Sample records for flow physics occurring

  1. Surface obstacles in pulsatile flow

    NASA Astrophysics Data System (ADS)

    Carr, Ian A.; Plesniak, Michael W.

    2017-11-01

    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e., constant velocity, unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigate the wake of two canonical obstacles: a cube and a circular cylinder with an aspect ratio of unity. Our previous studies of a surface-mounted hemisphere in pulsatile flow are used as a baseline for these two new, more complex geometries. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings.

  2. Surface obstacles in pulsatile flow

    NASA Astrophysics Data System (ADS)

    Carr, Ian A.; Plesniak, Michael W.

    2016-11-01

    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e. constant velocity unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Beyond the important practical applications, characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigated the wake of four canonical surface obstacles: hemisphere, cube, and circular cylinders with aspect ratio of 1:1 and 2:1. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Centeor Biomimetics and Bioinspired Engineering (COBRE).

  3. Some predictions of the attached eddy model for a high Reynolds number boundary layer.

    PubMed

    Nickels, T B; Marusic, I; Hafez, S; Hutchins, N; Chong, M S

    2007-03-15

    Many flows of practical interest occur at high Reynolds number, at which the flow in most of the boundary layer is turbulent, showing apparently random fluctuations in velocity across a wide range of scales. The range of scales over which these fluctuations occur increases with the Reynolds number and hence high Reynolds number flows are difficult to compute or predict. In this paper, we discuss the structure of these flows and describe a physical model, based on the attached eddy hypothesis, which makes predictions for the statistical properties of these flows and their variation with Reynolds number. The predictions are shown to compare well with the results from recent experiments in a new purpose-built high Reynolds number facility. The model is also shown to provide a clear physical explanation for the trends in the data. The limits of applicability of the model are also discussed.

  4. A laboratory exercise using a physical model for demonstrating countercurrent heat exchange.

    PubMed

    Loudon, Catherine; Davis-Berg, Elizabeth C; Botz, Jason T

    2012-03-01

    A physical model was used in a laboratory exercise to teach students about countercurrent exchange mechanisms. Countercurrent exchange is the transport of heat or chemicals between fluids moving in opposite directions separated by a permeable barrier (such as blood within adjacent blood vessels flowing in opposite directions). Greater exchange of heat or chemicals between the fluids occurs when the flows are in opposite directions (countercurrent) than in the same direction (concurrent). When a vessel loops back on itself, countercurrent exchange can occur between the two arms of the loop, minimizing loss or uptake at the bend of the loop. Comprehension of the physical principles underlying countercurrent exchange helps students to understand how kidneys work and how modifications of a circulatory system can influence the movement of heat or chemicals to promote or minimize exchange and reinforces the concept that heat and chemicals move down their temperature or concentration gradients, respectively. One example of a well-documented countercurrent exchanger is the close arrangement of veins and arteries inside bird legs; therefore, the setup was arranged to mimic blood vessels inside a bird leg, using water flowing inside tubing as a physical proxy for blood flow within blood vessels.

  5. Physics Of Variable-Polarity Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.; Nunes, Arthur C., Jr.

    1990-01-01

    Report describes experimental study of some of the physical and chemical effects that occur during variable-polarity plasma arc (VPPA) keyhole welding of 2219 aluminum alloy. Comprised three major programs: (1) determination of effects of chemical additions (i.e., impurities) on structure and shape of bead and keyhole; (2) determination of flow in regions surrounding keyhole; (3) development of analog used easily to study flow in keyhole region.

  6. Control of Leakage in the Triaxial Test

    DTIC Science & Technology

    1964-03-01

    fields of chemistry, biology , medicine, physics and engi- neering was covered. The application of statistical mechanics to derive equations...chemistry, biology , engineering, physics and medicine was reviewed for Information on the flow of fluids through membranes. (b) The Importance of...suspected that a reaction occurs in the membrane that surrounds the nucleus of the human red blood cell which causes sodium ions to flow in a

  7. Rainfall, ground-water flow, and seasonal movement at Minor Creek landslide, northwestern California: physical interpretation of empirical relations

    USGS Publications Warehouse

    Iverson, R.M.; Major, J.J.

    1987-01-01

    We present data on rainfall, ground-water flow, and repetitive seasonal motion that occurred from 1982 to 1985 at Minor Creek landslide in northwestern Californa, and we interpret these data in the context of physically based theories. We find that landslide motion is closely regulated by the direction and magnitude of near-surface hydraulic gradients and by waves of pore pressure caused by intermittent rainfall. Hummocky topography that results from slope instability may cause ground-water flow that perpetuates instability. -from Authors

  8. The Physics of Traffic

    NASA Astrophysics Data System (ADS)

    Davis, L. Craig

    2006-03-01

    Congestion in freeway traffic is an example of self-organization in the language of complexity theory. Nonequilibrium, first-order phase transitions from free flow cause complex spatiotemporal patterns. Two distinct phases of congestion are observed in empirical traffic data--wide moving jams and synchronous flow. Wide moving jams are characterized by stopped or slowly moving vehicles within the jammed region, which widens and moves upstream at 15-20 km/h. Above a critical density of vehicles, a sudden decrease in the velocity of a lead vehicle can initiate a transition from metastable states to this phase. Human behaviors, especially delayed reactions, are implicated in the formation of jams. The synchronous flow phase results from a bottleneck such as an on-ramp. Thus, in contrast to a jam, the downstream front is pinned at a fixed location. The name of the phase comes from the equilibration (or synchronization) of speed and flow rate across all lanes caused by frequent vehicle lane changes. Synchronous flow occurs when the mainline flow and the rate of merging from an on-ramp are sufficiently large. Large-scale simulations using car-following models reproduce the physical phenomena occurring in traffic and suggest methods to improve flow and mediate congestion.

  9. An Analysis of Conceptual Flow Patterns and Structures in the Physics Classroom

    ERIC Educational Resources Information Center

    Eshach, Haim

    2010-01-01

    The aim of the current research is to characterize the conceptual flow processes occurring in whole-class dialogic discussions with a high level of interanimation; in the present case, of a high-school class learning about image creation on plane mirrors. Using detailed chains of interaction and conceptual flow discourse maps--both developed for…

  10. Postfact phenomena of the wet-steam flow electrization in turbines

    NASA Astrophysics Data System (ADS)

    Tarelin, A. A.

    2017-11-01

    Physical processes occurring in a turbine with natural electrization of a humidity-steam flow and their effect on efficiency and reliability of the turbine operation has been considered. Causes of the electrical potential occurrence on a rotor shaft are analyzed. The wet steam's electrization exposure on the electrical potential that is one of the major factors of bearings' electroerosion has been demonstrated on the full-scale installation. Hydrogen formation in wheelspace of the turbine as a result of electrochemical processes and electric field exposure of the space charge has been considered. Hydrogen concentration dependence on a volume charge density in the steam flow has been determined. It is stated that the processes occurring behind the final stage of wet-steam turbines are similar to the ones in elaerosol ectrostatic generators. It has been demonstrated that this phenomenon causes the flow's temporal inhibition and starts pulsations. These factors' impact on power loss of the turbine has been evaluated and recommendations for their elimination have been offered. It has been determined that motions of charged drops can cause self-maintained discharges inside of the flow and between the flow and grounded surfaces that are accompanied by electromagnetic radiation of the wide spectrum. The integrated studies have shown that physical phenomena occurring due to natural electrization negatively affect efficiency and reliability of the turbine operation. Practical recommendations allowing one to minimize the negative effects of the flow natural electrization process have been offered.

  11. Incorporating seismic observations into 2D conduit flow modeling

    NASA Astrophysics Data System (ADS)

    Collier, L.; Neuberg, J.

    2006-04-01

    Conduit flow modeling aims to understand the conditions of magma at depth, and to provide insight into the physical processes that occur inside the volcano. Low-frequency events, characteristic to many volcanoes, are thought to contain information on the state of magma at depth. Therefore, by incorporating information from low-frequency seismic analysis into conduit flow modeling a greater understanding of magma ascent and its interdependence on magma conditions and physical processes is possible. The 2D conduit flow model developed in this study demonstrates the importance of lateral pressure and parameter variations on overall magma flow dynamics, and the substantial effect bubbles have on magma shear viscosity and on magma ascent. The 2D nature of the conduit flow model developed here allows in depth investigation into processes which occur at, or close to the wall, such as magma cooling and brittle failure of melt. These processes are shown to have a significant effect on magma properties and therefore, on flow dynamics. By incorporating low-frequency seismic information, an advanced conduit flow model is developed including the consequences of brittle failure of melt, namely friction-controlled slip and gas loss. This model focuses on the properties and behaviour of magma at depth within the volcano, and their interaction with the formation of seismic events by brittle failure of melt.

  12. Error and Uncertainty Quantification in the Numerical Simulation of Complex Fluid Flows

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2010-01-01

    The failure of numerical simulation to predict physical reality is often a direct consequence of the compounding effects of numerical error arising from finite-dimensional approximation and physical model uncertainty resulting from inexact knowledge and/or statistical representation. In this topical lecture, we briefly review systematic theories for quantifying numerical errors and restricted forms of model uncertainty occurring in simulations of fluid flow. A goal of this lecture is to elucidate both positive and negative aspects of applying these theories to practical fluid flow problems. Finite-element and finite-volume calculations of subsonic and hypersonic fluid flow are presented to contrast the differing roles of numerical error and model uncertainty. for these problems.

  13. Outcomes and reliability of the flow coupler in postoperative monitoring of head and neck free flaps.

    PubMed

    Fujiwara, Rance J T; Dibble, Jacqueline M; Larson, Scott V; Pierce, Matthew L; Mehra, Saral

    2018-04-01

    To assess the accuracy and reliability of the flow coupler relative to the implantable arterial Doppler probe in postoperative monitoring of head and neck free flaps. Retrospective single-institution study, April 2015 to March 2017. Both the venous flow coupler and arterial Doppler were employed in 120 consecutive head and neck free flap cases. When Doppler signal loss occurred, flaps were evaluated by physical exam to determine whether signal loss was a true positive necessitating operating room takeback. Sensitivity, specificity, and false positive rate (FPR) were recorded for each device. Logistic regression was conducted to identify user trends over time. Eleven of 120 patients (9.2%) required takeback, 10 from venous thrombosis and one from arterial thrombosis. Permanent signal loss (PSL) occurred in the flow coupler in all takebacks; PSL occurred in the arterial Doppler only in the case of arterial thrombosis. Salvage rate was 9/11 (81.8%). For the flow coupler, sensitivity was 100%, specificity 86.4%, and FPR 13.6%. For the arterial probe, sensitivity was 9.1%, specificity 97.1%, and FPR 2.9%. A 4.1% decrease in false positives with each additional flow coupler use was observed. Monitoring the vein via flow coupler has high sensitivity in identifying vascular compromise compared to the arterial probe, especially for venous thrombosis. There is moderate FPR; this decreases with increased usage and, when supplemented with physical examination, does not result in unnecessary takebacks. The flow coupler can be a valuable tool in postoperative monitoring of head and neck free flaps. 4. Laryngoscope, 128:812-817, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  14. Capillary-Physics Mechanism of Elastic-Wave Mobilization of Residual Oil

    NASA Astrophysics Data System (ADS)

    Beresnev, I. A.; Pennington, W. D.; Turpening, R. M.

    2003-12-01

    Much attention has been given to the possibility of vibratory mobilization of residual oil as a method of enhanced recovery. The common features of the relevant applications have nonetheless been inconsistency in the results of field tests and the lack of understanding of a physical mechanism that would explain variable experiences. Such a mechanism can be found in the physics of capillary trapping of oil ganglia, driven through the pore channels by an external pressure gradient. Entrapping of ganglia occurs due to the capillary pressure building on the downstream meniscus entering a narrow pore throat. The resulting internal-pressure imbalance acts against the external gradient, which needs to exceed a certain threshold to carry the ganglion through. The ganglion flow thus exhibits the properties of the Bingham (yield-stress) flow, not the Darcy flow. The application of vibrations is equivalent to the addition of an oscillatory forcing to the constant gradient. When this extra forcing acts along the gradient, an instant "unplugging" occurs, while, when the vibration reverses direction, the flow is plugged. This asymmetry results in an average non-zero flow over one period of vibration, which explains the mobilization effect. The minimum-amplitude and maximum-frequency thresholds apply for the mobilization to occur. When the vibration amplitude exceeds a certain "saturation" level, the flow returns to the Darcy regime. The criterion of the mobilization of a particular ganglion involves the parameters of both the medium (pore geometry, interfacial and wetting properties, fluid viscosity) and the oscillatory field (amplitude and frequency). The medium parameters vary widely under natural conditions. It follows that an elastic wave with a given amplitude and frequency will always produce a certain mobilization effect, mobilizing some ganglia and leaving others intact. The exact macroscopic effect is hard to predict, as it will represent a response of the populations of ganglia with unknown parameter distributions. The variability of responses to vibratory stimulation should thus be expected.

  15. The Paradox of Restoring Native River Landscapes and Restoring Native Ecosystems in the Colorado River System

    NASA Astrophysics Data System (ADS)

    Schmidt, J. C.

    2014-12-01

    Throughout the Colorado River basin (CRb), scientists and river managers collaborate to improve native ecosystems. Native ecosystems have deteriorated due to construction of dams and diversions that alter natural flow, sediment supply, and temperature regimes, trans-basin diversions that extract large amounts of water from some segments of the channel network, and invasion of non-native animals and plants. These scientist/manager collaborations occur in large, multi-stakeholder, adaptive management programs that include the Lower Colorado River Multi-Species Conservation Program, the Glen Canyon Dam Adaptive Management Program, and the Upper Colorado River Endangered Species Recovery Program. Although a fundamental premise of native species recovery is that restoration of predam flow regimes inevitably leads to native species recovery, such is not the case in many parts of the CRb. For example, populations of the endangered humpback chub (Gila cypha) are largest in the sediment deficit, thermally altered conditions of the Colorado River downstream from Glen Canyon Dam, but these species occur in much smaller numbers in the upper CRb even though the flow regime, sediment supply, and sediment mass balance are less perturbed. Similar contrasts in the physical and biological response of restoration of predam flow regimes occurs in floodplains dominated by nonnative tamarisk (Tamarix spp.) where reestablishment of floods has the potential to exacerbate vertical accretion processes that disconnect the floodplain from the modern flow regime. A significant challenge in restoring segments of the CRb is to describe this paradox of physical and biological response to reestablishment of pre-dam flow regimes, and to clearly identify objectives of environmentally oriented river management. In many cases, understanding the nature of the perturbation to sediment mass balance caused by dams and diversions and understanding the constraints imposed by societal commitments to provide assured water supplies and hydroelectricity constrains the opportunities for rehabilitation and limits the management objectives to focus either on restoring predam physical processes or recovering native fish fauna and/or recovering native plant communities.

  16. Local and Global Bifurcations of Flow Fields During Physical Vapor Transport: Application to a Microgravity Experiment

    NASA Technical Reports Server (NTRS)

    Duval, W. M. B.; Singh, N. B.; Glicksman, M. E.

    1996-01-01

    The local bifurcation of the flow field, during physical vapor transport for a parametric range of experimental interest, shows that its dynamical state ranges from steady to aperiodic. Comparison of computationally predicted velocity profiles with laser doppler velocimetry measurements shows reasonable agreement in both magnitude and planform. Correlation of experimentally measured crystal quality with the predicted dynamical state of the flow field shows a degradation of quality with an increase in Rayleigh number. The global bifurcation of the flow field corresponding to low crystal quality indicates the presence of a traveling wave for Ra = 1.09 x 10(exp 5). For this Rayleigh number threshold a chaotic transport state occurs. However, a microgravity environment for this case effectively stabilizes the flow to diffusive-advective and provides the setting to grow crystals with optimal quality.

  17. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures.

    PubMed

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R; Crowhurst, Jonathan C; Weisz, David G; Zaug, Joseph M; Dai, Zurong; Radousky, Harry B; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L; Cappelli, Mark A; Rose, Timothy P

    2017-09-01

    We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.

  18. Effect of isolated fractures on accelerated flow in unsaturated porous rock

    USGS Publications Warehouse

    Su, Grace W.; Nimmo, John R.; Dragila, Maria I.

    2003-01-01

    Fractures that begin and end in the unsaturated zone, or isolated fractures, have been ignored in previous studies because they were generally assumed to behave as capillary barriers and remain nonconductive. We conducted a series of experiments using Berea sandstone samples to examine the physical mechanisms controlling flow in a rock containing a single isolated fracture. The input fluxes and fracture orientation were varied in these experiments. Visualization experiments using dyed water in a thin vertical slab of rock were conducted to identify flow mechanisms occurring due to the presence of the isolated fracture. Two mechanisms occurred: (1) localized flow through the rock matrix in the vicinity of the isolated fracture and (2) pooling of water at the bottom of the fracture, indicating the occurrence of film flow along the isolated fracture wall. These mechanisms were observed at fracture angles of 20 and 60 degrees from the horizontal, but not at 90 degrees. Pooling along the bottom of the fracture was observed over a wider range of input fluxes for low‐angled isolated fractures compared to high‐angled ones. Measurements of matrix water pressures in the samples with the 20 and 60 degree fractures also demonstrated that preferential flow occurred through the matrix in the fracture vicinity, where higher pressures occurred in the regions where faster flow was observed in the visualization experiments. The pooling length at the terminus of a 20 degree isolated fracture was measured as a function of input flux. Calculations of the film flow rate along the fracture were made using these measurements and indicated that up to 22% of the flow occurred as film flow. These experiments, apparently the first to consider isolated fractures, demonstrate that such features can accelerate flow through the unsaturated zone and should be considered when developing conceptual models.

  19. Computation of Reacting Flows in Combustion Processes

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Chen, K.-H.

    2001-01-01

    The objective of this research is to develop an efficient numerical algorithm with unstructured grids for the computation of three-dimensional chemical reacting flows that are known to occur in combustion components of propulsion systems. During the grant period (1996 to 1999), two companion codes have been developed and various numerical and physical models were implemented into the two codes.

  20. Application of Stereolithographic Custom Models for Studying the Impact of Biofilms and Mineral Precipitation on Fluid Flow

    PubMed Central

    Stoner, D. L.; Watson, S. M.; Stedtfeld, R. D.; Meakin, P.; Griffel, L. K.; Tyler, T. L.; Pegram, L. M.; Barnes, J. M.; Deason, V. A.

    2005-01-01

    Here we introduce the use of transparent experimental models fabricated by stereolithography for studying the impacts of biomass accumulation, minerals precipitation, and physical configuration of flow paths on liquid flow in fracture apertures. The internal configuration of the models ranged in complexity from simple geometric shapes to those that incorporate replicated surfaces of natural fractures and computationally derived fracture surfaces. High-resolution digital time-lapse imaging was employed to qualitatively observe the migration of colloidal and soluble dyes through the flow models. In this study, a Sphingomonas sp. and Sporosarcina (Bacillus) pasteurii influenced the fluid dynamics by physically altering flow paths. Microbial colonization and calcite deposition enhanced the stagnant regions adjacent to solid boundaries. Microbial growth and calcite precipitation occurred to a greater extent in areas behind the fabricated obstacles and less in high-velocity orifices. PMID:16332867

  1. Application of stereolithographic custom models for studying the impact of biofilms and mineral precipitation on fluid flow.

    PubMed

    Stoner, D L; Watson, S M; Stedtfeld, R D; Meakin, P; Griffel, L K; Tyler, T L; Pegram, L M; Barnes, J M; Deason, V A

    2005-12-01

    Here we introduce the use of transparent experimental models fabricated by stereolithography for studying the impacts of biomass accumulation, minerals precipitation, and physical configuration of flow paths on liquid flow in fracture apertures. The internal configuration of the models ranged in complexity from simple geometric shapes to those that incorporate replicated surfaces of natural fractures and computationally derived fracture surfaces. High-resolution digital time-lapse imaging was employed to qualitatively observe the migration of colloidal and soluble dyes through the flow models. In this study, a Sphingomonas sp. and Sporosarcina (Bacillus) pasteurii influenced the fluid dynamics by physically altering flow paths. Microbial colonization and calcite deposition enhanced the stagnant regions adjacent to solid boundaries. Microbial growth and calcite precipitation occurred to a greater extent in areas behind the fabricated obstacles and less in high-velocity orifices.

  2. Application of Stereolithographic Custom Models for Studying the Impact of Biofilms and Mineral Precipitation on Fluid Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. L. Stoner; S. M. Watson; R. D. Stedtfeld

    Here we introduce the use of transparent experimental models fabricated by stereolithography for studying the impacts of biomass accumulation, minerals precipitation, and physical configuration of flow paths on liquid flow in fracture apertures. The internal configuration of the models ranged in complexity from simple geometric shapes to those that incorporate replicated surfaces of natural fractures and computationally derived fracture surfaces. High-resolution digital time-lapse imaging was employed to qualitatively observe the migration of colloidal and soluble dyes through the flow models. In this study, a Sphingomonas sp. and Sporosarcina (Bacillus) pasteurii influenced the fluid dynamics by physically altering flow paths. Microbialmore » colonization and calcite deposition enhanced the stagnant regions adjacent to solid boundaries. Microbial growth and calcite precipitation occurred to a greater extent in areas behind the fabricated obstacles and less in high-velocity orifices.« less

  3. Yield stress materials in soft condensed matter

    NASA Astrophysics Data System (ADS)

    Bonn, Daniel; Denn, Morton M.; Berthier, Ludovic; Divoux, Thibaut; Manneville, Sébastien

    2017-07-01

    A comprehensive review is presented of the physical behavior of yield stress materials in soft condensed matter, which encompasses a broad range of materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disordered materials display a nonlinear flow behavior in response to external mechanical forces due to the existence of a finite force threshold for flow to occur: the yield stress. Both the physical origin and rheological consequences associated with this nonlinear behavior are discussed and an overview is given of experimental techniques available to measure the yield stress. Recent progress is discussed concerning a microscopic theoretical description of the flow dynamics of yield stress materials, emphasizing, in particular, the role played by relaxation time scales, the interplay between shear flow and aging behavior, the existence of inhomogeneous shear flows and shear bands, wall slip, and nonlocal effects in confined geometries.

  4. Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment

    NASA Astrophysics Data System (ADS)

    Kelley, Douglas H.; Ouellette, Nicholas T.

    2011-03-01

    Much of the drama and complexity of fluid flow occurs because its governing equations lack unique solutions. The observed behavior depends on the stability of the multitude of solutions, which can change with the experimental parameters. Instabilities cause sudden global shifts in behavior. We have developed a low-cost experiment to study a classical fluid instability. By using an electromagnetic technique, students drive Kolmogorov flow in a thin fluid layer and measure it quantitatively with a webcam. They extract positions and velocities from movies of the flow using Lagrangian particle tracking and compare their measurements to several theoretical predictions, including the effect of the drive current, the spatial structure of the flow, and the parameters at which instability occurs. The experiment can be tailored to undergraduates at any level or to graduate students by appropriate emphasis on the physical phenomena and the sophisticated mathematics that govern them.

  5. Emplacement of pillow lavas from the ~ 2.8 Ga Chitradurga Greenstone Belt, South India: A physical volcanological, morphometric and geochemical perspective

    NASA Astrophysics Data System (ADS)

    Duraiswami, Raymond A.; Inamdar, Mustaqueem M.; Shaikh, Tahira N.

    2013-08-01

    The physical volcanology and morphometric analyses of pillowed lava flows from the Chitradurga basin of Chitradurga Greenstone Belt, South India have been undertaken. In the Chitradurga hills individual pillowed flows alternate with massive submarine sheet flows. The pillows from such flows are separated by chert and occur as spheroidal, elongated or reniform units that are devoid of vesicles, vesicle bands or pipe vesicles. The Mardihalli flow is exposed as a small elongated mound in the basin and consists of a massive core that is draped by pillows along the flow crest and flanks. The pillows from Mardihalli occur as spheroidal to elongate units with smooth, spalled or wrinkled surfaces with vesicular interiors. Repeated budding of larger pillows have produced a series of interconnected pillow units indicating fluid lava that was emplaced on steeply dipping flanks. Based on the morphological features the pillowed flows from the Chitradurga basin were emplaced at low effusion rates (≤ 5 m3/s). Pillows in these flows formed from low viscosity lavas that underwent negligible to moderate inflation due to rapid chilling. Sporadic occurrences of pillow breccias, hyaloclastite and chert breccias in the pillowed flow fields indicate disruption of pillows due to lava surges and slumping. It is envisaged that the Chitradurga basin witnessed distinct episodes of submarine tholeiite eruptions that produced pillowed lavas that variably interacted with sea water to produce geochemistries. The field and stratigraphic relationships of the volcanics and associated clastic sediments suggest that the pillow lavas were emplaced in a shallow marine marginal inter/back arc basin.

  6. Aerothermal modeling program. Phase 2, element B: Flow interaction experiment

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Murthy, S. N. B.; Sullivan, J. P.

    1987-01-01

    NASA has instituted an extensive effort to improve the design process and data base for the hot section components of gas turbine engines. The purpose of element B is to establish a benchmark quality data set that consists of measurements of the interaction of circular jets with swirling flow. Such flows are typical of those that occur in the primary zone of modern annular combustion liners. Extensive computations of the swirling flows are to be compared with the measurements for the purpose of assessing the accuracy of current physical models used to predict such flows.

  7. Physics of traffic gridlock in a city.

    PubMed

    Kerner, Boris S

    2011-10-01

    Based on simulations of stochastic three-phase and two-phase traffic flow models, we reveal that at a signalized city intersection under small link inflow rates at which a vehicle queue developed during the red phase of the light signal dissolves fully during the green phase, i.e., no traffic gridlock should be expected, nevertheless, spontaneous traffic breakdown with subsequent city gridlock occurs with some probability after a random time delay. In most cases, this traffic breakdown is initiated by a phase transition from free flow to a synchronized flow occurring upstream of the queue at the light signal. The probability of traffic breakdown at the light signal is an increasing function of the link inflow rate and duration of the red phase of the light signal.

  8. Phase transitions in traffic flow on multilane roads.

    PubMed

    Kerner, Boris S; Klenov, Sergey L

    2009-11-01

    Based on empirical and numerical analyses of vehicular traffic, the physics of spatiotemporal phase transitions in traffic flow on multilane roads is revealed. The complex dynamics of moving jams observed in single vehicle data measured by video cameras on American highways is explained by the nucleation-interruption effect in synchronized flow, i.e., the spontaneous nucleation of a narrow moving jam with the subsequent jam dissolution. We find that (i) lane changing, vehicle merging from on-ramps, and vehicle leaving to off-ramps result in different traffic phases-free flow, synchronized flow, and wide moving jams-occurring and coexisting in different road lanes as well as in diverse phase transitions between the traffic phases; (ii) in synchronized flow, the phase transitions are responsible for a non-regular moving jam dynamics that explains measured single vehicle data: moving jams emerge and dissolve randomly at various road locations in different lanes; (iii) the phase transitions result also in diverse expanded general congested patterns occurring at closely located bottlenecks.

  9. The Dynamics of Agglomerated Ferrofluid in Steady and Pulsatile Flows

    NASA Astrophysics Data System (ADS)

    Williams, Alicia; Stewart, Kelley; Vlachos, Pavlos

    2007-11-01

    Magnetic Drug Targeting (MDT) is a promising technique to deliver medication via functionalized magnetic particles to target sites in the treatment of diseases. In this work, the physics of steady and pulsatile flows laden with superparamagnetic nanoparticles in a square channel under the influence of a magnetic field induced by a 0.6 Tesla permanent magnet is studied. Herein, the dynamics of ferrofluid shedding from an initially accumulated mass in water are examined through shadowgraph imaging using two orthogonal cameras. Fundamental differences in the ferrofluid behavior occur between the steady and pulsatile flow cases, as expected. For steady flows, vortex ring shedding is visualized from the mass, and periodic shedding occurs only for moderate mass sizes where the shear forces in the flow interact with the magnetic forces. At Reynolds numbers below 500 with pulsatile flow, suction and roll up of the ferrofluid is seen during the low and moderate periods of flow, followed by the ejection of ferrofluid during high flow. These shadowgraphs illustrate the beauty and richness of ferrofluid dynamics, an understanding of which is instrumental to furthering MDT as an effective drug delivery device.

  10. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.

    Here, we present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after theymore » pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.« less

  11. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures

    DOE PAGES

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.; ...

    2017-09-11

    Here, we present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after theymore » pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.« less

  12. Stress loading from viscous flow in the lower crust and triggering of aftershocks following the 1994 Northridge, California, earthquake

    USGS Publications Warehouse

    Deng, J.; Hudnut, K.; Gurnis, M.; Hauksson, E.

    1999-01-01

    Following the M(w) 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.Following the Mw 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.

  13. Computation of oscillating airfoil flows with one- and two-equation turbulence models

    NASA Technical Reports Server (NTRS)

    Ekaterinaris, J. A.; Menter, F. R.

    1994-01-01

    The ability of one- and two-equation turbulence models to predict unsteady separated flows over airfoils is evaluated. An implicit, factorized, upwind-biased numerical scheme is used for the integration of the compressible, Reynolds-averaged Navier-Stokes equations. The turbulent eddy viscosity is obtained from the computed mean flowfield by integration of the turbulent field equations. One- and two-equation turbulence models are first tested for a separated airfoil flow at fixed angle of incidence. The same models are then applied to compute the unsteady flowfields about airfoils undergoing oscillatory motion at low subsonic Mach numbers. Experimental cases where the flow has been tripped at the leading-edge and where natural transition was allowed to occur naturally are considered. The more recently developed turbulence models capture the physics of unsteady separated flow significantly better than the standard kappa-epsilon and kappa-omega models. However, certain differences in the hysteresis effects are observed. For an untripped high-Reynolds-number flow, it was found necessary to take into account the leading-edge transitional flow region to capture the correct physical mechanism that leads to dynamic stall.

  14. Numerical Analysis of Base Flowfield for a Four-Engine Clustered Nozzle Configuration

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    1995-01-01

    Excessive base heating has been a problem for many launch vehicles. For certain designs such as the direct dump of turbine exhaust inside and at the lip of the nozzle, the potential burning of the turbine exhaust in the base region can be of great concern. Accurate prediction of the base environment at altitudes is therefore very important during the vehicle design phase. Otherwise, undesirable consequences may occur. In this study, the turbulent base flowfield of a cold flow experimental investigation for a four-engine clustered nozzle was numerically benchmarked using a pressure-based computational fluid dynamics (CFD) method. This is a necessary step before the benchmarking of hot flow and combustion flow tests can be considered. Since the medium was unheated air, reasonable prediction of the base pressure distribution at high altitude was the main goal. Several physical phenomena pertaining to the multiengine clustered nozzle base flow physics were deduced from the analysis.

  15. Numerical Experiments on the Role of the Lower Crust in the Development of Extension-driven Gneiss Domes

    NASA Astrophysics Data System (ADS)

    Korchinski, M.; Rey, P. F.; Teyssier, C. P.; Mondy, L. S.; Whitney, D.

    2016-12-01

    Flow of orogenic crust is a critical geodynamic process in the chemical and physical evolution of continents. Deeply sourced rocks are transported to the near surface within gneiss domes, which are ubiquitous features in orogens and extensional regions. Exhumation of material within a gneiss dome can occur as the result of tectonic stresses, where material moves into space previously occupied by the shallow crust as the result of extension localized along a detachment system. Gravitationally driven flow may also contribute to exhumation. This research addresses how physical parameters (density, viscosity) of the deep crust (base of brittle crust to Moho) impact (1) the localization of extension in the shallow crust, and (2) the flow of deep crust by tectonic and non-tectonic stresses. We present 2D numerical experiments in which the density (2900-3100 kg m-3) and viscosity (1e19-1e21 Pa s) of the deep crust are systematically varied. Lateral and vertical transport of deep crustal rocks toward the gneiss dome occurs across the entire parameter space. A low viscosity deep crust yields localized extension in the upper crust and crustal-scale upward flow; this case produces the highest exhumation. A high viscosity deep crust results in distributed thinning of the upper crust, which suppresses upward mass transport. The density of the deep crust has only a second-order effect on the shallow crust extension regime. We capture the flow field generated after the cessation of extension to evaluate mass transport that is not driven by tectonic stresses. Upward transport of material within the gneiss dome is present across the entire parameter space. In the case of a low-viscosity deep crust, horizontal flow occurs adjacent to the dome above the Moho; this flow is an order of magnitude higher than that within the dome. Density variations do not drastically alter the flow field in the low viscosity lower crust. However, a high density and high viscosity deep crust results in boudinage of the whole crust, which generates significant upward flow from the buoyant asthenosphere.

  16. MAPPING SUNKEN POLLUTANT POOLS WITH DEPTH FINDERS

    EPA Science Inventory

    Many hazardous substances and mixtures are immiscible with and more dense than water. When spillages or releases into waterbodies occur, the hazardous materials will disperse in a pattern controlled by physical properties of the material, flow and dispersion effects, and topograp...

  17. Hydraulic Physical Model of Debris Flow for Malaysia Case Study

    NASA Astrophysics Data System (ADS)

    Arif Zainol, M. R. R. Mohd; Awahab, M. K.

    2018-06-01

    In the recent decade, several debris flow events occurred and caused hundreds of deaths, missing or injury and damaged many facilities. In addition to causing significant morphological changes along riverbeds and mountain slopes, these flows are frequently reported to bring about extensive property damage and loss of life. Debris flow phenomena occasionally occur in Malaysia and numbers of death reported cause by this event. In order to investigate the debris flow and its deposition process, experiments were conducted at the School of Civil Engineering Laboratory, Universiti Sains Malaysia. The models consists of three main parts which are water tank, rectangular flume and deposition board. A high speed video camera (HSVC) had been placed nearly downstream of the rectangular flume to capture the movement characteristics of particle grain. From this study, the characteristics of particle routing segregation can be understand clearly, therefore this input will be a very useful information to other researchers for further investigation in terms of knowledge sharing between researchers. Catastrophic cause by debris flow event can be minimized therefore in term of economy losses can be reduce and human life can be safe.

  18. The application of numerical debris flow modelling for the generation of physical vulnerability curves

    NASA Astrophysics Data System (ADS)

    Luna, B. Quan; Blahut, J.; van Westen, C. J.; Sterlacchini, S.; van Asch, T. W. J.; Akbas, S. O.

    2011-07-01

    For a quantitative assessment of debris flow risk, it is essential to consider not only the hazardous process itself but also to perform an analysis of its consequences. This should include the estimation of the expected monetary losses as the product of the hazard with a given magnitude and the vulnerability of the elements exposed. A quantifiable integrated approach of both hazard and vulnerability is becoming a required practice in risk reduction management. This study aims at developing physical vulnerability curves for debris flows through the use of a dynamic run-out model. Dynamic run-out models for debris flows are able to calculate physical outputs (extension, depths, velocities, impact pressures) and to determine the zones where the elements at risk could suffer an impact. These results can then be applied to consequence analyses and risk calculations. On 13 July 2008, after more than two days of intense rainfall, several debris and mud flows were released in the central part of the Valtellina Valley (Lombardy Region, Northern Italy). One of the largest debris flows events occurred in a village called Selvetta. The debris flow event was reconstructed after extensive field work and interviews with local inhabitants and civil protection teams. The Selvetta event was modelled with the FLO-2D program, an Eulerian formulation with a finite differences numerical scheme that requires the specification of an input hydrograph. The internal stresses are isotropic and the basal shear stresses are calculated using a quadratic model. The behaviour and run-out of the flow was reconstructed. The significance of calculated values of the flow depth, velocity, and pressure were investigated in terms of the resulting damage to the affected buildings. The physical damage was quantified for each affected structure within the context of physical vulnerability, which was calculated as the ratio between the monetary loss and the reconstruction value. Three different empirical vulnerability curves were obtained, which are functions of debris flow depth, impact pressure, and kinematic viscosity, respectively. A quantitative approach to estimate the vulnerability of an exposed element to a debris flow which can be independent of the temporal occurrence of the hazard event is presented.

  19. Combustion Fundamentals Research

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The various physical processes that occur in the gas turbine combustor and the development of analytical models that accurately describe these processes are discussed. Aspects covered include fuel sprays; fluid mixing; combustion dynamics; radiation and chemistry and numeric techniques which can be applied to highly turbulent, recirculating, reacting flow fields.

  20. Hemodynamics

    PubMed Central

    Secomb, Timothy W.

    2016-01-01

    A review is presented of the physical principles governing the distribution of blood flow and blood pressure in the vascular system. The main factors involved are the pulsatile driving pressure generated by the heart, the flow characteristics of blood, and the geometric structure and mechanical properties of the vessels. The relationship between driving pressure and flow in a given vessel can be understood by considering the viscous and inertial forces acting on the blood. Depending on the vessel diameter and other physical parameters, a wide variety of flow phenomena can occur. In large arteries, the propagation of the pressure pulse depends on the elastic properties of the artery walls. In the microcirculation, the fact that blood is a suspension of cells strongly influences its flow properties and leads to a non-uniform distribution of hematocrit among microvessels. The forces acting on vessel walls include shear stress resulting from blood flow and circumferential stress resulting from blood pressure. Biological responses to these forces are important in the control of blood flow and the structural remodeling of vessels, and also play a role in major disease processes including hypertension and atherosclerosis. Consideration of hemodynamics is essential for a comprehensive understanding of the functioning of the circulatory system. PMID:27065172

  1. Soil slips and debris flows on terraced slopes

    NASA Astrophysics Data System (ADS)

    Crosta, G. B.; Dal Negro, P.; Frattini, P.

    Terraces cover large areas along the flanks of many alpine and prealpine valleys. Soil slips and soil slips-debris flows are recurrent phenomena along terraced slopes. These landslides cause damages to people, settlements and cultivations. This study investigates the processes related to the triggering of soil slip-debris flows in these settings, analysing those occurred in Valtellina (Central Alps, Italy) on November 2000 after heavy prolonged rainfalls. 260 landslides have been recognised, mostly along the northern valley flank. About 200 soil slips and slumps occurred in terraced areas and a third of them evolved into debris flows. Field work allowed to recognise the settings at soil slip-debris flow source areas. Landslides affected up to 2.5 m of glacial, fluvioglacial and anthropically reworked deposits overlying metamorphic basement. Laboratory and in situ tests allowed to characterise the geotechnical and hydraulic properties of the terrains involved in the initial failure. Several stratigraphic and hydrogeologic factors have been individuated as significant in determining instabilities on terraced slopes. They are the vertical changes of physical soil properties, the presence of buried hollows where groundwater convergence occurs, the rising up of perched groundwater tables, the overflow and lateral infiltration from superficial drainage network, the runoff concentration by means of pathways and the insufficient drainage of retaining walls.

  2. A closed-form analytical model for predicting 3D boundary layer displacement thickness for the validation of viscous flow solvers

    NASA Astrophysics Data System (ADS)

    Kumar, V. R. Sanal; Sankar, Vigneshwaran; Chandrasekaran, Nichith; Saravanan, Vignesh; Natarajan, Vishnu; Padmanabhan, Sathyan; Sukumaran, Ajith; Mani, Sivabalan; Rameshkumar, Tharikaa; Nagaraju Doddi, Hema Sai; Vysaprasad, Krithika; Sharan, Sharad; Murugesh, Pavithra; Shankar, S. Ganesh; Nejaamtheen, Mohammed Niyasdeen; Baskaran, Roshan Vignesh; Rahman Mohamed Rafic, Sulthan Ariff; Harisrinivasan, Ukeshkumar; Srinivasan, Vivek

    2018-02-01

    A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures.

  3. Three-Dimensional, Laminar Flow Past a Short, Surface-Mounted Cylinder

    NASA Astrophysics Data System (ADS)

    Liakos, Anastasios; Malamataris, Nikolaos

    2016-11-01

    The topology and evolution of three-dimensional flow past a cylinder of slenderness ratio SR = 1 mounted in a wind tunnel is examined for 0 . 1 <= Re <= 325 (based on the diameter of the cylinder) where steady-state solutions have been obtained. Direct numerical simulations were computed using an in-house parallel finite element code. Results indicate that symmetry breaking occurs at Re = 1 , while the first prominent structure is a horseshoe vortex downstream from the cylinder. At Re = 150 , two foci are observed, indicating the formation of two tornadolike vortices downstream. Concurrently, another horseshoe vortex is formed upstream from the cylinder. For higher Reynolds numbers, the flow downstream is segmented to upper and lower parts, whereas the topology of the flow on the solid boundaries remains unaltered. Pressure distributions show that pressure, the key physical parameter in the flow, decreases everywhere except immediately upstream from the cylinder. In addition, creation of critical points from saddle-node-type bifurcations occur when the streamwise component of the pressure gradient changes sign. Finally, at Re = 325 , an additional horseshoe vorrtex is formed at the wake of the cylinder

  4. Forecasting inundation from debris flows that grow during travel, with application to the Oregon Coast Range, USA

    USGS Publications Warehouse

    Reid, Mark E.; Coe, Jeffrey A.; Brien, Dianne

    2016-01-01

    Many debris flows increase in volume as they travel downstream, enhancing their mobility and hazard. Volumetric growth can result from diverse physical processes, such as channel sediment entrainment, stream bank collapse, adjacent landsliding, hillslope erosion and rilling, and coalescence of multiple debris flows; incorporating these varied phenomena into physics-based debris-flow models is challenging. As an alternative, we embedded effects of debris-flow growth into an empirical/statistical approach to forecast potential inundation areas within digital landscapes in a GIS framework. Our approach used an empirical debris-growth function to account for the effects of growth phenomena. We applied this methodology to a debris-flow-prone area in the Oregon Coast Range, USA, where detailed mapping revealed areas of erosion and deposition along paths of debris flows that occurred during a large storm in 1996. Erosion was predominant in stream channels with slopes > 5°. Using pre- and post-event aerial photography, we derived upslope contributing area and channel-length growth factors. Our method reproduced the observed inundation patterns produced by individual debris flows; it also generated reproducible, objective potential inundation maps for entire drainage networks. These maps better matched observations than those using previous methods that focus on proximal or distal regions of a drainage network.

  5. Three-Dimensional Flow Behavior Inside the Submerged Entry Nozzle

    NASA Astrophysics Data System (ADS)

    Real-Ramirez, Cesar Augusto; Carvajal-Mariscal, Ignacio; Sanchez-Silva, Florencio; Cervantes-de-la-Torre, Francisco; Diaz-Montes, Jesus; Gonzalez-Trejo, Jesus

    2018-05-01

    According to various authors, the surface quality of steel depends on the dynamic conditions that occur within the continuous casting mold's upper region. The meniscus, found in that upper region, is where the solidification process begins. The liquid steel is distributed into the mold through a submerged entry nozzle (SEN). In this paper, the dynamic behavior inside the SEN is analyzed by means of physical experiments and numerical simulations. The particle imaging velocimetry technique was used to obtain the vector field in different planes and three-dimensional flow patterns inside the SEN volume. Moreover, large eddy simulation was performed, and the turbulence model results were used to understand the nonlinear flow pattern inside the SEN. Using scaled physical and numerical models, quasi-periodic behavior was observed due to the interaction of two three-dimensional vortices that move inside the SEN lower region located between the exit ports of the nozzle.

  6. Acoustics flow analysis in circular duct using sound intensity and dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Weyna, S.

    2014-08-01

    Sound intensity generation in hard-walled duct with acoustic flow (no mean-flow) is treated experimentally and shown graphically. In paper, numerous methods of visualization illustrating the vortex flow (2D, 3D) can graphically explain diffraction and scattering phenomena occurring inside the duct and around open end area. Sound intensity investigation in annular duct gives a physical picture of sound waves in any duct mode. In the paper, modal energy analysis are discussed with particular reference to acoustics acoustic orthogonal decomposition (AOD). The image of sound intensity fields before and above "cut-off" frequency region are found to compare acoustic modes which might resonate in duct. The experimental results show also the effects of axial and swirling flow. However acoustic field is extremely complicated, because pressures in non-propagating (cut-off) modes cooperate with the particle velocities in propagating modes, and vice versa. Measurement in cylindrical duct demonstrates also the cut-off phenomenon and the effect of reflection from open end. The aim of experimental study was to obtain information on low Mach number flows in ducts in order to improve physical understanding and validate theoretical CFD and CAA models that still may be improved.

  7. Electroosmotic mixing in microchannels.

    PubMed

    Glasgow, Ian; Batton, John; Aubry, Nadine

    2004-12-01

    Mixing is an essential, yet challenging, process step for many Lab on a Chip (LOC) applications. This paper presents a method of mixing for microfluidic devices that relies upon electroosmotic flow. In physical tests and in computer simulations, we periodically vary the electric field with time to mix two aqueous solutions. Good mixing is shown to occur when the electroosmotic flow at the two inlets pulse out of phase, the Strouhal number is on the order of 1, and the pulse volumes are on the order of the intersection volume.

  8. Buoyancy-Driven Heat Transfer During Application of a Thermal Gradient for the Study of Vapor Deposition at Low Pressure Using and Ideal Gas

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Hung, R. J.; Paley, M. S.; Penn, B. G.; Long, Y. T.

