in the submarine ridges south of Norfolk Island and hydrographic and ADCP measurements during the deployment and recovery voyages. The mean flow through the array over July 2003 to August 2004 was found to be eastward only in the upper 800 m with a transport of ˜6 Sv. Below 800 m a weak westward mean flow (˜1.5 Sv) was measured, associated with Antarctic Intermediate Water (AAIW). Using sea surface height to account for additional transport south of the moored array results in a total mean eastward transport between Norfolk Island and North Cape, New Zealand of ˜8 Sv, varying between -4 and 18 Sv. The measurements show that the Tasman Front is much shallower than either the EAC or EAUC, both of which extend below 2000 m depth, has less transport than either the EAC or EAUC and has instances of flow reversal. Thus, the Tasman Front is a weaker connection between the EAC and EAUC than the paradigm of a contiguous South Pacific western boundary current system would suggest.

  10. Hydroecological monitoring in the headwaters of the Volga River

    NASA Astrophysics Data System (ADS)

    Kuzovlev, Viacheslav V.; Zhenikov, Yuri N.; Zhenikov, Kyrill Y.; Shaporenko, Sergey I.; Haun, Stefan; Füreder, Leopold; Schletterer, Martin

    2016-04-01

    Europe's largest river, the Volga (3551 km), has experienced multiple stressors from human activities (i.e. the Volga Basin comprises about 40 % of the Russian population, 45 % of the country's industry and more than 50 % of its agriculture). During the research expedition "Upper Volga 2005" an assessment of hydrological, limnochemical and biological parameters was carried out by scientists from the Russian Federation and from Austria. The extensive sampling in 2005 showed that the free-flowing section of the Volga River, located upstream of Tver, represents conditions which are either reference or least disturbed - thus it can be considered as a refugial system for freshwater biota of the European lowlands. Subsequently three stretches in the headwaters of the Volga River (Rzhev, Staritsa, Tver) were selected for the monitoring programme "REFCOND_VOLGA", which is in operation since 2006. These locations correspond also with the sampling sites of ROSHYDROMET, i.e. at Tver physic-chemical samples are taken monthly and at Rzhev samples are taken in the main hydrological periods. The laboratory ship "ROSHYDROMET 11" conducted monthly cruises between Tver and Kalyazin (Ivankovskoye and Uglichskoye reservoirs on Volga) in the headwaters during the navigation period (May - October). This also includes measurements with ADCP, which further allow the analyses of the spatial distribution of the suspended solids within cross sections. In addition sediment fluxes were derived by using the acoustic backscatter signal strength from the acoustic current Doppler profiler (ADCP). We exemplify at the monitoring sites the spatial distribution of different sediments, i.e. choriotope types, according the longitudinal profile of the river. We show that it is highly influenced by morphodynamics in the different river sections and this corresponds with the zoobenthos fauna accordingly. This interdisciplinary approach, including sediment conditions, limnochemistry, hydrology and hydrobiology, leads to a hydro-ecological reference for European lowland rivers.

  11. Observations of Near-Bed Deposition and Resuspension Processes at the Fluvial-Tidal Transition Using High Resolution Adcp, Adv, and Lisst

    NASA Astrophysics Data System (ADS)

    Haught, D. R.; Stumpner, P.

    2012-12-01

    Processes that determine deposition and resuspension of sediment in fluvial and tidal systems are complicated and difficult to predict because of turbulence-sediment interaction. In fluvial systems net sediment deposition rates near the bed are determined by shear stresses that occur when turbulence interacts with the bed and the entrained sediment above. In tidal systems, processes are driven primarily by the confounding factors of slack water and reversing flow. In this study we investigate near-bed sediment fluxes, settling velocities and sediment size distributions during a change from a fluvial signal to a tidal signal. In order to examine these processes a high resolution, high frequency ADCP, ADV, water quality sonde and LISST data were collocated at the fluvial-tidal transition in the Sacramento River at Freeport, CA. Data were collected at 15-30 minute increments for a month`. Data were dissevered into fluvial and tidal components. Acoustic backscatterence was used as a surrogate to sediment concentration and sediment flux () was calculated from the turbulence properties. Settling velocities were computed from the diffusion-advection equation assuming equilibrium of settling and re-suspension fluxes. Particle density was back-calculated from median particle diameter and calculated settling velocities (Reynolds number<0.5) using Stokes' law. Preliminary results suggest that during peak fluvial discharge that the diffusion-advection gives poor estimates of settling velocities as inferred from particle densities above 3500 kg/m3. During the transition from fluvial to tidal signal and throughout the tidal signal particle densities range from 2650 kg/m3 to 1000 kg/m3, suggesting that settling velocities were accurately estimated. Thus the equilibrium assumption appears poor during high fluvial discharge and reasonable during low fluvial discharge when tidal signal is dominant.

  12. Summary of urban stormwater quality in Albuquerque, New Mexico, 2003-12

    USGS Publications Warehouse

    Storms, Erik F.; Oelsner, Gretchen P.; Locke, Evan A.; Stevens, Michael R.; Romero, Orlando C.

    2015-01-01

    The stormwater quality in Albuquerque was compared with that of six other Western U.S. cities (Phoenix, Arizona; Tucson, Arizona; Las Vegas, Nevada; Denver, Colorado; Salt Lake City, Utah; and Boise, Idaho) for selected constituents. In general, water-quality data for stormwater samples from these six other Western U.S. cities were similar to water-quality data for the stormwater samples from the Albuquerque outfalls. Median concentrations for suspended solids, total phosphorus, and bacteria (E. coli and fecal coliform) in stormwater samples from the Albuquerque outfalls, as a whole, were higher than those in samples from the other Western U.S. cities except for Las Vegas.

  13. Analysis of the Water Resources on Baseflow River Basin in Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Yang, S.-K.; Jung, W.-Y.; Kang, M.-S.

    2012-04-01

    Jeju Island is a volcanic island located at the southernmost of Korea, and is the heaviest raining area in Korea, but due to its hydrological / geological characteristics different from those of inland areas, most streams are of the dry form, and it relies on groundwater for water resources. As for some streams, however, springwater is discharged at a point near the downstream of the final discharge to maintain the flow of the stream; this has been developed as the source for water supply since the past, but the studies on detail observations and analysis are yet inadequate. This study utilizes the ADCP (Acoustic Doppler Current Profiler) hydrometer to regularly observe the flow amount of base run-off stream, and the water resources of base discharge basin of Jeju Island were analyzed using the SWAT (Soil & Water Assessment Tool) model. The detail water resource analysis study using modeling and site observation with high precision for Jeju Island water resources is expected to become the foundation for efficient usage and security of water resources against future climate changes.

  14. Estimation of composite hydraulic resistance in ice-covered alluvial streams

    NASA Astrophysics Data System (ADS)

    Ghareh Aghaji Zare, Soheil; Moore, Stephanie A.; Rennie, Colin D.; Seidou, Ousmane; Ahmari, Habib; Malenchak, Jarrod

    2016-02-01

    Formation, propagation, and recession of ice cover introduce a dynamic boundary layer to the top of rivers during northern winters. Ice cover affects water velocity magnitude and distribution, water level and consequently conveyance capacity of the river. In this research, total resistance, i.e., "composite resistance," is studied for a 4 month period including stable ice cover, breakup, and open water stages in Lower Nelson River (LNR), northern Manitoba, Canada. Flow and ice characteristics such as water velocity and depth and ice thickness and condition were measured continuously using acoustic techniques. An Acoustic Doppler Current Profiler (ADCP) and Shallow Water Ice Profiling Sonar (SWIPS) were installed simultaneously on a bottom mount and deployed for this purpose. Total resistance to the flow and boundary roughness are estimated using measured bulk hydraulic parameters. A novel method is developed to calculate composite resistance directly from measured under ice velocity profiles. The results of this method are compared to the measured total resistance and to the calculated composite resistance using formulae available in literature. The new technique is demonstrated to compare favorably to measured total resistance and to outperform previously available methods.

  15. Optimization of Concurrent Deployments of the Juvenile Salmon Acoustic Telemetry System and Other Hydroacoustic Equipment at John Day Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Hughes, James S.; Khan, Fenton

    The purpose of this report is to document the results of the acoustic optimization study conducted at John Day Dam during January and February 2008. The goal of the study was to optimize performance of the Juvenile Salmon Acoustic Telemetry System (JSATS) by determining deployment and data acquisition methods to minimize electrical and acoustic interference from various other acoustic sampling devices. Thereby, this would allow concurrent sampling by active and passive acoustic methods during the formal evaluations of the prototype surface flow outlets at the dam during spring and summer outmigration seasons for juvenile salmonids. The objectives for the optimizationmore » study at John Day Dam were to: 1. Design and test prototypes and provide a total needs list of pipes and trolleys to deploy JSATS hydrophones on the forebay face of the powerhouse and spillway. 2. Assess the effect on mean percentage decoded of JSATS transmissions from tags arrayed in the forebay and detected on the hydrophones by comparing: turbine unit OFF vs. ON; spill bay OPEN vs. CLOSED; dual frequency identification sonar (DIDSON) and acoustic Doppler current profiler (ADCP) both OFF vs. ON at a spill bay; and, fixed-aspect hydroacoustic system OFF vs. ON at a turbine unit and a spill bay. 3. Determine the relationship between fixed-aspect hydroacoustic transmit level and mean percentage of JSATS transmissions decoded. The general approach was to use hydrophones to listen for transmissions from JSATS tags deployed in vertical arrays in a series perpendicular to the face of the dam. We used acoustic telemetry equipment manufactured by Technologic and Sonic Concepts. In addition, we assessed old and new JSATS signal detectors and decoders and two different types of hydrophone baffling. The optimization study consisted of a suite of off/on tests. The primary response variable was mean percentage of tag transmissions decoded. We found that there was no appreciable adverse effect on mean percentage decoded for JSATS transmitters from: turbine operations; spillway operations; DIDSON/ADCP acoustic energy; and PAS hydroacoustic systems at transmit level of -12 dB, although there was a significant impact at all higher transmit levels (-11 to -6 dB). The main conclusion from this optimization study is that valid JSATS telemetry data can be collected simultaneously with a DIDSON/ADCP and a PAS hydroacoustic system at transmit level -12 dB. Multiple evaluation tools should be considered to increase the robustness and thoroughness of future fish passage evaluations at John Day and other dams.« less

  16. Velocity mapping in the Lower Congo River: a first look at the unique bathymetry and hydrodynamics of Bulu Reach

    USGS Publications Warehouse

    Jackson, P. Ryan; Oberg, Kevin A.; Gardiner, Ned; Shelton, John

    2009-01-01

    The lower Congo River is one of the deepest, most powerful, and most biologically diverse stretches of river on Earth. The river’s 270 m decent from Malebo Pool though the gorges of the Crystal Mountains to the Atlantic Ocean (498 km downstream) is riddled with rapids, cataracts, and deep pools. Much of the lower Congo is a mystery from a hydraulics perspective. However, this stretch of the river is a hotbed for biologists who are documenting evolution in action within the diverse, but isolated, fish populations. Biologists theorize that isolation of fish populations within the lower Congo is due to barriers presented by flow structure and bathymetry. To investigate this theory, scientists from the U.S. Geological Survey and American Museum of Natural History teamed up with an expedition crew from National Geographic in 2008 to map flow velocity and bathymetry within target reaches in the lower Congo River using acoustic Doppler current profilers (ADCPs) and echo sounders. Simultaneous biological and water quality sampling was also completed. This paper presents some preliminary results from this expedition, specifically with regard to the velocity structure andbathymetry. Results show that the flow in the bedrock controlled Bulu reach of the lower Congo is highly energetic. Turbulent and secondary flow structures can span the full depth of flow (up to 165 m), while coherent bank-to-bank cross-channel flow structures are absent. Regions of flow separation near the banks are isolated from one another and from the opposite bank by high shear, high velocity zones with depth-averaged flow velocities that can exceed 4 m/s.

  17. Characterizing observed circulation patterns within a bay using HF radar and numerical model simulations

    NASA Astrophysics Data System (ADS)

    O'Donncha, Fearghal; Hartnett, Michael; Nash, Stephen; Ren, Lei; Ragnoli, Emanuele

    2015-02-01

    In this study, High Frequency Radar (HFR), observations in conjunction with numerical model simulations investigate surface flow dynamics in a tidally-active, wind-driven bay; Galway Bay situated on the West coast of Ireland. Comparisons against ADCP sensor data permit an independent assessment of HFR and model performance, respectively. Results show root-mean-square (rms) differences in the range 10 - 12cm/s while model rms equalled 12 - 14cm/s. Subsequent analysis focus on a detailed comparison of HFR and model output. Harmonic analysis decompose both sets of surface currents based on distinct flow process, enabling a correlation analysis between the resultant output and dominant forcing parameters. Comparisons of barotropic model simulations and HFR tidal signal demonstrate consistently high agreement, particularly of the dominant M2 tidal signal. Analysis of residual flows demonstrate considerably poorer agreement, with the model failing to replicate complex flows. A number of hypotheses explaining this discrepancy are discussed, namely: discrepancies between regional-scale, coastal-ocean models and globally-influenced bay-scale dynamics; model uncertainties arising from highly-variable wind-driven flows across alarge body of water forced by point measurements of wind vectors; and the high dependence of model simulations on empirical wind-stress coefficients. The research demonstrates that an advanced, widely-used hydro-environmental model does not accurately reproduce aspects of surface flow processes, particularly with regards wind forcing. Considering the significance of surface boundary conditions in both coastal and open ocean dynamics, the viability of using a systematic analysis of results to improve model predictions is discussed.

  18. Quantifying morphological changes of cape-related shoals

    NASA Astrophysics Data System (ADS)

    Paniagua-Arroyave, J. F.; Adams, P. N.; Parra, S. M.; Valle-Levinson, A.

    2017-12-01

    The rising demand for marine resources has motivated the study of inner shelf transport processes, especially in locations with highly-developed coastlines, endangered-species habitats, and valuable economic resources. These characteristics are found at Cape Canaveral shoals, on the Florida Atlantic coast, where transport dynamics and morphological evolution are not well understood. To study morphological changes at these shoals, two sets of paired upward- and downward-pointing acoustic Doppler current profilers (ADCPs) were deployed in winter 2015-2016. One set was deployed at the inner swale of Shoal E, 20 km southeast of the cape tip in 13 m depth, while the other set was located at the edge of Southeast shoal in 5 m deep. Upward-pointing velocity profiles and suspended particle concentrations were implemented in the Exner equation to quantify instantaneous rates of change in bed elevation. This computation includes changes in sediment concentration and the advection of suspended particles, but does not account for spatial gradients in bed-load fluxes and water velocities. The results of the computation were then compared to bed change rates measured directly by the downward-pointing ADCPs. At the easternmost ridge, quantified bed elevation change rates ranged from -7×10-7 to 4×10-7 m/s, and those at the inner swale ranged from -4×10-7 to 8×10-7 m/s. These values were two orders of magnitude smaller than rates measured by downward-pointing ADCPs. Moreover, the cumulative changes were two orders of magnitude larger at the ridge (-0.33 m, downward, and -0.13, m upward) than at the inner swale (cf. -6×10-3 m, downward, and 3×10-3 m, upward). These values suggest that bedform migration may be occurring at the ridge, that suspended sediments account for up to 30% of total bed changes, and that gradients in bed-load fluxes exert control on morphological change over the shoals. Despite uncertainties related to the ADCP-derived sediment concentrations, these findings provide preliminary evidence about the spatial variability in morphological changes over cape-related shoals.

  19. Biodegradation of 17β-estradiol, estrone and testosterone in stream sediments

    USGS Publications Warehouse

    Bradley, Paul M.; Barber, Larry B.; Chapelle, Francis H.; Gray, James L.; Kolpin, Dana W.; McMahon, Peter B.

    2009-01-01

    Biodegradation of 17β-estradiol (E2), estrone (E1), and testosterone (T) was investigated in three wastewater treatment plant (WWTP) affected streams in the United States. Relative differences in the mineralization of [4-14C] substrates were assessed in oxic microcosms containing saturated sediment or water-only from locations upstream and downstream of the WWTP outfall in each system. Upstream sediment demonstrated significant mineralization of the “A” ring of E2, E1, and T, with biodegradation of T consistently greater than that of E2 and no systematic difference in E2 and E1 biodegradation. “A” ring mineralization also was observed in downstream sediment, with E1 and T mineralization being substantially depressed relative to upstream samples. In marked contrast, E2 mineralization in sediment immediately downstream from the WWTP outfalls was more than double that in upstream sediment. E2 mineralization was observed in water, albeit at insufficient rate to prevent substantial downstream transport. The results indicate that, in combination with sediment sorption processes which effectively scavenge hydrophobic contaminants from the water column and immobilize them in the vicinity of the WWTP outfall, aerobic biodegradation of reproductive hormones can be an environmentally important mechanism for nonconservative (destructive) attenuation of hormonal endocrine disruptors in effluent-affected streams.

  20. Planning and Design of Seawater Reverse Osmosis Desalination Plants Marine Outfalls

    NASA Astrophysics Data System (ADS)

    Maalouf, S.; Yeh, W. W.

    2011-12-01

    Increasing demands for water in urban areas and agricultural zones in arid and semi-arid regions have urged planners and regulators to look for alternative renewable water sources. Worldwide, seawater reverse osmosis (SWRO) desalination plants have become an essential supply source for the production of fresh water in such regions. Disposal of their wastes, however, has not been fully and properly addressed. This study presents a strategy for the analysis and design of optimal disposal systems of hypersaline wastes that are generated by SWRO desalination plants. The study evaluates current disposal methods and recommends ways to effectively employ multiport marine outfalls for this purpose. Such outfalls emerged as reliable means for conveying wastes from process plants, to include wastewater treatment and power plants, into the coastal waters. Their proper use, however, in conjunction with SWRO desalination plants is still in its beginning stage, and much work needs to be done to employ them effectively. Therefore, the main objective of this research is to provide design engineers with effective procedures that meet environmental permitting requirements and restrictions, while ascertaining adequate hydrodynamic performance. The study is tested by employing a simulation model and examining its reliability under many parameter perturbation scenarios. This is further extended by providing a solution to the same problem using a heuristic approach.

  1. Evaluating the impact of municipal water fluoridation on the aquatic environment.

    PubMed Central

    Osterman, J W

    1990-01-01

    Although highly beneficial for dental health, low concentrations of fluoride in environmental waters may be toxic to several organisms. In an era of heightened public awareness about the environment, this may lead city officials to withhold implementing water fluoridation for environmental reasons. This paper presents a mass balance approach to evaluate this perceived risk. Generally speaking, fluoridated water loss during use, dilution of sewage by rain and ground water infiltrate, fluoride removal during secondary sewage treatment, and diffusion dynamics at effluent outfall combine to eliminate fluoridation-related environmental effects. In Montreal, water fluoridation would raise average aquatic fluoride levels in the waste water plume immediately below effluent outfall by only 0.05-0.09 mg/l. Downstream, these changes would be only 0.02-0.05 mg/l at 1 km, and 0.01-0.03 mg/l at 2 km below outfall. Overall river fluoride concentrations theoretically would be raised by 0.001-0.002 mg/l, a value not measurable by current analytical techniques. All resulting concentrations would be well below those recommended for environmental safety and would not exceed natural levels found elsewhere in Quebec. A literature review did not reveal any examples of municipal water fluoridation causing recommended environmental concentrations to be exceeded, although excesses occurred in several cases of severe industrial water pollution. PMID:2400035

  2. Persistence of nonylphenol ethoxylate surfactants and their primary degradation products in sediments from near a municipal outfall in the Strait of Georgia, British Columbia, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, D.Y.; Macdonald, R.W.; Ikonomou, M.G.

    1999-05-01

    Marine sediment cores and surface grabs were collected from the Strait of Georgia, British Columbia, Canada, near the Iona municipal outfall and were analyzed for nonylphenol (NP) and its ethoxylate compounds (NPnEOs). The authors used normal-phase liquid chromatography with electrospray mass spectrometric detection to determine concentrations of ethoxylates from n = 1 to n = 19. Over half the NPnEO inventory in marine sediments resides in ethoxylates of chain length greater than n = 2, suggesting that analyses limited to short-chain ethoxylates (n = 2) are under-reporting total NPnEO by a factor of 2. The NPnEO vertical profiles and oligomermore » distributions in dated sediment cores suggest that little degradation occurs once these compounds enter the sediments: the half-life for these compounds is estimated to be greater than 60 yr. The lack of change in NPnEO oligomer distribution with age suggests that degradation by chain shortening does not occur significantly. A rough inventory shows that over 30 t of NPnEO resides in Fraser River Delta sediments near the Iona municipal outfall and that the entire Strait of Georgia sediments contain over 170 t of NPnEO.« less

  3. Organic pollutants in the coastal environment off San Diego, California. 1: Source identification and assessment by compositional indices of polycyclic aromatic hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, E.Y.; Vista, C.L.

    1997-02-01

    Samples collected in January and June 1994 from the Point Loma Wastewater Treatment Plant (PLWTP) effluent, Tijuana River runoff, and microlayer, sediment trap, and surface sediment at several locations adjacent to the PLWTP outfall, mouth of the Tijuana River, and San Diego Bay were analyzed in an attempt to identify and assess the sources of hydrocarbon inputs into the coastal marine environment off San Diego. Several compositional indices of polycyclic aromatic hydrocarbons (PAHs), for example, alkyl homologue distributions, parent compound distributions, and other individual PAH ratios, were used to identify the sources of PAHs. Partially due to the decline ofmore » PAH emission from the PLWTP outfall, PAHs found in the sea surface microlayer, sediments, and water column particulates near the PLWTP outfall were predominantly derived from nonpoint sources. The sea microlayer near the mouth of the Tijuana River appeared to accumulate enhanced amounts of PAHs and total organic carbon and total nitrogen, probably discharged from the river, although they were in extremely low abundance in the sediments at the same location. Surprisingly, PAHs detected in the microlayer and sediments in San Diego Bay were mainly derived from combustion sources rather than oil spills, despite the heavy shipping activities in the area.« less

  4. New insights into impacts of anthropogenic nutrients on urban ecosystem processes on the Southern California coastal shelf: Introduction and synthesis

    NASA Astrophysics Data System (ADS)

    Howard, Meredith D. A.; Kudela, Raphael M.; McLaughlin, Karen

    2017-02-01

    Anthropogenic nutrient inputs are one of the most important factors contributing to eutrophication of coastal waters. Coastal upwelling regions are naturally highly variable, exhibiting faster flushing and lower retention times than estuarine systems. As such, these regions are considered more resilient to anthropogenic influences than other coastal waters. Recent studies have shown our perception of the sustainability of these systems may be flawed and that anthropogenic nutrients can have an impact at local and regional spatial scales within these larger upwelling ecosystems. Maintenance of an outfall pipe discharging wastewater effluent to the Southern California Bight (SCB) provided an opportunity to study effects of anthropogenic nutrient inputs on a near-shore coastal ecosystem. The diversion of wastewater effluent from a primary, offshore outfall to a secondary, near-shore outfall set up a large-scale, in situ experiment allowing researchers to track the fate of wastewater plumes as they were "turned off" in one area and "turned on" in another. In this introduction to a special issue, we synthesize results of one such wastewater diversion conducted by the Orange County Sanitation District (OCSD) during fall 2012. Anthropogenic nitrogen (N) from point-source discharges altered biogeochemical cycling and the community composition of bacteria and phytoplankton. Nitrification of ammonium to nitrate in wastewater effluent close to outfalls constituted a significant source of N utilized by the biological community that should be considered in quantifying "new" production. The microbial-loop component of the plankton community played a significant role, exemplified by a large response of heterotrophic bacteria to wastewater effluent that resulted in nutrient immobilization within the bacterial food web. This response, combined with the photosynthetic inhibition of phytoplankton due to disinfection byproducts, suppressed phytoplankton responses. Our findings have ramifications for future studies and regulatory monitoring, emphasizing the need to consider chemical and biological responses to wastewater effluent in assessing effects of anthropogenic nutrient inputs on urbanized coastal ecosystems.

  5. Evaluation of the novel crAssphage marker for sewage pollution tracking in storm drain outfalls in Tampa, Florida.

    PubMed

    Ahmed, Warish; Lobos, Aldo; Senkbeil, Jacob; Peraud, Jayme; Gallard, Javier; Harwood, Valerie J

    2017-12-24

    CrAssphage are recently-discovered DNA bacteriophages that are prevalent and abundant in human feces and sewage. We assessed the performance characteristics of a crAssphage quantitative PCR (qPCR) assay for quantifying sewage impacts in stormwater and surface water in subtropical Tampa, Florida. The mean concentrations of crAssphage in untreated sewage ranged from 9.08 to 9.98 log 10 gene copies/L. Specificity was 0.927 against 83 non-human fecal reference samples and the sensitivity was 1.0. Cross-reactivity was observed in DNA extracted from soiled poultry litter but the concentrations were substantially lower than untreated sewage. The presence of the crAssphage marker was monitored in water samples from storm drain outfalls during dry and wet weather conditions in Tampa, Florida. In dry weather conditions, 41.6% of storm drain outfalls samples were positive for the crAssphage marker and the concentrations ranged from 3.60 to 4.65 log 10 gene copies/L of water. After a significant rain event, 66.6% of stormwater outlet samples were positive for the crAssphage marker and the concentration ranged from 3.62 to 4.91 log 10 gene copies/L of water. The presence of the most commonly used Bacteroides HF183 marker in storm drain outfalls was also tested along with the crAssphage. Thirteen samples (55%) were either positive (i.e., both markers were present) or negative (i.e., both markers were absent) for both the markers. Due to the observed cross-reactivity of this marker with DNA extracted from poultry litter samples, it is recommended that this marker should be used in conjunction with additional markers such as HF183. Our data indicate that the crAssphage marker is highly sensitive to sewage, is adequately specific, and will be a valuable addition to the MST toolbox. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  6. Distribution and sources of surfzone bacteria at Huntington Beach before and after disinfection on an ocean outfall - A frequency-domain analysis

    USGS Publications Warehouse

    Noble, M.A.; Xu, J. P.; Robertson, G.L.; Rosenfeld, L.K.

    2006-01-01

    Fecal indicator bacteria (FIB) were measured approximately 5 days a week in ankle-depth water at 19 surfzone stations along Huntington Beach and Newport Beach, California, from 1998 to the end of 2003. These sampling periods span the time before and after treated sewage effluent, discharged into the coastal ocean from the local outfall, was disinfected. Bacterial samples were also taken in the vicinity of the outfall during the pre- and post-disinfection periods. Our analysis of the results from both data sets suggest that land-based sources, rather than the local outfall, were the source of the FIB responsible for the frequent closures and postings of local beaches in the summers of 2001 and 2002. Because the annual cycle is the dominant frequency in the fecal and total coliform data sets at most sampling stations, we infer that sources associated with local runoff were responsible for the majority of coliform contamination along wide stretches of the beach. The dominant fortnightly cycle in enterococci at many surfzone sampling stations suggests that the source for these relatively frequent bacteria contamination events in summer is related to the wetting and draining of the land due to the large tidal excursions found during spring tides. Along the most frequently closed section of the beach at stations 3N-15N, the fortnightly cycle is dominant in all FIBs. The strikingly different spatial and spectral patterns found in coliform and in enterococci suggest the presence of different sources, at least for large sections of beach. The presence of a relatively large enterococci fortnightly cycle along the beaches near Newport Harbor indicates that contamination sources similar to those found off Huntington Beach are present, though not at high enough levels to close the Newport beaches. ?? 2006 Elsevier Ltd. All rights reserved.

  7. Hydrodynamic evaluation of long term impacts of climate change and coastal effluents in the Arabian Gulf.

    PubMed

    Elhakeem, Abubaker; Elshorbagy, Walid

    2015-12-30

    A comprehensive basin wide hydrodynamic evaluation has been carried out to assess the long term impacts of climate change and coastal effluents on the salinity and seawater temperature of the Arabian Gulf (AG) using Delft3D-Flow model. The long term impacts of climate change scenarios A2 and B1 of the IPCC-AR4 on the AG hydrodynamics were evaluated. Using the current capacity and production rates of coastal desalination, power, and refinery plants, two projection scenarios until the year 2080 with 30 year intervals were developed namely the realistic and the optimistic discharge scenarios. Simulations of the individual climate change scenarios ascertained overall increase of the AG salinity and temperature and decrease of precipitation. The changes varied spatially with different scenarios as per the depth, proximity to exchange with ocean water, flushing, vertical mixing, and flow restriction. The individual tested scenarios of coastal projected discharges showed significant effects but within 10-20 km from the outfalls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Characterization of stormwater discharges from Las Flores Industrial Park, Rio Grande, Puerto Rico, 1998-99

    USGS Publications Warehouse

    Rodriguez, Jose M.

    2000-01-01

    Stormwater discharges from Las Flores Industrial Park, Rio Grande, Puerto Rico, were characterized from June 1998 to July 1999 by measuring the flow rate at two outfalls, delineating the drainage areas for each outfall, and calculating the volume of the stormwater discharges. Stormwater-discharge samples were collected and analyzed to determine the quality of the discharges. Constituent loads and loads per area were estimated for each drainage area. The studied drainage subareas covered approximately 46 percent of the total area of the Las Flores Industrial Park. Industrial groups represented in the study areas include manufacturers of textile, electronics, paper, fabricated metal, plastic, and chemical products. The concentrations of oil and grease (1 to 6 milligrams per liter), biochemical oxygen demand (4.7 to 16 milligrams per liter), total organic carbon (5.8 to 36 milligrams per liter), total suspended solids (28 to 100 milligrams per liter), and total phosphorous (0.11 to 0.78 milligrams per liter) from all the samples collected were less than the U.S. Environmental Protection Agency stormwater benchmark concentrations. Concentrations of chemical oxygen demand (15.8 to 157 milligrams per liter) and nitrate and nitrite (0.06 to 1.75 milligrams per liter) exceeded benchmark concentrations at one of the studied drainage areas. Total Kjeldahl nitrogen concentrations (1.00 to 3.20 milligrams per liter) exceeded the benchmark concentrations at the two studied drainage areas. Maximum concentrations for oil and grease, biochemical oxygen demand, chemical oxygen demand, total organic carbon, total Kjeldahl nitrogen, nitrate plus nitrite, and total phosphorous were detected in an area where electronics, plastics, and chemical products are currently manufactured. The maximum concentration of total suspended solids was detected at an area where textile, paper, plastic, chemical, and fabricated metal products are manufactured.

  9. Modelling the dispersion of treated wastewater in a shallow coastal wind-driven environment, Geographe Bay, Western Australia: implications for environmental management.

    PubMed

    Dunn, Ryan J K; Zigic, Sasha; Shiell, Glenn R

    2014-10-01

    Numerical models are useful for predicting the transport and fate of contaminants in dynamic marine environments, and are increasingly a practical solution to environmental impact assessments. In this study, a three-dimensional hydrodynamic model and field data were used to validate a far-field dispersion model that, in turn, was used to determine the fate of treated wastewater (TWW) discharged to the ocean via a submarine ocean outfall under hypothetical TWW flows. The models were validated with respect to bottom and surface water current speed and direction, and in situ measurements of total nitrogen and faecal coliforms. Variations in surface and bottom currents were accurately predicted by the model as were nutrient and coliform concentrations. Results indicated that the ocean circulation was predominately wind driven, evidenced by relatively small oscillations in the current speeds along the time-scale of the tide, and that dilution mixing zones were orientated in a predominantly north-eastern direction from the outfall and parallel to the coastline. Outputs of the model were used to determine the 'footprint' of the TWW plume under a differing discharge scenario and, particularly, whether the resultant changes in TWW contaminants, total nitrogen and faecal coliforms would meet local environmental quality objectives (EQO) for ecosystem integrity, shellfish harvesting and primary recreation. Modelling provided a practical solution for predicting the dilution of contaminants under a hypothetical discharge scenario and a means for determining the aerial extent of exclusion zones, where the EQOs for shellfish harvesting and primary recreation may not always be met. Results of this study add to the understanding of regional discharge conditions and provide a practical case study for managing impacts to marine environments under a differing TWW discharge scenario, in comparison to an existing scenario.

  10. Corrective Action Plan for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    2011-04-30

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 562, Waste Systems, in accordance with the Federal Facility Agreement and Consent Order (1996; as amended March 2010). CAU 562 consists of 13 Corrective Action Sites (CASs) located in Areas 2, 23, and 25 of the Nevada National Security Site. Site characterization activities were performed in 2009 and 2010, and the results are presented in Appendix A of the Corrective Action Decision Document for CAU 562. The scope of work required to implement the recommended closure alternatives is summarized. (1) CAS 02-26-11, Lead Shot, will be clean closedmore » by removing shot. (2) CAS 02-44-02, Paint Spills and French Drain, will be clean closed by removing paint and contaminated soil. As a best management practice (BMP), asbestos tile will be removed. (3) CAS 02-59-01, Septic System, will be clean closed by removing septic tank contents. As a BMP, the septic tank will be removed. (4) CAS 02-60-01, Concrete Drain, contains no contaminants of concern (COCs) above action levels. No further action is required; however, as a BMP, the concrete drain will be removed. (5) CAS 02-60-02, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. As a BMP, the drain grates and drain pipe will be removed. (6) CAS 02-60-03, Steam Cleaning Drain, will be clean closed by removing contaminated soil. As a BMP, the steam cleaning sump grate and outfall pipe will be removed. (7) CAS 02-60-04, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. (8) CAS 02-60-05, French Drain, will be clean closed by removing contaminated soil. (9) CAS 02-60-06, French Drain, contains no COCs above action levels. No further action is required. (10) CAS 02-60-07, French Drain, requires no further action. The french drain identified in historical documentation was not located during corrective action investigation activities. (11) CAS 23-60-01, Mud Trap Drain and Outfall, will be clean closed by removing sediment from the mud trap. As a BMP, the mud trap and outfall pipe will be removed. (12) CAS 23-99-06, Grease Trap, will be clean closed by removing sediment from the grease trap and backfilling the grease trap with grout. (13) CAS 25-60-04, Building 3123 Outfalls, will be clean closed by removing contaminated soil and the sludge-containing outfall pipe.« less

  11. Shallow-water gaseohydrothermal plume studies after massive eruption at Panarea, Aeolian Islands, Italy

    NASA Astrophysics Data System (ADS)

    Tudino, T.; Bortoluzzi, G.; Aliani, S.

    2014-03-01

    Marine water dynamics in the near field of a massive gas eruption near Panarea (Aeolian Islands volcanic arc, SE Tyrrhenian Sea) is described. ADCP current-meters were deployed during the paroxysmal phase in 2002 and 2003 a few meters from the degassing vent, recording day-long time series. Datasets were sorted to remove errors and select good quality ensembles over the entire water column. Standard deviation of error velocity was considered a proxy for inhomogeneous velocity fields over beams. Time series intervals had been selected when the basic ADCP assumptions were fulfilled and random errors minimized. Backscatter data were also processed to identify bubbles in the water column with the aim of locating bubble-free ensembles. Reliable time series are selected combining these data. Two possible scenarios have been described: firstly, a highly dynamic situation with visible surface diverging rings of waves, entrainment on the lower part of the gas column, detrainment in the upper part and a stagnation line (SL) at mid depth where currents were close to zero and most of the gas bubbles spread laterally; secondly, a less dynamic situation with water entraining into the gas plume at all depths and no surface rings of diverging waves. Reasons for these different dynamics may be ascribed to changes in gas fluxes (one order of magnitude higher in 2002). Description of SL is important to quantify its position in the water column and timing for entrainment-detrainment, and it can be measured by ADCP and calculated from models.

  12. Acoustic backscatter measurements with a 153 kHz ADCP in the northeastern Gulf of Mexico: determination of dominant zooplankton and micronekton scatterers

    NASA Astrophysics Data System (ADS)

    Ressler, Patrick H.

    2002-11-01

    A 153 kHz narrowband acoustic Doppler current profiler (ADCP) was used to measure volume backscattering strength ( Sv) during a deepwater oceanographic survey of cetacean and seabird habitat in the northeastern Gulf of Mexico. Sv was positively related to zooplankton and micronekton biomass (wet displacement volume) in 'sea-truth' net hauls made with a 1 m 2 Multiple Opening-Closing Net Environmental Sensing System (MOCNESS). A subset of these MOCNESS tows was used to explore the relationship between the numerical densities of various taxonomic categories of zooplankton and the ADCP backscatter signal. Crustaceans, small fish, and fragments of non-gas-bearing siphonophores in the net samples all showed significant, positive correlations with the acoustic signal, while other types of gelatinous zooplankton, pteropod and atlantid molluscs, and gas-filled siphonophore floats showed no significant correlation with Sv. Previously published acoustic scattering models for zooplankton were used to calculate expected scattering for several general zooplankton types and sizes for comparison with the field data. Even though gelatinous material often made up a large fraction of the total biomass, crustaceans, small fish, and pteropods were most likely the important scatterers. Since only crustacean and small fish densities were significantly correlated with Sv, it is suggested that Sv at 153 kHz can be used as a relative proxy for the abundance of these organisms in the Gulf of Mexico.

  13. Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment.

    PubMed

    Yan, Caixia; Yang, Yi; Zhou, Junliang; Liu, Min; Nie, Minghua; Shi, Hao; Gu, Lijun

    2013-04-01

    The occurrence and distribution of five groups of antibiotics were investigated in the surface water of Yangtze Estuary over four seasons. Of the 20 antibiotics, only sulfamerazine was not detected at all sampling sites, indicating widespread occurrence of antibiotic residues in the study area. Detection frequencies and concentrations of antibiotics were generally higher in January, indicating that low flow conditions and low temperature might enhance the persistence of antibiotics in water. Antibiotic levels varied with location, with the highest concentrations being observed around river discharge and sewage outfall. Furthermore, a positive correlation between total antibiotic and DOC concentrations revealed the significant role played by DOC. Risk assessment based on single compound exposure showed that sulfapyridine and sulfamethoxazole could cause medium risk to daphnid in the Yangtze Estuary. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Impact of ERTS-1 images on management of New Jersey's coastal zone

    NASA Technical Reports Server (NTRS)

    Feinberg, E. B.; Yunghans, R. S.; Stitt, J. A.; Mairs, R. L.

    1974-01-01

    The thrust of New Jersey's ERTS investigation is development of procedures for operational use of ERTS-1 data by the Department of Environmental Protection in the management of the State's coastal zone. Four major areas of concern were investigated: detection of land use changes in the coastal zone; monitoring of offshore waste disposal; siting of ocean outfalls; and allocation of funds for shore protection. ERTS imagery was not useful for shore protection purposes; it was of limited practical value in the evaluation of offshore waste disposal and ocean outfall siting. However, ERTS imagery shows great promise for operational detection of land use changes in the coastal zone. Some constraints for practical change detection have been identified.

  15. Hydrologic data for urban stormwater studies in the Dallas-Fort Worth area, Texas, 1992-94

    USGS Publications Warehouse

    Baldys, Stanley; Raines, T.H.; Mansfield, B.L.; Sandlin, J.T.

    1997-01-01

    This report presents precipitation and waterquality data from analyses of 210 samples collected at 30 storm-sewer outfall stations in the Dallas-Fort Worth area, Texas, during February 1992-November 1994. The data were collected to fulfill requirements mandated by the U.S. Environmental Protection Agency to the cities of Arlington, Dallas, Fort Worth, Garland, Irving, Mesquite, and Piano and to the Dallas and Fort Worth Districts of the Texas Department of Transportation to obtain a National Pollution Discharge Elimination System permit. Data were collected at storm-sewer outfall stations in drainage basins classified as singular land use, either residential, commercial, industrial, or highway. Also included are qualityassurance/quality-control data for samples collected in conjunction with the stormwater samples.

  16. Authigenic vivianite in Potomac River sediments: control by ferric oxy-hydroxides.

    USGS Publications Warehouse

    Hearn, P.P.; Parkhurst, D.L.; Callender, E.

    1983-01-01

    Sand-size aggregates of vivianite crystals occur in the uppermost sediments of the Potomac River estuary immediately downstream from the outfall of a sewage treatment plant at the southernmost boundary of the District of Columbia, USA. They are most abundant in a small area of coarse sand (dredge spoil) which contrasts with the adjacent, much finer sediments. The sewage outfall supplies both reducing conditions and abundant phosphate. Analyses and calculations indicate that the pore waters in all the adjacent sediments are supersaturated with respect to vivianite. Its concentration in the coarse sand is attributed to the absence there of amorphous ferric oxyhydroxides, which are present in the finer sediments and preferentially absorb the phosphate ion. -H.R.B.

  17. Sediment transport on the Palos Verdes shelf, California

    USGS Publications Warehouse

    Ferre, B.; Sherwood, C.R.; Wiberg, P.L.