    1996-01-01

    A mathematical model has been developed to determine heat transfer during vapor deposition of source materials under a variety of orientations relative to gravitational accelerations. The model demonstrates that convection can occur at total pressures as low as 10-2 mm Hg. Through numerical computation, using physical material parameters of air, a series of time steps demonstrates the development of flow and temperature profiles during the course of vapor deposition. These computations show that in unit gravity vapor deposition occurs by transport through a fairly complicated circulating flow pattern when applying heat to the bottom of the vessel with parallel orientation with respect to the gravity vector. The model material parameters for air predict the effect of kinematic viscosity to be of the same order as thermal diffusivity, which is the case for Prandtl number approx. 1 fluids. Qualitative agreement between experiment and the model indicates that 6-(2-methyl-4-nitroanilino)-2,4-hexadiyn-l-ol (DAMNA) at these pressures indeed approximates an ideal gas at the experiment temperatures, and may validate the use of air physical constants. It is apparent that complicated nonuniform temperature distribution in the vapor could dramatically affect the homogeneity, orientation, and quality of deposited films. The experimental test i's a qualitative comparison of film thickness using ultraviolet-visible spectroscopy on films generated in appropriately oriented vapor deposition cells. In the case where heating of the reaction vessel occurs from the top, deposition of vapor does not normally occur by convection due to a stable stratified medium. When vapor deposition occurs in vessels heated at the bottom, but oriented relative to the gravity vector between these two extremes, horizontal thermal gradients induce a complex flow pattern. In the plane parallel to the tilt axis, the flow pattern is symmetrical and opposite in direction from that where the vessel is positioned vertically. The ground-based experiments are sufficient preliminary tests of theory and should be of significant interest regarding vapor deposited films in microgravity.

  9. Highly elastic polymer solutions under shear: Polymer migration, viscoelastic instabilities, and anomalous rheology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M.J.; Muller, S.J.

    1996-12-31

    The use of highly elastic polymer solutions has been remarkably successful in elucidating the behavior of polymeric materials under flowing conditions. Here, we present the results of an extensive experimental study into the shear behavior of an athermal, dilute, binary polymer solution that is believed to be free of many of these effects. Under extended shearing, we observe the migration of polymer species: after shearing for several hundred hours, concentrations that are more than double the initial uniform value can be achieved. Although the solutions are well-described by dumbbell models in shear flows on short-time scales, theoretical predictions substantially underestimatemore » the rate of migration. Flow visualization and rheometric experiments suggest that the origin of this discrepancy could be the anomalous long-time rheology of these solutions. While these fluids display the well-known elastic instability in cone and plate flow above a critical Deborah number, extended shearing reveals that the toroidal secondary flow is eventually replaced by a purely azimuthal shearing flow. In addition, when sheared below the critical condition for the instability, the solutions exhibit a slow but reversible decay in normal stresses. The shear-induced migration of polymer species has been predicted by numerous theoretical studies. However, observations on the highly elastic polymer solutions that are most likely to show polymer migration, are complicated by a number of different physical processes that occur as a result of shearing. These phenomena, which include shear-induced phase separation, elastically-induced hydrodynamic instabilities, mixed solvent effects, shear-induced aggregation, and anomalous transient shear and normal stress behavior are often observed at times earlier than and at shear rates less than those where migration is predicted to occur; hence, the experimental detection of polymer migration has been thwarted by these other physical processes.« less

  10. Toward the Experimental Characterization of an Unmanned Air System Flow Field

    NASA Astrophysics Data System (ADS)

    Velarde, John-Michael; Connors, Jacob; Glauser, Mark

    2017-11-01

    The velocity flow field around a small unmanned air system (sUAS) is investigated in a series of experiments at Syracuse University. Experiments are conducted in the 2'x2' sub-sonic wind tunnel at Syracuse University and the Indoor Flow Lab. The goal of these experiments is to gain a better understanding of the rich, turbulent flow field that a sUAS creates. Comparison to large, multi-rotor manned vehicles is done to gain a better understanding of the flow physics that could be occurring with the sUAS. Regions of investigation include the downwash, above the vehicle, and far downstream. Characterization of the flow is performed using hotwire anemometry. Investigation of several locations around the sUAS show that dominant frequencies exist within the flow field. Analysis of the flow field using power spectral density will be presented as well as looking at which parameters have an effect on these dominant frequencies.

  11. Cerebrospinal fluid flow abnormalities in patients with neoplastic meningitis. An evaluation using /sup 111/In-DTPA ventriculography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossman, S.A.; Trump, D.L.; Chen, D.C.

    1982-11-01

    Cerebrospinal fluid flow dynamics were evaluated by /sup 111/In-diethylenetriamine pentaacetic acid (/sup 111/In-DTPA) ventriculography in 27 patients with neoplastic meningitis. Nineteen patients (70 percent) had evidence of cerebrospinal fluid flow disturbances. These occurred as ventricular outlet obstructions, abnormalities of flow in the spinal canal, or flow distrubances over the cortical convexities. Tumor histology, physical examination, cerebrospinal fluid analysis, myelograms, and computerized axial tomographic scans were not sufficient to predict cerebrospinal fluid flow patterns. These data indicate that cerebrospinal fluid flow abnormalities are common in patients with neoplastic meningitis and that /sup 111/In-DTPA cerebrospinal fluid flow imaging is useful in characterizingmore » these abnormalities. This technique provides insight into the distribution of intraventricularly administered chemotherapy and may provide explanations for treatment failure and drug-induced neurotoxicity in patients with neoplastic meningitis.« less

  12. Transition to turbulence in Taylor-Couette ferrofluidic flow

    PubMed Central

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-01-01

    It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field transverse to the symmetry axis of the system, turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed investigation of transitions in the flow structure, and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A finding is that, as the magnetic field is increased, onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence may be feasible by using ferrofluids. Our study of transition to and evolution of turbulence in the Taylor-Couette ferrofluidic flow system provides insights into the challenging problem of turbulence control. PMID:26065572

  13. Comparison of Two Conceptually Different Physically-based Hydrological Models - Looking Beyond Streamflows

    NASA Astrophysics Data System (ADS)

    Rousseau, A. N.; Álvarez; Yu, X.; Savary, S.; Duffy, C.

    2015-12-01

    Most physically-based hydrological models simulate to various extents the relevant watershed processes occurring at different spatiotemporal scales. These models use different physical domain representations (e.g., hydrological response units, discretized control volumes) and numerical solution techniques (e.g., finite difference method, finite element method) as well as a variety of approximations for representing the physical processes. Despite the fact that several models have been developed so far, very few inter-comparison studies have been conducted to check beyond streamflows whether different modeling approaches could simulate in a similar fashion the other processes at the watershed scale. In this study, PIHM (Qu and Duffy, 2007), a fully coupled, distributed model, and HYDROTEL (Fortin et al., 2001; Turcotte et al., 2003, 2007), a pseudo-coupled, semi-distributed model, were compared to check whether the models could corroborate observed streamflows while equally representing other processes as well such as evapotranspiration, snow accumulation/melt or infiltration, etc. For this study, the Young Womans Creek watershed, PA, was used to compare: streamflows (channel routing), actual evapotranspiration, snow water equivalent (snow accumulation and melt), infiltration, recharge, shallow water depth above the soil surface (surface flow), lateral flow into the river (surface and subsurface flow) and height of the saturated soil column (subsurface flow). Despite a lack of observed data for contrasting most of the simulated processes, it can be said that the two models can be used as simulation tools for streamflows, actual evapotranspiration, infiltration, lateral flows into the river, and height of the saturated soil column. However, each process presents particular differences as a result of the physical parameters and the modeling approaches used by each model. Potentially, these differences should be object of further analyses to definitively confirm or reject modeling hypotheses.

  14. On the ejection-induced instability in Navier-Stokes solutions of unsteady separation.

    PubMed

    Obabko, Aleksandr V; Cassel, Kevin W

    2005-05-15

    Numerical solutions of the flow induced by a thick-core vortex have been obtained using the unsteady, two-dimensional Navier-Stokes equations. The presence of the vortex causes an adverse pressure gradient along the surface, which leads to unsteady separation. The calculations by Brinckman and Walker for a similar flow identify a possible instability, purported to be an inviscid Rayleigh instability, in the region where ejection of near-wall vorticity occurs during the unsteady separation process. In results for a range of Reynolds numbers in the present investigation, the oscillations are also found to occur. However, they can be eliminated with increased grid resolution. Despite this behaviour, the instability may be physical but requires a sufficient amplitude of disturbances to be realized.

  15. Problem analysis of geotechnical well drilling in complex environment

    NASA Astrophysics Data System (ADS)

    Kasenov, A. K.; Biletskiy, M. T.; Ratov, B. T.; Korotchenko, T. V.

    2015-02-01

    The article examines primary causes of problems occurring during the drilling of geotechnical wells (injection, production and monitoring wells) for in-situ leaching to extract uranium in South Kazakhstan. Such a drilling problem as hole caving which is basically caused by various chemical and physical factors (hydraulic, mechanical, etc.) has been thoroughly investigated. The analysis of packing causes has revealed that this problem usually occurs because of insufficient amount of drilling mud being associated with small cross section downward flow and relatively large cross section upward flow. This is explained by the fact that when spear bores are used to drill clay rocks, cutting size is usually rather big and there is a risk for clay particles to coagulate.

  16. Physical and chemical stability of tagatose powder.

    PubMed

    Grant, Lenese D; Bell, Leonard N

    2012-03-01

    Tagatose is a reduced-calorie monosaccharide that displays prebiotic properties. Water can interact with powdered tagatose to varying extents, depending upon the storage environment. Adsorbed water can impact the stability of tagatose, altering its functionality and usability as an ingredient. The objective of this study was to evaluate the physical and chemical stability of bulk tagatose powder as a function of relative humidity (RH) and temperature. Powdered tagatose was stored in desiccators at 20, 30, and 40 °C and 33% to 85% RH. Moisture contents (MC), physical characteristics, tagatose degradation profiles, and browning kinetics were monitored for 12 mo. The critical RH associated with deliquescence (RH0) was approximately 85% at 20 °C. MC values below RH0 were all less than 2% (wb). The MC at 85% RH ranged from 55% to 80% (wb), increasing as temperature decreased. At 33% RH and 20 °C tagatose remained a free flowing powder. As either temperature or RH increased, varying degrees of physical caking occurred. At 85% RH, tagatose deliquesced at all temperatures. Browning occurred in all samples at 40 °C. Despite physical caking and browning, measurable tagatose degradation was only observed in the deliquesced sample at 85% RH and 40 °C, where 20% loss occurred in 6 mo. Although extreme RHs and temperatures are required for tagatose degradation to occur, intermediate RHs and temperatures promote physical caking and deliquescence, which create handling problems during product formulation. The exposure of tagatose to elevated relative humidities and temperatures should be avoided to maintain its physical and chemical quality. © 2012 Institute of Food Technologists®

  17. Computation of Separated and Unsteady Flows with One- and Two-Equation Turbulence Models

    NASA Technical Reports Server (NTRS)

    Ekaterinaris, John A.; Menter, Florian R.

    1994-01-01

    The ability of one- and two-equation turbulence models to predict unsteady separated flows over airfoils is evaluated. An implicit, factorized, upwind-biased numerical scheme is used for the integration of the compressible, Reynolds averaged Navier-Stokes equations. The turbulent eddy viscosity is obtained from the computed mean flowfield by integration of the turbulent field equations. The two-equation turbulence models are discretized in space with an upwind-biased, second order accurate total variation diminishing scheme. One and two-equation turbulence models are first tested for a separated airfoil flow at fixed angle of incidence. The same models are then applied to compute the unsteady flowfields about airfoils undergoing oscillatory motion at low subsonic Mach numbers. Experimental cases where the flow has been tripped at the leading edge and where natural transition was allowed to occur naturally are considered. The more recently developed field-equation turbulence models capture the physics of unsteady separated flow significantly better than the standard kappa-epsilon and kappa-omega models. However, certain differences in the hysteresis effects are obtained. For an untripped high-Reynolds-number flow, it was found necessary to take into account the leading edge transitional flow region in order to capture the correct physical mechanism that leads to dynamic stall.

  18. Direction of unsaturated flow in a homogeneous and isotropic hillslope

    USGS Publications Warehouse

    Lu, Ning; Kaya, Basak Sener; Godt, Jonathan W.

    2011-01-01

    The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs.

  19. Oscillatory/Chaotic Thermocapillary Flow Induced by Radiant Heating

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth J.

    1998-01-01

    There is a continuing need to understand the fluid physics occurring under low gravity conditions in processes such as crystal growth, materials processing, and the movement of bubbles or droplets. The fluid flow in such situations is often caused by a gradient in interfacial tension. If a temperature gradient is created due to a heat source, the resulting flow is called thermocapillary flow, a special case of Marangoni Convection. In this study, an experimental investigation was conducted using silicone oil in cylindrical containers with a laser heat source at the free surface. It was desired to determine the conditions under which steady, axisymmetrical thermocapillary flow becomes unstable and oscillatory three-dimensional flow states develop. The critical Marangoni number for each observed oscillatory state was measured as a function of the container aspect ratio and the dynamic Bond number, a measure of buoyant force versus ii thermocapillary force. Various oscillatory modes were observed during three- dimensional convection, and chaotic flow was reached in one test condition. The critical Marangoni numbers are compared with those measured in previous studies, and the power spectra and phase trajectories of the instantaneous surface temperature distributions are used to characterize the routes of transitions to the chaotic flow state. Results show that only superharmonic modes appear in the routes to chaos while infinite number of subharmonic modes occur in flow transitions for pure Rayleigh convection.

  20. Direction of unsaturated flow in a homogeneous and isotropic hillslope

    USGS Publications Warehouse

    Lu, N.; Kaya, B.S.; Godt, J.W.

    2011-01-01

    The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs. Copyright 2011 by the American Geophysical Union.

  1. The drag and lift of different non-spherical particles from low to high Re

    NASA Astrophysics Data System (ADS)

    Sanjeevi, Sathish K. P.; Padding, Johan

    2017-11-01

    The present work investigates a simplified drag and lift model that can be used for different non-spherical particles. The flow around different non-spherical particles is studied using a multi-relaxation-time lattice Boltzmann method. We compute the mean drag coefficient CD , ϕ at different incident angles ϕ for a wide range of Reynolds numbers (Re). We show that the sine-squared drag law CD , ϕ =CD , ϕ =0° +(CD , ϕ =90° -CD , ϕ =0°) sin2 ϕ holds up to large Reynolds numbers Re = 2000 . The sine-squared dependence of CD occurs at Stokes flow (very low Re) due to linearity of the flow fields. We explore the physical origin behind the sine-squared law at high Re , and reveal that surprisingly, this does not occur due to linearity of flow fields. Instead, it occurs due to an interesting pattern of pressure distribution contributing to the drag, at higher Re , for different incident angles. Similarly, we find that the equivalent theoretical equation of lift coefficient CL can provide a decent approximation, even at high Re , for elongated particles. Such a drag and lift law valid at high Re is very much useful for Euler-Lagrangian fluidization simulations of the non-spherical particles. European Research Council (ERC) consolidator Grant scheme, Contract No. 615096 (NonSphereFlow).

  2. Quantitative risk assessment using empirical vulnerability functions from debris flow event reconstruction

    NASA Astrophysics Data System (ADS)

    Luna, Byron Quan; Blahut, Jan; Camera, Corrado; van Westen, Cees; Sterlacchini, Simone; Apuani, Tiziana; Akbas, Sami

    2010-05-01

    For a quantitative risk assessment framework it is essential to assess not only the hazardous process itself but to perform an analysis of their consequences. This quantitative assessment should include the expected monetary losses as the product of the probability of occurrence of a hazard with a given magnitude and its vulnerability. A quantifiable integrated approach of both hazard and risk is becoming a required practice in risk reduction management. Dynamic run-out models for debris flows are able to calculate physical outputs (extension, depths, velocities, impact pressures) and to determine the zones where the elements at risk could suffer an impact. These results are then applied for vulnerability and risk calculations. The risk assessment has been conducted in the Valtellina Valley, a typical Italian alpine valley lying in northern Italy (Lombardy Region). On 13th July 2008, after more than two days of intense rainfall, several debris and mud flows were released in the central part of valley between Morbegno and Berbenno. One of the largest debris flows occurred in Selvetta. The debris flow event was reconstructed after extensive field work and interviews with local inhabitants and civil protection teams. Also inside the Valtellina valley, between the 22nd and the 23rd of May 1983, two debris flows happened in Tresenda (Teglio municipality), causing casualties and considerable economic damages. On the same location, during the 26th of November 2002, another debris flow occurred that caused significant damage. For the quantification of a new scenario, the outcome results obtained from the event of Selvetta were applied in Tresenda. The Selvetta and Tresenda event were modelled with the FLO2D program. FLO2D is an Eulerian formulation with a finite differences numerical scheme that requires the specification of an input hydrograph. The internal stresses are isotropic and the basal shear stresses are calculated using a quadratic model. The significance of calculated values of pressure and velocity were investigated in terms of the resulting damage to the affected buildings. The physical damage was quantified for each affected structure within the context of physical vulnerability, which is defined as the ratio between the monetary loss and the reconstruction value. Two different empirical vulnerability curves were obtained, which are functions of debris flow velocity and pressure, respectively. Prospective economic direct losses were estimated.

  3. Numerical modeling tools for chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Jasinski, Thomas J.; Childs, Edward P.

    1992-01-01

    Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.

  4. Challenges in Modeling Debris-Flow Initiation during the Exceptional September 2013 Northern Colorado Front Range Rainstorm

    NASA Astrophysics Data System (ADS)

    Baum, R. L.; Coe, J. A.; Godt, J.; Kean, J. W.

    2014-12-01

    Heavy rainfall during 9 - 13 September 2013 induced about 1100 debris flows in the foothills and mountains of the northern Colorado Front Range. Eye-witness accounts and fire-department records put the times of greatest landslide activity during the times of heaviest rainfall on September 12 - 13. Antecedent soil moisture was relatively low, particularly at elevations below 2250 m where many of the debris flows occurred, based on 45 - 125 mm of summer precipitation and absence of rainfall for about 2 weeks before the storm. Mapping from post-event imagery and field observations indicated that most debris flows initiated as small, shallow landslides. These landslides typically formed in colluvium that consisted of angular clasts in a sandy or silty matrix, depending on the nature of the parent bedrock. Weathered bedrock was partially exposed in the basal surfaces of many of the shallow source areas at depths ranging from 0.2 to 5 m, and source areas commonly occupied less than 500 m2. Although 49% of the source areas occurred in swales and 3 % in channels, where convergent flow might have contributed to pore-pressure build up during the rainfall, 48% of the source areas occurred on open slopes. Upslope contributing areas of most landslides (58%) were small (< 1000 m2) and 78% of the slides occurred on south-facing slopes (90°≤ aspect ≤270°). These observations pose challenges for modeling initiation of the debris flows. Effects of variable soil depth and properties, vegetation, and rainfall must be examined to explain the dominance of debris flows on south-facing slopes. Accounting for the small sizes and mixed swale and open-slope settings of source areas demands new approaches for resolving soil-depth and physical-properties variability. The low-moisture initial conditions require consideration of unsaturated zone effects. Ongoing fieldwork and computational modeling are aimed at addressing these challenges related to initiation of the September 2013 debris flows.

  5. Burn Severity and Its Impact on Soil Properties: 2016 Erskine Fire in the Southern Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Haake, S.; Guo, J.; Krugh, W. C.

    2017-12-01

    Wildfire frequency in the southern Sierra Nevada has increased over the past decades. The effects of wildfires on soils can increase the frequency of slope failure and debris flow events, which pose a greater risk to people, as human populations expand into foothill and mountainous communities of the Sierra Nevada. Alterations in the physical properties of burned soils are one such effect that can catalyze slope failure and debris flow events. Moreover, the degree of a soil's physical alteration resulting from wildfire is linked to fire intensity. The 2016 Erskine fire occurred in the southern Sierra Nevada, burning 48,019 acres, resulting in soils of unburned, low, moderate, and high burn severities. In this study, the physical properties of soils with varying degrees of burn severity are explored within the 2016 Erskine fire perimeter. The results constrain the effects of burn severity on soil's physical properties. Unburned, low, moderate, and high burn severity soil samples were collected within the Erskine fire perimeter. Alterations in soils' physical properties resulting from burn severity are explored using X-ray diffractometry analysis, liquid limit, plastic limit, and shear strength tests. Preliminary results from this study will be used to assess debris flow and slope failure hazard models within burned areas of the Kern River watershed in the southern Sierra Nevada.

  6. The Krylov accelerated SIMPLE(R) method for flow problems in industrial furnaces

    NASA Astrophysics Data System (ADS)

    Vuik, C.; Saghir, A.; Boerstoel, G. P.

    2000-08-01

    Numerical modeling of the melting and combustion process is an important tool in gaining understanding of the physical and chemical phenomena that occur in a gas- or oil-fired glass-melting furnace. The incompressible Navier-Stokes equations are used to model the gas flow in the furnace. The discrete Navier-Stokes equations are solved by the SIMPLE(R) pressure-correction method. In these applications, many SIMPLE(R) iterations are necessary to obtain an accurate solution. In this paper, Krylov accelerated versions are proposed: GCR-SIMPLE(R). The properties of these methods are investigated for a simple two-dimensional flow. Thereafter, the efficiencies of the methods are compared for three-dimensional flows in industrial glass-melting furnaces. Copyright

  7. Erosion and physical transport via overland flow of arsenic and lead bound to silt-sized particles

    PubMed Central

    Cadwalader, G. Owen; Renshaw, Carl E.; Jackson, Brian P.; Magilligan, Francis J.; Landis, Joshua D.; Bostick, Benjamin C.

    2011-01-01

    Understanding of the transport mechanisms of contaminated soils and sediment is essential for the sustainable management of contaminated lands. In New England and elsewhere, vast areas of agricultural lands are contaminated by the historical application of lead-arsenate pesticides. Left undisturbed the physical and chemical mobility of As and Pb in these soils is limited due to their strong affinity for adsorption onto solid phases. However, soil disturbance promotes erosion and overland flow during intense rainstorms. Here we investigate the event-scale transport of disturbed As and Pb contaminated soils through measurement of concentrations of As and Pb in suspended sediment and changes in Pb isotopic ratios in overland flow. Investigation of several rain events shows that where land disturbance has occurred, physical transport of silt-sized particles and aggregates is the primary transport vector of As and Pb derived from pesticide-contaminated soil. Although both As and Pb are associated with similarly-sized particles, we find that solid-phase As is more effectively mobilized and transported than Pb. Our results demonstrate that anthropogenic land disturbance of historical lands contaminated with lead-arsenate pesticides may redistribute, through physical transport, significant amounts of As, and lesser amounts of Pb, to riparian and stream sediments, where they are potentially more bioavailable. PMID:21552357

  8. Analysis of granular flow in a pebble-bed nuclear reactor.

    PubMed

    Rycroft, Chris H; Grest, Gary S; Landry, James W; Bazant, Martin Z

    2006-08-01

    Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6-cm-diam spheres draining in a cylindrical vessel of diameter 3.5m and height 10 m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.

  9. Flow of variably fluidized granular masses across three-dimensional terrain 2. Numerical predictions and experimental tests

    USGS Publications Warehouse

    Denlinger, R.P.; Iverson, R.M.

    2001-01-01

    Numerical solutions of the equations describing flow of variably fluidized Coulomb mixtures predict key features of dry granular avalanches and water-saturated debris flows measured in physical experiments. These features include time-dependent speeds, depths, and widths of flows as well as the geometry of resulting deposits. Threedimensional (3-D) boundary surfaces strongly influence flow dynamics because transverse shearing and cross-stream momentum transport occur where topography obstructs or redirects motion. Consequent energy dissipation can cause local deceleration and deposition, even on steep slopes. Velocities of surge fronts and other discontinuities that develop as flows cross 3-D terrain are predicted accurately by using a Riemann solution algorithm. The algorithm employs a gravity wave speed that accounts for different intensities of lateral stress transfer in regions of extending and compressing flow and in regions with different degrees of fluidization. Field observations and experiments indicate that flows in which fluid plays a significant role typically have high-friction margins with weaker interiors partly fluidized by pore pressure. Interaction of the strong perimeter and weak interior produces relatively steep-sided, flat-topped deposits. To simulate these effects, we compute pore pressure distributions using an advection-diffusion model with enhanced diffusivity near flow margins. Although challenges remain in evaluating pore pressure distributions in diverse geophysical flows, Riemann solutions of the depthaveraged 3-D Coulomb mixture equations provide a powerful tool for interpreting and predicting flow behavior. They provide a means of modeling debris flows, rock avalanches, pyroclastic flows, and related phenomena without invoking and calibrating Theological parameters that have questionable physical significance.

  10. Future fundamental combustion research for aeropropulsion systems

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1985-01-01

    Physical fluid mechanics, heat transfer, and chemical kinetic processes which occur in the combustion chamber of aeropropulsion systems were investigated. With the component requirements becoming more severe for future engines, the current design methodology needs the new tools to obtain the optimum configuration in a reasonable design and development cycle. Research efforts in the last few years were encouraging but to achieve these benefits research is required into the fundamental aerothermodynamic processes of combustion. It is recommended that research continues in the areas of flame stabilization, combustor aerodynamics, heat transfer, multiphase flow and atomization, turbulent reacting flows, and chemical kinetics. Associated with each of these engineering sciences is the need for research into computational methods to accurately describe and predict these complex physical processes. Research needs in each of these areas are highlighted.

  11. An Experimental Investigation of the Flow Over the Rear End of a Notchback Automobile Configuration

    NASA Technical Reports Server (NTRS)

    Jenkins, Luther N.

    2000-01-01

    An experimental investigation of the flow over the rear end of a 0.16 scale notchback automobile configuration has been conducted in the NASA Langley Basic Aerodynamics Research Tunnel (BART). The objective of this work was to investigate the flow separation that occurs behind the backlight and obtain experimental data that can be used to understand the physics and time-averaged structure of the flow field. A three-component laser velocimeter was used to make non-intrusive, velocity measurements in the center plane and in a single cross-flow plane over the decklid. In addition to off-body measurements, flow conditions on the car surface were documented via surface flow visualization, boundary layer measurements, and surface pressures. The experimental data show several features previously identified by other researchers, but also reveal differences between the flow field associated with this particular configuration and the generally accepted models for the flow over a notchback rear end.

  12. Contraction driven flow in the extended vein networks of Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Alim, Karen; Amselem, Gabriel; Peaudecerf, Francois; Pringle, Anne; Brenner, Michael P.

    2011-11-01

    The true slime mold Physarum polycephalum is a basal organism that forms an extended network of veins to forage for food. P. polycephalum is renown for its adaptive changes of vein structure and morphology in response to food sources. These rearrangements presumably occur to establish an efficient transport and mixing of resources throughout the networks thus presenting a prototype to design transport networks under the constraints of laminar flow. The physical flows of cytoplasmic fluid enclosed by the veins exhibit an oscillatory flow termed ``shuttle streaming.'' The flow exceed by far the volume required for growth at the margins suggesting that the additional energy cost for generating the flow is spent for efficient and/or targeted redistribution of resources. We show that the viscous shuttle flow is driven by the radial contractions of the veins that accompany the streaming. We present a model for the fluid flow and resource dispersion arising due to radial contractions. The transport and mixing properties of the flow are discussed.

  13. Image-based modeling of the flow transition from a Berea rock matrix to a propped fracture

    NASA Astrophysics Data System (ADS)

    Sanematsu, P.; Willson, C. S.; Thompson, K. E.

    2013-12-01

    In the past decade, new technologies and advances in horizontal hydraulic fracturing to extract oil and gas from tight rocks have raised questions regarding the physics of the flow and transport processes that occur during production. Many of the multi-dimensional details of flow from the rock matrix into the fracture and within the proppant-filled fracture are still unknown, which leads to unreliable well production estimations. In this work, we use x-ray computed micro tomography (XCT) to image 30/60 CarboEconoprop light weight ceramic proppant packed between berea sandstone cores (6 mm in diameter and ~2 mm in height) under 4000 psi (~28 MPa) loading stress. Image processing and segmentation of the 6 micron voxel resolution tomography dataset into solid and void space involved filtering with anisotropic diffusion (AD), segmentation using an indicator kriging (IK) algorithm, and removal of noise using a remove islands and holes program. Physically-representative pore network structures were generated from the XCT images, and a representative elementary volume (REV) was analyzed using both permeability and effective porosity convergence. Boundary conditions were introduced to mimic the flow patterns that occur when fluid moves from the matrix into the proppant-filled fracture and then downstream within the proppant-filled fracture. A smaller domain, containing Berea and proppants close to the interface, was meshed using an in-house unstructured meshing algorithm that allows different levels of refinement. Although most of this domain contains proppants, the Berea section accounted for the majority of the elements due to mesh refinement in this region of smaller pores. A finite element method (FEM) Stokes flow model was used to provide more detailed insights on the flow transition from rock matrix to fracture. Results using different pressure gradients are used to describe the flow transition from the Berea rock matrix to proppant-filled fracture.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riggs, J.B.

    An experimental test model, which is dynamically similar to an actual UCC (Under ground Coal Conversion) system, has been used to determine fluid flow patterns and local heat transfer that occur in the UCC burn cavity. This study should provide insight into the little understood mechanisms (i.e., heat transfer and oxygen transport to the cavity walls) which control maximum cavity width, and therefore resource recovery during UCC. The experimental system is operational and producing physically realistic results. The qualitative results of this study have shown the dominant effect of free convection on the flow pattern of the system.

  15. Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow.

    PubMed

    Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael

    2011-10-01

    We present a simple cellular automaton (CA) model for two-lane roads explaining the physics of traffic breakdown, highway capacity, and synchronized flow. The model consists of the rules "acceleration," "deceleration," "randomization," and "motion" of the Nagel-Schreckenberg CA model as well as "overacceleration through lane changing to the faster lane," "comparison of vehicle gap with the synchronization gap," and "speed adaptation within the synchronization gap" of Kerner's three-phase traffic theory. We show that these few rules of the CA model can appropriately simulate fundamental empirical features of traffic breakdown and highway capacity found in traffic data measured over years in different countries, like characteristics of synchronized flow, the existence of the spontaneous and induced breakdowns at the same bottleneck, and associated probabilistic features of traffic breakdown and highway capacity. Single-vehicle data derived in model simulations show that synchronized flow first occurs and then self-maintains due to a spatiotemporal competition between speed adaptation to a slower speed of the preceding vehicle and passing of this slower vehicle. We find that the application of simple dependences of randomization probability and synchronization gap on driving situation allows us to explain the physics of moving synchronized flow patterns and the pinch effect in synchronized flow as observed in real traffic data.

  16. Scaling considerations related to interactions of hydrologic, pedologic and geomorphic processes (Invited)

    NASA Astrophysics Data System (ADS)

    Sidle, R. C.

    2013-12-01

    Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K) and infiltration capacity at small scales generally underestimates these values for application at larger field, hillslope, or catchment scales. Both vertical and slope-parallel saturated flow and related contaminant transport are often influenced by interconnected networks of preferential flow paths, which are not captured in K measurements derived from soil cores. Using such K values in models may underestimate water and contaminant fluxes and runoff peaks. As shown in small-scale runoff plot studies, infiltration rates are typically lower than integrated infiltration across a hillslope or in headwater catchments. The resultant greater infiltration-excess overland flow in small plots compared to larger landscapes is attributed to the lack of preferential flow continuity; plot border effects; greater homogeneity of rainfall inputs, topography and soil physical properties; and magnified effects of hydrophobicity in small plots. At the hillslope scale, isolated areas with high infiltration capacity can greatly reduce surface runoff and surface erosion at the hillslope scale. These hydropedologic and hydrogeomorphic processes are also relevant to both occurrence and timing of landslides. The focus of many landslide studies has typically been either on small-scale vadose zone process and how these affect soil mechanical properties or on larger scale, more descriptive geomorphic studies. One of the issues in translating laboratory-based investigations on geotechnical behavior of soils to field scales where landslides occur is the characterization of large-scale hydrological processes and flow paths that occur in heterogeneous and anisotropic porous media. These processes are not only affected by the spatial distribution of soil physical properties and bioturbations, but also by geomorphic attributes. Interactions among preferential flow paths can induce rapid pore water pressure response within soil mantles and trigger landslides during storm peaks. Alternatively, in poorly developed and unstructured soils, infiltration occurs mainly through the soil matrix and a lag time exists between the rainfall peak and development of pore water pressures at depth. Deep, slow-moving mass failures are also strongly controlled by secondary porosity within the regolith with the timing of activation linked to recharge dynamics. As such, understanding both small and larger scale processes is needed to estimate geomorphic impacts, as well as streamflow generation and contaminant migration.

  17. The Voronoi Implicit Interface Method for computing multiphase physics

    PubMed Central

    Saye, Robert I.; Sethian, James A.

    2011-01-01

    We introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarily high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. We test the method’s accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann’s law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces. PMID:22106269

  18. The Voronoi Implicit Interface Method for computing multiphase physics.

    PubMed

    Saye, Robert I; Sethian, James A

    2011-12-06

    We introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarily high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. We test the method's accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann's law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces.

  19. The Voronoi Implicit Interface Method for computing multiphase physics

    DOE PAGES

    Saye, Robert I.; Sethian, James A.

    2011-11-21

    In this paper, we introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarilymore » high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. Finally, we test the method’s accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann’s law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces.« less

  20. The constructal law of design and evolution in nature

    PubMed Central

    Bejan, Adrian; Lorente, Sylvie

    2010-01-01

    Constructal theory is the view that (i) the generation of images of design (pattern, rhythm) in nature is a phenomenon of physics and (ii) this phenomenon is covered by a principle (the constructal law): ‘for a finite-size flow system to persist in time (to live) it must evolve such that it provides greater and greater access to the currents that flow through it’. This law is about the necessity of design to occur, and about the time direction of the phenomenon: the tape of the design evolution ‘movie’ runs such that existing configurations are replaced by globally easier flowing configurations. The constructal law has two useful sides: the prediction of natural phenomena and the strategic engineering of novel architectures, based on the constructal law, i.e. not by mimicking nature. We show that the emergence of scaling laws in inanimate (geophysical) flow systems is the same phenomenon as the emergence of allometric laws in animate (biological) flow systems. Examples are lung design, animal locomotion, vegetation, river basins, turbulent flow structure, self-lubrication and natural multi-scale porous media. This article outlines the place of the constructal law as a self-standing law in physics, which covers all the ad hoc (and contradictory) statements of optimality such as minimum entropy generation, maximum entropy generation, minimum flow resistance, maximum flow resistance, minimum time, minimum weight, uniform maximum stresses and characteristic organ sizes. Nature is configured to flow and move as a conglomerate of ‘engine and brake’ designs. PMID:20368252

  1. The constructal law of design and evolution in nature.

    PubMed

    Bejan, Adrian; Lorente, Sylvie

    2010-05-12

    Constructal theory is the view that (i) the generation of images of design (pattern, rhythm) in nature is a phenomenon of physics and (ii) this phenomenon is covered by a principle (the constructal law): 'for a finite-size flow system to persist in time (to live) it must evolve such that it provides greater and greater access to the currents that flow through it'. This law is about the necessity of design to occur, and about the time direction of the phenomenon: the tape of the design evolution 'movie' runs such that existing configurations are replaced by globally easier flowing configurations. The constructal law has two useful sides: the prediction of natural phenomena and the strategic engineering of novel architectures, based on the constructal law, i.e. not by mimicking nature. We show that the emergence of scaling laws in inanimate (geophysical) flow systems is the same phenomenon as the emergence of allometric laws in animate (biological) flow systems. Examples are lung design, animal locomotion, vegetation, river basins, turbulent flow structure, self-lubrication and natural multi-scale porous media. This article outlines the place of the constructal law as a self-standing law in physics, which covers all the ad hoc (and contradictory) statements of optimality such as minimum entropy generation, maximum entropy generation, minimum flow resistance, maximum flow resistance, minimum time, minimum weight, uniform maximum stresses and characteristic organ sizes. Nature is configured to flow and move as a conglomerate of 'engine and brake' designs.

  2. Rocket Engine Oscillation Diagnostics

    NASA Technical Reports Server (NTRS)

    Nesman, Tom; Turner, James E. (Technical Monitor)

    2002-01-01

    Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.

  3. A field evaluation of subsurface and surface runoff. II. Runoff processes

    USGS Publications Warehouse

    Pilgrim, D.H.; Huff, D.D.; Steele, T.D.

    1978-01-01

    Combined use of radioisotope tracer, flow rate, specific conductance and suspended-sediment measurements on a large field plot near Stanford, California, has provided more detailed information on surface and subsurface storm runoff processes than would be possible from any single approach used in isolation. Although the plot was surficially uniform, the runoff processes were shown to be grossly nonuniform, both spatially over the plot, and laterally and vertically within the soil. The three types of processes that have been suggested as sources of storm runoff (Horton-type surface runoff, saturated overland flow, and rapid subsurface throughflow) all occurred on the plot. The nonuniformity of the processes supports the partial- and variable-source area concepts. Subsurface storm runoff occurred in a saturated layer above the subsoil horizon, and short travel times resulted from flow through macropores rather than the soil matrix. Consideration of these observations would be necessary for physically realistic modeling of the storm runoff process. ?? 1978.

  4. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing would occur. The ice crystal icing event, an uncommanded reduction in thrust, was able to be turned on and off by manipulating cloud TWC. A flight test point where no ice crystal icing event occurred was also duplicated in PSL. Physics based computational tools were successfully used to predict tunnel settings to induce ice buildup along the low pressure compression system flow path for several test points at incrementally lower altitudes, demonstrating that development of ice crystal icing scaling laws is potentially feasible. Analysis of PSL test data showed that uncommanded reduction in thrust occurs during ice crystal cloud on operation prior to fan speed reduction. This supports previous findings that the reduction of thrust for this test article is due to ice buildup leading to a restricted airflow from either physical or aerodynamic blockage in the engine core flow path.

  5. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Clevleand, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSLthe first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing would occur. The ice crystal icing event, an uncommanded reduction in thrust, was able to be turned on and off by manipulating cloud TWC. A flight test point where no ice crystal icing event occurred was also duplicated in PSL. Physics based computational tools were successfully used to predict tunnel settings to induce ice buildup along the low pressure compression system flow path for several test points at incrementally lower altitudes, demonstrating that development of ice crystal icing scaling laws is potentially feasible. Analysis of PSL test data showed that uncommanded reduction in thrust occurs during ice crystal cloud on operation prior to fan speed reduction. This supports previous findings that the reduction of thrust for this test article is due to ice buildup leading to a restricted airflow from either physical or aerodynamic blockage in the engine core flow path.

  6. A Physically Based Distributed Hydrologic Model with a no-conventional terrain analysis

    NASA Astrophysics Data System (ADS)

    Rulli, M.; Menduni, G.; Rosso, R.

    2003-12-01

    A physically based distributed hydrological model is presented. Starting from a contour-based terrain analysis, the model makes a no-conventional discretization of the terrain. From the maximum slope lines, obtained using the principles of minimum distance and orthogonality, the models obtains a stream tubes structure. The implemented model automatically can find the terrain morphological characteristics, e.g. peaks and saddles, and deal with them respecting the stream flow. Using this type of discretization, the model divides the elements in which the water flows in two classes; the cells, that are mixtilinear polygons where the overland flow is modelled as a sheet flow and channels, obtained by the interception of two or more stream tubes and whenever surface runoff occurs, the surface runoff is channelised. The permanent drainage paths can are calculated using one of the most common methods: threshold area, variable threshold area or curvature. The subsurface flow is modelled using the Simplified Bucket Model. The model considers three type of overland flow, depending on how it is produced:infiltration excess;saturation of superficial layer of the soil and exfiltration of sub-surface flow from upstream. The surface flow and the subsurface flow across a element are routed according with the mono-dimensional equation of the kinematic wave. The also model considers the spatial variability of the channels geometry with the flow. The channels have a rectangular section with length of the base decreasing with the distance from the outlet and depending on a power of the flow. The model was tested on the Rio Gallina and Missiaga catchments and the results showed model good performances.

  7. Experimental and computation study of liquid droplets impinging on an afterburner

    NASA Astrophysics Data System (ADS)

    Lavergne, G.; Hebrard, P.; Donnadille, Ph.

    The actual development of three-dimensional computation codes of internal reactive flows in combustion chambers needs, for the liquid phase, accurate boundary conditions. A series of experiments was undertaken to identify and then to analyze physical phenomena occurring during spray transport and spray boundary interaction. The purpose of this paper is to investigate drop wall interaction, drop impingement, the liquid film, and the liquid flow rate captured by a flameholder. The experimental approach is divided in two parts: a parametric study on the captured fuel flow rate by a flameholder in an isothermal two-dimensional square facility, and a fundamental study of monosized droplet impingement on a hot plate to determine rebound criteria.

  8. Experimental determination of sorption in fractured flow systems

    NASA Astrophysics Data System (ADS)

    Zimmerman, Mitchell D.; Bennett, Philip C.; Sharp, John M.; Choi, Wan-Joo

    2002-09-01

    Fracture "skins" are alteration zones on fracture surfaces created by a variety of biological, chemical, and physical processes. Skins increase surface area, where sorption occurs, compared to the unaltered rock matrix. This study examines the sorption of organic solutes on altered fracture surfaces in an experimental fracture-flow apparatus. Fracture skins containing abundant metal oxides, clays, and organic material from the Breathitt Formation (Kentucky, USA) were collected in a manner such that skin surface integrity was maintained. The samples were reassembled in the lab in a flow-through apparatus that simulated ˜2.7 m of a linear fracture "conduit." A dual-tracer injection scheme was utilized with the sorbing or reactive tracer compared to a non-reactive tracer (chloride) injected simultaneously. Sorption was assessed from the ratio of the first temporal moments of the breakthrough curves and from the loss of reactive tracer mass and evaluated as a function of flow velocity and solute type. The breakthrough curves suggest dual-flow regimes in the fracture with both sorbing and non-sorbing flow fields. Significant sorption occurs for the reactive components, and sorption increased with decreasing flow rate and decreasing compound solubility. Based on moment analysis, however, there was little retardation of the center of solute mass. These data suggest that non-equilibrium sorption processes dominate and that slow desorption and boundary layer diffusion cause extensive tailing in the breakthrough curves.

  9. Wake measurements in a strong adverse pressure gradient

    NASA Technical Reports Server (NTRS)

    Hoffenberg, R.; Sullivan, John P.; Schneider, S. P.

    1994-01-01

    The behavior of wakes in adverse pressure gradients is critical to the performance of high-lift systems for transport aircraft. Wake deceleration is known to lead to sudden thickening and the onset of reversed flow; this 'wake bursting' phenomenon can occur while surface flows remain attached. Although 'wake bursting' is known to be important for high-lift systems, no detailed measurements of 'burst' wakes have ever been reported. Wake bursting has been successfully achieved in the wake of a flat plate as it decelerated in a two-dimensional diffuser, whose sidewalls were forced to remain attached by use of slot blowing. Pilot probe surveys, L.D.V. measurements, and flow visualization have been used to investigate the physics of this decelerated wake, through the onset of reversed flow.

  10. Nonequilibrium radiative hypersonic flow simulation

    NASA Astrophysics Data System (ADS)

    Shang, J. S.; Surzhikov, S. T.

    2012-08-01

    Nearly all the required scientific disciplines for computational hypersonic flow simulation have been developed on the framework of gas kinetic theory. However when high-temperature physical phenomena occur beneath the molecular and atomic scales, the knowledge of quantum physics and quantum chemical-physics becomes essential. Therefore the most challenging topics in computational simulation probably can be identified as the chemical-physical models for a high-temperature gaseous medium. The thermal radiation is also associated with quantum transitions of molecular and electronic states. The radiative energy exchange is characterized by the mechanisms of emission, absorption, and scattering. In developing a simulation capability for nonequilibrium radiation, an efficient numerical procedure is equally important both for solving the radiative transfer equation and for generating the required optical data via the ab-initio approach. In computational simulation, the initial values and boundary conditions are paramount for physical fidelity. Precise information at the material interface of ablating environment requires more than just a balance of the fluxes across the interface but must also consider the boundary deformation. The foundation of this theoretic development shall be built on the eigenvalue structure of the governing equations which can be described by Reynolds' transport theorem. Recent innovations for possible aerospace vehicle performance enhancement via an electromagnetic effect appear to be very attractive. The effectiveness of this mechanism is dependent strongly on the degree of ionization of the flow medium, the consecutive interactions of fluid dynamics and electrodynamics, as well as an externally applied magnetic field. Some verified research results in this area will be highlighted. An assessment of all these most recent advancements in nonequilibrium modeling of chemical kinetics, chemical-physics kinetics, ablation, radiative exchange, computational algorithms, and the aerodynamic-electromagnetic interaction are summarized and delineated. The critical basic research areas for physic-based hypersonic flow simulation should become self-evident through the present discussion. Nevertheless intensive basic research efforts must be sustained in these areas for fundamental knowledge and future technology advancement.

  11. Structure of peat soils and implications for biogeochemical processes and hydrological flow

    NASA Astrophysics Data System (ADS)

    Rezanezhad, F.; McCarter, C. P. R.; Gharedaghloo, B.; Kleimeier, C.; Milojevic, T.; Liu, H.; Weber, T. K. D.; Price, J. S.; Quinton, W. L.; Lenartz, B.; Van Cappellen, P.