    2010-01-01

    Sediment transport and the potential for erosion or deposition have been investigated on the Palos Verdes (PV) and San Pedro shelves in southern California to help assess the fate of an effluent-affected deposit contaminated with DDT and PCBs. Bottom boundary layer measurements at two 60-m sites in spring 2004 were used to set model parameters and evaluate a one-dimensional (vertical) model of local, steady-state resuspension, and suspended-sediment transport. The model demonstrated skill (Brier scores up to 0.75) reproducing the magnitudes of bottom shear stress, current speeds, and suspended-sediment concentrations measured during an April transport event, but the model tended to underpredict observed rotation in the bottom-boundary layer, possibly because the model did not account for the effects of temperature-salinity stratification. The model was run with wave input estimated from a nearby buoy and current input from four to six years of measurements at thirteen sites on the 35- and 65-m isobaths on the PV and San Pedro shelves. Sediment characteristics and erodibility were based on gentle wet-sieve analysis and erosion-chamber measurements. Modeled flow and sediment transport were mostly alongshelf toward the northwest on the PV shelf with a significant offshore component. The 95th percentile of bottom shear stresses ranged from 0.09 to 0.16 Pa at the 65-m sites, and the lowest values were in the middle of the PV shelf, near the Whites Point sewage outfalls where the effluent-affected layer is thickest. Long-term mean transport rates varied from 0.9 to 4.8 metric tons m-1 yr-1 along the 65-m isobaths on the PV shelf, and were much higher at the 35-m sites. Gradients in modeled alongshore transport rates suggest that, in the absence of a supply of sediment from the outfalls or PV coast, erosion at rates of ???0.2 mm yr-1 might occur in the region southeast of the outfalls. These rates are small compared to some estimates of background natural sedimentation rates (???5 mm yr-1), but do not preclude higher localized rates near abrupt transitions in sediment characteristics. However, low particle settling velocities and strong currents result in transport length-scales that are long relative to the narrow width of the PV shelf, which combined with the significant offshore component in transport, means that transport of resuspended sediment towards deep water is as likely as transport along the axis of the effluent-affected deposit.

  18. Three-dimensional flow structure and patterns of bed shear stress in an evolving compound meander bend

    USGS Publications Warehouse

    Engel, Frank; Rhoads, Bruce L.

    2016-01-01

    Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three-dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations.

  19. The effect of restored and native oxbows on hydraulic loads of nutrients and stream water quality

    USGS Publications Warehouse

    Kalkhoff, Stephen J.; Hubbard, Laura E.; Joseph P.Schubauer-Berigan,

    2016-01-01

    The use of oxbow wetlands has been identified as a potential strategy to reduce nutrient transport from agricultural drainage tiles to streams in Iowa. In 2013 and 2014, a study was conducted in north-central Iowa in a native oxbow in the Lyons Creek watershed and two restored oxbow wetlands in the Prairie Creek watershed (Smeltzer west and Smeltzer east) to assess their effectiveness at reducing nitrogen and phosphorus loads. The tile line inlets carrying agricultural runoff to the oxbows, the outfall from the oxbows, and the surface waters in the streams receiving the outfall water were monitored for discharge and nutrients from February 2013 to September 2015. Smeltzer west and east also had four monitoring wells each, two in the upland and two between the oxbow and Prairie Creek to monitor surface water-groundwater interaction. The Smeltzer west and east oxbow sites also were instrumented to continuously measure the nitrate concentration. Rainfall was measured at one Lyons Creek and one Smeltzer site. Daily mean nitrate-N concentrations in Lyons Creek in 2013 ranged from 11.8 mg/L to 40.9 mg/L, the median daily mean nitrate-N concentration was 33.0 mg/L. Daily mean nitrate-N concentrations in Prairie Creek in 2013 ranged from 0.07 mg/L in August to 32.2 mg/L in June. In 2014, daily mean nitrate-N concentrations in Prairie Creek ranged from 0.17 mg/L in April to 26.7 mg/L in July; the daily mean nitrate-N concentration for the sampled period was 9.78 mg/L. Nutrient load reduction occurred in oxbow wetlands in Lyons and Prairie Creek watersheds in north-central Iowa but efficiency of reduction was variable. Little nutrient reduction occurred in the native Lyons Creek oxbow during 2013. Concentrations of all nutrient constituents were not significantly (P>0.05, Wilcoxon rank sum) different in water discharging from the tile line than in water leaving the Lyons Creek oxbow. A combination of physical features and flow conditions suggest that the residence time of water in the oxbow may not have been sufficient to allow for removal of substantial amounts of nutrients. Approximately 54 percent less nitrate-N was measured leaving the Smeltzer west oxbow than was measured entering from a small 6-inch field tile. The efficiency of nitrate-N removal in the oxbow was not able to be definitively quantified as other hydrologic factors such as overland and groundwater flow into and through the oxbow were not addressed and may provide alternative routes for nutrient transport. Damage to the Smeltzer east oxbow outfall weir prevented analysis of its nutrient load reduction capability. The study provides important information to managers and land owners looking for strategies to reduce nutrient transport from fields. Additional research is needed to understand how increased discharge from larger field tiles and drainage district mains may influence the efficiency of nutrient reduction in relation to the size, type, and landscape setting of a wetland.

  20. What Controls Sediment Retention in an Emerging Delta?

    NASA Astrophysics Data System (ADS)

    Keogh, M.; Kolker, A.

    2016-12-01

    What controls sediment retention in an emerging delta? Here, we examine the effects of river discharge and flow velocity on sediment retention rate, using a developing crevasse splay in the Lower Mississippi Delta as a study location. With a controlled discharge that ranges from 28 to 280 m3/s, Davis Pond Freshwater Diversion connects the Mississippi River to the adjacent wetland, allowing river water, sediment, and nutrients to flow into the marsh. Although Davis Pond was primarily designed to regulate salinity within Barataria Basin rather than to build land, a new crevasse splay has recently emerged at the mouth of the diversion's outfall channel. Short (5 cm) sediment cores were collected at 22 locations around the Davis Pond receiving basin in spring 2015, fall 2015, and spring 2016. All cores were analyzed for sediment geotechnical parameters including organic content, bulk density, and grain size. Sediment input into the receiving basin was calculated using a ratings curve. Activity of the radioisotope beryllium-7 was used to calculate rates of sediment accumulation and retention. We find that while sediment input is greater during high flow, rate of retention is greater during low flow. This is likely due to the increase in flow velocity that accompanies high discharge, which retains sediment in suspension and leads to more throughput of material. Furthermore, the diversion operation regime of sustained low flow punctuated by short-duration high discharge events has increased soil bulk density, mineral sediment accumulation, and marsh platform elevation. River diversions such as Davis Pond mimic the land-building processes of natural crevasse splays and provide a promising method to restore deltaic wetlands worldwide.

  1. Glider and remote sensing observations of the upper ocean response to an extended shallow coastal diversion of wastewater effluent

    NASA Astrophysics Data System (ADS)

    Seegers, Bridget N.; Teel, Elizabeth N.; Kudela, Raphael M.; Caron, David A.; Jones, Burton H.

    2017-02-01

    The Orange County Sanitation District (OCSD) diverted wastewater discharge (5.3 × 108 l d-1) from its primary deep (56 m) outfall 8 km offshore, to a secondary shallower (16 m) outfall 1.6 km offshore for a period of three weeks. It was anticipated that the low salinity and density of the effluent would cause it to rise to the surface with limited dilution, elevating nutrient concentrations in near-surface waters and stimulating phytoplankton blooms in the region. Three Teledyne Webb Slocum gliders and a Liquid Robotics surface wave glider were deployed on transects near the outfalls to acquire high spatial and temporal coverage of physical and chemical parameters before, during, and after the wastewater diversion. Combined autonomous underwater vehicle (AUV) and MODIS-Aqua satellite ocean color data indicated that phytoplankton biomass increased in the upper water column in response to the diversion, but that the magnitude of the response was spatially patchy and significantly less than expected. Little evidence of the plume or its effects was detectable 72 h following the diversion. The effluent plume exhibited high rates of dilution and mixed throughout the upper 20 m and occasionally throughout the upper 40 m during the diversion. Rapid plume advection and dilution appeared to contribute to the muted impact of the nutrient-rich effluent on the phytoplankton community in this coastal ecosystem.

  2. Aquatic risk assessment of a polycarboxylate dispersant polymer used in laundry detergents.

    PubMed

    Hamilton, J D; Freeman, M B; Reinert, K H

    1996-09-01

    Polycarboxylates enhance detergent soil removal properties and prevent encrustation of calcium salts on fabrics during washing. Laundry wastewater typically reaches wastewater treatment plants, which then discharge into aquatic environments. The yearly average concentration of a 4500 molecular weight (MW) sodium acrylate homopolymer reaching U.S. wastewater treatment plants will be approximately 0.7 mg/L. Publications showing the low to moderate acute aquatic toxicity of polycarboxylates are readily available. However, there are no published evaluations that estimate wastewater removal and characterize the probability of exceedance of acceptable chronic aquatic exposure. WW-TREAT can be used to estimate removal during wastewater treatment and PG-GRIDS can be applied to characterize risk for exceedance in wastewater treatment plant outfalls. After adjustments for the MW distribution of the homopolymer, WW-TREAT predicted that 6.5% will be removed in primary treatment plants and 60% will be removed in combined primary and activated sludge treatment plants. These estimates are consistent with wastewater fate tests, but underestimate homopolymer removal when homopolymer precipitation is included. Acceptable levels of chronic outfall (receiving water) exposure were based on aquatic toxicity testing in algae, fish, and Daphnia magna. PG-GRIDS predicted that no unreasonable risk for exceedance of acceptable chronic exposure will occur in the outfalls of U.S. wastewater plants. Future development of wastewater treatment models should consider polymer MW distribution and precipitation as factors that may alter removal of materials from wastewater.

  3. Evaluation of fish kills during November 1986 and July 1987 in upper East Fork Poplar Creek near the Y-12 Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryon, M.G.; Loar, J.M.; Southworth, G.R.

    1990-09-01

    The Environmental Sciences Division (ESD) investigated two fish kills that occurred on November 21, 1986, and July 9, 1987, in upper East Fork Poplar Creek at the outfall of New Hope Pond (NHP) below the Oak Ridge Y-12 Plant. Investigative procedures included sampling of water at the inlet and outfall of NHP for water quality, examination of operating procedures at the Y-12 Plant and in the biomonitoring program that may have adversely affected the fish populations, review of results of concurrent ambient toxicity tests of the inlet and outfall water of NHP, autopsy investigations of the cause of death ofmore » the stonerollers, and laboratory experimentation to evaluate potential causes. The investigations revealed that the cause of death was bacterial hemorrhagic septicemia caused by Aeromonas hydrophila, which is a stress-mediated disease. The specific stressor responsible for the outbreak of the disease was not identified. Several possible stresses were indicated, including elevated concentrations of mercury and chlorine, excessive electroshocking activity, and elevated levels of the pathogen. Cumulative stress due to the combination of several factors was also suggested. Elevated temperatures and overcrowding may have enhanced the spread of the epizootic but were not the primary causes. The impact on the stoneroller population below NHP was not ecologically significant. 23 refs., 3 figs., 12 tabs.« less

  4. Source and Fate of Sediments in the Bahia de Anasco, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Webb, R. M.

    2005-12-01

    Sediments and wastewater mix in the insular marine waters of the Bah'{i}a de Añasco near Mayag{u}ez, Puerto Rico. Trace metal concentrations in fine sediments deposited in the bay were measured to assess potential impact of the ocean outfall on the biota and habitats that include coral reefs. A Q-mode factor analysis of elemental compositions identified three sediment sources and their relative proportions in 51 core and surficial samples collected from the bay and within the coral reefs: (1) sediments discharged by the R'{i}o Grande de Añasco; (2) calcareous skeletal remains; and (3) sediments discharged by the R'{i}o Guanajibo. The nickel and chromium derived from laterite deposits provide a unique fingerprint for sediments discharged from the R'{i}o Guanajibo. Naturally occurring concentrations of these elements exceed Probable Effect Limits (PEL's: 42 mg/kg for nickel and 160 mg/kg for chromium) in sediments deposited near the river mouth. The detection of mercury at 1 mg/kg in one sample from a core recovered near the wastewater outfall was the only indication of a possible outfall source in the data set. The temporal and spatial variations in source fractions proved useful in determining relative frequencies of historic floods and steady-state circulation patterns off the west coast of Puerto Rico.

  5. Carbon and nitrogen stable isotope analysis of three types of oyster tissue in an impacted estuary

    NASA Astrophysics Data System (ADS)

    Piola, Richard F.; Moore, Stephanie K.; Suthers, Iain M.

    2006-01-01

    The stable isotope ratios of carbon ( δ13C) and nitrogen ( δ15N) of the muscle, ctenidia and viscera of the Sydney rock oyster, Saccostrea glomerata, showed the dilution and assimilation of tertiary treated sewage along an estuarine gradient. The enriched 15N values of oyster ctenidia and viscera from within 50 m of the sewage outfall indicated the use of 15N-enriched tertiary treated sewage effluent (16 ± 2.3‰) as a nutrient source. The effect of sewage nitrogen on oyster δ15N was localised, with oysters 5 km upstream and downstream of the outfall not significantly enriched. Viscera δ15N was most sensitive to sewage nutrients and δ13C significantly defined an ocean-to-estuarine gradient. High variance in isotope ratios of viscera compromised its use as an indicator of anthropogenic nutrients, and this also reduced the utility of whole-body stable isotope ratios. Ctenidia was the most useful indicator tissue of sewage discharge at the scale of this study, being consistently and significantly enriched in δ15N close to the sewage outfall and δ13C clearly defined an estuarine gradient with less internal variability than viscera. Muscle δ15N was least sensitive to sewage effluent and showed the least variability, making it more suited to investigations of anthropogenic nutrient enrichment over larger spatio-temporal scales.

  6. Gravitational circulation in a tidal strait

    USGS Publications Warehouse

    Smith, P.E.; Cheng, R.T.; Burau, J.R.; Simpson, M.R.; ,

    1991-01-01

    Eight months of continuous measurements of tidal current profiles with an acoustic Doppler current profiler (ADCP) were made in Carquinez Strait, California, during 1988 for the purpose of estimating long-term variations in vertical profiles of Eulerian residual currents. Salinity stratification near the ADCP deployment site also was analyzed. The strength of density-driven gravitational circulation and the amount of salinity stratification in the strait varied significantly over the spring-neap tidal cycle. Density currents and stratification were greater during neap tides when vertical mixing from the tide is at a minimum. Landward residual currents along the bottom were observed only during neap tides. Simulations made with a three-dimensional model to supplement the field measurements show a significant, tidally induced lateral variation in residual currents across the strait. The Stokes drift of 1-2 cm/s in the strait is small relative to the speed of gravitational currents.

  7. extrap: Software to assist the selection of extrapolation methods for moving-boat ADCP streamflow measurements

    USGS Publications Warehouse

    Mueller, David S.

    2013-01-01

    profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers’ software.

  8. Hydroacoustic Applications in South Carolina: Technological Advancements in the Streamgaging Network

    USGS Publications Warehouse

    Shelton, John M.

    2008-01-01

    Until the 1990s, the U.S. Geological Survey (USGS) had been making streamflow measurements using the same type of equipment for more than 100 years. The Price AA current meter was developed by USGS engineers in 1896. Until recently, the majority of all streamflow measurements made by the USGS were made using this instrument. In the mid-1990s, a new technology emerged in the field of inland streamflow monitoring. The acoustic Doppler current profiler (ADCP), originally developed for oceanographic work, was adapted for inland streamflow measurements. This instrument is transforming the USGS streamgaging program. The ADCP transmits an acoustic pulse through the water column. A 'Doppler shift' is measured as the signal is reflected off of particles in the water, such as sediment and microorganisms. Based on the assumption that the particles in the water are traveling at the same velocity as the water itself, a water velocity is computed.

  9. Reconnaissance of the hydrology, water quality, and sources of bacterial and nutrient contamination in the Ozark Plateaus aquifer system and Cave Springs Branch of Honey Creek, Delaware County, Oklahoma, March 1999-March 2000

    USGS Publications Warehouse

    Schlottmann, Jamie L.; Tanner, Ralph S.; Samadpour, Mansour

    2000-01-01

    A reconnaissance investigation of hydrology and water quality was conducted to evaluate possible sources of bacteria and nutrient contamination in the Cave Springs Branch basin and the underlying karstic Ozark Plateau aquifer system. Objectives were to: (1) determine the directions of ground-water flow in the basin and determine whether Cave Springs Branch interacts with ground water, (2) compare water quality in Cave Springs Branch with water quality in nearby wells to determine whether the stream is contaminating nearby wells, and (3) determine sources of fecal coliform bacteria and nitrate contamination in Cave Springs Branch and ground water. Potential sources of bacteria and nitrate in the area include cultivated agriculture, cow and horse on pasture, poultry production, households, and wildlife. Presence of fecal coliform and fecal streptococcal bacteria directly indicate fecal contamination and the potential for the presence of other pathogenic organisms in a water supply. Nitrate in drinking water poses health risks and may indicate the presence of additional contaminants. Fecal coliform bacteria colony counts were least in wells, intermediate in the poultry-processing plant wastewater outfall and Honey Creek above the confluence with Cave Springs Branch, and greatest in Cave Springs Branch. Bacteria strains and resistance to antibiotics by some bacteria indicate that livestock may have been sources of some bacteria in the water samples. Multiple antibiotic resistances were not present in the isolates from the water samples, indicating that the bacteria may not be from human or poultry sources. Ribotyping indicates that Escherichia coli bacteria in water samples from the basin were from bird, cow, horse, dog, deer, and human sources. The presence of multiple ribotypes from each type of animal source except bird indicates that most of the bacteria are from multiple populations of source animals. Identifiable sources of bacteria in Cave Springs Branch at the state line were dominantly cow and horse with one ribotype from bird. Escherichia coli was detected in only one well sample. Bacterial ribotypes in water from that upgradient well indicated human and dog feces as sources for bacteria, and that on site wastewater treatment may not always be adequate in these highly permeable soils. Greater concentrations of nitrate in Cave Springs Branch and O'Brien Spring relative to the poultry-processing plant wastewater outfall may be due, in part, to conversion of ammonia from poultry processing plant wastewater. The poultry-processing plant wastewater outfall sample collected in March 2000 contained greater concentrations of ammonia and total organic nitrogen plus ammonia than the spring, stream, and well samples collected during August 1999. Cave Springs Branch and Honey Creek contributed approximately equal loads of nitrogen to Honey Creek below the confluence and the greatest loads of nitrogen were introduced to Cave Springs Branch by the poultry processing plant wastewater outfall and O'Brien Spring. Nitrate concentrations in upgradient well samples ranged from 0.38 to 4.60 milligrams per liter, indicating that there are sources of ground-water nitrogen other than Cave Springs Branch, such as animal waste, fertilizer, or human waste. Nitrogen compounds in water from wells downgradient of Cave Springs Branch may be from Cave Springs Branch, fertilizers, animal waste, or human waste.

  10. Locations of Combined Sewer Overflow Outfalls - US EPA Region 3

    EPA Pesticide Factsheets

    This data layer identifies the locations of Combined sewer overflow outfalls. Combined sewer systems are sewers that are designed to collect rainwater runoff, domestic sewage, and industrial wastewater in the same pipe. Most of the time, combined sewer systems transport all of their wastewater to a sewage treatment plant, where it is treated and then discharged to a water body. During periods of heavy rainfall or snowmelt, however, the wastewater volume in a combined sewer system can exceed the capacity of the sewer system or treatment plant. For this reason, combined sewer systems are designed to overflow occasionally and discharge excess untreated wastewater directly to nearby streams, rivers, or other water bodies. For further information visit: http://cfpub1.epa.gov/npdes/home.cfm?program_id=5

  11. Temporal and spatial patterns for surf zone bacteria before and after disinfection of the orange county sanitation district effluent

    USGS Publications Warehouse

    Robertson, G.L.; Noble, M.A.; Xu, J. P.; Rosenfeld, L.K.; McGee, C.D.

    2005-01-01

    Data from pre- and post-disinfection fecal indicator bacteria (FIB) samples from final effluent, an offshore ocean outfall, and surf zone stations off Huntington Beach, CA were compared. Analysis of the results from these data sets confirmed that the ocean outfall was not the FIB source responsible for the postings and closures of local beaches that have occurred each summer since 1999. While FIB counts in the final effluent and offshore showed several order of magnitude reductions after disinfection, there were no significant reductions at the nearby surf zone stations. Additionally, the FIB spectral patterns suggest different sources. The dominant fortnightly cycle suggested that the source was related to the wetting and draining of the land from large spring tide tidal excursions.

  12. Remote sensing in the mixing zone. [water pollution in Wisconsin

    NASA Technical Reports Server (NTRS)

    Villemonte, J. R.; Hoopes, J. A.; Wu, D. S.; Lillesand, T. M.

    1973-01-01

    Characteristics of dispersion and diffusion as the mechanisms by which pollutants are transported in natural river courses were studied with the view of providing additional data for the establishment of water quality guidelines and effluent outfall design protocols. Work has been divided into four basic categories which are directed at the basic goal of developing relationships which will permit the estimation of the nature and extent of the mixing zone as a function of those variables which characterize the outfall structure, the effluent, and the river, as well as climatological conditions. The four basic categories of effort are: (1) the development of mathematical models; (2) laboratory studies of physical models; (3) field surveys involving ground and aerial sensing; and (4) correlation between aerial photographic imagery and mixing zone characteristics.

  13. Bridging Scales: A Model-Based Assessment of the Technical Tidal-Stream Energy Resource off Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    Cowles, G. W.; Hakim, A.; Churchill, J. H.

    2016-02-01

    Tidal in-stream energy conversion (TISEC) facilities provide a highly predictable and dependable source of energy. Given the economic and social incentives to migrate towards renewable energy sources there has been tremendous interest in the technology. Key challenges to the design process stem from the wide range of problem scales extending from device to array. In the present approach we apply a multi-model approach to bridge the scales of interest and select optimal device geometries to estimate the technical resource for several realistic sites in the coastal waters of Massachusetts, USA. The approach links two computational models. To establish flow conditions at site scales ( 10m), a barotropic setup of the unstructured grid ocean model FVCOM is employed. The model is validated using shipboard and fixed ADCP as well as pressure data. For device scale, the structured multiblock flow solver SUmb is selected. A large ensemble of simulations of 2D cross-flow tidal turbines is used to construct a surrogate design model. The surrogate model is then queried using velocity profiles extracted from the tidal model to determine the optimal geometry for the conditions at each site. After device selection, the annual technical yield of the array is evaluated with FVCOM using a linear momentum actuator disk approach to model the turbines. Results for several key Massachusetts sites including comparison with theoretical approaches will be presented.

  14. Detection of Human Sewage in Urban Stormwater Using DNA Based Methods and Stable Isotope Analysis

    NASA Astrophysics Data System (ADS)

    McLellan, S. L.; Malet, N.; Sauer, E.; Mueller-Spitz, S.; Borchardt, M.

    2008-12-01

    Urban stormwater is a major source of fecal indicator bacteria in the Milwaukee River Basin, a major watershed draining to Lake Michigan. Much of the watershed is in highly urbanized areas and Escherichia coli (E. coli) levels have been found to be 20,000 CFU per 100 ml in the estuary leading to Lake Michigan. Aging infrastructure and illicit cross connections may allow sewage to infiltrate the stormwater system and could contribute both fecal indicator bacteria and human pathogens to these waters. We conducted extensive sampling of stormwater outfalls in the lower reaches of three major tributaries. Three outfalls along the heavily urbanized Kinnickinnick (KK) were found to have geometric mean E. coli and enterococci levels of 16,200 and 28,700 CFU/100 ml, respectively. Four outfalls along the Menomonee River, draining both suburban and urban areas, had geometric mean E. coli and enterococci levels of 14,700 and 12,800 CFU/100 ml, respectively. These seven outfalls had more than 60% of the samples positive for human specific Bacteroides genetic marker (n=46), suggesting the presence of human sources. In addition, two outfalls on Lincoln Creek, a smaller tributary of the Milwaukee River, had geometric mean E. coli and enterococci levels of 16,700 and 14,900 CFU per 100 ml, respectively. The human specific Bacteroides marker was positive in nearly 90% of the samples (n=24). Subsequent virus testing at one of these outfalls confirmed human pathogens were present with adenovirus detected at 1.3 x 10E3 genomic equivalents (ge)/L, enterovirus at 1.9 x 10E4 ge/L and G1 norovirus at 1.5 x 10E3 ge/L; these values are similar to concentrations found in sewage. Stable isotope studies were conducted in the three tributaries to investigate the relationship between delta C and delta N isotopic composition and microbiological quality of this urban freshwater system. This work is based on the premise that the organic matter of the stormwater will have a stable isotopic signature related to the mixed organic matter sources in polluted stormwater runoff, and that this signal will distinct from untreated sanitary sewage. Stable isotope signatures of stormwater and untreated sewage were determined and compared with the rivers. Isotopic values of stormwater was delta 15N = 1.1 ± 2 %; delta 13C = -25.5 ± 3 % and sewage was delta 15N = -1.9 ± 0.2 %; delta 13C = -23.6 ± 0.3. Suspended particular organic matter (SPOM) of Milwaukee River showed depleted delta 13C (-28.6 ± 1.6 %) and enriched delta 15N (7.7 ± 1.9 %) values. SPOM of the KK River exhibited the most depleted delta 15N (0.2 ± 1.6 %) and enriched delta 13C (-24.8 ± 1.8 %) isotopic values. Menomonee River SPOM showed intermediate isotopic values. The delta 13C values of each river and the estuary enriched significantly throughout the summer storm periods. The isotope signals in the KK and Menomonee were indicative of stormwater runoff and sewage contamination. These results suggest that unrecognized sewage inputs are chronically present and may be delivered through urban stormwater systems. DNA based methods combined with isotope analysis may provide a useful tool for urban watershed assessments and to identify sewage inputs. Delineating the relative contribution of stormwater and sewage to overall degraded water quality might give the first indication of the impact of these sources on the Michigan Lake waters.

  15. Evaluation of ADCP backscatter inversion to suspended sediment concentration in estuarine environments

    NASA Astrophysics Data System (ADS)

    Lee, G. H.; Park, H. B.

    2014-12-01

    Acoustic Doppler Current Profiler (ADCP), designed for measuring velocity profile, is now widely used for the estimation of suspended sediment concentration from acoustic backscatter intensity, but its application to estuarine environments has not been vigorously tested. In this study, we examined the inversion capability of two ADCPs with 600 and 1200 kHz at three Korean estuaries: macrotidal Han river estuary (HRE), microtidal Nakdong river estuary (NRE), and anthropogenically altered macrotidal Yeongsan river estuary (YRE). In particular, we examined the relative importance of the sound attenuations due to water (aw) and sediment (as) in response to sediment characteristics (size and concentration) as well as changing salinity and temperature. The inverted concentration was compared with reference concentrations obtained either water samples or Optical Backscatter Sensors. In NRE and YRE, where suspended sediment concentrations were smaller than 0.2 kg/m3, the acoustic inversion performed poorly only with as (R2 = 0.05 and 0.39 for NRE and YRE, respectively), but well with aw (R2 = 0.70 and 0.64 for NRE and YRE, respectively). Thus, it is important to accurately constrain aw in low-concentration estuarine environments. However, we did not find that the varying aw performed considerably better than the constant aw. On the other hand, the acoustic inversion was poorest at HRE regardless of aw and as (R2 = 0.58 and mean relative error =45%). The large discrepancy appears to result from the poorly constrained, spatially and temporally varying sediment characteristics (grain size, density and concentration) due to non-local sediment transport at macrotidal HRE.

  16. Evaluation of ADCP backscatter inversion to suspended sediment concentration in estuarine environments

    NASA Astrophysics Data System (ADS)

    Park, Hyo-Bong; Lee, Guan-hong

    2016-03-01

    Acoustic Doppler Current Profilers (ADCP), designed for measuring velocity profiles, are widely used for the estimation of suspended sediment concentration from acoustic backscatter strength, but its application to estuarine environments requires further refinement. In this study, we examined the inversion capability of two ADCPs with 600 and 1200 kHz in three Korean estuaries: the supra-macrotidal Han River Estuary (HRE), microtidal Nakdong River Estuary (NRE), and anthropogenically altered macrotidal Yeongsan River Estuary (YRE). In particular, we examined the relative importance of the sound attenuations due to water (αw) and sediment (αs) in response to sediment characteristics (size and concentration) as well as changing salinity and temperature. The inverted concentration was compared with reference concentrations obtained either from water samples or Optical Backscatter Sensors. In NRE and YRE, where suspended sediment concentrations were less than 0.2 g/l, the acoustic inversion performed poorly only with αs (r = 0.20 and 0.38 for NRE and YRE, respectively), but well with αw (r = 0.66 and 0.42 for NRE and YRE, respectively). Thus, it is important to accurately constrain αw in low-concentration estuarine environments. However, we did not find that the varying αw performed considerably better than the constant αw. On the other hand, the acoustic inversion was poorest at HRE regardless of αw and αs (r = 0.71 and mean relative error = 45%). The large discrepancy appears to result from the poorly constrained, spatially and temporally varying sediment characteristics (grain size, density and concentration) due to non-local sediment transport in the macrotidal HRE.

  17. Evaluation of ADCP backscatter inversion to suspended sediment concentration in estuarine environments

    NASA Astrophysics Data System (ADS)

    Lee, Guan-hong; Park, Hyo-Bong

    2015-04-01

    Acoustic Doppler Current Profiler (ADCP), designed for measuring velocity profile, is now widely used for the estimation of suspended sediment concentration from acoustic backscatter strength, but its application to estuarine environments has still room for improvement. In this study, we examinedthe inversion capability of two ADCPs with 600 and 1200 kHz at three Korean estuaries: macrotidalHan river estuary (HRE), microtidalNakdong river estuary (NRE), and anthropogenically altered macrotidalYeongsan river estuary (YRE). In particular, we examined the relative importance of the sound attenuations due to water (αw) and sediment (αs) in response to sediment characteristics (size and concentration) as well as changing salinity and temperature. The inverted concentration was compared with reference concentrations obtained either water samples or Optical Backscatter Sensors. In NRE and YRE, where suspended sediment concentrations were smaller than 0.2 g/l, the acoustic inversion performed poorly only with αs (r = 0.20and 0.38for NRE and YRE, respectively), but well with αw (r = 0.66and 0.42 for NREand YRE, respectively). Thus, it is important to accurately constrain αw in low-concentration estuarine environments. However, we did not find that the varying αw performed considerably better than the constant αw. On the other hand, the acoustic inversion was poorest at HRE regardless of αw and αs (r = 0.71 and mean relative error =45%). The large discrepancy appears to result from the poorly constrained, spatially and temporally varying sediment characteristics (grain size, density and concentration) due to non-local sediment transport at macrotidal HRE.

  18. Acoustic bed velocity and bed load dynamics in a large sand bed river

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2006-01-01

    Development of a practical technology for rapid quantification of bed load transport in large rivers would represent a revolutionary advance for sediment monitoring and the investigation of fluvial dynamics. Measurement of bed load motion with acoustic Doppler current profiles (ADCPs) has emerged as a promising approach for evaluating bed load transport. However, a better understanding of how ADCP data relate to conditions near the stream bed is necessary to make the method practical for quantitative applications. In this paper, we discuss the response of ADCP bed velocity measurements, defined as the near-bed sediment velocity detected by the instrument's bottom-tracking feature, to changing sediment-transporting conditions in the lower Missouri River. Bed velocity represents a weighted average of backscatter from moving bed load particles and spectral reflections from the immobile bed. The ratio of bed velocity to mean bed load particle velocity depends on the concentration of the particles moving in the bed load layer, the bed load layer thickness, and the backscatter strength from a unit area of moving particles relative to the echo strength from a unit area of unobstructed bed. A model based on existing bed load transport theory predicted measured bed velocities from hydraulic and grain size measurements with reasonable success. Bed velocities become more variable and increase more rapidly with shear stress when the transport stage, defined as the ratio of skin friction to the critical shear stress for particle entrainment, exceeds a threshold of about 17. This transition in bed velocity response appears to be associated with the appearance of longer, flatter bed forms at high transport stages.

  19. Tidal flow dynamics and background fluorescence of the Atlantic Intracoastal Waterway in the vicinity of Sullivan’s Island and the Isle of Palms, South Carolina, 2011-12

    USGS Publications Warehouse

    Conrads, Paul; Journey, Celeste A.; Clark, Jimmy M.; Levesque, Victor A.

    2013-01-01

    To effectively plan site-specific studies to understand the connection between wastewater effluent and shellfish beds, data are needed concerning flow dynamics and background fluorescence in the Atlantic Intracoastal Waterway near the effluent outfalls on Sullivan’s Island and the Isle of Palms. Tidal flows were computed by the U.S. Geological Survey for three stations and longitudinal water-quality profiles were collected at high and low tide. Flows for the three U.S. Geological Survey stations, the Atlantic Intracoastal Waterway by the Isle of Palms Marina, the Atlantic Intracoastal Waterway by the Ben M. Sawyer Memorial Bridge at Sullivan’s Island, and Breach Inlet, were computed for the 53-day period from December 4, 2011, to January 26, 2012. The largest flows occurred at Breach Inlet and ranged from -58,600 cubic feet per second (ft3/s) toward the Atlantic Intracoastal Waterway to 63,300 ft3/s toward the Atlantic Ocean. Of the two stations on the Atlantic Intracoastal Waterway, the Sullivan’s Island station had the larger flows and ranged from -6,360 ft3/s to the southwest (toward Charleston Harbor) to 8,930 ft3/s to the northeast. Computed tidal flow at the Isle of Palms station ranged from -3,460 ft3/s toward the southwest to 6,410 ft3/s toward the northeast. The synoptic water-quality study showed that the stations were well mixed vertically and horizontally. All fluorescence measurements (recorded as rhodamine concentration) were below the accuracy of the sensor and the background fluorescence would not likely interfere with a dye-tracer study.

  20. The influence of tides on biogeochemical dynamics at the mouth of the Amazon River

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Sawakuchi, H. O.; Neu, V.; de Matos Valerio, A.; Less, D.; Guedes, V.; Wood, J.; Brito, D. C.; Cunha, A. C.; Kampel, M.; Richey, J. E.

    2017-12-01

    A major barrier to computing the flux of constituents from the world's largest rivers to the ocean is understanding the dynamic processes that occur along tidally-influenced river reaches. Here, we examine the response of a suite of biogeochemical parameters to tide-induced flow reversals at the mouth of the Amazon River. Continuous measurements of pCO2, pCH4, dissolved O2, pH, turbidity, and fluorescent dissolved organic matter (FDOM) were made throughout tidal cycles while held stationary in the center of the river and during hourly transects for ADCP discharge measurements. Samples were collected hourly from the surface and 50% depth during stationary samplings and from the surface during ADCP transects for analysis of suspended sediment concentrations along with other parameters such as nutrient and mercury concentrations. Suspended sediment and specific components of the suspended phase, such as particulate mercury, concentrations were positively correlated to mean river velocity during both high and low water periods with a more pronounced response at 50% depth than the surface. Tidal variations also influenced the concentration of O2 and CO2 by altering the dynamic balance between photosynthesis, respiration, and gas transfer. CO2 was positively correlated and O2 and pH were negatively correlated with river velocity. The concentration of methane generally increased during low tide (i.e. when river water level was lowest) both in the mainstem and in small side channels. In side channels concentrations increased by several orders of magnitude during low tide with visible bubbling from the sediment, presumably due to a release of hydrostatic pressure. These results suggest that biogeochemical processes are highly dynamic in tidal rivers, and these dynamic variations need to be quantified to better constrain global and regional scale budgets. Understanding these rapid processes may also provide insight into the long-term response of aquatic systems to change.

  1. The Barents Sea Polar Front in summer

    NASA Astrophysics Data System (ADS)

    Parsons, A. Rost; Bourke, Robert H.; Muench, Robin D.; Chiu, Ching-Sang; Lynch, James F.; Miller, James H.; Plueddemann, Albert J.; Pawlowicz, Richard

    1996-06-01

    In August 1992 a combined physical oceanography and acoustic tomography experiment was conducted to describe the Barents Sea Polar Front (BSPF) and investigate its impact on the regional oceanography. The study area was an 80 × 70 km grid east of Bear Island where the front exhibits topographic trapping along the northern slope of the Bear Island Trough. Conductivity-temperature-depth, current meter, and acoustic Doppler current profiler (ADCP) data, combined with tomographic cross sections, presented a highly resolved picture of the front in August. All hydrographic measurements were dominated by tidal signals, with the strongest signatures associated with the M2 and S2 semidiurnal species. Mean currents in the warm saline water to the south of the front, derived from a current meter mooring and ADCP data, were directed to the southwest and may be associated with a barotropic recirculation of Norwegian Atlantic Water (NAW) within the Bear Island Trough. The geostrophic component of the velocity was well correlated with the measured southwestward mean surface layer flow north of the front. The frontal structure was retrograde, as the frontal isopleths sloped opposite to the bathymetry. The surface signature of the front was dominated by salinity gradients associated with the confluence of Atlantic and Arctic water masses, both warmed by insolation to a depth of about 20 m. The surface manifestation of the front varied laterally on the order of 10 km associated with tidal oscillations. Below the mixed layer, temperature and salinity variations were compensating, defining a nearly barotropic front. The horizontal scale of the front in this region was ˜3 km or less. At middepth beneath the frontal interface, tomographic cross sections indicated a high-frequency (˜16 cpd) upslope motion of filaments of NAW origin. The summertime BSPF was confirmed to have many of the general characteristics of a shelf-slope frontal system [Mooers et al., 1978] as well as a topographic-circulatory front [Federov, 1983].

  2. On the cyclonic eddy generation in Panay Strait, Philippines

    NASA Astrophysics Data System (ADS)

    Flament, P. J.; Repollo, C. L. A.; Flores-vidal, X.; Villanoy, C.

    2016-12-01

    High Frequency Doppler Radar (HFDR), shallow pressure gauges and Acoustic Doppler Current Profiler (ADCP) time-series observations during the Philippine Straits Dynamics Experiment (PhilEx) were analyzed to describe the mesoscale currents in Panay Strait, Philippines. Low frequency surface currents inferred from three HFDR (July 2008 { July 2009), revealed a clear seasonal signal in concurrent with the reversal of the Asian monsoon. The mesoscale cyclonic eddy west of Panay Island is generated during the winter northeast (NE) monsoon. This causes changes in the strength, depth and width of the intra-seasonal Panay coastal jet as its eastern limb. Winds from QuikSCAT satellite and from a nearby airport indicate that these flow structures correlate with the strength and direction of the prevailing local wind. An intensive survey of the cyclonic eddy in February 8-9, 2009, obtaining a 24-hour successive cross-shore Conductivity-Temperature- Depth (CTD) sections in conjunction with shipboard ADCP measurements showed a well- developed cyclonic eddy characterized by near-surface velocities reaching 50 cm/s. This observation coincides with the intensification of the wind in between Mindoro and Panay islands generating a positive wind stress curl in the lee of Panay, which in turn induces divergent surface currents. Water column response from the mean transects showed a pronounced signal of upwelling, indicated by the doming of isotherms and isopycnals. A pressure gradient then was sets up, resulting in the spin-up of a cyclonic eddy in geostrophic balance. Evaluation of the surface vorticity balance equation suggests that the wind stress curl via Ekman pumping mechanism provides the necessary input in the formation and evolution of the cyclonic eddy. In particular, the cumulative effect of the wind stress curl plays a key role on the generation of the eddy. The Beta-effect on the other hand may led to propagation of the eddy westward.

  3. The ESASSI-08 cruise in the South Scotia Ridge region: An inverse model property-transport analysis over the Ridge

    NASA Astrophysics Data System (ADS)

    Palmer, Margarita; Gomis, Damià; Del Mar Flexas, Maria; Jordà, Gabriel; Naveira-Garabato, Alberto; Jullion, Loic; Tsubouchi, Takamasa

    2010-05-01

    The ESASSI-08 oceanographic cruise carried out in January 2008 was the most significant milestone of the ESASSI project. ESASSI is the Spanish component of the Synoptic Antarctic Shelf-Slope Interactions (SASSI) study, one of the core projects of the International Polar Year. Hydrographical and biochemical (oxygen, CFCs, nutrients, chlorophyll content, alkalinity, pH, DOC) data were obtained along 11 sections in the South Scotia Ridge (SSR) region, between Elephant and South Orkney Islands. One of the aims of the ESASSI project is to determine the northward outflow of cold and ventilated waters from the Weddell Sea into the Scotia Sea. For that purpose, the accurate estimation of mass, heat, salt, and oxygen transport over the Ridge is requested. An initial analysis of transports across the different sections was first obtained from CTD and ADCP data. The following step has been the application of an inverse method, in order to obtain a better estimation of the net flow for the different water masses present in the region. The set of property-conservation equations considered by the inverse model includes mass, heat and salinity fluxes. The "box" is delimited by the sections along the northern flank of the SSR, between Elephant Island and 50°W, the southern flank of the Ridge, between 51.5°W and 50°W, the 50°W meridian and a diagonal line between Elephant Island and 51.5°W, 61.75°S. Results show that the initial calculations of transports suffered of a significant volume imbalance, due to the inherent errors of ship-ADCP data, the complicated topography and the presence of strong tidal currents in some sections. We present the post-inversion property transports across the rim of the box (and their error bars) for the different water masses.

  4. The Angola Current and its seasonal variability as observed at 11°S

    NASA Astrophysics Data System (ADS)

    Kopte, Robert; Brandt, Peter; Dengler, Marcus; Claus, Martin; Greatbatch, Richard J.

    2016-04-01

    The eastern boundary circulation off the coast of Angola has been described only sparsely to date. The region off Angola, which connects the equatorial Atlantic and the Angola-Benguela upwelling regime, is of particular interest to understand the relative importance of transient equatorial versus local forcing of the observed variability in the coastal upwelling region. For the first time multi-year velocity observations of the Angola Current at 11°S are available. From July 2013 to November 2015 a bottom shield equipped with an ADCP had been deployed at 500m water depth, accompanied by a mooring sitting on the 1200m-isobath with an ADCP being installed at 500m depth. Both upward-looking instruments measured the current speed up to about 50m below the sea surface. During the deployment period the Angola Current was characterized by a weak southward mean flow of 5-8 cm/s at 50m depth (slightly stronger at the in-shore mooring position), with the southward current penetrating down to about 200m depth. The alongshore velocity component reveals a pronounced seasonal variability. It is dominated by 120-day, semi-annual, and annual oscillations with distinct baroclinic structures. Here we apply a reduced gravity model of the tropical Atlantic for the first five baroclinic modes forced with interannually varying wind stress to investigate the seasonal variability along the equatorial and coastal waveguides. In the equatorial Atlantic the 120-day, semi-annual, and annual oscillations are associated with resonant basin modes of the 1st, 2nd, and 4th baroclinic mode, respectively. These basin modes are composed of equatorial Kelvin and Rossby waves as well as coastally trapped waves. The reduced gravity model is further used to study the respective role of the remote equatorial forcing, more specifically the influence of equatorial basin modes via coastally trapped waves, and the local forcing for the observed seasonal variability and associated baroclinic structure of the Angola Current at 11°S.