    2017-12-01

    Permafrost peatlands contain globally important amounts of soil organic carbon and play major roles in global water, nutrient and biogeochemical cycles. The structure of peatland soils (i.e., peat) are highly complex with unique physical and hydraulic properties; where significant, and only partially reversible, shrinkage occurs during dewatering (including water table fluctuations), compression and/or decomposition. These distinct physical and hydraulic properties controls water flow, which in turn affect reactive and non-reactive solute transport (such as, sorption or degradation) and biogeochemical functions. Additionally, peat further attenuates solute migration through molecular diffusion into the inactive pores of Sphagnum dominated peat. These slow, diffusion-limited solute exchanges between the pore regions may give rise to pore-scale chemical gradients and heterogeneous distributions of microbial habitats and activity in peat soils. Permafrost peat plateaus have the same essential subsurface characteristics as other widely organic soil-covered peatlands, where the hydraulic conductivity is related to the degree of decomposition and soil compression. Increasing levels of decomposition correspond with a reduction of effective pore diameter and consequently restrict water and solute flow (by several orders of magnitude in hydraulic conductivity between the ground surface and a depth of 50 cm). In this presentation, we present the current knowledge of key physical and hydraulic properties related to the structure of globally available peat soils and discuss their implications for water storage, flow and the migration of solutes.

  12. Numerical simulation of flows in a circular pipe transversely subjected to a localized impulsive body force with applications to blunt traumatic aortic rupture

    NASA Astrophysics Data System (ADS)

    Di Labbio, G.; Keshavarz-Motamed, Z.; Kadem, L.

    2017-06-01

    Much debate surrounds the mechanisms responsible for the occurrence of blunt traumatic aortic rupture in car accidents, particularly on the role of the inertial body force experienced by the blood due to the abrupt deceleration. The isolated influence of such body forces acting on even simple fluid flows is a fundamental problem in fluid dynamics that has not been thoroughly investigated. This study numerically investigates the fundamental physical problem, where the pulsatile flow in a straight circular pipe is subjected to a transverse body force on a localized volume of fluid. The body force is applied as a brief rectangular impulse in three distinct cases, namely during the accelerating, peak, and decelerating phases of the pulsatile flow. A dimensionless number, termed the degree of influence of the body force (Ψ), is devised to quantify the relative strength of the body force over the flow inertia. The impact induces counter-rotating cross-stream vortices at the boundaries of the forced section accompanied by complex secondary flow structures. This secondary flow is found to develop slowest for an impact occurring during an accelerating flow and fastest during a decelerating flow. The peak skewness of the velocity field, however, occurred at successively later times for the three respective cases. After the impact, these secondary flows act to restore the unforced state and such dominant spatial structures are revealed by proper orthogonal decomposition of the velocity field. This work presents a new class of problems that requires further theoretical and experimental investigation.

  13. Flow in Atherosclerotic Blood Vessels

    NASA Astrophysics Data System (ADS)

    Berger, Stanley A.; Stroud, Jenn S.

    2000-11-01

    Atherosclerotic lesions occur in arteries where there are major changes in flow structure, e.g. bifurcations and junctions. The reduction of vessel lumen alters the flow, including the mechanical forces on the walls. We have examined the flow in carotid artery bifurcations with realistic plaque contours. The unsteady, incompressible, Navier-Stokes equations are solved in finite-volume form. Steady and pulsatile flows have been analyzed for laminar and turbulent flows, using for the latter a low-Reynolds number k- ɛ model and a k-ω model. Non-Newtonian viscosity is also considered using a power-law model. In general the very irregular contours of the vessels lead to recirculating regions, strong spatial variations of wall shear stresses, and in some cases, vortex shedding. Even steady inlet flow exhibits fluctuating, unsteady behavior. Neither turbulence models captures all the physics of the flow. The flow, in fact, appears to be transitional and not fully turbulent. For unsteady flow, there are also strong temporal variations of normal and shear stresses, which together with the strong spatial variations, has important implications for the onset and progression of atherosclerotic disease.

  14. Modeling for free surface flow with phase change and its application to fusion technology

    NASA Astrophysics Data System (ADS)

    Luo, Xiaoyong

    The development of predictive capabilities for free surface flow with phase change is essential to evaluate liquid wall protection schemes for various fusion chambers. With inertial fusion energy (IFE) concepts such as HYLIFE-II, rapid condensation into cold liquid surfaces is required when using liquid curtains for protecting reactor walls from blasts and intense neutron radiation. With magnetic fusion energy (MFE) concepts, droplets are injected onto the free surface of the liquid to minimize evaporation by minimizing the surface temperature. This dissertation presents a numerical methodology for free surface flow with phase change to help resolve feasibility issues encountered in the aforementioned fusion engineering fields, especially spray droplet condensation efficiency in IFE and droplet heat transfer enhancement on free surface liquid divertors in MFE. The numerical methodology is being conducted within the framework of the incompressible flow with the phase change model. A new second-order projection method is presented in conjunction with Approximate-Factorization techniques (AF method) for incompressible Navier-Stokes equations. A sub-cell conception is introduced and the Ghost Fluid Method in extended in a modified mass transfer model to accurately calculate the mass transfer across the interface. The Crank-Nicholson method is used for the diffusion term to eliminate the numerical viscous stability restriction. The third-order ENO scheme is used for the convective term to guarantee the accuracy of the method. The level set method is used to capture accurately the free surface of the flow and the deformation of the droplets. This numerical investigation identifies the physics characterizing transient heat and mass transfer of the droplet and the free surface flow. The results show that the numerical methodology is quite successful in modeling the free surface with phase change even though some severe deformations such as breaking and merging occur. The versatility of the numerical methodology shows that the work can easily handle complex physical conditions that occur in the fusion science and engineering.

  15. Two-Photon Imaging of Cortical Surface Microvessels Reveals a Robust Redistribution in Blood Flow after Vascular Occlusion

    PubMed Central

    Schaffer, Chris B; Friedman, Beth; Nishimura, Nozomi; Schroeder, Lee F; Tsai, Philbert S; Ebner, Ford F; Lyden, Patrick D

    2006-01-01

    A highly interconnected network of arterioles overlies mammalian cortex to route blood to the cortical mantle. Here we test if this angioarchitecture can ensure that the supply of blood is redistributed after vascular occlusion. We use rodent parietal cortex as a model system and image the flow of red blood cells in individual microvessels. Changes in flow are quantified in response to photothrombotic occlusions to individual pial arterioles as well as to physical occlusions of the middle cerebral artery (MCA), the primary source of blood to this network. We observe that perfusion is rapidly reestablished at the first branch downstream from a photothrombotic occlusion through a reversal in flow in one vessel. More distal downstream arterioles also show reversals in flow. Further, occlusion of the MCA leads to reversals in flow through approximately half of the downstream but distant arterioles. Thus the cortical arteriolar network supports collateral flow that may mitigate the effects of vessel obstruction, as may occur secondary to neurovascular pathology. PMID:16379497

  16. Vortex equations: Singularities, numerical solution, and axisymmetric vortex breakdown

    NASA Technical Reports Server (NTRS)

    Bossel, H. H.

    1972-01-01

    A method of weighted residuals for the computation of rotationally symmetric quasi-cylindrical viscous incompressible vortex flow is presented and used to compute a wide variety of vortex flows. The method approximates the axial velocity and circulation profiles by series of exponentials having (N + 1) and N free parameters, respectively. Formal integration results in a set of (2N + 1) ordinary differential equations for the free parameters. The governing equations are shown to have an infinite number of discrete singularities corresponding to critical values of the swirl parameters. The computations point to the controlling influence of the inner core flow on vortex behavior. They also confirm the existence of two particular critical swirl parameter values: one separates vortex flow which decays smoothly from vortex flow which eventually breaks down, and the second is the first singularity of the quasi-cylindrical system, at which point physical vortex breakdown is thought to occur.

  17. Computational Relativistic Astrophysics Using the Flow Field-Dependent Variation Theory

    NASA Technical Reports Server (NTRS)

    Richardson, G. A.; Chung, T. J.

    2002-01-01

    We present our method for solving general relativistic nonideal hydrodynamics. Relativistic effects become pronounced in such cases as jet formation from black hole magnetized accretion disks which may lead to the study of gamma-ray bursts. Nonideal flows are present where radiation, magnetic forces, viscosities, and turbulence play an important role. Our concern in this paper is to reexamine existing numerical simulation tools as to the accuracy and efficiency of computations and introduce a new approach known as the flow field-dependent variation (FDV) method. The main feature of the FDV method consists of accommodating discontinuities of shock waves and high gradients of flow variables such as occur in turbulence and unstable motions. In this paper, the physics involved in the solution of relativistic hydrodynamics and solution strategies of the FDV theory are elaborated. The general relativistic astrophysical flow and shock solver (GRAFSS) is introduced, and some simple example problems for computational relativistic astrophysics (CRA) are demonstrated.

  18. Benchmarking variable-density flow in saturated and unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Guevara Morel, Carlos Roberto; Cremer, Clemens; Graf, Thomas

    2015-04-01

    In natural environments, fluid density and viscosity can be affected by spatial and temporal variations of solute concentration and/or temperature. These variations can occur, for example, due to salt water intrusion in coastal aquifers, leachate infiltration from waste disposal sites and upconing of saline water from deep aquifers. As a consequence, potentially unstable situations may exist in which a dense fluid overlies a less dense fluid. This situation can produce instabilities that manifest as dense plume fingers that move vertically downwards counterbalanced by vertical upwards flow of the less dense fluid. Resulting free convection increases solute transport rates over large distances and times relative to constant-density flow. Therefore, the understanding of free convection is relevant for the protection of freshwater aquifer systems. The results from a laboratory experiment of saturated and unsaturated variable-density flow and solute transport (Simmons et al., Transp. Porous Medium, 2002) are used as the physical basis to define a mathematical benchmark. The HydroGeoSphere code coupled with PEST are used to estimate the optimal parameter set capable of reproducing the physical model. A grid convergency analysis (in space and time) is also undertaken in order to obtain the adequate spatial and temporal discretizations. The new mathematical benchmark is useful for model comparison and testing of variable-density variably saturated flow in porous media.

  19. Particle trajectories in thermal counterflow of superfluid helium in a wide channel of square cross section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Mantia, Marco, E-mail: lamantia@nbox.troja.mff.cuni.cz

    The motion of micrometer-sized solid hydrogen particles in thermal counterflow of superfluid helium is studied experimentally by using the particle tracking velocimetry technique. The investigated quantum flow occurs in a square channel of 25 mm sides and 100 mm length, appreciably wider than those employed in previous related experiments. Flow velocities up to 10 mm/s are obtained, corresponding to temperatures between about 1.3 K and 2.1 K, and applied heat fluxes between ca. 50 W/m{sup 2} and 500 W/m{sup 2}. The character of the obtained particle trajectories changes significantly as the imposed mean flow velocity increases. At thermal counterflow velocitiesmore » lower than approximately 1 mm/s, the particle tracks appear straighter than at larger velocities. On the basis of the current understanding of the underlying physics, it is argued that the outcome is most likely due to the transition to the turbulent state of the investigated flow as, for narrower channels, this transition was reported to occur at larger velocities. The present results confirm that, at least in the parameter ranges investigated to date, the transition to turbulence in thermal counterflow depends on the geometry of the channel where this quantum flow develops.« less

  20. Ontology of physics for biology: representing physical dependencies as a basis for biological processes.

    PubMed

    Cook, Daniel L; Neal, Maxwell L; Bookstein, Fred L; Gennari, John H

    2013-12-02

    In prior work, we presented the Ontology of Physics for Biology (OPB) as a computational ontology for use in the annotation and representations of biophysical knowledge encoded in repositories of physics-based biosimulation models. We introduced OPB:Physical entity and OPB:Physical property classes that extend available spatiotemporal representations of physical entities and processes to explicitly represent the thermodynamics and dynamics of physiological processes. Our utilitarian, long-term aim is to develop computational tools for creating and querying formalized physiological knowledge for use by multiscale "physiome" projects such as the EU's Virtual Physiological Human (VPH) and NIH's Virtual Physiological Rat (VPR). Here we describe the OPB:Physical dependency taxonomy of classes that represent of the laws of classical physics that are the "rules" by which physical properties of physical entities change during occurrences of physical processes. For example, the fluid analog of Ohm's law (as for electric currents) is used to describe how a blood flow rate depends on a blood pressure gradient. Hooke's law (as in elastic deformations of springs) is used to describe how an increase in vascular volume increases blood pressure. We classify such dependencies according to the flow, transformation, and storage of thermodynamic energy that occurs during processes governed by the dependencies. We have developed the OPB and annotation methods to represent the meaning-the biophysical semantics-of the mathematical statements of physiological analysis and the biophysical content of models and datasets. Here we describe and discuss our approach to an ontological representation of physical laws (as dependencies) and properties as encoded for the mathematical analysis of biophysical processes.

  1. Computational Relativistic Astrophysics Using the Flowfield-Dependent Variation Theory

    NASA Technical Reports Server (NTRS)

    Richardson, G. A.; Chung, T. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Theoretical models, observations and measurements have preoccupied astrophysicists for many centuries. Only in recent years, has the theory of relativity as applied to astrophysical flows met the challenges of how the governing equations can be solved numerically with accuracy and efficiency. Even without the effects of relativity, the physics of magnetohydrodynamic flow instability, turbulence, radiation, and enhanced transport in accretion disks has not been completely resolved. Relativistic effects become pronounced in such cases as jet formation from black hole magnetized accretion disks and also in the study of Gamma-Ray bursts (GRB). Thus, our concern in this paper is to reexamine existing numerical simulation tools as to the accuracy and efficiency of computations and introduce a new approach known as the flowfield-dependent variation (FDV) method. The main feature of the FDV method consists of accommodating discontinuities of shock waves and high gradients of flow variables such as occur in turbulence and unstable motions. In this paper, the physics involved in the solution of relativistic hydrodynamics and solution strategies of the FDV theory are elaborated. The general relativistic astrophysical flow and shock solver (GRAFSS) is introduced, and some simple example problems for Computational Relativistic Astrophysics (CRA) are demonstrated.

  2. Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.; Schreckenberg, Michael

    2011-10-01

    We present a simple cellular automaton (CA) model for two-lane roads explaining the physics of traffic breakdown, highway capacity, and synchronized flow. The model consists of the rules “acceleration,” “deceleration,” “randomization,” and “motion” of the Nagel-Schreckenberg CA model as well as “overacceleration through lane changing to the faster lane,” “comparison of vehicle gap with the synchronization gap,” and “speed adaptation within the synchronization gap” of Kerner's three-phase traffic theory. We show that these few rules of the CA model can appropriately simulate fundamental empirical features of traffic breakdown and highway capacity found in traffic data measured over years in different countries, like characteristics of synchronized flow, the existence of the spontaneous and induced breakdowns at the same bottleneck, and associated probabilistic features of traffic breakdown and highway capacity. Single-vehicle data derived in model simulations show that synchronized flow first occurs and then self-maintains due to a spatiotemporal competition between speed adaptation to a slower speed of the preceding vehicle and passing of this slower vehicle. We find that the application of simple dependences of randomization probability and synchronization gap on driving situation allows us to explain the physics of moving synchronized flow patterns and the pinch effect in synchronized flow as observed in real traffic data.

  3. Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Maines, Brant H.; Arndt, Roger E. A.

    2000-11-01

    Cavitation in vortical flows is a problem of practical importance, that is relatively unexplored. Vortical structures of importance range from the eddies occurring randomly in space and time in turbulent flows to the developed vortices that occur at the tips of lifting surfaces and at the hubs of propellers and hydraulic turbines. A variety of secondary flow phenomena such as the horse shoe vortices that form around bridge piers, chute blocks and struts, and the secondary vortices found in the clearance passages of turbomachinery are also important cavitation sites. Tip vortex cavitation can be viewed as a canonical problem that captures many of the essential physics associated with vortex cavitation in general. This paper describes the inception process and focuses on the high levels of tension that can be sustained in the flow, which appears to scale with the blade loading. High speed video visualization indicates that the details of how free stream nuclei are ingested plays a major role in the nucleation and inception process. A new photographic technique was used to obtain high quality images of the bubble growth process at framing rates as high as 40,000 fps. Sponsored by the Office of Naval Research

  4. 1987 Robert E. Horton Award to Thomas Dunne

    NASA Astrophysics Data System (ADS)

    Dunne, Thomas

    Robert Horton demonstrated in his seminal 1945 paper that physically based quantitative models for landscape evolution can be constructed by using predicted overland flow in a sediment transport equation for sheetwash. He envisioned drainage network evolution by infiltration-limited overland flow as a process of channel incision, network growth, and then abstraction to a stable channel network fed by hillslopes too short for channel initiation. Not until the work of Tom Dunne in the late 1960s in the Sleepers River watershed, Vermont, was it realized that overland flow, and consequently hillslope evolution, could occur by an entirely different mechanism than that proposed by Horton. Dunne showed that in certain predictable zones of the landscape, exfiltration from saturated grounds adds to precipitation on the soil surface to form what he later called saturation overland flow. Many researchers have since found that this form of overland flow occurs in humid and semiarid landscapes throughout the world. So clear is Dunne's contribution to defining this process that some refer to it as the “Dunne mechanism” to distinguish it from “Horton overland flow.” His work also documented unquestionably the applicability of the partial area concept in explaining runoff generation. Because of this work, his research in snowmelt runoff, and his subsequent authorship with Luna Leopold of the widely used book entitled Water in Environmental Planning, Dunne has established himself as a leader of process hydrology.

  5. Probabilistic physical characteristics of phase transitions at highway bottlenecks: incommensurability of three-phase and two-phase traffic-flow theories.

    PubMed

    Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael

    2014-05-01

    Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F → J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F → J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F → S transition) can be induced at the bottleneck. This explains why rather than the F → J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F → S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F → S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.

  6. Temperature and velocity conditions of air flow in vertical channel of hinged ventilated facade of a multistory building.

    NASA Astrophysics Data System (ADS)

    Statsenko, Elena; Ostrovaia, Anastasia; Pigurin, Andrey

    2018-03-01

    This article considers the influence of the building's tallness and the presence of mounting grooved lines on the parameters of heat transfer in the gap of a hinged ventilated facade. A numerical description of the processes occurring in a heat-gravitational flow is given. The average velocity and temperature of the heat-gravitational flow of a structure with open and sealed rusts are determined with unchanged geometric parameters of the gap. The dependence of the parameters influencing the thermomechanical characteristics of the enclosing structure is derived depending on the internal parameters of the system. Physical modeling of real multistory structures is performed by projecting actual parameters onto a reduced laboratory model (scaling).

  7. Nonlinear Elastic Plate in a Flow of Gas: Recent Results and Conjectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chueshov, Igor, E-mail: chueshov@karazin.ua; Dowell, Earl H., E-mail: dowell@duke.edu; Lasiecka, Irena, E-mail: lasiecka@memphis.edu

    2016-06-15

    We give a survey of recent results on flow-structure interactions modeled by a modified wave equation coupled at an interface with equations of nonlinear elasticity. Both subsonic and supersonic flow velocities are considered. The focus of the discussion here is on the interesting mathematical aspects of physical phenomena occurring in aeroelasticity, such as flutter and divergence. This leads to a partial differential equation treatment of issues such as well-posedness of finite energy solutions, and long-time (asymptotic) behavior. The latter includes theory of asymptotic stability, convergence to equilibria, and to global attracting sets. We complete the discussion with several well knownmore » observations and conjectures based on experimental/numerical studies.« less

  8. Contrasts between chemical and physical estimates of baseflow help discern multiple sources of water contributing to rivers

    NASA Astrophysics Data System (ADS)

    Cartwright, I.; Gilfedder, B.; Hofmann, H.

    2013-05-01

    This study compares geochemical and physical methods of estimating baseflow in the upper reaches of the Barwon River, southeast Australia. Estimates of baseflow from physical techniques such as local minima and recursive digital filters are higher than those based on chemical mass balance using continuous electrical conductivity (EC). Between 2001 and 2011 the baseflow flux calculated using chemical mass balance is between 1.8 × 103 and 1.5 × 104 ML yr-1 (15 to 25% of the total discharge in any one year) whereas recursive digital filters yield baseflow fluxes of 3.6 × 103 to 3.8 × 104 ML yr-1 (19 to 52% of discharge) and the local minimum method yields baseflow fluxes of 3.2 × 103 to 2.5 × 104 ML yr-1 (13 to 44% of discharge). These differences most probably reflect how the different techniques characterise baseflow. Physical methods probably aggregate much of the water from delayed sources as baseflow. However, as many delayed transient water stores (such as bank return flow or floodplain storage) are likely to be geochemically similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The mismatch between geochemical and physical estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months. Consistent with these interpretations, modelling of bank storage indicates that bank return flows provide water to the river for several weeks after flood events. EC vs. discharge variations during individual flow events also imply that an inflow of low EC water stored within the banks or on the floodplain occurs as discharge falls. The joint use of physical and geochemical techniques allows a better understanding of the different components of water that contribute to river flow, which is important for the management and protection of water resources.

  9. Application of a fully integrated surface-subsurface physically based flow model for evaluating groundwater recharge from a flash flood event

    NASA Astrophysics Data System (ADS)

    Pino, Cristian; Herrera, Paulo; Therrien, René

    2017-04-01

    In many arid regions around the world groundwater recharge occurs during flash floods. This transient spatially and temporally concentrated flood-recharge process takes place through the variably saturated zone between surface and usually the deep groundwater table. These flood events are characterized by rapid and extreme changes in surface flow depth and velocity and soil moisture conditions. Infiltration rates change over time controlled by the hydraulic gradients and the unsaturated hydraulic conductivity at the surface-subsurface interface. Today is a challenge to assess the spatial and temporal distribution of groundwater recharge from flash flood events under real field conditions at different scales in arid areas. We apply an integrated surface-subsurface variably saturated physically-based flow model at the watershed scale to assess the recharge process during and after a flash flood event registered in an arid fluvial valley in Northern Chile. We are able to reproduce reasonably well observed groundwater levels and surface flow discharges during and after the flood with a calibrated model. We also investigate the magnitude and spatio-temporal distribution of recharge and the response of the system to variations of different surface and subsurface parameters, initial soil moisture content and groundwater table depths and surface flow conditions. We demonstrate how an integrated physically based model allows the exploration of different spatial and temporal system states, and that the analysis of the results of the simulations help us to improve our understanding of the recharge processes in similar type of systems that are common to many arid areas around the world.

  10. Mode switching and linear stability analysis of resonant acoustic flows

    NASA Astrophysics Data System (ADS)

    Panickar, Praveen

    Resonant acoustic flows occur in a wide variety of practical, aerospace-related applications and are a rich source of complex flow-physics. The primary concern associated with these types of flows is the high-amplitude fluctuating pressures associated with the resonant tones that could lead to sonic fatigue failure of sensitive components in the vicinity of such flows. However, before attempting to devise methods to suppress the resonant tones, it is imperative to understand the physics governing these flows in the hope that such an understanding will lead to more robust and effective suppression techniques. To this end, an in-depth study of various resonant acoustic flows was undertaken in this thesis, the main aim being to bring about a better understanding of such flows by revealing physically relevant information. Starting with the resonant acoustic mechanism in underexpanded jets from two-dimensional nozzles, it was shown that, for a variety of flow situations (geometries, shock-cell structures and orientations) in such jets, the nonlinear interaction density acted as a faithful precursor to a, hitherto unpredictable, spanwise instability mode switch. Following this, a study of the occurrence of, previously undocumented and theoretically unexpected, helical instabilities in subsonic impinging jets was undertaken. Using metrics from linear stability analysis, it was shown that the presence of the helical modes was justified. The results from this study on impinging jets are directly applicable to modern Stationary Take-Off and Vertical Landing (STOVL) aircraft that have twin, closely spaced exhausts. Finally, a novel technique that yielded dramatic suppression of resonant acoustic tones using high frequency excitation, in subsonic flows over open cavities, was investigated. Linear stability calculations of the experimentally measured baseline and excited velocity profiles showed that the instability of the high frequency excitation corresponded to a spatially decaying mode, which in turn lead to the resonance suppression associated with this mechanism. The experimental results showed good agreement with linear stability calculations for the measured mean velocity profiles. It is hoped that the work presented in this thesis will further the understanding of resonant acoustic flows and provide insights that can lead to better control techniques in the future.

  11. Physical Processes in the MAGO/MFT Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garanin, Sergey F; Reinovsky, Robert E.

    2015-03-23

    The Monograph is devoted to theoretical discussion of the physical effects, which are most significant for the alternative approach to the problem of controlled thermonuclear fusion (CTF): the MAGO/MTF approach. The book includes the description of the approach, its difference from the major CTF systems—magnetic confinement and inertial confinement systems. General physical methods of the processes simulation in this approach are considered, including plasma transport phenomena and radiation, and the theory of transverse collisionless shock waves, the surface discharges theory, important for such kind of research. Different flows and magneto-hydrodynamic plasma instabilities occurring in the frames of this approach aremore » also considered. In virtue of the general physical essence of the considered phenomena the presented results are applicable to a wide range of plasma physics and hydrodynamics processes. The book is intended for the plasma physics and hydrodynamics specialists, post-graduate students, and senior students-physicists.« less

  12. The temporal evolution of the resistive pressure-gradient-driven turbulence and anomalous transport in shear flow across the magnetic field

    NASA Astrophysics Data System (ADS)

    Lee, Hae June; Mikhailenko, Vladmir; Mikhailenko, Vladimir

    2017-10-01

    The temporal evolution of the resistive pressure-gradient-driven mode in the sheared flow is investigated by employing the shearing modes approach. It reveals an essential difference in the processes, which occur in the case of the flows with velocity shearing rate less than the growth rate of the instability in the steady plasmas, and in the case of the flows with velocity shear larger than the instability growth rate in steady plasmas. It displays the physical content of the empirical ``quench rule'' which predicts the suppression of the turbulence in the sheared flows when the velocity shearing rate becomes larger than the maximum growth rate of the possible instability. We found that the distortion of the perturbations by the sheared flow with such velocity shear introduces the time dependencies into the governing equations, which prohibits the application of the eigenmodes formalism and requires the solution of the initial value problem.

  13. Turbulent solutions of equations of fluid motion

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1985-01-01

    Some turbulent solutions of the unaveraged Navier-Stokes equations (equations of fluid motion) are reviewed. Those equations are solved numerically in order to study the nonlinear physics of incompressible turbulent flow. The three components of the mean-square velocity fluctuations are initially equal for the conditions chosen. The resulting solutions show characteristics of turbulence, such as the linear and nonlinear excitation of small-scale fluctuations. For the stronger fluctuations the initially nonrandom flow develops into an apparently random turbulence. The cases considered include turbulence that is statistically homogeneous or inhomogeneous and isotropic or anisotropic. A statistically steady-state turbulence is obtained by using a spatially periodic body force. Various turbulence processes, including the transfer of energy between eddy sizes and between directional components and the production, dissipation, and spatial diffusion of turbulence, are considered. It is concluded that the physical processes occurring in turbulence can be profitably studied numerically.

  14. Theory and Modeling of Liquid Explosive Detonation

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.; Urtiew, Paul A.

    2010-10-01

    The current understanding of the detonation reaction zones of liquid explosives is discussed in this article. The physical and chemical processes that precede and follow exothermic chemical reaction within the detonation reaction zone are discussed within the framework of the nonequilibrium Zeldovich-von Neumann-Doring (NEZND) theory of self-sustaining detonation. Nonequilibrium chemical and physical processes cause finite time duration induction zones before exothermic chemical energy release occurs. This separation between the leading shock wave front and the chemical energy release needed to sustain it results in shock wave amplification and the subsequent formation of complex three-dimensional cellular structures in all liquid detonation waves. To develop a practical Zeldovich-von Neumann-Doring (ZND) reactive flow model for liquid detonation, experimental data on reaction zone structure, confined failure diameter, unconfined failure diameter, and failure wave velocity in the Dremin-Trofimov test for detonating nitromethane are calculated using the ignition and growth reactive flow model.

  15. Mathematical modeling of ice accretion on airfoils

    NASA Technical Reports Server (NTRS)

    Macarthur, C. D.; Keller, J. L.; Luers, J. K.

    1982-01-01

    The progress toward development of a computer model suitable for predicting icing behavior on airfoils over a wide range of environmental conditions and airfoils shapes is reported. The LEWICE program was formulated to solve a set of equations which describe the physical processes which occur during accretion of ice on an airfoil, including heat transfer in a time dependent mode, with the restriction that the flow must be describable by a two-dimensional flow code. Input data comprises the cloud liquid water content, mean droplet diameter, ambient air temperature, air velocity, and relative humidity. A potential flowfield around the airfoil is calculated, along with the droplet trajectories within the flowfield, followed by local values of water droplet collection efficiency at the impact points. Both glaze and rime ice conditions are reproduced, and comparisons with test results on icing of circular cylinders showed good agreement with the physical situation.

  16. Discussion of production logging as an integral part of horizontal-well transient-pressure test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, D.K.; Odeh, A.S.

    1994-09-01

    Ahmed and Badry discussed the identification of flow regimes for a horizontal well. The well produces from an infinitely extending slab-like reservoir of finite thickness. The system allows a top and bottom boundary. Reference 1 indicates the possible existence of two early radial-flow periods and illustrates them in Figures. Kuchuk et al., and Daviau give the theoretical basis for the existence of such flow regimes. The flow is essentially 2D and in vertical planes. The authors agree that a second early radial-flow period could exist from a strictly theoretical viewpoint. However, certain important physical constraints, which were not explicitly mentionedmore » in the above works, must be met before it can occur and for a reliable and valid analysis of the pressure data. The authors will show that the second early radial-flow regime could exist only if the well were extremely close to a no-flow boundary and they quantify extremely close. Hence, an engineer must use extreme caution in conducting pressure analysis on the basis of a second early radial-flow regime.« less

  17. Hydrodynamic interaction of two deformable drops in confined shear flow.

    PubMed

    Chen, Yongping; Wang, Chengyao

    2014-09-01

    We investigate hydrodynamic interaction between two neutrally buoyant circular drops in a confined shear flow based on a computational fluid dynamics simulation using the volume-of-fluid method. The rheological behaviors of interactive drops and the flow regimes are explored with a focus on elucidation of underlying physical mechanisms. We find that two types of drop behaviors during interaction occur, including passing-over motion and reversing motion, which are governed by the competition between the drag of passing flow and the entrainment of reversing flow in matrix fluid. With the increasing confinement, the drop behavior transits from the passing-over motion to reversing motion, because the entrainment of the reversing-flow matrix fluid turns to play the dominant role. The drag of the ambient passing flow is increased by enlarging the initial lateral separation due to the departure of the drop from the reversing flow in matrix fluid, resulting in the emergence of passing-over motion. In particular, a corresponding phase diagram is plotted to quantitatively illustrate the dependence of drop morphologies during interaction on confinement and initial lateral separation.

  18. Maximizing the physical use of the office.

    PubMed

    Levin, Roger

    2004-10-01

    When referring to the physical plant in a dental practice, I am referring mainly to the use of dental chairs, because this is where dental practice production occurs. By maximizing the use of chairs or adding the necessary number of chairs to a practice, any office can grow and experience a proper patient flow. Since most offices have significantly high rates of no-shows, last-minute cancellations and overdue patients, the potential for growth is enormous. By using the schedule and chairs properly, the office has the opportunity to maximize production, create convenient appointments for patients and significantly increase practice profitability.

  19. Measurements of the cesium flow from a surface-plasma H/sup -/ ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, H.V.; Allison, P.W.

    1979-01-01

    A surface ionization gauge (SIG) was constructed and used to measure the Cs/sup 0/ flow rate through the emission slit of a surface-plasma source (SPS) of H/sup -/ ions with Penning geometry. The equivalent cesium density in the SPS discharge is deduced from these flow measurements. For dc operation the optimum H/sup -/ current occurs at an equivalent cesium density of approx. 7 x 10/sup 12/ cm/sup -3/ (corresponding to an average cesium consumption rate of 0.5 mg/h). For pulsed operation the optimum H/sup -/ current occurs at an equivalent cesium density of approx. 2 x 10/sup 13/ cm/sup -3/more » (1-mg/h average cesium consumption rate). Cesium trapping by the SPS discharge was observed for both dc and pulsed operation. A cesium energy of approx. 0.1 eV is deduced from the observed time of flight to the SIG. In addition to providing information on the physics of the source, the SIG is a useful diagnostic tool for source startup and operation.« less

  20. Unscrambling the Omlette: a New Bubble and Crystal Clustering Mechanism in Chaotically Mixed Magma Flows

    NASA Astrophysics Data System (ADS)

    Robertson, J.; Metcalfe, G.; Wang, S.; Barnes, S. J.

    2014-12-01

    The concentration of bubbles, crystals or droplets into small volumes of magma is a key trigger for many interesting magmatic processes. For example, gas slugs driving Strombolian eruptions form from the coalesence of exsolved bubbles within a volcanic conduit, while Ni-Cu-PGE magmatic sulfide deposits require a concentration of dense sulfide droplets from a large volume of magma to form a massive ore body. However the physical mechanism for this clustering remains unresolved - especially since small particles in active magma flows are expected to mostly track flow streamlines rather than clustering. We have uncovered a previously unreported clustering mechanism which is applicable to magmatic flows. This mechanism involves the interaction of particles with two kinds of chaotic flow structure: (a) high-strain regions within the well-mixed chaotic zones of the flow, and (b) unmixed islands of stability within the chaotic flow, known as Kolmogorov-Arnold-Moser (KAM) regions. The first figure shows the difference between chaotic and KAM regions in a chaotic laminar pipe flow. Trapping occurs when particles are scattered from high-strain regions in the chaotic zones and become trapped in the KAM regions, leading to a rapid concentration of particles relative to their original distribution (shown in the second series of figures). Using a combination of these analogue experiments and theoretical analysis we outline the conditions under which this clustering process can occur. We examine the onset of secondary density-related instabilities and the effects of increased particle-particle interaction within the clustered particles, and highlight the impact of particle clustering on the dynamics of magma ascent and emplacement.

  1. Direct numerical simulation of sheared turbulent flow

    NASA Technical Reports Server (NTRS)

    Harris, Vascar G.

    1994-01-01

    The summer assignment to study sheared turbulent flow was divided into three phases which were: (1) literature survey, (2) computational familiarization, and (3) pilot computational studies. The governing equations of fluid dynamics or Navier-Stokes equations describe the velocity, pressure, and density as functions of position and time. In principle, when combined with conservation equations for mass, energy, and thermodynamic state of the fluid a determinate system could be obtained. In practice the Navier-Stokes equations have not been solved due to the nonlinear nature and complexity of these equations. Consequently, the importance of experiments in gaining insight for understanding the physics of the problem has been an ongoing process. Reasonable computer simulations of the problem have occured as the computational speed and storage of computers has evolved. The importance of the microstructure of the turbulence dictates the need for high resolution grids in extracting solutions which contain the physical mechanisms which are essential to a successful simulation. The recognized breakthrough occurred as a result of the pioneering work of Orzag and Patterson in which the Navier-Stokes equations were solved numerically utilizing a time saving toggling technique between physical and wave space, known as a spectral method. An equally analytically unsolvable problem, containing the same quasi-chaotic nature as turbulence, is known as the three body problem which was studied computationally as a first step this summer. This study was followed by computations of a two dimensional (2D) free shear layer.

  2. Ontology of physics for biology: representing physical dependencies as a basis for biological processes

    PubMed Central

    2013-01-01

    Background In prior work, we presented the Ontology of Physics for Biology (OPB) as a computational ontology for use in the annotation and representations of biophysical knowledge encoded in repositories of physics-based biosimulation models. We introduced OPB:Physical entity and OPB:Physical property classes that extend available spatiotemporal representations of physical entities and processes to explicitly represent the thermodynamics and dynamics of physiological processes. Our utilitarian, long-term aim is to develop computational tools for creating and querying formalized physiological knowledge for use by multiscale “physiome” projects such as the EU’s Virtual Physiological Human (VPH) and NIH’s Virtual Physiological Rat (VPR). Results Here we describe the OPB:Physical dependency taxonomy of classes that represent of the laws of classical physics that are the “rules” by which physical properties of physical entities change during occurrences of physical processes. For example, the fluid analog of Ohm’s law (as for electric currents) is used to describe how a blood flow rate depends on a blood pressure gradient. Hooke’s law (as in elastic deformations of springs) is used to describe how an increase in vascular volume increases blood pressure. We classify such dependencies according to the flow, transformation, and storage of thermodynamic energy that occurs during processes governed by the dependencies. Conclusions We have developed the OPB and annotation methods to represent the meaning—the biophysical semantics—of the mathematical statements of physiological analysis and the biophysical content of models and datasets. Here we describe and discuss our approach to an ontological representation of physical laws (as dependencies) and properties as encoded for the mathematical analysis of biophysical processes. PMID:24295137

  3. Predicting Change in Sediment Transport Rates in the Wake of the Cerro Grande Fire: Limitations and Potential of a Physically-based Approach

    NASA Astrophysics Data System (ADS)

    Canfield, H. E.; Wilson, C. J.; Lane, L. J.; McLin, S. G.; Earles, A.

    2001-12-01

    One of the benefits of physically based hydrologic models is that since they are based on physics, they can potentially be used to describe hydrologic response to change. On the Pajarito Plateau in New Mexico the introduction of cattle in the late 1800s, and then establishment of the Los Alamos National Laboratory in the 1940s has had a profound effect on the cover on the watersheds surrounding Los Alamos, with a proliferation of a more dense under story, on the hillsides, and more impermeable areas at the town site. Since the establishment of the Laboratory, there have been several large forest fires, most recently, the Cerro Grande Fire in May 2000. Hydrologic models suggest an eight-fold increase in the 100yr-6hr-flood peak in Los Alamos Canyon, and a corresponding three to four fold increase in sediment transport in the Canyon under post-burn conditions. However, the magnitude of the predicted scour depends strongly on what processes are allowed to occur in the model. The predicted scour is much greater if the model incorporates an observed inset channel, where modeled velocities are much greater than in the full wetted area. Furthermore, the model suggests that armoring has the potential to cut off the supply of sediment in the bed, so that scour and sediment transport are limited by the capability of the flow to transport larger particles that might otherwise armor the bed. Therefore, the magnitude of the predicted increase in sediment transport depends strongly on the ability of channels to armor as well as an a-priori understanding of how scour and deposition will occur in the canyon in response to flows much greater than the historical record. As such, reliance on model estimates of sediment transport based on the physics of flow is inadequate for assessing the effects of change and, at-best, provides only a range in the possible response to an extreme event. In this poster we examine available data on post-fire armoring rates, and observations about historical changes in channel morphology to bound the range of possible sediment transport rates for a large flow in Los Alamos Canyon.

  4. Critical Velocities in Open Capillary Flow

    NASA Technical Reports Server (NTRS)

    Dreyer, Michael; Langbein, Dieter; Rath, Hans J.

    1996-01-01

    This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.

  5. A thermodynamic equation of jamming

    NASA Astrophysics Data System (ADS)

    Lu, Kevin; Pirouz Kavehpour, H.

    2008-03-01

    Materials ranging from sand to fire-retardant to toothpaste are considered fragile, able to exhibit both solid and fluid-like properties across the jamming transition. Guided by granular flow experiments, our equation of jammed states is path-dependent, definable at different athermal equilibrium states. The non-equilibrium thermodynamics based on a structural temperature incorporate physical ageing to address the non-exponential, non-Arrhenious relaxation of granular flows. In short, jamming is simply viewed as a thermodynamic transition that occurs to preserve a positive configurational entropy above absolute zero. Without any free parameters, the proposed equation-of-state governs the mechanism of shear-banding and the associated features of shear-softening and thickness-invariance.

  6. A physics-enabled flow restoration algorithm for sparse PIV and PTV measurements

    NASA Astrophysics Data System (ADS)

    Vlasenko, Andrey; Steele, Edward C. C.; Nimmo-Smith, W. Alex M.

    2015-06-01

    The gaps and noise present in particle image velocimetry (PIV) and particle tracking velocimetry (PTV) measurements affect the accuracy of the data collected. Existing algorithms developed for the restoration of such data are only applicable to experimental measurements collected under well-prepared laboratory conditions (i.e. where the pattern of the velocity flow field is known), and the distribution, size and type of gaps and noise may be controlled by the laboratory set-up. However, in many cases, such as PIV and PTV measurements of arbitrarily turbid coastal waters, the arrangement of such conditions is not possible. When the size of gaps or the level of noise in these experimental measurements become too large, their successful restoration with existing algorithms becomes questionable. Here, we outline a new physics-enabled flow restoration algorithm (PEFRA), specially designed for the restoration of such velocity data. Implemented as a ‘black box’ algorithm, where no user-background in fluid dynamics is necessary, the physical structure of the flow in gappy or noisy data is able to be restored in accordance with its hydrodynamical basis. The use of this is not dependent on types of flow, types of gaps or noise in measurements. The algorithm will operate on any data time-series containing a sequence of velocity flow fields recorded by PIV or PTV. Tests with numerical flow fields established that this method is able to successfully restore corrupted PIV and PTV measurements with different levels of sparsity and noise. This assessment of the algorithm performance is extended with an example application to in situ submersible 3D-PTV measurements collected in the bottom boundary layer of the coastal ocean, where the naturally-occurring plankton and suspended sediments used as tracers causes an increase in the noise level that, without such denoising, will contaminate the measurements.

  7. Visualization techniques to experimentally model flow and heat transfer in turbine and aircraft flow passages

    NASA Technical Reports Server (NTRS)

    Russell, Louis M.; Hippensteele, Steven A.

    1991-01-01

    Increased attention to fuel economy and increased thrust requirements have increased the demand for higher aircraft gas turbine engine efficiency through the use of higher turbine inlet temperatures. These higher temperatures increase the importance of understanding the heat transfer patterns which occur throughout the turbine passages. It is often necessary to use a special coating or some form of cooling to maintain metal temperatures at a level which the metal can withstand for long periods of time. Effective cooling schemes can result in significant fuel savings through higher allowable turbine inlet temperatures and can increase engine life. Before proceeding with the development of any new turbine it is economically desirable to create both mathematical and experimental models to study and predict flow characteristics and temperature distributions. Some of the methods are described used to physically model heat transfer patterns, cooling schemes, and other complex flow patterns associated with turbine and aircraft passages.

  8. On the role of mean flows in Doppler shifted frequencies

    NASA Astrophysics Data System (ADS)

    Gerkema, Theo; Maas, Leo R. M.; van Haren, Hans

    2013-04-01

    In the oceanographic literature, the term 'Doppler shift' often features in the context of mean flows and (internal) waves. Closer inspection reveals that the term is in fact used for two different things, which should be carefully distinguished, for their conflation results in incorrect interpretations. One refers to the difference in frequencies measured by two observers, one at a fixed position and one moving with the mean flow. The other definition is the one used in physics, where the frequency measured by an observer is compared to that of the source. In the latter sense, Doppler shifts occur only if the source and observer move with respect to each other; a steady mean flow cannot create a Doppler shift. We rehash the classical theory to straighten out some misconceptions and discuss how wave dispersion affects the classical relations and their application, for example on near-inertial internal waves.

  9. Cavitation phenomena in mechanical heart valves: studied by using a physical impinging rod system.

    PubMed

    Lo, Chi-Wen; Chen, Sheng-Fu; Li, Chi-Pei; Lu, Po-Chien

    2010-10-01

    When studying mechanical heart valve cavitation, a physical model allows direct flow field and pressure measurements that are difficult to perform with actual valves, as well as separate testing of water hammer and squeeze flow effects. Movable rods of 5 and 10 mm diameter impinged same-sized stationary rods to simulate squeeze flow. A 24 mm piston within a tube simulated water hammer. Adding a 5 mm stationary rod within the tube generated both effects simultaneously. Charged-coupled device (CCD) laser displacement sensors, strobe lighting technique, laser Doppler velocimetry (LDV), particle image velocimetry (PIV) and high fidelity piezoelectric pressure transducers measured impact velocities, cavitation images, squeeze flow velocities, vortices, and pressure changes at impact, respectively. The movable rods created cavitation at critical impact velocities of 1.6 and 1.2 m/s; squeeze flow velocities were 2.8 and 4.64 m/s. The isolated water hammer created cavitation at 1.3 m/s piston speed. The combined piston and stationary rod created cavitation at an impact speed of 0.9 m/s and squeeze flow of 3.2 m/s. These results show squeeze flow alone caused cavitation, notably at lower impact velocity as contact area increased. Water hammer alone also caused cavitation with faster displacement. Both effects together were additive. The pressure change at the vortex center was only 150 mmHg, which cannot generate the magnitude of pressure drop required for cavitation bubble formation. Cavitation occurred at 3-5 m/s squeeze flow, significantly different from the 14 m/s derived by Bernoulli's equation; the temporal acceleration of unsteady flow requires further study.