  5. The observation of underwater frazil ice formation and upward sediment transport in an Arctic polynya in the Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Ito, M.; Ohshima, K. I.; Fukamachi, Y.; Simizu, D.; Mahoney, A. R.; Eicken, H.

    2016-12-01

    Sea ice is a great contributor to energy- and salt-budget, dense water formation and bio-related material cycle in the polar ocean. In coastal polynya, the ice production becomes maximum when open water is maintained owing to underwater frazil ice formation associated with supercooling. In addition, an interaction between frazil ice and re-suspended sediment can be a major process of sediment incorporation into sea ice. Although these process have been reported from laboratory experiments and numerical simulations, in-situ observations have been limited because the under-ice observation is logistically challenging and detection methods of frazil ice and sedimentary particles have not been well established. Since 2009, mooring observations with ADCPs, Ice-Profiling Sonars and C-T recorders have been continuously carried out off Barrow in the Chukchi Sea, through a collaboration between Hokkaido University and University of Alaska Fairbanks. Recently, some in-situ measurements reported the possibility that an ADCP can detect frazil ice and re-suspended sediment using acoustic backscatter strength data. Thus, we analyzed the ADCP data in the Chukchi Sea, focusing on underwater frazil ice formation and upward sediment transport. In winter, polynyas were formed episodically around the observational sites several times by offshore-ward strong winds of > 10 m/s. During these polynya events, surface-intensified signals were detected throughout the water column at two sites with water depths of 40 - 50 m simultaneously. In these cases, potential supercooling occurred and signals were particularly enhanced at timings of in-situ supercooling. Thus, we interpreted these signals as those of frazil ice. On the other hand, bottom-intensified signals originating from re-suspended sediment were detected throughout the water column just after frazil ice was detected. These signals were associated with strong ocean currents of 1 m/s. Thus, sedimentary particles are likely dispersed from the ocean bottom by the strong currents and subsequently brought up to the ocean surface under turbulent mixing conditions. We estimated the fall velocity of sedimentary particles as 0.4 mm/s based on the vertical profiles of the ADCP backscatter strength. This fall velocity corresponds to that of the particle diameter of 20 μm.

  6. Investigation of active volcanic areas through oceanographic data collected by the NEMO-SN1 multiparametric seafloor observatory

    NASA Astrophysics Data System (ADS)

    Lo Bue, Nadia; Sgroi, Tiziana; Giovanetti, Gabriele; Marinaro, Giuditta; Embriaco, Davide; Beranzoli, Laura; Favali, Paolo

    2015-04-01

    In the framework of the European Research Infrastructure EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org), the cabled multidisciplinary seafloor observatory node NEMO-SN1 was deployed in the Western Ionian Sea (Southern Italy) at a depth of 2100 m, about 25 km off-shore Eastern Sicily, close to the Mt. Etna volcano system. The oceanographic payload mounted on this observatory was originally designed to monitor possible variations of the local hydrodynamic playing a crucial role on the redistribution of deep water in the Eastern Mediterranean Sea. In particular the Acoustic Doppler Current Profiler (ADCP RDI WorkHorse 600 kHz) was configured with the main aim to record the bottom dynamics, watching few meters of water column above the station (about 30 m). Surprisingly, this sensor offered a spectacular recording of the Mt.Etna pyroclastic activity occurred on 2013 which affected the ESE sector of the volcano. Although the ADCP sensor is commonly used to measure speed and direction of sea currents, it is more often used to monitor concentration suspended matter of controlled areas, such as rivers or coastal marine environments, by the analysis of the acoustic backscatter intensity. This standard condition entails some a-priori knowledge (i.e. suspended sediment concentration, particle size, echo intensity calibration) useful to well configure the sensors before starting its acquisition. However, in the case of Mt. Etna pyroclastic activity, due to the unexpected recording, these information were not available and it was necessary to work in a post-processing mode considering all acquired data. In fact, several different parameters contribute to complete the comprehension of the observed phenomenon: the ADCP acoustic wavelength able to indirectly provide information on the detectable particle size, the intensity of the explosive activity useful to define the starting energy of the volcanic system, the oceanographic local dynamics indispensable to know possible ash dispersion in seawater. This work aims to present a new perspective of observation for pyroclastic fallout in benthic seafloor areas using alternative sensors normally designed for other investigation such as the ADCP. Also, it highlights the possibility to optimize the instrumental resources used within the benthic observatories and opens new possibilities for the study of benthic processes, as volcanic ash sedimentation, through multiparametric analysis.

  7. Condensation of atmospheric moisture from tropical maritime air masses as a freshwater resource.

    PubMed

    Gerard, R D; Worzel, J L

    1967-09-15

    A method is proposed whereby potable water may be obtained by condensing moisture from the atmosphere in suitable seashore or island areas. Deep, cold, offshore seawater is used as a source of cold and is pumped to condensers set up on shore to intercept the flow of highly humid, tropical, maritime air masses. This air, when cooled, condenses moisture, which is conducted away and stored for use as a water supply. Windmill-driven generators would supply low-cost power for the operation. Side benefits are derived by using the nutritious deep water to support aquiculture in nearby lagoons or to enhance the productivity of the outfall area. Additional benefits are derived from the condenser as an air-conditioning device for nearby residents. The islands of the Caribbean are used as an example of a location in the trade-winds belt where nearly optimum conditions for the operation of this system can be found.

  8. The volumetric flux through Deception Pass, Washington and its effects on the circulation in the Whidbey Basin.

    NASA Astrophysics Data System (ADS)

    Heinze, K. R.

    2002-05-01

    The volumetric flux through Deception Pass, Washington will be determined by using tidal height differences between Bowman and Cornet Bays, which are located on the seaward and landward sides of Deception Pass respectively in Deception Pass State Park. Hydrolab sensors for measuring temperature, salinity and fluid depth will be attached to public boat docks in each of these bays. The numerical Puget Sound Regional Synthesis Model, PRISM, will be run with and without the flux through Deception Pass and compared to determine theoretically whether or not the flow through Deception Pass plays a significant role in the circulation of the Whidbey Basin, which could affect the circulation in the northern part of the Main Basin known as the Triple Junction. This could influence water movement near the new sewer outfall that King County is proposing to build in that area.

  9. Non-contact flow gauging for the extension and development of rating curves

    NASA Astrophysics Data System (ADS)

    Perks, Matthew; Large, Andy; Russell, Andy

    2015-04-01

    Accurate measurement of river discharge is fundamental to understanding hydrological processes, associated hazards and ecological responses within fluvial systems. Established protocols for determining river discharge are partial, predominantly invasive and logistically difficult during high flows. There is demand for new methods for accurate quantification of flow velocity under high-flow/flood conditions to in turn enable better post-event reconstruction of peak discharge. As a consequence considerable effort has been devoted to the development of innovative technologies for the representation of flow in open channels. Remotely operated fixed and mobile systems capable of providing quantitative estimates of instantaneous and time-averaged flow characteristics using non-contact methods has been a major development. Amongst the new approaches for stand-alone continuous monitoring of surface flows is Large Scale Particle Image Velocimetry (LSPIV). Here we adapt the LSPIV concept, to provide continuous discharge measurements in non-uniform channels with complex flow conditions. High Definition videos (1080p; 30fps) of the water surface are acquired at 5 minute intervals. The image is rectified to correct for perspective distortion using a new, open source tool which minimises errors resulting from oblique image capture. Naturally occurring artefacts on the water surface (e.g. bubbles, debris, etc.) are tracked with the Kanade-Lucas-Tomasi (KLT) algorithm. The data generated is in the form of a complex surface water velocity field which can be interrogated to extract a range of hydrological information such as the streamwise velocity at a cross-section of interest, or even allow the interrogation of hydrodynamic flow structures. Here we demonstrate that this approach is capable of generating river discharge data comparable to concurrent measurements made using existing, accepted technologies (e.g. ADCP). The outcome is better constraint and extension of rating curves. The approach is suited to water management authorities throughout Europe who seek ever-increasingly cost-effective and non-invasive techniques for maximising the monitoring capabilities of their operational network.

  10. Lagrangian sampling for emerging contaminants through an urban stream corridor in Colorado

    USGS Publications Warehouse

    Brown, J.B.; Battaglin, W.A.; Zuellig, R.E.

    2009-01-01

    Recent national concerns regarding the environmental occurrence of emerging contaminants (ECs) have catalyzed a series of recent studies. Many ECs are released into the environment through discharges from wastewater treatment plants (WWTPs) and other sources. In 2005, the U.S. Geological Survey and the City of Longmont initiated an investigation of selected ECs in a 13.8-km reach of St. Vrain Creek, Colorado. Seven sites were sampled for ECs following a Lagrangian design; sites were located upstream, downstream, and in the outfall of the Longmont WWTP, and at the mouths of two tributaries, Left Hand Creek and Boulder Creek (which is influenced by multiple WWTP outfalls). Samples for 61 ECs in 16 chemical use categories were analyzed and 36 were detected in one or more samples. Of these, 16 have known or suspected endocrine-disrupting potential. At and downstream from the WWTP outfall, detergent metabolites, fire retardants, and steroids were detected at the highest concentrations, which commonly exceeded 1 ??g/l in 2005 and 2 ??g/l in 2006. Most individual ECs were measured at concentrations less than 2 ??g/l. The results indicate that outfalls from WWTPs are the largest but may not be the sole source of ECs in St. Vrain Creek. In 2005, high discharge was associated with fewer EC detections, lower total EC concentrations, and smaller EC loads in St. Vrain Creek and its tributaries as compared with 2006. EC behavior differed by individual compound, and some differences between sites could be attributed to analytical variability or to other factors such as physical or chemical characteristics or distance from contributing sources. Loads of some ECs, such as diethoxynonylphenol, accumulated or attenuated depending on location, discharge, and distance downstream from the WWTP, whereas others, such as bisphenol A, were largely conservative. The extent to which ECs in St. Vrain Creek affect native fish species and macroinvertebrate communities is unknown, but recent studies have shown that fish respond to very low concentrations of ECs, and further study on the fate and transport of these contaminants in the aquatic environment is warranted. ?? 2008 American Water Resources Association.

  11. Measurements of labile Cd, Cu, Ni, Pb, and Zn levels at a northeastern Brazilian coastal area under the influence of oil production with diffusive gradients in thin films technique (DGT).

    PubMed

    de Souza, João M; Menegário, Amauri A; de Araújo Júnior, Marcus A G; Francioni, Eleine

    2014-12-01

    In this work, the ability of the diffusive gradients in thin films technique (DGT) was evaluated for monitoring the concentrations, and estimating the availability, of metals at a northeastern Brazilian coastal area under the influence of oil production. Three sites with an average distance between 0m (EM-1), 100 m (EM-2), and 1,000 m (EM-3) of a submarine outfall-I (Guamaré-RN, Brazil) and another site (GA-1) with an average distance of 12,000 m east of Outfall I, near the city of Galinhos, were studied. DGT units were deployed at the same sites in three campaigns from July, 2010 to June, 2011. Effects on the accuracy of analytical results regarding the deployment time, gel porosity, and thickness were evaluated. There was no difference between the measurements obtained with two sets of DGT devices, those assembled with open or restrictive pore gel, respectively, showing that organic metallic species are not present near the submarine outlet. After 21 day deployments in a region (near Submarine Outfall I) that receives produced waters that have been treated, there was evidence of biofilm formation on DGT membranes. However, it was demonstrated that the biofilm interference with DGT measurements was negligible. Data found in this work show that total concentrations of Cd, Cu, Pb, Ni, and Zn in seawater samples collected at sites GA-1 and EM-1 in two campaigns were below 0.33, 1.67, 0.47, 0.70, 2.86 ng mL(-1) respectively. For the first time, labile levels of Cd, Cu, Pb, Ni, and Zn in an area under the influence of oil production were determined. DGT measurements allowed the verification of the effects of temporal variation on levels of Zn and Ni. There were no effects of spatial variations on levels of Cd, Cu, Ni, Pb, and Zn at the four studied sites, suggesting no contamination of these metals at the northeastern Brazilian coastal area investigated in this work. Copyright © 2014. Published by Elsevier B.V.

  12. Temporal and spatial distributions of contaminants in sediments of Santa Monica Bay, California

    USGS Publications Warehouse

    Bay, S.M.; Zeng, E.Y.; Lorenson, T.D.; Tran, K.; Alexander, Corrine

    2003-01-01

    Contaminant inputs from wastewater discharge, a major source of contamination to Santa Monica Bay (SMB), have declined drastically during the last three decades as a result of improved treatment processes and better source control. To assess the concomitant temporal changes in the SMB sediments, a study was initiated in June 1997, in which 25 box cores were collected using a stratified random sampling design. Five sediment strata corresponding to the time intervals of 1890-1920, 1932-1963, 1965-1979, 1979-1989, and 1989-1997 were identified using 210Pb dating techniques. Samples from each stratum were analyzed for metals, 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and its metabolites (DDTs), polychlorinated biphenyls (PCBs), and total organic carbon (TOC). Samples from the 1965-1979, 1979-1989, and 1989-1997 strata were also analyzed for polycyclic aromatic hydrocarbons (PAHs) and linear alkylbenzenes (LABs). Sediment metal concentrations increased from 1890-1979 and were similar during the time intervals of 1965-1979, 1979-1989, and 1989-1997, although the mass emissions of trace metals from sewage inputs declined substantially during the same time period. Trace organic contamination in SMB was generally highest in sediments corresponding to deposition during the years of 1965-1979 or 1979-1989 and showed a decline in concentration in the 1989-1997 stratum. Temporal trends of contamination were greatest in sediments collected from areas near the Hyperion Treatment Plant (HTP) outfall system and on the slope of Redondo Canyon. The highest contaminant concentrations were present in sediments near the HTP 7-mile outfall in the 1965-1979 stratum. Elevated trace metal and organic concentrations were still present in the 1989-1997 stratum of most stations, suggesting that sediment contaminants have moved vertically in the sediment column since sludge discharges from the 7-mile outfall (a dominant source of contamination to the bay) ceased in 1987. The widespread distributions of DDTs and PCBs in SMB and highly confined distribution of LABs around the HTP outfall system were indicative of a dispersal mechanism remobilizing historically deposited contaminants to areas relatively remote from the point of discharge. ?? 2003 Elsevier Science Ltd. All rights reserved.

  13. Differential Impacts of Land-Based Sources of Pollution on the Microbiota of Southeast Florida Coral Reefs

    PubMed Central

    Staley, Christopher; Kaiser, Thomas; Gidley, Maribeth L.; Enochs, Ian C.; Jones, Paul R.; Goodwin, Kelly D.; Sinigalliano, Christopher D.

    2017-01-01

    ABSTRACT Coral reefs are dynamic ecosystems known for decades to be endangered due, in large part, to anthropogenic impacts from land-based sources of pollution (LBSP). In this study, we utilized an Illumina-based next-generation sequencing approach to characterize prokaryotic and fungal communities from samples collected off the southeast coast of Florida. Water samples from coastal inlet discharges, oceanic outfalls of municipal wastewater treatment plants, treated wastewater effluent before discharge, open ocean samples, and coral tissue samples (mucus and polyps) were characterized to determine the relationships between microbial communities in these matrices and those in reef water and coral tissues. Significant differences in microbial communities were noted among all sample types but varied between sampling areas. Contamination from outfalls was found to be the greatest potential source of LBSP influencing native microbial community structure among all reef samples, although pollution from inlets was also noted. Notably, reef water and coral tissue communities were found to be more greatly impacted by LBSP at southern reefs, which also experienced the most degradation during the course of the study. The results of this study provide new insights into how microbial communities from LBSP can impact coral reefs in southeast Florida and suggest that wastewater outfalls may have a greater influence on the microbial diversity and structure of these reef communities than do contaminants carried in runoff, although the influences of runoff and coastal inlet discharge on coral reefs are still substantial. IMPORTANCE Coral reefs are known to be endangered due to sewage discharge and to runoff of nutrients, pesticides, and other substances associated with anthropogenic activity. Here, we used next-generation sequencing to characterize the microbial communities of potential contaminant sources in order to determine how environmental discharges of microbiota and their genetic material may influence the microbiomes of coral reef communities and coastal receiving waters. Runoff delivered through inlet discharges impacted coral microbial communities, but impacts from oceanic outfalls carrying treated wastewater were greater. Geographic differences in the degree of impact suggest that coral microbiomes may be influenced by the microbiological quality of treated wastewater. PMID:28341673

  14. Differential Impacts of Land-Based Sources of Pollution on the Microbiota of Southeast Florida Coral Reefs.

    PubMed

    Staley, Christopher; Kaiser, Thomas; Gidley, Maribeth L; Enochs, Ian C; Jones, Paul R; Goodwin, Kelly D; Sinigalliano, Christopher D; Sadowsky, Michael J; Chun, Chan Lan

    2017-05-15

    Coral reefs are dynamic ecosystems known for decades to be endangered due, in large part, to anthropogenic impacts from land-based sources of pollution (LBSP). In this study, we utilized an Illumina-based next-generation sequencing approach to characterize prokaryotic and fungal communities from samples collected off the southeast coast of Florida. Water samples from coastal inlet discharges, oceanic outfalls of municipal wastewater treatment plants, treated wastewater effluent before discharge, open ocean samples, and coral tissue samples (mucus and polyps) were characterized to determine the relationships between microbial communities in these matrices and those in reef water and coral tissues. Significant differences in microbial communities were noted among all sample types but varied between sampling areas. Contamination from outfalls was found to be the greatest potential source of LBSP influencing native microbial community structure among all reef samples, although pollution from inlets was also noted. Notably, reef water and coral tissue communities were found to be more greatly impacted by LBSP at southern reefs, which also experienced the most degradation during the course of the study. The results of this study provide new insights into how microbial communities from LBSP can impact coral reefs in southeast Florida and suggest that wastewater outfalls may have a greater influence on the microbial diversity and structure of these reef communities than do contaminants carried in runoff, although the influences of runoff and coastal inlet discharge on coral reefs are still substantial. IMPORTANCE Coral reefs are known to be endangered due to sewage discharge and to runoff of nutrients, pesticides, and other substances associated with anthropogenic activity. Here, we used next-generation sequencing to characterize the microbial communities of potential contaminant sources in order to determine how environmental discharges of microbiota and their genetic material may influence the microbiomes of coral reef communities and coastal receiving waters. Runoff delivered through inlet discharges impacted coral microbial communities, but impacts from oceanic outfalls carrying treated wastewater were greater. Geographic differences in the degree of impact suggest that coral microbiomes may be influenced by the microbiological quality of treated wastewater. Copyright © 2017 Staley et al.

  15. Near-Inertial and Tidal Currents Detected with a Vessel Mounted Acoustic Doppler Current Profiler in the Western Mediterranean Sea

    NASA Technical Reports Server (NTRS)

    Garcia-Gorriz, E.; Candela, J.; Font, J.

    1998-01-01

    The Acoustic Doppler Current Profiler (ADCP) combined with accurate navigation provides absolute current velocities which include information from all the frequencies which have a dynamical presence in the ocean.

  16. Waste-assimilation study of Koshkonong Creek below sewage-treatment plant at Sun Prairie, Wisconsin

    USGS Publications Warehouse

    Grant, R. Stephen

    1976-01-01

    A waste-load-assimilation study of a reach of Koshkonong Creek below the Sun Prairie, Wisconsin, sewage-treatment-plant outfall indicated that a high level of treatment would be required to meet Wisconsin water-quality standards. To maintain a minimum dissolved-oxygen concentration of 5 mg/liter during the critical summer low-flow period, 5-day carbonaceous biochemical-oxygen demand in waste discharges should not exceed 5 mg/liter and ammonium nitrogen should not exceed 1.5 mg/liter. Advanced treatment with denitrification is required because stream-reaeration coefficients are not high enough to offset deoxygenation caused by an abundance of attached biological slimes. The slimes apparently consumed dissolved oxygen at a rate of about 110 mg/liter per day at the time of the stream survey. During the critical summer low-flow period, natural stream discharge is very small compared to waste-water discharge , so benefits of dilution are insignificant. An evaluation of two proposed alternative waste-water discharge sites indicated that the present discharge site is hydraulically superior to these sites. Stream-reaeration coefficients used in the study were based on measurements using the radioactive-tracer method. (Woodard-USGS)

  17. Applications of remote sensing to estuarine management. [environmental surveys of the Chesapeake Bay (U.S.)

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Gordon, H. H.; Welch, C. S.; Williams, G.

    1976-01-01

    Projects for sewage outfall siting for pollution control in the lower Chesapeake Bay wetlands are reported. A dye-buoy/photogrammetry and remote sensing technique was employed to gather circulation data used in outfall siting. This technique is greatly favored over alternate methods because it is inexpensive, produces results quickly, and reveals Lagrangian current paths which are preferred in making siting decisions. Wetlands data were obtained by interpretation of color and color infrared photographic imagery from several altitudes. Historical sequences of photographs are shown that were used to document wetlands changes. Sequential infrared photography of inlet basins was employed to determine tidal prisms, which were input to mathematical models to be used by state agencies in pollution control. A direct and crucial link between remote sensing and management decisions was demonstrated in the various projects.

  18. Impacts of aircraft deicer and anti-icer runoff on receiving waters from Dallas/Fort Worth International Airport, Texas, U.S.A.

    PubMed

    Corsi, Steven R; Harwell, Glenn R; Geis, Steven W; Bergman, Daniel

    2006-11-01

    From October 2002 to April 2004, data were collected from Dallas/Fort Worth (DFW) International Airport (TX, U.S.A.) outfalls and receiving waters (Trigg Lake and Big Bear Creek) to document the magnitude and potential effects of aircraft deicer and anti-icer fluid (ADAF) runoff on water quality. Glycol concentrations at outfalls ranged from less than 18 to 23,800 mg/L, whereas concentrations in Big Bear Creek were less because of dilution, dispersion, and degradation, ranging from less than 18 to 230 mg/L. Annual loading results indicate that 10 and 35% of what was applied to aircraft was discharged to Big Bear Creek in 2003 and 2004, respectively. Glycol that entered Trigg Lake was diluted and degraded before reaching the lake outlet. Dissolved oxygen (DO) concentrations at airport outfalls sometimes were low (<2.0 mg/L) but typical of what was measured in an urban reference stream. In comparison, the DO concentration at Trigg Lake monitoring sites was consistently greater than 5.5 mg/L during the monitoring period, probably because of the installation of aerators in the lake by DFW personnel. The DO concentration in Big Bear Creek was very similar at sites upstream and downstream of airport influence (>5.0 mg/L). Results of toxicity tests indicate that effects on Ceriodaphnia dubia, Pimephales promelas, and Selanastrum capricornutum are influenced by type IV ADAF (anti-icer), not just type I ADAF (deicer) as is more commonly assumed.

  19. Tidal river sediments in the Washington, D.C. area. 11. Distribution and sources of organic containmants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, T.L.; Velinsky, D.J.; Reinharz, E.

    1994-06-01

    Concentrations of aliphatic, aromatic, and chlorinated hydrocarbons were determined from 33 surface-sediment samples taken from the Tidal Basin, Washington Ship Channel, and the Anacostia and Potomac rivers in Washington, D.C. In conjunction with these samples, selected storm sewers and outfalls also were sampled to help elucidate general sources of contamination to the area. All of the sediments contained detectable concentrations of aliphatic and aromatic hydrocarbons, DDT (total dichlorodiphenytrichloroethande), DDE (dichlorodiphenyldichloroethene), DDD (dichlorodiphenyldichloroethane), PCBx (total polychlorinated biphenyls) and total chlordanes (oxy-, {alpha}-, and {gamma}-chlordane and cis + trans-nonachlor). Sediment concentrations of most contaminants were highest in the Anacostia River just downstreammore » of the Washington Navy Yard, except for total chlordane, which appeared to have upstream sources in addition to storm and combined sewer runoff. This area has the highest number of storm and combined sewer outfalls in the river. Potomac River stations had lower concentrations than other stations. Polycyclic aromatic hydrocarbons, saturated hydrocarbons, and the unresolved complex mixture (UCM) distributions reflect mixtures of combustion products and direct discharges of petroleum products. Sources of PCBs appear to be related to specific outfalls, while hydrocarbon inputs, especially PAHs, are diffuse, and may be related to street runoff. This study indicates that in large urban areas, nonpoint sources deliver substantial amounts of contaminants to ecosystems through storm and combined sewer systems, and control of these inputs must be addressed. 33 refs., 6 figs., 3 tabs.« less

  20. Tilt Current Meter Field Validation in the Surf Zone

    NASA Astrophysics Data System (ADS)

    Anarde, K.; Myres, H.; Figlus, J.

    2016-12-01

    Tilt current meters (TCMs) are a low-cost way of measuring current velocities in coastal waters. They consist of a slightly buoyant floater, tilt sensor assembly, and internal logger tethered to a fixed base. TCMs measure the tilt of the sensor induced by the forces of the flowing water to infer local current velocity. They have been successfully deployed to measure unidirectional flows in rivers and slowly oscillating flows in tidally influenced bodies of water where the inertia of the instrument does not create a problem. Here we attempt to validate an array of TCMs for use in the surf zone where waves, wave bores, and alongshore currents dominate the hydrodynamics in relatively shallow water (0.3 - 2.0 m) with relatively high oscillatory frequencies. A series of test deployments using seven measuring pods outfitted with TCMs and pressure transducers were conducted in the surf zone off Galveston Island, Texas. Field experiments were supported by laboratory tests of the instrument assemblies in a moveable-bed wave flume. Instrument pod design was optimized over the series of tests to minimize issues caused by scouring, sedimentation, and overturning. The end design consists of a low-profile concrete base plate secured to the bed by sand stakes. Field measurements of tilt and bearing were calibrated against co-located acoustic Doppler velocimeter (ADV) and wave-current profiler (ADCP) measurements as well as laboratory-supplied calibration curves. While optimization of the setup is ongoing, the initial field studies show good correlation between instrument pairs. If successfully validated, the TCMs will be used as part of an instrument array designed to measure overland flow dynamics during extreme storms. Other potential uses include detailed analysis of spatial and temporal gradients in nearshore hydrodynamics such as the complex flow scenarios through tidal inlets and around barrier islands.

  1. Evaluating interception of larval pallid sturgeon on the Lower Missouri River- data acquisition, interpolation, and visualization

    NASA Astrophysics Data System (ADS)

    Bulliner, E. A., IV; Erwin, S. O.; Anderson, B. J.; Wilson, H.; Jacobson, R. B.

    2016-12-01

    The transition from endogenous to exogenous feeding is an important life-stage transition for many riverine fish larvae. On the Missouri River, U.S., riverine alteration has decreased connectivity between the navigation channel and complex, food-producing and foraging areas on the channel margins, namely shallow side channels and sandbar complexes. A favored hypothesis, the interception hypothesis, for recruitment failure of pallid sturgeon is that drifting larvae are not able to exit the highly engineered navigation channel, and therefore starve. We present work exploring measures of hydraulic connectivity between the navigation channel and channel margins using multiple data-collection protocols with acoustic Doppler current profilers (ADCPs). As ADCP datasets alone often do not have high enough spatial resolution to characterize interception and connectivity sufficiently at the scale of drifting sturgeon larvae, they are often supplemented with physical and empirical models. Using boat-mounted ADCPs, we collected 3-dimensional current velocities with a variety of driving techniques (specifically, regularly spaced transects, reciprocal transects, and irregular patterns) around areas of potential larval interception. We then used toolkits based in Python to interpolate 3-dimensional velocity fields at spatial scales finer than the original measurements, and visualized resultant velocity vectors and flowlines in the software package Paraview. Using these visualizations, we investigated the necessary resolution of field measurements required to model connectivity with channel margin areas on large, highly engineered river ecosystems such as the Missouri River. We anticipate that results from this work will be used to help inform models of larval interception under current conditions. Furthermore, results from this work will be useful in developing monitoring strategies to evaluate the restoration of channel complexity to support ecological functions.

  2. Observed intraseasonal and seasonal variability of the West India Coastal Current on the continental slope

    NASA Astrophysics Data System (ADS)

    Amol, P.; Shankar, D.; Fernando, V.; Mukherjee, A.; Aparna, S. G.; Fernandes, R.; Michael, G. S.; Khalap, S. T.; Satelkar, N. P.; Agarvadekar, Y.; Gaonkar, M. G.; Tari, A. P.; Kankonkar, A.; Vernekar, S. P.

    2014-06-01

    We present current data from acoustic Doppler current profilers (ADCPs) moored on the continental slope off the west coast of India. The data were collected at four locations (roughly at Kanyakumari, Kollam, Goa, and Mumbai) extending from ˜ 7° to ˜ 20°N during 2008-2012. The observations show that a seasonal cycle, including an annual cycle, is present in the West India Coastal Current (WICC); this seasonal cycle, which strengthens northward, shows considerable interannual variability and is not as strongly correlated along the coast as in climatologies based on ship drifts or the altimeter. The alongshore decorrelation of the WICC is much stronger at intraseasonal periods, which are evident during the winter monsoon all along the coast. This intraseasonal variability is stronger in the south. A striking feature of the WICC is upward phase propagation, which implies an undercurrent whose depth becomes shallower as the season progresses. There are also instances when the phase propagates downward. At the two southern mooring locations off Kollam and Kanyakumari, the cross-shore current, which is usually associated with eddy-like circulations, is comparable to the alongshore current on occasions. A comparison with data from the OSCAR (Ocean Surface Currents Analyses Real-time) data product shows not only similarities, but also significant differences, particularly in the phase. One possible reason for this phase mismatch between the ADCP current at 48 m and the OSCAR current, which represents the current in the 0-30 m depth range, is the vertical phase propagation. Current products based on Ocean General Circulation Models like ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II) and GODAS (Global Ocean Data Assimilation System) show a weaker correlation with the ADCP current, and ECCO2 does capture some of the observed variability.

  3. Pathways and Hydrography in the Mesoamerican Barrier Reef System Part 1: Circulation

    NASA Astrophysics Data System (ADS)

    Carrillo, L.; Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Largier, J. L.

    2015-10-01

    Acoustic Doppler Current Profiler (ADCP) measurements and surface drifters released from two oceanographic cruises conducted during March 2006 and January/February 2007 are used to investigate the circulation off the Mesoamerican Barrier Reef System (MBRS). We show that the MBRS circulation can be divided into two distinct regimes, a northern region dominated by the strong, northward-flowing Yucatan Current, and a southern region with weaker southward coastal currents and the presence of the Honduras Gyre. The latitude of impingement of the Cayman Current onto the coastline varies with time, and creates a third region, which acts as a boundary between the northern and southern circulation regimes. This circulation pattern yields two zones in terms of dispersal, with planktonic propagules in the northern region being rapidly exported to the north, whereas plankton in the southern and impingement regions may be retained locally or regionally. The latitude of the impingement region shifts interannually and intra-annually up to 3° in latitude. Sub-mesoscale features are observed in association with topography, e.g., flow bifurcation around Cozumel Island, flow wake north of Chinchorro Bank and separation of flow from the coast just north of Bahia de la Ascencion. This third feature is evident as cyclonic recirculation in coastal waters, which we call the Ascencion-Cozumel Coastal Eddy. An understanding of the implications of these different circulation regimes on water mass distributions, population connectivity, and the fate of land-based pollutants in the MBRS is critically important to better inform science-based resource management and conservation plans for the MBRS coral reefs.

  4. Transient response of the Northwestern Iberian upwelling regime.

    PubMed

    Ferreira Cordeiro, Nuno Gonçalo; Dubert, Jesus; Nolasco, Rita; Desmond Barton, Eric

    2018-01-01

    The hydrography and dynamics of NW Iberian margin were explored for July 2009, based on a set of in situ and remote sensing observations. Zonal sections of standard CTD casts, towed CTD (SeaSoar), Acoustic Doppler Current Profilers (ADCP) and Lagrangian surveys were made to characterize cycles of upwelling and relaxation in this region. Two periods of northerly winds, bounded by relaxation periods, were responsible for the formation of an upwelling front extending to the shelf edge. An equatorward flow was quickly set up on the shelf responding to the northerly wind pulses. South of Cape Silleiro, the development and subsequent relaxation of an upwelling event was intensively surveyed in the shelf, following a Lagrangian drifter transported by the upwelling jet. This region is part of an upwelling center extending from Cape Silleiro to Porto, where the surface temperature was colder than the neighboring regions, under upwelling favorable winds. As these winds relaxed, persistent poleward flow developed, originating south of the upwelling center and consisting in an inner-shelf tongue of warm waters. During an event of strong southerly wind, the poleward flow was observed to extend to the whole continental shelf. Although the cruise was executed during summertime, the presence of river-plumes was observed over the shelf. The interaction of the plumes with the circulation on the shelf was also described in terms of coastal convergence and offshore advection. The sampling of the offshore and slope regions showed the presence of the Iberian poleward current offshore and a persistent equatorward flow over the upper slope.

  5. Discharge Permit for MWRA Outfall Questions and Answers, May, 1999

    EPA Pesticide Factsheets

    The EPA and the MassDEP are issuing the Massachusetts Water Resource Authority's NPDES Permit to discharge industrial wastewater and domestic wastewater from 43 member communities through the Deer Island Wastewater Treatment Plant.

  6. Ocean currents and acoustic backscatter data from shipboard ADCP measurements at three North Atlantic seamounts between 2004 and 2015.

    PubMed

    Mohn, Christian; Denda, Anneke; Christiansen, Svenja; Kaufmann, Manfred; Peine, Florian; Springer, Barbara; Turnewitsch, Robert; Christiansen, Bernd

    2018-04-01

    Seamounts are amongst the most common physiographic structures of the deep-ocean landscape, but remoteness and geographic complexity have limited the systematic collection of integrated and multidisciplinary data in the past. Consequently, important aspects of seamount ecology and dynamics remain poorly studied. We present a data collection of ocean currents and raw acoustic backscatter from shipboard Acoustic Doppler Current Profiler (ADCP) measurements during six cruises between 2004 and 2015 in the tropical and subtropical Northeast Atlantic to narrow this gap. Measurements were conducted at seamount locations between the island of Madeira and the Portuguese mainland (Ampère, Seine Seamount), as well as east of the Cape Verde archipelago (Senghor Seamount). The dataset includes two-minute ensemble averaged continuous velocity and backscatter profiles, supplemented by spatially gridded maps for each velocity component, error velocity and local bathymetry. The dataset is freely available from the digital data library PANGAEA at https://doi.pangaea.de/10.1594/PANGAEA.883193.

  7. Ocean Surface Observations of the Diurnal Cycle of Turbulence with ASIP

    NASA Astrophysics Data System (ADS)

    Ward, Brian; Sutherland, Graig; Reverdin, Gilles; Marie, Louis; Christensen, Kai; Brostrom, Goran; Harcourt, Ramsey; Breivik, Oyvind

    2015-04-01

    The STRASSE field experiment was conducted in August/September 2012 as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) campaign. The average conditions during STRASSE were low wind and high insolation, which are typical for the generation of near-surface diurnal warming. We deployed the Air-Sea Interaction Profiler (ASIP), an autonomous upwardly-rising microstructure instrument capable of resolving small-scale processes close to the air-sea interface. ASIP provides direct estimates of the dissipation rate of turbulent kinetic energy, temperature, salinity, and PAR at timescales suitable for the study of diurnal processes. In combination with the ASIP data, we had shipboard meteorological data for calculation of atmospheric forcing, and a surface mounted Lagrangian ADCP for determination of the near-surface velocity. There was a strong diurnal cycle of temperature and dissipation (from ASIP) and shear (from an ADCP). As air-sea fluxes are driven by turbulence immediately at the air-sea interface, the presence of this enhanced shear-induced turbulence will enhance fluxes.

  8. Modulating Cytotoxic Effector Functions by Fc Engineering to Improve Cancer Therapy.

    PubMed

    Kellner, Christian; Otte, Anna; Cappuzzello, Elisa; Klausz, Katja; Peipp, Matthias

    2017-09-01

    In the last two decades, monoclonal antibodies have revolutionized the therapy of cancer patients. Although antibody therapy has continuously been improved, still a significant number of patients do not benefit from antibody therapy. Therefore, rational optimization of the antibody molecule by Fc engineering represents a major area of translational research to further improve this potent therapeutic option. Monoclonal antibodies are able to trigger a variety of effector mechanisms. Especially Fc-mediated effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement- dependent cytotoxicity (CDC) are considered important in antibody therapy of cancer. Novel mechanistic insights into the action of monoclonal antibodies allowed the development of various Fc engineering approaches to modulate antibodies' effector functions. Strategies in modifying the Fc glycosylation profile (Fc glyco-engineering) or approaches in engineering the protein backbone (Fc protein engineering) have been intensively evaluated. In the current review, Fc engineering strategies resulting in improved ADCC, ADCP and CDC activity are summarized and discussed.

  9. On the nature of low-frequency currents over a shallow area of the southern coast of the Gulf of Finland

    NASA Astrophysics Data System (ADS)

    Lilover, M.-J.; Pavelson, J.; Kõuts, T.

    2014-01-01

    This study aims to explain those factors influencing low-frequency currents in a shallow unstratified sea with complex topography. Current velocity measurements using a bottom-mounted ADCP, deployed at 8 m depth on the slope of Naissaar Bank (northern entrance to the Tallinn Bay, Gulf of Finland), were performed over five weeks in late autumn 2008. A quasi-steady current from nine sub-periods (two weeks) was relatively well correlated with wind (mean correlation coefficient of 0.70). During moderate to fresh winds, the current is veered to the right relative to the wind direction, by angles in the range of 14-38°. The flow is directed to the left, relative to the wind direction in stronger wind conditions, indicating evidence of topographic forcing. The observed current was reasonably in accordance with the flow predicted by the classical Ekman model. The modelled current speeds (wind speeds < 11 m s- 1) appear to be overestimated by 3-6 cm s- 1, whilst the observed rotation angles were mostly less than those predicted by the model. Inclusion of barotropic forcing to the Ekman model improved its performance. The discrepancies between the model and observations are discussed in terms of topographic steering, baroclinic effect and surface wave induced forcing.

  10. Fourth Annual Report: 2007 Pre-Construction Eelgrass Monitoring and Propagation for King County Outfall Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, Dana L.; Kohn, Nancy P.; Cullinan, Valerie I.

    2007-10-04

    King County proposes to build a new sewer outfall discharging to Puget Sound near Point Wells, Washington. Construction is scheduled for 2008. The Point Wells site was selected to minimize effects on the nearshore marine environment, but unavoidable impacts to eelgrass (Zostera marina) beds are anticipated during construction. To mitigate these impacts and prepare for post-construction restoration, King County began implementing a multiyear eelgrass monitoring and restoration program in 2004, with the primary goal of returning intertidal and shallow subtidal habitat and eelgrass to pre-construction conditions. Major program elements related to eelgrass are (a) pre-construction monitoring, i.e., documenting initial eelgrassmore » conditions and degree of fluctuation over 5 years prior to construction, (b) eelgrass transplanting, including harvesting, offsite propagating, and stockpiling of local plants for post-construction planting, and (c) post-construction planting and subsequent monitoring. The program is detailed in the Eelgrass Restoration and Biological Resources Implementation Workplan (King County 2006). This report describes calendar year 2007 pre-construction activities conducted by Pacific Northwest National Laboratory (PNNL) for King County. Activities included continued propagation of eelgrass shoots at the PNNL Marine Sciences Laboratory (MSL) in Sequim, Washington, and monitoring of the experimental harvest plots in the marine outfall corridor area to evaluate recovery rates relative to harvest rates. In addition, 490 eelgrass shoots were also harvested from the Marine Outfall Corridor in July 2007 to supplement the plants in the propagation tank at the MSL, bringing the total number of shoots to 1464. Eelgrass densities were monitored in four of five experimental harvest plots established in the Marine Outfall Corridor. Changes in eelgrass density were evaluated in year-to-year comparisons with initial harvest rates. A net increase in eelgrass density from 2004 post-harvest to 2007 was observed in all plots, despite density decreases observed in 2006 in all plots and at most harvest rates. Eelgrass densities within individual subplots were highly variable from year to year, and the change in density in any interannual period was not related to initial 2004 harvest rate. Harvest rates of neighboring subplots did not appear to affect subplot eelgrass density (Woodruff et al. 2007). Three years post-harvest, eelgrass shoot densities were not significantly different from pre-harvest shoot densities at any harvest level. Additional plans are being discussed with King County to harvest all eelgrass from the construction corridor and hold in the propagation tanks at the MSL for post-construction planting. Under this plan, plants that would have been lost to construction will be held offsite until construction is completed. This strategy reduces and possibly eliminates the need to harvest eelgrass from donor beds located south of the construction area, allowing them to remain undisturbed. However, if eelgrass is harvested from donor beds, the monitoring of eelgrass growth at different harvest rates should help determine an optimum harvest rate that supports rapid recovery of donor eelgrass beds.« less

  11. EPA's/MassDEP's Permit for MWRA's Outfall and Combined Sewer Overflows

    EPA Pesticide Factsheets

    The EPA and the MassDEP are issuing the Massachusetts Water Resource Authority's NPDES Permit to discharge industrial wastewater and domestic wastewater from 43 member communities through the Deer Island Wastewater Treatment Plant.

  12. Influence of a Brazilian sewage outfall on the toxicity and contamination of adjacent sediments

    USGS Publications Warehouse

    Abessa, D.M.S.; Carr, R.S.; Rachid, B.R.F.; Sousa, E.C.P.M.; Hortelani, M.A.; Sarkis, J.E.

    2005-01-01

    The submarine sewage outfall of Santos (SSOS) is situated in the Santos Bay (São Paulo, Brazil) and is potentially a significant source of contaminants to the adjacent marine ecosystem. The present study aimed to assess the influence of SSOS on the sediment toxicity and contamination at Santos Bay. At the disposal site, sediments tended to be finer, organically richer and exhibited higher levels of surfactants and metals, sometimes exceeding the “Threshold Effect Level” values. The SSOS influence was more evident toward the East, where the sediments exhibited higher levels of TOC, total S and metals during the summer 2000 sampling campaign. Sediment toxicity to amphipods was consistently detected in four of the five stations studied. Amphipod survival tended to correlate negatively to Hg, total N and % mud. This work provides evidence that the SSOS discharge affects the quality of sediments from Santos Bay, and that control procedures are warranted.

  13. Cold Front Driven Flows Through Multiple Inlets of Lake Pontchartrain Estuary

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Li, Chunyan

    2017-11-01

    With in situ observations using acoustic Doppler current profilers (ADCPs) and numerical experiments using the Finite Volume Coastal Ocean Model (FVCOM), this study investigates atmospheric cold front induced exchange of water between Lake Pontchartrain Estuary and coastal ocean through multiple inlets. Results show that the subtidal hydrodynamic response is highly correlated with meteorological parameters. Northerly and westerly winds tend to push water out of Lake Pontchartrain, while south and east winds tend to produce currents flowing into it. For most cases, the subtidal water level is inversely correlated with the east wind, with the correlation coefficient being ˜0.8. The most important finding of this work is that, contrary to intuition, the cold front induced remote wind effect has the greatest contribution to the overall water level variation, while the local wind stress determines the surface slope inside the estuary. It is found that wind driven flow is roughly quasi steady state: the surface slope in the north-south direction is determined by the north-south wind stress, explaining ˜83% of the variability but less so in the east-west direction (˜43%). In other words, the north-south local wind stress determines the water level gradient in that direction in the estuary while the overall water level change is pretty much controlled by the open boundary which is the "remote wind effect," a regional response that can be illustrated only by a numerical model for a much larger area encompassing the estuary.

  14. The distribution of triclosan and methyl-triclosan in marine sediments of Barker Inlet, South Australia.

    PubMed

    Fernandes, Milena; Shareef, Ali; Kookana, Rai; Gaylard, Sam; Hoare, Sonja; Kildea, Tim

    2011-04-01

    In this work, we investigated the transport and burial of triclosan and its methylated derivative, in surface sediments near the mouth of Barker Inlet in South Australia. The most likely source of this commonly used bactericide to the area is a wastewater outfall discharging at the confluence of the inlet with marine waters. Triclosan was detected in all samples, at concentrations (5-27 μg kg(-1)) comparable to values found in other surface sediments under the influence of marine wastewater outfalls. Its dispersal was closely associated with fine and organic-rich fractions of the sediments. Methyl-triclosan was detected in approximately half of the samples at concentrations <11 μg kg(-1). The occurrence of this compound was linked to both wastewater discharges and biological methylation of the parent compound. Wastewater-borne methyl-triclosan had a smaller spatial footprint than triclosan and was mostly deposited in close proximity to the outfall. In situ methylation of triclosan likely occurs at deeper depositional sites, whereas the absence of methyl-triclosan from shallower sediments was potentially explained by photodegradation of the parent compound. Based on partition equilibrium, a concentration of triclosan in the order of 1 μg L(-1) was estimated in sediment porewaters, a value lower than the threshold reported for harmful effects to occur in the couple of species of marine phytoplankton investigated to date. Methyl-triclosan presents a greater potential for bioaccumulation than triclosan, but the implications of its occurrence to aquatic ecosystem health are difficult to predict given the lack of ecotoxicological data in the current literature.

  15. Tritium recapture behavior at a nuclear power reactor due to airborne releases.

    PubMed

    Harris, Jason T; Miller, David W; Foster, Doug W

    2008-08-01

    This paper describes the initiatives taken by Cook Nuclear Plant to study the on-site behavior of recaptured tritium released in its airborne effluents. Recapture is the process where a released radioactive effluent, in this case tritium, is brought back on-site through some mechanism. Precipitation, shifts in wind direction, or anthropogenic structures that restrict or alter effluent movement can all lead to recapture. The investigation was started after tritium was detected in the north storm drain outfall. Recent inadvertent tritium releases by several other nuclear power plants, many of which entered the groundwater, have led to increased surveillance and scrutiny by regulatory authorities and the general public. To determine the source of tritium in the outfall, an on-site surface water, well water, rainwater and air-conditioning condensate monitoring program was begun. Washout coefficients were also determined to compare with results reported by other nuclear power plants. Program monitoring revealed detectable tritium concentrations in several precipitation sample locations downwind of the two monitored containment building release vents. Tritium was found in higher concentrations in air-conditioning condensate, with a mean value of 528 Bq L(-1) (14,300 pCi L(-1)). The condensate, and to a lesser extent rainwater, were contributing to the tritium found in the north storm drain outfall. Maximum concentration values for each sample type were used to estimate the most conservative dose. A maximum dose of 1.1 x 10(-10) mSv (1.1 x 10(-8) mrem) total body was calculated to determine the health impact of the tritium detected.

  16. Coliform MPN counts of municipal raw sewage and sewage treatment plant in relation to the water of Buckingham Canal at Kalpakkam (Tamil Nadu, India).

    PubMed

    Kumar, A Yudhistra; Reddy, M Vikram

    2008-01-01

    Most Probable Number (MPN) of Total Coliforms (TC) and Faecal Coliforms (FC), and the physicochemical variables - temperature, Dissolved Oxygen (D.O.), Biochemical Oxygen Demand (B.O.D.), Chemical Oxygen Demand (C.O.D.), nitrates, phosphates and chlorides of municipal raw sewage and that of aeration tank and secondary clarifier of the Sewage Treatment Plant (STP), in relation to water at the treated sewage out-fall point, down-stream and up-stream of the Buckingham Canal at Kalpakkam were analyzed. Total Coliform and Faecal Coliform MPN counts were higher, 170 and 70/100 mL respectively in the raw sewage. However, the counts of the former in the aeration tank though remained similar, that of FC decreased to 50/100 mL; both of the counts further decreased to 30 and 44/100 mL respectively, in the secondary clarifier and were 110 and 23/100 mL, respectively at the treated sewage out-fall point in the canal. Total coliforms MPN was more than 18 times less in the water at the up-stream than that of the treated sewage out-fall point in the canal. Interestingly MPN of the FC in the up-stream water was nil while it was 8/100 mL in the canal's down-stream point. It is concluded that the FC, B.O.D., C.O.D., nitrates, phosphates and chlorides decreased and the D.O. increased in the treated-sewage due to the treatment of raw sewage through the STP.

  17. NPDES Permit for Hotchkiss National Fish Hatchery in Colorado

    EPA Pesticide Factsheets

    The U.S. Department of the Interior, Fish and Wildlife Service is authorized to discharge from outfalls at its Hotchkiss National Fish Hatchery wastewater treatment facility to the North Fork of the Gunnison River in Delta County, Colorado.

  18. Channel lining with fiber reinforced shotcrete

    DOT National Transportation Integrated Search

    1992-07-01

    The Arizona Department of Transportation (ADOT) has used four brands of discrete synthetic fibers in a drainage outfall channel lining as part of construction project ACI-10-3(270). The use of the fibers was intended to test the constructibility and ...

  19. ANALYSIS OF HEAVY METALS IN STORMWATER

    EPA Science Inventory

    Sampling has been undertaken to determine the concentrations of heavy metals, both particle-associated and dissolved, in stormwater from several storm sewer outfalls in Monmouth County, NJ. This project is ongoing in concert with coordinated studies of pathogen and nutrient input...

  20. [Estimate the abatement rate of septic tank sewage outfall soil on nitrogen pollutants of typical farmer household sewage].

    PubMed

    Zhou, Feng; Wang, Wen-Lin; Wang, Guo-Xiang; Ma, Jiu-Yuan; Wan, Yin-Jing; Tang, Xiao-Yan; Liang, Bin; Ji, Bin

    2013-10-01

    The surface soil on sewage outfall and effluent of farmer household septic tank were collected in situ from the typical region of plain river network areas in Taihu Lake Basin, and the typical rainfall (summer 30 mm . times-1, winter 5 mm times -1), temperature (summer 27 degrees C, winter 5 degrees C ) condition and pollutant load were artificial simulated by indoor simulation soil column experiments for estimating nitrogen abatement rate of rural sewage treated by the outfall soil and exploring the abatement rule in different seasons and weather process (7 days before the rain, 3 rainy days, 7 days after the rain). Results showed that: there was the significant difference (P <0.05) in abatement/increase rate of outfall soil on nitrogen between summer and winter. The TN abatement rate, NO-3 -N increase rate of summer showed a significant difference (P <0.01) among different weather processes, but the NH+4 -N abatement rate of summer and the TN, NH+4 -N abatement rate, NO -N increase rate of winter were not significant (P > 0. 05). Therefore, the TN, NH+4 -N abatement rate, NO-3 -N increase rate need to be divided by seasons, TN abatement rate, NO-3 -N increase rate of summer need to be divided by the weather process, which were 38.5% , - 25.0% , 46. 0% and 478. 1%, 913.8%, 382. 0% , before the rain, in rainy day, after the rain, respectively; while the NH+4 -N abatement rate of summer and the TN, NH+4 -N abatement rate, NO-3 -N increase rate of winter do not need to be divided by weather process, were 91.7% , 50.4% , 85.5% and 276.0% , respectively. In the summer, the TN abatement rate in different weather processes was not correlated with NH+4 -N abatement rate, but significantly negative correlated with NO-3 -N increase rate. In the winter, the stable accumulation of TN in soil was an important reason of the TN abatement rate which had no significant difference and kept a high level among different weather processes, and it was closely related to the stable accumulation of NH+4 -N in soil.

  1. Evaluation of Resuspension from Propeller Wash in DoD Harbors

    DTIC Science & Technology

    2016-05-01

    RESUSPENSION CHARACTERIZATION ............................................................. 11 5.3 DEEP -DRAFT RESUSPENSION STUDY IN PEARL HARBOR...RESUSPENSION FROM A DEEP -DRAFT VESSEL .............................................. 21 6.4.1 Field Observations Using ADCP...event resulted in validation of the FANS model for prediction of sediment resuspension by a deep draft vessel. While working on the resuspension

  2. First results about current and hydrological data collected in the southern Tyrrhenian subbasin during the GEOSTAR-2 deep-sea mission

    NASA Astrophysics Data System (ADS)

    Fuda, J.-L.; Millot, C.; Cazoulat, A.; Jouve, A.; Robin, S.; Rougier, G.; Etiope, G.; Favali, P.

    2003-04-01

    GEOSTAR is a multi-instrumented (300-kHz ADCP, CTD, transmissometer + several geophysical sensors) abyssal observatory (Beranzoli et al., 2000) that was deployed from September 2000 to March 2001 at about 1900m, 20 nm south-west from Ustica Island. This location was just below the mean depth of the interface separating the dense resident waters of Western Mediterranean origin from the lighter Eastern Mediterranean waters that have cascaded from the Channel of Sicily (now named Eastern Overflow Water, EOW; see http://ciesm.org/events/RT5-WaterMassAcronyms.pdf), as reported by Sparnocchia et al (1999). In order to specify the intermediate and deep circulation in the study area, six moorings were deployed from fall 2000 to fall 2001. Two moorings (M1, M5), equipped with classical current meters, were set 3 nm westwards and 6 nm eastwards from the observatory to specify the current field nearby. One mooring (M6), with a 400-m thermistor string surmounting an upward looking 75-kHz ADCP, was set at about 600 m, 45 nm miles westwards from the westernmost edge of Sicily, to monitor EOW mainly. Here we present the first results from the oceanographic sensors set on the observatory and on the M1, M5 and M6 moorings. In addition, one mooring (M2), supporting autonomous CTD's and set 20 nm northeast of Ustica at about 3400m, allowed confirming huge hydrological trends that were evidenced by previous measurements at the same site (Fuda et al., 2002). Two moorings (M3, M4) were set on the continental slope north of Ustica Island to monitor the alongslope flow from both the western and northern parts of the Tyrrhenian subbasin (analysis on hand). The most remarkable characteristic regarding the observatory T and S records resides in the regular occurrence, roughly every 2-3 weeks, of sharp peaks deviating from the constant background (T about 13.05°C, S about 38.51 psu) with values up to about 13.45°C and about 38.63 psu. These events are clearly indicative of rapid (hours/days) lowering of the interface separating EOW from the underlying waters of western origin. Additionally, the T-S peaks are undoubtedly associated with light transmission losses, which demonstrates that EOW is relatively turbid. Since the observatory was deployed in a bathymetric trough, the observed mean current direction did not match the general eastward circulation that exists in the region far from the seafloor (as expected from general circulation diagrams; see Millot, 1999). However, the 300-kHz ADCP recorded interesting dynamical features relative to the above-mentioned T-S peaks. Most of them were associated with sharp local maxima of the horizontal speed, either simultaneously or leading them by a few days. Moreover, the temporal derivative of the speed (including the vertical component) clearly indicates higher variations at the time the T-S peaks occurred. All these features appear consistent with the sampling of the deepest part of the energetic flow of EOW during/after the episodes of interface lowering, but the speed peaks might also be partly attributed to bottom resident waters being abruptly flushed. Another remarkable characteristic revealed by the ADCP is the occurrence of cyclonic loops having a period of about 50 hours, which corresponds, to our knowledge, to neither well-known nor expected phenomena. Similar T peaks were observed at M1 and M5 at depths similar to that of the observatory. However, although the T peaks on M1, M5 and the observatory undoubtedly signed interface lowering, neither any simultaneity nor any consistent propagation lag was found between the peaks recorded at each location, despite the short distances between them. As regards the currents, speeds of 20-25 cm/s towards east (which was also the mean direction there), were recorded at 750-900 m on M1 and M5. Below, the mean direction was increasingly influenced by the local bathymetry. Similar loops having a period of about 50 h were observed on M1 and M5 but correlations between all loops have still to be specified. On M6, the 75-kHz ADCP data clearly evidenced a very energetic 200m-thick bottom layer with maximum speeds up to 30-35 cm/s canalised eastwards due to the bottom topography, which corresponds to the EOW inflow. This inflow continuously displayed a pulsation at a period of about eight days which, to our knowledge, has never been reported previously. An intermediate layer of relatively low motion was found between 200m and 400m above sea floor, with maximum speeds rarely exceeding 10-15 cm/s (which roughly corresponds to the Levantine Intermediate Water (LIW) inflow). Above, the deepest part of the energetic and much variable flow of Atlantic Water (AW) was sampled with speeds up to 35-40 cm/s. The authors were supported by E.U. MAST III - Contract CT98-0183. Thanks are due to the crew of R/V Urania, managed by the Italian CNR. REFERENCES Beranzoli L., T. Braun, M. Calcara, D. Calore, R. Campaci, J.-M. Coudeville, A. De Santis, G. Etiope, P. Favali, F. Frugoni, J.-L. Fuda, F. Gamberi, F. Gasparoni, H. Gerber, M. Marani, J. Marvaldi, C. Millot, P. Palangio, G. Romeo, G. Smriglio, 2000. GEOSTAR, the first european long term seafloor observatory, EOS Transactions, vol. 81, n.5, 45-49. Fuda J.-L. , G. Etiope, C. Millot, P. Favali, M. Calcara, G. Smriglio and E. Boschi, 2001. Warming, salting and origin of the Tyrrhenian Deep Water. Geophys. Res. Letters, 29(18), 1886, doi:10.1029/2001GL014072, 2002. Millot C., 1999b. Circulation in the Western Mediterranean sea. J. Mar. Systems, 20, 1-4, 423-442. Sparnocchia, S., G.P. Gasparini, M. Astraldi, M. Borghini, and P. Pisteck, Dynamics and mixing of the Eastern Mediterranean outflow in the Tyrrhenian Basin. J. Mar. Syst., 20, 301-317, 1999.

  3. Rhode Island Department of Transportation Settlement

    EPA Pesticide Factsheets

    The RIDOT MS4 is an expansive system, with more than 25,000 catch basins and 3,800 outfalls that extend over 3,300 lane miles, approximately one-third of which are divided highways, the rest are rural and urban surface roads.

  4. USING PUBLIC-DOMAIN MODELS TO ESTIMATE BEACH BACTERIA CONCENTRATIONS

    EPA Science Inventory

    Stretches of beach along popular Huntington Beach, California are occassionally closed to swimming due to high levels of bacteria. One hypothesized source is the treated wastewater plume from the Orange County Sanitation District's (OCSD) ocean outfall. While three independent sc...

  5. VARIATION OF PATHOGEN DENSITIES IN URBAN STORMWATER RUNOFF WITH LAND USE

    EPA Science Inventory

    Stormwater runoff samples were collected from outfalls draining small municipal separate storm sewer systems. The samples were collected from three land use areas (high-density residential, low-density residential, and landscaped commercial). The concentrations of organisms in ...

  6. VARIATION OF PATHOGEN DENSITITES IN URBAN STORMWATER RUNOFF WITH LAND USE

    EPA Science Inventory

    Stormwater runoff samples were collected from outfalls draining small municipal separate storm sewer systems. The samples were collected from three land use areas (high-density residential, low-density residential, and landscaped commercial). The concentrations of organisms in ...

  7. Transitional Benthic Boundary Layers and their Influence on Nutrient Flux in Tidal Estuaries

    NASA Astrophysics Data System (ADS)

    Koetje, K. M.; Foster, D. L.; Lippmann, T. C.; Kalnejais, L. H.

    2016-12-01

    Quantifying the coupled physical and geochemical processes in the fluid-sediment interface is critical to managing coastal resources. This is of particular importance during times of enhanced hydrodynamic forcing where extreme tide or wind events can have a significant impact on water quality. A combination of field and laboratory experiments were used to examine the relationship between large-scale fluid shear stresses and geochemical fluxes at the fluid-sediment interface in the Great Bay Estuary, New Hampshire. Sediment geochemical measurements paired with flow field observations along estuary-wide transects over several tidal cycles provide nutrient load estimates that can be scaled to represent the whole Bay. Three-dimensional flow field measurements collected using a maneuverable personal watercraft were used to determine the spatial and temporal variability of the shear stress throughout the Bay. High-resolution bottom boundary layer dynamics were observed using a suite of acoustic Doppler current profilers (ADCP) in order to improve the accuracy of diffusive flux estimates by directly measuring the thickness of the benthic boundary layer. Over the 2.5 m tidal range and at water depths ranging from 0.3 m to 1.5 m at mean lower low water, peak mean flows ranged from 0.2 m/s to 1 m/s at the sampling sites. The dominant contribution of hydrodynamic forcing to the Bay is due to tidal flows, which are largely unidirectional during flood tide. Sediment grain size analysis characterized the bed at sampling sites as fine-grained sandy mud (d50 = 47 μm). Sampling during typical tidal flow conditions, a smooth turbulent flow field was observed and the threshold of motion was not exceeded. Along with sediment characterization, porosity profiles and erosion chamber experiments were used to characterize nutrient release. This host of data provides shear stress estimates that can constrain nutrient loads under variable hydrodynamic conditions.

  8. Observations of Lower Mississippi River Estuarine Dynamics: Effects of the Salt Wedge on Sediment Deposition

    NASA Astrophysics Data System (ADS)

    Ramirez, M. T.; Allison, M. A.

    2017-12-01

    The lowermost Mississippi River is subject to salt-wedge estuarine conditions during seasonally low flow, when seaward flow is unable to overcome density stratification. Previous studies in the Mississippi River salt wedge have shown the deposition of a fine sediment layer accumulating several mm/day beneath the reach where the salt wedge is present. Field studies were conducted during low flow in 2012-2015 utilizing ADCP, CTD, LISST, and physical samples to observe the physics of the salt wedge reach and to calculate rates and character of sediment trapping beneath the salt wedge. The field observations were summarized using a two-layer box-model representation of the reach to calculate water and sediment budgets entering, exiting, and stored within the reach. The salt wedge reach was found to be net depositional at rates up to 1.8 mm/day. The mechanism for transferring sediment mass from the downstream-flowing fluvial layer to the upstream-flowing marine layer appears to be flocculation, evidenced in LISST data by a spike in sediment particle diameters at the halocline. Applying reach-averaged rates of sediment trapping to a time-integrated model of salt-wedge position, we calculated annual totals ranging from 0.025 to 2.2 million tons of sediment deposited beneath the salt wedge, depending on salt-wedge persistence and upstream extent. Most years this seasonal deposit is remobilized during spring flood following the low-flow estuarine season, which may affect the timing of sediment delivery to the Gulf of Mexico, as well as particulate organic carbon, whose transport trajectory mirrors that of mineral sediment. These results are also relevant to ongoing dredging efforts necessary to maintain the economically-important navigation pathway through the lower Mississippi River, as well as planned efforts to use Mississippi River sedimentary resources to build land in the degrading Louisiana deltaic coast.

  9. Flow structure at an ice-covered river confluence

    NASA Astrophysics Data System (ADS)

    Martel, Nancy; Biron, Pascale; Buffin-Bélanger, Thomas

    2017-04-01

    River confluences are known to exhibit complex relationships between flow structure, sediment transport and bed-form development. Flow structure at these sites is influenced by the junction angle, the momentum flux ratio (Mr) and bed morphology. In cold regions where an ice cover is present for most of the winter period, the flow structure is also likely affected by the roughness effect of the ice. However, very few studies have examined the impact of an ice cover on the flow structure at a confluence. The aims of this study are (1) to describe the evolution of an ice cover at a river confluence and (2) to characterize and compare the flow structure at a river confluence with and without an ice cover. The field site is a medium-sized confluence (around 40 m wide) between the Mit is and Neigette Rivers in the Bas-Saint-Laurent region, Quebec (Canada). The confluence was selected because a thick ice cover is present for most of the winter allowing for safe field work. Two winter field campaigns were conducted in 2015 and 2016 to obtain ice cover measurements in addition to hydraulic and morphological measurements. Daily monitoring of the evolution of the ice cover was made with a Reconyx camera. Velocity profiles were collected with an acoustic Doppler current profiler (ADCP) to reconstruct the three-dimensional flow structure. Time series of photographs allow the evolution of the ice cover to be mapped, linking the processes leading to the formation of the primary ice cover for each year. The time series suggests that these processes are closely related with both confluence flow zones and hydro-climatic conditions. Results on the thickness of the ice cover from in situ measurements reveal that the ice thickness tends to be thinner at the center of the confluence where high turbulent exchanges take place. Velocity measurements reveal that the ice cover affects velocity profiles by moving the highest velocities towards the center of the profiles. A spatio-temporal conceptual model is presented to illustrate the main differences on the three-dimensional flow structure at the river confluence with and without the ice cover.

  10. High-fidelity numerical modeling of the Upper Mississippi River under extreme flood condition

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Le, Trung; DeWall, Petra; Bartelt, Nicole; Woldeamlak, Solomon; Yang, Xiaolei; Sotiropoulos, Fotis

    2016-12-01

    We present data-driven numerical simulations of extreme flooding in a large-scale river coupling coherent-structure resolving hydrodynamics with bed morphodynamics under live-bed conditions. The study area is a ∼ 3.2 km long and ∼ 300 m wide reach of the Upper Mississippi River, near Minneapolis MN, which contains several natural islands and man-made hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the Virtual Flow Simulator (VFS-Rivers) model, a recently developed in-house code, to investigate the flow and bed evolution of the river during a 100-year flood event. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. We integrate data from airborne Light Detection and Ranging (LiDAR), sub-aqueous sonar apparatus on-board a boat and in-situ laser scanners to construct a digital elevation model of the river bathymetry and surrounding flood plain, including islands and bridge piers. A field campaign under base-flow condition is also carried out to collect mean flow measurements via Acoustic Doppler Current Profiler (ADCP) to validate the hydrodynamic module of the VFS-Rivers model. Our simulation results for the bed evolution of the river under the 100-year flood reveal complex sediment transport dynamics near the bridge piers consisting of both scour and refilling events due to the continuous passage of sand dunes. We find that the scour depth near the bridge piers can reach to a maximum of ∼ 9 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems.

  11. Modeling the tides of Massachusetts and Cape Cod Bays

    USGS Publications Warehouse

    Jenter, H.L.; Signell, R.P.; Blumberg, A.F.; ,

    1993-01-01

    A time-dependent, three-dimensional numerical modeling study of the tides of Massachusetts and Cape Code Bays, motivated by construction of a new sewage treatment plant and ocean outfall for the city of Boston, has been undertaken by the authors. The numerical model being used is a hybrid version of the Blumberg and Mellor ECOM3D model, modified to include a semi-implicit time-stepping scheme and transport of a non-reactive dissolved constituent. Tides in the bays are dominated by the semi-diurnal frequencies, in particular by the M2 tide, due to the resonance of these frequencies in the Gulf of Maine. The numerical model reproduces, well, measured tidal ellipses in unstratified wintertime conditions. Stratified conditions present more of a problem because tidal-frequency internal wave generation and propagation significantly complicates the structure of the resulting tidal field. Nonetheless, the numerical model reproduces qualitative aspects of the stratified tidal flow that are consistent with observations in the bays.

  12. Study of dilution, height, and lateral spread of vertical dense jets in marine shallow water.

    PubMed

    Ahmad, Nadeem; Suzuki, Takayuki

    2016-01-01

    This study provides information for the design of sea outfalls to dispose of brine from desalination plants into shallow lagoons of the sea. The behavior of vertical dense jets was studied experimentally by discharging cold saline water vertically upward into a tank filled with hot freshwater under stagnant ambient conditions. The minimum return point dilution, μmin, was determined using thermocouples, and the maximum height, Z(m), and the lateral spread, R(sp), of the fountains were determined by observing shadowgraph pictures. The flow was turbulent and the densimetric Froude number Fr(0) varied from 9 to 18.8. Three mixing regimes were identified: deep, intermediate, and impinging mixing regimes. In the intermediate mixing regime, μ(min) and Z(m) were analyzed and compared with the results of deep water studies. The μ(min) and Z(m) values of fountains at an intermediate water depth were found to be higher than those of fountains at deep water depths. In the impinging regime, μ(min) decreases rapidly when a fountain starts to continuously impinge on the water surface, showing a noticeable disturbance in the water surface. Therefore, a good rule of thumb is to reduce the flow through multiport diffusers from desalination plants when the noticeable disturbance is observed from the top water surface.

  13. Estimated water use and availability in the lower Blackstone River basin, northern Rhode Island and south-central Massachusetts, 1995-99

    USGS Publications Warehouse

    Barolw, Lora K.

    2003-01-01

    The Blackstone River basin includes approximately 475 square miles in northern Rhode Island and south-central Massachusetts. The study area (198 square miles) comprises six subbasins of the lower Blackstone River basin. The estimated population for the study period 1995?99 was 149,651 persons. Water-use data including withdrawals, use, and return flows for the study area were collected. Withdrawals averaged 29.869 million gallons per day (Mgal/d) with an estimated 12.327 Mgal/d exported and an estimated 2.852 Mgal/d imported; this resulted in a net export of 9.475 Mgal/d. Public-supply withdrawals were 22.694 Mgal/d and self-supply withdrawals were 7.170 Mgal/d, which is about 24 percent of total withdrawals. Two users withdrew 4.418 Mgal/d of the 7.170 Mgal/d of self-supply withdrawals. Total water use averaged 20.388 Mgal/d. The largest aggregate water use was for domestic supply (10.113 Mgal/d, 50 percent of total water use), followed by industrial water use (4.127 Mgal/d, 20 percent), commercial water use (4.026 Mgal/d, 20 percent), non-account water use (1.866 Mgal/d, 9 percent) and agricultural water use (0.252 Mgal/d, 1 percent). Wastewater disposal averaged 15.219 Mgal/d with 10.395 Mgal/d or 68 percent disposed at National Pollution Discharge Elimination System (NPDES) outfalls for municipal wastewater-treatment facilities. The remaining 4.824 Mgal/d or 32 percent was self-disposed, 1.164 Mgal/d of which was disposed through commercial and industrial NPDES outfalls. Water availability (base flow plus safe-yield estimates minus streamflow criteria) was estimated for the low-flow period, which included June, July, August, and September. The median base flow for the low-flow period from 1957 to 1999 was estimated at 0.62 Mgal/d per square mile for sand and gravel deposits and 0.19 Mgal/d per square mile for till deposits. Safe-yield estimates for public-supply reservoirs totaled 20.2 Mgal/d. When the 7-day, 10-year low flow (7Q10) was subtracted from base flow, an estimated median rate of 50.5 Mgal/d of water was available for the basin during August, the lowest base-flow month. In addition, basin-wide water-availability estimates were calculated with and without streamflow criteria for each month of the low-flow period at the 75th, 50th, and 25th percentiles of base flow. These water availability estimates ranged from 42.3 to 181.7 Mgal/d in June; 20.2 to 96.7 Mgal/d in July; 20.2 to 85.4 Mgal/d in August, and 20.2 to 97.5 Mgal/d in September. Base flow was less than the Aquatic Base Flow (ABF), minimum flow considered adequate to protect aquatic fauna, from July through September at the 25th percentile and in August and September at the 50th percentile. A basin-stress ratio, which is equal to total withdrawals divided by water availability, was also calculated. The basin-stress ratio for August at the 50th percentile of base flow minus the 7Q10 was 0.68 for the study area. For individual subbasins, the ratio ranged from 0.13 in the Chepachet River subbasin to 0.95 in the Abbot Run subbasin. In addition, basin-stress ratios with and without streamflow criteria for all four months of the low-flow period were calculated at the 75th, 50th, and 25th percentiles of base flow. These values ranged from 0.19 to 0.83 in June, 0.36 to 1.50 in July, 0.40 to 1.14 in August, and 0.31 to 0.78 in September. Ratios could not be calculated by using the ABF at the 50th and 25th percentiles in August and September because the estimated base flow was less than the ABF. The depletion of the Blackstone River flows by Cumberland Water Department Manville well no. 1 in Rhode Island was estimated with the computer program STRMDEPL and specified daily pumping rates. STRMDEPL uses analytical solutions to calculate time-varying rates of streamflow depletion caused by pumping at wells. Results show that streamflow depletions were about 97 percent of average daily pumping rates for 1995 through 1999. Relative streamflow depletions for

  14. 33 CFR 203.31 - Authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... debris blockages of critical water supply intakes, sewer outfalls, etc.; clearance of the minimum amounts... intended to prevent imminent loss of life or significant public property, or to protect against significant... following: technical advice and assistance; lending of flood fight supplies, e.g., sandbags, lumber...

  15. NPDES Permit for Westmoreland Resources, Inc.'s Absaloka Mine South Extension in Montana

    EPA Pesticide Factsheets

    Under NPDES permit MT-0030783, Westmoreland Resources, Inc. is authorized to discharge mine drainage from outfalls associated with the Absaloka Mine South Extension on the Crow Indian reservation near Hardin, Montana to Middle Fork of Sarpy Creek.

  16. Water Biosensor Challenge to Address Toxicity of Water

    EPA Science Inventory

    An ongoing concern for water treatment systems and resource managers is the need to monitor for the presence of increasing number of pollutants from agricultural, municipal, and industrial outfalls that are present in U.S. source waters. The associated environmental compounds can...

  17. NPDES Permit for Denver Federal Center Municipal Separate Storm Sewer System in Colorado

    EPA Pesticide Factsheets

    Denver Federal Center Municipal Separate Storm Sewer System is authorized to discharge from all municipal separate storm sewer outfalls existing as of the effective date of permit CO-R042004 to receiving waters Lakewood, Jefferson County, Colorado.

  18. VARIATIONS OF MICROORGANISM CONCENTRATIONS IN URBAN STORMWATER RUNOFF WITH LAND USE AND SEASONS

    EPA Science Inventory

    Stormwater runoff samples were collected from outfalls draining small municipal separate storm sewer systems. The samples were collected from three different land use areas based on local designation (high-density residential, low-density residential, and landscaped commercial)....

  19. NPDES Permit for Air Force Academy Municipal Separate Storm Sewer System in Colorado

    EPA Pesticide Factsheets

    Under NPDES permit CO-R042007, the U.S. Air Force Academy is authorized to discharge from all municipal separate storm sewer system outfalls to the receiving waters specified in the permit in El Paso County, Colorado.

  20. COLLAPSE OF A FISH POPULATION FOLLOWING EXPOSURE TO A SYNTHETIC ESTROGEN

    EPA Science Inventory

    Municipal wastewaters are a complex mixture containing estrogens and estrogen mimics that are known to affect the reproductive health of wild fishes. Male fishes downstream of some wastewater outfalls produce vitellogenin (VTG) (a protein normally synthesized by females during oo...

  1. The Clear Creek Envirohydrologic Observatory: From Vision Toward Reality

    NASA Astrophysics Data System (ADS)

    Just, C.; Muste, M.; Kruger, A.

    2007-12-01

    As the vision of a fully-functional Clear Creek Envirohydrologic Observatory comes closer to reality, the opportunities for significant watershed science advances in the near future become more apparent. As a starting point to approaching this vision, we focused on creating a working example of cyberinfrastructure in the hydrologic and environmental sciences. The system will integrate a broad range of technologies and ideas: wired and wireless sensors, low power wireless communication, embedded microcontrollers, commodity cellular networks, the internet, unattended quality assurance, metadata, relational databases, machine-to-machine communication, interfaces to hydrologic and environmental models, feedback, and external inputs. Hardware: An accomplishment to date is "in-house" developed sensor networking electronics to compliment commercially available communications. The first of these networkable sensors are dielectric soil moisture probes that are arrayed and equipped with wireless connectivity for communications. Commercially available data logging and telemetry-enabled systems deployed at the Clear Creek testbed include a Campbell Scientific CR1000 datalogger, a Redwing 100 cellular modem, a YA Series yagi antenna, a NP12 rechargeable battery, and a BP SX20U solar panel. This networking equipment has been coupled with Hach DS5X water quality sondes, DTS-12 turbidity probes and MicroLAB nutrient analyzers. Software: Our existing data model is an Arc Hydro-based geodatabase customized with applications for extraction and population of the database with third party data. The following third party data are acquired automatically and in real time into the Arc Hydro customized database: 1) geophysical data: 10m DEM and soil grids, soils; 2) land use/land cover data; and 3) eco-hydrological: radar-based rainfall estimates, stream gage, streamlines, and water quality data. A new processing software for data analysis of Acoustic Doppler Current Profilers (ADCP) measurements has been finalized. The software package provides mean flow field and turbulence characteristics obtained by operating the ADCP at fixed points or using the moving-boat approach. Current Work: The current development work is focused on extracting and populating the Clear Creek database with in-situ measurements acquired and transmitted in real time with sensors deployed in the Clear Creek watershed.

  2. The Impact of Adult Degree-Completion Programs on the Organizational Climate of Christian Colleges and Universities

    ERIC Educational Resources Information Center

    Giles, Pamela

    2010-01-01

    Leaders in Christian higher education are often unaware of how adult degree completion programs (ADCPs) impact a school's organizational behavior, and no research has examined employees' perceptions of its impact. This nonexperimental, descriptive study examined differences in employees' perceptions of the impact on organizational climate of the…

  3. Durable antitumor responses to CD47 blockade require adaptive immune stimulation

    PubMed Central

    Sockolosky, Jonathan T.; Dougan, Michael; Ingram, Jessica R.; Ho, Chia Chi M.; Kauke, Monique J.; Almo, Steven C.; Ploegh, Hidde L.; Garcia, K. Christopher

    2016-01-01

    Therapeutic antitumor antibodies treat cancer by mobilizing both innate and adaptive immunity. CD47 is an antiphagocytic ligand exploited by tumor cells to blunt antibody effector functions by transmitting an inhibitory signal through its receptor signal regulatory protein alpha (SIRPα). Interference with the CD47–SIRPα interaction synergizes with tumor-specific monoclonal antibodies to eliminate human tumor xenografts by enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP), but synergy between CD47 blockade and ADCP has yet to be demonstrated in immunocompetent hosts. Here, we show that CD47 blockade alone or in combination with a tumor-specific antibody fails to generate antitumor immunity against syngeneic B16F10 tumors in mice. Durable tumor immunity required programmed death-ligand 1 (PD-L1) blockade in combination with an antitumor antibody, with incorporation of CD47 antagonism substantially improving response rates. Our results highlight an underappreciated contribution of the adaptive immune system to anti-CD47 adjuvant therapy and suggest that targeting both innate and adaptive immune checkpoints can potentiate the vaccinal effect of antitumor antibody therapy. PMID:27091975

  4. Biodegradation of 17β-Estradiol, Estrone and Testosterone in Stream Sediments

    NASA Astrophysics Data System (ADS)

    Bradley, P. M.; Chapelle, F. H.; Barber, L. B.; McMahon, P. B.; Gray, J. L.; Kolpin, D. W.

    2009-12-01

    The potentials for in situ biodegradation of 17β-estradiol (E2), estrone (E1), and testosterone (T) were investigated in three, hydrologically-distinct, WWTP-impacted streams in the United States. Relative differences in the mineralization of [4-14C] substrates were assessed in oxic microcosms containing sediment or water-only from locations upstream and downstream of the WWTP outfall in each system. Upstream samples provided insight into the biodegradative potential of sediment microbial communities that were not under the immediate impact of WWTP effluent. Upstream sediment from all three systems demonstrated significant mineralization of the “A” ring of E2, E1 and T, with the potential of T biodegradation consistently greater than of E2 and no systematic difference in the potentials of E2 and E1. Downstream samples provided insight into the impacts of effluent on reproductive hormone biodegradation. Significant “A” ring mineralization was also observed in downstream sediment, with the potentials for E1 and T mineralization being substantially depressed relative to upstream samples. In marked contrast, the potentials for E2 mineralization immediately downstream of the WWTP outfalls were more than double that of upstream samples. E2 mineralization was also observed in water, albeit at insufficient rate to prevent substantial downstream transport in the water column. The results of this study indicate that, in combination with sediment sorption processes which effectively scavenge hydrophobic contaminants from the water column and immobilize them in the vicinity of the WWTP outfall, aerobic biodegradation of reproductive hormones can be an environmentally important mechanism for non-conservative (destructive) attenuation of hormonal endocrine disruptors in effluent-impacted streams.

  5. Potential impacts of discharging tertiary-treated wastewater into Port Royal Sound, South Carolina

    USGS Publications Warehouse

    Speiran, G.K.; Belval, D.L.

    1985-01-01

    An assessment of physical characteristics of Port Royal Sound was combined with the results of a dye tracer study and with data collected from a previous environmental study to describe the impact on the water quality from discharging tertiary treated wastewater into the sound. Calculated velocities for the time of maximum velocity in the tidal cycle ranged from 2.32 ft/sec near the bottom to 4.65 ft/sec near the surface of the sound in a cross section in the vicinity of a proposed wastewater outfall. Vertical velocity distributions calculated for the time of maximum velocity were similar at all stations at which velocities were measured except the station in shallow water near the shore. A recent bathymetric chart of the vicinity of the proposed outfall indicates that a bar extends farther along the northern shore of Hilton Head Island than indicated on earlier nautical charts of Port Royal Sound. Continued extension of this bar could alter the impact on water quality from discharge of treated wastewater into the sound. Further study may be needed to monitor changes in the bar if the outfall is located between the bar and Hilton Head Island. Conservative calculations based on the results of the dye tracer study indicate that the discharge of 10.9 million gallons/day of wastewater having concentrations of biochemical oxygen demand and suspended solids of 15 mg/L will result in a maximum cumulative increase in concentrations of biochemical oxygen demand of < 0.01 mg/L and no increase in concentrations of suspended solids at high slack tide in the part of Port Royal Sound most affected by the proposed wastewater discharge. (Author 's abstract)

  6. Contamination of nonylphenolic compounds in creek water, wastewater treatment plant effluents, and sediments from Lake Shihwa and vicinity, Korea: Comparison with fecal pollution

    USGS Publications Warehouse

    Choi, Minkyu; Furlong, Edward T.; Moon, Hyo-Bang; Yu, Jun; Choi, Hee-Gu

    2011-01-01

    Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32–875 μg L-1 in creeks, 0.61–87.0 μg L-1 in WWTP effluents, and 29.3–230 μg g-1 TOC in sediments. Concentrations of COP were 0.09–19.0 μg L-1 in creeks, 0.11–44.0 μg L-1 in WWTP effluents, and 2.51–438 μg g-1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d-1 for NPs and 1.00 kg d-1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa.

  7. Incidence of enteroviruses in Mamala Bay, Hawaii using cell culture and direct polymerase chain reaction methodologies.