  10. Statistical Physics Experiments Using Dusty Plasmas

    NASA Astrophysics Data System (ADS)

    Goree, John

    2016-10-01

    Compared to other areas of physics research, Statistical Physics is heavily dominated by theory, with comparatively little experiment. One reason for the lack of experiments is the impracticality of tracking of individual atoms and molecules within a substance. Thus, there is a need for a different kind of experimental system, one where individual particles not only move stochastically as they collide with one another, but also are large enough to allow tracking. A dusty plasma can meet this need. A dusty plasma is a partially ionized gas containing small particles of solid matter. These micron-size particles gain thousands of electronic charges by collecting more electrons than ions. Their motions are dominated by Coulomb collisions with neighboring particles. In this so-called strongly coupled plasma, the dust particles self-organize in much the same way as atoms in a liquid or solid. Unlike atoms, however, these particles are large and slow, so that they can be tracked easily by video microscopy. Advantages of dusty plasma for experimental statistical physics research include particle tracking, lack of frictional contact with solid surfaces, and avoidance of overdamped motion. Moreover, the motion of a collection of dust particles can mimic an equilibrium system with a Maxwellian velocity distribution, even though the dust particles themselves are not truly in thermal equilibrium. Nonequilibrium statistical physics can be studied by applying gradients, for example by imposing a shear flow. In this talk I will review some of our recent experiments with shear flow. First, we performed the first experimental test to verify the Fluctuation Theorem for a shear flow, showing that brief violations of the Second Law of Thermodynamics occur with the predicted probabilities, for a small system. Second, we discovered a skewness of a shear-stress distribution in a shear flow. This skewness is a phenomenon that likely has wide applicability in nonequilibrium steady states. Third, we performed the first experimental test of a statistical physics theory (the Green-Kubo model) that is widely used by physical chemists to compute viscosity coefficients, and we found that it fails. Work supported by the U.S. Department of Energy, NSF, and NASA.

  11. Mock Circulatory System of the Fontan Circulation to Study Respiration Effects on Venous Flow Behavior

    PubMed Central

    Vukicevic, M.; Chiulli, J.A.; Conover, T.; Pennati, G.; Hsia, T.Y.; Figliola, R.S.

    2013-01-01

    We describe an in vitro model of the Fontan circulation with respiration to study subdiaphragmatic venous flow behavior. The venous and arterial connections of a total cavopulmonary connection (TCPC) test section were coupled with a physical lumped parameter (LP) model of the circulation. Intrathoracic and subdiaphragmatic pressure changes associated with normal breathing were applied. This system was tuned for two patients (5 years, 0.67 m2; 10 years, 1.2 m2) to physiological values. System function was verified by comparison to the analytical model on which it was based and by consistency with published clinical measurements. Overall, subdiaphragmatic venous flow was influenced by respiration. Flow within the arteries and veins increased during inspiration but decreased during expiration with retrograde flow in the inferior venous territories. System pressures and flows showed close agreement with the analytical LP model (p < 0.05). The ratio of the flow rates occurring during inspiration to expiration were within the clinical range of values reported elsewhere. The approach used to setup and control the model was effective and provided reasonable comparisons with clinical data. PMID:23644612

  12. Resilience of riverbed vegetation to uprooting by flow

    NASA Astrophysics Data System (ADS)

    Perona, P.; Crouzy, B.

    2018-03-01

    Riverine ecosystem biodiversity is largely maintained by ecogeomorphic processes including vegetation renewal via uprooting and recovery times to flow disturbances. Plant roots thus heavily contribute to engineering resilience to perturbation of such ecosystems. We show that vegetation uprooting by flow occurs as a fatigue-like mechanism, which statistically requires a given exposure time to imposed riverbed flow erosion rates before the plant collapses. We formulate a physically based stochastic model for the actual plant rooting depth and the time-to-uprooting, which allows us to define plant resilience to uprooting for generic time-dependent flow erosion dynamics. This theory shows that plant resilience to uprooting depends on the time-to-uprooting and that root mechanical anchoring acts as a process memory stored within the plant-soil system. The model is validated against measured data of time-to-uprooting of Avena sativa seedlings with various root lengths under different flow conditions. This allows for assessing the natural variance of the uprooting-by-flow process and to compute the prediction entropy, which quantifies the relative importance of the deterministic and the random components affecting the process.

  13. [Shunt and short circuit].

    PubMed

    Rangel-Abundis, Alberto

    2006-01-01

    Shunt and short circuit are antonyms. In French, the term shunt has been adopted to denote the alternative pathway of blood flow. However, in French, as well as in Spanish, the word short circuit (court-circuit and cortocircuito) is synonymous with shunt, giving rise to a linguistic and scientific inconsistency. Scientific because shunt and short circuit made reference to a phenomenon that occurs in the field of the physics. Because shunt and short circuit are antonyms, it is necessary to clarify that shunt is an alternative pathway of flow from a net of high resistance to a net of low resistance, maintaining the stream. Short circuit is the interruption of the flow, because a high resistance impeaches the flood. This concept is applied to electrical and cardiovascular physiology, as well as to the metabolic pathways.

  14. Physical lumping methods for developing linear reduced models for high speed propulsion systems

    NASA Technical Reports Server (NTRS)

    Immel, S. M.; Hartley, Tom T.; Deabreu-Garcia, J. Alex

    1991-01-01

    In gasdynamic systems, information travels in one direction for supersonic flow and in both directions for subsonic flow. A shock occurs at the transition from supersonic to subsonic flow. Thus, to simulate these systems, any simulation method implemented for the quasi-one-dimensional Euler equations must have the ability to capture the shock. In this paper, a technique combining both backward and central differencing is presented. The equations are subsequently linearized about an operating point and formulated into a linear state space model. After proper implementation of the boundary conditions, the model order is reduced from 123 to less than 10 using the Schur method of balancing. Simulations comparing frequency and step response of the reduced order model and the original system models are presented.

  15. Inhaled particle deposition in unsteady-state respiratory flow at a numerically constructed model of the human larynx.

    PubMed

    Takano, Hiroshi; Nishida, Naohiro; Itoh, Masayuki; Hyo, Noboru; Majima, Yuichi

    2006-01-01

    To evaluate the clinical effectiveness of aerosol therapy for the lower and upper respiratory airways, particle deposition at the human laryngeal region has been analyzed with various unsteady-state respiratory flow-patterns. The flow profiles and trajectory of aerosol particles were calculated by 3-D thermo-fluid analysis of a finite volume method (FVM) with 8-CPUs parallel computational system. A reconstructed physical model of the real laryngeal airways was modified from 3-D CAM modeling function of Rhinoceros based on the images of Magnetic Resonance Imaging (MRI). By using 104 MRI images taken vertically and horizontally at intervals of 2 mm on the oral cavity and the pharynx-larynx respectively, 3-D physical model of the laryngeal airways was obtained. The numerical results of flow profile analyzed by the unsteady-state respiration model showed that vortex flow was occurred with time at near larynx, showing uniform flow profile in both the oral cavity and upper side of pharynx. The vortex was appeared at the anterior part of the epiglottis and downward of the vocal cord. However, it was confirmed that few particles deposit in the vocal cord. In these cases, the particle deposition was taken place mostly at the oral cavity and the oropharynx. On the other hand, the relationship between the particle deposition efficiency and the impaction in the laryngeal region was well agreement with the data sets of ICRP task group (1993) for the larynx deposition.

  16. Laser velocimetry applied to transonic and supersonic aerodynamics

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.; Bachalo, W. D.; Moddaress, D.

    1976-01-01

    As a further demonstration of the capabilities of laser velocity in compressible aerodynamics, measurements obtained in a Mach 2.9 separated turbulent boundary layer and in the transonic flow past a two-dimensional airfoil section are presented and compared to data realized by conventional techniques. In the separated-flow study, the comparisons were made against pitot-static pressure data. Agreement in mean velocities was realized where the pressure measurements could be considered reliable; however, in regions of instantaneous reverse velocities, the laser results were found to be consistent with the physics of the flow whereas the pressure data were not. The laser data obtained in regions of extremely high turbulence suggest that velocity biasing does not occur if the particle occurrence rate is low relative to the turbulent fluctuation rate. Streamwise turbulence intensities are also presented. In the transonic airfoil study, velocity measurements obtained immediately outside the upper surface boundary layer of a 6-inch chord MACA 64A010 airfoil are compared to edge velocities inferred from surface pressure measurements. For free-stream Mach numbers of 0.6 and 0.8, the agreement in results was very good. Dual scatter optical arrangements in conjunction with a single particle, counter-type signal processor were employed in these investigations. Half-micron-diameter polystyrene spheres and naturally occurring condensed oil vapor acted as light scatterers in the two respective flows. Bragg-cell frequency shifting was utilized in the separated flow study.

  17. Electro-Optical Platform for the Manipulation of Live Cells

    DTIC Science & Technology

    2002-10-02

    system, other physical forces may play a significant role. In particular, electroosmotic forces that cause fluid movement relative to a surface can...occur due to the mobility of ions in solution. Electroosmotic forces are commonly utilized in capillary electrophoretic separa- tion, where the capillary...fluid motion that acts to entrain particles to be separated.46 Thus, in the chamber presented here, the patterned anode can induce electroosmotic flow

  18. Slippery Wave Functions

    NASA Astrophysics Data System (ADS)

    Kadanoff, Leo P.

    2013-09-01

    Superfluids and superconductors show a very surprising behavior at low temperatures. As their temperature is reduced, materials of both kinds can abruptly fall into a state in which they will support a persistent, essentially immortal, flow of particles. Unlike anything in classical physics, these flows produce neither friction nor resistance. A major accomplishment of Twentieth Century physics was the development of an understanding of this very surprising behavior via the construction of partially microscopic and partially macroscopic quantum theories of superfluid helium and superconducting metals. Such theories come in two parts: a theory of the motion of particle-like excitations, called quasiparticles, and of the persistent flows itself via a huge coherent excitation, called a condensate. Two people, above all others, were responsible for the construction of the quasiparticle side of the theories of these very special low-temperature behaviors: Lev Landau and John Bardeen. Curiously enough they both partially ignored and partially downplayed the importance of the condensate. In both cases, this neglect of the actual superfluid or superconducting flow interfered with their ability to understand the implications of the theory they had created. They then had difficulty assessing the important advances that occurred immediately after their own great work. Some speculations are offered about the source of this unevenness in the judgments of these two leading scientists.

  19. Effects of gravity on sheared and nonsheared turbulent nonpremixed flames

    NASA Technical Reports Server (NTRS)

    Elghobashi, Said; Lee, Yong-Yao; Zhong, Rongbin

    1995-01-01

    The present numerical study is concerned with the fundamental physics of the multiway interaction between turbulence, chemical reaction, and buoyancy in a nonpremixed flame. The method of direct numerical simulation (DNS) is used to solve the instantaneous, three-dimensional governing equations. Because of the present supercomputer limitations, we consider two simple flow geometries, namely an initially uniform flow without shear (equivalent to grid-generated turbulence) and an initially uniform shear flow. In each flow, the fuel and oxidant initially exist as two separate streams. As the reactants mix, chemical reaction takes place and exothermic energy is released causing variations in density. In the presence of a gravity field, the spatial and temporal distributions of the induced buoyancy forces depend on the local density gradients and the direction of the gravitational acceleration. The effects of buoyancy include the generation of local shear, baroclinic production or destruction of vorticity, and countergradient heat and mass transport. Increased vorticity and small-scale turbulence promote further mixing and reaction. However, if the strain-rates become too high, local flame extinction can occur. Our objective is to gain an understanding of the complex interactions between the physical phenomena involved, with particular attention to the effects of buoyancy on the turbulence structure, flame behavior, and factors influencing flame extinction.

  20. The stability of two-phase flow over a swept-wing

    NASA Technical Reports Server (NTRS)

    Coward, Adrian; Hall, Philip

    1994-01-01

    We use numerical and asymptotic techniques to study the stability of a two-phase air/water flow above a flat porous plate. This flow is a model of the boundary layer which forms on a yawed cylinder and can be used as a useful approximation to the air flow over swept wings during heavy rainfall. We show that the interface between the water and air layers can significantly destabilize the flow, leading to traveling wave disturbances which move along the attachment line. This instability occurs for lower Reynolds numbers than in the case of the absence of a water layer. We also investigate the instability of inviscid stationary modes. We calculate the effective wavenumber and orientation of the stationary disturbance when the fluids have identical physical properties. Using perturbation methods we obtain corrections due to a small stratification in viscosity, thus quantifying the interfacial effects. Our analytical results are in agreement with the numerical solution which we obtain for arbitrary fluid properties.

  1. A regional test of global models for flow, rheology, and seismic anisotropy at the base of the mantle

    NASA Astrophysics Data System (ADS)

    Ford, Heather A.; Long, Maureen D.

    2015-08-01

    The study of flow patterns and seismic anisotropy in the lowermost mantle is fraught with uncertainties, given the limitations in our understanding of the physical properties of the lowermost mantle and the relationships between deformation and anisotropy. Here we use a set of SKS, SKKS, and ScS splitting measurements that sample the eastern edge of the African Large Low Shear Velocity Province to test predictions of seismic anisotropy derived from previously published 3D global mantle flow models and anisotropy modeling (Walker et al., 2011). The observations can be fit by a model that invokes flow directed to the southwest with a component of downwelling in our study region, and slip that occurs along the (0 1 0) plane of post-perovskite. Most importantly, we demonstrate the ability of a regional shear wave splitting data set to test the robustness of models for flow and deformation in the lowermost mantle.

  2. Potential Flow Model for Compressible Stratified Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Rydquist, Grant; Reckinger, Scott; Owkes, Mark; Wieland, Scott

    2017-11-01

    The Rayleigh-Taylor Instability (RTI) is an instability that occurs when a heavy fluid lies on top of a lighter fluid in a gravitational field, or a gravity-like acceleration. It occurs in many fluid flows of a highly compressive nature. In this study potential flow analysis (PFA) is used to model the early stages of RTI growth for compressible fluids. In the localized region near the bubble tip, the effects of vorticity are negligible, so PFA is applicable, as opposed to later stages where the induced velocity due to vortices generated from the growth of the instability dominate the flow. The incompressible PFA is extended for compressibility effects by applying the growth rate and the associated perturbation spatial decay from compressible linear stability theory. The PFA model predicts theoretical values for a bubble terminal velocity for single-mode compressible RTI, dependent upon the Atwood (A) and Mach (M) numbers, which is a parameter that measures both the strength of the stratification and intrinsic compressibility. The theoretical bubble terminal velocities are compared against numerical simulations. The PFA model correctly predicts the M dependence at high A, but the model must be further extended to include additional physics to capture the behavior at low A. Undergraduate Scholars Program - Montana State University.

  3. Computerized X-ray Microtomography Observations and Fluid Flow Measurements of the Effect of Effective Stress on Fractured Reservoir Seal Shale

    NASA Astrophysics Data System (ADS)

    Welch, N.; Crawshaw, J.; Boek, E.

    2014-12-01

    The successful storage of carbon dioxide in geologic formations requires an in-depth understanding of all reservoir characteristics and morphologies. An intact and substantial seal formation above a storage reservoir is required for a significant portion of the initial sealing mechanisms believed to occur during carbon dioxide storage operations. Shales are a common seal formation rock types found above numerous hydrocarbon reservoirs, as well as potential saline aquifer storage locations. Shales commonly have very low permeability, however they also have the tendency to be quite fissile, and the formation of fractures within these seals can have a significant detrimental effect on the sealing potential of a reservoir and amount to large areas of high permeability and low capillary pressures compared to the surrounding intact rock. Fractured shales also have an increased current interest due to the increasing development of shale gas reservoirs using hydraulic fracturing techniques. This work shows the observed changes that occur within fractured pieces of reservoir seal shale samples, along with quarry analogues, using an in-situ micro-CT fluid flow imaging apparatus with a Hassler type core holder. Changes within the preferential flow path under different stress regimes as well as physical changes to the fracture geometry are reported. Lattice Boltzmann flow simulations were then performed on the extracted flow paths and compared to experiment permeability measurements. The preferential flow path of carbon dioxide through the fracture network is also observed and compared to the results two-phase Lattice Boltzmann fluid flow simulations.

  4. Groundwater-Surface Water Interaction: A Case Study of Embankment Dam Safety Assessment in Sweden.

    NASA Astrophysics Data System (ADS)

    Ferdos, F.; Dargahi, B.

    2015-12-01

    Seepage, when excessive and unimpeded, can cause embankment dam failure. Such failures are often initiated by internal erosion and piping. Modelling these phenomena in embankment dams, accounting for the groundwater-surface water interactions, is crucial when performing dam safety assessments. The aim of this study was to evaluate the applicability of modelling seepage flows in multi-region dams using a finite element based multi-physics model. The model was applied to the Trängslet dam, the largest dam in Sweden. The objectives were to analyze the characteristics of both the flow and the surface-ground water interactions occurring in the dam, including: i) the saturated and unsaturated laminar flow regimes within the dam body, ii) the non-linear through-flow in the dam shoulders' coarse material, iii) the influence of the surface waves in the reservoir on the seepage flow by coupling the physics to a hydrodynamic interface, and iv) the influence of a conceptual "erosion tunnel" on the seepage flow and its interaction with the surface water flow by coupling the physics to a CFD interface. The focus of the study was on the influence of the transient water head boundary condition, surface waves and the internal erosion tunnel on the location of the phreatic line and the seepage flow rate. The simulated seepage flow of the dam in its original condition tallied with the monitoring measurements (40-70 l/s). The main feature found was the relatively high position of the phreatic line, which could compromise the stability of the dam. The combination of the seepage model with the reservoir hydrodynamics indicated a negligible influence of the surface waves on seepage flow. Results from the combination of the seepage model with fluid dynamics indicated that a conceptual "erosion tunnel" placed within the dam, even as high as in the unsaturated zone, significantly affects the phreatic line's position. This also causes the seepage flow to increase by several orders of magnitude, resulting in non-linear turbulent flow regimes in the downstream shoulder of the dam and, ultimately, dam failure. While the modelling was limited by a lack of reliable geometrical and geotechnical data, the results of the study do highlight the importance of including groundwater-surface water interactions in dam safety assessments.

  5. Experimental Investigation of a Model of a Two-Stage Turboblower

    NASA Technical Reports Server (NTRS)

    Dovjik, s.; Polikovsky, W.

    1943-01-01

    In the present paper an investigation is made of two stages of a multistage turboblower having a vaneless diffuser behind the impeller and guide vanes at the inlet to the nest stage. The method employed was that of investigating the performance of the successive elements of the blower (the impeller, vaneless diffuser, ets.) whereby the kinematics of the flow through the blower could be followed and the pressure at the different points computed. The character of the flow and the physical significance of the loss coefficients could thereby be determined so as to secure the best agreement of the computed with the actual performance of the blower. Since the tests were carried out for various delivery volumes, the dependence of the coefficients on a number of factors (angle of attack, velocities, etc.) could be obtained. The distribution of the losses that occur during the transformation of dynamic pressure at the impeller exit into static pressure could be found and likewise the range within which the friction coefficient varies in the vaneless diffuser. With the aid of factors having a certain physical significance, the centrifugal blower could be computed on the basis of a more or less schematical consideration of the phenomena occuring during the air flow through it, and the use of arbitrary factors and recourse to the geometrical similtude law thus avoided. The present investigation largely summarizes all the previous work af the CHI Blower Section on the different elements of a centrifugal blower. Some considerations on the analysis of model test data for application to full-scale are presented in the appendix.

  6. Building and Characterizing Volcanic Landscapes with a Numerical Landscape Evolution Model and Spectral Techniques

    NASA Astrophysics Data System (ADS)

    Richardson, P. W.; Karlstrom, L.

    2016-12-01

    The competition between constructional volcanic processes such as lava flows, cinder cones, and tumuli compete with physical and chemical erosional processes to control the morphology of mafic volcanic landscapes. If volcanic effusion rates are high, these landscapes are primarily constructional, but over the timescales associated with hot spot volcanism (1-10 Myr) and arcs (10-50 Myr), chemical and physical erosional processes are important. For fluvial incision to occur, initially high infiltration rates must be overcome by chemical weathering or input of fine-grained sediment. We investigate lava flow resurfacing, using a new lava flow algorithm that can be calibrated for specific flows and eruption magnitude/frequency relationships, into a landscape evolution model to complete two modeling experiments to investigate the interplay between volcanic resurfacing and fluvial incision. We use a stochastic spatial vent distribution calibrated from the Hawaiian eruption record to resurface a synthetically produced ocean island. In one experiment, we investigate the consequences of including time-dependent channel incision efficiency. This effectively mimics the behavior of transient hydrological development of lava flows. In the second experiment, we explore the competition between channel incision and lava flow resurfacing. The relative magnitudes of channel incision versus lava flow resurfacing are captured in landscape topography. For example, during the shield building period for ocean islands, effusion rates are high and the signature of lava flow resurfacing dominates. In contrast, after the shield building phase, channel incision begins and eventually dominates the topographic signature. We develop a dimensionless ratio of resurfacing rate to erosion rate to characterize the transition between these processes. We use spectral techniques to characterize volcanic features and to pinpoint the transition between constructional and erosional morphology on modeled landscapes and on the Big Island of Hawaii.

  7. Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube

    NASA Astrophysics Data System (ADS)

    Zhou, Guangzhao; Xu, Kun; Liu, Feng

    2018-01-01

    The flow in a shock tube is extremely complex with dynamic multi-scale structures of sharp fronts, flow separation, and vortices due to the interaction of the shock wave, the contact surface, and the boundary layer over the side wall of the tube. Prediction and understanding of the complex fluid dynamics are of theoretical and practical importance. It is also an extremely challenging problem for numerical simulation, especially at relatively high Reynolds numbers. Daru and Tenaud ["Evaluation of TVD high resolution schemes for unsteady viscous shocked flows," Comput. Fluids 30, 89-113 (2001)] proposed a two-dimensional model problem as a numerical test case for high-resolution schemes to simulate the flow field in a square closed shock tube. Though many researchers attempted this problem using a variety of computational methods, there is not yet an agreed-upon grid-converged solution of the problem at the Reynolds number of 1000. This paper presents a rigorous grid-convergence study and the resulting grid-converged solutions for this problem by using a newly developed, efficient, and high-order gas-kinetic scheme. Critical data extracted from the converged solutions are documented as benchmark data. The complex fluid dynamics of the flow at Re = 1000 are discussed and analyzed in detail. Major phenomena revealed by the numerical computations include the downward concentration of the fluid through the curved shock, the formation of the vortices, the mechanism of the shock wave bifurcation, the structure of the jet along the bottom wall, and the Kelvin-Helmholtz instability near the contact surface. Presentation and analysis of those flow processes provide important physical insight into the complex flow physics occurring in a shock tube.

  8. Transport in Physical Space: The Example of Pedestrians, Cars, and Molecular Motors

    NASA Astrophysics Data System (ADS)

    Appert-Rolland, Cécile; Klein, Sarah; Ebbinghaus, Maximilian; Santen, Ludger

    Transport systems in physical space exhibit various phenomena which may have some counterparts in socio- or econo-systems. We review here several of them. In highway vehicular traffic, the introduction of a reaction time leads to metastability and hysteresis. Pattern formation occurs in pedestrian flows. At a microscopic scale, we can learn from molecular pedestrians that transporting an object by opposite teams can be more efficient in a crowded environment and allow for an easy control of the system. Besides, we will show that the interplay between transport and the dynamics of the underlying network can sometimes lead to positive effects in terms of efficiency of transport.

  9. Effect of turbulent flow on an atmospheric-pressure AC powered gliding arc discharge

    NASA Astrophysics Data System (ADS)

    Kong, Chengdong; Gao, Jinlong; Zhu, Jiajian; Ehn, Andreas; Aldén, Marcus; Li, Zhongshan

    2018-06-01

    A high-power gliding arc (GA) discharge was generated in a turbulent air flow driven by a 35 kHz alternating current electric power supply. The effects of the flow rate on the characteristics of the GA discharge were investigated using combined optical and electrical diagnostics. Phenomenologically, the GA discharge exhibits two types of discharge, i.e., glow type and spark type, depending on the flow rates and input powers. The glow-type discharge, which has peak currents of hundreds of milliamperes, is sustained at low flow rates. The spark-type discharge, which is characterized by a sharp current spike of several amperes with duration of less than 1 μs, occurs more frequently as the flow rate increases. Higher input power can suppress spark-type discharges in moderate turbulence, but this effect becomes weak under high turbulent conditions. Physically, the transition between glow- and spark-type is initiated by the short cutting events and the local re-ignition events. Short cutting events occur owing to the twisting, wrinkling, and stretching of the plasma columns that are governed by the relatively large vortexes in the flow. Local re-ignition events, which are defined as re-ignition along plasma columns, are detected in strong turbulence due to increment of the impedance of the plasma column and consequently the internal electric field strength. It is suggested that the vortexes with length scales smaller than the size of the plasma can penetrate into the plasma column and promote mixing with surroundings to accelerate the energy dissipation. Therefore, the turbulent flow influences the GA discharges by ruling the short cutting events with relatively large vortexes and the local re-ignition events with small vortexes.

  10. Combustion research for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Claus, R. W.

    1985-01-01

    Research on combustion is being conducted at Lewis Research Center to provide improved analytical models of the complex flow and chemical reaction processes which occur in the combustor of gas turbine engines and other aeropropulsion systems. The objective of the research is to obtain a better understanding of the various physical processes that occur in the gas turbine combustor in order to develop models and numerical codes which can accurately describe these processes. Activities include in-house research projects, university grants, and industry contracts and are classified under the subject areas of advanced numerics, fuel sprays, fluid mixing, and radiation-chemistry. Results are high-lighted from several projects.

  11. Macro- and microscale variables regulate stent haemodynamics, fibrin deposition and thrombomodulin expression

    PubMed Central

    Jiménez, Juan M.; Prasad, Varesh; Yu, Michael D.; Kampmeyer, Christopher P.; Kaakour, Abdul-Hadi; Wang, Pei-Jiang; Maloney, Sean F.; Wright, Nathan; Johnston, Ian; Jiang, Yi-Zhou; Davies, Peter F.

    2014-01-01

    Drug eluting stents are associated with late stent thrombosis (LST), delayed healing and prolonged exposure of stent struts to blood flow. Using macroscale disturbed and undisturbed fluid flow waveforms, we numerically and experimentally determined the effects of microscale model strut geometries upon the generation of prothrombotic conditions that are mediated by flow perturbations. Rectangular cross-sectional stent strut geometries of varying heights and corresponding streamlined versions were studied in the presence of disturbed and undisturbed bulk fluid flow. Numerical simulations and particle flow visualization experiments demonstrated that the interaction of bulk fluid flow and stent struts regulated the generation, size and dynamics of the peristrut flow recirculation zones. In the absence of endothelial cells, deposition of thrombin-generated fibrin occurred primarily in the recirculation zones. When endothelium was present, peristrut expression of anticoagulant thrombomodulin (TM) was dependent on strut height and geometry. Thinner and streamlined strut geometries reduced peristrut flow recirculation zones decreasing prothrombotic fibrin deposition and increasing endothelial anticoagulant TM expression. The studies define physical and functional consequences of macro- and microscale variables that relate to thrombogenicity associated with the most current stent designs, and particularly to LST. PMID:24554575

  12. Flow of Red Blood Cells in Stenosed Microvessels.

    PubMed

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-20

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  13. Flow of Red Blood Cells in Stenosed Microvessels

    NASA Astrophysics Data System (ADS)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  14. Atomic-scale thermocapillary flow in focused ion beam milling

    NASA Astrophysics Data System (ADS)

    Das, Kallol; Johnson, Harley; Freund, Jonathan

    2016-11-01

    Focused ion beams (FIB) offer an attractive tool for nanometer-scale manufacturing and material processing, particularly because they can be focused to a few nanometer diameter spot. This motivates their use for many applications, such as sample preparation for transmission electron microscopy (TEM), forming nanometer scale pores in thin films for DNA sequencing. Despite its widespread use, the specific mechanisms of FIB milling, especially at high ion fluxes for which significant phase change might occur, remains incompletely understood. Here we investigate the process of nanopore fabrication in thin Si films using molecular dynamics simulation where Ga+ ions are used as the focused ions. For a range of ion intensities in a realistic configuration, a recirculating melt region develops, which is seen to flow with a symmetrical pattern, counter to how it would flow were it is driven by the ion momentum flux. Such flow is potentially important for the shape and composition of the formed structures. Relevant stress scales and estimated physical properties of silicon under these extreme conditions support the importance thermocapillary effects. A continuum flow model with Marangoni forcing reproduces the flow.

  15. Dynamics of differentiation in magma reservoirs

    NASA Astrophysics Data System (ADS)

    Jaupart, Claude; Tait, Stephen

    1995-09-01

    In large magma chambers, gradients of temperature and composition develop due to cooling and to fractional crystallization. Unstable density differences lead to differential motions between melt and crystals, and a major goal is to explain how this might result in chemical differentiation of magma. Arriving at a full description of the physics of crystallizing magma chambers is a challenge because of the large number of processes potentially involved, the many coupled variables, and the different geometrical shapes. Furthermore, perturbations are caused by the reinjection of melt from a deep source, eruption to the Earth's surface, and the assimilation of country rock. Physical models of increasing complexity have been developed with emphasis on three fundamental approaches. One is, given that large gradients in temperature and composition may occur, to specify how to apply thermodynamic constraints so that coexisting liquid and solid compositions may be calculated. The second is to leave the differentiation trend as the solution to be found, i.e., to specify how cooling occurs and to predict the evolution of the composition of the residual liquid and of the solid forming. The third is to simplify the physics so that the effects of coupled heat and mass transfer may be studied with a reduced set of variables. The complex shapes of magma chambers imply that boundary layers develop with density gradients at various angles to gravity, leading to various convective flows and profiles qf liquid stratification. Early studies were mainly concerned with describing fluid flow in the liquid interior of large reservoirs, due to gradients developed at the margins. More recent work has focused on the internal structure and flow field of boundary layers and in particular on the gradients of solid fraction and interstitial melt composition which develop within them. Crystal settling may occur in a surprisingly diverse range of regimes and may lead to intermittent deposition events even with small crystal concentrations. Incorporating thermodynamic constraints in the study of the dynamics of settling has only just begun. Many dynamical phenomena have been found using theoretical arguments, laboratory experiments on analog systems, and numerical calculations on simplified chemical systems. However, they have seldom been applied to natural silicate melts whose phase diagrams and important physical properties such as thermal conductivity and chemical diffusion coefficients remain poorly known. There is a gap between model predictions and observations, as many models are designed to explain large-scale features and many observations deal with the local texture and mineral assemblages of the rocks. This review stresses the relevance to the geological problem of the work carried out in parallel in other disciplines, such as physics, fluid dynamics, and metallurgy.

  16. Spatial variability of sediment transport processes over intra‐ and subtidal timescales within a fringing coral reef system

    USGS Publications Warehouse

    Pomeroy, Andrew; Lowe, Ryan J.; Ghisalberti, Marco; Winter, Gundula; Storlazzi, Curt D.; Cuttler, Michael V. W.

    2018-01-01

    Sediment produced on fringing coral reefs that is transported along the bed or in suspension affects ecological reef communities as well as the morphological development of the reef, lagoon, and adjacent shoreline. This study quantified the physical process contribution and relative importance of incident waves, infragravity waves, and mean currents to the spatial and temporal variability of sediment in suspension. Estimates of bed shear stresses demonstrate that incident waves are the key driver of the SSC variability spatially (reef flat, lagoon, and channels) but cannot not fully describe the SSC variability alone. The comparatively small but statistically significant contribution to the bed shear stress by infragravity waves and currents, along with the spatial availability of sediment of a suitable size and volume, is also important. Although intra‐tidal variability in SSC occurs in the different reef zones, the majority of the variability occurs over longer slowly varying (subtidal) time scales, which is related to the arrival of large incident waves at a reef location. The predominant flow pathway, which can transport suspended sediment, consists of cross‐reef flow across the reef flat that diverges in the lagoon and returns offshore through channels. This pathway is primarily due to subtidal variations in wave‐driven flows, but can also be driven alongshore by wind stresses when the incident waves are small. Higher frequency (intra‐tidal) current variability also occur due to both tidal flows, as well as variations in the water depth that influence wave transmission across the reef and wave‐driven currents.

  17. Unsteady Phenomena During Operation of the SSME Fuel Flowmeter

    NASA Technical Reports Server (NTRS)

    Marcu, Bogdan; McCool, A. (Technical Monitor)

    2000-01-01

    This report describes a part of the analysis carried in support of the SSME (Space Shuttle Main Engine) Fuel Flowmeter redesign, addressing an intensely researched phenomenon known as "shifting" of the flowmeter constant value. It consists of a sudden change in the flowmeter indication, which occurs simultaneously with the onset of an oscillatory variation of the rotor speed. The change in the flowmeter indications does not correspond to a real change in the volumetric flow through the device. Several causes have been investigated in detail, in the past, without conclusive evidence towards a cause of this phenomenon. The present analysis addresses the flow physics through the flowmeter by assembling results from 3-D CFD (computational fluid dynamics) calculations, airfoil C(sub D)/C(sub L) performance curves and mass moment of inertia characteristics of the rotor into a synergistic calculation which simulates the unsteady regime of the flowmeter operation. The results show that the 4-bladed rotor interacts with the periodic flow pattern created behind the flow straightener upstream in a manner that generates a steady, periodic fluctuation in the rotor's speed. The amplitude of this fluctuation is significantly smaller than the 0.5% of mean speed threshold which constitutes a flight operational limit. When manufacturing errors occur, however, the fluctuations are amplified and can generate a significant apparent change in the flowmeter indication. Two types of possible fabrication errors-which can occur even for parts fabricated within the accepted tolerances for the blade airfoil-are presented, together with their effect on the flowmeter operation.

  18. The role of bio-physical cohesive substrates on sediment winnowing and bedform development

    NASA Astrophysics Data System (ADS)

    Ye, Leiping; Parsons, Daniel; Manning, Andrew

    2017-04-01

    Existing sediment transport and bedform size predictions for natural open-channel flows in many environments are seriously impeded by a lack of process-based knowledge concerning the dynamics of complex bed sediment mixtures comprising cohesionless sand and biologically-active cohesive muds. A series of flume experiments (14 experimental runs) with different substrate mixtures of sand-clay-EPS (Extracellular Polymeric Substance) are combined with a detailed estuarine field survey (Dee estuary, NW England) to investigate the development of bedform morphologies and characteristics of suspended sediment over bio-physical cohesive substrates. The experimental results indicate that winnowing and sediment sorting can occur pervasively in bio-physical cohesive sediment - flow systems. Importantly however, the evolution of the bed and bedform dynamics, and hence turbulence production, is significantly reduced as bed substrate cohesivity increases. The estuarine subtidal zone survey also revealed that the bio-physical cohesion provided by both the clay and microorganism fractions in the bed plays a significant role in controlling the interactions between bed substrate and sediment suspension, deposition and bedform generation. The work will be presented here concludes by outlining the need to extend and revisit the effects of cohesivity in morphodynamic systems and the sets of parameters presently used in numerical modelling, particularly in the context of the impact of climate change on estuarine and coastal systems.

  19. Instability of a Supersonic Boundary-Layer with Localized Roughness

    NASA Technical Reports Server (NTRS)

    Marxen, Olaf; Iaccarino, Gianluca; Shaqfeh, Eric S. G.

    2010-01-01

    A localized 3-D roughness causes boundary-layer separation and (weak) shocks. Most importantly, streamwise vortices occur which induce streamwise (low U, high T) streaks. Immersed boundary method (volume force) suitable to represent roughness element in DNS. Favorable comparison between bi-global stability theory and DNS for a "y-mode" Outlook: Understand the flow physics (investigate "z-modes" in DNS through sinuous spanwise forcing, study origin of the beat in DNS).

  20. Bio-Physical Coupling of Seabirds and Prey with a Dynamic River Plume

    NASA Astrophysics Data System (ADS)

    Phillips, E. M.; Horne, J. K.; Zamon, J. E.; Adams, J.

    2016-02-01

    Freshwater plumes and plume density fronts are important regions of bio-physical coupling. On the west coast of North America, discharge from the Columbia River into the northern California Current creates a large, dynamic plume and multiple plume fronts. These nutrient-rich, productive waters fuel primary and secondary production, supporting a wide variety of small pelagic prey fish, large populations of Pacific salmon, seabirds, and marine mammals. To determine the influence of the Columbia River plume on marine predators, we analyzed at-sea seabird counts, in situ environmental data, surface trawl densities of prey fish, and acoustic backscatter measurements collected from research vessels in May and June 2010-2012. Concurrent distribution patterns of satellite-tagged sooty shearwaters (Puffinus griseus) and common murres (Uria aalge) were compared with seabird counts from ship surveys. To evaluate plume use by satellite-tagged birds, daily surface salinity values from SELFE hindcast models were extracted at each tag location. Both seabird species occurred in plume waters disproportionate to the total surveyed area, concentrating in the river plume when river flow and plume volume decreased. Murres were consistently within 20 km of the geographic mean center of the river plume. In contrast, shearwaters consistently occurred 100 km to the north of the plume center, where high densities of prey fish occur. Although acoustically detected prey also occurred in greater densities within the plume when volume decreased, surface catches of prey in the plume did not vary with changing plume conditions. Geographic indices of colocation (GIC) were low between murres and prey species caught in surface trawls, whereas GICs were >0.5 between shearwaters and prey species including squid (Loligo opalescens), juvenile Chinook salmon (Oncorhynchus tshawytscha), and coho (O. kisutch) salmon. We conclude that the river plume and associated fronts are identifiable, predictable, and persistent physical features that foraging seabirds track to maximize prey encounter rates. Given projected changes in flow regimes related to climate change, our results suggest that seabird use of the river plume may have significant impacts on anadromous salmonid species, which use the plume to migrate to the ocean.

  1. CFD methodology and validation for turbomachinery flows

    NASA Astrophysics Data System (ADS)

    Hirsch, Ch.

    1994-05-01

    The essential problem today, in the application of 3D Navier-Stokes simulations to the design and analysis of turbomachinery components, is the validation of the numerical approximation and of the physical models, in particular the turbulence modelling. Although most of the complex 3D flow phenomena occurring in turbomachinery bladings can be captured with relatively coarse meshes, many detailed flow features are dependent on mesh size, on the turbulence and transition models. A brief review of the present state of the art of CFD methodology is given with emphasis on quality and accuracy of numerical approximations related to viscous flow computations. Considerations related to the mesh influence on solution accuracy are stressed. The basic problems of turbulence and transition modelling are discussed next, with a short summary of the main turbulence models and their applications to representative turbomachinery flows. Validations of present turbulence models indicate that none of the available turbulence models is able to predict all the detailed flow behavior in complex flow interactions. In order to identify the phenomena that can be captured on coarser meshes a detailed understanding of the complex 3D flow in compressor and turbines is necessary. Examples of global validations for different flow configurations, representative of compressor and turbine aerodynamics are presented, including secondary and tip clearance flows.

  2. Bias in groundwater samples caused by wellbore flow

    USGS Publications Warehouse

    Reilly, Thomas E.; Franke, O. Lehn; Bennett, Gordon D.

    1989-01-01

    Proper design of physical installations and sampling procedures for groundwater monitoring networks is critical for the detection and analysis of possible contaminants. Monitoring networks associated with known contaminant sources sometimes include an array of monitoring wells with long well screens. The purpose of this paper is: (a) to report the results of a numerical experiment indicating that significant borehole flow can occur within long well screens installed in homogeneous aquifers with very small head differences in the aquifer (less than 0.01 feet between the top and bottom of the screen); (b) to demonstrate that contaminant monitoring wells with long screens may completely fail to fulfill their purpose in many groundwater environments.

  3. Shock wave/turbulent boundary layer interaction in the flow field of a tri-dimension wind tunnel

    NASA Technical Reports Server (NTRS)

    Benay, R.; Pot, T.

    1986-01-01

    The first results of a thorough experimental analysis of a strong three-dimensional shock-wave/turbulent boundary-layer interaction occurring in a three dimensional transonic channel are presented. The aim of this experiment is to help in the physical understanding of a complex field, including several separations, and to provide a well documented case to test computational methods. The flowfield has been probed in many points by means of a three-component laser Doppler velocimeter. The results presented relate only to the mean velocity field. They clearly show the formation in the flow of a strong vortical motion resulting from the shock wave interaction.

  4. The Compressibility Burble

    NASA Technical Reports Server (NTRS)

    Stack, John

    1935-01-01

    Simultaneous air-flow photographs and pressure-distribution measurements have been made of the NACA 4412 airfoil at high speeds in order to determine the physical nature of the compressibility burble. The flow photographs were obtained by the Schlieren method and the pressures were simultaneously measured for 54 stations on the 5-inch-chord wing by means of a multiple-tube photographic manometer. Pressure-measurement results and typical Schlieren photographs are presented. The general nature of the phenomenon called the "compressibility burble" is shown by these experiments. The source of the increased drag is the compression shock that occurs, the excess drag being due to the conversion of a considerable amount of the air-stream kinetic energy into heat at the compression shock.

  5. Semipermeable Hollow Fiber Phantoms for Development and Validation of Perfusion-Sensitive MR Methods and Signal Models

    PubMed Central

    Anderson, J.R.; Ackerman, J.J.H.; Garbow, J.R.

    2015-01-01

    Two semipermeable, hollow fiber phantoms for the validation of perfusion-sensitive magnetic resonance methods and signal models are described. Semipermeable hollow fibers harvested from a standard commercial hemodialysis cartridge serve to mimic tissue capillary function. Flow of aqueous media through the fiber lumen is achieved with a laboratory-grade peristaltic pump. Diffusion of water and solute species (e.g., Gd-based contrast agent) occurs across the fiber wall, allowing exchange between the lumen and the extralumenal space. Phantom design attributes include: i) small physical size, ii) easy and low-cost construction, iii) definable compartment volumes, and iv) experimental control over media content and flow rate. PMID:26167136

  6. A Massively Parallel Particle Code for Rarefied Ionized and Neutral Gas Flows in Earth and Planetary Atmospheres, Ionospheres and Magnetospheres

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    2004-01-01

    In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important.

  7. Multiscale computational modeling of a radiantly driven solar thermal collector

    NASA Astrophysics Data System (ADS)

    Ponnuru, Koushik

    The objectives of the master's thesis are to present, discuss and apply sequential multiscale modeling that combines analytical, numerical (finite element-based) and computational fluid dynamic (CFD) analysis to assist in the development of a radiantly driven macroscale solar thermal collector for energy harvesting. The solar thermal collector is a novel green energy system that converts solar energy to heat and utilizes dry air as a working heat transfer fluid (HTF). This energy system has important advantages over competitive technologies: it is self-contained (no energy sources are needed), there are no moving parts, no oil or supplementary fluids are needed and it is environmentally friendly since it is powered by solar radiation. This work focuses on the development of multi-physics and multiscale models for predicting the performance of the solar thermal collector. Model construction and validation is organized around three distinct and complementary levels. The first level involves an analytical analysis of the thermal transpiration phenomenon and models for predicting the associated mass flow pumping that occurs in an aerogel membrane in the presence of a large thermal gradient. Within the aerogel, a combination of convection, conduction and radiation occurs simultaneously in a domain where the pore size is comparable to the mean free path of the gas molecules. CFD modeling of thermal transpiration is not possible because all the available commercial CFD codes solve the Navier Stokes equations only for continuum flow, which is based on the assumption that the net molecular mass diffusion is zero. However, thermal transpiration occurs in a flow regime where a non-zero net molecular mass diffusion exists. Thus these effects are modeled by using Sharipov's [2] analytical expression for gas flow characterized by high Knudsen number. The second level uses a detailed CFD model solving Navier Stokes equations for momentum, heat and mass transfer in the various components of the device. We have used state-of-the-art computational fluid dynamics (CFD) software, Flow3D (www.flow3d.com) to model the effects of multiple coupled physical processes including buoyancy driven flow from local temperature differences within the plenums, fluid-solid momentum and heat transfer, and coupled radiation exchange between the aerogel, top glazing and environment. In addition, the CFD models include both convection and radiation exchange between the top glazing and the environment. Transient and steady-state thermal models have been constructed using COMSOL Multiphysics. The third level consists of a lumped-element system model, which enables rapid parametric analysis and helps to develop an understanding of the system behavior; the mathematical models developed and multiple CFD simulations studies focus on simultaneous solution of heat, momentum, mass and gas volume fraction balances and succeed in accurate state variable distributions confirmed by experimental measurements.

  8. A wetting and drying scheme for ROMS

    USGS Publications Warehouse

    Warner, John C.; Defne, Zafer; Haas, Kevin; Arango, Hernan G.

    2013-01-01

    The processes of wetting and drying have many important physical and biological impacts on shallow water systems. Inundation and dewatering effects on coastal mud flats and beaches occur on various time scales ranging from storm surge, periodic rise and fall of the tide, to infragravity wave motions. To correctly simulate these physical processes with a numerical model requires the capability of the computational cells to become inundated and dewatered. In this paper, we describe a method for wetting and drying based on an approach consistent with a cell-face blocking algorithm. The method allows water to always flow into any cell, but prevents outflow from a cell when the total depth in that cell is less than a user defined critical value. We describe the method, the implementation into the three-dimensional Regional Oceanographic Modeling System (ROMS), and exhibit the new capability under three scenarios: an analytical expression for shallow water flows, a dam break test case, and a realistic application to part of a wetland area along the Georgia Coast, USA.

  9. Development of soft-sphere contact models for thermal heat conduction in granular flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, A. B.; Pannala, S.; Ma, Z.