    PubMed

    Reynolds, K A; Roll, K; Fujioka, R S; Gerba, C P; Pepper, I L

    1998-06-01

    The consequence of point and nonpoint pollution sources, discharged into marine waters, on public recreational beaches in Mamala Bay, Hawaii was evaluated using virus cell culture and direct reverse transcriptase-polymerase chain reaction (RT-PCR). Twelve sites, nine marine, two freshwater (one stream and one canal), and one sewage, were assessed either quarterly or monthly for 1 year to detect the presence of human enteric viruses. Water samples were concentrated from initial volumes of 400 L to final volumes of 30 mL using Filterite electronegative cartridge filters and a modified beef extract elution procedure. Cell culture was applied using the Buffalo Green Monkey kidney cell line to analyze samples for enteroviruses. Positive samples were also evaluated by RT-PCR, using enterovirus-specific primers. Levels of RT-PCR inhibition varied with each concentrated sample. Resin column purification increased PCR detection sensitivity by at least one order of magnitude in a variety of sewage outfall and recreational marine water samples but not in the freshwater canal samples. Using cell culture, viable enteroviruses were found in 50 and 17% of all outfall and canal samples, respectively. Samples were positive at beaches 8% of the time. These data illustrate the potential public health hazard associated with recreational waters. Using direct PCR, viruses were detected at the outfall but were not found in any beach or canal samples, in part, owing to substances that inhibit PCR. Therefore, conventional cell culture is the most effective means of detecting low levels of infectious enteroviruses in environmental waters, whereas direct RT-PCR is rendered less effective by inhibitory compounds and low equivalent reaction volumes.

  8. Review of Oceanographic and Geochemical Data Collected in Massachusetts Bay during a Large Discharge of Total Suspended Solids from Boston's Sewage-Treatment System and Ocean Outfall in August 2002

    USGS Publications Warehouse

    Bothner, Michael H.; Butman, Bradford; Casso, Michael A.

    2010-01-01

    During the period August 14-23, 2002, the discharge of total suspended solids (TSS) from the Massachusetts Water Resources Authority sewage-treatment plant ranged from 32 to 132 milligrams per liter, causing the monthly average discharge to exceed the limit specified in the National Pollution Discharge Elimination System permit. Time-series monitoring data collected by the U.S. Geological Survey in western Massachusetts Bay were examined to evaluate changes in environmental conditions during and after this exceedance event. The rate of sediment trapping and the concentrations of near-bottom suspended sediment measured near the outfall in western Massachusetts Bay increased during this period. Because similar increases in sediment-trapping rate were observed in the summers of 2003 and 2004, however, the increase in 2002 cannot be definitively attributed to the increased TSS discharge. Concentrations of copper and silver in trapped sediment collected 10 and 20 days following the 2002 TSS event were elevated compared to those in pre-event samples. Maximum concentrations were less than 50 percent of toxicity guidelines. Photographs of surficial bottom sediments obtained before and after the TSS event do not show sediment accumulation on the sea floor. Concentrations of silver, Clostridium perfringens, and clay in surficial bottom sediments sampled 10 weeks after the discharge event at a depositional site 3 kilometers west of the outfall were unchanged from those in samples obtained before the event. Simulation of the TSS event by using a coupled hydrodynamic-wave-sediment-transport model could enhance understanding of these observations and of the effects of the exceedance on the local marine environment.

  9. Dredging for dilution: A simulation based case study in a Tidal River.

    PubMed

    Bilgili, Ata; Proehl, Jeffrey A; Swift, M Robinson

    2016-02-01

    A 2-D hydrodynamic finite element model with a Lagrangian particle module is used to investigate the effects of dredging on the hydrodynamics and the horizontal dilution of pollutant particles originating from a wastewater treatment facility (WWTF) in tidal Oyster River in New Hampshire, USA. The model is driven by the semi-diurnal (M2) tidal component and includes the effect of flooding and drying of riverine mud flats. The particle tracking method consists of tidal advection plus a horizontal random walk model of sub-grid scale turbulent processes. Our approach is to perform continuous pollutant particle releases from the outfall, simulating three different scenarios: a base-case representing the present conditions and two different dredged channel/outfall location configurations. Hydrodynamics are investigated in an Eulerian framework and Lagrangian particle dilution improvement ratios are calculated for all cases. Results show that the simulated hydrodynamics are consistent with observed conditions. Eulerian and Lagrangian residuals predict an outward path suggesting flushing of pollutants on longer (>M2) time scales. Simulated dilution maps show that, in addition to dredging, the relocation of the WWTF outfall into the dredged main channel is required for increased dilution performance. The methodology presented here can be applied to similar managerial problems in all similar systems worldwide with relatively little effort, with the combination of Lagrangian and Eulerian methods working together towards a better solution. The statistical significance brought into methodology, by using a large number of particles (16000 in this case), is to be emphasized, especially with the growing number of networked parallel computer clusters worldwide. This paper improves on the study presented in Bilgili et al., 2006b, by adding an Eulerian analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Antidepressant pharmaceuticals in two U.S. effluent-impacted streams: Occurrence and fate in water and sediment and selective uptake in fish neural tissue

    USGS Publications Warehouse

    Schultz, M.M.; Furlong, E.T.; Kolpin, D.W.; Werner, S.L.; Schoenfuss, H.L.; Barber, L.B.; Blazer, V.S.; Norris, D.O.; Vajda, A.M.

    2010-01-01

    Antidepressant pharmaceuticals are widely prescribed in the United States; release of municipal wastewater effluent is a primary route introducing them to aquatic environments, where little is known about their distribution and fate. Water, bed sediment, and brain tissue from native white suckers (Catostomus commersoni)were collected upstream and atpoints progressively downstream from outfalls discharging to two effluentimpacted streams, Boulder Creek (Colorado) and Fourmile Creek (Iowa). A liquid chromatography/tandem mass spectrometry method was used to quantify antidepressants, including fluoxetine, norfluoxetine (degradate), sertraline, norsertraline (degradate), paroxetine, Citalopram, fluvoxamine, duloxetine, venlafaxine, and bupropion in all three sample matrices. Antidepressants were not present above the limit of quantitation in water samples upstream from the effluent outfalls but were present at points downstream at ng/L concentrations, even at the farthest downstream sampling site 8.4 km downstream from the outfall. The antidepressants with the highest measured concentrations in both streams were venlafaxine, bupropion, and Citalopram and typically were observed at concentrations of at least an order of magnitude greater than the more commonly investigated antidepressants fluoxetine and sertraline. Concentrations of antidepressants in bed sediment were measured at ng/g levels; venlafaxine and fluoxetine were the predominant chemicals observed. Fluoxetine, sertraline, and their degradates were the principal antidepressants observed in fish brain tissue, typically at low ng/g concentrations. Aqualitatively different antidepressant profile was observed in brain tissue compared to streamwater samples. This study documents that wastewater effluent can be a point source of antidepressants to stream ecosystems and that the qualitative composition of antidepressants in brain tissue from exposed fish differs substantially from the compositions observed in streamwater and sediment, suggesting selective uptake. ?? 2010 American Chemical Society.

  11. Coliphage and indigenous phage in Mamala Bay, Oahu, Hawaii.

    PubMed

    Paul, J H; Rose, J B; Jiang, S C; London, P; Xhou, X; Kellogg, C

    1997-01-01

    Public concern over the discharge of primarily treated sewage by two offshore outfalls in Mamala Bay, Oahu, prompted a multidisciplinary study to determine the impact of such activities on the water quality in the bay and at adjacent recreational beaches. As part of this study, we determined the abundance of coliphage as an indicator of fecal pollution along with total viral direct counts and phages infective for Vibrio parahaemoltyicus 16 at stations in Mamala Bay in four quarterly samplings over 13 months. Coliphage (< 1 to 1.2 x 10(3)/liter) were found during each quarterly sampling along an offshore transect to the Sand Island waste treatment facility outfall. The nonpoint coastal stations (Pearl Harbor, Ala Wai Canal, and Ke'ehi Lagoon) had high levels of coliphage during the storm event sampling in February 1994 but much lower levels or none when sampled during dry weather. Coliphage were absent at all samplings at Waikiki Beach and at the control station off Diamond Head. Viral direct counts in eutrophic coastal stations (Pearl Harbor, Ke'ehi Lagoon, Ala Moana Beach, and Ala Wai canal) averaged 10(9)/liter, while counts at offshore stations ranged from 9 x 10(7) to 1 x 10(9) viruses/liter, values similar to those for other marine environments. Vibriophage were found mainly in eutrophic coastal environments (Ala Wai Canal, Pearl Harbor, and Ke'ehi Lagoon) and at the Sand Island Transect stations D1 and D2. The greatest abundance was found during the storm event (February 1994) sampling. These results suggest that the Sand Island outfall influenced the water quality of the immediate surrounding waters but had little effect on the quality of the recreational beaches. Nonpoint discharge sources appeared to be more important in the distribution of fecal indicators in the coastal zone.

  12. Temporal variability of combined sewer overflow contaminants: evaluation of wastewater micropollutants as tracers of fecal contamination.

    PubMed

    Madoux-Humery, Anne-Sophie; Dorner, Sarah; Sauvé, Sébastien; Aboulfadl, Khadija; Galarneau, Martine; Servais, Pierre; Prévost, Michèle

    2013-09-01

    A monitoring program was initiated for two sewage outfalls (OA and OB) with different land uses (mainly residential versus institutional) over the course of a year. Eleven CSO events resulting from fall and summer precipitations and a mixture of snowmelt and precipitation in late winter and early spring were monitored. Median concentrations measured in CSOs were 1.5 × 10(6)Escherichia coli/100 mL, 136.0 mg/L of Total Suspended Solids (TSS), 4599.0 ng/L of caffeine (CAF), 158.9 ng/L of carbamazepine (CBZ), in outfall OA and 5.1 × 10(4)E. coli/100 mL, 167.0 mg TSS/L, 300.8 ng CAF/L, 4.1 ng CBZ/L, in outfall OB. Concentration dynamics in CSOs were mostly related to the dilution by stormwater and the time of day of the onset of overflows. Snowmelt was identified as a critical period with regards to the protection of drinking water sources given the high contaminant concentrations and long duration of events in addition to a lack of restrictions on overflows during this period. Correlations among measured parameters reflected the origins and transport pathways of the contaminants, with E. coli being correlated with CBZ. TSS were not correlated with E. coli because E. coli was found to be mostly associated with raw sewage whereas TSS were additionally from the resuspension of in-sewer deposits and surface runoff. In receiving waters, E. coli remained the best indicator of fecal contamination in strongly diluted water samples as compared to WWMPs because WWMPs can be diluted to below their detection limits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Environmental analysis of Acid/middle Pueblo Canyon, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.

    1982-08-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, and Pueblo Canyon found residual radioactivity at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons, all the way to the Rio Grande. The largest reservoir of radioactive material is in lower Pueblo Canyon, which is on DOE property. The only areas where residual radioactivity exceeds the proposed cleanup criteria are at the former vehicle decontamination facility, located between the former treatment plant site and Acid Canyon, around the former untreated waste outfall and for a short distancemore » below, and in two small areas farther down in Acid Canyon. The three alternatives proposed are (1) to take no action, (2) to fence the areas where the residual radioactivity exceeds the proposed criteria (minimal action), and (3) to clean up the former vehicle decontamination facility and around the former untreated waste outfall. Calculations based on actual measurements indicate that the annual dose at the location having the greatest residual radioactivity would be about 12% of the applicable guideline. Most doses are much smaller than that. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is very small. The preferred alternative is to clean up the areas around the former vehicle decontamination facility and the untreated waste outfall. This course of action is recommended not because of any real danger associated with the residual radioactivity, but rather because the cleanup operation is a minor effort and would conform with the ALARA (as low as reasonably achievable) philosophy.« less

  14. OCEAN OUTFALLS. II: SPATIAL EVOLUTION OF SUBMERGED WASTEFIELD

    EPA Science Inventory

    Some of the basic features of submerged wastefield formation in stratified currents are reported in this paper. ilution increased with distance from the diffuser in the initial mixing region until it attained a maximum value, which is the initial dilution, after which it remained...

  15. CHARACTERIZATION OF METALS IN RUNOFF FROM RESIDENTIAL AND HIGHWAY STORM SEWERS

    EPA Science Inventory

    Stormwater runoff was sampled from six storm sewer outfalls in residential and highway settings in Monmouth County, NJ to determine the colloidal and dissolved metal concentrations. Heavy metals, common pollutants in natural waters and stormwater, are known to associate with par...

  16. MODELS FOR SUBMARINE OUTFALL - VALIDATION AND PREDICTION UNCERTAINTIES

    EPA Science Inventory

    This address reports on some efforts to verify and validate dilution models, including those found in Visual Plumes. This is done in the context of problem experience: a range of problems, including different pollutants such as bacteria; scales, including near-field and far-field...

  17. NPDES Permit for Fort Carson Municipal Separate Storm Sewer System in Colorado

    EPA Pesticide Factsheets

    Under NPDES permit CO-R042001, Fort Carson is authorized to discharge from all municipal separate storm sewer system outfalls to receiving waters which include B-Ditch, Clover Ditch, Infantry Creek, Rock Creek, and others in El Paso County, Colorado.

  18. NPDES Permit for Denver VA Hospital Municipal Separate Storm Sewer System in Colorado

    EPA Pesticide Factsheets

    Under NPDES permit CO-R042008, the Veterans Administration (Medical Center, Denver Campus) is authorized to discharge from all municipal separate storm sewer system outfalls to the receiving waters specified in the permit in the City of Denver, Colorado.

  19. Measuring restoration in intertidal macrophyte assemblages following sewage treatment upgrade.

    PubMed

    Díez, I; Santolaria, A; Muguerza, N; Gorostiaga, J M

    2013-03-01

    Understanding the effectiveness of pollution mitigation actions in terms of biological recovery is essential if the environmental protection goals of management policies are to be achieved. Few studies, however, have evaluated the restoration of seaweed assemblages following pollution abatement. This study aimed to investigate the response of macroalgal vegetation to the upgrade of a wastewater treatment plant using a "Beyond BACI" experimental design. Temporal differences in vegetation structure between the outfall and two control locations over a 10-year period were assessed. Improvement in sewage treatment was found to lead to increases in diversity, cover of morphologically complex algae and spatial heterogeneity. The multivariate composition of assemblages at the outfall location became more similar to that at the controls; however, their complete recovery may depend on factors other than pollution removal. Our findings also suggest that the extent of restoration and the time required to detect it are largely predetermined by the response variables we choose to assess recovery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Comparison of wastewater-associated contaminants in the bed sediment of Hempstead Bay, New York, before and after Hurricane Sandy

    USGS Publications Warehouse

    Fisher, Shawn C.; Phillips, Patrick J.; Brownawell, Bruce J.; Browne, James

    2016-01-01

    Changes in bed sediment chemistry of Hempstead Bay (HB) have been evaluated in the wake of Hurricane Sandy, which resulted in the release of billions of liters of poorly-treated sewage into tributaries and channels throughout the bay. Surficial grab samples (top 5 cm) collected before and (or) after Hurricane Sandy from sixteen sites in HB were analyzed for 74 wastewater tracers and steroid hormones, and total organic carbon. Data from pre- and post-storm comparisons of the most frequently detected wastewater tracers and ratios of steroid hormone and of polycyclic aromatic hydrocarbon concentrations indicate an increased sewage signal near outfalls and downstream of where raw sewage was discharged. Median concentration of wastewater tracers decreased after the storm at sites further from outfalls. Overall, changes in sediment quality probably resulted from a combination of additional sewage inputs, sediment redistribution, and stormwater runoff in the days to weeks following Hurricane Sandy.

  1. Reducing PEC uncertainty in coastal zones: a case study on carbamazepine, oxcarbazepine and their metabolites.

    PubMed

    Fenet, Hélène; Arpin-Pont, Lauren; Vanhoutte-Brunier, Alice; Munaron, Dominique; Fiandrino, Annie; Martínez Bueno, Maria-Jesus; Boillot, Clotilde; Casellas, Claude; Mathieu, Olivier; Gomez, Elena

    2014-07-01

    Concentrations of the antiepileptic drugs carbamazepine (Cbz), oxcarbazepine (OxCz) and their main metabolites were predicted in a wastewater treatment plant (WTP) and in the vicinity of its submarine outfall located in a Mediterranean coastal zone. Refined predicted environmental concentrations (PECs) were calculated in effluents based on consumption data and human excretion rates. PECs were estimated in the sea using the hydrodynamic MARS 3D model integrating meteorological data, oceanic conditions (wind, tide, atmospheric pressure), freshwater and sewage inputs. Measured environmental concentrations (MECs) were compared to PECs to assess the estimation relevance. In the coastal zone, PEC and MEC were in the same magnitude range. Modeling of Cbz diffusion and advection just above the submarine outfall showed the influence of the thermocline during summer, with low diffusion of Cbz from the bottom to the surface. This work allowed understanding the dispersion of target compounds and deserved further development for a better acknowledgement of vulnerability at local scales. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Environmental consequences of the flooding of the Bay Park Sewage Treatment Plant during Superstorm Sandy.

    PubMed

    Swanson, R Lawrence; Wilson, Robert; Brownawell, Bruce; Willig, Kaitlin

    2017-08-15

    Failure of the Bay Park Sewage Treatment Plant (STP) during Superstorm Sandy led to adverse effects in the waters of Hempstead Bay, Long Island, NY. These appear to be related to large discharges of partially treated sewage through its primary and auxiliary outfalls. Modeled dilution discharges indicate that sewage infiltrated the bay, remaining up to 10days. Water column impacts included salinity and dissolved oxygen declines, and biological oxygen demand and nitrogen concentration increases. While the STP does not appear to have released fecal coliform, there were elevated levels of enterococci within the bay for a considerable period following the storm, probably from multiple sources. The STP's reduced functioning and associated environmental impacts, even with resilience upgrades, are not conducive to removing the bay from the list of Impaired Water Bodies. The results reinforce the need to transfer the discharge from the existing outfall to the ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of the South Bay Ocean Outfall (SBOO) on ocean beach water quality near the USA-Mexico border.

    PubMed

    Gersberg, Richard; Tiedge, Jürgen; Gottstein, Dana; Altmann, Sophie; Watanabe, Kayo; Lüderitz, Volker

    2008-04-01

    In early 1999, primary treatment and discharge of sewage from Tijuana, Mexico (approximately 95 million liters per day) began through South Bay Ocean Outfall (SBOO) into the ocean 4.3 km offshore. In this study, statistical comparisons were made of the bacterial water quality (total and fecal coliforms and enterococci densities) of the ocean, both before and after discharge of sewage to the SBOO began, so that the effect of this ocean discharge on nearshore ocean water quality could be quantitatively assessed. The frequency of exceedence of bacterial indicator thresholds was statistically analyzed for 11 shore (surfzone) stations throughout US and Mexico using the Fisher's exact test, for the years before (1995-1998) as compared to after the SBOO discharge began (1999-2003). Only four of the 11 shoreline stations (S2, S3, S11, and S12) showed significant improvement (decreased frequency of exceedence of bacterial indicator thresholds) after SBOO discharge began.

  4. Comparison of wastewater-associated contaminants in the bed sediment of Hempstead Bay, New York, before and after Hurricane Sandy.

    PubMed

    Fisher, Shawn C; Phillips, Patrick J; Brownawell, Bruce J; Browne, James P

    2016-06-30

    Changes in bed sediment chemistry of Hempstead Bay (HB) have been evaluated in the wake of Hurricane Sandy, which resulted in the release of billions of liters of poorly-treated sewage into tributaries and channels throughout the bay. Surficial grab samples (top 5cm) collected before and (or) after Hurricane Sandy from sixteen sites in HB were analyzed for 74 wastewater tracers and steroid hormones, and total organic carbon. Data from pre- and post-storm comparisons of the most frequently detected wastewater tracers and ratios of steroid hormone and of polycyclic aromatic hydrocarbon concentrations indicate an increased sewage signal near outfalls and downstream of where raw sewage was discharged. Median concentration of wastewater tracers decreased after the storm at sites further from outfalls. Overall, changes in sediment quality probably resulted from a combination of additional sewage inputs, sediment redistribution, and stormwater runoff in the days to weeks following Hurricane Sandy. Published by Elsevier Ltd.

  5. Proof-of-Concept of the Phytoimmobilization Technology for TNX Outfall Delta: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, D.I.

    2001-06-04

    A series of proof-of-principle studies was initiated to evaluate the soil remediation technology, phytoimmobilization, for application at the TNX Outfall Delta (TNX OD) operable unit. Phytoimmobilization involves two steps. The first step is entitled phytoextraction, and it takes place mostly during the spring and summer. During this step the plants extract contaminants from the sediment into the roots and then translocate the contaminants to the aboveground plant parts. The second step is referred to as sequestration and it takes place largely during the autumn and winter when annual plants senesce or deciduous trees drop their leaves. This step involves themore » immobilization of the contaminant once it leaches form the fallen leaves into a ''geomat,'' a geotextile embedded with mineral sequestering agents. This final report describes the results to date, including those reported in the status report (Kaplan et al. 2000a), those completed since the report was issued, and the preliminary calculations of the phytoimmobilization effectiveness.« less

  6. Assessment of metals bioaccumulation and bioavailability in mussels Mytilus galloprovincialis exposed to outfalls pollution in coastal areas of Casablanca.

    PubMed

    Mejdoub, Zineb; Zaid, Younes; Hmimid, Fouzia; Kabine, Mostafa

    2018-07-01

    The present work aims to study the metallic contamination of four sampling sites located nearby major sewage outfalls of the Casablanca coast (Morocco), using indigenous mussels Mytilus galloprovincialis as bioindicators of pollution. This research offered the opportunity to study trace metals bioaccumulation mechanisms, which represent a major factor in assessment processes of the pollution effects in coastal ecosystem health. The bioavailability and the bioaccumulation of trace metals (Cu, Zn, Ni, Pb) were evaluated in order to compare the metallic contamination in mussels' tissues and find a possible correlation with physiological parameters of this filter feeding species. Our results showed a significant spatiotemporal variation of bioaccumulation, compared to control. A significant correlation coefficient between metals (Zn and Pb) bioavailability and physiological index (CI) was revealed in mussels from the most polluted location. The seasonal variation of trace metal accumulation was also raised; the highest values recorded during the dry period. Copyright © 2018 Elsevier GmbH. All rights reserved.

  7. Downstream evolution of the Kuroshio's time-varying transport and velocity structure

    NASA Astrophysics Data System (ADS)

    Andres, M.; Mensah, V.; Jan, S.; Chang, M.-H.; Yang, Y.-J.; Lee, C. M.; Ma, B.; Sanford, T. B.

    2017-05-01

    Observations from two companion field programs—Origins of the Kuroshio and Mindanao Current (OKMC) and Observations of Kuroshio Transport Variability (OKTV)—are used here to examine the Kuroshio's temporal and spatial evolution. Kuroshio strength and velocity structure were measured between June 2012 and November 2014 with pressure-sensor equipped inverted echo sounders (PIESs) and upward-looking acoustic Doppler current profilers (ADCPs) deployed across the current northeast of Luzon, Philippines, and east of Taiwan with an 8 month overlap in the two arrays' deployment periods. The time-mean net (i.e., integrated from the surface to the bottom) absolute transport increases downstream from 7.3 Sv (±4.4 Sv standard error) northeast of Luzon to 13.7 Sv (±3.6 Sv) east of Taiwan. The observed downstream increase is consistent with the return flow predicted by the simple Sverdrup relation and the mean wind stress curl field over the North Pacific (despite the complicated bathymetry and gaps along the North Pacific western boundary). Northeast of Luzon, the Kuroshio—bounded by the 0 m s-1 isotach—is shallower than 750 dbar, while east of Taiwan areas of positive flow reach to the seafloor (3000 m). Both arrays indicate a deep counterflow beneath the poleward-flowing Kuroshio (-10.3 ± 2.3 Sv by Luzon and -12.5 ± 1.2 Sv east of Taiwan). Time-varying transports and velocities indicate the strong influence at both sections of westward propagating eddies from the ocean interior. Topography associated with the ridges east of Taiwan also influences the mean and time-varying velocity structure there.

  8. Characterization of vertical mixing at a tidal-front on Georges Bank

    NASA Astrophysics Data System (ADS)

    Yoshida, Jiro; Oakey, Neil S.

    Studies of mixing were done at the northern flank of Georges Bank in the summer and autumn of 1988. Two time-series of the evolution and intensity of microstructure were examined over a tidal period in the context of tidal forcing and the evolution of the density and velocity field at the site. From the CTD, ADCP and microstructure observations (EPSONDE) on Georges Bank, several interesting features of the mixing processes were found. High dissipation and diffusivity regions appear near the bottom of the Bank. Turbulence near the bottom is highest in intensity and reaches farthest from the bottom at peak tidal flow and diminishes in intensity and vertical extent as the flow decreases. The thickness of the bottom turbulent layer has its maximum value when the flow is strongest and the stratification is weakest. Characterization of the dissipation rate and turbulent diffusivities in respect to buoyancy frequency N, current shear S, Richardson Number Ri and ɛ/νN 2 was done. Dissipation and χT showed little dependence on shear or N2 but decreased at larger Ri. χt was found to be higher in regions of higher N2 and increased as ɛ/νN 2 increased. KT, Kϱ and Kν, were all highest near the bottom in excess of 10 -2m 2s -1 and decreased towards the surface. There was little suggestion of a dependence of mixing efficiency on S2, Ri or ɛ/νN 2, but some indication that Γ decreases with decreasing N2.

  9. Validation of Sentinel-3A altimetry data by using in-situ multi-platform observations near Mallorca Island (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Sánchez-Román, Antonio; Heslop, Emma; Reeve, Krissy; Rodriguez, Daniel; Pujol, Isabelle; Faugère, Yannice; Torner, Marc; Tintoré, Joaquín; Pascual, Ananda

    2017-04-01

    In the frame of the Copernicus Marine Environment Monitoring Service (CMEMS) Sea Level Thematic Assembly Center (SL-TAC), a glider mission was undertaken between May and June 2016 along the same track as the overpass of the Sentinel 3A satellite in the Southern Mallorca region. Moreover, a one-day ship mission on May 30, synchronous with the overpass of the satellite, captured two transects of moving vessel ADCP close to the coastal area. The aim was to compare the along track altimeter products and multi-platform in-situ observations in the southern coastal zone of the Mallorca Island and the Algerian Basin. In addition, we explored the potential of the Synthetic Aperture Radar Mode (SARM) instrumentation of Sentinel-3 mission, which enables the satellite to measure nearest the coasts with both higher spatial resolution and higher precision than previous missions. With the ultimate goal of contributing to a more complete understanding of both ocean and coastal physical processes and the biogeochemical impacts. The analyses presented here are conducted through the comparison of Absolute Dynamic Topography (ADT) obtained from the Sentinel-3A altimetry measurements along ground-track #713 and Dynamic Height (DH) derived from temperature and salinity profiles measured by the glider along the trajectory followed by the satellite. Moreover, currents derived from altimetry and in-situ glider data along the track followed by the satellite; and from ADCP data collected in the coastal region are analysed. Results show a good agreement between ADT from altimetry and DH from glider data with maximum differences of around 2 cm that promote a root mean square error (RMSE) of 1 cm, the correlation coefficient between both datasets is 0.89. The satellite data closely resemble the geostrophic velocity pattern observed by the glider measurements along the Algerian Current, and also the ADCP data in the coastal zone, exhibiting a RMSE lower than 10 cm/s and a correlation coefficient larger than 0.75. This mission is part of a study focused on mesoscale variability and comparison of the along-track and gridded interpolated maps altimetry products in the western Mediterranean Sea using in-situ data including Argo, ADCP, gliders, drifters, HF radar and tide gauges data. We take advantage of the high spatial resolution and a multi-platform approach to investigate the variability of physical processes in the coastal area of this region. This experiment contributes to the preparatory cal/val activities of the forthcoming wide-swath satellite altimeter (SWOT) that will provide daily high resolution sea surface height measurements during the fast phase after launch around the Balearic Islands.

  10. pCO2 Observations from a Vertical Profiler on the upper continental slope off Vancouver Island: Physical controls on biogeochemical processes.

    NASA Astrophysics Data System (ADS)

    Mihaly, S. F.

    2016-02-01

    We analyse two six month sets of data collected from a vertical profiler on Ocean Networks Canada's NEPTUNE observatory over the summer and early fall of 2012 and 2014. The profiler is in 400 m of water on the upper slope of the continental shelf. The site is away from direct influence of canyons, but is in a region of strong internal tide generation. Both seasonally varying semidiurnal internal tidal currents and diurnal shelf waves are observed. The near surface mean flow is weak and seasonally alternates between the California and Alaskan Currents. Mid-depth waters are influenced by the poleward flowing Californian undercurrent and the deep waters by seasonally varying wind-driven Ekman transport. The profiling package consists of a CTD, an oxygen optode, a pCO2 sensor, Chlorophyll fluorometer/turbidity, CDOM and is co-located with an upward-looking bottom-mounted 75kHz ADCP that measures currents to 30 m below sea surface. With these first deep-sea profiled time series measurements of pCO2, we endeavor to model how the local physical dynamics exert control over the variability of water properties over the slope and shelf and what the variability of the non-conservative tracers of pCO2 and O2 can tell us about the biogeochemistry of the region.

  11. Delineation of tidal scour through marine geophysical techniques at Sloop Channel and Goose Creek bridges, Jones Beach State Park, Long Island, New York

    USGS Publications Warehouse

    Stumm, Frederick; Chu, Anthony; Reynolds, Richard J.

    2001-01-01

    Inspection of the Goose Creek Bridge in southeastern Nassau County in April 1998 by the New York State Department of Transportation (NYSDOT) indicated a separation of bridge piers from the road bed as a result of pier instability due to apparent seabed scouring by tidal currents. This prompted a cooperative study by the U.S. Geological Survey with the NYSDOT to delineate the extent of tidal scour at this bridge and at the Sloop Channel Bridge, about 0.5 mile to the south, through several marine- geophysical techniques. These techniques included use of a narrow-beam, 200-kilohertz, research-grade fathometer, a global positioning system accurate to within 3 feet, a 3.5 to 7-kilohertz seismic-reflection profiler, and an acoustic Doppler current profiler (ADCP). The ADCP was used only at the Sloop Channel Bridge; the other techniques were used at both bridges.Results indicate extensive tidal scour at both bridges. The fathometer data indicate two major scour holes nearly parallel to the Sloop Channel Bridge—one along the east side, and one along the west side (bridge is oriented north-south). The scour-hole depths are as much as 47 feet below sea level and average more than 40 feet below sea level; these scour holes also appear to have begun to connect beneath the bridge. The deepest scour is at the north end of the bridge beneath the westernmost piers. The east-west symmetry of scour at Sloop Channel Bridge suggests that flood and ebb tides produce extensive scour.The thickness of sediment that has settled within scour holes could not be interpreted from fathometer data alone because fathometer frequencies cannot penetrate beneath the sea-floor surface. The lower frequencies used in seismic-reflection profiling can penetrate the sea floor and underlying sediments, and indicate the amount of infilling of scour holes, the extent of riprap under the bridge, and the assemblages of clay, sand, and silt beneath the sea floor. The seismic- reflection surveys detected 2 to 5 feet of sediment filling the scour holes at both bridges; this indicates that the fathometer surveys were undermeasuring the effective depth of bridge scour by 2 to 5 feet through their inability to penetrate the infilled sediment. Several clay layers with thicknesses of 3 to 5 feet were detected beneath the sea floor at both bridges. Most of the piers beneath Sloop Channel Bridge appear to be surrounded by riprap, but, in several areas the riprap appears to be slumping or sliding into adjacent scour holes. Similar slumping was indicated at the Goose Creek Bridge. Most of the sediment underlying the sea floor at both bridges is interpreted as a fine-grained, cross-bedded sand.ADCP data from Sloop Channel indicate that the constricted flow beneath the bridge increases the horizontal current velocities from 2 to 6 feet per second. Total measured discharge beneath Sloop Channel Bridge was 41,800 cubic feet per second at flood tide and 27,600 cubic feet per second at ebb tide.

  12. Ocean mixing beneath Pine Island Glacier ice shelf, West Antarctica

    NASA Astrophysics Data System (ADS)

    Kimura, Satoshi; Jenkins, Adrian; Dutrieux, Pierre; Forryan, Alexander; Naveira Garabato, Alberto C.; Firing, Yvonne

    2016-12-01

    Ice shelves around Antarctica are vulnerable to an increase in ocean-driven melting, with the melt rate depending on ocean temperature and the strength of flow inside the ice-shelf cavities. We present measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate, and thermal variance dissipation rate beneath Pine Island Glacier ice shelf, West Antarctica. These measurements were obtained by CTD, ADCP, and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The highest turbulent kinetic energy dissipation rate is found near the grounding line. The thermal variance dissipation rate increases closer to the ice-shelf base, with a maximum value found ˜0.5 m away from the ice. The measurements of turbulent kinetic energy dissipation rate near the ice are used to estimate basal melting of the ice shelf. The dissipation-rate-based melt rate estimates is sensitive to the stability correction parameter in the linear approximation of universal function of the Monin-Obukhov similarity theory for stratified boundary layers. We argue that our estimates of basal melting from dissipation rates are within a range of previous estimates of basal melting.

  13. Section 1. Simulation of surface-water integrated flow and transport in two-dimensions: SWIFT2D user's manual

    USGS Publications Warehouse

    Schaffranek, Raymond W.

    2004-01-01

    A numerical model for simulation of surface-water integrated flow and transport in two (horizontal-space) dimensions is documented. The model solves vertically integrated forms of the equations of mass and momentum conservation and solute transport equations for heat, salt, and constituent fluxes. An equation of state for salt balance directly couples solution of the hydrodynamic and transport equations to account for the horizontal density gradient effects of salt concentrations on flow. The model can be used to simulate the hydrodynamics, transport, and water quality of well-mixed bodies of water, such as estuaries, coastal seas, harbors, lakes, rivers, and inland waterways. The finite-difference model can be applied to geographical areas bounded by any combination of closed land or open water boundaries. The simulation program accounts for sources of internal discharges (such as tributary rivers or hydraulic outfalls), tidal flats, islands, dams, and movable flow barriers or sluices. Water-quality computations can treat reactive and (or) conservative constituents simultaneously. Input requirements include bathymetric and topographic data defining land-surface elevations, time-varying water level or flow conditions at open boundaries, and hydraulic coefficients. Optional input includes the geometry of hydraulic barriers and constituent concentrations at open boundaries. Time-dependent water level, flow, and constituent-concentration data are required for model calibration and verification. Model output consists of printed reports and digital files of numerical results in forms suitable for postprocessing by graphical software programs and (or) scientific visualization packages. The model is compatible with most mainframe, workstation, mini- and micro-computer operating systems and FORTRAN compilers. This report defines the mathematical formulation and computational features of the model, explains the solution technique and related model constraints, describes the model framework, documents the type and format of inputs required, and identifies the type and format of output available.

  14. Influence of the extreme conditions on the water quality and material exchange flux in the Strait of Istanbul

    NASA Astrophysics Data System (ADS)

    Altıok, Hüsne; Aslan, Aslı; Övez, Süleyman; Demirel, Nazlı; Yüksek, Ahsen; Kıratlı, Nur; Taş, Seyfettin; Müftüoğlu, Ahmet Edip; Sur, Halil Ibrahim; Okuş, Erdoğan

    2014-11-01

    This study focuses on the influence of extreme hydrological events on the water quality of the Strait of Istanbul (Bosphorus), a stratified waterway, polluted by sewage outfalls and non-point sources. Monthly collected water quality parameters (nitrate + nitrite, ortho-phosphate, silicate, dissolved oxygen, total suspended solids, chlorophyll-a and fecal indicator bacteria (fecal coliform and enterococci)) were evaluated together with the hydrological data (salinity, temperature and current flow) for 1 year. Two blockage events, identified as extreme conditions, were detected during the study: a lower layer blockage in February 2003 and an upper layer blockage in October 2003. During the lower layer blockage, the volume fluxes of the upper layer significantly increased to 28,140 m3 s- 1 and the lower layer almost stopped flowing (19 m3 s- 1). The dissolved oxidative nitrogen, ortho-phosphate and silicate inputs outflowing from the Black Sea were 117, 17.6, and 309 tons which were 3, 2, and 4 times the average daily fluxes respectively, in addition to enhancement of fecal indicator bacteria contamination in the sea surface flow. During the upper layer blockage, the volume flux of the upper layer was 3837 m3 s- 1 and the counter flow reached 24,985 m3 s- 1 at the northern exit of the Strait of Istanbul resulting in 2.7 fold increase in the mean bottom flow. The daily exports of nutrients, total suspended solid and dissolved oxygen by the lower layer flow increased by at least 2 fold compared to the mass fluxes estimated from the seasonal/annual means of volume flux and concentrations. On the other hand, fecal indicator bacteria flux by the lower layer inflow to the Black Sea decreased by at least 2 fold compared to the mean daily flux. These results show that the material exchange between the Marmara and the Black seas becomes more important during blockage events.

  15. West shore hood canal outfall windshield survey SR 101 MP 293.5 tO 341.0

    DOT National Transportation Integrated Search

    1996-08-01

    Western Washington's population increased dramatically during the last 40 years. The west shore of Hood Canal is now largely settled with the homes of retirees and seasonal residents. Many of these beachfront houses are connected to septic systems th...

  16. NPDES Permit for NIST Boulder Laboratories Municipal Separate Storm Sewer System in Colorado

    EPA Pesticide Factsheets

    Under NPDES permit CO-R042002,NIST is authorized to discharge from all municipal separate storm sewer outfalls existing as of the effective date of this permit to receiving waters within the exterior boundaries of the Boulder Laboratories in Boulder, Colo.

  17. Potential for Suboxic Ammonium Oxidation in Louisiana Continental Shelf Sediments

    EPA Science Inventory

    Sediments deposited onto the Louisiana continental shelf (LCS) west of the Mississippi River Delta form mobile muds varying in thickness from meters near the outfall to centimeters on the western portion of the shelf. The muds have high concentrations of iron which promote rapid...

  18. NPDES Permit for Peterson Air Force Base Municipal Separate Storm Sewer System in Colorado

    EPA Pesticide Factsheets

    NPDES permit CO-R042006, authorizes Peterson AFB to discharge from all municipal separate storm sewer system outfalls to receiving waters which include the East Fork of Sand Creek and others within exterior AFB boundaries in El Paso County, Colorado.

  19. NPDES Permit for Federal Corrections Institution, Englewood Municipal Separate Storm Sewer System in Colorado

    EPA Pesticide Factsheets

    Under NPDES permit CO-R042005, the Federal Corrections Institution (FCI), Englewood is authorized to discharge from all MS4 outfalls to receiving waters which include Bear Creek, the South Platte River in the City of Lakewood, Jefferson County, Colo.

  20. Bonneville Powerhouse 2 Fish Guidance Efficiency Studies: CFD Model of the Forebay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.

    2012-07-01

    In ongoing work, U.S. Army Corps of Engineers, Portland District (CENWP) is seeking to better understand and improve the conditions within the Bonneville Powerhouse 2 (B2) turbine intakes to improve survival of downstream migrant salmonid smolt. In this study, the existing B2 forebay computational fluid dynamics (CFD) model was modified to include a more detailed representation of all B2 turbine intakes. The modified model was validated to existing field-measured forebay ADCP velocities. The initial CFD model scenarios tested a single project operation and the impact of adding the Behavior Guidance System (BGS) or Corner Collector. These structures had impacts onmore » forebay flows. Most notable was that the addition of the BGS and Corner Collector reduced the lateral extent of the recirculation areas on the Washington shore and Cascade Island and reduced the flow velocity parallel to the powerhouse in front of Units 11 and 12. For these same cases, at the turbine intakes across the powerhouse, there was very little difference in the flow volume into the gatewell for the clean forebay, and the forebay with the BGS in place and/or the Corner Collector operating. The largest differences were at Units 11 to 13. The CFD model cases testing the impact of the gatewell slot fillers showed no impact to the forebay flows, but large differences within the gatewells. With the slot fillers, the flow above the standard traveling screen and into the gatewell increased (about 100 cfs at each turbine intake) and the gap flow decreased across the powerhouse for all cases. The increased flow up the gatewell was further enhanced with only half the units operating. The flow into the gatewell slot was increased about 35 cfs for each bay of each intake across the powerhouse; this change was uniform across the powerhouse. The flows in the gatewell of Unit 12, the most impacted unit for the scenarios, was evaluated. In front of the vertical barrier screen, the CFD model with slot fillers showed reduced the maximum velocities (in spite of the increased the flow into the gatewell), and decreased the area of recirculation. The area near the VBS exceeding the normal velocity criteria of 1 ft/s was reduced and the flows were more balanced.« less

  1. 4-D Current Experiment Using AUV and HF-Radar

    DTIC Science & Technology

    1998-01-01

    the NICOP project at FAU. RESULTS Measurements of bathymetry, current and CTD measurements were acquired in shallow water on 5 and 11 Dec 97 in a lawn ... mower pattern (An et al., 1998). These surveys were conducted over about a 3 h period at a constant water depth of 7 m in the vicinity of an ADCP. On

  2. Seasonal-Scale Sedimentology and Restoration Potential in a Diversion-Fed Coastal Louisiana Wetland

    NASA Astrophysics Data System (ADS)

    Keogh, M.; Kolker, A.

    2016-02-01

    Coastal Louisiana is threatened by high rates of subsidence and rapid land loss. One promising method to mitigate this land loss is to divert Mississippi River water into surrounding wetlands. This study examines the impacts of one such diversion. Completed in 2002, Davis Pond Freshwater Diversion is located approximately 35 river km upstream of New Orleans. Although initially designed and operated to reduce salinity levels in the interior marsh, the diversion also delivers sediment and nutrients to the subsiding wetland. As a result, new land has emerged adjacent to the Davis Pond outfall channel in recent years. Here we examine patterns of seasonal-scale sediment accumulation and retention in the marsh surrounding Davis Pond diversion. Twenty-two short (5-cm) sediment cores were collected in spring 2015 immediately following a 13-day experimental release of Mississippi River water through the diversion. During this time, discharge increased from a base flow of approximately 28 m3s-1 (1,000 ft3s-1) to an elevated flow of between 142 and 283 m3s-1 (5,000 and 10,000 ft3s-1), before returning to base flow. A second set of cores were collected in fall 2015 after a 6-month period of base flow. Sediment cores were analyzed for organic content, bulk density, and grain size. In addition, inventories of beryllium-7 were used to calculate seasonal-scale sediment accumulation and retention rates. This work leads to the development of a sediment budget for the Davis Pond area and determination of long-term sediment trapping rates. Davis Pond Freshwater Diversion is an understudied system that can provide a scalable model for coast-wide restoration projects critical to the protection of Gulf Coast communities.

  3. Suspended Sediment Character in the Tidal Mekong River: Observations from LISST Profiling

    NASA Astrophysics Data System (ADS)

    Di Leonardo, D. R.; Allison, M. A.

    2016-02-01

    In two recent cooperative field campaigns, teams of researchers from the US and Vietnam collected hydrological and sedimentological data during a low flow season and a high flow season on the lower 100 km of the Song Hau distributary of the Mekong River. The objective of this study is to describe the forcing controls (e.g., tidal and riverine flow, water column stratification, resuspension) on suspended sediment grain size (e.g. mass, volume, granulometry, degree of flocculation) as measured by a Sequoia Scientific LISST 100X mounted on a profiling CTD. LISST (Type C, 2.5-500 µm size range) casts were collected at five transects in the Song Hau distributary. Four transects were located in the Dinh An and the Tran De channels immediately above the ocean interface with one additional transect located above the channel bifurcation, 40 km from the river mouth. Casts were collected at multiple stations across each channel transect for 12 hour and 24 hour continuous periods. Stationary ADCP data was collected during each 5-15 minute cast period and used to characterize shear stress. Preliminary results from the LISST suggest that the majority of suspended sediment is in the silt and very fine sand range. Increasing concentrations of all size fractions towards the bed suggests a local sediment source. Bimodal grain size distributions, with the coarser peak in the 150 µm to 250 µm range, are observed frequently, especially in the low discharge study. Grain size frequencies from the high discharge study tend to be more often unimodal. While there was effectively no salinity observed during the October 2014 high flow season, a maximum of 25.8 PSU was observed in the March 2015 low flow season. These results suggest that flocculation is an important process in the Mekong River, particularly during periods of higher salinity.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn Edward; Bao, J; Huang, M

    Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheicmore » exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y + wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results suggest that the thickness of riverbed alluvium layer is the dominant factor for reach-scale hyporheic exchanges, followed by the alluvium permeability, the depth of the underlying impermeable layer, and the assumption of hydrostatic pressure.« less

  5. Comparison of morphology of active cyclic steps created by turbidity currents on Squamish Delta, British Columbia, Canada with flume experiments

    NASA Astrophysics Data System (ADS)

    Yokokawa, Miwa; Yamamoto, Shinya; Higuchi, Hiroyuki; Hughes Clarke, John E.; Izumi, Norihiro

    2015-04-01

    Upper-flow-regime bedforms, such as cyclic steps and antidunes, have been reported to be formed by turbidity currents. Their formative conditions are, however, not fully understood because of the difficulty of field surveys in the deep sea. Field observations of turbidity currents and seabed topography on the Squamish delta in Howe Sound, British Columbia, Canada have been undertaken which found bedwaves actively migrating in the upstream direction in channels formed on the prodelta slope. Their topography and behavior suggest that they are cyclic steps formed by turbidity currents. Because Squamish delta is as shallow as around 150 m, and easy to access compared with general submarine canyons, it is thought to be one of the best places for studying characteristics of cyclic steps formed by turbidity currents through field observations. In this study, we have analyzed configurations of cyclic steps with the use of data obtained in the field observation of 2011, and compare them with the data from the flume experiments. On the prodelta slope, three major active channels are clearly developed. In addition to the sonar survey, a 600 kHz ADCP was installed in 150m of water just seaward of the termination of the North Channel. In addition, 1200kHz ADCP and 500kHz M3s are suspended from the research vessel in 60 m of water and 300 m distance from the delta edge. We selected images showing large daily differences. The steps move vigorously at the upper 600m parts of the prodelta slope, so that we measured the steps in this area. From the profiles perpendicular to the bedwave crest lines through the center of channels, wavelength and wave height for each step, mean slope were measured on the software for quantitative image analyses manually. Wave steepness for each step was calculated using the wavelength and wave height measured as above. The mean slope ranges from 6.8° ~ 2.7° (more proximal, steeper), mean wavelength and wave heights of steps range from 24.5 to 87.6m and from 2.4 to 5.4m respectively. We compare the shape of steps with the upper-flow-regime bedforms, such as antidunes and cyclic steps, obtained from the open channel experiments. Wave steepness of the steps in Squamish ranges from 0.035 to 0.157, which is relatively high and close in value to those of cyclic steps and downstream-migrating-antidunes (DMA) in the open channel experiments. The non-dimensional wave number depends on the estimation of the thickness of the turbidity currents. Based on the optical backscatter profiles, the upper limit of sediment suspension is around 10m. However the maximum velocity is always located within the lower 5m, and higher density layer seems to locate within the lowermost 2 m. For the 10m flow thickness, the wave number is close in value to those of DMA. While for the 0.5m flow thickness, the wave number is close in value to those of cyclic steps. We will discuss about the effect of "density currents" and/or "surge" on the morphology of those steps.

  6. Pathogen and nutrient pulsing and attenuation in "accidental" urban wetland networks along the Salt River in Phoenix, AZ

    NASA Astrophysics Data System (ADS)

    Palta, M. M.; Grimm, N. B.

    2013-12-01

    Increases in available nutrients and bacteria in urban streams are at the forefront of research concerns within the ecological and medical communities, and both pollutants are expected to become more problematic under projected changes in climate. Season, discharge, instream conditions (oxygen, water velocity), and weather conditions (antecedent moisture) all may influence loading rates to and the retention capabilities of wetlands fed by urban runoff and storm flow. The aim of this research was to examine the effect of these variables on nutrient (nitrogen, phosphorus) and Escherichia coli (E. coli) loading and attenuation along flow paths in urban wetland networks along the Salt River in Phoenix, AZ. Samples were collected for one year along flowpaths through wetlands that formed below six perennially flowing outfalls. Collection took place monthly during baseflow (dry season) conditions, and before and immediately following storm events, in the summer monsoon and winter rainy seasons. Water quality was assessed at the following points: immediately downstream of the outfall, mid-wetland, and downstream of the wetland. For determination of E. coli counts, samples were plated on coliform-selective media (Chromocult) and incubated for 24 hours. Plates were then used to enumerate E. coli. For determination of nutrient concentrations, samples were filtered and frozen until they could be analyzed by ion chromatography and automated wet chemistry. During both summer and winter, total discharge into the wetlands increased during storm events. Concentrations of PO43+, NH4+, and E. coli were significantly higher following storm events than during baseflow conditions, and post-storm peaks in concentration ('pulses') were higher during the summer monsoon than in winter storms. Pulses of pollutants during storms were highest when preceded by hot, dry conditions. NO3- was high in both base and stormflow. E. coli counts and nutrient concentrations dropped along flowpaths through the wetlands, indicating high attenuation capability even during storms. Attenuation of nutrients during baseflow appeared to be a function of microbial processing, while during stormflow, when water retention time in the wetlands was reduced, attenuation was likely explained by other factors, such as sediment adsorption. Potential tradeoffs emerged between removal of NO3- (highest under low dissolved oxygen) and E. coli (highest under high dissolved oxygen) during baseflow. Climate change models project increases in severe droughts and extreme precipitation events for the southwestern United States, which can lead to more sewage leakages and increases in contaminated runoff from impervious surfaces in urban areas. Wetlands are constructed or restored to mitigate microbial contamination of wastewater. Our research indicates that even "accidental" urban wetlands can serve to reduce downstream transport of nutrients and pathogens in storm and wastewater. However, wetland restoration or design targeting increased water retention time may increase the capability of accidental wetlands in this urban desert river channel to remove nutrients and pathogens from stormwater.

  7. Some Applications of Piece-Wise Smooth Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Janovská, Drahoslava; Hanus, Tomáš; Biák, Martin

    2010-09-01

    The Filippov systems theory is applied to selected problems from biology and chemical engineering, namely we explore and simulate Bazykin's ecological model, an ideal closed gas-liquid system including its dimensionless formulation. The last investigated system is a CSTR with an outfall and the CSTR with a reactor volume control.

  8. TREATED WASTEWATER AS A SOURCE OF SEDIMENT CONTAMINATION IN GULF OF MEXICO NEAR-COASTAL AREAS

    EPA Science Inventory

    The primary objective of this baseline survey was to provide some needed perspective on the magnitude of sediment contamination associated with wastewater outfalls discharged to Gulf of Mexico near-coastal areas. The chemical quality and toxicities of whole sediments and pore wa...

  9. NPDES Permit for Buckley Air Force Base Municipal Separate Storm Sewer System in Colorado

    EPA Pesticide Factsheets

    Under NPDES permit CO-R042003, the U.S. Air Force is authorized to discharge from all MS4 outfalls existing as of the effective date of this permit to specified receiving waters within the exterior boundaries of Buckley Air Force Base, in Aurora, Colorado

  10. Analysis of 16S Sediment Microbial Communities from a Southern California Wastewater-Treatment Discharge Field

    EPA Science Inventory

    Treated sewage effluent from several large wastewater treatment plants in the Los Angeles metropolitan area is discharged into the Pacific Ocean through a network of outfalls located between 5 and 7 miles offshore. To support development of new indicators of wastewater effects o...

  11. Student Research in the Year of the Coast.

    ERIC Educational Resources Information Center

    Kane, Julian; And Others

    1980-01-01

    Described is independent study research at Garden City High School (Garden City, NY) involving ten students studying seasonal beach erosion, salt marsh preservation, sludge leachate hazards in bays, and sewer outfall effects on barrier bays. Outcomes include better understanding of the scientific process and careful, accurate research. (Author/DS)

  12. EVALUATION OF A WASTEWATER DISCHARGE USING VITELLOGENIN GENE EXPRESSION AND PLASMA PROTEIN LEVELS IN MALE FATHEAD MINNOWS

    EPA Science Inventory

    Liver vitellogenin gene expression and plasma vitellogenin protein presence, indicators of exposure of fish to estrogens, were measured in male fathead minnows (Pimephales promelas) caged at two locations in a constructed wetland below a sewage treatment plant effluent outfall in...

  13. A program to assess a thermal discharge on Trinity Bay, Texas

    NASA Technical Reports Server (NTRS)

    Zaitzeff, J. B.; Whitehead, V. S.

    1972-01-01

    The application of a two dimensional mathematical model to the analysis of the thermal discharge to verify its ability to predict the temperature distribution of Trinity Bay in the vicinity of the water outfall. Basic data consist of aerial thermal infrared and in situ measurements.

  14. Velocity, bathymetry, and transverse mixing characteristics of the Ohio River upstream from Cincinnati, Ohio, October 2004-March 2006

    USGS Publications Warehouse

    Koltun, G.F.; Ostheimer, Chad J.; Griffin, Michael S.

    2006-01-01

    Velocity, bathymetry, and transverse (cross-channel) mixing characteristics were studied in a 34-mile study reach of the Ohio River extending from the lower pool of the Captain Anthony Meldahl Lock and Dam, near Willow Grove, Ky, to just downstream from the confluence of the Licking and Ohio Rivers, near Newport, Ky. Information gathered in this study ultimately will be used to parameterize hydrodynamic and water-quality models that are being developed for the study reach. Velocity data were measured at an average cross-section spacing of about 2,200 feet by means of boat-mounted acoustic Doppler current profilers (ADCPs). ADCP data were postprocessed to create text files describing the three-dimensional velocity characteristics in each transect. Bathymetry data were measured at an average transect spacing of about 800 feet by means of a boat-mounted single-beam echosounder. Depth information obtained from the echosounder were postprocessed with water-surface slope and elevation information collected during the surveys to compute stream-bed elevations. The bathymetry data were written to text files formatted as a series of space-delimited x-, y-, and z-coordinates. Two separate dye-tracer studies were done on different days in overlapping stream segments in an 18.3-mile section of the study reach to assess transverse mixing characteristics in the Ohio River. Rhodamine WT dye was injected into the river at a constant rate, and concentrations were measured in downstream cross sections, generally spaced 1 to 2 miles apart. The dye was injected near the Kentucky shoreline during the first study and near the Ohio shoreline during the second study. Dye concentrations were measured along transects in the river by means of calibrated fluorometers equipped with flow-through chambers, automatic temperature compensation, and internal data loggers. The use of flow-through chambers permitted water to be pumped continuously out of the river from selected depths and through the fluorometer for measurement as the boat traversed the river. Time-tagged concentration readings were joined with horizontal coordinate data simultaneously captured from a differentially corrected Global Positioning System (GPS) device to create a plain-text, comma-separated variable file containing spatially tagged dye-concentration data. Plots showing the transverse variation in relative dye concentration indicate that, within the stream segments sampled, complete transverse mixing of the dye did not occur. In addition, the highest concentrations of dye tended to be nearest the side of the river from which the dye was injected. Velocity, bathymetry, and dye-concentration data collected during this study are available for Internet download by means of hyperlinks in this report. Data contained in this report were collected between October 2004 and March 2006.

  15. Precipitation-runoff, suspended-sediment, and flood-frequency characteristics for urbanized areas of Elmendorf Air Force Base, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.

    1999-01-01

    The developed part of Elmendorf Air Force Base near Anchorage, Alaska, consists of two basins with drainage areas of 4.0 and 0.64 square miles, respectively. Runoff and suspended-sediment data were collected from August 1996 to March 1998 to gain a basic understanding of the surface-water hydrology of these areas and to estimate flood-frequency characteristics. Runoff from the larger basin averaged 6 percent of rainfall, whereas runoff from the smaller basin averaged 13 percent of rainfall. During rainfall periods, the suspended-sediment load transported from the larger watershed ranged from 179 to 21,000 pounds and that from the smaller watershed ranged from 23 to 18,200 pounds. On a yield basis, suspended sediment from the larger watershed was 78 pounds per inch of runoff and from the smaller basin was 100 pounds per inch of runoff. Suspended-sediment loads and yields were generally lower during snowmelt periods than during rainfall periods. At each outfall of the two watersheds, water flows into steep natural channels. Suspended-sediment loads measured approximately 1,000 feet downstream from the outfalls during rainfall periods ranged from 8,450 to 530,000 pounds. On a yield basis, suspended sediment averaged 705 pounds per inch of runoff, more than three times as much as the combined sediment yield from the two watersheds. The increase in suspended sediment is most likely due to natural erosion of the streambanks. Streamflow data, collected in 1996 and 1997, were used to calibrate and verify a U.S. Geological Survey computer model?the Distributed Routing Rainfall Runoff Model-Version II (DR3M-II). The model was then used to simulate annual peak discharges and runoff volumes for 1981 to 1995 using historical rainfall records. Because the model indicated that surcharging (or ponding) would occur, no flood-frequency analysis was done for peak discharges. A flood-frequency analysis of flood volumes indicated that a 10-year flood would result in 0.39 inch of runoff (averaged over the entire drainage basin) from the larger watershed and 1.1 inches of runoff from the smaller watershed.

  16. PTM Modeling of Dredged Suspended Sediment at Proposed Polaris Point and Ship Repair Facility CVN Berthing Sites - Apra Harbor, Guam

    DTIC Science & Technology

    2017-09-01

    ADCP locations used for model calibration. ......................................................................... 12 Figure 4-3. Sample water...Example of fine sediment sample [Set d, Sample B30]. (B) Example of coarse sediment sample [Set d, sample B05...Turning Basin average sediment size distribution curve. ................................................... 21 Figure 5-5. Turning Basin average size

  17. Overview of hydro-acoustic current-measurement applications by the U.S. geological survey in Indiana

    USGS Publications Warehouse

    Morlock, Scott E.; Stewart, James A.

    1999-01-01

    The U.S. Geological Survey (USGS) maintains a network of 170 streamflow-gaging stations in Indiana to collect data from which continuous records of river discharges are produced. Traditionally, the discharge record from a station is produced by recording river stage and making periodic discharge measurements through a range of stage, then developing a relation between stage and discharge. Techniques that promise to increase data collection accuracy and efficiency include the use of hydro-acoustic instrumentation to measure river velocities. The velocity measurements are used to compute river discharge. In-situ applications of hydro-acoustic instruments by the USGS in Indiana include acoustic velocity meters (AVM's) at six streamflow-gaging stations and newly developed Doppler velocity meters (DVM's) at two stations. AVM's use reciprocal travel times of acoustic signals to measure average water velocities along acoustic paths, whereas DVM's use the Doppler shift of backscattered acoustic signals to compute water velocities. In addition to the in-situ applications, three acoustic Doppler current profilers (ADCP's) are used to make river-discharge measurements from moving boats at streamflow-gaging stations in Indiana. The USGS has designed and is testing an innovative unmanned platform from which to make ADCP discharge measurements.

  18. Application of acoustic-Doppler current profiler and expendable bathythermograph measurements to the study of the velocity structure and transport of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Joyce, T. M.; Dunworth, J. A.; Schubert, D. M.; Stalcup, M. C.; Barbour, R. L.

    1988-01-01

    The degree to which Acoustic-Doppler Current Profiler (ADCP) and expendable bathythermograph (XBT) data can provide quantitative measurements of the velocity structure and transport of the Gulf Stream is addressed. An algorithm is used to generate salinity from temperature and depth using an historical Temperature/Salinity relation for the NW Atlantic. Results have been simulated using CTD data and comparing real and pseudo salinity files. Errors are typically less than 2 dynamic cm for the upper 800 m out of a total signal of 80 cm (across the Gulf Stream). When combined with ADCP data for a near-surface reference velocity, transport errors in isopycnal layers are less than about 1 Sv (10 to the 6th power cu m/s), as is the difference in total transport for the upper 800 m between real and pseudo data. The method is capable of measuring the real variability of the Gulf Stream, and when combined with altimeter data, can provide estimates of the geoid slope with oceanic errors of a few parts in 10 to the 8th power over horizontal scales of 500 km.

  19. Upper Ocean Meso-Submesoscale Eddy Variability in the Northwestern Pacific from Repeat ADCP Measurements and 1/48-deg MITgcm Simulation

    NASA Astrophysics Data System (ADS)

    Qiu, B.; Nakano, T.; Chen, S.; Wang, J.; Fu, L. L.; Klein, P.

    2016-12-01

    With the use of Ka-band radar interferometry, the Surface Water and Ocean Topography (SWOT) satellite will improve the measured sea surface height (SSH) resolution down to the spectral wavelength of 15km, allowing us to investigate for the first time the upper oceancirculation variability at the submesoscale range on the global scale. By analyzing repeat shipboardAcoustic Doppler Current Profiler (ADCP) measurements along 137°E, as well as the 1/48-deg MITgcm simulation output, in the northwest Pacific, we demonstrate that the observed/modeled upper ocean velocities are comprised of balanced geostrophic motions and unbalanced ageostrophic wave motions. The length scale, Lc, that separates the dominance between these two types of motions is found to depend sensitively on the energy level of local mesoscale eddy variability. In the eddy-abundant western boundary current region of Kuroshio, Lc can be shorter than 15km, whereas Lc exceeds 200km along the path of relatively stable North Equatorial Current. Judicious separation between the balanced and unbalanced surface ocean signals will both be a challenge and opportunity for the SWOT mission.

  20. Chemical loading into surface water along a hydrological, biogeochemical, and land use gradient: A holistic watershed approach

    USGS Publications Warehouse

    Barber, L.B.; Murphy, S.F.; Verplanck, P.L.; Sandstrom, M.W.; Taylor, Howard E.; Furlong, E.T.

    2006-01-01

    Identifying the sources and impacts of organic and inorganic contaminants at the watershed scale is a complex challenge because of the multitude of processes occurring in time and space. Investigation of geochemical transformations requires a systematic evaluation of hydrologic, landscape, and anthropogenic factors. The 1160 km2 Boulder Creek Watershed in the Colorado Front Range encompasses a gradient of geology, ecotypes, climate, and urbanization. Streamflow originates primarily as snowmelt and shows substantial annual variation. Water samples were collected along a 70-km transect during spring-runoff and base-flow conditions, and analyzed for major elements, trace elements, bulk organics, organic wastewater contaminants (OWCs), and pesticides. Major-element and trace-element concentrations were low in the headwaters, increased through the urban corridor, and had a step increase downstream from the first major wastewater treatment plant (WWTP). Boron, gadolinium, and lithium were useful inorganic tracers of anthropogenic inputs. Effluent from the WWTP accounted for as much as 75% of the flow in Boulder Creek and was the largest chemical input. Under both hydrological conditions, OWCs and pesticides were detected in Boulder Creek downstream from the WWTP outfall as well as in the headwater region, and loads of anthropogenic-derived contaminants increased as basin population density increased. This report documents a suite of potential endocrine-disrupting chemicals in a reach of stream with native fish populations showing indication of endocrine disruption.

  1. Modeling Hydrodynamics and Heat Transport in Upper Klamath Lake, Oregon, and Implications for Water Quality

    USGS Publications Warehouse

    Wood, Tamara M.; Cheng, Ralph T.; Gartner, Jeffrey W.; Hoilman, Gene R.; Lindenberg, Mary K.; Wellman, Roy E.

    2008-01-01

    The three-dimensional numerical model UnTRIM was used to model hydrodynamics and heat transport in Upper Klamath Lake, Oregon, between mid-June and mid-September in 2005 and between mid-May and mid-October in 2006. Data from as many as six meteorological stations were used to generate a spatially interpolated wind field to use as a forcing function. Solar radiation, air temperature, and relative humidity data all were available at one or more sites. In general, because the available data for all inflows and outflows did not adequately close the water budget as calculated from lake elevation and stage-capacity information, a residual inflow or outflow was used to assure closure of the water budget. Data used for calibration in 2005 included lake elevation at 3 water-level gages around the lake, water currents at 5 Acoustic Doppler Current Profiler (ADCP) sites, and temperature at 16 water-quality monitoring locations. The calibrated model accurately simulated the fluctuations of the surface of the lake caused by daily wind patterns. The use of a spatially variable surface wind interpolated from two sites on the lake and four sites on the shoreline generally resulted in more accurate simulation of the currents than the use of a spatially invariant surface wind as observed at only one site on the lake. The simulation of currents was most accurate at the deepest site (ADCP1, where the velocities were highest) using a spatially variable surface wind; the mean error (ME) and root mean square error (RMSE) for the depth-averaged speed over a 37-day simulation from July 26 to August 31, 2005, were 0.50 centimeter per second (cm/s) and 3.08 cm/s, respectively. Simulated currents at the remaining sites were less accurate and, in general, underestimated the measured currents. The maximum errors in simulated currents were at a site near the southern end of the trench at the mouth of Howard Bay (ADCP7), where the ME and RMSE in the depth-averaged speed were 3.02 and 4.38 cm/s, respectively. The range in ME of the temperature simulations over the same period was ?0.94 to 0.73 degrees Celsius (?C), and the RMSE ranged from 0.43 to 1.12?C. The model adequately simulated periods of stratification in the deep trench when complete mixing did not occur for several days at a time. The model was validated using boundary conditions and forcing functions from 2006 without changing any calibration parameters. A spatially variable wind was used. Data for the model validation periods in 2006 included lake elevation at 4 gages around the lake, currents collected at 2 ADCP sites, and temperature collected at 21 water-quality monitoring locations. Errors generally were larger than in 2005. ME and RMSE in the simulated velocity at ADCP1 were 2.30 cm/s and 3.88 cm/s, respectively, for the same 37-day simulation over which errors were computed for 2005. The ME in temperature over the same period ranged from ?0.56 to 1.5?C and the RMSE ranged from 0.41 to 1.86?C. Numerical experiments with conservative tracers were used to demonstrate the prevailing clockwise circulation patterns in the lake, and to show the influence of water from the deep trench located along the western shoreline of the lake on fish habitat in the northern part of the lake. Because water exiting the trench is split into two pathways, the numerical experiments indicate that bottom water from the trench has a stronger influence on water quality in the northern part of the lake, and surface water from the trench has a stronger influence on the southern part of the lake. This may be part of the explanation for why episodes of low dissolved oxygen tend to be more severe in the northern than in the southern part of the lake.

  2. SEDIMENT TOXICITY AND STORMWATER RUNOFF IN A CONTAMINATED RECEIVING SYSTEM: CONSIDERATION OF DIFFERENT BIOASSAYS IN THE LABORATORY AND FIELD. (R823873)

    EPA Science Inventory

    Several field and laboratory assays were employed below an urban storm sewer outfall to define the relationship between stormwater runoff and contaminant effects. Specifically, two bioassays that measure feeding rate as a toxicological endpoint were employed in the field and in t...

  3. 77 FR 42332 - Notice of Lodging of Consent Decree Modification Under the Clean Water Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-18

    ... September 24, 2009 (``Decree''). The Decree resolved claims of the United States and State of New Hampshire... discharges from the combined sewer overflow (``CSO'') outfalls, propose a schedule for construction of a..., and upon inclusion of the schedule in the Decree, comply with the construction schedule. The City...

  4. 40 CFR 122.45 - Calculating NPDES permit conditions (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... limitations, standards and prohibitions shall be established for each outfall or discharge point of the permitted facility, except as otherwise provided under § 122.44(k) (BMPs where limitations are infeasible) and paragraph (i) of this section (limitations on internal waste streams). (b) Production-based...

  5. 40 CFR 122.45 - Calculating NPDES permit conditions (applicable to State NPDES programs, see § 123.25).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pollutants limited in permits shall have limitations, standards or prohibitions expressed in terms of mass... by mass; (ii) When applicable standards and limitations are expressed in terms of other units of... limitations, standards and prohibitions shall be established for each outfall or discharge point of the...

  6. Water quality simulation of sewage impacts on the west coast of Mumbai, India.

    PubMed

    Vijay, R; Khobragade, P J; Sohony, R A

    2010-01-01

    Most coastal cities use the ocean as a site of waste disposal where pollutant loading degrades the quality of coastal waters. Presently, the west coast of Mumbai receives partially treated effluent from wastewater treatment facilities through ocean outfalls and discharges into creeks as well as wastewater/sewage from various open drains and nallahs which affect the water quality of creek and coastal water. Therefore, the objective of this paper is to simulate and assess the hydrodynamic behaviour and water quality due to impact of sewage and wastewater discharges from the west coast of Mumbai. Hydrodynamics and water quality were simulated based on present conditions and validated by using measured tide, current data and observed DO, BOD and FC. Observed and simulated results indicated non compliance to standards in Malad, Mahim creeks and the impact zones of ocean outfalls. The developed model could be used for generating various conditions of hydrodynamics and water quality considering the improvement in wastewater collection systems, treatment levels and proper disposal for proper planning and management of creeks and coastal environment.

  7. Geotechnical engineering for ocean waste disposal. An introduction

    USGS Publications Warehouse

    Lee, Homa J.; Demars, Kenneth R.; Chaney, Ronald C.; ,

    1990-01-01

    As members of multidisciplinary teams, geotechnical engineers apply quantitative knowledge about the behavior of earth materials toward designing systems for disposing of wastes in the oceans and monitoring waste disposal sites. In dredge material disposal, geotechnical engineers assist in selecting disposal equipment, predict stable characteristics of dredge mounds, design mound caps, and predict erodibility of the material. In canister disposal, geotechnical engineers assist in specifying canister configurations, predict penetration depths into the seafloor, and predict and monitor canister performance following emplacement. With sewage outfalls, geotechnical engineers design foundation and anchor elements, estimate scour potential around the outfalls, and determine the stability of deposits made up of discharged material. With landfills, geotechnical engineers evaluate the stability and erodibility of margins and estimate settlement and cracking of the landfill mass. Geotechnical engineers also consider the influence that pollutants have on the engineering behavior of marine sediment and the extent to which changes in behavior affect the performance of structures founded on the sediment. In each of these roles, careful application of geotechnical engineering principles can contribute toward more efficient and environmentally safe waste disposal operations.

  8. Understanding the hydrologic impacts of wastewater treatment plant discharge to shallow groundwater: Before and after plant shutdown

    USGS Publications Warehouse

    Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.

    2016-01-01

    Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.

  9. Impacts of global change on the concentrations and dilution of combined sewer overflows in a drinking water source.

    PubMed

    Jalliffier-Verne, Isabelle; Leconte, Robert; Huaringa-Alvarez, Uriel; Madoux-Humery, Anne-Sophie; Galarneau, Martine; Servais, Pierre; Prévost, Michèle; Dorner, Sarah

    2015-03-01

    This study presents an analysis of climate change impacts on a large river located in Québec (Canada) used as a drinking water source. Combined sewer overflow (CSO) effluents are the primary source of fecal contamination of the river. An analysis of river flowrates was conducted using historical data and predicted flows from a future climate scenario. A spatio-temporal analysis of water quality trends with regard to fecal contamination was performed and the effects of changing flowrates on the dilution of fecal contaminants were analyzed. Along the river, there was a significant spatial trend for increasing fecal pollution downstream of CSO outfalls. Escherichia coli concentrations (upper 95th percentile) increased linearly from 2002 to 2012 at one drinking water treatment plant intake. Two critical periods in the current climate were identified for the drinking water intakes considering both potential contaminant loads and flowrates: local spring snowmelt that precedes river peak flow and extra-tropical storm events that occur during low flows. Regionally, climate change is expected to increase the intensity of the impacts of hydrological conditions on water quality in the studied basin. Based on climate projections, it is expected that spring snowmelt will occur earlier and extreme spring flowrates will increase and low flows will generally decrease. High and low flows are major factors related to the potential degradation of water quality of the river. However, the observed degradation of water quality over the past 10 years suggests that urban development and population growth may have played a greater role than climate. However, climate change impacts will likely be observed over a longer period. Source water protection plans should consider climate change impacts on the dilution of contaminants in addition to local land uses changes in order to maintain or improve water quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A Preliminary Evaluation of Near-Transducer Velocities Collected with Low-Blank Acoustic Doppler Current Profiler

    USGS Publications Warehouse

    Gartner, J.W.; Ganju, N.K.; ,

    2002-01-01

    Many streams and rivers for which the US Geological Survey must provide discharge measurements are too shallow to apply existing acoustic Doppler current profiler techniques for flow measurements of satisfactory quality. Because the same transducer is used for both transmitting and receiving acoustic signals in most Doppler current profilers, some small time delay is required for acoustic "ringing" to be damped out of transducers before meaningful measurements can be made. The result of that time delay is that velocity measurements cannot be made close to the transducer thus limiting the usefulness of these instruments in shallow regions. Manufacturers and users are constantly striving for improvements to acoustic instruments which would permit useful discharge measurements in shallow rivers and streams that are still often measured with techniques and instruments more than a century old. One promising area of advance appeared to be reduction of time delay (blank) required between transmitting and receiving signals during acoustic velocity measurements. Development of a low- or zero-blank transducer by RD Instruments3 held promise that velocity measurements could be made much closer to the transducer and thus in much shallower water. Initial experience indicates that this is not the case; limitation of measurement quality appears to be related to the physical presence of the transducer itself within the flow field. The limitation may be the result of changes to water flow pattern close to the transducer rather than transducer ringing characteristics as a function of blanking distance. Results of field experiments are discussed that support this conclusion and some minimum measurement distances from transducer are suggested based on water current speed and ADCP sample modes.

  11. Characterization of nutrients and fecal indicator bacteria at a concentrated swine feeding operation in Wake County, North Carolina, 2009-2011

    USGS Publications Warehouse

    Harden, Stephen L.; Rogers, Shane W.; Jahne, Michael A.; Shaffer, Carrie E.; Smith, Douglas G.

    2012-01-01

    Study sites were sampled for laboratory analysis of nutrients, total suspended solids (TSS), and (or) fecal indicator bacteria (FIB). Nutrient analyses included measurement of dissolved ammonia, total and dissolved ammonia + organic nitrogen, dissolved nitrate + nitrite, dissolved orthophosphate, and total phosphorus. The FIB analyses included measurement of Escherichia coli and enterococci. Samples of wastewater at the swine facility were collected from a pipe outfall from the swine housing units, two storage lagoons, and the spray fields for analysis of nutrients, TSS, and FIB. Soil samples collected from a spray field were analyzed for FIB. Monitoring locations were established for collecting discharge and water-quality data during storm events at three in-field runoff sites and two sites on the headwater stream (one upstream and one downstream) next to the swine facility. Stormflow samples at the five monitoring locations were collected for four storm events during 2009 to 2010 and analyzed for nutrients, TSS, and FIB. Monthly water samples also were collected during base-flow conditions at all four stream sites for laboratory analysis of nutrients, TSS, and (or) FIB.

  12. Circulation on the West Antarctic Peninsula derived from 6 years of shipboard ADCP transects

    NASA Astrophysics Data System (ADS)

    Savidge, Dana K.; Amft, Julie A.

    2009-10-01

    Over the past 30 years, shelf circulation on the West Antarctic Peninsula (WAP) has been derived from hydrographic data with a reasonable level of confidence. However, with the exception of a very few drifter tracks and current-meter timeseries from moorings, direct velocity measurements have not previously been available. In this article, shelf and shelf-edge circulation is examined using a new velocity dataset, consisting of several years of acoustic Doppler current profiler transects, routinely collected along the ship tracks of the R/V Gould and the R/V Palmer since the fall of 1997. Initial processing and quality control is performed by Dr. Teresa Chereskin and Dr. Eric Firing, who then place the data in an archive accessible by public website, resulting in the broad availability of the data for a variety of uses. In this study, gridded Eulerian means have been calculated to examine circulation on the shelf and slope off the South Shetland Islands, in Bransfield Strait, and on the shelf and slope south of these regions, including Marguerite Bay and the adjacent shelf and shelf-edge. Shelf-edge flow is northeastward in the study area from the offshore of northern Alexander Island to Smith Island, while a southward flowing shelf-edge feature, probably the shallow component of the polar slope current, appears between Elephant Island and Livingston Island. The shallow polar slope current appears to turn shoreward to pass through Boyd Strait between Smith and Livingston Islands. In Bransfield Strait, there is cyclonic circulation. The previously identified northeastward-flowing South Shetland Island jet is strong and present in all seasons, with a large barotropic component not revealed by the hydrography-based velocities derived in the past. On the shelf seaward of Adelaide, Anvers and Brabant Islands, the strong along-shelf Antarctic Peninsula coastal current flows southwestward, with strongest velocities in winter (June-September) off Anvers and Brabant Islands, but stronger in summer (December-March) off Adelaide Island. Seaward of Marguerite Bay, there is seaward flow in the upper 400 m of the water column over the southwest bank of Marguerite Trough, strongest in summer, and shoreward flow near the northeast bank and adjacent shallower shelf areas.

  13. Satellite Remote Sensing Detection of Wastewater Plumes in Southern California

    NASA Astrophysics Data System (ADS)

    Trinh, R. C.; Holt, B.; Pan, B. J.; Rains, C.; Gierach, M. M.

    2014-12-01

    Wastewater discharged through ocean outfalls can surface near coastlines and beaches, posing a threat to the marine environment and human health. Coastal waters of the Southern California Bight (SCB) are an ecologically important marine habitat and a valuable resource in terms of commercial fishing and recreation. Two of the largest wastewater treatment plants along the U.S. West Coast discharge into the SCB, including the Hyperion Wastewater Treatment Plant (HWTP) and the Orange County Sanitation District (OCSD). In 2006, HWTP conducted an internal inspection of its primary 8 km outfall pipe (60 m depth), diverting treated effluent to a shorter 1.2 km pipe (18 m depth) from Nov. 28 to Nov. 30. From Sep. 11 - Oct. 4, 2012, OCSD conducted a similar diversion, diverting effluent from their 7 km outfall pipe to a shallower 2.2 km pipe, both with similar depths to HWTP. Prevailing oceanographic conditions in the SCB, such as temporally reduced stratification and surface circulation patterns, increased the risk of effluent being discharged from these shorter and shallower pipes surfacing and moving onshore. The aim of this study was to evaluate the capabilities of satellite remote sensing data (i.e., sea surface roughness from SAR, sea surface temperature from MODIS-Aqua and ASTER-Terra, chlorophyll-a and water leaving radiance from MODIS-Aqua) in the identification and tracking of wastewater plumes during the 2006 HWTP and 2012 OCSD diversion events. Satellite observations were combined with in situ, wind, and current data taken during the diversion events, to validate remote sensing techniques and gain surface to subsurface context of the nearshore diversion events. Overall, it was found that satellite remote sensing data were able to detect surfaced wastewater plumes along the coast, providing key spatial information that could inform in situ field sampling during future diversion events, such as the planned 2015 HWTP diversion, and thereby constrain costs.

  14. Summary report of bioassays for the city of Hollywood water plant membrane reject water as it mixed with WWTP effluent in an ocean outfall environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fergen, R.E.; Vinci, P.; Bloetscher, F.

    1999-07-01

    A special bioassay study was conducted to review the impact of the City of Hollywood's Membrane Softening Water Treatment Plant (WRP) reject water as it mixes with the City's Wastewater Treatment Plant (WWTP) effluent. Three sampling periods occurred during 1997. The purpose of this study was to determine potential toxicity of the WTP reject water, pre-chlorinated effluent, and combined effluent, and to demonstrate if the combined effluent was acceptable for ocean discharge on the basis of no potential toxicity. Effluent was acceptable for ocean discharge on the basis of no potential toxicity. Effluent samples were collected at six sampling points;more » three were in the plant, while the other three were along the outfall pipeline. Definitive, static renewal bioassay tests were performed using Mysidopsis bahia and Menidia beryllina as indicators of potential toxicity. The bioassay tests at 30% effluent concentration indicate that there is not potential toxicity for the pre-chlorinated WTP effluent, WTP reject water, dechlorinate combined effluent at the plant, and chlorinated combined effluent at Holland Park, the riser, and the terminus. The results indicate that the WTP reject water (100%) is not toxic to Menidia beryllina but was toxic to Mysidopsis bahia. When combined with the WWRP effluent, the reject water's impact on the potential toxicity of the commingled effluent was insignificant. All of the tests indicate the combined effluents are not toxic to the species tested at the 30% effluent level. Therefore, potential toxicity concerns were not demonstrated for this outfall discharge and did not prevent FDEP from issuing a permit to the City of Hollywood for the disposal of the combined effluent. Furthermore, these results, in combination with the previous results, indicated that individual bioassay testing for the reject water for regulatory compliance is not required.« less

  15. The ESASSI-08 cruise in the South Scotia Ridge region: preliminary analysis of hydrodynamic and biogeochemical data

    NASA Astrophysics Data System (ADS)

    Gomis, D.; Flexas, M. M.; Palmer, M.; Jordà, G.; Orsi, A. H.; Yvon-Lewis, S. A.

    2009-04-01

    The ESASSI-08 oceanographic cruise carried out in January 2008 was the major milestone of ESASSI, the Spanish component of SASSI (a core project of the International Polar Year devoted to study the shelf-slope exchanges in different locations of Antarctica). The sampling strategy of the cruise consisted of 11 full-depth CTD/ADCP sections across the northern and southern slope of the South Scotia Ridge (SSR), between Elephant and Orkney Islands. The sections extend from shelf waters to open sea and the profiles were gathered at an unprecedented spatial resolution over the slope (about 2 nm). Water samples for chemical and biological analysis were also collected at each station; the analyzed parameters include trace gases (CFCs), oxygen isotopes, carbon-related parameters, and nutrients. In this presentation we show the overall distribution of the main variables across the different sections. Namely, we present: a water mass analysis (in terms of potential temperature, salinity and neutral density), estimates of velocities and fluxes across different transects and distributions of biogeochemical parameters. The ultimate aims of the ESASSI project are: 1) to elucidate the fate of the ASF when it enters the SSR from the Weddell Sea; 2) to estimate the shelf-slope exchanges for different parameters; and 3) to quantify the importance of the ventilation associated with intermediate waters flowing over the SSR with respect to the ventilation associated with bottom waters that are blocked by the SSR and flow around the Orkney Plateau.

  16. Monthly Variation of Taiwan Strait Through-flow Transports and Associated Water Masses

    NASA Astrophysics Data System (ADS)

    Jan, S.; Sheu, D.; Kuo, H.

    2005-05-01

    Through-flow transports and associated water masses are analyzed using current data measured by bottom-mounted and ship-board ADCP (1999-2001) across the central Taiwan Strait and strait-wide hydrographic data acquired from 79 CTD survey cruises (1986-2003). The East Asian monsoon, from southwest in July to August and northeast in October to March, controls the transport fluctuation which peaks in August (2.34 Sv northward), is hampered by the northeast monsoon after September and diminishes to the minimum (0.26 Sv southward) in December. The standard deviation of the calculated transport ranges from 0.56 to 1.05 Sv during northeast monsoon months and is relatively small in other months. A cluster analysis together with conventional T-S diagrams identifies the saline and warm Kuroshio Branch Water (KBW), the less saline South China Sea Surface Water (SCSSW), the brackish and cold China Coastal Water (CCW), the saline Subsurface Water (SW) (depth > 100 m) and the Diluted Coastal Water (DCW). The majority of the northward transport in summer carries the SCSSW to the East China Sea. Meanwhile, the DCW appears off the northwest bank of the strait and the SW resides in the bottom layer of a deep trench in the southeastern strait. The onset of the northeast monsoon in September drives the CCW from the Yangtze river mouth to the northern strait. In the southern strait, the northward-moving KBW replaces the SCSSW and meets the southward-intruding CCW in the middle strait during November to April.