    2016-06-08

    Conductive heat transfer to flowing particles occurs when two particles (or a particle and wall) come into contact. The direct conduction between the two bodies depends on the collision dynamics, namely the size of the contact area and the duration of contact. For soft-sphere discrete-particle simulations, it is computationally expensive to resolve the true collision time because doing so would require a restrictively small numerical time step. To improve the computational speed, it is common to increase the 'softness' of the material to artificially increase the collision time, but doing so affects the heat transfer. In this work, two physically-basedmore » correction terms are derived to compensate for the increased contact area and time stemming from artificial particle softening. By including both correction terms, the impact that artificial softening has on the conductive heat transfer is removed, thus enabling simulations at greatly reduced computational times without sacrificing physical accuracy.« less

  10. Evidence of water degassing during emplacement and crystallization of 2.7 Ga komatiites from the Agnew-Wiluna greenstone belt, Western Australia

    NASA Astrophysics Data System (ADS)

    Fiorentini, M. L.; Beresford, S. W.; Stone, W. E.; Deloule, E.

    2012-07-01

    Komatiites are ancient volcanic rocks, mostly over 2.7 billion years old, which formed through >30% partial melting of the mantle. This study addresses the crucial relationship between volcanology and physical manifestation of primary magmatic water content in komatiites of the Agnew-Wiluna greenstone belt, Western Australia, and documents the degassing processes that occurred during the emplacement and crystallization of these magmas. The Agnew-Wiluna greenstone belt of Western Australia contains three co-genetic komatiite units that (1) display laterally variable volcanological features, including thick cumulates and spinifex-textured units, and (2) were emplaced as both lava flows and intrusions at various locations. Komatiite sills up to 500 m thick contain widespread occurrence of hydromagmatic amphibole in orthocumulate- and mesocumulate-textured rocks, which contain ca. 40-50 wt% MgO and <3 wt% TiO2. Conversely, komatiite flows do not contain any volatile-bearing mineral phases: ~150-m-thick flows only contain vesicles, amygdales and segregation structures, whereas <5-10-m-thick flows lack any textural and petrographic evidence of primary volatile contents. The main results of this study demonstrate that komatiites from the Agnew-Wiluna greenstone belt, irrespective of their initial water content, have degassed upon emplacement, flow and crystallization. More importantly, data show that komatiite flows most likely degassed more water than komatiite intrusions. Komatiite degassing may have indirectly influenced numerous physical and chemical parameters of the water from the primordial oceans and hence indirectly contributed to the creation of a complex zonation at the interface between water and seafloor.

  11. Buoyant Turbulence Kinetic Energy (TKE) Production in Katabatic Flow Despite Stable Thermal Stratification

    NASA Astrophysics Data System (ADS)

    Oldroyd, H. J.; Pardyjak, E.; Higgins, C. W.; Parlange, M. B.

    2015-12-01

    As micrometeorological research shifts to increasingly non-idealized environments, the lens through which we view classical atmospheric boundary layer theory must also shift to accommodate unfamiliar behavior. We present observations of katabatic flow over a steep (35.5 degree), alpine slope and draw comparisons with classical theory for nocturnal boundary layers (NBL) over flat terrain to delineate key physical differences and similarities. In both cases, the NBL is characterized by a strong, terrain-aligned thermal stratification. Over flat terrain, this temperature inversion tends to stabilize perturbations and suppresses vertical motions. Hence, the buoyancy term in the TKE budget equation acts as a sink. In contrast, the steep-slope katabatic flow regime is characterized by buoyant TKE production despite NBL thermal stratification. This buoyant TKE production occurs because streamwise (upslope) heat fluxes, which are typically treated as unimportant over flat terrain, contribute to the total vertical buoyancy flux since the gravity vector is not terrain-normal. Due to a relatively small number of observations over steep terrain, the turbulence structure of such flows and the implications of buoyant TKE production in the NBL have gone largely unexplored. As an important consequence of this characteristic, we show that conventional stability characterizations require careful coordinate system alignment and interpretation for katabatic flows. The streamwise heat fluxes play an integral role in characterizing stability and turbulent transport, more broadly, in katabatic flows. Therefore, multi-scale statistics and budget analyses describing physical interactions between turbulent fluxes at various scales are presented to interpret similarities and differences between the observations and classical theories regarding streamwise heat fluxes.

  12. Steady film flow over a substrate with rectangular trenches forming air inclusions

    NASA Astrophysics Data System (ADS)

    Varchanis, S.; Dimakopoulos, Y.; Tsamopoulos, J.

    2017-12-01

    Film flow along an inclined, solid substrate featuring periodic rectangular trenches may either completely wet the trench floor (Wenzel state) or get pinned on the entrance and exit corners of the trench (Cassie state) or assume other configurations in between these two extremes. Such intermediate configurations are examined in the present study. They are bounded by a second gas-liquid interface inside the trench, which adheres to its walls forming two three-phase contact lines, and encloses a different amount of air under different physical conditions. The Galerkin finite-element method is used to solve the Navier-Stokes equations in a physical domain, which is adaptively remeshed. Multiple steady solutions, connected by turning points and transcritical bifurcations as well as isolated solution branches, are revealed by pseudo-arc-length continuation. Two possible configurations of a single air inclusion inside the trench are examined: the inclusion either surrounds the upstream convex corner or is attached to the upstream trench wall. The penetration of the liquid inside the trench is enhanced primarily by increasing either the wettability of the substrate or capillary over viscous forces or by decreasing the flow rate. Flow hysteresis may occur when the liquid wetting of the upstream wall decreases abruptly, leading to drastically different flow patterns for the same parameter values. The interplay of inertia, viscous, gravity, and capillary forces along with substrate wettability determines the volume of the air encapsulated in the trench and the extent of deformation of the outer free surface.

  13. Irradiation and Enhanced Magnetic Braking in Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    McCormick, P. J.; Frank, J.

    1998-12-01

    In previous work we have shown that irradiation driven mass transfer cycles can occur in cataclysmic variables at all orbital periods if an additional angular momentum loss mechanism is assumed. Earlier models simply postulated that the enhanced angular momentum loss was proportional to the mass transfer rate without any specific physical model. In this paper we present a simple modification of magnetic braking which seems to have the right properties to sustain irradiation driven cycles at all orbital periods. We assume that the wind mass loss from the irradiated companion consists of two parts: an intrinsic stellar wind term plus an enhancement that is proportional to the irradiation. The increase in mass flow reduces the specific angular momentum carried away by the flow but nevertheless yields an enhanced rate of magnetic braking. The secular evolution of the binary is then computed numerically with a suitably modified double polytropic code (McCormick & Frank 1998). With the above model and under certain conditions, mass transfer oscillations occur at all orbital periods.

  14. Challenges in Understanding and Forecasting Winds in Complex Terrain.

    NASA Astrophysics Data System (ADS)

    Mann, J.; Fernando, J.; Wilczak, J. M.

    2017-12-01

    An overview will be given of some of the challenges in understanding and forecasting winds in complex terrain. These challenges can occur for several different reasons including 1) gaps in our understanding of fundamental physical boundary layer processes occurring in complex terrain; 2) a lack of adequate parameterizations and/or numerical schemes in NWP models; and 3) inadequate observations for initialization of NWP model forecasts. Specific phenomena that will be covered include topographic wakes/vortices, cold pools, gap flows, and mountain-valley winds, with examples taken from several air quality and wind energy related field programs in California as well as from the recent Second Wind Forecast Improvement Program (WFIP2) field campaign in the Columbia River Gorge/Basin area of Washington and Oregon States. Recent parameterization improvements discussed will include those for boundary layer turbulence, including 3D turbulence schemes, and gravity wave drag. Observational requirements for improving wind forecasting in complex terrain will be discussed, especially in the context of forecasting pressure gradient driven gap flow events.

  15. Cardiovascular adaptations supporting human exercise-heat acclimation.

    PubMed

    Périard, Julien D; Travers, Gavin J S; Racinais, Sébastien; Sawka, Michael N

    2016-04-01

    This review examines the cardiovascular adaptations along with total body water and plasma volume adjustments that occur in parallel with improved heat loss responses during exercise-heat acclimation. The cardiovascular system is well recognized as an important contributor to exercise-heat acclimation that acts to minimize physiological strain, reduce the risk of serious heat illness and better sustain exercise capacity. The upright posture adopted by humans during most physical activities and the large skin surface area contribute to the circulatory and blood pressure regulation challenge of simultaneously supporting skeletal muscle blood flow and dissipating heat via increased skin blood flow and sweat secretion during exercise-heat stress. Although it was traditionally held that cardiac output increased during exercise-heat stress to primarily support elevated skin blood flow requirements, recent evidence suggests that temperature-sensitive mechanisms may also mediate an elevation in skeletal muscle blood flow. The cardiovascular adaptations supporting this challenge include an increase in total body water, plasma volume expansion, better sustainment and/or elevation of stroke volume, reduction in heart rate, improvement in ventricular filling and myocardial efficiency, and enhanced skin blood flow and sweating responses. The magnitude of these adaptations is variable and dependent on several factors such as exercise intensity, duration of exposure, frequency and total number of exposures, as well as the environmental conditions (i.e. dry or humid heat) in which acclimation occurs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations.

    PubMed

    Di Staso, G; Clercx, H J H; Succi, S; Toschi, F

    2016-11-13

    Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  17. Impact of rainfall intensity on the transport of two herbicides in undisturbed grassed filter strip soil cores

    NASA Astrophysics Data System (ADS)

    Pot, V.; Šimůnek, J.; Benoit, P.; Coquet, Y.; Yra, A.; Martínez-Cordón, M.-J.

    2005-12-01

    Two series of displacement experiments with isoproturon and metribuzin herbicides were performed on two undisturbed grassed filter strip soil cores, under unsaturated steady-state flow conditions. Several rainfall intensities (0.070, 0.147, 0.161, 0.308 and 0.326 cm h - 1 ) were used. A water tracer (bromide) was simultaneously injected in each displacement experiment. A descriptive analysis of experimental breakthrough curves of bromide and herbicides combined with a modeling analysis showed an impact of rainfall intensity on the solute transport. Two contrasting physical non-equilibrium transport processes occurred. Multiple (three) porosity domains contributed to flow at the highest rainfall intensities, including preferential flow through macropore pathways. Macropores were not active any longer at intermediate and lowest velocities, and the observed preferential transport was described using dual-porosity-type models with a zero or low flow in the matrix domain. Chemical non-equilibrium transport of herbicides was found at all rainfall intensities. Significantly higher estimated values of degradation rate parameters as compared to batch data were correlated with the degree of non-equilibrium sorption. Experimental breakthrough curves were analyzed using different physical and chemical equilibrium and non-equilibrium transport models: convective-dispersive model (CDE), dual-porosity model (MIM), dual-permeability model (DP), triple-porosity, dual permeability model (DP-MIM); each combined with both chemical instantaneous and kinetic sorption.

  18. Basics of Physical Modeling in Coastal and Hydraulic Engineering

    DTIC Science & Technology

    2013-09-01

    gravity (Fg), viscosity (Fv), surface tension (Fs), and elasticity (Fe) must have the same ratios. This requirement arises from Newton’s Second Law which...they are relatively small. Viscosity can be neglected in most free-surface models if the model is not too (a) (b) ERDC/CHL CHETN-XIII-3 September... viscosity is to ensure that the model flow is in the turbulent range, which occurs for Re above approximately 104. The Reynolds number (Re) is defined

  19. Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas

    NASA Technical Reports Server (NTRS)

    Baty, Roy S.; Farassat, Fereidoun; Hargreaves, John

    2007-01-01

    Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.

  20. Flow Visualization and Pattern Formation in Vertically Falling Liquid Films

    NASA Astrophysics Data System (ADS)

    Balakotaiah, Vemuri; Malamataris, Nikolaos

    2008-11-01

    Analytical results of a low-dimensional two equation h-q model and results of a direct numerical simulation of the transient two-dimensional Navier Stokes equations are presented for vertically falling liquid films along a solid wall. The numerical study aims at the elucidation of the hydrodynamics of the falling film. The analytical study aims at the calculation of the parameter space where pattern formation occurs for this flow. It has been found that when the wave amplitude exceeds a certain magnitude, flow reversal occurs in the film underneath the minimum of the waves [1]. The instantaneous vortical structures possess two hyperbolic points on the vertical wall and an elliptic point in the film. As the wave amplitude increases further, the elliptic point reaches the free surface of the film and two more hyperbolic points are formed in the free surface that replace the elliptic point. Between the two hyperbolic points on the free surface, the streamwise component of velocity is negative and the film is divided into asymmetric patterns of up and down flows. Depending on the value of the Kapitza number, these patterns are either stationary or oscillatory. Physical reasons for the influence of the Kapitza number on pattern formation are given. Movies are shown where the pattern formation is demonstrated. [1] N.A.Malamataris and V.Balakotaiah (2008), AIChE J., 54(7), p. 1725-1740

  1. Natural convection in binary gases driven by combined horizontal thermal and vertical solutal gradients

    NASA Technical Reports Server (NTRS)

    Weaver, J. A.; Viskanta, Raymond

    1992-01-01

    An investigation of natural convection is presented to examine the influence of a horizontal temperature gradient and a concentration gradient occurring from the bottom to the cold wall in a cavity. As the solutal buoyancy force changes from augmenting to opposing the thermal buoyancy force, the fluid motion switches from unicellular to multicellular flow (fluid motion is up the cold wall and down the hot wall for the bottom counterrotating flow cell). Qualitatively, the agreement between predicted streamlines and smoke flow patterns is generally good. In contrast, agreement between measured and predicted temperature and concentration distributions ranges from fair to poor. Part of the discrepancy can be attributed to experimental error. However, there remains considerable discrepancy between data and predictions due to the idealizations of the mathematical model, which examines only first-order physical effects. An unsteady flow, variable thermophysical properties, conjugate effects, species interdiffusion, and radiation were not accounted for in the model.

  2. Slip analysis of squeezing flow using doubly stratified fluid

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha

    2018-06-01

    The non-isothermal flow is modeled and explored for squeezed fluid. The influence of velocity, thermal and solutal slip effects on transport features of squeezed fluid are analyzed through Darcy porous channel when fluid is moving due to squeezing of upper plate towards the stretchable lower plate. Dual stratification effects are illustrated in transport equations. A similarity analysis is performed and reduced governing flow equations are solved using moderated and an efficient convergent approach i.e. Homotopic technique. The significant effects of physical emerging parameters on flow velocity, temperature and fluid concentration are reporting through various plots. Graphical explanations for drag force, Nusselt and Sherwood numbers are stated and examined. The results reveal that minimum velocity field occurs near the plate, whereas it increases far away from the plate for strong velocity slip parameter. Furthermore, temperature and fluid concentration significantly decreases with increased slip effects. The current analysis is applicable in some advanced technological processes and industrial fluid mechanics.

  3. Nonlinear modeling of forced magnetic reconnection in slab geometry with NIMROD

    NASA Astrophysics Data System (ADS)

    Beidler, M. T.; Callen, J. D.; Hegna, C. C.; Sovinec, C. R.

    2017-05-01

    The nonlinear, extended-magnetohydrodynamic (MHD) code NIMROD is benchmarked with the theory of time-dependent forced magnetic reconnection induced by small resonant fields in slab geometry in the context of visco-resistive MHD modeling. Linear computations agree with time-asymptotic, linear theory of flow screening of externally applied fields. The inclusion of flow in nonlinear computations can result in mode penetration due to the balance between electromagnetic and viscous forces in the time-asymptotic state, which produces bifurcations from a high-slip state to a low-slip state as the external field is slowly increased. We reproduce mode penetration and unlocking transitions by employing time-dependent externally applied magnetic fields. Mode penetration and unlocking exhibit hysteresis and occur at different magnitudes of applied field. We also establish how nonlinearly determined flow screening of the resonant field is affected by the square of the magnitude of the externally applied field. These results emphasize that the inclusion of nonlinear physics is essential for accurate prediction of the reconnected field in a flowing plasma.

  4. Modelling urban rainfall-runoff responses using an experimental, two-tiered physical modelling environment

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Pattison, Ian; Yu, Dapeng

    2016-04-01

    Surface water (pluvial) flooding occurs when rainwater from intense precipitation events is unable to infiltrate into the subsurface or drain via natural or artificial drainage channels. Surface water flooding poses a serious hazard to urban areas across the world, with the UK's perceived risk appearing to have increased in recent years due to surface water flood events seeming more severe and frequent. Surface water flood risk currently accounts for 1/3 of all UK flood risk, with approximately two million people living in urban areas at risk of a 1 in 200-year flood event. Research often focuses upon using numerical modelling techniques to understand the extent, depth and severity of actual or hypothetical flood scenarios. Although much research has been conducted using numerical modelling, field data available for model calibration and validation is limited due to the complexities associated with data collection in surface water flood conditions. Ultimately, the data which numerical models are based upon is often erroneous and inconclusive. Physical models offer a novel, alternative and innovative environment to collect data within, creating a controlled, closed system where independent variables can be altered independently to investigate cause and effect relationships. A physical modelling environment provides a suitable platform to investigate rainfall-runoff processes occurring within an urban catchment. Despite this, physical modelling approaches are seldom used in surface water flooding research. Scaled laboratory experiments using a 9m2, two-tiered 1:100 physical model consisting of: (i) a low-cost rainfall simulator component able to simulate consistent, uniformly distributed (>75% CUC) rainfall events of varying intensity, and; (ii) a fully interchangeable, modular plot surface have been conducted to investigate and quantify the influence of a number of terrestrial and meteorological factors on overland flow and rainfall-runoff patterns within a modelled urban setting. Terrestrial factors investigated include altering the physical model's catchment slope (0°- 20°), as well as simulating a number of spatially-varied impermeability and building density/configuration scenarios. Additionally, the influence of different storm dynamics and intensities were investigated. Preliminary results demonstrate that rainfall-runoff responses in the physical modelling environment are highly sensitive to slight increases in catchment gradient and rainfall intensity and that more densely distributed building layouts significantly increase peak flows recorded at the physical model outflow when compared to sparsely distributed building layouts under comparable simulated rainfall conditions.

  5. Mathematical modeling of filling of gas centrifuge cascade for nickel isotope separation by various feed flow rate

    NASA Astrophysics Data System (ADS)

    Ushakov, Anton; Orlov, Alexey; Sovach, Victor P.

    2018-03-01

    This article presents the results of research filling of gas centrifuge cascade for separation of the multicomponent isotope mixture with process gas by various feed flow rate. It has been used mathematical model of the nonstationary hydraulic and separation processes occurring in the gas centrifuge cascade. The research object is definition of the regularity transient of nickel isotopes into cascade during filling of the cascade. It is shown that isotope concentrations into cascade stages after its filling depend on variable parameters and are not equal to its concentration on initial isotope mixture (or feed flow of cascade). This assumption is used earlier any researchers for modeling such nonstationary process as set of steady-state concentration of isotopes into cascade. Article shows physical laws of isotope distribution into cascade stage after its filling. It's shown that varying each parameters of cascade (feed flow rate, feed stage number or cascade stage number) it is possible to change isotope concentration on output cascade flows (light or heavy fraction) for reduction of duration of further process to set of steady-state concentration of isotopes into cascade.

  6. The Herschel-Quincke tube: the attenuation conditions and their sensitivity to mean flow.

    PubMed

    Karlsson, Mikael; Glav, Ragnar; Abom, Mats

    2008-08-01

    The classic Herschel-Quincke tube is a parallel connection of two ducts yielding multiple noise attenuation maxima via destructive interference. This problem has been discussed to different degrees by a number of authors over the years. This study returns to the basics of the system for the purpose of furthering the understanding of the conditions necessary for noise attenuation and especially their sensitivity to mean flow. First, the transmission loss for an N-duct system with mean flow and arbitrary conditions of state in the different ducts is derived. Next, the two types of conditions yielding the attenuation maxima are studied. In addition to a discussion of the underlying physics, generic expressions for frequencies at which maximum attenuation occur are presented. Experiments without mean flow generally show good agreement with theory based on straight duct elements. However, more detailed models may be required for accurate simulations in the presence of mean flow. A simple model compensating for the losses associated with bends is shown to improve the results significantly for the geometry studied.

  7. Introduction. Computational aerodynamics.

    PubMed

    Tucker, Paul G

    2007-10-15

    The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used.

  8. The inviscid stability of supersonic flow past a sharp cone

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.; Shaw, Stephen J.

    1990-01-01

    The laminar boundary layer which forms on a sharp cone in a supersonic freestream, where lateral curvature plays a key role in the physics of the problem is considered. This flow is then analyzed from the point of view of linear, temporal, inviscid stability. The basic, non-axisymmetric disturbance equations are derived for general flows of this class, and a so called triply generalized inflexion condition is found for the existence of subsonic neutral modes of instability. This condition is analogous to the well-known generalized inflexion condition found in planar flows, although in the present case the condition depends on both axial and aximuthal wavenumbers. Extensive numerical results are presented for the stability problem at a freestream Mach number of 3.8, for a range of streamwise locations. These results reveal that a new mode of instability may occur, peculiar to flows of this type involving curvature. Additionally, asymptotic analyses valid close to the tip of the cone, far downstream of the cone are presented, and these give a partial (asymptotic) description of this additional mode of instability.

  9. Proximate influences on female dispersal in white-tailed deer

    USGS Publications Warehouse

    Lutz, Clayton L.; Diefenbach, Duane R.; Rosenberry, Christopher S.

    2016-01-01

    Ultimate causes of animal dispersal have been hypothesized to benefit the dispersing individual because dispersal reduces competition for local resources, potential for inbreeding, and competition for breeding partners. However, proximate cues influence important features of dispersal behavior, including when dispersal occurs, how long it lasts, and direction, straightness, and distance of the dispersal path. Therefore, proximate cues that affect dispersal influence ecological processes (e.g., population dynamics, disease transmission, gene flow). We captured and radio-marked 277 juvenile female white-tailed deer (Odocoileus virginianus), of which 27 dispersed, to evaluate dispersal behavior and to determine proximate cues that may influence dispersal behavior. Female dispersal largely occurred at 1 year of age and coincided with the fawning season. Dispersal paths varied but generally were non-linear and prolonged. Physical landscape features (i.e., roadways, rivers, residential areas) influenced dispersal path direction and where dispersal terminated. Additionally, forays outside of the natal range that did not result in dispersal occurred among 52% of global positioning system (GPS)-collared deer (n = 25) during the dispersal period. Our results suggest intra-specific social interactions and physical landscape features influence dispersal behavior in female deer. Female dispersal behavior, particularly the lack of directionality, the semi-permeable nature of physical barriers, and the frequency of forays outside of the natal range, should be considered in regard to population management and controlling the spread of disease.

  10. Mechanical erosion of xenoliths by magmatic shear flow

    NASA Astrophysics Data System (ADS)

    Del Gaudio, Piero; Ventura, Guido

    2008-05-01

    We focus on the role of mechanical erosion by magmatic shear flow in the formation of xenoliths occurring in lava flows. The process is analyzed by combining the physics of fragmentation and erosion to the concept of rock mass. The conditions for the country rock fragmentation are analyzed as a function of the magma viscosity, strain rate and tensile strength of the rock mass. In reservoirs, mechanical processes play a subordinate role and thermal erosion processes prevail. In conduits, intermediate and silicic magmas may erode and, eventually, fragment good to poor quality country rock masses. Basalts may erode poor quality country rocks. A crystal-rich magma has more chance to break up the conduit walls with respect to a vesiculated melt. The variety of xenoliths of a lava reflects a set of wall-rocks with similar mechanical properties and may not mirror the stratigraphy of the substratum of a volcanic area.

  11. Vortex-slip transitions in superconducting a-NbGe mesoscopic channels

    NASA Astrophysics Data System (ADS)

    Kokubo, N.; Sorop, T. G.; Besseling, R.; Kes, P. H.

    2006-06-01

    Intriguing and novel physical aspects related to the vortex flow dynamics have been recently observed in mesoscopic channel devices of a-NbGe with NbN channel edges. In this work we have systematically studied the flow properties of vortices confined in such mesoscopic channels as a function of the magnetic field history, using dc-transport and mode-locking (ML) measurements. As opposed to the field-down situation, in the field-up case a kink anomaly in the dc I-V curves is detected. The mode-locking measurements reveal that this anomaly is, in fact, a flow induced vortex slip transition: by increasing the external drive (either dc or ac) a sudden change occurs from n to n+2 moving vortex rows in the channel. The observed features can be explained in terms of an interplay between field focusing due to screening currents and a change in the predominant pinning mechanism.

  12. Linking observations at active volcanoes to physical processes through conduit flow modelling

    NASA Astrophysics Data System (ADS)

    Thomas, Mark; Neuberg, Jurgen

    2010-05-01

    Low frequency seismic events observed on volcanoes such as Soufriere hills, Montserrat may offer key indications about the state of a volcanic system. To obtain a better understanding of the source of these events and of the physical processes that take place within a volcano it is necessary to understand the conditions of magma a depth. This can be achieved through conduit flow modelling (Collier & Neuberg, 2006). 2-D compressible Navier-Stokes equations are solved through a Finite Element approach, for differing initial water and crystal contents, magma temperatures, chamber overpressures and geometric shapes of conduit. In the fully interdependent modelled system each of these variables has an effect on the magma density, viscosity, gas content, and also the pressure within the flow. These variables in turn affect the magma ascent velocity and the overall eruption dynamics of an active system. Of particular interest are the changes engendered in the flow by relativity small variations in the conduit geometry. These changes can have a profound local effect of the ascent velocity of the magma. By restricting the width of 15m wide, 5000m long vertical conduit over a 100m distance a significant acceleration of the magma is seen in this area. This has implications for the generation of Low-Frequency (LF) events at volcanic systems. The strain-induced fracture of viscoelastic magma or brittle failure of melt has been previously discussed as a possible source of LF events by several authors (e.g. Tuffen et al., 2003; Neuberg et al., 2006). The location of such brittle failure however has been seen to occur at relativity shallow depths (<1000m), which does not agree with the location of recorded LF events. By varying the geometry of the conduit and causing accelerations in the magma flow, localised increases in the shear strain rate of up to 30% are observed. This provides a mechanism of increasing the depth over witch brittle failure of melt may occur. A key observable of the Low frequency events observed on Montserrat is their tightly confined source region. The high degree of similarity of the waveforms from such events indicates a stationary common source within a finite volume of 150m x 150m x 150m (Neuberg et al., 2006). By modelling the physical processes that occur at depth within the volcano it has been possible to identify a potential source region of these events caused by the shape of the conduit, that has a fixed position and will have the potential cause repeatable events whenever magma is moving within the system. Making links of this type is essential to form a better understanding of what the observations made by monitoring systems actually relate to in terms of the volcanoes activity. Tuffen, H., Dingwell, D.B., and Pinkerton, H. 2003. Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology, 31(12), 1089-1092. Collier, L. and Neuberg, J. 2006. Incorporating seismic observations into 2D conduit flow modelling. Journal of volcanology and geothermal research, 152, 331-346. Neuberg, J., Tuffen, H., Collier, L., Green, D., Powell, T., and Dingwell, P. 2006. The trigger mechanisms of low-frequency swarms on Montserrat. Journal of volcanology and geothermal research, 153, 37-50.

  13. Illustration of cross flow of polystyrene melts through a coathanger die

    NASA Astrophysics Data System (ADS)

    Schöppner, V.; Henke, B.

    2015-05-01

    To design an optimal coathanger die with a uniform flow rate distribution and low pressure drop, it is essential to understand the flow conditions in the die. This is important because the quality of the product is influenced by the flow velocity and the flow rate distribution. In extrusion dies, cross flows also occur in addition to the main flow, which flow perpendicular to the main flow. This results in pressure gradients in the extrusion direction, which have an influence on flow distribution and pressure drop in the die. In recent decades, quantitative representation and analysis of physical flow processes have made considerable progress in predicting the weather, developing drive technologies and designing aircraft using simulation methods and lab trials. Using the flow-line method, the flow is analyzed in flat film extrusion dies with a rectangular cross-section, in particular cross flows. The simplest method to visualize the flow is based on the measurement of obstacle orientation in the flow field by adding individual particles. A near-surface flow field can be visualized by using wool or textile yarns. By sticking thin, frayed at the ends of strands of wool surface that is to be examined cross flows, near-wall profiles of the flow and vortex and separation regions can be visualized. A further possibility is to add glass fibers and analyze the fiber orientation by microscopy and x-ray analysis. In this paper the influence of process parameters (e.g. melt temperatures and throughput) on cross flow and fiber orientation is described.

  14. The Anatomy of the Blue Dragon: Changes in Lava Flow Morphology and Physical Properties Observed in an Open Channel Lava Flow as a Planetary Analogue

    NASA Astrophysics Data System (ADS)

    Sehlke, A.; Kobs Nawotniak, S. E.; Hughes, S. S.; Sears, D. W.; Downs, M. T.; Whittington, A. G.; Lim, D. S. S.; Heldmann, J. L.

    2017-10-01

    We present the relationship of lava flow morphology and the physical properties of the rocks based on terrestrial field work, and how this can be applied to infer physical properties of lunar lava flows.

  15. Interaction of two glancing, crossing shock waves with a turbulent boundary-layer at various Mach numbers

    NASA Technical Reports Server (NTRS)

    Hingst, Warren R.; Williams, Kevin E.

    1991-01-01

    A preliminary experimental investigation was conducted to study two crossing, glancing shock waves of equal strengths, interacting with the boundary-layer developed on a supersonic wind tunnel wall. This study was performed at several Mach numbers between 2.5 and 4.0. The shock waves were created by fins (shock generators), spanning the tunnel test section, that were set at angles varying from 4 to 12 degrees. The data acquired are wall static pressure measurements, and qualitative information in the form of oil flow and schlieren visualizations. The principle aim is two-fold. First, a fundamental understanding of the physics underlying this flow phenomena is desired. Also, a comprehensive data set is needed for computational fluid dynamic code validation. Results indicate that for small shock generator angles, the boundary-layer remains attached throughout the flow field. However, with increasing shock strengths (increasing generator angles), boundary layer separation does occur and becomes progressively more severe as the generator angles are increased further. The location of the separation, which starts well downstream of the shock crossing point, moves upstream as shock strengths are increased. At the highest generator angles, the separation appears to begin coincident with the generator leading edges and engulfs most of the area between the generators. This phenomena occurs very near the 'unstart' limit for the generators. The wall pressures at the lower generator angles are nominally consistent with the flow geometries (i.e. shock patterns) although significantly affected by the boundary-layer upstream influence. As separation occurs, the wall pressures exhibit a gradient that is mainly axial in direction in the vicinity of the separation. At the limiting conditions the wall pressure gradients are primarily in the axial direction throughout.

  16. Computing by physical interaction in neurons.

    PubMed

    Aur, Dorian; Jog, Mandar; Poznanski, Roman R

    2011-12-01

    The electrodynamics of action potentials represents the fundamental level where information is integrated and processed in neurons. The Hodgkin-Huxley model cannot explain the non-stereotyped spatial charge density dynamics that occur during action potential propagation. Revealed in experiments as spike directivity, the non-uniform charge density dynamics within neurons carry meaningful information and suggest that fragments of information regarding our memories are endogenously stored in structural patterns at a molecular level and are revealed only during spiking activity. The main conceptual idea is that under the influence of electric fields, efficient computation by interaction occurs between charge densities embedded within molecular structures and the transient developed flow of electrical charges. This process of computation underlying electrical interactions and molecular mechanisms at the subcellular level is dissimilar from spiking neuron models that are completely devoid of physical interactions. Computation by interaction describes a more powerful continuous model of computation than the one that consists of discrete steps as represented in Turing machines.

  17. U.S. Air Force Research Laboratory's Need for Flow Physics and Control With Applications Involving Aero-Optics and Weapon Bay Cavities

    NASA Technical Reports Server (NTRS)

    Schmit, Ryan

    2010-01-01

    To develop New Flow Control Techniques: a) Knowledge of the Flow Physics with and without control. b) How does Flow Control Effect Flow Physics (What Works to Optimize the Design?). c) Energy or Work Efficiency of the Control Technique (Cost - Risk - Benefit Analysis). d) Supportability, e.g. (size of equipment, computational power, power supply) (Allows Designer to include Flow Control in Plans).

  18. Predictive Simulation of Gas Adsorption in Fixed-Beds and Limitations due to the Ill-Posed Danckwerts Boundary Condition

    NASA Technical Reports Server (NTRS)

    Knox, James Clinton

    2016-01-01

    The 1-D axially dispersed plug flow model is a mathematical model widely used for the simulation of adsorption processes. Lumped mass transfer coefficients such as the Glueckauf linear driving force (LDF) term and the axial dispersion coefficient are generally obtained by fitting simulation results to the experimental breakthrough test data. An approach is introduced where these parameters, along with the only free parameter in the energy balance equations, are individually fit to specific test data that isolates the appropriate physics. It is shown that with this approach this model provides excellent simulation results for the C02 on zeolite SA sorbent/sorbate system; however, for the H20 on zeolite SA system, non-physical deviations from constant pattern behavior occur when fitting dispersive experimental results with a large axial dispersion coefficient. A method has also been developed that determines a priori what values of the LDF and axial dispersion terms will result in non-physical simulation results for a specific sorbent/sorbate system when using the one-dimensional axially dispersed plug flow model. A relationship between the steepness of the adsorption equilibrium isotherm as indicated by the distribution factor, the magnitude of the axial dispersion and mass transfer coefficient, and the resulting non-physical behavior is derived. This relationship is intended to provide a guide for avoiding non-physical behavior by limiting the magnitude of the axial dispersion term on the basis of the mass transfer coefficient and distribution factor.

  19. Genesis of recent silicic magmatism in the Medicine Lake Highland, California - Evidence from cognate inclusions found at Little Glass Mountain

    NASA Technical Reports Server (NTRS)

    Mertzman, S. A.; Williams, R. J.

    1981-01-01

    Sparse, granular inclusions of early-formed minerals found within the Little Glass Mountain rhyolite flows in northern California are shown to provide a means of characterizing the physical conditions, at depth, beneath the Medicine Lake Highland during the latest phase of volcanic activity. Mineral compositions, in combination with thermodynamic calculations and experiments, suggest crystalization at a pressure of 5,200 bars within a 966-836 C temperature range; implying that mineral segregation and equilibration occurred at a depth of 15-18 km beneath the surface. In addition, mass balance calculations indicate that the Medicine Lake flow is a close approximation to the parental magma for the latest silicic lavas.

  20. Emerging interdependence between stock values during financial crashes.

    PubMed

    Rocchi, Jacopo; Tsui, Enoch Yan Lok; Saad, David

    2017-01-01

    To identify emerging interdependencies between traded stocks we investigate the behavior of the stocks of FTSE 100 companies in the period 2000-2015, by looking at daily stock values. Exploiting the power of information theoretical measures to extract direct influences between multiple time series, we compute the information flow across stock values to identify several different regimes. While small information flows is detected in most of the period, a dramatically different situation occurs in the proximity of global financial crises, where stock values exhibit strong and substantial interdependence for a prolonged period. This behavior is consistent with what one would generally expect from a complex system near criticality in physical systems, showing the long lasting effects of crashes on stock markets.

  1. Investigation of the Mechanism of Generation of Acoustic Oscillations inside Complicated Curvilinear Channels

    NASA Astrophysics Data System (ADS)

    Mitrofanova, O. V.; Bayramukov, A. S.; Fedorinov, A. V.

    2017-11-01

    There are presented some results of computational-theoretical research on identifying thermo-physical features and topology of high-velocity curved and swirl flows, which are occur inside complicated channels of collector systems, active zones and nuclear power installations equipment with pressurized water reactors. Cylindrical curved channels of different configurations and various combinations of bends and cross sectional areas were considered as modeling objects. Results of computational experiments to determine velocity, pressure, vorticity and temperature fields in transverse and longitudinal sections of the pipeline showed that the complicated geometry of the channels can cause to large-scale swirl of flow, cavitation effects and generation acoustic fluctuations with wide spectrum of sound frequencies for the coolant in the dynamic modes.

  2. Emerging interdependence between stock values during financial crashes

    PubMed Central

    Tsui, Enoch Yan Lok; Saad, David

    2017-01-01

    To identify emerging interdependencies between traded stocks we investigate the behavior of the stocks of FTSE 100 companies in the period 2000-2015, by looking at daily stock values. Exploiting the power of information theoretical measures to extract direct influences between multiple time series, we compute the information flow across stock values to identify several different regimes. While small information flows is detected in most of the period, a dramatically different situation occurs in the proximity of global financial crises, where stock values exhibit strong and substantial interdependence for a prolonged period. This behavior is consistent with what one would generally expect from a complex system near criticality in physical systems, showing the long lasting effects of crashes on stock markets. PMID:28542278

  3. Elongational Flow Assists with the Assembly of Protein Nanofibrils

    NASA Astrophysics Data System (ADS)

    Mittal, Nitesh; Kamada, Ayaka; Lendel, Christofer; Lundell, Fredrik; Soderberg, Daniel

    2016-11-01

    Controlling the aggregation process of protein-based macromolecular structures in a confined environment using small-scale flow devices and understanding their assembly mechanisms is essential to develop bio-based materials. Whey protein, a protein mixture with β-lactoglobulin as main component, is able to self-assemble into amyloid-like protein nanofibers which are stabilized by hydrogen bonds. The conditions at which the fibrillation process occurs can affect the properties and morphology of the fibrils. Here, we show that the morphology of protein nanofibers greatly affects their assembly. We used elongational flow based double flow-focusing device for this study. In-situ behavior of the straight and flexible fibrils in the flow channel is determined using small-angle X-ray scattering (SAXS) technique. Our process combines hydrodynamic alignment with dispersion to gel-transition that produces homogeneous and smooth fibers. Moreover, successful alignment before gelation demands a proper separation of the time-scales involved, which we tried to identify in the current study. The presented approach combining small scale flow devices with in-situ synchrotron X-ray studies and protein engineering is a promising route to design high performance protein-based materials with controlled physical and chemical properties. We acknowledge the support from Wallenberg Wood Science Center.

  4. Spectral-Timing Analysis of Kilohetrz Quasi-Periodic Osciallations in Neutron Star Low-Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Cackett, Edward; Troyer, Jon; Peille, Philippe; Barret, Didier

    2018-01-01

    Kilohertz quasi-periodic oscillations or kHz QPOs are intensity variations that occur in the X-ray band observed in neutron star low-mass X-ray binary (LMXB) systems. In such systems, matter is transferred from a secondary low-mass star to a neutron star via the process of accretion. kHz QPOs occur on the timescale of the inner accretion flow and may carry signatures of the physics of strong gravity (c2 ~ GM/R) and possibly clues to constraining the neutron star equation of state (EOS). Both the timing behavior of kHz QPOs and the time-averaged spectra of these systems have been studied extensively. No model derived from these techniques has been able to illuminate the origin of kHz QPOs. Spectral-timing is an analysis technique that can be used to derive information about the nature of physical processes occurring within the accretion flow on the timescale of the kHz QPO. To date, kHz QPOs of (4) neutron star LMXB systems have been studied with spectral-timing techniques. We present a comprehensive study of spectral-timing products of kHz QPOs from systems where data is available in the RXTE archive to demonstrate the promise of this technique to gain insights regarding the origin of kHz QPOs. Using data averaged over the entire RXTE archive, we show correlated time-lags as a function of QPO frequency and energy, as well as energy-dependent covariance spectra for the various LMXB systems where spectral-timing analysis is possible. We find similar trends in all average spectral-timing products for the objects studied. This suggests a common origin of kHz QPOs.

  5. A Study on Water Surface Profiles of Rivers with Constriction

    NASA Astrophysics Data System (ADS)

    Qian, Chaochao; Yamada, Tadashi

    2013-04-01

    Water surface profile of rivers with constrictions is precious in both classic hydraulics and river management practice. This study was conducted to clarify the essences of the water surface profiles. 3 cases of experiments and 1D numerical calculations with different discharges were made in the study and analysis solutions of the non-linear basic equation of surface profile in varied flow without considering friction were derived. The manning's number was kept in the same in each case by using crosspiece roughness. We found a new type of water surface profile of varied flow from the results of 1D numerical calculation and that of experiments and named it as Mc curve because of its mild condition with constriction segment. This kind of curves appears as a nature phenomenon ubiquitously. The process of water surface forming is dynamic and bore occurs at the upper side of constriction during increasing discharge before the surface profile formed. As a theoretical work, 3 analysis solutions were derived included 2 physical-meaning solutions in the study by using Man-Machine system. One of the derived physical-meaning solutions was confirmed that it is validity by comparing to the results of 1D numerical calculation and that of experiments. The solution represents a flow profile from under critical condition at the upper side to super critical condition at the down side of constriction segment. The other derived physical-meaning solution represents a flow profile from super critical condition at the upper side to under critical condition at the down side of constriction segment. These two kinds of flow profiles exist in the nature but no theoretical solution can express the phenomenon. We find the depth distribution only concerned with unit width discharge distribution and critical depth under a constant discharge from the derived solutions. Therefor, the profile can be gained simply and precisely by using the theoretical solutions instead of numerical calculation even in practice.

  6. Topological Aspects of the FAITH Experiment

    NASA Technical Reports Server (NTRS)

    Tobak, Murray; Long, Kurtis

    2010-01-01

    This slide presentation reviews the following issues (1) What is relationship between surface pressure extrema and singular points? (2) Does every singular point in a pattern of skin friction lines occur at a surface pressure extremum? (and/or vice versa?) (3) Can this relationship be generalized to all geometries? (4) FAITH Project (5) Ongoing effort at NASA Ames Experimental AeroPhysics Branch (6) Multi-parameter wind tunnel investigation of flow around obstacle (7) Acquire data for CFD validation, optimization and (8) Relationship between FAITH and topology projects

  7. Incipient motion in gravel bed rivers due to energetic turbulent flow events

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos

    2013-04-01

    This contribution reviews recent developments and contributions in the field of incipient motion and entrainment of coarse sediment grains due to the action of near bed turbulent flows. Specifically, traditional shear based spatio-temporally averaged concepts and instantaneous stress tensor criteria are contrasted to the newly proposed flow event based impulse and energy criteria. The energy criterion, suggests that only sufficiently energetic turbulent events can remove a particle from its resting position on the bed surface and result on its entrainment downstream. While the impulse and energy criteria are interconnected through the energy-impulse equation, the later appears to be more versatile and appropriate for generalising to sediment transport. These flow event based criteria have a sound physical basis for describing the intermittent character of particle entrainment as inherited by near boundary turbulence at near threshold conditions. These criteria can be derived from fundamental laws of physics such as Newtonian classical mechanics and the Lagrange equations respectively. The energetic events that are capable of performing geomorphic work at the scale of individual particles are shown to follow a power law, meaning that more energetic events (capable of removing larger stones) are expected to occur less frequently. In addition, this paper discusses the role of the coefficient of energy transfer efficiency introduced in the energy equation for particle entrainment. A preliminary investigation from analysis of a series of mobile grain flume experiments illustrates that different signatures of turbulence or sequence of flow structures may have different effectiveness towards particle transport. Characteristic cases of specific energetic flow events and the associated particle response are shown and classified with regard to the time required for complete entrainment. Finally these findings are commented with respect to the implications for sediment transport.

  8. Experimental implementation of parallel riverbed erosion to study vegetation uprooting by flow

    NASA Astrophysics Data System (ADS)

    Perona, Paolo; Edmaier, Katharina; Crouzy, Benoît

    2014-05-01

    In nature, flow erosion leading to the uprooting of vegetation is often a delayed process that gradually reduces anchoring by root exposure and correspondingly increases drag on the exposed biomass. The process determining scouring or deposition of the riverbed, and consequently plant root exposure is complex and scale dependent. At the local scale, it is hydrodynamically driven and depends on obstacle porosity, as well as sediment vs obstacle size ratio. At a larger scale it results from morphodynamic conditions, which mostly depend on riverbed topography and stream bedload transport capacity. In the latter case, ablation of sediment gradually reduces local bed elevation around the obstacle at a scale larger than the obstacle size, and uprooting eventually occurs when flow drag exceeds the residual anchoring. Ideally, one would study the timescales of vegetation uprooting by flow by inducing parallel bed erosion. This condition is not trivial to obtain experimentally because bed elevation adjustments occur in relation to longitudinal changes in sediment apportion as described by Exner's equation. In this work, we study the physical conditions leading to parallel bed erosion by reducing Exner equation closed for bedload transport to a nonlinear partial differential equation, and showing that this is a particular "boundary value" problem. Eventually, we use the data of Edmaier (2014) from a small scale mobile-bed flume setup to verify the proposed theoretical framework, and to show how such a simple experiment can provide useful insights into the timescales of the uprooting process (Edmaier et al., 2011). REFERENCES - Edmaier, K., P. Burlando, and P. Perona (2011). Mechanisms of vegetation uprooting by flow in alluvial non-cohesive sediment. Hydrology and Earth System Sciences, vol. 15, p. 1615-1627. - Edmaier, K. Uprooting mechanisms of juvenile vegetation by flow. PhD thesis, EPFL, in preparation.