  17. Hydrodynamic Controls on Acoustical and Optical Water Properties in Tropical Reefs

    DTIC Science & Technology

    2012-09-30

    scattering, absorption, and backscattering , shows more complex variations, with a strong diel signal , but with a tidal influence reflecting asymmetry in...Relative acoustic backscatter (ABS) profiles were derived from individual ADCP beam echo intensity correcting for range and absorption using the sonar...REFERENCES Deines K. L., 1999, Backscatter estimation using Broadband acoustic Doppler current profilers. Proceedings of the IEEE Sixth Working

  18. Fc Receptor-Mediated Activities of Env-Specific Human Monoclonal Antibodies Generated from Volunteers Receiving the DNA Prime-Protein Boost HIV Vaccine DP6-001.

    PubMed

    Costa, Matthew R; Pollara, Justin; Edwards, Regina Whitney; Seaman, Michael S; Gorny, Miroslaw K; Montefiori, David C; Liao, Hua-Xin; Ferrari, Guido; Lu, Shan; Wang, Shixia

    2016-11-15

    HIV-1 is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years of infection, and therefore, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that moderate protection is possible and that this protection may correlate with antibody-dependent cellular cytotoxicity (ADCC) activity. Our previous studies demonstrated that in an HIV vaccine phase I trial, the DP6-001 trial, a polyvalent Env DNA prime-protein boost formulation could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities. Here we report on the production and analysis of HIV-1 Env-specific human monoclonal antibodies (hMAbs) isolated from vaccinees in the DP6-001 trial. For this initial report, 13 hMAbs from four vaccinees in the DP6-001 trial showed broad binding to gp120 proteins of diverse subtypes both autologous and heterologous to vaccine immunogens. Equally cross-reactive Fc receptor-mediated functional activities, including ADCC and antibody-dependent cellular phagocytosis (ADCP) activities, were present with both immune sera and isolated MAbs, confirming the induction of nonneutralizing functional hMAbs by the DNA prime-protein boost vaccination. Elicitation of broadly reactive hMAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV vaccine design. The roles of Fc receptor-mediated protective antibody responses are gaining more attention due to their potential contribution to the low-level protection against HIV-1 infection that they provided in the RV144 trial. At the same time, information about hMabs from other human HIV vaccine studies is very limited. In the current study, both immune sera and monoclonal antibodies from vaccinated humans showed not only high-level ADCC and ADCP activities but also cross-subtype ADCC and ADCP activities when a polyvalent DNA prime-protein boost vaccine formulation was used. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Four-dimensional variational Ocean ReAnalysis for the Western North Pacific over 30 years (FORA-WNP30)

    NASA Astrophysics Data System (ADS)

    Hirose, N.; Takatsuki, Y.; Usui, N.; Wakamatsu, T.; Tanaka, Y.; Toyoda, T.; Nishikawa, S.; Fujii, Y.; Igarashi, H.; Nishikawa, H.; Ishikawa, Y.; Kuragano, T.; Kamachi, M.

    2016-12-01

    An ocean reanalysis, FORA-WNP30, was produced by the collaborative work of Meteorological Research Institute, Japan Meteorological Agency (JMA/MRI) and Japan Agency for Marine-Earth Science and Technology (JAMSTEC). A state-of-the-art 4-dimensional variational ocean data assimilation system, MOVE-4DVAR (Usui et al., 2015) was used. The calculation for the reanalysis, with the horizontal resolution of 0.1 degree (about 10 km) and the period between 1 January 1982 and 31 December 2014, was carried out on the Earth Simulator with the support of JAMSTEC. The model forcing is derived from the JRA-55 atmospheric reanalysis product. In-situ temperature and salinity profiles above 1500m-depth, satellite-based sea surface temperature (SST) and sea surface height (SSH) data are assimilated in FORA-WNP30.Using the current observations obtained by the Acoustic Doppler Current Profiler (ADCP) installed in two JMA research vessels, we validate the current (velocity) field in FORA-WNP30 and MOVE-3DVAR system, the latter of which is an operational ocean data assimilation system in JMA. The ADCP current data are independent because they are not assimilated in both systems. The current fields at 100-m depth during 2001-2012, in both of FORA-WNP30 and MOVE-3DVAR show high correlation with ADCP observation in the south of Japan, the East China Sea and the Kuroshio extension region, and relatively low correlation in the Japan Sea and the Oyashio region. The correlation coefficients of current speed for FORA-WNP30 are higher than those for MOVE-3DVAR in all regions.FORA-WNP30 successfully reproduces not only the major ocean current such as the Kuroshio and Oyashio, but also the associated meso-scale phenomena such as eddies, fronts, and meanders. In addition, it replicates the Kuroshio large meander events and the strong intrusion event of the Oyashio in 1980s, in spite of no satellite altimeter data for this period. Therefore, FORA-WNP30 is a valuable dataset for use in a variety of oceanographic process study and related fields such as climate study, meteorology, and fisheries.

  20. Tidal Energy Conversion Installation at an Estuarine Bridge Site: Resource Evaluation and Energy Production Estimate

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Gagnon, I.; Baldwin, K.; Bell, E.

    2015-12-01

    The "Living Bridge" project aims to create a self-diagnosing, self-reporting "smart bridge" powered by a local renewable energy source, tidal energy - transforming Memorial Bridge, a vertical lift bridge over the tidal Piscataqua River connecting Portsmouth, NH and Kittery, ME, into a living laboratory for researchers, engineers, scientists, and the community. The Living Bridge project includes the installation of a tidal turbine at the Memorial Bridge. The energy converted by the turbine will power structural health monitoring, environmental and underwater instrumentation. Utilizing locally available tidal energy can make bridge operation more sustainable, can "harden" transportation infrastructure against prolonged grid outages and can demonstrate a prototype of an "estuarine bridge of the future". A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers (ADCP) at two locations: near the planned deployment location in 2013-14 for 123 days and mid-channel in 2007 for 35 days. Data were evaluated to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. The target deployment site exhibited significantly more energetic ebb tides than flood tides, which can be explained by the local bathymetry of the tidal estuary. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP "bin" vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. The planned installation, consisting of a vertical axis turbine with the generator above water, mounted to a floating platform, and underwater instrumentation will be outlined. Supported by NSF-IIP 1430260

  1. Evaluation of acoustic Doppler velocimetry (ADV) performance under various probe configurations

    NASA Astrophysics Data System (ADS)

    Liu, Da; Valyrakis, Manousos

    2017-04-01

    Acoustic Doppler velocimetry (ADV) is widely used as one of the most versatile and robust flow diagnostics tools for both laboratory and field studies across a range of research and applied themes spanning engineering eco-hydraulics and geomorphology. A range of specific ADV probes with varying specifications, are readily available for use by professionals and researchers. However, in practice using certain ADV equipment under certain default configurations can easily result in obtaining flow diagnostics that are non-representative of the real flow conditions. This appears to be true for most probes but even more those with which higher temporal resolution can be achieved - which many times is desired for assessing turbulence levels, amongst others. A preliminary examination revealed that there is a varying level of dependency on a number of the probes' configuration parameters, which even though detailed in the user manual, a definite guide for the user is lacking. Subsequently users of this equipment may end up underutilizing or using it in a manner that returns inaccurate results. There are little, if any, resources in obtaining a better understanding on how to use the probe effectively. To this goal a series of laboratory experiments are conducted, under the same open channel flow conditions, using a profiler (ADCP VectrinoII from Nortek®) aiming to cover the full range of probe configuration combinations that can be used in practice. For each experiment, single or multiple point measurements are taken to reconstruct velocity and turbulence intensity profiles. These are conducted at the same location (mid-channel) under the same flow conditions (referring to steady uniform flow and fully developed turbulence) for all probe configurations. In particular, the effect of tested parameters (including Range length, Range to fist cell, Sampling rate, Ping algorithm, Transmit pulse size and Cell size) on the sensitivity and accuracy of the obtained results is assessed. The signal to noise ratio (SNR) and the correlation of the measurement are used in evaluating the data quality, while a qualitative comparison of the resulting profiles for flow diagnostics is enabled using reference profiles obtained via a VectrinoI ADV (from Nortek®) and MicroADV (from Sontek®) respectively under the exactly same flow condition at the same location. These observations are important to identify its best configuration for a given probe towards improving the data quality and accuracy.

  2. Storm-induced water dynamics and thermohaline structure at the tidewater Flade Isblink Glacier outlet to the Wandel Sea (NE Greenland)

    NASA Astrophysics Data System (ADS)

    Kirillov, Sergei; Dmitrenko, Igor; Rysgaard, Søren; Babb, David; Toudal Pedersen, Leif; Ehn, Jens; Bendtsen, Jørgen; Barber, David

    2017-11-01

    In April 2015, an ice-tethered conductivity-temperature-depth (CTD) profiler and a down-looking acoustic Doppler current profiler (ADCP) were deployed from the landfast ice near the tidewater glacier terminus of the Flade Isblink Glacier in the Wandel Sea, NE Greenland. The 3-week time series showed that water dynamics and the thermohaline structure were modified considerably during a storm event on 22-24 April, when northerly winds exceeded 15 m s-1. The storm initiated downwelling-like water dynamics characterized by on-shore water transport in the surface (0-40 m) layer and compensating offshore flow at intermediate depths. After the storm, currents reversed in both layers, and the relaxation phase of downwelling lasted ˜ 4 days. Although current velocities did not exceed 5 cm s-1, the enhanced circulation during the storm caused cold turbid intrusions at 75-95 m depth, which are likely attributable to subglacial water from the Flade Isblink Ice Cap. It was also found that the semidiurnal periodicities in the temperature and salinity time series were associated with the lunar semidiurnal tidal flow. The vertical structure of tidal currents corresponded to the first baroclinic mode of the internal tide with a velocity minimum at ˜ 40 m. The tidal ellipses rotate in opposite directions above and below this depth and cause a divergence of tidal flow, which was observed to induce semidiurnal internal waves of about 3 m height at the front of the glacier terminus. Our findings provide evidence that shelf-basin interaction and tidal forcing can potentially modify coastal Wandel Sea waters even though they are isolated from the atmosphere by landfast sea ice almost year-round. The northerly storms over the continental slope cause an enhanced circulation facilitating a release of cold and turbid subglacial water to the shelf. The tidal flow may contribute to the removal of such water from the glacial terminus.

  3. Modelling and in-situ measurements of intense currents during a winter storm in the Gulf of Aigues-Mortes (NW Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Michaud, Héloïse; Leredde, Yann; Estournel, Claude; Berthebaud, Éric; Marsaleix, Patrick

    2013-09-01

    While oceanic circulation in the Gulf of Lion (GoL) has often been studied in calm weather or with northerly winds (Tramontane or Mistral) through observations and numerical circulation models, few studies have focused on southeasterly storm events. Yet, correct representation of the circulation during storms is crucial if the suspension of sediments is to be correctly modelled throughout the Gulf. The purpose of this paper is to describe the hydrodynamics in the Gulf of Aigues-Mortes (NW of the GoL) during the storm of 18 February 2007 by using a set of data from an ADCP station placed at a depth of 65 m on the sea bed off the coast at Sète, supplemented by the ocean circulation model SYMPHONIE. This storm was characterized by a moderate south-easterly wind (15 m . s-1) and waves of up to 5 m of significant height at its apex. At the ADCP, strong currents of up to 0.8 m . s-1 near the surface and 0.5 m . s-1 near the bottom were recorded, parallel to the coast, flowing towards the south-west. The simulated currents were widely underestimated, even taking the effect of waves into account in the model. It was suspected that the representation of the wind in the atmospheric model was an underestimation. A new simulation was therefore run with an arbitrarily chosen stronger wind and its results were in much better agreement with the measurements. A simplified theoretical analysis successfully isolated the wind-induced processes, responsible for the strong currents measured during the apex and the strong vertical shear that occurred at the beginning of the storm. These processes were: 1/ the barotropic geostrophic current induced by a wind parallel to the coast and 2/ the Ekman spiral. The duration of the storm (about 36 h at the apex) explains the continuous increase of the current as predicted by the theory. The frictionally induced Ekman transport explains the current shear in the surface layer in the rising stage of the storm, and the addition of high waves and strong wind at the apex is more in favour of strong vertical mixing in the surface layer.

  4. 75 FR 42728 - Copper Valley Electric Association, Inc.; Notice of Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... Federal Power Act, proposing to study the feasibility of the Silver Lake Hydroelectric Project, located on Silver Lake and Duck River, in the Valdez-Cordova Census Area, Alaska. The sole purpose of a preliminary...-high roller-compacted concrete dam constructed at the outfall of Silver Lake to Duck River; (2) Silver...

  5. Evaluation of Polyethylene Passive Samplers to Estimate Deep Water PCB Concentrations at the Palos Verdes Shelf Superfund Site

    EPA Science Inventory

    The Palos Verdes Superfund site is located in over 50 meters of water on the continental shelf and slope off the coast of southern California (USA). The site includes 27 km2 of seabed contaminated over several decades by municipal treatment plant effluent discharged via outfall ...

  6. Use of Polyethylene Passive Samplers to Estimate Dissolved Phase PCBs in the Water Column of the Palos Verdes Superfund Site

    EPA Science Inventory

    The Palos Verdes Superfund site is located in over 50 meters of water on the continental shelf and slope off the coast of southern California (USA). The site includes 27 km2 of seabed contaminated over several decades by municipal treatment plant effluent discharged via outfall ...

  7. 77 FR 67057 - Notice of Availability of a Finding of No Significant Impact for the Port of Guam Modernization...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... east of the proposed new break-bulk terminal to improve efficiency and security. New entrance and exit... storm water outfalls into the harbor. New safety and security improvements would be constructed. FOR...) 366-0714; or email: [email protected] . Persons who use a telecommunications device for the deaf...

  8. 40 CFR 122.21 - Application for a permit (applicable to State programs, see § 123.25).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... under the Marine Protection Research and Sanctuaries Act. (viii) Dredge or fill permits under section... “quantitative data” for a pollutant are required, the applicant must collect a sample of effluent and analyze it... and report that quantitative data as applying to the substantially identical outfall. The requirements...

  9. Biological assessment for the effluent reduction program, Los Alamos National Laboratory, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, S.P.

    1996-08-01

    This report describes the biological assessment for the effluent recution program proposed to occur within the boundaries of Los Alamos National Laboratory. Potential effects on wetland plants and on threatened and endangered species are discussed, along with a detailed description of the individual outfalls resulting from the effluent reduction program.

  10. Quantifying the Impacts of Outlet Control Structures on Lake Hydrology and Ecology

    NASA Astrophysics Data System (ADS)

    Budd, B. M.; Kendall, A. D.; Martin, S. L.; Hyndman, D. W.

    2012-12-01

    There have been limited studies of the impacts of lake level control structures on stream ecology and lake property erosion. We examine the influence of historical lake level management strategies on Higgins Lake in Michigan, which is regionally known for recreation, fisheries, and scenery. Lake control structures have potentially increased shoreline erosion and seasonally-reduced flow through the outlets, likely impacting fish habitat. Concerns over these issues spurred local land owners to seek a study on the possible hydrologic and ecological impacts of the removal or modification of the control structure. Bathymetry maps are fundamental to understanding and managing lake ecosystems. From the 1930's through the 1950's, these maps were developed for thousands of Michigan inland lakes using soundings lowered through holes cut in winter lake ice. Increased land use change and alterations of lake outlets have likely modified erosion and sedimentation rates of these lake systems. Our research includes bathymetry surveys of Higgins Lake using an Acoustic Doppler Current Profiler (ADCP) and side-scan sonar. The new higher-resolution bathymetry serves as the basis for simulating impacts of potential changes in lake management, on a verity of inpoint including shoreline position and fish habitat.

  11. Hydraulic alterations resulting from hydropower development in the Bonneville Reach of the Columbia River

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.

    2010-01-01

    We used a two-dimensional (2D) hydrodynamic model to simulate and compare the hydraulic characteristics in a 74-km reach of the Columbia River (the Bonneville Reach) before and after construction of Bonneville Dam. For hydrodynamic modeling, we created a bathymetric layer of the Bonneville Reach from single-beam and multi-beam echo-sounder surveys, digital elevation models, and navigation surveys. We calibrated the hydrodynamic model at 100 and 300 kcfs with a user-defined roughness layer, a variable-sized mesh, and a U.S. Army Corps of Engineers backwater curve. We verified the 2D model with acoustic Doppler current profiler (ADCP) data at 14 transects and three flows. The 2D model was 88% accurate for water depths, and 77% accurate for velocities. We verified a pre-dam 2D model run at 126 kcfs using pre-dam aerial photos from September 1935. Hydraulic simulations indicated that mean water depths in the Bonneville Reach increased by 34% following dam construction, while mean velocities decreased by 58%. There are numerous activities that would benefit from data output from the 2D model, including biological sampling, bioenergetics, and spatially explicit habitat modeling.

  12. Predicting the Mobility and Burial of Underwater Unexploded Ordnance (UXO) Using the UXO Mobility Model (ESTCP) 200417

    DTIC Science & Technology

    2009-11-01

    Abbreviations and Acronyms Acronym Definition ADCP Acoustic Doppler Current Profiler AGD Applications Guidance Document ARAMS Army Risk Assessment Modeling...Center iv NESDI Navy Environmental Sustainability Development to Integration NOS National Ocean Service NS Naval Station NWS Naval Weapons...Plan QAS Quality Assurance Specialist RAC Risk Assessment Code REF/DIF Refraction/Diffraction ROI Return on Investment SAJ Dr. Scott A. Jenkins

  13. Monitoring Maritime Conditions with Unmanned Systems During Trident Warrior 2013

    DTIC Science & Technology

    2014-01-01

    Host- ing Autonomous Remote Craft or SHARC model ) that emit sounds and listen for reflected changes in response to ocean currents. Experiments tested...San Diego Scripps Institution of Oceanography were also deployed; these provided Acoustic Doppler Current Profiler (ADCP) 3D measurements of the...ocean currents as well as measurements of the surface meteorology . Figure 5(b) shows a schematic representa- tion of one wave glider and two ocean

  14. Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    van Haren, H.; Taupier-Letage, I.; Aguilar, J. A.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carminati, G.; Carr, J.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Flaminio, V.; Fratini, K.; Fritsch, U.; Fuda, J.-L.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Lucarelli, F.; Lyons, K.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Maurin, G.; Mazure, A.; Melissas, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, G.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Pillet, R.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Schoeck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-08-01

    An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the 'Northern Current'.

  15. Large Kelvin-Helmholtz Billow Trains Observed in the Kuroshio above a Seamount

    NASA Astrophysics Data System (ADS)

    Chang, M. H.; Jheng, S. Y.; Lien, R. C.

    2016-02-01

    Trains of large Kelvin-Helmholtz (KH) billows were observed within the Kuroshio core, off southeastern Taiwan, at 230-m depth above a seamount in shipboard echo sounder, ADCP, and LADCP/CTD profiling, and moored ADCP measurements. The large KH billow trains were present in a strong shear band along 0.55 ms-1 isotach within the Kuroshio core as a result of the Kuroshio current interacting with the rapid changing topography. Each individual billow, resembling a cats' eye, had a horizontal length scale of 200 m and a vertical amplitude scale of 100 m, and a propagation timescale of 7 minutes, near local buoyancy period. Overturns were frequently observed in both the billow core and the upper eyelid. The shear instability criterion (Ri < 0.25) was reached in the billow core. The dissipation rate of turbulent kinetic energy in the core and in the eyelid is comparable at an average value of O(10-4) WKg-1 and a maximum value of O(10-3) WKg-1. The KH billows derive energy from the Kuroshio kinetic energy. The corresponding turbulence mixing allows the water mass exchange between the Kuroshio and the surrounding water. These small-scale processes play an important role in the energy and water mass budgets within the Kuroshio.

  16. Nutrient and sediment concentrations, yields, and loads in impaired streams and rivers in the Taunton River Basin, Massachusetts, 1997-2008

    USGS Publications Warehouse

    Barbaro, Jeffrey R.; Sorenson, Jason R.

    2013-01-01

    Rapid development, population growth, and the changes in land and water use accompanying development are placing increasing stress on water resources in the Taunton River Basin. An assessment by the Massachusetts Department of Environmental Protection determined that a number of tributary streams to the Taunton River are impaired for a variety of beneficial uses because of nutrient enrichment. Most of the impaired reaches are in the Matfield River drainage area in the vicinity of the City of Brockton. In addition to impairments of stream reaches in the basin, discharge of nutrient-rich water from the Taunton River contributes to eutrophication of Mount Hope and Narragansett Bays. To assess water quality and loading in the impaired tributary stream reaches in the basin, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection compiled existing water-quality data from previous studies for the period 1997-2006, developed and calibrated a Hydrological Simulation Program-FORTRAN (HSPF) precipitation-runoff model to simulate streamflow in areas of the basin that contain the impaired reaches for the same time period, and collected additional streamflow and water-quality data from sites on the Matfield and Taunton Rivers in 2008. A majority of the waterquality samples used in the study were collected between 1999 and 2006. Overall, the concentration, yield, and load data presented in this report represent water-quality conditions in the basin for the period 1997-2008. Water-quality data from 52 unique sites were used in the study. Most of the samples from previous studies were collected between June and September under dry weather conditions. Simulated or measured daily mean streamflow and water-quality data were used to estimate constituent yields and loads in the impaired tributary stream reaches and the main stem of the Taunton River and to develop yield-duration plots for reaches with sufficient water-quality data. Total phosphorus concentrations in the impaired-reach areas ranged from 0.0046 to 0.91 milligrams per liter (mg/L) in individual samples (number of samples (n)=331), with a median of 0.090 mg/L; total nitrogen concentrations ranged from 0.34 to 14 mg/L in individual samples (n=139), with a median of 1.35 mg/L; and total suspended solids concentrations ranged from 2/d) for total phosphorus and 100 lb/mi2/d for total nitrogen in these reaches. In most of the impaired reaches not affected by the Brockton Advanced Water Reclamation Facility outfall, yields were lower than in reaches downstream from the outfall, and the difference between measured and threshold yields was fairly uniform over a wide range of flows, suggesting that multiple processes contribute to nonpoint loading in these reaches. The Northeast and Mid-Atlantic SPAtially-Referenced Regression On Watershed (SPARROW) models for total phosphorus and total nitrogen also were used to estimate annual nutrient loads in the impaired tributary stream reaches and main stem of the Taunton River and predict the distribution of these loads among point and diffuse sources in reach drainage areas. SPARROW is a regional, statistical model that relates nutrient loads in streams to upstream sources and land-use characteristics and can be used to make predictions for streams that do not have nutrient-load data. The model predicts mean annual loads based on longterm streamflow and water-quality data and nutrient source conditions for the year 2002. Predicted mean annual nutrient loads from the SPARROW models were consistent with the measured yield and load data from sampling sites in the basin. For conditions in 2002, the Brockton Advanced Water Reclamation Facility outfall accounted for over 75 percent of the total nitrogen load and over 93 percent of the total phosphorus load in the Salisbury Plain and Matfield Rivers downstream from the outfall. Municipal point sources also accounted for most of the load in the main stem of the Taunton River. Multiple municipal wastewater discharges in the basin accounted for about 76 and 46 percent of the delivered loads of total phosphorus and total nitrogen, respectively, to Mount Hope Bay. For similarly sized watersheds, total delivered loads were lower in watersheds without point sources compared to those with point sources, and sources associated with developed land accounted for most of the delivered phosphorus and nitrogen loads to the impaired reaches. The concentration, yield, and load data evaluated in this study may not be representative of current (2012) point-source loading in the basin; in particular, most of the water-quality data used in the study (1999-2006) were collected prior to completion of upgrades to the Brockton Advanced Water Reclamation Facility that reduced total phosphorus and nitrogen concentrations in treated effluent. Effluent concentration data indicate that, for a given flow rate, effluent loads of total phosphorus and total nitrogen declined by about 80 and 30 percent, respectively, between the late 1990s and 2008 in response to plant upgrades. Consequently, current (2012) water-quality conditions in the impaired reaches downstream from the facility likely have improved compared to conditions described in the report.

  17. The anti-tumor efficacy of 3C23K, a glyco-engineered humanized anti-MISRII antibody, in an ovarian cancer model is mainly mediated by engagement of immune effector cells

    PubMed Central

    Estupina, Pauline; Fontayne, Alexandre; Barret, Jean-Marc; Kersual, Nathalie; Dubreuil, Olivier; Le Blay, Marion; Pichard, Alexandre; Jarlier, Marta; Pugnière, Martine; Chauvin, Maëva; Chardès, Thierry; Pouget, Jean-Pierre; Deshayes, Emmanuel; Rossignol, Alexis; Abache, Toufik; de Romeuf, Christophe; Terrier, Aurélie; Verhaeghe, Lucie; Gaucher, Christine; Prost, Jean-François

    2017-01-01

    Ovarian cancer is the leading cause of death in women with gynecological cancers and despite recent advances, new and more efficient therapies are crucially needed. Müllerian Inhibiting Substance type II Receptor (MISRII, also named AMHRII) is expressed in most ovarian cancer subtypes and is a novel potential target for ovarian cancer immunotherapy. We previously developed and tested 12G4, the first murine monoclonal antibody (MAb) against human MISRII. Here, we report the humanization, affinity maturation and glyco-engineering steps of 12G4 to generate the Fc-optimized 3C23K MAb, and the evaluation of its in vivo anti-tumor activity. The epitopes of 3C23K and 12G4 were strictly identical and 3C23K affinity for MISRII was enhanced by a factor of about 14 (KD = 5.5 × 10−11 M vs 7.9 × 10−10 M), while the use of the EMABling® platform allowed the production of a low-fucosylated 3C23K antibody with a 30-fold KD improvement of its affinity to FcγRIIIa. In COV434-MISRII tumor-bearing mice, 3C23K reduced tumor growth more efficiently than 12G4 and its combination with carboplatin was more efficient than each monotherapy with a mean tumor size of 500, 1100 and 100 mm3 at the end of treatment with 3C23K (10 mg/kg, Q3-4D12), carboplatin (60 mg/kg, Q7D4) and 3C23K+carboplatin, respectively. Conversely, 3C23K-FcKO, a 3C23K form without affinity for the FcγRIIIa receptor, did not display any anti-tumor effect in vivo. These results strongly suggested that 3C23K mechanisms of action are mainly Fc-related. In vitro, antibody-dependent cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP) were induced by 3C23K, as demonstrated with human effector cells. Using human NK cells, 50% of the maximal lysis was obtained with a 46-fold lower concentration of low-fucosylated 3C23K (2.9 ng/ml) than of 3C23K expressed in CHO cells (133.35 ng/ml). As 3C23K induced strong ADCC with human PBMC but almost none with murine PBMC, antibody-dependent cell phagocytosis (ADCP) was then investigated. 3C23K-dependent (100 ng/ml) ADCP was more active with murine than human macrophages (only 10% of living target cells vs. about 25%). These in vitro results suggest that the reduced ADCC with murine effectors could be partially balanced by ADCP activity in in vivo experiments. Taken together, these preclinical data indicate that 3C23K is a new promising therapeutic candidate for ovarian cancer immunotherapy and justify its recent introduction in a phase I clinical trial. PMID:28427157

  18. Floristic Quality Index of Restored Wetlands in Coastal Louisiana

    DTIC Science & Technology

    2017-08-01

    been used to monitor and assess project performance, resilience, and adaptive management needs. An emerging tool for performing bioassessments in...condition have been used to monitor and assess project performance, resilience, and adaptive management needs. There are three basic levels of wetland...result of saltwater intrusion and rapid subsidence; nevertheless, multiple hydrologic restoration projects (Naomi Outfall Management BA-03c and

  19. 40 CFR 122.21 - Application for a permit (applicable to State programs, see § 123.25).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... under the Clean Air Act. (vii) Ocean dumping permits under the Marine Protection Research and... is to be provided as specified in § 122.26). When “quantitative data” for a pollutant are required... Director may allow the applicant to test only one outfall and report that quantitative data as applying to...

  20. 40 CFR 122.21 - Application for a permit (applicable to State programs, see § 123.25).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... under the Clean Air Act. (vii) Ocean dumping permits under the Marine Protection Research and... is to be provided as specified in § 122.26). When “quantitative data” for a pollutant are required... Director may allow the applicant to test only one outfall and report that quantitative data as applying to...

  1. 40 CFR 122.21 - Application for a permit (applicable to State programs, see § 123.25).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... under the Clean Air Act. (vii) Ocean dumping permits under the Marine Protection Research and... is to be provided as specified in § 122.26). When “quantitative data” for a pollutant are required... Director may allow the applicant to test only one outfall and report that quantitative data as applying to...

  2. 40 CFR 122.21 - Application for a permit (applicable to State programs, see § 123.25).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... under the Clean Air Act. (vii) Ocean dumping permits under the Marine Protection Research and... is to be provided as specified in § 122.26). When “quantitative data” for a pollutant are required... Director may allow the applicant to test only one outfall and report that quantitative data as applying to...

  3. Assessing the Challenges Associated with Developing an Integrated Modeling Approach for Predicting and Managing Water Quality and Quantity from the Watershed through the Drinking Water Treatment System

    EPA Science Inventory

    Natural and Engineered water systems interact throughout watersheds (e.g., at water intakes, wastewater outfalls and water pipe breaks of all kinds), and while there is clearly a link between watershed activities and the quality of water entering the engineered environment, surfa...

  4. Application of ERTS-1-data to the protection and management of New Jersey's coastal environment

    NASA Technical Reports Server (NTRS)

    Yunghans, R. S.; Feinberg, E. B.; Mairs, R. L. (Principal Investigator); Woodward, D.; Thibault, D. A.; Macomber, R. T.

    1973-01-01

    The author has identified the following significant results. New Jersey's planned, regionalized network of sewage disposal facilities has been plotted on an ERTS-1 mosaic and circulation parameters for each of the planned outfall locations have been analyzed using the ERTS-1 imagery and comparative aircraft photography. Work is continuing on the circulation and dispersion of barge-dumped wastes in the New York Bight area. One of the largest remote sensing experiments ever attempted in this country was completed on April 7, 1973 during the ERTS-1 overpass. The test area included the northern portion of New Jersey and the Raritan Bay - New York Harbor area. Three NASA aircraft, two helicopters, nine surface vessels, 40 ground team personnel, and numerous oceanographic, radiometric, and meteorological equipment were deployed in an effort to characterize the surface and near-surface circulation dynamics in this 600 square mile area, during an entire tidal cycle. The analyses of these data in concert with all previous ERTS-1 overpasses will provide information that can lead to a better and more rational use of the nearshore marine environment. The data will be utilized to plan future outfall locations, regulating offshore disposal of wastes, etc.

  5. Multiple approaches to microbial source tracking in tropical northern Australia

    PubMed Central

    Neave, Matthew; Luter, Heidi; Padovan, Anna; Townsend, Simon; Schobben, Xavier; Gibb, Karen

    2014-01-01

    Microbial source tracking is an area of research in which multiple approaches are used to identify the sources of elevated bacterial concentrations in recreational lakes and beaches. At our study location in Darwin, northern Australia, water quality in the harbor is generally good, however dry-season beach closures due to elevated Escherichia coli and enterococci counts are a cause for concern. The sources of these high bacteria counts are currently unknown. To address this, we sampled sewage outfalls, other potential inputs, such as urban rivers and drains, and surrounding beaches, and used genetic fingerprints from E. coli and enterococci communities, fecal markers and 454 pyrosequencing to track contamination sources. A sewage effluent outfall (Larrakeyah discharge) was a source of bacteria, including fecal bacteria that impacted nearby beaches. Two other treated effluent discharges did not appear to influence sites other than those directly adjacent. Several beaches contained fecal indicator bacteria that likely originated from urban rivers and creeks within the catchment. Generally, connectivity between the sites was observed within distinct geographical locations and it appeared that most of the bacterial contamination on Darwin beaches was confined to local sources. PMID:25224738

  6. Nonpoint Source Road Salt Pollution from Urban Stormwater

    NASA Astrophysics Data System (ADS)

    DeGaetano, S.; Walter, M. T.

    2014-12-01

    In colder climates, such as the Northeast, road salts are commonly applied to deice roads in order to increase pedestrian and driver safety. This study was conducted to establish the mass if NaCl entering the local aquatic systems from Cornell's campus. Using trail cameras, two typical storm water pipes (draining into Cascadilla Creek) were monitored to determine the volume of runoff on an hourly bases. Grab samples were taken three times a week obtain storm water chloride concentration. In general, the average measured salt concentration was found to be 3.61 g/L, while high precipitation events Cl- concentration spiked to levels exceeding 12 g/L (≈ 20 g/L of salt). Combining runoff volumes and salt concentration values, a mass per drainage area was calculated for each monitored pipe. Outfall #1, located just upstream from the Wilson Synchrotron Module, expelled 262,300 kg of salt over a 42-day period of data collection while Outfall#2 discharged 4160 kg during the same period. These results were averaged and then applied to the total impervious area on Cornell's campus to approximate the total mass of sodium chloride leaving campus during the period of data collection.

  7. Annual Storm Water Report for the Y-12 National Security Complex Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This is the second annual storm water report prepared in accordance with the National Pollutant Discharge Elimination System (NPDES) permit issued to the Y-12 National Security Complex (Y-12 Complex) on December 1, 2011, and the corresponding Y-12 Storm Water Pollution Prevention Plan (SWP3) which became effective on September 7, 2012. However, Appendix A does contain some analytical data gathered under the previous NPDES permit and SWP3 for comparison purposes. The quality of storm water exiting the Y-12 Complex via East Fork Poplar Creek remained relatively stable from 2012 to 2013. However, there was one largely unexpected high concentration of mercurymore » noted in an area that is not known to have previously been a mercury use area. This was noted in Sector AA, Outfall 014. This outfall is normally sampled on a rotating basis but, due this elevated concentration, will be sampled again in 2014. The Y-12 Complex will continue to implement appropriate BMPs and reduce outside material storage ares where possible. Emphasis will continue to be placed on site inspections and timely implementation of proper storm water control measures.« less

  8. Interaction and influence of two creeks on Escherichia coli concentrations of nearby beaches: Exploration of predictability and mechanisms

    USGS Publications Warehouse

    Nevers, M.B.; Whitman, R.L.; Frick, W.E.; Ge, Z.

    2007-01-01

    The impact of river outfalls on beach water quality depends on numerous interacting factors. The delivery of contaminants by multiple creeks greatly complicates understanding of the source contributions, especially when pollution might originate up- or down-coast of beaches. We studied two beaches along Lake Michigan that are located between two creek outfalls to determine the hydrometeorologic factors influencing near-shore microbiologic water quality and the relative impact of the creeks. The creeks continuously delivered water with high concentrations of Escherichia coli to Lake Michigan, and the direction of transport of these bacteria was affected by current direction. Current direction reversals were associated with elevated E. coli concentrations at Central Avenue beach. Rainfall, barometric pressure, wave height, wave period, and creek specific conductance were significantly related to E. coli concentration at the beaches and were the parameters used in predictive models that best described E. coli variation at the two beaches. Multiple inputs to numerous beaches complicates the analysis and understanding of the relative relationship of sources but affords opportunities for showing how these complex creek inputs might interact to yield collective or individual effects on beach water quality.

  9. A study of the river velocity measurement techniques and analysis methods

    NASA Astrophysics Data System (ADS)

    Chung Yang, Han; Lun Chiang, Jie

    2013-04-01

    Velocity measurement technology can be traced back to the pitot tube velocity measurement method in the 18th century and today's velocity measurement technology use the acoustic and radar technology, with the Doppler principle developed technology advances, in order to develop the measurement method is more suitable for the measurement of velocity, the purpose is to get a more accurate measurement data and with the surface velocity theory, the maximum velocity theory and the indicator theory to obtain the mean velocity. As the main research direction of this article is to review the literature of the velocity measurement techniques and analysis methods, and to explore the applicability of the measurement method of the velocity measurement instruments, and then to describe the advantages and disadvantages of the different mean velocity profiles analysis method. Adequate review of the references of this study will be able to provide a reference for follow-up study of the velocity measurement. Review velocity measurement literature that different velocity measurement is required to follow the different flow conditions measured be upgraded its accuracy, because each flow rate measurement method has its advantages and disadvantages. Traditional velocity instrument can be used at low flow and RiverRAD microwave radar or imaging technology measurement method may be applied in high flow. In the tidal river can use the ADCP to quickly measure river vertical velocity distribution. In addition, urban rivers may be used the CW radar to set up on the bridge, and wide rivers can be used RiverRAD microwave radar to measure the velocities. Review the relevant literature also found that using Ultrasonic Doppler Current Profiler with the Chiu's theory to the velocity of observing automation work can save manpower and resources to improve measurement accuracy, reduce the risk of measurement, but the great variability of river characteristics in Taiwan and a lot of drifting floating objects in water in high flow, resulting in measurement automation work still needs further study. If the priority for the safety of personnel and instruments, we can use the non-contact velocity measurement method with the theoretical analysis method to achieve real-time monitoring.

  10. Submarine wastewater discharges: dispersion modelling in the Northern Adriatic Sea.

    PubMed

    Scroccaro, Isabella; Ostoich, Marco; Umgiesser, Georg; De Pascalis, Francesca; Colugnati, Luigi; Mattassi, Giorgio; Vazzoler, Marina; Cuomo, Marco

    2010-05-01

    Opposite interests must coexist in coastal areas: the presence of significant cities and urban centres, of touristic and recreational areas, and of extensive shellfish farming. To avoid local pollution caused by treated wastewaters along the Northern Adriatic coast (Friuli Venezia-Giulia and Veneto regions), marine outfall systems have been constructed. In this study, the application of a numerical dispersion model is used to support the traditional monitoring methods in order to link information concerning the hydrodynamic circulation and the microbiological features, to evaluate possible health risks associated with recreational and coastal shellfish farming activities. The study is a preliminary analysis of the environmental impact of wastewater treatment plants (WWTPs) with submarine discharge outfalls. It also could be useful for the water profile definition according to the Directive 2006/7/EC on the quality of bathing water and for the integrated areal analysis (Ostoich et al. 2006), to define the area of influence of each submarine discharge point. Historical data on discharges of the considered WWTPs were recovered and evaluated. Data on discharges' control for Veneto region (WWTPs of Lido and Cavallino) were produced by the WWTPs' manager Veritas Laboratory service, while data for the WWTPs of Friuli Venezia-Giulia region were produced by the regional environmental protection agency in the institutional control activity following official methods. The hydrodynamic model used in this work is the three-dimensional version of the finite element model SHYFEM, developed at ISMAR-CNR (Marine Science Institute of the Italian National Research Council) in Venice (Umgiesser et al. J Mar Syst 51:123-145, 2008). Numerical simulations have been carried out with the 3D version of the finite element model SHYFEM for 3 months during autumn 2007 to evaluate the bacterial pollution dispersion along the coasts of Veneto and Friuli Venezia-Giulia regions, prescribing meteo-marine forcings and concentration values at the points corresponding to the positions of the submarine outfalls. Model results show that during autumn 2007 the discharges of the submarine outfalls of the Venice province seem to have no impact on the surface water quality, while there are some visible effects in the Gulf of Trieste. This reflects the behaviour of the experimental data collected by ARPAV and ARPA FVG and monitoring campaigns both on water and shellfish quality. Further results have been elaborated to identify the area of influence of each discharge point; scenarios were developed with imposed concentrations. The results seem to highlight that the two discharges of the Veneto region are not noticeable, while the discharges of the Gulf of Trieste (in particular the Servola and Barcola ones) are perceptible. This study represents a new step towards the study of the microbiological pollution dispersion and impact due to the discharges of the submarine outfalls of the Veneto and Friuli Venezia-Giulia regions (nine considered discharge points). With the 3D version of the finite element model SHYFEM, the information obtained from the hydrodynamic circulation has been linked to the classical methods of analysis, to assess possible risks connected to the microbiological parameter Escherichia coli. In future studies the time scale for microbiological parameters' decay could be linked to various environmental parameters such as light climate, temperature, and salinity. Interesting information would come from the study of new scenarios with different configurations of the discharge of the pipelines and/or the treatment plants and in particular from the improvements of the 3D version of the SHYFEM model, to take the stratification process into account which occurs during spring-summer, since the Northern Adriatic Sea is a very complex ecosystem, both as physical and ecological processes.

  11. Autonomous Research Vessels for Adaptive Upper-Ocean Process Studies

    DTIC Science & Technology

    2014-09-30

    system with the goal  of extending  its mission robustness,  adaptabilit and science capabilities beyond that  of the   Arduino -­‐ based ones... measure the interplay between these finescale dynamics and turbulence, which ultimately drives  the  irreversible  heat/freshwater  transports...profiling in Greenland  Fjords. acquiring CTD cast (and ADCP profiles) within m of a Greenland iceberg.APPROACH: Our first ARV (ARV Rob) was based on

  12. Rip Channels, Megacusps, and Shoreline Change: Measurements and Modeling

    DTIC Science & Technology

    2010-06-01

    and October 2007 with correlation coefficients (r) and slopes (m) in upper left corner. While the correlation of CDIP - and ADCP-predicted rms wave...about ±5º). In spite of this, CDIP -model- based predictions of offshore radiation stress, Syx,s, and sediment transport rates, qs, in the surf zone...73 Figure 12. Wave roses showing mean wave directions and frequencies at 15 m depth, offshore of Stilwell site, as estimated by CDIP

  13. Tidal Channel Dynamics and Muddy Substrates: A Comparison between a Wave Dominated and a Tidal Dominated System

    DTIC Science & Technology

    2012-09-30

    standard linear wave theory. Suspended sediment concentration (SSC) was estimated using the backscatter signal of the ADCP and the turbidity value...measured by the OBS when present. The OBS turbidity signal was calibrated against SSC measured in a laboratory tank, using sediments collected on the...link the geotechnical properties of sediment substrates to the spatial and hydrodynamic characteristics of tidal channels • To develop new

  14. Measurement of bedload transport in sand-bed rivers: a look at two indirect sampling methods

    USGS Publications Warehouse

    Holmes, Robert R.; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    Sand-bed rivers present unique challenges to accurate measurement of the bedload transport rate using the traditional direct sampling methods of direct traps (for example the Helley-Smith bedload sampler). The two major issues are: 1) over sampling of sand transport caused by “mining” of sand due to the flow disturbance induced by the presence of the sampler and 2) clogging of the mesh bag with sand particles reducing the hydraulic efficiency of the sampler. Indirect measurement methods hold promise in that unlike direct methods, no transport-altering flow disturbance near the bed occurs. The bedform velocimetry method utilizes a measure of the bedform geometry and the speed of bedform translation to estimate the bedload transport through mass balance. The bedform velocimetry method is readily applied for the estimation of bedload transport in large sand-bed rivers so long as prominent bedforms are present and the streamflow discharge is steady for long enough to provide sufficient bedform translation between the successive bathymetric data sets. Bedform velocimetry in small sandbed rivers is often problematic due to rapid variation within the hydrograph. The bottom-track bias feature of the acoustic Doppler current profiler (ADCP) has been utilized to accurately estimate the virtual velocities of sand-bed rivers. Coupling measurement of the virtual velocity with an accurate determination of the active depth of the streambed sediment movement is another method to measure bedload transport, which will be termed the “virtual velocity” method. Much research remains to develop methods and determine accuracy of the virtual velocity method in small sand-bed rivers.