  9. CFD on hypersonic flow geometries with aeroheating

    NASA Astrophysics Data System (ADS)

    Sohail, Muhammad Amjad; Chao, Yan; Hui, Zhang Hui; Ullah, Rizwan

    2012-11-01

    The hypersonic flowfield around a blunted cone and cone-flare exhibits some of the major features of the flows around space vehicles, e.g. a detached bow shock in the stagnation region and the oblique shock wave/boundary layer interaction at the cone-flare junction. The shock wave/boundary layer interaction can produce a region of separated flow. This phenomenon may occur, for example, at the upstream-facing corner formed by a deflected control surface on a hypersonic entry vehicle, where the length of separation has implications for control effectiveness. Computational fluid-dynamics results are presented to show the flowfield around a blunted cone and cone-flare configurations in hypersonic flow with separation. This problem is of particular interest since it features most of the aspects of the hypersonic flow around planetary entry vehicles. The region between the cone and the flare is particularly critical with respect to the evaluation of the surface pressure and heat flux with aeroheating. Indeed, flow separation is induced by the shock wave boundary layer interaction, with subsequent flow reattachment, that can dramatically enhance the surface heat transfer. The exact determination of the extension of the recirculation zone is a particularly delicate task for numerical codes. Laminar flow and turbulent computations have been carried out using a full Navier-Stokes solver, with freestream conditions provided by the experimental data obtained at Mach 6, 8, and 16.34 wind tunnel. The numerical results are compared with the measured pressure and surface heat flux distributions in the wind tunnel and a good agreement is found, especially on the length of the recirculation region and location of shock waves. The critical physics of entropy layer, boundary layers, boundary layers and shock wave interaction and flow behind shock are properly captured and elaborated.. Hypersonic flows are characterized by high Mach number and high total enthalpy. An elevated temperature often results in thermo-chemical reactions in the gas, which play a major role in aero thermodynamic characterization of high-speed aerospace vehicles. Computational simulation of such flows, therefore, needs to account for a range of physical phenomena. Further, the numerical challenges involved in resolving strong gradients and discontinuities add to the complexity of computational fluid dynamics (CFD) simulation. In this article, physical modeling and numerical methodology-related issues involved in hypersonic flow simulation are highlighted. State-of-the-art CFD challenges are discussed in the context of many prominent applications of hypersonic flows. In the first part of paper, hypersonic flow is simulated and aerodynamics characteristics are calculated. Then aero heating with chemical reactions are added in the simulations and in the end part heat transfer with turbulence modeling is simulated. Results are compared with available data.

  10. Dynamic structure of confined shocks undergoing sudden expansion

    NASA Astrophysics Data System (ADS)

    Abate, G.; Shyy, W.

    2002-01-01

    The gas dynamic phenomenon associated with a normal shock wave within a tube undergoing a sudden area expansion consists of highly transient flow and diffraction that give rise to turbulent, compressible, vortical flows. These interactions can occur at time scales typically ranging from micro- to milliseconds. In this article, we review recent experimental and numerical results to highlight the flow phenomena and main physical mechanisms associated with this geometry. The topics addressed include time-accurate shock and vortex locations, flowfield evolution and structure, wall-shock Mach number, two- vs. three-dimensional sudden expansions, and the effect of viscous dissipation on planar shock-front expansions. Between axisymmetric and planar geometries, the flow structure evolves very similarly early on in the sudden expansion process (i.e., within the first two shock tube diameters). Both numerical and experimental studies confirm that the trajectory of the vortex formed at the expansion corner is convected into the flowfield faster in the axisymmetric case than the planar case. The lateral propagation of the vortices correlates very well between axisymmetric and planar geometries. In regard to the rate of dissipation of turbulent kinetic energy (TKE) for a two-dimensional planar shock undergoing a sudden expansion within a confined chamber, calculations show that the solenoidal dissipation is confined to the region of high strain rates arising from the expansion corner. Furthermore, the dilatational dissipation is concentrated mainly at the curvature of the incident, reflected, and barrel shock fronts. The multiple physical mechanisms identified, including shock-strain rate interaction, baroclinic effect, vorticity generation, and different aspects of viscous dissipation, have produced individual and collective flow structures observed experimentally.

  11. Magnetic Control of Hypersonic Flow

    NASA Astrophysics Data System (ADS)

    Poggie, Jonathan; Gaitonde, Datta

    2000-11-01

    Electromagnetic control is an appealing possibility for mitigating the thermal loads that occur in hypersonic flight, in particular for the case of atmospheric entry. There was extensive research on this problem between about 1955 and 1970,(M. F. Romig, ``The Influence of Electric and Magnetic Fields on Heat Transfer to Electrically Conducting Fluids,'' \\underlineAdvances In Heat Transfer), Vol. 1, Academic Press, NY, 1964. and renewed interest has arisen due to developments in the technology of super-conducting magnets and the understanding of the physics of weakly-ionized, non-equilibrium plasmas. In order to examine the physics of this problem, and to evaluate the practicality of electromagnetic control in hypersonic flight, we have developed a computer code to solve the three-dimensional, non-ideal magnetogasdynamics equations. We have applied the code to the problem of magnetically-decelerated hypersonic flow over a sphere, and observed a reduction, with an applied dipole field, in heat flux and skin friction near the nose of the body, as well as an increase in shock standoff distance. The computational results compare favorably with the analytical predictions of Bush.(W. B. Bush, ``Magnetohydrodynamic-Hypersonic Flow Past a Blunt Body'', Journal of the Aero/Space Sciences, Vol. 25, No. 11, 1958; ``The Stagnation-Point Boundary Layer in the Presence of an Applied Magnetic Field'', Vol. 28, No. 8, 1961.)

  12. Physical modelling of rainfall-induced flow failures in loose granular soils

    NASA Astrophysics Data System (ADS)

    Take, W. A.; Beddoe, R. A.

    2015-09-01

    The tragic consequences of the March 2014 Oso landslide in Washington, USA were particularly high due to the mobility of the landslide debris. Confusingly, a landslide occurred at that exact same location a number of years earlier, but simply slumped into the river at the toe of the slope. Why did these two events differ so drastically in their mobility? Considerable questions remain regarding the conditions required to generate flow failures in loose soils. Geotechnical centrifuge testing, in combination with high-speed cameras and advanced image analysis has now provided the landslides research community with a powerful new tool to experimentally investigate the complex mechanics leading to high mobility landslides. This paper highlights recent advances in our understanding of the process of static liquefaction in loose granular soil slopes achieved through observations of highly-instrumented physical models. In particular, the paper summarises experimental results aimed to identify the point of initiation of the chain-reaction required to trigger liquefaction flow failures, to assess the effect of slope inclination on the likelihood of a flowslide being triggered, and to quantify the effect of antecedent groundwater levels on the distal reach of landslide debris with the objective of beginning to explain why neighbouring slopes can exhibit such a wide variation in landslide travel distance upon rainfall-triggering.

  13. Role of natural analogs in performance assessment of nuclear waste repositories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagar, B.; Wittmeyer, G.W.

    1995-09-01

    Mathematical models of the flow of water and transport of radionuclides in porous media will be used to assess the ability of deep geologic repositories to safely contain nuclear waste. These models must, in some sense, be validated to ensure that they adequately describe the physical processes occurring within the repository and its geologic setting. Inasmuch as the spatial and temporal scales over which these models must be applied in performance assessment are very large, validation of these models against laboratory and small-scale field experiments may be considered inadequate. Natural analogs may provide validation data that are representative of physico-chemicalmore » processes that occur over spatial and temporal scales as large or larger than those relevant to repository design. The authors discuss the manner in which natural analog data may be used to increase confidence in performance assessment models and conclude that, while these data may be suitable for testing the basic laws governing flow and transport, there is insufficient control of boundary and initial conditions and forcing functions to permit quantitative validation of complex, spatially distributed flow and transport models. The authors also express their opinion that, for collecting adequate data from natural analogs, resources will have to be devoted to them that are much larger than are devoted to them at present.« less

  14. Advances in Dynamic Transport of Organic Contaminants in Karst Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Vesper, D.; Alshawabkeh, A.; Hellweger, F.

    2011-12-01

    Karst groundwater systems develop in soluble rocks such as limestone, and are characterized by high permeability and well-developed conduit porosity. These systems provide important freshwater resources for human consumption and ecological integrity of streams, wetlands, and coastal zones. The same characteristics that make karst aquifers highly productive make them highly vulnerable to contamination. As a result, karst aquifers serve as an important route for contaminants exposure to humans and wildlife. Transport of organic contaminants in karst ground-water occurs in complex pathways influenced by the flow mechanism predominating in the aquifer: conduit-flow dominated systems tend to convey solutes rapidly through the system to a discharge point without much attenuation; diffuse-flow systems, on the other hand, can cause significant solute retardation and slow movement. These two mechanisms represent end members of a wide spectrum of conditions found in karst areas, and often a combination of conduit- and diffuse-flow mechanisms is encountered, where both flow mechanisms can control the fate and transport of contaminants. This is the case in the carbonate aquifers of northern Puerto Rico. This work addresses advances made on the characterization of fate and transport processes in karst ground-water systems characterized by variable conduit and/or diffusion dominated flow under high- and low-flow conditions. It involves laboratory-scale physical modeling and field-scale sampling and historical analysis of contaminant distribution. Statistical analysis of solute transport in Geo-Hydrobed physical models shows the heterogeneous character of transport dynamics in karstic units, and its variability under different flow regimes. Field-work analysis of chlorinated volatile organic compounds and phthalates indicates a large capacity of the karst systems to store and transmit contaminants. This work is part of the program "Puerto Rico Testsite for Exploring Contamination Threats (PRoTECT)" supported by the National Institute of Environmental Health Sciences (NIEHS, Grant Award No. P42ES017198).

  15. Experimental Observations on a Low Strain Counter-Flow Diffusion Flame: Flow and Bouyancy Effects

    NASA Technical Reports Server (NTRS)

    Sutula, J. A.; Torero, J. L.; Ezekoye, O. A.

    1999-01-01

    Diffusion flames are of great interest in fire safety and many industrial processes. The counter-flow configuration provides a constant strain flow, and therefore is ideal to study the structure of diffusion flames. Most studies have concentrated on the high velocity, high strain limit, since buoyantly induced instabilities will disintegrate the planar flame as the velocity decreases. Only recently, experimental studies in microgravity conditions have begun to explore the low strain regimes. Numerical work has shown the coupling between gas phase reaction rates, soot reaction rates, and radiation. For these programs, size, geometry and experimental conditions have been chosen to keep the flame unaffected by the physical boundaries. When the physical boundaries can not be considered infinitely far from the reaction zone discrepancies arise. A computational study that includes boundary effects and accounts for the deviations occurring when the major potential flow assumptions are relaxed was presented by Borlik et al. This development properly incorporates all heat loss terms and shows the possibility of extinction in the low strain regime. A major constraint of studying the low strain regime is buoyancy. Buoyant instabilities have been shown to have a significant effect on the nature of reactants and heat transport, and can introduce instabilities on the flow that result in phenomena such as flickering or fingering. The counter-flow configuration has been shown to provide a flame with no symmetry disrupting instabilities for inlet velocities greater than 50 mm/s. As the velocity approaches this limit, the characteristic length of the experiment has to be reduced to a few millimetres so as to keep the Rayleigh number (Ra(sub L) = (Beta)(g(sub 0))(L(exp 3) del T)/(alpha(v))) below 2000. In this work, a rectangular counter-flow burner was used to study a two-dimensional counter-flow diffusion flame. Flow visualisation and Particle Image Velocimetry served to describe the nature of the stagnation plane for strain rates smaller than 100 (1/s). These experiments were conducted with a non-reacting flow. Video images of a propane air diffusion flame were used to describe the behaviour of a diffusion flame in this regime. Flame geometry and pulsation frequency are described.

  16. Complexity of spatiotemporal traffic phenomena in flow of identical drivers: Explanation based on fundamental hypothesis of three-phase theory

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.

    2012-03-01

    Based on numerical simulations of a stochastic three-phase traffic flow model, we reveal the physics of the fundamental hypothesis of three-phase theory that, in contrast with a fundamental diagram of classical traffic flow theories, postulates the existence of a two-dimensional (2D) region of steady states of synchronized flow where a driver makes an arbitrary choice of a space gap (time headway) to the preceding vehicle. We find that macroscopic and microscopic spatiotemporal effects of the entire complexity of traffic congestion observed up to now in real measured traffic data can be explained by simulations of traffic flow consisting of identical drivers and vehicles, if a microscopic model used in these simulations incorporates the fundamental hypothesis of three-phase theory. It is shown that the driver's choice of space gaps within the 2D region of synchronized flow associated with the fundamental hypothesis of three-phase theory can qualitatively change types of congested patterns that can emerge at a highway bottleneck. In particular, if drivers choose long enough spaces gaps associated with the fundamental hypothesis, then general patterns, which consist of synchronized flow and wide moving jams, do not emerge independent of the flow rates and bottleneck characteristics: Even at a heavy bottleneck leading to a very low speed within congested patterns, only synchronized flow patterns occur in which no wide moving jams emerge spontaneously.

  17. Complexity of spatiotemporal traffic phenomena in flow of identical drivers: explanation based on fundamental hypothesis of three-phase theory.

    PubMed

    Kerner, Boris S

    2012-03-01

    Based on numerical simulations of a stochastic three-phase traffic flow model, we reveal the physics of the fundamental hypothesis of three-phase theory that, in contrast with a fundamental diagram of classical traffic flow theories, postulates the existence of a two-dimensional (2D) region of steady states of synchronized flow where a driver makes an arbitrary choice of a space gap (time headway) to the preceding vehicle. We find that macroscopic and microscopic spatiotemporal effects of the entire complexity of traffic congestion observed up to now in real measured traffic data can be explained by simulations of traffic flow consisting of identical drivers and vehicles, if a microscopic model used in these simulations incorporates the fundamental hypothesis of three-phase theory. It is shown that the driver's choice of space gaps within the 2D region of synchronized flow associated with the fundamental hypothesis of three-phase theory can qualitatively change types of congested patterns that can emerge at a highway bottleneck. In particular, if drivers choose long enough spaces gaps associated with the fundamental hypothesis, then general patterns, which consist of synchronized flow and wide moving jams, do not emerge independent of the flow rates and bottleneck characteristics: Even at a heavy bottleneck leading to a very low speed within congested patterns, only synchronized flow patterns occur in which no wide moving jams emerge spontaneously.

  18. Tearing Instability of a Current Sheet Forming by Sheared Incompressible Flow

    NASA Astrophysics Data System (ADS)

    Tolman, Elizabeth; Loureiro, Nuno; Uzdensky, Dmitri

    2017-10-01

    Sweet-Parker current sheets are unstable to the tearing mode, suggesting they will not form in physical systems. Understanding magnetic reconnection thus requires study of the stability of a current sheet as it forms. Such formation can occur as a result of sheared, sub-Alfvénic incompressible flows into and along the sheet. This work presents an analysis of how tearing perturbations behave in a current sheet forming under the influence of such flows, beginning with a phase when the growth rate of the tearing mode is small and the behavior of perturbations is primarily governed by ideal MHD. Later, after the tearing growth rate becomes significant relative to the time scale of the driving flows, the flows cause a slight reduction in the tearing growth rate and wave vector of the dominant mode. Once the tearing mode enters the nonlinear regime, the flows accelerate the tearing growth slightly; during X-point collapse, the flows have negligible effect on the system behavior. This analysis allows greater understanding of reconnection in evolving systems and increases confidence in the application of tools developed in time-independent current sheets to changing current sheets. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship.

  19. Summer Leeside Rainfall Maxima over the Island of Hawaii

    NASA Astrophysics Data System (ADS)

    Huang, Y. F.; Chen, Y. L.

    2016-12-01

    The Kona area on the leeside in the island of Hawaii has distinctive summer rainfall maxima. The primary physical processes for the summer rainfall maxima in Kona are analyzed by comparing it with the winter rainfall. The annual and diurnal cycles there are investigated by employing the Fifth-generation Pennsylvania State University-NCAR Mesoscale Model coupled with the advanced land surface model from June 2004 and February 2010. During the summer, the nocturnal rainfall maximum adjacent to the Kona coast is larger than in winter because of the stronger, moister westerly reversed flow and offshore flow in summer. Comparisons between winter trade-wind days and winter mean show that the leeside Kona rainfall offshore in winter mainly occurs under trade-wind conditions. Moreover, the model results also attest to the impact of moisture content on the Kona leeside rainfall offshore. Comparisons between winter and summer trade-wind days indicate that upslope flows on the Kona slopes are stronger and the moisture content from the westerly reversed flow is higher in summer than in winter. The rainfall maximum on the lower Kona slopes is more pronounced in summer than in winter as a result of enhanced orographic lifting due to stronger upslope flow in the afternoon hours and the moister westerly reversed flow offshore, which merges with the upslope flow inland.

  20. Types of flow on the lee side of delta wings

    NASA Astrophysics Data System (ADS)

    Narayan, K. Yegna; Seshadri, S. N.

    1997-03-01

    Delta wings have found wide application in a variety of aerospace vehicles including high performance combat aircraft, supersonic civil aircraft, (proposed) hypersonic aircraft and the space shuttle orbiter. A considerable amount of research work has been carried out over the past three decades and an extensive body of literature is available. The present review focuses attention on the nine possible types of flow that can occur on the lee side of delta wings in a Mach number range which extends from subsonic to hypersonic. The dependence of the flow types on geometrical and freestream parameters has been discussed in detail. The extensive experimental data available has made it possible to obtain a broad physical understanding of the mechanisms underlying the different flow types. However much more work needs to be done to determine the effects of Reynolds number, particularly when either the state of the boundary layer is transitional or when the type of flow is changing from leading edge attached to separated. Computational methods have made spectacular advances in recent years. In particular, solutions of Reynolds averaged Navier-Stokes equations at fairly high Reynolds number have become possible and these computations have captured eight of the nine experimentally observed flow types, including those involving cross flow shock waves and shock-induced separation.

  1. The Anatomy of the Blue Dragon: Changes in Lava Flow Morphology and Physical Properties Observed in an Open Channel Lava Flow as a Planetary Analogue

    NASA Astrophysics Data System (ADS)

    Sehlke, A.; Kobs-Nawotniak, S. E.; Hughes, S. S.; Sears, D. W. G.; Downs, M.; Whittington, A. G.; Lim, D. S. S.; Heldmann, J. L.

    2017-12-01

    Lava terrains on other planets and moons exhibit morphologies similar to those found on Earth, such as smooth pāhoehoe transitioning to rough `a`ā terrains based on the viscosity - strain rate relationship of the lava. Therefore, the morphology of lava flows is governed by eruptive conditions such as effusion rate, underlying slope, and the fundamental thermo-physical properties of the lava, including temperature (T), composition (X), viscosity (η), fraction of crystals (φc) and vesicles (φb), as well as bulk density (ρ). These textural and rheological changes were previously studied for Hawaiian lava, where the lava flow started as channelized pāhoehoe and transitioned into `a`ā, demonstrating a systematic trend in T, X, η, φc, φb, and ρ. NASA's FINESSE focuses on Science and Exploration through analogue research. One of the field sites is Craters of the Moon, Idaho. We present field work done at a 3.0 km long lava flow belonging to the Blue Dragon lavas erupted from a chain of spatter cones, which then coalesced into channelized flows. We acquired UAV imagery along the entire length of the flow, and generated a high resolution DTM of 5 cm/pixel, from which we derived height profiles and surface roughness values. Field work included mapping the change in surface morphology and sample collection every 150 meters. In the laboratory, we measured φc, φb, and ρ for all collected samples. Viscosity measurements were carried out by concentric cylinder viscometry at subliquidus temperatures between 1310ºC to 1160ºC to study the rheology of the lava, enabling us to relate changes in flow behavior to T and φc. Our results are consistent with observations made for Hawaiian lava, including increasing bulk density downflow, and porosity changing from connected to isolated pore space. Crystallinity increases downflow, and the transition from pāhoehoe to `a`ā occurs between 1230ºC to 1150ºC, which is prompted by nucleation and growth of plagioclase microcrystals, strongly increasing the viscosity of the lava several orders of magnitude. The results of this study allows us to correlate T, X, η, φc, φb, and ρ to the lava flow morphology expressed as surface roughness, which can then be used as a tool to infer these physical properties of the rocks for open channel lava flows on other airless bodies, such as the Moon and Mercury, based on DTMs.

  2. The Three Dimensional Flow Field at the Exit of an Axial-Flow Turbine Rotor

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Ristic, D.; Chu, S.

    1998-01-01

    A systematic and comprehensive investigation was performed to provide detailed data on the three dimensional viscous flow phenomena downstream of a modem turbine rotor and to understand the flow physics such as origin, nature, development of wakes, secondary flow, and leakage flow. The experiment was carried out in the Axial Flow Turbine Research Facility (AFTRF) at Penn State, with velocity measurements taken with a 3-D LDV System. Two radial traverses at 1% and 10% of chord downstream of the rotor have been performed to identify the three-dimensional flow features at the exit of the rotor blade row. Sufficient spatial resolution was maintained to resolve blade wake, secondary flow, and tip leakage flow. The wake deficit is found to be substantial, especially at 1% of chord downstream of the rotor. At this location, negative axial velocity occurs near the tip, suggesting flow separation in the tip clearance region. Turbulence intensities peak in the wake region, and cross- correlations are mainly associated with the velocity gradient of the wake deficit. The radial velocities, both in the wake and in the endwall region, are found to be substantial. Two counter-rotating secondary flows are identified in the blade passage, with one occupying the half span close to the casino and the other occupying the half span close to the hub. The tip leakage flow is well restricted to 10% immersion from the blade tip. There are strong vorticity distributions associated with these secondary flows and tip leakage flow. The passage averaged data are in good agreement with design values.

  3. ITS physical architecture.

    DOT National Transportation Integrated Search

    2002-04-01

    The Physical Architecture identifies the physical subsystems and, architecture flows between subsystems that will implement the processes and support the data flows of the ITS Logical Architecture. The Physical Architecture further identifies the sys...

  4. Oxidation-induced contraction and strengthening of boron fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.; Wagner, T. C.

    1981-01-01

    An investigation was conducted to measure and understand the physical and mechanical effects that occur in boron fibers during and after thermal treatment in a controlled oxygen argon gaseous mixture. Of principal concern was the optimization of this treatment as a secondary processing method for significantly improving fiber tensile strength. Strengthening was accomplished by an oxidation induced axial contraction of the fiber and a resulting axial compression of strength limiting flaws within the fiber's tungsten boride core. Various physical observations were used to develop mechanistic models for oxidation, contraction, and flow formation. Processing guidelines are discussed for possibly exceeding the 5.5 GN/sq m strength limit and also for achieving fiber strengthening during application of boron containing diffusion barrier coatings.

  5. A Review of Criticality Accidents 2000 Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas P. McLaughlin; Shean P. Monahan; Norman L. Pruvost

    Criticality accidents and the characteristics of prompt power excursions are discussed. Sixty accidental power excursions are reviewed. Sufficient detail is provided to enable the reader to understand the physical situation, the chemistry and material flow, and when available the administrative setting leading up to the time of the accident. Information on the power history, energy release, consequences, and causes are also included when available. For those accidents that occurred in process plants, two new sections have been included in this revision. The first is an analysis and summary of the physical and neutronic features of the chain reacting systems. Themore » second is a compilation of observations and lessons learned. Excursions associated with large power reactors are not included in this report.« less

  6. Mapping the Limitations of Breakthrough Analysis in Fixed-Bed Adsorption

    NASA Technical Reports Server (NTRS)

    Knox, James Clinton

    2017-01-01

    The separation of gases through adsorption plays an important role in the chemical processing industry, where the separation step is often the costliest part of a chemical process and thus worthy of careful study and optimization. This work developed a number of new, archival aspects on the computer simulations used for the refinement and design of these gas adsorption processes: 1. Presented a new approach to fit the undetermined heat and mass transfer coefficients in the axially dispersed plug flow equation and associated balance equations 2. Examined and described the conditions where non-physical simulation results can arise 3. Presented an approach to determine the limits of the axial dispersion and LDF mass transfer terms above which non-physical simulation results occur.

  7. Orbit-spin coupling and the circulation of the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Shirley, James H.

    2017-07-01

    The physical origins of the observed interannual variability of weather and climate on Mars are poorly understood. In this paper we introduce a deterministic physical mechanism that may account for much of the variability of the circulation of the Mars atmosphere on seasonal and longer timescales. We focus on a possible coupling between the planetary orbital angular momentum and the angular momentum of the planetary rotation. We suspect that the planetary atmosphere may participate in an exchange of momentum between these two reservoirs. Nontrivial changes in the circulation of the atmosphere are likely to occur, as the atmospheric system gains and loses angular momentum, during this exchange. We derive a coupling expression linking orbital and rotational motions that produces an acceleration field varying with position and with time on and within a subject body. The spatially and temporally varying accelerations may interfere constructively or destructively with large-scale flows of geophysical fluids that are established and maintained by other means. This physical hypothesis predicts cycles of intensification and relaxation of circulatory flows of atmospheres on seasonal and longer timescales that are largely independent of solar forcing. The predictions of this hypothesis may be tested through numerical modeling. Examples from investigations of the atmospheric circulation of Mars are provided to illustrate qualitative features and quantitative aspects of the coupling mechanism proposed.

  8. From mesoscale eddies to small-scale turbulence in the Antarctic Circumpolar Current

    NASA Astrophysics Data System (ADS)

    Naveira Garabato, A.; Brearley, J. A.; Sheen, K. L.; Waterman, S. N.

    2012-12-01

    A foremost question in physical oceanography is that of how the oceanic mesoscale dissipates. The Antarctic Circumpolar Current (ACC), in the Southern Ocean, is forced strongly by the wind and hosts a vigorous mesoscale eddy field. It has been recently suggested that substantial dampening of mesoscale flows in the region may occur through interactions with topography, on the basis of a number of indirect approaches. Here, we present the first direct evidence of a transfer of energy between mesoscale eddies and small-scale turbulence in the ACC, via the radiation, instability and breaking of internal waves generated as mesoscale flows impinge on rough topography. The evidence is provided by analysis of two data sets gathered by the DIMES (Diapycnal and Isopycnal Experiment in the Southern Ocean) experiment: (1) the observations of a mooring cluster, specifically designed to measure dynamical exchanges between the mesoscale eddy and internal wave fields in Drake Passage over a 2-year deployment; and (2) an extensive fine- and microstructure survey of the region. The physical mechanisms implicated in the cascade of energy across scales will be discussed.

  9. The Influence of Subglacial Hydrology on Ice Stream Velocity in a Physical Model

    NASA Astrophysics Data System (ADS)

    Wagman, B. M.; Catania, G.; Buttles, J. L.

    2011-12-01

    We use a physical model to investigate how changes in subglacial hydrology affect ice motion in ice streams found in the West Antarctic Ice Sheet. Ice streams are modeled using silicone polymer placed over a thin water layer to simulate ice flow dominated by basal sliding. Dynamic similarity between modeled and natural ice streams is achieved through direct comparison of the glacier force balance using the conditions on Whillans Ice Stream (WIS) as our goal.This ice stream has a force balance that has evolved through time due to increased basal resistance. Currently, between 50-90% of the driving stress is supported by the ice stream shear margins [Stearns et al., JGlac 2005]. A similar force balance can be achieved in our model with a surface slope of 0.025. We test two hypotheses; 1) the distribution and thickness of the subglacial water layer influences the ice flow speed and thus the force balance and can reproduce the observed slowdown of WIS and; 2) shear margins are locations where transitions in water layer thickness occur.

  10. Why do they not answer and do they really learn? A case study in analysing student response flows in introductory physics using an audience response system

    NASA Astrophysics Data System (ADS)

    Jääskeläinen, Markku; Lagerkvist, Andreas

    2017-07-01

    In this paper we investigate teaching with a classroom response system in introductory physics with emphasis on two issues. First, we discuss retention between question rounds and the reasons why students avoid answering the question a second time. A question with declining response rate was followed by a question addressing the student reasons for not answering. We find that there appear to be several reasons for the observed decline, and that the students need to be reminded. We argue that small drops are unimportant as the process appears to work despite the drops. Second, we discuss the dynamics of learning in a concept-sequence in electromagnetism, where a majority of the students, despite poor statistics in a first round, manage to answer a followup question correctly. In addition, we analyse the response times for both situations to connect with research on student reasoning on situations with misconception-like answers. From the combination of the answer flows and response time behaviours we find it plausible that conceptual learning occurred during the discussion phase.

  11. Plant Production Systems for Microgravity: Critical Issues in Water, Air, and Solute Transport Through Unsaturated Porous Media

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan L. (Editor); Ming, Doug W. (Editor); Henninger, Don (Editor)

    2002-01-01

    This NASA Technical Memorandum is a compilation of presentations and discussions in the form of minutes from a workshop entitled 'Plant Production Systems for Microgravity: Critical Issues in Water, Air, and Solute Transport Through Unsaturated Porous Media' held at NASA's Johnson Space Center, July 24-25, 2000. This workshop arose from the growing belief within NASA's Advanced Life Support Program that further advances and improvements in plant production systems for microgravity would benefit from additional knowledge of fundamental processes occurring in the root zone. The objective of the workshop was to bring together individuals who had expertise in various areas of fluid physics, soil physics, plant physiology, hardware development, and flight tests to identify, discuss, and prioritize critical issues of water and air flow through porous media in microgravity. Participants of the workshop included representatives from private companies involved in flight hardware development and scientists from universities and NASA Centers with expertise in plant flight tests, plant physiology, fluid physics, and soil physics.

  12. Model-based virtual VSB mask writer verification for efficient mask error checking and optimization prior to MDP

    NASA Astrophysics Data System (ADS)

    Pack, Robert C.; Standiford, Keith; Lukanc, Todd; Ning, Guo Xiang; Verma, Piyush; Batarseh, Fadi; Chua, Gek Soon; Fujimura, Akira; Pang, Linyong

    2014-10-01

    A methodology is described wherein a calibrated model-based `Virtual' Variable Shaped Beam (VSB) mask writer process simulator is used to accurately verify complex Optical Proximity Correction (OPC) and Inverse Lithography Technology (ILT) mask designs prior to Mask Data Preparation (MDP) and mask fabrication. This type of verification addresses physical effects which occur in mask writing that may impact lithographic printing fidelity and variability. The work described here is motivated by requirements for extreme accuracy and control of variations for today's most demanding IC products. These extreme demands necessitate careful and detailed analysis of all potential sources of uncompensated error or variation and extreme control of these at each stage of the integrated OPC/ MDP/ Mask/ silicon lithography flow. The important potential sources of variation we focus on here originate on the basis of VSB mask writer physics and other errors inherent in the mask writing process. The deposited electron beam dose distribution may be examined in a manner similar to optical lithography aerial image analysis and image edge log-slope analysis. This approach enables one to catch, grade, and mitigate problems early and thus reduce the likelihood for costly long-loop iterations between OPC, MDP, and wafer fabrication flows. It moreover describes how to detect regions of a layout or mask where hotspots may occur or where the robustness to intrinsic variations may be improved by modification to the OPC, choice of mask technology, or by judicious design of VSB shots and dose assignment.

  13. High-resolution urban flood modelling - a joint probability approach

    NASA Astrophysics Data System (ADS)

    Hartnett, Michael; Olbert, Agnieszka; Nash, Stephen

    2017-04-01

    The hydrodynamic modelling of rapid flood events due to extreme climatic events in urban environment is both a complex and challenging task. The horizontal resolution necessary to resolve complexity of urban flood dynamics is a critical issue; the presence of obstacles of varying shapes and length scales, gaps between buildings and the complex geometry of the city such as slopes affect flow paths and flood levels magnitudes. These small scale processes require a high resolution grid to be modelled accurately (2m or less, Olbert et al., 2015; Hunter et al., 2008; Brown et al., 2007) and, therefore, altimetry data of at least the same resolution. Along with availability of high-resolution LiDAR data and computational capabilities, as well as state of the art nested modelling approaches, these problems can now be overcome. Flooding and drying, domain definition, frictional resistance and boundary descriptions are all important issues to be addressed when modelling urban flooding. In recent years, the number of urban flood models dramatically increased giving a good insight into various modelling problems and solutions (Mark et al., 2004; Mason et al., 2007; Fewtrell et al., 2008; Shubert et al., 2008). Despite extensive modelling work conducted for fluvial (e.g. Mignot et al., 2006; Hunter et al., 2008; Yu and Lane, 2006) and coastal mechanisms of flooding (e.g. Gallien et al., 2011; Yang et al., 2012), the amount of investigations into combined coastal-fluvial flooding is still very limited (e.g. Orton et al., 2012; Lian et al., 2013). This is surprising giving the extent of flood consequences when both mechanisms occur simultaneously, which usually happens when they are driven by one process such as a storm. The reason for that could be the fact that the likelihood of joint event is much smaller than those of any of the two contributors occurring individually, because for fast moving storms the rainfall-driven fluvial flood arrives usually later than the storm surge (Divoky et al., 2005). Nevertheless, such events occur and in Ireland alone there are several cases of serious damage due to flooding resulting from a combination of high sea water levels and river flows driven by the same meteorological conditions (e.g. Olbert et al. 2015). A November 2009 fluvial-coastal flooding of Cork City bringing €100m loss was one such incident. This event was used by Olbert et al. (2015) to determine processes controlling urban flooding and is further explored in this study to elaborate on coastal and fluvial flood mechanisms and their roles in controlling water levels. The objective of this research is to develop a methodology to assess combined effect of multiple source flooding on flood probability and severity in urban areas and to establish a set of conditions that dictate urban flooding due to extreme climatic events. These conditions broadly combine physical flood drivers (such as coastal and fluvial processes), their mechanisms and thresholds defining flood severity. The two main physical processes controlling urban flooding: high sea water levels (coastal flooding) and high river flows (fluvial flooding), and their threshold values for which flood is likely to occur, are considered in this study. Contribution of coastal and fluvial drivers to flooding and their impacts are assessed in a two-step process. The first step involves frequency analysis and extreme value statistical modelling of storm surges, tides and river flows and ultimately the application of joint probability method to estimate joint exceedence return periods for combination of surges, tide and river flows. In the second step, a numerical model of Cork Harbour MSN_Flood comprising a cascade of four nested high-resolution models is used to perform simulation of flood inundation under numerous hypothetical coastal and fluvial flood scenarios. The risk of flooding is quantified based on a range of physical aspects such as the extent and depth of inundation (Apel et al., 2008) The methodology includes estimates of flood probabilities due to coastal- and fluvial-driven processes occurring individually or jointly, mechanisms of flooding and their impacts on urban environment. Various flood scenarios are examined in order to demonstrate that this methodology is necessary to quantify the important physical processes in coastal flood predictions. Cork City, located on the south of Ireland subject to frequent coastal-fluvial flooding, is used as a study case.

  14. Preferential flow occurs in unsaturated conditions

    USGS Publications Warehouse

    Nimmo, John R.

    2012-01-01

    Because it commonly generates high-speed, high-volume flow with minimal exposure to solid earth materials, preferential flow in the unsaturated zone is a dominant influence in many problems of infiltration, recharge, contaminant transport, and ecohydrology. By definition, preferential flow occurs in a portion of a medium – that is, a preferred part, whether a pathway, pore, or macroscopic subvolume. There are many possible classification schemes, but usual consideration of preferential flow includes macropore or fracture flow, funneled flow determined by macroscale heterogeneities, and fingered flow determined by hydraulic instability rather than intrinsic heterogeneity. That preferential flow is spatially concentrated associates it with other characteristics that are typical, although not defining: it tends to be unusually fast, to transport high fluxes, and to occur with hydraulic disequilibrium within the medium. It also has a tendency to occur in association with large conduits and high water content, although these are less universal than is commonly assumed. Predictive unsaturated-zone flow models in common use employ several different criteria for when and where preferential flow occurs, almost always requiring a nearly saturated medium. A threshold to be exceeded may be specified in terms of the following (i) water content; (ii) matric potential, typically a value high enough to cause capillary filling in a macropore of minimum size; (iii) infiltration capacity or other indication of incipient surface ponding; or (iv) other conditions related to total filling of certain pores. Yet preferential flow does occur without meeting these criteria. My purpose in this commentary is to point out important exceptions and implications of ignoring them. Some of these pertain mainly to macropore flow, others to fingered or funneled flow, and others to combined or undifferentiated flow modes.

  15. Effects of Double-Leakage Tip Clearance Flow on the Performance of a Compressor Stage with a Large Rotor Tip Gap

    NASA Technical Reports Server (NTRS)

    Hah, Chunill

    2016-01-01

    Effects of a large rotor tip gap on the performance of a one and half stage axial compressor are investigated in detail with a numerical simulation based on LES and available PIV data. The current paper studies the main flow physics, including why and how the loss generation is increased with the large rotor tip gap. The present study reveals that when the tip gap becomes large, tip clearance fluid goes over the tip clearance core vortex and enters into the next blade's tip gap, which is called double-leakage tip clearance flow. As the tip clearance flow enters into the adjacent blade's tip gap, a vortex rope with a lower pressure core is generated. This vortex rope breaks up the tip clearance core vortex of the adjacent blade, resulting in a large additional mixing. This double-leakage tip clearance flow occurs at all operating conditions, from design flow to near stall condition, with the large tip gap for the current compressor stage. The double-leakage tip clearance flow, its interaction with the tip clearance core vortex of the adjacent blade, and the resulting large mixing loss are the main flow mechanism of the large rotor tip gap in the compressor. When the tip clearance is smaller, flow near the end wall follows more closely with the main passage flow and this double-leakage tip clearance flow does not happen near the design flow condition for the current compressor stage. When the compressor with a large tip gap operates at near stall operation, a strong vortex rope is generated near the leading edge due to the double-leakage flow. Part of this vortex separates from the path of the tip clearance core vortex and travels from the suction side of the blade toward the pressure side of the blade. This vortex is generated periodically at near stall operation with a large tip gap. As the vortex travels from the suction side to the pressure side of the blade, a large fluctuation of local pressure forces blade vibration. Nonsynchronous blade vibration occurs due to this vortex as the frequency of this vortex generation is not the same as the rotor. The present investigation confirms that this vortex is a part of separated tip clearance vortex, which is caused by the double-leakage tip clearance flow.

  16. Flow and habitat effects on juvenile fish abundance in natural and altered flow regimes

    USGS Publications Warehouse

    Freeman, Mary C.; Bowen, Z.H.; Bovee, K.D.; Irwin, E.R.

    2001-01-01

    Conserving biological resources native to large river systems increasingly depends on how flow-regulated segments of these rivers are managed. Improving management will require a better understanding of linkages between river biota and temporal variability of flow and instream habitat. However, few studies have quantified responses of native fish populations to multiyear (>2 yr) patterns of hydrologic or habitat variability in flow-regulated systems. To provide these data, we quantified young-of-year (YOY) fish abundance during four years in relation to hydrologic and habitat variability in two segments of the Tallapoosa River in the southeastern United States. One segment had an unregulated flow regime, whereas the other was flow-regulated by a peak-load generating hydropower dam. We sampled fishes annually and explored how continuously recorded flow data and physical habitat simulation models (PHABSIM) for spring (April-June) and summer (July-August) preceding each sample explained fish abundances. Patterns of YOY abundance in relation to habitat availability (median area) and habitat persistence (longest period with habitat area continuously above the long-term median area) differed between unregulated and flow-regulated sites. At the unregulated site, YOY abundances were most frequently correlated with availability of shallow-slow habitat in summer (10 species) and persistence of shallow-slow and shallow-fast habitat in spring (nine species). Additionally, abundances were negatively correlated with 1-h maximum flow in summer (five species). At the flow-regulated site, YOY abundances were more frequently correlated with persistence of shallow-water habitats (four species in spring; six species in summer) than with habitat availability or magnitude of flow extremes. The associations of YOY with habitat persistence at the flow-regulated site corresponded to the effects of flow regulation on habitat patterns. Flow regulation reduced median flows during spring and summer, which resulted in median availability of shallow-water habitats comparable to the unregulated site. However, habitat persistence was severely reduced by flow fluctuations resulting from pulsed water releases for peak-load power generation. Habitat persistence, comparable to levels in the unregulated site, only occurred during summer when low rainfall or other factors occasionally curtailed power generation. As a consequence, summer-spawning species numerically dominated the fish assemblage at the flow-regulated site; five of six spring-spawning species occurring at both study sites were significantly less abundant at the flow-regulated site. Persistence of native fishes in flow-regulated systems depends, in part, on the seasonal occurrence of stable habitat conditions that facilitate reproduction and YOY survival.

  17. Effect of spatial organisation behaviour on upscaling the overland flow formation in an arable land

    NASA Astrophysics Data System (ADS)

    Silasari, Rasmiaditya; Blöschl, Günter

    2014-05-01

    Overland flow during rainfall events on arable land is important to investigate as it affects the land erosion process and water quality in the river. The formation of overland flow may happen through different ways (i.e. Hortonian overland flow, saturation excess overland flow) which is influenced by the surface and subsurface soil characteristics (i.e. land cover, soil infiltration rate). As the soil characteristics vary throughout the entire catchment, it will form distinct spatial patterns with organised or random behaviour. During the upscaling of hydrological processes from plot to catchment scale, this behaviour will become substantial since organised patterns will result in higher spatial connectivity and thus higher conductivity. However, very few of the existing studies explicitly address this effect of spatial organisations of the patterns in upscaling the hydrological processes to the catchment scale. This study will assess the upscaling of overland flow formation with concerns of spatial organisation behaviour of the patterns by application of direct field observations under natural conditions using video camera and soil moisture sensors and investigation of the underlying processes using a physical-based hydrology model. The study area is a Hydrological Open Air Laboratory (HOAL) located at Petzenkirchen, Lower Austria. It is a 64 ha catchment with land use consisting of arable land (87%), forest (6%), pasture (5%) and paved surfaces (2%). A video camera is installed 7m above the ground on a weather station mast in the middle of the arable land to monitor the overland flow patterns during rainfall events in a 2m x 6m plot scale. Soil moisture sensors with continuous measurement at different depth (5, 10, 20 and 50cm) are installed at points where the field is monitored by the camera. The patterns of overland flow formation and subsurface flow state at the plot scale will be generated using a coupled surface-subsurface flow physical-based hydrology model. The observation data will be assimilated into the model to verify the corresponding processes between surface and subsurface flow during the rainfall events. The patterns of conductivity then will be analyzed at catchment scale using the spatial stochastic analysis based on the classification of soil characteristics of the entire catchment. These patterns of conductivity then will be applied in the model at catchment scale to see how the organisational behaviour can affect the spatial connectivity of the hydrological processes and the results of the catchment response. A detailed modelling of the underlying processes in the physical-based model will allow us to see the direct effect of the spatial connectivity to the occurring surface and subsurface flow. This will improve the analysis of the effect of spatial organisations of the patterns in upscaling the hydrological processes from plot to catchment scale.

  18. Validating a magnetic reconnection model for the magnetopause

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-01-01

    Originating in the Sun's million-degree corona, the solar wind flows at supersonic speeds into interplanetary space, carrying with it the solar magnetic field. As the solar wind reaches Earth's orbit, its interaction with the geomagnetic field forms the magnetosphere, a bubble-like structure within the solar wind flow that shields Earth from direct exposure to the solar wind as well as to the highly energetic charged particles produced during solar storms. Under certain orientations, the magnetic field entrained in the solar wind, known as the interplanetary magnetic field (IMF), merges with the geomagnetic field, transferring mass, momentum, and energy to the magnetosphere. The merging of these two distinct magnetic fields occurs through magnetic reconnection, a fundamental plasma-physical process that converts magnetic energy into kinetic energy and heat.

  19. Thermochemical nonequilibrium in atomic hydrogen at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Scott, R. K.

    1972-01-01

    A numerical study of the nonequilibrium flow of atomic hydrogen in a cascade arc was performed to obtain insight into the physics of the hydrogen cascade arc. A rigorous mathematical model of the flow problem was formulated, incorporating the important nonequilibrium transport phenomena and atomic processes which occur in atomic hydrogen. Realistic boundary conditions, including consideration of the wall electrostatic sheath phenomenon, were included in the model. The governing equations of the asymptotic region of the cascade arc were obtained by writing conservation of mass and energy equations for the electron subgas, an energy conservation equation for heavy particles and an equation of state. Finite-difference operators for variable grid spacing were applied to the governing equations and the resulting system of strongly coupled, stiff equations were solved numerically by the Newton-Raphson method.

  20. A century of studying effusive eruptions in Hawai'i: Chapter 9 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Cashman, Katherine V.; Mangan, Margaret T.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The Hawaiian Volcano Observatory (HVO) was established as a natural laboratory to study volcanic processes. Since the most frequent form of volcanic activity in Hawai‘i is effusive, a major contribution of the past century of research at HVO has been to describe and quantify lava flow emplacement processes. Lava flow research has taken many forms; first and foremost it has been a collection of basic observational data on active lava flows from both Mauna Loa and Kīlauea volcanoes that have occurred over the past 100 years. Both the types and quantities of observational data have changed with changing technology; thus, another important contribution of HVO to lava flow studies has been the application of new observational techniques. Also important has been a long-term effort to measure the physical properties (temperature, viscosity, crystallinity, and so on) of flowing lava. Field measurements of these properties have both motivated laboratory experiments and presaged the results of those experiments, particularly with respect to understanding the rheology of complex fluids. Finally, studies of the dynamics of lava flow emplacement have combined detailed field measurements with theoretical models to build a framework for the interpretation of lava flows in numerous other terrestrial, submarine, and planetary environments. Here, we attempt to review all these aspects of lava flow studies and place them into a coherent framework that we hope will motivate future research.

  1. Procedures for Computing Transonic Flows for Control of Adaptive Wind Tunnels. Ph.D. Thesis - Technische Univ., Berlin, Mar. 1986

    NASA Technical Reports Server (NTRS)

    Rebstock, Rainer

    1987-01-01

    Numerical methods are developed for control of three dimensional adaptive test sections. The physical properties of the design problem occurring in the external field computation are analyzed, and a design procedure suited for solution of the problem is worked out. To do this, the desired wall shape is determined by stepwise modification of an initial contour. The necessary changes in geometry are determined with the aid of a panel procedure, or, with incident flow near the sonic range, with a transonic small perturbation (TSP) procedure. The designed wall shape, together with the wall deflections set during the tunnel run, are the input to a newly derived one-step formula which immediately yields the adapted wall contour. This is particularly important since the classical iterative adaptation scheme is shown to converge poorly for 3D flows. Experimental results obtained in the adaptive test section with eight flexible walls are presented to demonstrate the potential of the procedure. Finally, a method is described to minimize wall interference in 3D flows by adapting only the top and bottom wind tunnel walls.

  2. Partial liquid-penetration inside a deep trench by film flowing over it

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuc-Khanh; Dimakopoulos, Yiannis; Tsamopoulos, John

    2014-11-01

    Liquid film flow along substrates featuring a deep trench may not wet the trench floor, but create a second gas-liquid interface inside the trench. The liquid penetration inside the trench depends on the location and shape of this inner interface. The penetration increases by decreasing the two three-phase contact lines between the inner interface and the two side-walls or the flow rate and depends on the liquid properties. This partial-penetration is studied by employing the Galerkin / finite element method to solve the two-dimensional steady-state Navier-Stokes equations in a physical domain that is adaptively remeshed. Multiple branches of steady solutions connected via turning points are revealed by pseudo arc-length continuation. Flow hysteresis may occur in a certain range of liquid penetration depth, when the interaction of the two interfaces changes qualitatively. This induces an abrupt jump of penetration distance and deformation amplitude of the outer interface. Work supported by the General Secretariat of Research & Technology of Greece through the program ``Excellence'' (Grant No. 1918) in the framework ``Education and Lifelong Learning'' co-funded by the ESF.

  3. Testing of RANS Turbulence Models for Stratified Flows Based on DNS Data

    NASA Technical Reports Server (NTRS)

    Venayagamoorthy, S. K.; Koseff, J. R.; Ferziger, J. H.; Shih, L. H.

    2003-01-01

    In most geophysical flows, turbulence occurs at the smallest scales and one of the two most important additional physical phenomena to account for is strati cation (the other being rotation). In this paper, the main objective is to investigate proposed changes to RANS turbulence models which include the effects of stratifi- cation more explicitly. These proposed changes were developed using a DNS database on strati ed and sheared homogenous turbulence developed by Shih et al. (2000) and are described more fully in Ferziger et al. (2003). The data generated by Shih, et al. (2000) (hereinafter referred to as SKFR) are used to study the parameters in the k- model as a function of the turbulent Froude number, Frk. A modified version of the standard k- model based on the local turbulent Froude number is proposed. The proposed model is applied to a stratified open channel flow, a test case that differs significantly from the flows from which the modified parameters were derived. The turbulence modeling and results are discussed in the next two sections followed by suggestions for future work.

  4. Radiative interactions in laminar duct flows

    NASA Technical Reports Server (NTRS)

    Trivedi, P. A.; Tiwari, S. N.

    1990-01-01

    Analyses and numerical procedures are presented for infrared radiative energy transfer in gases when other modes of energy transfer occur simultaneously. Two types of geometries are considered, a parallel plate duct and a circular duct. Fully developed laminar incompressible flows of absorbing-emitting species in black surfaced ducts are considered under the conditions of uniform wall heat flux. The participating species considered are OH, CO, CO2, and H2O. Nongray as well as gray formulations are developed for both geometries. Appropriate limiting solutions of the governing equations are obtained and conduction-radiation interaction parameters are evaluated. Tien and Lowder's wide band model correlation was used in nongray formulation. Numerical procedures are presented to solve the integro-differential equations for both geometries. The range of physical variables considered are 300 to 2000 K for temperature, 0.1 to 100.0 atm for pressure, and 0.1 to 100 cm spacings between plates/radius of the tube. An extensive parametric study based on nongray formulation is presented. Results obtained for different flow conditions indicate that the radiative interactions can be quite significant in fully developed incompressible flows.

  5. Measurements of C V flows from thermal charge-exchange excitation in divertor plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaniol, B.; Isler, R. C.; Brooks, N. H.

    2001-10-01

    Certain transitions of C IV (C{sup 3+}) from n=7 to n=6 ({approx}7226 {angstrom}) and from n=6 to n=5 ({approx}4660 {angstrom}) sometimes appear much brighter in tokamak divertors than expected for electron-impact excitation from the ground state. This situation occurs because of charge exchange between C V (C{sup 4+}) and recycling thermal deuterium atoms in the n=2 level. As a result, it is possible to extend parallel flow measurements of carbon, which have previously been performed on C II--C IV ions using Doppler shift spectroscopy, to include flows of the He-like C V ions. The work described here includes modeling ofmore » the spectral features, correlation of state populations with classical Monte Carlo trajectory (CTMC) predictions, and applications to flow measurements in the DIII-D divertor [Plasma Physics Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159; Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque (Institute of Electrical and Electronic Engineers, Piscataway, 1999), p. 515].« less

  6. Measurements of C V flows from thermal charge-exchange excitation in divertor plasmas

    NASA Astrophysics Data System (ADS)

    Zaniol, B.; Isler, R. C.; Brooks, N. H.; West, W. P.; Olson, R. E.

    2001-10-01

    Certain transitions of C IV (C3+) from n=7 to n=6 (≈7226 Å) and from n=6 to n=5 (≈4660 Å) sometimes appear much brighter in tokamak divertors than expected for electron-impact excitation from the ground state. This situation occurs because of charge exchange between C V (C4+) and recycling thermal deuterium atoms in the n=2 level. As a result, it is possible to extend parallel flow measurements of carbon, which have previously been performed on C II-C IV ions using Doppler shift spectroscopy, to include flows of the He-like C V ions. The work described here includes modeling of the spectral features, correlation of state populations with classical Monte Carlo trajectory (CTMC) predictions, and applications to flow measurements in the DIII-D divertor [Plasma Physics Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159; Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque (Institute of Electrical and Electronic Engineers, Piscataway, 1999), p. 515].

  7. Analysis of gravity-induced particle motion and fluid perfusion flow in the NASA-designed rotating zero-head-space tissue culture vessel

    NASA Technical Reports Server (NTRS)

    Wolf, David A.; Schwarz, Ray P.

    1991-01-01

    The gravity induced motions, through the culture media, is calculated of living tissue segments cultured in the NASA rotating zero head space culture vessels. This is then compared with the media perfusion speed which is independent of gravity. The results may be interpreted as a change in the physical environment which will occur by operating the NASA tissue culture systems in actual microgravity (versus unit gravity). The equations governing particle motions which induce flows at the surface of tissues contain g terms. This allows calculation of the fluid flow speed, with respect to a cultured particle, as a function of the external gravitational field strength. The analysis is approached from a flow field perspective. Flow is proportional to the shear exerted on a structure which maintains position within the field. The equations are solved for the deviation of a particle from its original position in a circular streamline as a function of time. The radial deviation is important for defining the operating limits and dimensions of the vessel because of the finite radius at which particles necessarily intercept the wall. This analysis uses a rotating reference frame concept.

  8. Oscillatory mode transition for supersonic open cavity flows

    NASA Astrophysics Data System (ADS)

    Kumar, Mayank; Vaidyanathan, Aravind

    2018-02-01

    The transition in the primary oscillatory mode in an open cavity has been experimentally investigated and the associated characteristics in a Mach 1.71 flow has been analyzed. The length-to-depth (L/D) ratios of the rectangular cavities are varied from 1.67 to 3.33. Unsteady pressure measurement and flow visualization are employed to understand the transitional flow physics. Flow visualization revealed the change in oscillation pattern from longitudinal mode to transverse mode and is also characterized by the presence of two bow shocks at the trailing edge instead of one. The transition is found to occur between L/D 1.67 and 2, marked by a change in the feedback mechanism, resulting in a shift from the vortex circulation driven transverse feedback mode to the oscillating shear layer driven longitudinal feedback mode. Cavities oscillating in the transition mode exhibit multiple tones of comparable strength. Correlation analysis indicated the shift in the feedback mechanism. Wavelet analysis revealed the temporal behaviour of tones during transition. Tone switching is observed in deeper cavities and is attributed to the occurrence of two bow shocks as evident from the temporo-spectral characteristics of transition that affects the shear layer modal shape.

  9. Mathematical Modeling of an Oscillating Droplet

    NASA Technical Reports Server (NTRS)

    Berry, S.; Hyers, R. W.; Racz, L. M.; Abedian, B.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Oscillating droplets are of interest in a number of disciplines. A practical application is the oscillating drop method, which is a technique for measuring surface tension and viscosity of liquid metals. It is especially suited to undercooled and highly reactive metals, because it is performed by electromagnetic levitation. The natural oscillation frequency of the droplets is related to the surface tension of the material, and the decay of oscillations is related to its viscosity. The fluid flow inside the droplet must be laminar in order for this technique to yield good results. Because no experimental method has yet been developed to visualize flow in electromagnetically-levitated oscillating metal droplets, mathematical modeling is required to determine whether or not turbulence occurs. Three mathematical models of the flow: (1) assuming laminar conditions, (2) using the k-epsilon turbulence model, and (3) using the RNG turbulence model, respectively, are compared and contrasted to determine the physical characteristics of the flow. It is concluded that the RNG model is the best suited for describing this problem. The goal of the presented work was to characterize internal flow in an oscillating droplet of liquid metal, and to verify the accuracy of the characterization by comparing calculated surface tension and viscosity.

  10. Flow field topology of transient mixing driven by buoyancy

    NASA Technical Reports Server (NTRS)

    Duval, Walter M B.

    2004-01-01

    Transient mixing driven by buoyancy occurs through the birth of a symmetric Rayleigh-Taylor morphology (RTM) structure for large length scales. Beyond its critical bifurcation the RTM structure exhibits self-similarity and occurs on smaller and smaller length scales. The dynamics of the RTM structure, its nonlinear growth and internal collision, show that its genesis occurs from an explosive bifurcation which leads to the overlap of resonance regions in phase space. This event shows the coexistence of regular and chaotic regions in phase space which is corroborated with the existence of horseshoe maps. A measure of local chaos given by the topological entropy indicates that as the system evolves there is growth of uncertainty. Breakdown of the dissipative RTM structure occurs during the transition from explosive to catastrophic bifurcation; this event gives rise to annihilation of the separatrices which drives overlap of resonance regions. The global bifurcation of explosive and catastrophic events in phase space for the large length scale of the RTM structure serves as a template for which mixing occurs on smaller and smaller length scales. Copyright 2004 American Institute of Physics.

  11. Preliminary impact assessment of effusive eruptions at Etna volcano

    NASA Astrophysics Data System (ADS)

    Cappello, Annalisa; Michaud-Dubuy, Audrey; Branca, Stefano; De Beni, Emanuela; Del Negro, Ciro

    2016-04-01

    Lava flows are a recurring and widespread form of volcanic activity that threaten people and property around the world. The growing demographic congestion around volcanic structures increases the potential risks and costs that lava flows represent, and leads to a pressing need for faster and more accurate assessment of lava flow impact. To fully evaluate potential effects and losses that an effusive eruption may cause to society, property and environment, it is necessary to consider the hazard, the distribution of the exposed elements at stake and the associated vulnerability. Lava flow hazard assessment is at an advanced state, whereas comprehensive vulnerability assessment is lacking. Cataloguing and analyzing volcanic impacts provide insight on likely societal and physical vulnerabilities during future eruptions. Here we quantify the lava flow impact of two past main effusive eruptions of Etna volcano: the 1669, which is the biggest and destructive flank eruption to have occurred on Etna in historical time, and the 1981, lasting only 6 days, but characterized by an intense eruptive dynamics. Different elements at stake are considered, including population, hospitals, critical facilities, buildings of historic value, industrial infrastructures, gas and electricity networks, railways, roads, footways and finally land use. All these elements were combined with the 1669 and 1981 lava flow fields to quantify the social damage and economic loss.

  12. Understanding L-H transition in tokamak fusion plasmas

    NASA Astrophysics Data System (ADS)

    Xu, Guosheng; Wu, Xingquan

    2017-03-01

    This paper reviews the current state of understanding of the L-H transition phenomenon in tokamak plasmas with a focus on two central issues: (a) the mechanism for turbulence quick suppression at the L-H transition; (b) the mechanism for subsequent generation of sheared flow. We briefly review recent advances in the understanding of the fast suppression of edge turbulence across the L-H transition. We uncover a comprehensive physical picture of the L-H transition by piecing together a number of recent experimental observations and insights obtained from 1D and 2D simulation models. Different roles played by diamagnetic mean flow, neoclassical-driven mean flow, turbulence-driven mean flow, and turbulence-driven zonal flows are discussed and clarified. It is found that the L-H transition occurs spontaneously mediated by a shift in the radial wavenumber spectrum of edge turbulence, which provides a critical evidence for the theory of turbulence quench by the flow shear. Remaining questions and some key directions for future investigations are proposed. This work was supported by National Magnetic Confinement Fusion Science Program of China under Contracts No. 2015GB101000, No. 2013GB106000, and No. 2013GB107000 and National Natural Science Foundation of China under Contracts No. 11575235 and No. 11422546.

  13. Combining Field and Laboratory Experiments in Order to Understand Interactions Between Flow, Sediment, Vegetation And Bank Erosion in Riparian Rehabilitation Works

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. F.; Gorrick, S.; Kalma, J.; Cook, N.; Outhet, D.; Raine, A.

    2005-12-01

    Riparian lands are important for maintaining viable ecosystems, improving water quality and reducing sediment yields. Yet, riparian lands are frequently neglected, degraded and poorly managed. In many Australian riverine zones clearing or grazing of native riparian vegetation has resulted in varying degrees of erosion, sedimentation and degradation of aquatic ecosystems. Reintroducing riparian vegetation is one of the preferred methods for improving bank stability, reducing bank erosion to natural rates and rehabilitating channels. The present research aims to explore how reintroduced riparian vegetation modifies the flow and sediment transport patterns and at the same time how the vegetation is affected by flow and sediment. Both field experimentation and laboratory studies will lead to basic understanding of the processes involved and will help the efficient design of plantings for riparian rehabilitation. In order to be able to reproduce the most important processes in a laboratory physical model, a field site with a relatively simple geometry has been selected for the study. The site is on a small sand bed stream in the Hunter Valley in NSW. The reach has a large radius bend with no riparian vegetation on the outer bank, where erosion occurs periodically. Reintroduction of vegetation is planned for October 2005, with pre and post monitoring stages running from March 2005 to August 2008. Laboratory physical modelling based on field characteristics and with varying flow discharges and plant arrangement will provide information to help develop, adapt and test quantitative models of flow dynamics, sediment transport and bank erosion incorporating the effects of vegetation. These results can then be used by river managers when they are developing rehabilitation strategies.

  14. Large Eddy Simulation of Crashback in Marine Propulsors

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul

    Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of the free stream flow with the strong reverse flow. This interaction forms a highly unsteady vortex ring, which is a very prominent feature of crashback. Crashback causes highly unsteady loads and flow separation on the blade surface. The unsteady loads can cause propulsor blade damage, and also affect vehicle maneuverability. Crashback is therefore well known as one of the most challenging propeller states to analyze. This dissertation uses Large-Eddy Simulation (LES) to predict the highly unsteady flow field in crashback. A non-dissipative and robust finite volume method developed by Mahesh et al. (2004) for unstructured grids is applied to flow around marine propulsors. The LES equations are written in a rotating frame of reference. The objectives of this dissertation are: (1) to understand the flow physics of crashback in marine propulsors with and without a duct, (2) to develop a finite volume method for highly skewed meshes which usually occur in complex propulsor geometries, and (3) to develop a sliding interface method for simulations of rotor-stator propulsor on parallel platforms. LES is performed for an open propulsor in crashback and validated against experiments performed by Jessup et al. (2004). The LES results show good agreement with experiments. Effective pressures for thrust and side-force are introduced to more clearly understand the physical sources of thrust and side-force. Both thrust and side-force are seen to be mainly generated from the leading edge of the suction side of the propeller. This implies that thrust and side-force have the same source---the highly unsteady leading edge separation. Conditional averaging is performed to obtain quantitative information about the complex flow physics of high- or low-amplitude events. The events for thrust and side force show the same tendency. The conditional averages show that during high amplitude events, the vortex ring core is closer to the propeller blades, the reverse flow induced by the propeller rotation is lower, the forward flow is higher at the root of the blades, and leading and trailing edge flow separations are larger. The instantaneous flow field shows that during low amplitude events, the vortex ring is more axisymmetric and the stronger reverse flow induced by the vortex ring suppresses the forward flow so that flow separation on the blades is smaller. During high amplitude events, the vortex ring is less coherent and the weaker reverse flow cannot overcome the forward flow. The stronger forward flow makes flow separation on the blades larger. The effect of a duct on crashback is studied with LES. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average for high amplitude event shows consistent results; the tip leakage flow and pressure difference are significantly higher when thrust and side-force are higher. A sliding interface method is developed to allow simulations of rotor-stator propulsor in crashback. The method allows relative rotations between different parts of the computational grid. Search algorithm for sliding elements, data structures for message passing, and accurate interpolation scheme at the sliding interface are developed for arbitrary shaped unstructured grids on parallel computing platforms. Preliminary simulations of open propulsor in crashback show reasonable performance.

  15. Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder

    NASA Astrophysics Data System (ADS)

    Kirkil, Gokhan; Constantinescu, George

    2014-11-01

    The turbulent horseshoe vortex (HV) system and the near-wake flow past a circular cylinder mounted on a flat bed in an open channel are investigated based on results of eddy-resolving simulations and supporting flow visualizations. Of particular interest are the changes in the mean flow and turbulence statistics within the HV region as the necklace vortices wrap around the cylinder's base and the variation of the mean flow and turbulence statistics in the near wake, in between the channel bed and the free surface. While it is well known that the drag crisis induces important changes in the flow past infinitely-long circular cylinders, the changes are less understood and more complex for the case of flow past a surface-mounted cylinder. A detailed discussion of the changes in the flow physics between cylinder Reynolds numbers at which the flow in the upstream part of the separated shear layers (SSLs) is laminar (Re = 16,000, subcritical flow regime) and Reynolds numbers at which transition occurs inside the attached boundary layers away from the bed and the flow within the SSLs is turbulent (Re = 500,000, supercritical flow regime). The changes between the two regimes in the dynamics and level of coherence of the large-scale coherent structures (necklace vortices, vortex tubes shed in the SSLs and roller vortices shed in the wake) and their capacity to induce high-magnitude bed friction velocities in the mean and instantaneous flow fields and to amplify the near-bed turbulence are analyzed.

  16. Transport in zonal flows in analogous geophysical and plasma systems

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, Diego

    1999-11-01

    Zonal flows occur naturally in the oceans and the atmosphere of planets. Important examples include the zonal flows in Jupiter, the stratospheric polar jet in Antarctica, and oceanic jets like the Gulf Stream. These zonal flows create transport barriers that have a crucial influence on mixing and confinement (e.g. the ozone depletion in Antarctica). Zonal flows also give rise to long-lasting vortices (e.g. the Jupiter red spot) by shear instability. Because of this, the formation and stability of zonal flows and their role on transport have been problems of great interest in geophysical fluid dynamics. On the other hand, zonal flows have also been observed in fusion plasmas and their impact on the reduction of transport has been widely recognized. Based on the well-known analogy between Rossby waves in quasigeostrophic flows and drift waves in magnetically confined plasmas, I will discuss the relevance to fusion plasmas of models and experiments recently developed in geophysical fluid dynamics. Also, the potential application of plasma physics ideas to geophysical flows will be discussed. The role of shear in the suppression of transport and the effect of zonal flows on the statistics of transport will be studied using simplified models. It will be shown how zonal flows induce large particle displacements that can be characterized as Lévy flights, and that the trapping effect of vortices combined with the zonal flows gives rise to anomalous diffusion and Lévy (non-Gaussian) statistics. The models will be compared with laboratory experiments and with atmospheric and oceanographic qualitative observations.

  17. Physical stream habitat dynamics in Lower Bear Creek, northern Arkansas

    USGS Publications Warehouse

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.

    2003-01-01

    We evaluated the roles of geomorphic and hydrologic dynamics in determining physical stream habitat in Bear Creek, a stream with a 239 km2 drainage basin in the Ozark Plateaus (Ozarks) in northern Arkansas. During a relatively wet 12-month monitoring period, the geomorphology of Bear Creek was altered by a series of floods, including at least four floods with peak discharges exceeding a 1-year recurrence interval and another flood with an estimated 2- to 4-year recurrence interval. These floods resulted in a net erosion of sediment from the study reach at Crane Bottom at rates far in excess of other sites previously studied in the Ozarks. The riffle-pool framework of the study reach at Crane Bottom was not substantially altered by these floods, but volumes of habitat in riffles and pools changed. The 2- to 4-year flood scoured gravel from pools and deposited it in riffles, increasing the diversity of available stream habitat. In contract, the smaller floods eroded gravel from the riffles and deposited it in pools, possibly flushing fine sediment from the substrate but also decreasing habitat diversity. Channel geometry measured at the beginning of the study was use to develop a two-dimensional, finite-element hydraulic model at assess how habitat varies with hydrologic dynamics. Distributions of depth and velocity simulated over the range of discharges observed during the study (0.1 to 556 cubic meters per second, cms) were classified into habitat units based on limiting depths and Froude number criteria. The results indicate that the areas of habitats are especially sensitive to change to low to medium flows. Races (areas of swift, relatively deep water downstream from riffles) disappear completely at the lowest flows, and riffles (areas of swift, relatively shallow water) contract substantially in area. Pools also contract in area during low flow, but deep scours associated with bedrock outcrops sustain some pool area even at the lowest modeled flows. Modeled boundary shear stresses were used to evaluate which flows are responsible for the most mobilization of the bed, and therefore, habitat maintenance. Evaluation of the magnitude and frequency of bed-sediment entrainment shows that most of the habitat maintenance results from flows that occur on average about 4 to 7 days a year. Our analysis documents the geomorphic and hydrologic dynamics that form and maintain habitats in a warmwater stream in the Ozarks. The range of flows that occurs on this stream can be partitioned into those that sustain habitat by providing the combinations of depth and velocity that stream organisms live with most of the time, and those flows that surpass sediment entrainment thresholds, alter stream geomorphology, and therefore maintain habitat. The quantitative relations show sensitivity of habitats to flow variation, but do not address how flow may vary in the future, or the extent to which stream geomorphology may be affected by variations in sediment supply.

  18. Study of unsteady flow simulation of backward impeller with non-uniform casing

    NASA Astrophysics Data System (ADS)

    Swe, War War Min; Morimatsu, Hiroya; Hayashi, Hidechito; Okumura, Tetsuya; Oda, Ippei

    2017-06-01

    The flow characteristics of the centrifugal fans with different blade outlet angles are basically discussed on steady and unsteady simulations for a rectangular casing fan. The blade outlet angles of the impellers are 35° and 25° respectively. The unsteady flow behavior in the passage of the impeller 35° is quite different from that in the steady flow behavior. The large flow separation occurs in the steady flow field and unsteady flow field of the impeller 35°, the flow distribution in the circumferential direction varies remarkably and the flow separation on the blade occurs only at the back region of the fan; but the steady flow behavior in the impeller 25° is almost consistent with the unsteady flow behavior, the flow distribution of the circumferential direction doesn't vary much and the flow separation on the blade hardly occurs. When the circumferential variation of the flow in the impeller is large, the steady flow simulation is not coincident to the unsteady flow simulation.

  19. Determination of the plasma impedance of a glow discharge in carbon dioxide

    NASA Astrophysics Data System (ADS)

    Kiselev, A. S.; Smirnov, E. A.

    2017-07-01

    In this work an expression for the dynamic resistance of a glow discharge flowing in long tubes is obtained and analyzed. The expression describes the physical processes occurring in the positive column of a glow discharge. The frequency dependences of the active and reactive components as well as the dynamic resistance module for the discharge conditions corresponding to CO2-lasers have been calculated. Based on the simulation results developed a computer program in the C# programming language for modeling the dynamic resistance discharge of glow discharge lasers.

  20. New test techniques and analytical procedures for understanding the behavior of advanced propellers

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Bober, L. J.; Neumann, H. E.

    1983-01-01

    Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.

  1. Determination of Pressure Fluctuations in Rotor Bundle of Centrifugal Compressor at Critical Conditions of Operation

    NASA Astrophysics Data System (ADS)

    Levashov, V. A.; Lyubchenko, K. Yu

    2017-08-01

    This article describes the physical processes that occur in the stage flow part of the compressor while it is operating and can create conditions for the occurrence of forced vibrations, which in turn can lead to the destruction of the impellers. Critical conditions of compressor operation are determined. To understand that critical condition of operation is cause of the destruction of the impellers, transient CFD analysis was carried for test stage of compressor. The obtained pressure fluctuation amplitudes allow to evaluate the critical conditions of compressor operation.

  2. Contact Angle of Drops Measured on Nontransparent Surfaces and Capillary Flow Visualized

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Zhang, Nengli

    2003-01-01

    The spreading of a liquid on a solid surface is important for various practical processes, and contact-angle measurements provide an elegant method to characterize the interfacial properties of the liquid with the solid substrates. The complex physical processes occurring when a liquid contacts a solid play an important role in determining the performance of chemical processes and materials. Applications for these processes are in printing, coating, gluing, textile dyeing, and adhesives and in the pharmaceutical industry, biomedical research, adhesives, flat panel display manufacturing, surfactant chemistry, and thermal engineering.

  3. Numerical simulation of multiple-physical fields coupling for thermal anomalies before earthquakes: A case study of the 2008 Wenchuan Ms8.0 earthquake in southwest China

    NASA Astrophysics Data System (ADS)

    Deng, Z.

    2017-12-01

    It has become a highly focused issue that thermal anomalies appear before major earthquakes. There are various hypotheses about the mechanism of thermal anomalies. Because of lacking of enough evidences, the mechanism is still require to be further researched. Gestation and occurrence of a major earthquake is related with the interaction of multi-physical fields. The underground fluid surging out the surface is very likely to be the reason for the thermal anomaly. This study tries to answer some question, such as how the geothermal energy transfer to the surface, and how the multiple-physical fields interacted. The 2008 Wenchuan Ms8.0 earthquake, is one of the largest evens in the last decade in China mainland. Remote sensing studies indicate that distinguishable thermal anomalies occurred several days before the earthquake. The heat anomaly value is more than 3 times the average in normal time and distributes along the Longmen Shan fault zone. Based on geological and geophysical data, 2D dynamic model of coupled stress, seepage and thermal fields (HTM model) is constructed. Then using the COMSOL multi-physics filed software, this work tries to reveal the generation process and distribution patterns of thermal anomalies prior to thrust-type major earthquakes. The simulation get the results: (1)Before the micro rupture, with the increase of compression, the heat current flows to the fault in the footwall on the whole, while in the hanging wall of the fault, particularly near the ground surface, the heat flow upward. In the fault zone, heat flow upward along the fracture surface, heat flux in the fracture zone is slightly larger than the wall rock;, but the value is all very small. (2)After the occurrence of the micro fracture, the heat flow rapidly collects to the faults. In the fault zones, the heat flow accelerates up along the fracture surfaces, the heat flux increases suddenly, and the vertical heat flux reaches to the maximum. The heat flux in the 3 fracture zones is obviously larger than that in the non fracture zone. The high heat flux anomaly can continue several days to one month. The simulation results is consistent with the reality earthquake cases.

  4. An Analysis of Conceptual Flow Patterns and Structures in the Physics Classroom

    NASA Astrophysics Data System (ADS)

    Eshach, Haim

    2010-03-01

    The aim of the current research is to characterize the conceptual flow processes occurring in whole-class dialogic discussions with a high level of interanimation; in the present case, of a high-school class learning about image creation on plane mirrors. Using detailed chains of interaction and conceptual flow discourse maps-both developed for the purpose of this research-the classroom discourse, audio-taped and transcribed verbatim, was analyzed and three discussion structures were revealed: accumulation around budding foci concepts, zigzag between foci concepts, and concept tower. These structures as well as two additional factors, suggest the Two-Space Model of the whole class discussion proposed in the present article. The two additional factors are: (1) the teacher intervention; and (2) the conceptual barriers observed among the students, namely, materialistic thinking, and the tendency to attribute "unique characteristics" to optical devices. This model might help teachers to prepare and conduct efficient whole-class discussions which accord with the social constructivist perspective of learning.

  5. Physically-based distributed hydrologic modeling of tropical catchments: Hypothesis testing on model formation and runoff generation

    NASA Astrophysics Data System (ADS)

    Abebe, N. A.; Ogden, F. L.

    2011-12-01

    Watersheds vary in their nature based on their geographic location, altitude, climate, geology, soils, and land use/land cover. These variations lead to differences in the conceptualization and formulation of hydrological models intended to represent the expected hydrological processes in a given catchment. Watersheds in the tropics are characterized by intensive and persistent biological activity and a large amount of rainfall. Our study focuses on the Agua Salud project catchments located in the Panama Canal Watershed, Panama, which have steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. These catchments are also highly affected by soil cracks, decayed tree roots and animal burrows that form a network of preferential flow paths. One hypothesis is that these macropores conduct interflow during heavy rainfall, when a transient perched water table forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant flow processes, including overland flow, channel flow, vertical matrix and non-Richards film flow, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer and deep saturated groundwater flow. In our model formulation, we use the model to examine a variety of hydrological processes which we anticipate may occur. Emphasis is given to the modeling of the soil moisture dynamics in the bioturbation layer, development of lateral preferential flow and activation of the macropores and exchange of water at the interface between a bioturbation layer and a second layer below it. We consider interactions between surface water, ground water, channel water and perched water in the riparian zone cells with the aim of understanding likely runoff generation mechanisms. Results show that inclusion of as many different flow processes as possible during conceptualization and during model development helps to reject infeasible scenarios/hypotheses, and suggests further watershed-scale studies to improve our understanding of the hydrologic behavior of these poorly understood catchments.

  6. Assessing the Relative Mobility of Submarine Landslides from Deposit Morphology and Physical Properties: an Example from Nankai Trough, Offshore Japan

    NASA Astrophysics Data System (ADS)

    Sawyer, D.; Moore, Z. T.

    2014-12-01

    A prominent landslide deposit in the Slope Basin seaward of the Megasplay Fault in the Nankai Trough was emplaced by a high-mobility landslide based on analysis of physical properties and seismic geomorphology. Slide acceleration is a critical variable that determines amplitude of slide-generated tsunami but is many times a variable with large uncertainty. In controlled laboratory experiments, the ratio of the shear stress to yield strength, defined as the Flow Factor, controls a wide spectrum of mass movement styles from slow, retrogressive failure to rapid, liquefied flows. We apply the laboratory Flow Factor approach to a natural landslide in the Nankai Trough by constraining pre-failure particle size analysis and porosity. Several mass transport deposits (MTDs), were drilled and cored at Site C0021 in the Nankai Trough during Integrated Ocean Drilling Program (IODP) Expedition 338. The largest, MTD-6, occurs at 133-176 meters below seafloor and occurred approximately 0.87 Mya. Slide volume is 2 km3, transport distance is 5 km, and average deposit thickness is 50 m (maximum 180 m). Pre-failure water content was estimated from shallow sediments at Site C0018 (porosity = 72%). The average grain size distribution is 39% clay-sized, 58% silt-sized, and 3% sand-size particles as determined by hydrometer analyses of the MTD. Together, the porosity and clay fraction predict a Flow Factor of approximately 4, which corresponds to a relatively high mobility slide. We interpret this result to indicate the landslide that created MTD-6 was a single event that transported the slide mass relatively rapidly as opposed to a slow, episodic landslide event. This is supported by the observation of a completely evacuated source area with no remnant blocks or retrogressive headscarp and the internally chaotic seismic facies with large entrained blocks. Future works will focus on the tsunamigenic potential of this high mobility slide. This approach can be extended to other field settings characterized by fine-grained siliciclastics and where porosity and clay content are known.

  7. Physical aspects of computing the flow of a viscous fluid

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.

    1984-01-01

    One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.

  8. Asymmetrical reverse vortex flow due to induced-charge electro-osmosis around carbon stacking structures.

    PubMed

    Sugioka, Hideyuki

    2011-05-01

    Broken symmetry of vortices due to induced-charge electro-osmosis (ICEO) around stacking structures is important for the generation of a large net flow in a microchannel. Following theoretical predictions in our previous study, we herein report experimental observations of asymmetrical reverse vortex flows around stacking structures of carbon posts with a large height (~110 μm) in water, prepared by the pyrolysis of a photoresist film in a reducing gas. Further, by the use of a coupled calculation method that considers boundary effects precisely, the experimental results, except for the problem of anomalous flow reversal, are successfully explained. That is, unlike previous predictions, the precise calculations here show that stacking structures accelerate a reverse flow rather than suppressing it for a microfluidic channel because of the deformation of electric fields near the stacking portions; these structures can also generate a large net flow theoretically in the direction opposite that of a previous prediction for a standard vortex flow. Furthermore, by solving the one-dimensional Poisson-Nernst-Plank (PNP) equations in the presence of ac electric fields, we find that the anomalous flow reversal occurs by the phase retardation between the induced diffuse charge and the tangential electric field. In addition, we successfully explain the nonlinearity of the flow velocity on the applied voltage by the PNP analysis. In the future, we expect to improve the pumping performance significantly by using stacking structures of conductive posts along with a low-cost process. © 2011 American Physical Society

  9. Investigation of the cavitating flow in injector nozzles for diesel and biodiesel

    NASA Astrophysics Data System (ADS)

    Zhong, Wenjun; He, Zhixia; Wang, Qian; Jiang, Zhaochen; Fu, Yanan

    2013-07-01

    In diesel engines, the cavitating flow in nozzles greatly affects the fuel atomization characteristics and then the subsequent combustion and exhaust emissions. At present the biodiesel is a kind of prospective alternative fuel in diesel engines, the flow characteristics for the biodiesel fuel need to be investigated. In this paper, based on the third-generation synchrotrons of Shanghai Synchrotron Radiation facility (SSRF), a high-precision three-dimension structure of testing nozzle with detailed internal geometry information was obtained using X-ray radiography for a more accurate physical model. A flow visualization experiment system with a transparent scaled-up vertical multi-hole injector nozzle tip was setup. A high resolution and speed CCD camera equipped with a long distance microscope device was used to acquire flow images of diesel and biodiesel fuel, respectively. Then, the characteristics of cavitating flow and their effects on the fuel atomization characteristics were investigated. The experimental results show that the nozzle cavitating flow of both the diesel and biodiesel fuel could be divided into four regimes: turbulent flow, cavitation inception, development of cavitation and hydraulic flip. The critical pressures of both the cavitating flow and hydraulic flip of biodiesel are higher than those of diesel. The spray cone angle increases as the cavitation occurs, but it decreases when the hydraulic flip appears. Finally, it can be concluded that the Reynolds number decreases with the increase of cavitation number, and the discharge coefficient increases with the increase of cavitation number.

  10. Oscillatory fluid flow induces the osteogenic lineage commitment of mesenchymal stem cells: The effect of shear stress magnitude, frequency, and duration.

    PubMed

    Stavenschi, Elena; Labour, Marie-Noelle; Hoey, David A

    2017-04-11

    A potent regulator of bone anabolism is physical loading. However, it is currently unclear whether physical stimuli such as fluid shear within the marrow cavity is sufficient to directly drive the osteogenic lineage commitment of resident mesenchymal stem cells (MSC). Therefore, the objective of the study is to employ a systematic analysis of oscillatory fluid flow (OFF) parameters predicted to occur in vivo on early MSC osteogenic responses and late stage lineage commitment. MSCs were exposed to OFF of 1Pa, 2Pa and 5Pa magnitudes at frequencies of 0.5Hz, 1Hz and 2Hz for 1h, 2h and 4h of stimulation. Our findings demonstrate that OFF elicits a positive osteogenic response in MSCs in a shear stress magnitude, frequency, and duration dependent manner that is gene specific. Based on the mRNA expression of osteogenic markers Cox2, Runx2 and Opn after short-term fluid flow stimulation, we identified that a regime of 2Pa shear magnitude and 2Hz frequency induces the most robust and reliable upregulation in osteogenic gene expression. Furthermore, long-term mechanical stimulation utilising this regime, elicits a significant increase in collagen and mineral deposition when compared to static control demonstrating that mechanical stimuli predicted within the marrow is sufficient to directly drive osteogenesis. Copyright © 2017. Published by Elsevier Ltd.

  11. An integrated approach to investigate the hydrological behavior of the Santa Fe River Basin, north central Florida

    NASA Astrophysics Data System (ADS)

    Vibhava, F.; Graham, W. D.; De Rooij, R.; Maxwell, R. M.; Martin, J. B.; Cohen, M. J.

    2011-12-01

    The Santa Fe River Basin (SFRB) consists of three linked hydrologic units: the upper confined region (UCR), semi-confined transitional region (Cody Escarpment, CE) and lower unconfined region (LUR). Contrasting geological characteristics among these units affect streamflow generation processes. In the UCR, surface runoff and surficial stores dominate whereas in the LCR minimal surface runoff occurs and flow is dominated by groundwater sources and sinks. In the CE region the Santa Fe River (SFR) is captured entirely by a sinkhole into the Floridan aquifer, emerging as a first magnitude spring 6 km to the south. In light of these contrasting hydrological settings, developing a predictive, basin scale, physically-based hydrologic simulation model remains a research challenge. This ongoing study aims to assess the ability of a fully-coupled, physically-based three-dimensional hydrologic model (PARFLOW-CLM), to predict hydrologic conditions in the SFRB. The assessment will include testing the model's ability to adequately represent surface and subsurface flow sources, flow paths, and travel times within the basin as well as the surface-groundwater exchanges throughout the basin. In addition to simulating water fluxes, we also are collecting high resolution specific conductivity data at 10 locations throughout the river. Our objective is to exploit hypothesized strong end-member separation between riverine source water geochemistry to further refine the PARFLOW-CLM representation of riverine mixing and delivery dynamics.

  12. Physical mechanism of comet outbursts - An experimental result

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.

    1993-01-01

    Attention is given to an experimental investigation of the physical mechanism of comet outbursts which is consistent with the general picture of mantle presence on comets and clarifies the relation of mantles to eruptive activity. The experiment and closeup observation of Comet P/Halley suggest a result different from most mathematical models in that the release of gas pressure does not occur only from uniform gas flow out of the entire surface. In some active comets near perihelion within a few AU of the sun, gas production rates and disturbance of the surface may be so high that the outflow is nearly continuous, with the regolith being entirely stripped away, as in many of the models. The present model provides a cyclic eruption and recharge mechanism which is lacking in most other models.

  13. The genetic signature of recent speciation in manta rays (Manta alfredi and M. birostris).

    PubMed

    Kashiwagi, Tom; Marshall, Andrea D; Bennett, Michael B; Ovenden, Jennifer R

    2012-07-01

    Manta rays have been taxonomically revised as two species, Manta alfredi and M. birostris, on the basis of morphological and meristic data, yet the two species occur in extensive mosaic sympatry. We analysed the genetic signatures of the species boundary using a portion of the nuclear RAG1 (681 base pairs), mitochondrial CO1 (574 bp) and ND5 genes (1188 bp). The assay with CO1 sequences, widely used in DNA barcoding, failed to distinguish the two species. The two species were clearly distinguishable, however, with no shared RAG1 or ND5 haplotypes. The species were reciprocally monophyletic for RAG1, but paraphyletic for ND5 sequences. Qualitative evidence and statistical inferences using the 'Isolation-with-Migration models' indicated that these results were better explained with post-divergence gene flow in the recent past rather than incomplete lineage sorting with zero gene flow since speciation. An estimate of divergence time was less than 0.5 Ma with an upper confidence limit of within 1 Ma. Recent speciation of highly mobile species in the marine environment is of great interest, as it suggests that speciation may have occurred in the absence of long-term physical barriers to gene flow. We propose that the ecologically driven forces such as habitat choice played a significant role in speciation in manta rays. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. A Generalized Electron Heat Flow Relation and its Connection to the Thermal Force and the Solar Wind Parallel Electric Field

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.

    2017-12-01

    Enroute to a new formulation of the heat law for the solar wind plasma the role of the invariably neglected, but omnipresent, thermal force for the multi-fluid physics of the corona and solar wind expansion will be discussed. This force (a) controls the size of the collisional ion electron energy exchange, favoring the thermal vs supra thermal electrons; (b) occurs whenever heat flux occurs; (c) remains after the electron and ion fluids come to a no slip, zero parallel current, equilibrium; (d) enhances the equilibrium parallel electric field; but (e) has a size that is theoretically independent of the electron collision frequency - allowing its importance to persist far up into the corona where collisions are invariably ignored in first approximation. The constituent parts of the thermal force allow the derivation of a new generalized electron heat flow relation that will be presented. It depends on the separate field aligned divergences of electron and ion pressures and the gradients of the ion gravitational potential and parallel flow energies and is based upon a multi-component electron distribution function. The new terms in this heat law explicitly incorporate the astrophysical context of gradients, acceleration and external forces that make demands on the parallel electric field and quasi-neutrality; essentially all of these effects are missing in traditional formulations.

  15. Designing ecological flows to gravely braided rivers in alpine environments

    NASA Astrophysics Data System (ADS)

    Egozi, R.; Ashmore, P.

    2009-04-01

    Designing ecological flows in gravelly braided streams requires estimating the channel forming discharge in order to maintain the braided reach physical (allocation of flow and bed load) and ecological (maintaining the habitat diversity) functions. At present, compared to single meander streams, there are fewer guiding principles for river practitioners that can be used to manage braided streams. Insight into braiding morphodynamics using braiding intensity indices allows estimation of channel forming discharge. We assess variation in braiding intensity by mapping the total number of channels (BIT) and the number of active (transporting bed load) channels (BIA) at different stages of typical diurnal melt-water hydrographs in a pro-glacial braided river, Sunwapta River, Canada. Results show that both BIA and BIT vary with flow stage but over a limited range of values. Furthermore, maximum BIT occurs below peak discharge. At this stage there is a balance between channel merging from inundation and occupation of new channels as the stage rises. This stage is the channel forming discharge because above this stage the existing braided pattern cannot discharge the volume of water without causing morphological changes (e.g., destruction of bifurcations, channel avulsion). Estimation of the channel forming discharge requires a set of braiding intensity measurements over a range of flow stages. The design of ecological flows must take into consideration flow regime characteristics rather than just the channel forming discharge magnitude.

  16. Skin Effect Simulation for Area 11 Dense Plasma Focus Hot Plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meehan, B. Timothy

    Two arc flashover events occurred at the DPF Area 11 facility. These flashover events happened in the same location on the bank current delivery plates. The damage from one of these events can be seen on the left-hand side of Figure 1. Since the flashovers occurred in the same area of the bank, and the reliability of the bank is important for future DPF experiments, a failure analysis effort was initiated. Part of this failure analysis effort was an effort to understand the physical reasons behind why the flashover happened, and why it happened in the same place twice. Thismore » paper summarizes an effort to simulate the current flow in the bank in order to understand the reasons for the flashover.« less

  17. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation

    NASA Astrophysics Data System (ADS)

    Wang, Dengjun; Jin, Yan; Jaisi, Deb P.

    2015-11-01

    The fate and transport of individual type of engineered nanoparticles (ENPs) in porous media have been studied intensively and the corresponding mechanisms controlling ENPs transport and deposition are well-documented. However, investigations regarding the mobility of ENPs in the concurrent presence of another mobile colloidal phase such as naturally occurring colloids (colloid-mediated transport of ENPs) are largely lacking. Here, we investigated the cotransport and retention of engineered hydroxyapatite nanoparticles (HANPs) with naturally occurring hematite colloids in water-saturated sand columns under environmentally relevant transport conditions, i.e., pH, ionic strength (IS), and flow rate. Particularly, phosphate oxygen isotope fractionation of HANPs during cotransport was explored at various ISs and flow rates to examine the mechanisms controlling the isotope fractionation of HANPs in abiotic transport processes (physical transport). During cotransport, greater mobility of both HANPs and hematite occurred at higher pHs and flow rates, but at lower ISs. Intriguingly, the mobility of both HANPs and hematite was substantially lower during cotransport than the individual transport of either, attributed primarily to greater homo- and hetero-aggregation when both particles are copresent in the suspension. The shapes of breakthrough curves (BTCs) and retention profiles (RPs) during cotransport for both particles evolved from blocking to ripening with time and from flat to hyperexponential with depth, respectively, in response to decreases in pH and flow rate, and increases in IS. The blocking BTCs and RPs that are flat or hyperexponential can be well-approximated by a one-site kinetic attachment model. Conversely, a ripening model that incorporates attractive particle-particle interaction has to be employed to capture the ripening BTCs that are impacted by particle aggregation during cotransport. A small phosphate oxygen isotope fractionation (≤ 1.8‰) occurred among HANPs populations during cotransport responding to IS and flow rate changes. This fractionation is most likely a result of hetero-aggregation between hematite and HANPs that favors light phosphate isotopes (P16O4). This interpretation is further supported by the increase in isotope fractionation at higher ISs (i.e., greater aggregation). However, the fractionation was progressively erased by decreasing flow rate, ascribed to the reduced mass transfer of HANPs between the influent and effluent. Together our findings suggest that the cotransport and retention of HANPs and hematite colloids are highly sensitive to the considered physicochemical factors, and isotope tracing could serve as a promising tool to identify the sources and transport of phosphate-based NPs in complex subsurface environments due to insignificant transport-related isotope fractionation.