  15. Synergistic surface current mapping by spaceborne stereo imaging and coastal HF radar

    NASA Astrophysics Data System (ADS)

    Matthews, John Philip; Yoshikawa, Yutaka

    2012-09-01

    Well validated optical and radar methods of surface current measurement at high spatial resolution (nominally <100 m) from space can greatly advance our ability to monitor earth's oceans, coastal zones, lakes and rivers. With interest growing in optical along-track stereo techniques for surface current and wave motion determinations, questions of how to interpret such data and how to relate them to measurements made by better validated techniques arise. Here we make the first systematic appraisal of surface currents derived from along-track stereo Sun glitter (ATSSG) imagery through comparisons with simultaneous synoptic flows observed by coastal HF radars working at frequencies of 13.9 and 24.5 MHz, which return averaged currents within surface layers of roughly 1 m and 2 m depth respectively. At our Tsushima Strait (Japan) test site, we found that these two techniques provided largely compatible surface current patterns, with the main difference apparent in current strength. Within the northwest (southern) comparison region, the magnitudes of the ATSSG current vectors derived for 13 August 2006 were on average 22% (40%) higher than the corresponding vectors for the 1-m (2-m) depth radar. These results reflect near-surface vertical current structure, differences in the flow components sensed by the two techniques and disparities in instrumental performance. The vertical profile constructed here from ATSSG, HF radar and ADCP data is the first to resolve downwind drift in the upper 2 m of the open ocean. The profile e-folding depth suggests Stokes drift from waves of 10-m wavelength visible in the images.

  16. Water-borne typhoid fever caused by an unusual Vi-phage type in Edinburgh

    PubMed Central

    Conn, Nancy K.; Heymann, C. S.; Jamieson, A.; McWilliam, Joan M.; Scott, T. G.

    1972-01-01

    Investigation of a small series of cases of typhoid fever infected in a river between 1963 and 1970 revealed that all were caused by a single source, a carrier of a rare phage type of Salmonella typhi. The contamination of the river resulted from an incorrect sewage connexion with a surface water drain outfall into the river. ImagesPlate 1 PMID:4555889

  17. The behavior of natural and anthropogenic osmium in Long Island Sound, an urban estuary in the eastern U.S.

    NASA Astrophysics Data System (ADS)

    Williams, Gwyneth; Marcantonio, Franco; Turekian, Karl K.

    1997-04-01

    The Os concentration and 187Os/ 186Os distributions in surface sediments of Long Island Sound (eastern U.S.) provide a way of determining the sources and estuarine transport of Os. The contribution of anthropogenic Os from sewer outfalls from the New York City region supplies a tracer with a characteristic 187Os/ 186Os of about 1. The Os concentration of the bulk surface sediment increases steeply moving toward New York City in the westernmost Sound and generally follows the concentration of organic carbon. The 187Os/ 186Os ratio of bulk surface sediment increases from west to east in the westernmost part of the Sound and is effectively constant in the central Sound. We interpret these results as indicating that the surface bulk sediments of the Sound contain a low 187Os/ 186Os component, perhaps as a reduced coating associated with organic remains from sewer outfalls. The acid hydrogen peroxide leach fraction has an average 187Os/ 186Os of 9.5 in the central Sound, significantly higher than both the bulk sediment value and the probable sea water value of about 8. The leach fraction in the westernmost part of the traverse is less radiogenic than the central Sound and follows the Os wsotope trend of the bulk sediment. Liquid effluent from a New York City sewer outfall contains 30 pg l -1 of dissolved Os with a 187Os/ 186Os of about 2.5, consistent with its being an end-member of the west-east sediment pattern recorded in the leach fractions of the westernmost cores. The leachable Os from the central Sound predominantly reflects Os in ferromanganese oxyhydroxide coatings from continentally derived sediments with 187Os/ 186Os ratios more radiogenic than seawater. The distribution patterns of anthropogenic and natural Os, with their characteristic isotopic signatures in the Sound, and the insights gained from the behavior of other particle-reactive species, indicates that very little Os in solution may pass through the estuarine gauntlet.

  18. An in-situ assessment of low-density polyethylene and silicone rubber passive samplers using methods with and without performance reference compounds in the context of investigation of polychlorinated biphenyl sources in rivers.

    PubMed

    Estoppey, Nicolas; Schopfer, Adrien; Fong, Camille; Delémont, Olivier; De Alencastro, Luiz F; Esseiva, Pierre

    2016-12-01

    This study firstly aims to assess the field performances of low density polyethylene (LDPE) and silicone rubber (SR) samplers for the monitoring of polychlorinated biphenyls (PCBs) in water regarding the uptake, the sampling rate (R S ) estimated by using performance reference compounds (PRCs) and the time-weighted average (TWA) concentrations. The second aim is to evaluate the efficiency of these samplers to investigate PCB sources (localization and imputation steps) using methods with and without PRCs to correct for the impact of water velocity on the uptake. Samplers spiked with PRCs were deployed in the outfalls of two PCB sources and at 8 river sites situated upstream and downstream of the outfalls. After 6weeks, the uptake of PCBs in the linear phase was equivalent in LDPE and SR but 5 times lower in LDPE for PCBs approaching equilibrium. PRC-based R S and water velocity (0.08 to 1.21ms -1 ) were well correlated in river (LDPE: R 2 =0.91, SR: R 2 =0.96) but not in outfalls (higher turbulences and potential release of PRCs to air). TWA concentrations obtained with SR were slightly higher than those obtained with LDPE (factor 1.4 to 2.6 in river) likely because of uncertainty in sampler-water partition coefficient values. Concentrations obtained through filtration and extraction of water samples (203L) were 1.6 and 5.1 times higher than TWA concentrations obtained with SR and LDPE samplers, respectively. PCB sources could efficiently be localized when PRCs were used (increases of PCB loads in river) but the impact of high differences of water velocity was overcorrected (leading sometimes to false positives and negatives). Increases of PCB loads in the river could not be entirely imputed to the investigated sources (underestimation of PCBs contributing to the load increases). A method without PRCs (relationship between uptake and water velocity) appeared to be a good complementary method for LDPE. Copyright © 2016. Published by Elsevier B.V.

  19. [Effects of temperature increase on zooplankton size spectra in thermal discharge seawaters near a power plant, China].

    PubMed

    Yu, Jing; Zhu, Yi Feng; Dai, Mei Xia; Lin, Xia; Mao, Shuo Qian

    2017-05-18

    Utilizing the plankton 1 (505 Μm), 2 (160 Μm), 3 (77 Μm) nets to seasonally collect zooplankton samples at 10 stations and the corresponding abundance data was obtained. Based on individual zooplankton biovolume, size groups were classified to test the changes in spatiotemporal characteristics of both Sheldon and normalized biovolume size spectra in thermal discharge seawaters near the Guohua Power Plant, so as to explore the effects of temperature increase on zooplankton size spectra in the seawaters. The results showed that the individual biovolume of zooplankton ranged from 0.00012 to 127.0 mm 3 ·ind -1 , which could be divided into 21 size groups, and corresponding logarithmic ranges were from -13.06 to 6.99. According to Sheldon size spectra, the predominant species to form main peaks of the size spectrum in different months were Copepodite larvae, Centropages mcmurrichi, Calanus sinicus, fish larvae, Sagitta bedoti, Sagitta nagae and Pleurobrachia globosa, and minor peaks mostly consisted of individuals with smaller larvae, Cyclops and Paracalanus aculeatus. In different warming sections, Copepodite larvae, fish eggs and Cyclops were mostly unaffected by the temperature increase, while the macrozooplankton such as S. bedoti, S. nagae, P. globosa, C. sinicus and Beroe cucumis had an obvious tendency to avoid the outfall of the power plant. Based on the results of normalized size spectra, the intercepts from low to high occurred in November, February, May and August, respectively. At the same time, the minimum slope was found in February, and similarly bigger slopes were observed in May and August. These results indicated that the proportion of small zooplankton was highest in February, while the proportions of the meso- and macro-zooplankton were relatively high in May and August. Among different sections, the slope in the 0.2 km section was minimum, which increased with the increase of section distance to the outfall. The result obviously demonstrated that the closer the distance was from outfall of the power plant, the smaller the zooplankton became. On the whole, the average intercept of normalized size spectrum in Xiangshan Bay was 4.68, and the slope was -0.655.

  20. Demasculinization of male fish by wastewater treatment plant effluent

    USGS Publications Warehouse

    Vajda, A.M.; Barber, L.B.; Gray, J.L.; Lopez, E.M.; Bolden, A.M.; Schoenfuss, H.L.; Norris, D.O.

    2011-01-01

    Adult male fathead minnows (Pimephales promelas) were exposed to effluent from the City of Boulder, Colorado wastewater treatment plant (WWTP) under controlled conditions in the field to determine if the effluent induced reproductive disruption in fish. Gonadal intersex and other evidence of reproductive disruption were previously identified in white suckers (Catostomus commersoni) in Boulder Creek downstream from this WWTP effluent outfall. Fish were exposed within a mobile flow-through exposure laboratory in July 2005 and August 2006 to WWTP effluent (EFF), Boulder Creek water (REF), or mixtures of EFF and REF for up to 28 days. Primary (sperm abundance) and secondary (nuptial tubercles and dorsal fat pads) sex characteristics were demasculinized within 14 days of exposure to 50% and 100% EFF. Vitellogenin was maximally elevated in both 50% and 100% EFF treatments within 7 days and significantly elevated by 25% EFF within 14 days. The steroidal estrogens 17??-estradiol, estrone, estriol, and 17??-ethynylestradiol, as well as estrogenic alkylphenols and bisphenol A were identified within the EFF treatments and not in the REF treatment. These results support the hypothesis that the reproductive disruption observed in this watershed is due to endocrine-active chemicals in the WWTP effluent. ?? 2011 Elsevier B.V.

  1. Use of ERTS-1 pictures in coastal oceanography in British Columbia

    NASA Technical Reports Server (NTRS)

    Gower, J. F. R.

    1973-01-01

    The ERTS-1 color composite picture of the Vancouver-Victoria region illustrates the value of ERTS data for coastal oceanography. The water of the Fraser River plume which is so clearly visible in the center of the scene has been of interest to oceanographers on the west coast of Canada for a long time as an easily visible tracer of surface water circulation in the strait of Georgia. Maps of the plume at different states of the tide and with different river flow and weather were compiled from oblique aerial photographs in 1950 and used in the siting of sewage and other outfalls in the Vancouver area. More recently high level aerial photomosaics have been used to map the plume area, but the plume can spread over distances of 30 to 40 miles and many photographs, with the uneven illumination inherent in wide angle coverage, are needed for the mosaic. The ERTS satellite gives the first complete view of the plume area. Electronic enhancement of the images shows that the satellite's narrow angle coverage allows very weak surface turbidity features to be made visible to give information on surface currents over a wide area.

  2. Effects of warm water inflows on the dispersion of pollutants in small reservoirs.

    PubMed

    Palancar, María C; Aragón, José M; Sánchez, Fernando; Gil, Roberto

    2006-11-01

    The effects of the warm water discharged by a nuclear power plant (NPP) into a small reservoir are studied. A case study is presented (José Cabrera NPP-Zorita Hidráulica Reservoir) with experimental data of the reservoir stratification and predicted data of the dispersion of radioactive pollutants from operative or accidental releases. The vertical and longitudinal temperature profiles, electrical conductivity and transparency of the reservoir water were measured for an annual cycle. The results indicate that the continuous warm water discharge from the NPP causes permanent and artificial reservoir stratification. The stratification is significant within 1500 m upstream and 1000 m downstream from the warm water outfall. The pollutant dispersion has been predicted by using a flow model based on N(T) perfect-mixing compartments in series with feedback. The model parameter, N(T), is calculated from the longitudinal diffusion coefficient. The prediction of pollutant dispersion by means of this model shows that the stratification slows down the vertical mixing in the whole water body, and reduces the reservoir volume that is effective for the dilution and dispersion of pollutants. This means that, in the case of a radioactive pollutant release, the reservoir radioactivity level could increase significantly.

  3. Wave data processing toolbox manual

    USGS Publications Warehouse

    Sullivan, Charlene M.; Warner, John C.; Martini, Marinna A.; Lightsom, Frances S.; Voulgaris, George; Work, Paul

    2006-01-01

    Researchers routinely deploy oceanographic equipment in estuaries, coastal nearshore environments, and shelf settings. These deployments usually include tripod-mounted instruments to measure a suite of physical parameters such as currents, waves, and pressure. Instruments such as the RD Instruments Acoustic Doppler Current Profiler (ADCP(tm)), the Sontek Argonaut, and the Nortek Aquadopp(tm) Profiler (AP) can measure these parameters. The data from these instruments must be processed using proprietary software unique to each instrument to convert measurements to real physical values. These processed files are then available for dissemination and scientific evaluation. For example, the proprietary processing program used to process data from the RD Instruments ADCP for wave information is called WavesMon. Depending on the length of the deployment, WavesMon will typically produce thousands of processed data files. These files are difficult to archive and further analysis of the data becomes cumbersome. More imperative is that these files alone do not include sufficient information pertinent to that deployment (metadata), which could hinder future scientific interpretation. This open-file report describes a toolbox developed to compile, archive, and disseminate the processed wave measurement data from an RD Instruments ADCP, a Sontek Argonaut, or a Nortek AP. This toolbox will be referred to as the Wave Data Processing Toolbox. The Wave Data Processing Toolbox congregates the processed files output from the proprietary software into two NetCDF files: one file contains the statistics of the burst data and the other file contains the raw burst data (additional details described below). One important advantage of this toolbox is that it converts the data into NetCDF format. Data in NetCDF format is easy to disseminate, is portable to any computer platform, and is viewable with public-domain freely-available software. Another important advantage is that a metadata structure is embedded with the data to document pertinent information regarding the deployment and the parameters used to process the data. Using this format ensures that the relevant information about how the data was collected and converted to physical units is maintained with the actual data. EPIC-standard variable names have been utilized where appropriate. These standards, developed by the NOAA Pacific Marine Environmental Laboratory (PMEL) (http://www.pmel.noaa.gov/epic/), provide a universal vernacular allowing researchers to share data without translation.

  4. Integrated synoptic surveys of the hydrodynamics and water-quality distributions in two Lake Michigan rivermouth mixing zones using an autonomous underwater vehicle and a manned boat

    USGS Publications Warehouse

    Jackson, P. Ryan; Reneau, Paul C.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the National Monitoring Network for U.S. Coastal Waters and Tributaries, launched a pilot project in 2010 to determine the value of integrated synoptic surveys of rivermouths using autonomous underwater vehicle technology in response to a call for rivermouth research, which includes study domains that envelop both the fluvial and lacustrine boundaries of the rivermouth mixing zone. The pilot project was implemented at two Lake Michigan rivermouths with largely different scales, hydrodynamics, and settings, but employing primarily the same survey techniques and methods. The Milwaukee River Estuary Area of Concern (AOC) survey included measurements in the lower 2 to 3 miles of the Milwaukee, Menomonee, and Kinnickinnic Rivers and inner and outer Milwaukee Harbor. This estuary is situated in downtown Milwaukee, Wisconsin, and is the most populated basin that flows directly into Lake Michigan. In contrast, the Manitowoc rivermouth has a relatively small harbor separating the rivermouth from Lake Michigan, and the Manitowoc River Watershed is primarily agricultural. Both the Milwaukee and Manitowoc rivermouths are unregulated and allow free exchange of water with Lake Michigan. This pilot study of the Milwaukee River Estuary and Manitowoc rivermouth using an autonomous underwater vehicle (AUV) paired with a manned survey boat resulted in high spatial and temporal resolution datasets of basic water-quality parameter distributions and hydrodynamics. The AUV performed well in these environments and was found primarily well-suited for harbor and nearshore surveys of three-dimensional water-quality distributions. Both case studies revealed that the use of a manned boat equipped with an acoustic Doppler current profiler (ADCP) and multiparameter sonde (and an optional flow-through water-quality sampling system) was the best option for riverine surveys. To ensure that the most accurate and highest resolution velocity data were collected concurrently with the AUV surveys, the pilot study used a manned boat equipped with an ADCP. Combining the AUV and manned boat datasets resulted in datasets that are essentially continuous from the fluvial through the lacustrine zones of a rivermouth. Whereas the pilot studies were completed during low flows on the tributaries, completion of surveys at higher flows using the same techniques is possible, but the use of the AUV would be limited to areas with relatively low velocities (less than 2 feet per second) such as the harbors and nearshore zones of Lake Michigan. Overall, this pilot study aimed at evaluation of AUV technology for integrated synoptic surveys of rivermouth mixing zones was successful, and the techniques and methods employed in this pilot study should be transferrable to other sites with similar success. The use of the AUV provided significant time savings compared to traditional sampling techniques. For example, the survey of outer Milwaukee Harbor using the AUV required less than 7 hours for approximately 600 profiles compared to the 150 hours it would have taken using traditional methods in a manned boat (a 95 percent reduction in man-hours). The integrated datasets resulting from the AUV and manned survey boat are of high value and present a picture of the mixing and hydrodynamics of these highly dynamic, highly variable rivermouth mixing zones from the relatively well-mixed fluvial environment through the rivermouth to the stratified lacustrine receiving body of Lake Michigan. Such datasets not only allow researchers to understand more about the physical processes occurring in these rivermouths, but they provide high spatial resolution data required for interpretation of relations between disparate point samples and calibration and validation of numerical models.

  5. The performance of the Hydromorphological Index of Diversity (HMID) in a hydropower affected meandering river

    NASA Astrophysics Data System (ADS)

    Stähly, Severin; Bourqui, Pierre; Franca, Mario J.; Robinson, Christopher; Schleiss, Anton J.

    2016-04-01

    More than half of the Swiss electricity is produced by hydropower. Large price fluctuations cause severe hydropeaking flow regimes due to corresponding production fluctuations, which undisputedly have a negative impact on aquatic biota. Water diversion due to dams on the other hand imposes downstream residual flow regimes. The absence of flood events and regular sediment supply disrupts sediment dynamics and disconnects floodplains, which are habitats of high value, from its main channel. The residual-flow controlled reach at the Sarine river in western Switzerland is the subject of the present study. The Sarine meanders strongly and the river reach under analysis has a bed incision of locally more than 100 m. Its incision provokes the isolation of the river which is consequently minimally touched by human structures and shows a natural geomorphology. Since the construction of a dam upstream this reach in 1948, aiming at the water abstraction to hydropower, vegetation could establish and the active floodplain decreased its area, as airborne images show. Nevertheless, it is classified as a floodplain of national importance and it has been under protection since 1992. It is supposed to be a valuable habitat for a wide range of organisms. The Hydromorphological Index of Diversity (HMID) is a simple tool for quantifying the habitat richness in a river reach, taking into account the mean values and the variation of water depth and flow velocity. For channelized rivers, HMID values from up to 5 are expected, while morphological pristine sites with a high spatial variability of water depth and velocity show values of 9 or higher. For the residual flow of the Sarine River, flow depth and velocity were measured using ADCP and ADV. The results are compared with a nearby natural reference river and the outcome of a 2D numerical simulation. Finally, the behaviour and limitations of the HMID, in a hydropower affected river, are discussed. In the close future an artificial flood is expected in the Sarine in order to reactivate the sediment dynamics. Using 2D numerical simulations in combination with a well understanding of the HMID an optimal planning of this event will be implemented. The present study is financed by the Swiss National Foundation (SNF), National Research Project 70, Energy Turnaround.

  6. Eddy Generation and Shedding in a Tidally Energetic Channel

    NASA Astrophysics Data System (ADS)

    McIlvenny, J.; Gillibrand, P. A.; Walters, R. A.

    2016-02-01

    The Pentland Firth in northern Scotland, and its subsidiary channel the Inner Sound, are currently under scrutiny as the first tidal energy array in the world is installed during 2016. The tidal flows in the channel and sound have been intensively observed and modelled in recent years, and the turbulent nature of the flow, with features of eddy generation and shedding, is becoming increasingly well known. Turbulence and eddies pose potential risks to the turbine infrastructure through enhanced stress on the blades, while understanding environmental effects of energy extraction also requires accurate simulation of the hydrodynamics of the flow. Here, we apply a mixed finite element/finite volume hydrodynamic model to the northern Scottish shelf, with a particular focus on flows through the Pentland Firth and the Inner Sound. We use an unstructured grid model, which allows the open boundaries to be far removed from the region of interest, while still allowing a grid spacing of 40m in the Inner Sound. The model employs semi-implicit techniques to solve the momentum and free surface equations, and semi-Lagrangian methods to solve the material derivative in the momentum equation, making it fast, robust and accurate and suitable for simulating flows in irregular coastal ocean environments. The model is well suited to address questions relating to tidal energy potential. We present numerical simulations of tidal currents in The Pentland Firth and Inner Sound. Observed velocities in the Inner Sound, measured by moored ADCP deployments, reach speeds of up to 5 m s-1 and the model successfully reproduces these strong currents. In the simulations, eddies are formed by interactions between the strong flow and the northern and southern headlands on the island of Stroma; some of these eddies are trapped and remain locked in position, whereas others are shed and transported away from the generation zone. We track the development and advection of eddies in relation to the site of the tidal energy farm, and we compare the simulated locations of eddies with observed seabed sediment distributions in the Inner Sound. Simulations with and without the presence of tidal turbines in the Inner Sound are presented, and the potential impact of the turbines on sediment dynamics is considered.

  7. New technological developments provide deep-sea sediment density flow insights: the Monterey Coordinated Canyon Experiment

    NASA Astrophysics Data System (ADS)

    O'Reilly, T. C.; Kieft, B.; Chaffey, M. R.; Wolfson-Schwehr, M.; Herlien, R.; Bird, L.; Klimov, D.; Paull, C. K.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Caress, D. W.; Sumner, E. J.; Simmons, S.; Parsons, D. R.; Talling, P.; Rosenberger, K. J.; Xu, J.; Maier, K. L.; Gales, J. A.

    2017-12-01

    The Monterey Coordinated Canyon Experiment (CCE) deployed an array of instruments along the Monterey Canyon floor to characterize the structure, velocity and frequency of sediment flows. CCE utilized novel technologies developed at MBARI to capture sediment flow data in unprecedented detail. 1. The Seafloor Instrument Node (SIN) at 1850 meters depth housed 3 ADCPs at 3 different frequencies, CTD, current meter, oxygen optode, fluorometer/backscatter sensor, and logged data at 10 second intervals or faster. The SIN included an acoustic modem for communication with shore through a Wave Glider relay, and provided high-resolution measurements of three flow events during three successive deployments over 1.5 years. 2. Beachball-sized Benthic Event Detectors (BEDs) were deployed on or under the seafloor to measure the characteristics of sediment density flows. Each BED recorded data from a pressure sensor and a 3-axis accelerometer and gyro to characterize motions during transport events (e.g. tumble vs rotation). An acoustic modem capable of operating through more than a meter of sediment enabled communications with a ship or autonomous surface vehicle. Multiple BEDs were deployed at various depths in the canyon during CCE, detecting and measuring many transport events; one BED moved 9 km down canyon in 50 minutes during one event. 3. Wave Glider Hot Spot (HS), equipped with acoustic and RF modems, acted as data relay between SIN, BEDs and shore, and acoustically located BEDs after sediment density flows.. In some cases HS relayed BED motion data to shore within a few hours of the event. HS provided an acoustic console to the SIN, allowing shore-based users to check SIN health and status, perform maintenance, etc. 4. Mapping operations were conducted 4 times at the SIN site to quantify depositional and erosional patterns, utilizing a prototype ultra-high-resolution mapping system on the ROV Doc Ricketts. The system consists of a 400-kHz Reson 7125 multibeam sonar, a 3DatDepth SL1 subsea LiIDAR, two stereo color cameras, and a Kearfott SeaDevil INS. At a survey altitude of 3 m above the bed, the mapping system provides 5-cm resolution multibeam bathymetry, 1-cm resolution lidar bathymetry, and 2-mm resolution photomosaics. We will describe the design and full capabilities of these novel systems.

  8. Quantifying Acoustic Uncertainty Due to Marine Mammals and Fish Near the Shelfbreak Front off Cape Hatteras

    DTIC Science & Technology

    2015-09-30

    an AUV mounted acoustic source, 2) moored multi-element SHRU acoustic receiver arrays, 3) a shipboard acoustic resonator, 4) fish-attraction...devices (FAD’s), 5) a three- AUV fish-field mapping effort (employing sidescan sonar plus optics) and 6) ScanFish, ADCP, and moored sensor oceanographic...The acoustic model has been further refined. To obtain a better estimate of source positions, the navigation data of the source AUV (Snoopy) was

  9. The Gulf of Cadiz Expedition: R/V Oceanus Cruise 202

    DTIC Science & Technology

    1989-04-01

    Barrie Walden, Alden Cook, and Lenny Boutin of WHOI for their promptness in getting the ADCP repaired. We also ack- nowledge Marv Stalcup of WHO! for...24 35 59.97 8 37.48 LC 2020 18 09/12/88 14:14 35 54.37 8 37.53 LC 2018 (line 8) I 19 09/13/88 09:14 3645.44 901.79 LC 584 20 09/13/88 10:19 36 40.19 9

  10. Cross-Shore Exchange on Natural Beaches

    DTIC Science & Technology

    2014-09-01

    87   Figure 2.   Wave conditions measured by the ADCP in 13 m water depth of (a) root- mean-square wave height Hrms...horizontal velocity, Umean, measured in the reference level, ∑Tsig,pulse T3−hour ∑Tsig,pulse T3−hour xi (e) local water depth, h, and (f) local root...mean-square wave height normalized by the local water depth, Hrms/h, measured by ADCPin (blue) and ADCPout (red) during the 3HRLTs. Colored lines

  11. Red Sea Outflow Experiment (REDSOX): Descent and initial spreading of Red Sea Water in the northwestern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Bower, A.; Johns, W.; Peters, H.; Fratantoni, D.

    2003-04-01

    Two comprehensive surveys were carried out during 2001 to investigate the dense overflow and initial spreading of Red Sea Water (RSW) in the Gulf of Aden. The cruises were timed to coincide with the climatological maximum (February) and minimum (August) periods of outflow transport. The surveys included high-resolution CTD/lowered ADCP/shipboard ADCP observations in the descending plume and in the western gulf, and trajectories from 50 acoustically-tracked RAFOS floats released at the center of the equilibrated RSW (650 m). The measurements reveal a complicated descending plume structure in the western gulf with three main pathways for the high salinity RSW. Different mixing intensities along these pathways lead to variable penetration depths of the Red Sea plume between 450-900 m in the Gulf of Aden. The observations also revealed the hydrographic and velocity structure of large, energetic, deep-reaching mesoscale eddies in the gulf that fundamentally impact the spreading rates and pathways of RSW. Both cyclones and anticyclones were observed, with horizontal scales up to 250 km and azimuthal speeds as high as 0.5 m/s. The eddies appear to reach nearly to the sea floor and entrain RSW from the western gulf at mid-depth. Post-cruise analysis of SeaWiffs imagery suggests that some of these eddies form in the Indian Ocean and propagate into the gulf.

  12. Performance efficiency of feed utilization, relative growth rate, and survival rate of common carp (Cyprinus carpio) through the addition of phytase in the feed

    NASA Astrophysics Data System (ADS)

    Rachmawati, D.; Samidjan, I.

    2018-04-01

    The purpose of this study was to determine the effect of adding phytase enzyme in the feed on digestibility of feed, efficiency of feed utilization, relative growth rate and survival rate of Common carp (Cyprinus carpio). Fish samples in this research were Common carp with an average - weight of 3.34 ± 0,16 g/fish. The treatments were adding the phytase enzyme in the feed with the different level of doses. Those were A (0 U kg-1 feed), B (500 U kg-1 feed), C (1.000 U kg-1 feed g) and D (1.500 U kg-1 feed). Observation was conducted on digestibility of protein (ADCP), digestibility of phosphor (ADCF), efficiency of feed utilization (EFU), relative growth rate (RGR), protein efficiency ratio (PER), feed conversion ratio (FCR), survival rate (SR) and water quality parameters. The results show that the addition of phytase enzyme significantly (P<0.01) affected on ADCP, ADCF, EFU, RGR, FCR, and PER, on the other hand it insignificantly (P>0.05) affected on SR of common carp. Based on results, it was concluded that optimum doses of phytase enzyme feed in terms of digestibility of feed, efficiency utilization of Feed and growth rate of Common carp ranges from 943 to 1100 U kg-1 feed

  13. Effect of The Phytase Enzyme Addition in The Artificial Feed on Digestibility of Feed, Feed Conversion Ratio and Growth of Gift Tilapia Saline Fish (Oreochromis niloticus) Nursery Stadia I

    NASA Astrophysics Data System (ADS)

    Rachmawati, Diana; Samidjan, Istiyanto; Elfitasari, Tita

    2018-02-01

    The purpose of this study was to determine the effect of adding the phytase enzyme in the artificial feed on digestibility of feed, feed conversion ratio and growth of gift tilapia saline fish (Oreochromis niloticus) nursery stadia I. The fish samples in this study used gift tilapia saline fish (O. niloticus) with an average weight of 0,62 ± 0,008 g/fish and the stocking density of 1 fish1 L. Experimental method used in this study was completely randomized design with 4 treatments and 3 repetitions. The treatments were by adding phytase enzyme in artificial feed with the different level of doses those were A (0 FTU kg1 feed), B (500 FTU kg1 feed), C (1000 FTU kg1 feed) and D (1500 FTU kg1 feed). The results show that the addition of phytase enzyme was significantly (P<0.01) affected on apparent digestibility coefficient of protein (ADCP), apparent digestibility coefficient of Phospor (ADCF), feed conversion ratio (FCR), protein efficiency ratio (PER), and relative growth rate (RGR), on the other hand it insignificantly (P>0.05) affected on Survival Rate (SR) of gift tilapia saline fish. The optimum doses of phytase enzyme on RGR, FCR, PER, ADCP and ADCF of gift tilapia saline fish ranged from 1060 to 1100 FTU kg-1 feed.

  14. Observed and modeled tsunami current velocities in Humboldt Bay and Crescent City Harbor, northern California

    NASA Astrophysics Data System (ADS)

    Admire, A. R.; Dengler, L.; Crawford, G. B.; uslu, B. U.; Montoya, J.

    2012-12-01

    A pilot project was initiated in 2009 in Humboldt Bay, about 370 kilometers (km) north of San Francisco, California, to measure the currents produced by tsunamis. Northern California is susceptible to both near- and far-field tsunamis and has a historic record of damaging events. Crescent City Harbor, located approximately 100 km north of Humboldt Bay, suffered US 20 million in damages from strong currents produced by the 2006 Kuril Islands tsunami and an additional US 20 million from the 2011 Japan tsunami. In order to better evaluate these currents in northern California, we deployed a Nortek Aquadopp 600kHz 2D Acoustic Doppler Current Profiler (ADCP) with a one-minute sampling interval in Humboldt Bay, near the existing National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) tide gauge station. The instrument recorded the tsunamis produced by the Mw 8.8 Chile earthquake on February 27, 2010 and the Mw 9.0 Japan earthquake on March 11, 2011. Currents from the 2010 tsunami persisted in Humboldt Bay for at least 30 hours with peak amplitudes of about 0.3 meters per second (m/s). The 2011 tsunami signal lasted for over 86 hours with peak amplitude of 0.95 m/s. Strongest currents corresponded to the maximum change in water level as recorded on the NOAA NOS tide gauge, and occurred 90 minutes after the initial wave arrival. No damage was observed in Humboldt Bay for either event. In Crescent City, currents for the first three and a half hours of the 2011 Japan tsunami were estimated using security camera video footage from the Harbor Master building across from the entrance to the small boat basin, approximately 70 meters away from the NOAA NOS tide gauge station. The largest amplitude tide gauge water-level oscillations and most of the damage occurred within this time window. The currents reached a velocity of approximately 4.5 m/s and six cycles exceeded 3 m/s during this period. Measured current velocities both in Humboldt Bay and in Crescent City were compared to calculated velocities from the Method of Splitting Tsunamis (MOST) numerical model. For Humboldt Bay, the 2010 model tsunami frequencies matched the actual values for the first two hours after the initial arrival however the amplitudes were underestimated by approximately 65%. MOST replicated the first four hours of the 2011 tsunami signal in Humboldt Bay quite well although the peak flood currents were underestimated by about 50%. MOST predicted attenuation of the signal after four hours but the actual signal persisted at a nearly constant level for more than 48 hours. In Crescent City, the model prediction of the 2011 frequency agreed quite well with the observed signal for the first two and a half hours after the initial arrival with a 50% underestimation of the peak amplitude. The results from this project demonstrate that ADCPs can effectively record tsunami currents for small to moderate events and can be used to calibrate and validate models (i.e. MOST) in order to better predict hazardous tsunami conditions and improve planned responses to protect lives and property, especially within harbors. An ADCP will be installed in Crescent City Harbor and four additional ADCPs are being deployed in Humboldt Bay during the fall of 2012.

  15. Measuring the uncertainties of discharge measurements: interlaboratory experiments in hydrometry

    NASA Astrophysics Data System (ADS)

    Le Coz, Jérôme; Blanquart, Bertrand; Pobanz, Karine; Dramais, Guillaume; Pierrefeu, Gilles; Hauet, Alexandre; Despax, Aurélien

    2015-04-01

    Quantifying the uncertainty of streamflow data is key for hydrological sciences. The conventional uncertainty analysis based on error propagation techniques is restricted by the absence of traceable discharge standards and by the weight of difficult-to-predict errors related to the operator, procedure and measurement environment. Field interlaboratory experiments recently emerged as an efficient, standardized method to 'measure' the uncertainties of a given streamgauging technique in given measurement conditions. Both uncertainty approaches are compatible and should be developed jointly in the field of hydrometry. In the recent years, several interlaboratory experiments have been reported by different hydrological services. They involved different streamgauging techniques, including acoustic profilers (ADCP), current-meters and handheld radars (SVR). Uncertainty analysis was not always their primary goal: most often, testing the proficiency and homogeneity of instruments, makes and models, procedures and operators was the original motivation. When interlaboratory experiments are processed for uncertainty analysis, once outliers have been discarded all participants are assumed to be equally skilled and to apply the same streamgauging technique in equivalent conditions. A universal requirement is that all participants simultaneously measure the same discharge, which shall be kept constant within negligible variations. To our best knowledge, we were the first to apply the interlaboratory method for computing the uncertainties of streamgauging techniques, according to the authoritative international documents (ISO standards). Several specific issues arise due to the measurements conditions in outdoor canals and rivers. The main limitation is that the best available river discharge references are usually too uncertain to quantify the bias of the streamgauging technique, i.e. the systematic errors that are common to all participants in the experiment. A reference or a sensitivity analysis to the fixed parameters of the streamgauging technique remain very useful for estimating the uncertainty related to the (non quantified) bias correction. In the absence of a reference, the uncertainty estimate is referenced to the average of all discharge measurements in the interlaboratory experiment, ignoring the technique bias. Simple equations can be used to assess the uncertainty of the uncertainty results, as a function of the number of participants and of repeated measurements. The interlaboratory method was applied to several interlaboratory experiments on ADCPs and currentmeters mounted on wading rods, in streams of different sizes and aspects, with 10 to 30 instruments, typically. The uncertainty results were consistent with the usual expert judgment and highly depended on the measurement environment. Approximately, the expanded uncertainties (within the 95% probability interval) were ±5% to ±10% for ADCPs in good or poor conditions, and ±10% to ±15% for currentmeters in shallow creeks. Due to the specific limitations related to a slow measurement process and to small, natural streams, uncertainty results for currentmeters were more uncertain than for ADCPs, for which the site-specific errors were significantly evidenced. The proposed method can be applied to a wide range of interlaboratory experiments conducted in contrasted environments for different streamgauging techniques, in a standardized way. Ideally, an international open database would enhance the investigation of hydrological data uncertainties, according to the characteristics of the measurement conditions and procedures. Such a dataset could be used for implementing and validating uncertainty propagation methods in hydrometry.

  16. Region 9 NPDES Facilities - Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  17. Environmental Assessment: Access Roads and An Associated Interior Road, Centennial Estates Lease, Ellsworth AFB, SD

    DTIC Science & Technology

    2012-05-01

    Currently, 283 military housing units are present at EAFB. Current plans indicate that the new access points and roads for Centennial Estates...will also be equipped with typical underground utilities, easements and standard street lights. This EA has been prepared to facilitate planning ...8 3.3 Outfall Map 9 Appendices 10 A Interagency and Intergovernmental Coordination for Environmental Planning Correspondence 11 B Public Notice

  18. Movement patterns, habitat use and site fidelity of the white croaker (Genyonemus lineatus) in the Palos Verdes Superfund Site, Los Angeles, California.

    PubMed

    Wolfe, Barrett W; Lowe, Christopher G

    2015-08-01

    White croaker (Genyonemus lineatus family: Sciaenidae) are a schooling, benthic foraging fish historically associated with soft sediment and wastewater outfalls in southern California. While they are often used as an indicator species due to their high organochlorine contaminant loads, little is known of their movements in relation to contaminated habitats. A Vemco Positioning System acoustic telemetry array was used to collect fine-scale movement data and characterize the site fidelity, area use, and dispersal of 83 white croaker on the Palos Verdes Shelf Superfund Site, California over 27 months. White croaker generally demonstrated low residency and recurrence to the Palos Verdes Shelf, and were observed to be largely nomadic. However, individual behavior was highly variable. Although the entire monitored shelf was visited by tagged white croaker, habitats in 0-200 m proximity to wastewater outfalls and between 25 and 35 m depth were used most frequently. Approximately half of white croaker migrated into Los Angeles and Long Beach Harbors; areas where they may be targeted by subsistence fishers. A model framework for incorporating fish movement data into contaminant exposure estimates was developed to better understanding organochlorine contaminant exposure for planning future remediation and monitoring. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Calculation method for steady-state pollutant concentration in mixing zones considering variable lateral diffusion coefficient.

    PubMed

    Wu, Wen; Wu, Zhouhu; Song, Zhiwen

    2017-07-01

    Prediction of the pollutant mixing zone (PMZ) near the discharge outfall in Huangshaxi shows large error when using the methods based on the constant lateral diffusion assumption. The discrepancy is due to the lack of consideration of the diffusion coefficient variation. The variable lateral diffusion coefficient is proposed to be a function of the longitudinal distance from the outfall. Analytical solution of the two-dimensional advection-diffusion equation of a pollutant is derived and discussed. Formulas to characterize the geometry of the PMZ are derived based on this solution, and a standard curve describing the boundary of the PMZ is obtained by proper choices of the normalization scales. The change of PMZ topology due to the variable diffusion coefficient is then discussed using these formulas. The criterion of assuming the lateral diffusion coefficient to be constant without large error in PMZ geometry is found. It is also demonstrated how to use these analytical formulas in the inverse problems including estimating the lateral diffusion coefficient in rivers by convenient measurements, and determining the maximum allowable discharge load based on the limitations of the geometrical scales of the PMZ. Finally, applications of the obtained formulas to onsite PMZ measurements in Huangshaxi present excellent agreement.

  20. Cluster analysis for characterization of rainfalls and CSO behaviours in an urban drainage area of Tokyo.

    PubMed

    Yu, Yang; Kojima, Keisuke; An, Kyoungjin; Furumai, Hiroaki

    2013-01-01

    Combined sewer overflow (CSO) from urban areas is recognized as a major pollutant source to the receiving waters during wet weather. This study attempts to categorize rainfall events and corresponding CSO behaviours to reveal the relationship between rainfall patterns and CSO behaviours in the Shingashi urban drainage areas of Tokyo, Japan where complete service by a combined sewer system (CSS) and CSO often takes place. In addition, outfalls based on their annual overflow behaviours were characterized for effective storm water management. All 117 rainfall events recorded in 2007 were simulated by a distributed model InfoWorks CS to obtain CSO behaviours. The rainfall events were classified based on two sets of parameters of rainfall pattern as well as CSO behaviours. Clustered rainfall and CSO groups were linked by similarity analysis. Results showed that both small and extreme rainfalls had strong correlations with the CSO behaviours, while moderate rainfall had a weak relationship. This indicates that important and negligible rainfalls from the viewpoint of CSO could be identified by rainfall patterns, while influences from the drainage area and network should be taken into account when estimating moderate rainfall-induced CSO. Additionally, outfalls were finally categorized into six groups indicating different levels of impact on the environment.

Top