  18. Goal orientation, motivational climate, and dispositional flow of high school students engaged in extracurricular physical activity.

    PubMed

    Cervelló, Eduardo M; Moreno, Juan A; Villodre, Nestor Alonso; Iglesias, Damián

    2006-02-01

    The purpose of this study was to examine the role of goal orientation, motivational climate, and dispositional flow in physical education lessons on extracurricular involvement in physical activity. Questionnaires were administered to 1,103 (792 athletes; 311 nonathletes) secondary school students (M age = 14.3 yr., SD = 0.7). Analysis showed significant mean differences between groups on goal orientation and dispositional flow in physical education lessons, but none for perception of motivational climate. These findings suggest that dispositional variables are related to extracurricular involvement in physical activity.

  19. Glass-like dynamics in confined and congested ant traffic.

    PubMed

    Gravish, Nick; Gold, Gregory; Zangwill, Andrew; Goodisman, Michael A D; Goldman, Daniel I

    2015-09-07

    The collective movement of animal groups often occurs in confined spaces. As animal groups are challenged to move at high density, their mobility dynamics may resemble the flow of densely packed non-living soft materials such as colloids, grains, or polymers. However, unlike inert soft-materials, self-propelled collective living systems often display social interactions whose influence on collective mobility are only now being explored. In this paper, we study the mobility of bi-directional traffic flow in a social insect (the fire ant Solenopsis invicta) as we vary the diameter of confining foraging tunnels. In all tunnel diameters, we observe the emergence of spatially heterogeneous regions of fast and slow traffic that are induced through two phenomena: physical obstruction, arising from the inability of individual ants to interpenetrate, and time-delay resulting from social interaction in which ants stop to briefly antennate. Density correlation functions reveal that the relaxation dynamics of high density traffic fluctuations scale linearly with fluctuation size and are sensitive to tunnel diameter. We separate the roles of physical obstruction and social interactions in traffic flow using cellular automata based simulation. Social interaction between ants is modeled as a dwell time (Tint) over which interacting ants remain stationary in the tunnel. Investigation over a range of densities and Tint reveals that the slowing dynamics of collective motion in social living systems are consistent with dynamics near a fragile glass transition in inert soft-matter systems. In particular, flow is relatively insensitive to density until a critical density is reached. As social interaction affinity is increased (increasing Tint) traffic dynamics change and resemble a strong glass transition. Thus, social interactions play an important role in the mobility of collective living systems at high density. Our experiments and model demonstrate that the concepts of soft-matter physics aid understanding of the mobility of collective living systems, and motivate further inquiry into the dynamics of densely confined social living systems.

  20. Investigation of the blood behaviour and vascular diseases by using mathematical physic principles

    NASA Astrophysics Data System (ADS)

    Yardimci, Ahmet; Simsek, Buket

    2017-07-01

    In this paper we prepare a short survey for using of mathematical physic principles in blood flow and vascular diseases researches. The study of the behavior of blood flow in the blood vessels provides understanding on connection between flow and the development of dieseases such as atherosclerosis, thrombosis, aneurysms etc. and how the flow dynamics is changed under these conditions. Blood flow phenomena are often too complex that it would be possible to describe them entirely analytically, although simple models, such as Poiseuille model, can still provide some insight into blood flow. Blood is not an "ideal fluid" and energy is lost as flowing blood overcomes resistance. Resistance to blood flow is a function of viscosity, vessel radius, and vessel length. So, mathematical Physic principles are useful tools for blood flow research studies. Blood flow is a function of pressure gradient and resistance and resistance to flow can be estimates using Poiseuille's law. Reynold's number can be used to determine whether flow is laminar or turbulent.

  1. A Study of the Constrained Vapor Bubble Thermosyphon

    NASA Technical Reports Server (NTRS)

    Wayner, Peter C., Jr.; Plawsky, J. L.

    2000-01-01

    The objective of this effort is to better understand the physics of evaporation, condensation, and fluid flow as they affect the heat transfer processes in a constrained vapor bubble heat exchanger (CVBHX). This CVBHX consists of a small enclosed container with a square cross section (inside dimensions. 3 x 3 x 40 mm) partially filled with a liquid. The major portion of the liquid is in the corners, which act as arteries. When a temperature difference is applied to the ends of the CVBHX, evaporation occurs at the hot end and condensation at the cold end resulting in a very effective heat transfer device with great potential in space applications. Liquid is returned by capillary flow in the corners. A complete description of the system and the results obtained to date are given in the papers listed.

  2. Stability of Buoyancy-Driven Gas Flow: Visualization of Coherent and Incoherent Gas Flow Patterns and Capillary Trapping

    NASA Astrophysics Data System (ADS)

    Geistlinger, H. W.; Samani, S.; Pohlert, M.; Jia, R.; Lazik, D.

    2009-12-01

    There are several mechanisms by which the CO2 can be stored: (1) In hydrodynamic trapping, the buoyant CO2 remains as a mobile fluid but is prevented from flowing back to the surface by an impermeable cap rock. (2) In solution trapping, CO2 dissolves into the brine, possibly enhanced by gravity instabilities due to the larger density of the brine-CO2 liquid mixture. (3) In mineral trapping, geochemical binding to the rock due to mineral precipitation. (4) In capillary trapping, the CO2 phase is disconnected into a coherent, mobile phase and an incoherent, immobile (trapped) phase. Recent analytical and numerical investigations [Juanes et al., 2006, 2009; Hesse et al., 2007 ] of buoyant-driven CO2-plume along a sloped aquifer are based on the following conceptual process model: (1) During the injection period, the less wetting CO2 displaces the more wetting brine in a drainage-like process. It is assumed that no capillary trapping occurs and that the CO2-network is coherent and driven both by the injection pressure and the buoyant pressure. Because of this coherence assumption a generalized Darcy-law can be used for the dynamics of the mobile, gaseous CO2-phase. (2) After injection the buoyant CO2 migrates laterally and upward, and water displaces CO2 at the trailing edge of the plume in an imbibition-like process. During this process, there are several physical mechanisms by which the water can displace the CO2 [Lenormand et al., 1983]. In addition to piston-type displacement, core-annular flow (also called: cooperative pore-body filling) may occur, i.e. the wetting phase moves along the walls and under certain conditions the CO2-core flow becomes unstable (snap-off). For water wet rocks, snap-off is the dominant mechanism [Al-Futaisi and Patzek, 2003; Valvatne and Blunt, 2004]. There seems to be consensus that the capillary trapping mechanism has a huge impact on the migration and distribution of CO2 which, in turn, affects the effectiveness of the other sequestration mechanisms. In order to investigate the stability of buoyancy-driven gas flow and the transition between coherent flow, incoherent flow, and their correlation to capillary trapping, we conducted high-resolution optical bench scale experiments. We observed a grain-size (dk) - and flow-rate (Q) dependent transition from incoherent to coherent flow. Based on core-annular flow (= cooperative pore-body filling), we propose a dynamic stability criterion that could describe our experimental results. Our experimental results for vertical gas flow support the experimental results by Lenormand et al. [1983] obtained for horizontal flow, if one takes into account that gravity leads to more unstable flow conditions. Our main results, which are in strong contradiction to the accepted conceptual model of the sloped aquifer, are: (1) Capillary Trapping can already occur during injection and at the front of the plume [Lazik et al., 2008] (2) Gas clusters or bubbles can be mobile (incoherent gas flow) and immobile (capillary trapping), and (3) Incoherent gas flow can not be described by a generalized Darcy law [Geistlinger et al., 2006, 2009].

  3. Effects on wetting by spray on concentrated flow erosion and intake rate

    USDA-ARS?s Scientific Manuscript database

    When water flows in dry rills (or furrows), fast wetting and aggregate slaking occur. Conversely, when rain wets the surface of the soil before applying concentrated flow, slow wetting precedes the concentrated flow, and less aggregate disintegration occurs. It is hypothesized that slow wetting by t...

  4. Surface-subsurface turbulent interaction at the interface of a permeable bed: influence of the wall permeability

    NASA Astrophysics Data System (ADS)

    Kim, T.; Blois, G.; Best, J.; Christensen, K. T.

    2017-12-01

    Coarse-gravel river beds possess a high degree of permeability. Flow interactions between surface and subsurface flow across the bed interface is key to a number of natural processes occurring in the hyporheic zone. In fact, it is increasingly recognized that these interactions drive mass, momentum and energy transport across the interface, and consequently control biochemical processes as well as stability of sediments. The current study explores the role of the wall permeability in surface and subsurface flow interaction under controlled experimental conditions on a physical model of a gravel bed. The present wall model was constructed by five layers of cubically arranged spheres (d=25.4mm, where d is a diameter) providing 48% of porosity. Surface topography was removed by cutting half of a diameter on the top layer of spheres to render the flow surface smooth and highlight the impact of the permeability on the overlying flow. An impermeable smooth wall was also considered as a baseline of comparison for the permeable wall flow. To obtain basic flow statistics, low-frame-rate high-resolution PIV measurements were performed first in the streamwise-wall-normal (x-y) plane and refractive-index matching was employed to optically access the flow within the permeable wall. Time-resolved PIV experiments in the same facility were followed to investigate the flow interaction across the wall interface in sptaio-temporal domain. In this paper, a detailed analysis of the first and second order velocity statistics as well as the amplitude modulation for the flow overlying the permeable smooth wall will be presented.

  5. Can a simple dynamical system describe the interplay between drag and buoyancy in terrain-induced canopy flows?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Roo, Frederik; Banerjee, Tirtha

    Under non-neutral stratification and in the presence of topography the dynamics of turbulent flow within a canopy is not yet completely understood. This has, among others, serious implications for the measurement of surface – atmosphere exchange by means of eddy-covariance: for example the measurement of carbon dioxide fluxes are strongly influenced if drainage flows occur during night, when the flow within the canopy decouples from the flow aloft. An improved physical understanding of the behavior of scalars under canopy turbulence in complex terrain is urgently needed. In the present work, we investigate the dynamics of turbulent flow within sloped canopies,more » focusing on the slope wind and potential temperature. We concentrate on the presence of oscillatory behavior in the flow variables in terms of switching of flow regimes by conducting linear stability analysis. We revisit and correct the simplified theory that exists in the literature, which is based on the interplay between the drag force and the buoyancy. We find that the simplified description of this dynamical system cannot exhibit the observed richness of the dynamics. To augment the simplified dynamical system’s analysis, we make use of large-eddy simulation of a three-dimensional hill covered by a homogeneous forest and analyze the phase synchronization behavior of the buoyancy and drag forces in the momentum budget to explore the turbulent dynamics in more detail.« less

  6. Wax Modeling and Image Analysis for Classroom-Scale Lava Flow Simulations.

    NASA Astrophysics Data System (ADS)

    Rader, E. L.; Clarke, A. B.; Vanderkluysen, L.

    2016-12-01

    The use of polyethylene glycol wax (PEG 600) as an analog for lava allows for a visual representation of the complex physical process occurring in natural lava flows, including cooling, breakouts, and crust and lobe formation. We used a series of cameras positioned around a tank filled with chilled water as a lab bench to observe and quantify lava flow morphology and motion. A peristaltic pump connected to a vent at the base of the tank delivered dyed wax simulating effusive eruptions similar to those of Kilauea in Hawai`i. By varying the eruptive conditions such as wax temperature and eruption rate, students can observe how the crust forms on wax flows, how different textures result, and how a flow field evolves with time. Recorded footage of the same `eruption' can then be quantitatively analyzed using free software like ImageJ and Tracker to quantify time-series of spreading rate, change in height, and appearance of different surface morphologies. Additional dye colors can be added periodically to further illustrate how lava is transported from the vent to the periphery of a flow field (e.g., through a tube system). Data collected from this activity can be compared to active lava flow footage from Hawai`i and with numerical models of lava flow propagation, followed by discussions of the application of these data and concepts to predicting the behavior of lava in hazard management situations and interpreting paleomagnetic, petrologic, and mapping of older eruptions.

  7. Can a simple dynamical system describe the interplay between drag and buoyancy in terrain-induced canopy flows?

    DOE PAGES

    De Roo, Frederik; Banerjee, Tirtha

    2018-02-23

    Under non-neutral stratification and in the presence of topography the dynamics of turbulent flow within a canopy is not yet completely understood. This has, among others, serious implications for the measurement of surface – atmosphere exchange by means of eddy-covariance: for example the measurement of carbon dioxide fluxes are strongly influenced if drainage flows occur during night, when the flow within the canopy decouples from the flow aloft. An improved physical understanding of the behavior of scalars under canopy turbulence in complex terrain is urgently needed. In the present work, we investigate the dynamics of turbulent flow within sloped canopies,more » focusing on the slope wind and potential temperature. We concentrate on the presence of oscillatory behavior in the flow variables in terms of switching of flow regimes by conducting linear stability analysis. We revisit and correct the simplified theory that exists in the literature, which is based on the interplay between the drag force and the buoyancy. We find that the simplified description of this dynamical system cannot exhibit the observed richness of the dynamics. To augment the simplified dynamical system’s analysis, we make use of large-eddy simulation of a three-dimensional hill covered by a homogeneous forest and analyze the phase synchronization behavior of the buoyancy and drag forces in the momentum budget to explore the turbulent dynamics in more detail.« less

  8. Influence of mechanical rock properties and fracture healing rate on crustal fluid flow dynamics

    NASA Astrophysics Data System (ADS)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel; de Riese, Tamara

    2016-04-01

    Fluid flow in the Earth's crust is very slow over extended periods of time, during which it occurs within the connected pore space of rocks. If the fluid production rate exceeds a certain threshold, matrix permeability alone is insufficient to drain the fluid volume and fluid pressure builds up, thereby reducing the effective stress supported by the rock matrix. Hydraulic fractures form once the effective pressure exceeds the tensile strength of the rock matrix and act subsequently as highly effective fluid conduits. Once local fluid pressure is sufficiently low again, flow ceases and fractures begin to heal. Since fluid flow is controlled by the alternation of fracture permeability and matrix permeability, the flow rate in the system is strongly discontinuous and occurs in intermittent pulses. Resulting hydraulic fracture networks are largely self-organized: opening and subsequent healing of hydraulic fractures depends on the local fluid pressure and on the time-span between fluid pulses. We simulate this process with a computer model and describe the resulting dynamics statistically. Special interest is given to a) the spatially and temporally discontinuous formation and closure of fractures and fracture networks and b) the total flow rate over time. The computer model consists of a crustal-scale dual-porosity setup. Control parameters are the pressure- and time-dependent fracture healing rate, and the strength and the permeability of the intact rock. Statistical analysis involves determination of the multifractal properties and of the power spectral density of the temporal development of the total drainage rate and hydraulic fractures. References Bons, P. D. (2001). The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics, 336, 1-17. Miller, S. a., & Nur, A. (2000). Permeability as a toggle switch in fluid-controlled crustal processes. Earth and Planetary Science Letters, 183(1-2), 133-146. Sachau, T., Bons, P. D., & Gomez-Rivas, E. (2015). Transport efficiency and dynamics of hydraulic fracture networks. Frontiers in Physics, 3.

  9. Non-axisymmetric Flows and Transport in the Edge of MST

    NASA Astrophysics Data System (ADS)

    Miller, Matthew Charles

    Magnetic reconnection occurs in plasmas all throughout the universe and is responsible for spectacular and perplexing phenomena. In the Madison Symmetric Torus (MST) reversed field pinch (RFP), reconnection occurs as quasi-periodic bursts of tearing instabilities (saw-teeth), which give rise to a number of processes that affect the RFP's global behavior and confinement. This work examines the structure of turbulent plasma flow in the edge region and its role in affecting momentum and particle transport through the use of several insertable probes and novel ensemble techniques. Very few measurements exist of tearing mode flow structures. The flow structure has now been measured for m = 0 modes and is in good agreement with theoretical expectations for nonlinear resistive MHD calculated for the RFP using DEBS and NIMROD. The flows are predicted and measured to be different than the classical Sweet-Parker picture with symmetric inward flows. The flow fluctuations have a profound effect on momentum transport, which is trans- ported rapidly at the crash. This work advances the understanding of this process by measuring the Reynolds stress associated with turbulent flow. Combined with measurements of the Maxwell stress, a new picture for magnetic self-organization in the RFP via two-fluid physics has emerged. The Reynolds and Maxwell stresses are measured to be an order of magnitude larger than the rate of change in inertia but oppositely directed such that they almost cancel. Two-fluid effects are significant because of the relationship be- tween the Maxwell stress and the Hall dynamo, a term only existing in two-fluid theories. This relationship inextricably couples the momentum dynamics with the current dynamics. Indeed, the parallel momentum profile exhibits a relaxation at the crash akin to the relaxation seen in the parallel current density profile. Tearing modes also drive particle transport. Fluctuation-induced particle flux is resolved through a crash by measuring it directly as < neur>. The flux increases dramatically during a crash and is non-axisymmetric. Between crashes, the transport from tearing is small, which agrees with previous measurements that identified electrostatic transport as dominant at that time.

  10. Analytical solutions for solute transport in groundwater and riverine flow using Green's Function Method and pertinent coordinate transformation method

    NASA Astrophysics Data System (ADS)

    Sanskrityayn, Abhishek; Suk, Heejun; Kumar, Naveen

    2017-04-01

    In this study, analytical solutions of one-dimensional pollutant transport originating from instantaneous and continuous point sources were developed in groundwater and riverine flow using both Green's Function Method (GFM) and pertinent coordinate transformation method. Dispersion coefficient and flow velocity are considered spatially and temporally dependent. The spatial dependence of the velocity is linear, non-homogeneous and that of dispersion coefficient is square of that of velocity, while the temporal dependence is considered linear, exponentially and asymptotically decelerating and accelerating. Our proposed analytical solutions are derived for three different situations depending on variations of dispersion coefficient and velocity, respectively which can represent real physical processes occurring in groundwater and riverine systems. First case refers to steady solute transport situation in steady flow in which dispersion coefficient and velocity are only spatially dependent. The second case represents transient solute transport in steady flow in which dispersion coefficient is spatially and temporally dependent while the velocity is spatially dependent. Finally, the third case indicates transient solute transport in unsteady flow in which both dispersion coefficient and velocity are spatially and temporally dependent. The present paper demonstrates the concentration distribution behavior from a point source in realistically occurring flow domains of hydrological systems including groundwater and riverine water in which the dispersivity of pollutant's mass is affected by heterogeneity of the medium as well as by other factors like velocity fluctuations, while velocity is influenced by water table slope and recharge rate. Such capabilities give the proposed method's superiority about application of various hydrological problems to be solved over other previously existing analytical solutions. Especially, to author's knowledge, any other solution doesn't exist for both spatially and temporally variations of dispersion coefficient and velocity. In this study, the existing analytical solutions from previous widely known studies are used for comparison as validation tools to verify the proposed analytical solution as well as the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) code and the developed 1D finite difference code (FDM). All such solutions show perfect match with the respective proposed solutions.

  11. Turbulent particulate transportation during electrostatic precipitation

    NASA Astrophysics Data System (ADS)

    Choi, Bum Seog

    The generation of secondary flows and turbulence by a corona discharge influences particle transport in an electrostatic precipitator (ESP), and is known to play an important role in the particle collection process. However, it is difficult to characterise theoretically and experimentally the ``turbulent'' fluctuations of the gas flow produced by negative tuft corona. Because of this difficulty, only limited studies have been undertaken previously to understand the structure of corona-induced turbulence and its influence on particle transport in ESPs. The present study is aimed at modelling electrohydrodynamic turbulent flows and particle transport, and at establishing an unproved understanding of them. For a multiply interactive coupling of electrostatics, fluid dynamics and particle dynamics, a strongly coupled system of the governing equations has been solved. The present computer model has considered the most important interaction mechanisms including an ionic wind, corona- induced turbulence and the particle space charge effect. Numerical simulations have been performed for the extensive validation of the numerical and physical models. To account for electrically excited turbulence associated with the inhomogeneous and unsteady characteristics of negative corona discharges, a new turbulence model (called the electrostatic turbulence model) has been developed. In this, an additional production or destruction term is included into the turbulent kinetic energy and dissipation rate equations. It employs a gradient type model of the current density and an electrostatic diffusivity concept. The results of the computation show that the electrostatic turbulence model gives much better agreement with the experimental data than the conventional RNG k-ɛ turbulence model when predicting turbulent gas flows and particle distributions in an ESP. Computations of turbulent particulate two-phase flows for both mono-dispersed and poly-dispersed particles have been performed. The effects of coriona-induced turbulence and the particle space charge on particle transport and the collection process have been investigated. The calculated results for the poly-dispersed particulate flow were compared with those of the mono-dispersed particulate flow, and significant differences were demonstrated. It is established that effective particle- particle interaction occurs, due to the influence of the particle space charge, even for dilute gas-particle flows that occur in ESPs.

  12. Multi-physics CFD simulations in engineering

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto

    2013-08-01

    Nowadays Computational Fluid Dynamics (CFD) software is adopted as a design and analysis tool in a great number of engineering fields. We can say that single-physics CFD has been sufficiently matured in the practical point of view. The main target of existing CFD software is single-phase flows such as water and air. However, many multi-physics problems exist in engineering. Most of them consist of flow and other physics, and the interactions between different physics are very important. Obviously, multi-physics phenomena are critical in developing machines and processes. A multi-physics phenomenon seems to be very complex, and it is so difficult to be predicted by adding other physics to flow phenomenon. Therefore, multi-physics CFD techniques are still under research and development. This would be caused from the facts that processing speed of current computers is not fast enough for conducting a multi-physics simulation, and furthermore physical models except for flow physics have not been suitably established. Therefore, in near future, we have to develop various physical models and efficient CFD techniques, in order to success multi-physics simulations in engineering. In the present paper, I will describe the present states of multi-physics CFD simulations, and then show some numerical results such as ice accretion and electro-chemical machining process of a three-dimensional compressor blade which were obtained in my laboratory. Multi-physics CFD simulations would be a key technology in near future.

  13. Turbulent solutions of the equations of fluid motion

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1984-01-01

    Some turbulent solutions of the unaveraged Navier-Stokes equations (equations of fluid motion) are reviewed. Those equations are solved numerically in order to study the nonlinear physics of incompressible turbulent flow. Initial three-dimensional cosine velocity fluctuations and periodic boundary conditions are used in most of the work considered. The three components of the mean-square velocity fluctuations are initially equal for the conditions chosen. The resulting solutions show characteristics of turbulence such as the linear and nonlinear excitation of small-scale fluctuations. For the stronger fluctuations, the initially nonrandom flow develops into an apparently random turbulence. Thus randomness or turbulence can arise as a consequence of the structure of the Navier-Stokes equations. The cases considered include turbulence which is statistically homogeneous or inhomogeneous and isotropic or anisotropic. A mean shear is present in some cases. A statistically steady-state turbulence is obtained by using a spatially periodic body force. Various turbulence processes, including the transfer of energy between eddy sizes and between directional components, and the production, dissipation, and spatial diffusion of turbulence, are considered. It is concluded that the physical processes occurring in turbulence can be profitably studied numerically.

  14. Transforming information from silicon testing and design characterization into numerical data sets for yield learning

    NASA Astrophysics Data System (ADS)

    Yang, Thomas; Shen, Yang; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh

    2017-03-01

    Silicon testing results are regularly collected for a particular lot of wafers to study yield loss from test result diagnostics. Product engineers will analyze the diagnostic results and perform a number of physical failure analyses to detect systematic defects which cause yield loss for these sets of wafers in order to feedback the information to process engineers for process improvements. Most of time, the systematic defects that are detected are major issues or just one of the causes for the overall yield loss. This paper will present a working flow for using design analysis techniques combined with diagnostic methods to systematically transform silicon testing information into physical layout information. A new set of the testing results are received from a new lot of wafers for the same product. We can then correlate all the diagnostic results from different periods of time to check which blocks or nets have been highlighted or stop occurring on the failure reports in order to monitor process changes which impact the yield. The design characteristic analysis flow is also implemented to find 1) the block connections on a design that have failed electrical test or 2) frequently used cells that been highlighted multiple times.

  15. Optimizing homogenization by chaotic unmixing?

    NASA Astrophysics Data System (ADS)

    Weijs, Joost; Bartolo, Denis

    2016-11-01

    A number of industrial processes rely on the homogeneous dispersion of non-brownian particles in a viscous fluid. An ideal mixing would yield a so-called hyperuniform particle distribution. Such configurations are characterized by density fluctuations that grow slower than the standard √{ N}-fluctuations. Even though such distributions have been found in several natural structures, e.g. retina receptors in birds, they have remained out of experimental reach until very recently. Over the last 5 years independent experiments and numerical simulations have shown that periodically driven suspensions can self-assemble hyperuniformally. Simple as the recipe may be, it has one important disadvantage. The emergence of hyperuniform states co-occurs with a critical phase transition from reversible to non reversible particle dynamics. As a consequence the homogenization dynamics occurs over a time that diverges with the system size (critical slowing down). Here, we discuss how this process can be sped up by exploiting the stirring properties of chaotic advection. Among the questions that we answer are: What are the physical mechanisms in a chaotic flow that are relevant for hyperuniformity? How can we tune the flow parameters such to obtain optimal hyperuniformity in the fastest way? JW acknowledges funding by NWO (Netherlands Organisation for Scientific Research) through a Rubicon Grant.

  16. Estimation of a Stopping Criterion for Geophysical Granular Flows Based on Numerical Experimentation

    NASA Astrophysics Data System (ADS)

    Yu, B.; Dalbey, K.; Bursik, M.; Patra, A.; Pitman, E. B.

    2004-12-01

    Inundation area may be the most important factor for mitigation of natural hazards related to avalanches, debris flows, landslides and pyroclastic flows. Run-out distance is the key parameter for inundation because the front deposits define the leading edge of inundation. To define the run-out distance, it is necessary to know when a flow stops. Numerical experiments are presented for determining a stopping criterion and exploring the suitability of a Savage-Hutter granular model for computing inundation areas of granular flows. The TITAN2D model was employed to run numerical experiments based on the Savage-Hutter theory. A potentially reasonable stopping criterion was found as a function of dimensionless average velocity, aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Slumping piles on a horizontal surface and geophysical flows over complex topography were simulated. Several mountainous areas, including Colima volcano (MX), Casita (Nic.), Little Tahoma Peak (WA, USA) and the San Bernardino Mountains (CA, USA) were used to simulate geophysical flows. Volcanic block and ash flows, debris avalanches and debris flows occurred in these areas and caused varying degrees of damage. The areas have complex topography, including locally steep open slopes, sinuous channels, and combinations of these. With different topography and physical scaling, slumping piles and geophysical flows have a somewhat different dependence of dimensionless stopping velocity on power-law constants associated with aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Visual comparison of the details of the inundation area obtained from the TITAN2D model with models that contain some form of viscous dissipation point out weaknesses in the model that are not evident by investigation of the stopping criterion alone.

  17. Hedberg Research Conference on Fundamental Controls on Flow in Carbonates: Request for Travel Support for Post-Doctoral Fellows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyrak-Nolte, Laura J.

    Carbonate reservoirs pose a scientific and engineering challenge to geophysical prediction and monitoring of fluid flow in the subsurface. Difficulties in interpreting hydrological, reservoir and other exploration data arise because carbonates are composed of a hierarchy of geological structures, constituents and processes that span a wide spectrum of length and time scales. What makes this problem particularly challenging is that length scales associated with physical structure and processes are often not discrete, but overlap, preventing the definition of discrete elements at one scale to become the building blocks of the next scale. This is particularly true for carbonates where complicatedmore » depositional environments, subsequent post-deposition diagenesis and geochemical interactions result in pores that vary in scale from submicron to centimeters to fractures, variation in fabric composition with fossils, minerals and cement, as well as variations in structural features (e.g., oriented inter- and intra layered - interlaced bedding and/or discontinuous rock units). In addition, this complexity is altered by natural and anthropogenic processes such as changes in stress, fluid content, reactive fluid flow, etc. Thus an accurate geophysical assessment of the flow behavior of carbonate reservoirs requires a fundamental understanding of the interplay of textural and structural features subjected to physical processes that affect and occur on various length and time scales. To address this complexity related to carbonates, a Hedberg conference on “Fundamental Controls on Flow in Carbonates” was held July 8 to 13, 2012, to bring together industry and academic scientists to stimulate innovative ideas that can accelerate research advances related to flow prediction and recovery in carbonate reservoirs. Participants included scientist and engineers from multiple disciplines (such as hydrology, structural geology, geochemistry, reservoir engineering, geophysics, geomechanics, numerical modeling, physical experiments, sedimentology, well-testing, statistics, mathematics, visualization, etc.) who encompass experience as well as the latest advances in these multi-faceted fields. One of the goals was to include early career scientists and engineers (post-doctoral fellows, assistant professors, etc.). With this grant 10 early career scientists and engineers were supported to attend the conference. This reports contains a brief overview of the conference and the list of support participants supported by this grant. Full details of the outcomes of the conference are given in the publication found in the Attachment section of this report.« less

  18. Magnitude and frequency data for historic debris flows in Grand Canyon National Park and vicinity, Arizona

    USGS Publications Warehouse

    Melis, T.S.; Webb, R.H.; Griffiths, P.G.; Wise, T.J.

    1995-01-01

    Debris flows occur in 529 tributaries of the Colorado River in Grand Canyon between Lees Ferry and Diamond Creek, Arizona (river miles 0 to 225). An episodic type of flash flood, debris flows transport poorly-sorted sediment ranging in size from clay to boulders into the Colorado River. Debris flows create and maintain debris fans and the hundreds of associated riffles and rapids that control the geomorphic framework of the Colorado River downstream from Glen Canyon Dam. Between 1984 and 1994, debris flows created 4 new rapids and enlarged 17 existing rapids and riffles. Debris flows in Grand Canyon are initiated by slope failures that occur during intense rainfall. Three of these mechanisms of slope failure are documented. Failures in weathered bedrock, particularly in the Hermit Shale and Supai Group, have initiated many historic debris flows in Grand Canyon. A second mechanism, termed the fire-hose effect, occurs when runoff pours over cliffs onto unconsolidated colluvial wedges, triggering a failure. A third initiation mechanism occurs when intense precipitation causes failures in colluvium overlying bedrock. Multiple source areas and extreme topographic relief in Grand Canyon commonly result in combinations of these three initiation mechanisms. Interpretation of 1,107 historical photographs spanning 120 years, supplemented with aerial photography made between 1935 and 1994, yielded information on the frequency of debris flows in 168 of the 529 tributaries (32 percent) of the Colorado River in Grand Canyon. Of the 168 tributaries, 96 contain evidence of debris flows that have occurred since 1872, whereas 72 tributaries have not had a debris flow during the last century. The oldest debris flow we have documented in Grand Canyon occurred 5,400 years ago in an unnamed tributary at river mile 63.3-R. Our results indicate that the frequency of debris flows ranges from one every 10 to 15 years in certain eastern tributaries, to less than one per century in other drainage basins. On average, debris flows may recur approximately every 30 to 50 years in individual tributaries, although adjacent tributaries may have considerably different histories. Peak discharges were estimated in 18 drainages for debris flows that occurred between 1939 and 1994. Typically, discharges range from about 100 to 300 cubic meters per second (m3/s). The largest debris flow in Grand Canyon during the last century, which occurred in Prospect Canyon in 1939, had a peak discharge of about 1,000 m3/s. Debris-flow deposits generally contain 15 to 30 percent sand-and-finer sediment; however, the variability of sand-and-finer sediment contained by recent debris flows is large. Reconstitution of debris-flow samples indicates a range in water content of 10 to 25 percent by weight;. Before flow regulation of the Colorado River began, debris fans aggraded by debris flows were periodically reworked by large river floods that may have been as large as 11,000 m3/s. Impoundment of the river by Glen Canyon Dam in 1963, and subsequent operation of the reservoir have reduced the magnitude of these floods. Flow releases from the dam since 1963 have only partly reworked recently-aggraded debris fans. Significant reworking of new debris-flow deposits now occurs only during river discharges higher than typical power plant releases, which currently range between 142 and 510 m3/s.

  19. Mathematical and physical model of gravity-fed infusion outflow: application to soft-bag-packed solutions.

    PubMed

    Simon, N; Décaudin, B; Lannoy, D; Barthélémy, C; Lemdani, M; Odou, P

    2011-12-01

    Gravity-fed infusion (GFI) systems are acknowledged as being unable to keep their flow-rate constant. This may affect drug plasma levels such as aminoglycosides. Numerous factors have previously been cited, but their relative importance has never been quantified so far. The objective of this work is to identify the main factors that influence GFI in vitro outflow and to propose a mathematical model of flow-rate evolution as a function of time. In this model, pressure loss and infusion device creep have been considered as the main variation factors. Concomitantly, two experiments were undertaken. Firstly, the flow-rate evolution of an in vitro infusion of 250 mL of dextrose 5% was assessed. Secondly, the creep occurring on an infusion device was measured through a stress relaxation experiment. The experimental infusion flow-rate decreased by as much as 28.5% over 1 h. Simulated and experimental data are well correlated (r = 0.987; P < 0.0001). The maximum creep effect happens during the first 15 min of infusion. In this work, height of the liquid in the bag and tube creep were found to be the main variation factors in GFI flow-rate. This new mathematical model should help to explain the differences observed in drug plasma levels with gravity-fed devices.

  20. Physical vapor transport of mercurous chloride under a nonlinear thermal profile

    NASA Technical Reports Server (NTRS)

    Mennetrier, Christophe; Duval, Walter M. B.; Singh, Narsingh B.

    1992-01-01

    Our study investigates numerically the flow field characteristics during the growth of mercurous chloride (Hg2Cl2) crystals in a rectangular ampoule under terrestrial and microgravity conditions for a nonlinear thermal gradient. With a residual gas lighter than the nutrient, the solutal Grashof number is dominant. We observe that in tilted configurations, when solutal convection is dominant, the maximum transport rate occurs at approximately 40 percent. For the vertical configurations, we were able to obtain solutions only for the cases either below the critical Rayleigh numbers or the stabilized configurations. The total mass flux decreases exponentially with an increase of pressure of residual gas, but it increases following a power law with the temperature difference driving the transport. The nonlinear thermal gradient appears to destabilize the flow field when thermal convection is dominant for both vertical top-heated and bottom-heated configurations. However, when the solutal Grashof number is dominant, the density gradient resulting from the solutal gradient appears to stabilize the flow for the bottom-heated configuration. The flow field for the top-heated configuration is destabilized for high Grashof numbers. The microgravity environment provides a means for lowering convection. For gravity levels of 10(exp -3) g(0) or less, the Stefan wind drives the flow, and no recirculating cell is predicted.

  1. Nanofluid two-phase flow and thermal physics: a new research frontier of nanotechnology and its challenges.

    PubMed

    Cheng, Lixin; Bandarra Filho, Enio P; Thome, John R

    2008-07-01

    Nanofluids are a new class of fluids engineered by dispersing nanometer-size solid particles in base fluids. As a new research frontier, nanofluid two-phase flow and thermal physics have the potential to improve heat transfer and energy efficiency in thermal management systems for many applications, such as microelectronics, power electronics, transportation, nuclear engineering, heat pipes, refrigeration, air-conditioning and heat pump systems. So far, the study of nanofluid two-phase flow and thermal physics is still in its infancy. This field of research provides many opportunities to study new frontiers but also poses great challenges. To summarize the current status of research in this newly developing interdisciplinary field and to identify the future research needs as well, this paper focuses on presenting a comprehensive review of nucleate pool boiling, flow boiling, critical heat flux, condensation and two-phase flow of nanofluids. Even for the limited studies done so far, there are some controversies. Conclusions and contradictions on the available nanofluid studies on physical properties, two-phase flow, heat transfer and critical heat flux (CHF) are presented. Based on a comprehensive analysis, it has been realized that the physical properties of nanofluids such as surface tension, liquid thermal conductivity, viscosity and density have significant effects on the nanofluid two-phase flow and heat transfer characteristics but the lack of the accurate knowledge of these physical properties has greatly limited the study in this interdisciplinary field. Therefore, effort should be made to contribute to the physical property database of nanofluids as a first priority. Secondly, in particular, research on nanofluid two-phase flow and heat transfer in microchannels should be emphasized in the future.

  2. Can the collapse of a fly ash heap develop into an air-fluidized flow? - Reanalysis of the Jupille accident (1961)

    NASA Astrophysics Data System (ADS)

    Stilmant, Frédéric; Pirotton, Michel; Archambeau, Pierre; Erpicum, Sébastien; Dewals, Benjamin

    2015-01-01

    A fly ash heap collapse occurred in Jupille (Liege, Belgium) in 1961. The subsequent flow of fly ash reached a surprisingly long runout and had catastrophic consequences. Its unprecedented degree of fluidization attracted scientific attention. As drillings and direct observations revealed no water-saturated zone at the base of the deposits, scientists assumed an air-fluidization mechanism, which appeared consistent with the properties of the material. In this paper, the air-fluidization assumption is tested based on two-dimensional numerical simulations. The numerical model has been developed so as to focus on the most prominent processes governing the flow, with parameters constrained by their physical interpretation. Results are compared to accurate field observations and are presented for different stages in the model enhancement, so as to provide a base for a discussion of the relative influence of pore pressure dissipation and pore pressure generation. These results show that the apparently high diffusion coefficient that characterizes the dissipation of air pore pressures is in fact sufficiently low for an important degree of fluidization to be maintained during a flow of hundreds of meters.

  3. Turbulent channel flow under moderate polymer drag reduction

    NASA Astrophysics Data System (ADS)

    Elsnab, John; Monty, Jason; White, Christopher; Koochesfahani, Manoochehr; Klewicki, Joseph

    2017-11-01

    Streamwise velocity profiles and their wall-normal derivatives are used to investigate the properties of turbulent channel flow under the moderate polymer drag reduction (DR) conditions of 6-27%. Velocity data were obtained over a friction Reynolds number (Re) from 650-1800 using the single velocity component version of molecular tagging velocimetry (MTV). This adaptation of the MTV technique captures instantaneous profiles at high spatial resolution (>800 data points per profile), thus generating well-resolved derivative information. The mean velocity profiles indicate that the extent of the logarithmic region diminishes with increasing polymer concentration, while the logarithmic profile slope increases for drag reductions greater than about 20%. The measurements allow reconstruction of the mean momentum balance for channel flow that provides additional insights regarding the physics described by previous numerical simulation analyses that examined the mean dynamical structure of polymer laden channel flow at low Re. The present findings indicate that the polymer modifies the onset of the inertial domain, and that the extent of this domain shrinks with increasing DR. Once on the inertial domain, self-similar behaviors occur, but modified (sometimes subtly) by the modified distribution of characteristic y-scaling behavior of the Reynolds stress motions.

  4. Active control of nanolitre droplet contents with convective concentration gradients across permeable walls.

    PubMed

    Zeitoun, Ramsey I; Goudie, Marcus J; Zwier, Jacob; Mahawilli, David; Burns, Mark A

    2011-12-07

    Nanolitre droplets in microfluidic devices can be used to perform thousands of independent chemical and biological experiments while minimizing reagents, cost and time. However, the absence of simple and versatile methods capable of controlling the contents of these nanolitre chemical systems limits their scientific potential. To address this, we have developed a method that is simple to fabricate and can continuously control nanolitre chemical systems by integrating a time-resolved convective flow signal across a permeable membrane wall. With this method, we can independently control the volume and concentration of nanolitre-sized drops without ever directly contacting the fluid. Transport occurring in these systems was also analyzed and thoroughly characterized. We achieved volumetric fluid introduction and removal rates ranging from 0.23 to 4.0 pL s(-1). Furthermore, we expanded this method to perform chemical processes. We precipitated silver chloride using a flow signal of sodium chloride and silver nitrate droplets. From there, we were able to separate sodium chloride reactants with a water flow signal, and dissolve silver chloride solids with an ammonia hydroxide flow signal. Finally, we demonstrate the potential to deliver large molecules and perform physical processes like crystallization and particle packing.

  5. Prediction of SOFC Performance with or without Experiments: A Study on Minimum Requirements for Experimental Data

    DOE PAGES

    Yang, Tao; Sezer, Hayri; Celik, Ismail B.; ...

    2015-06-02

    In the present paper, a physics-based procedure combining experiments and multi-physics numerical simulations is developed for overall analysis of SOFCs operational diagnostics and performance predictions. In this procedure, essential information for the fuel cell is extracted first by utilizing empirical polarization analysis in conjunction with experiments and refined by multi-physics numerical simulations via simultaneous analysis and calibration of polarization curve and impedance behavior. The performance at different utilization cases and operating currents is also predicted to confirm the accuracy of the proposed model. It is demonstrated that, with the present electrochemical model, three air/fuel flow conditions are needed to producemore » a set of complete data for better understanding of the processes occurring within SOFCs. After calibration against button cell experiments, the methodology can be used to assess performance of planar cell without further calibration. The proposed methodology would accelerate the calibration process and improve the efficiency of design and diagnostics.« less

  6. On utilizing alternating current-flow field effect transistor for flexibly manipulating particles in microfluidics and nanofluidics

    PubMed Central

    Liu, Weiyu; Shao, Jinyou; Ren, Yukun; Liu, Jiangwei; Tao, Ye; Jiang, Hongyuan; Ding, Yucheng

    2016-01-01

    By imposing a biased gate voltage to a center metal strip, arbitrary symmetry breaking in induced-charge electroosmotic flow occurs on the surface of this planar gate electrode, a phenomenon termed as AC-flow field effect transistor (AC-FFET). In this work, the potential of AC-FFET with a shiftable flow stagnation line to flexibly manipulate micro-nano particle samples in both a static and continuous flow condition is demonstrated via theoretical analysis and experimental validation. The effect of finite Debye length of induced double-layer and applied field frequency on the manipulating flexibility factor for static condition is investigated, which indicates AC-FFET turns out to be more effective for achieving a position-controllable concentrating of target nanoparticle samples in nanofluidics compared to the previous trial in microfluidics. Besides, a continuous microfluidics-based particle concentrator/director is developed to deal with incoming analytes in dynamic condition, which exploits a design of tandem electrode configuration to consecutively flow focus and divert incoming particle samples to a desired downstream branch channel, as prerequisite for a following biochemical analysis. Our physical demonstrations with AC-FFET prove valuable for innovative designs of flexible electrokinetic frameworks, which can be conveniently integrated with other microfluidic or nanofluidic components into a complete lab-on-chip diagnostic platform due to a simple electrode structure. PMID:27190570

  7. On utilizing alternating current-flow field effect transistor for flexibly manipulating particles in microfluidics and nanofluidics.

    PubMed

    Liu, Weiyu; Shao, Jinyou; Ren, Yukun; Liu, Jiangwei; Tao, Ye; Jiang, Hongyuan; Ding, Yucheng

    2016-05-01

    By imposing a biased gate voltage to a center metal strip, arbitrary symmetry breaking in induced-charge electroosmotic flow occurs on the surface of this planar gate electrode, a phenomenon termed as AC-flow field effect transistor (AC-FFET). In this work, the potential of AC-FFET with a shiftable flow stagnation line to flexibly manipulate micro-nano particle samples in both a static and continuous flow condition is demonstrated via theoretical analysis and experimental validation. The effect of finite Debye length of induced double-layer and applied field frequency on the manipulating flexibility factor for static condition is investigated, which indicates AC-FFET turns out to be more effective for achieving a position-controllable concentrating of target nanoparticle samples in nanofluidics compared to the previous trial in microfluidics. Besides, a continuous microfluidics-based particle concentrator/director is developed to deal with incoming analytes in dynamic condition, which exploits a design of tandem electrode configuration to consecutively flow focus and divert incoming particle samples to a desired downstream branch channel, as prerequisite for a following biochemical analysis. Our physical demonstrations with AC-FFET prove valuable for innovative designs of flexible electrokinetic frameworks, which can be conveniently integrated with other microfluidic or nanofluidic components into a complete lab-on-chip diagnostic platform due to a simple electrode structure.

  8. Stochastic fundamental diagram for probabilistic traffic flow modeling.

    DOT National Transportation Integrated Search

    2011-09-01

    Flowing water in river, transported gas or oil in pipe, electric current in wire, moving : goods on conveyor, molecular motors in living cell, and driving vehicles on a highway are : various kinds of flow from physical or non-physical systems, yet ea...

  9. Effects of a 4-month Ananda Yoga program on physical and mental health outcomes for persons with multiple sclerosis.

    PubMed

    Salgado, Bryan Coleman; Jones, Maitri; Ilgun, Suzanne; McCord, Gyandev; Loper-Powers, Mangala; van Houten, Peter

    2013-01-01

    Yoga has been found to be effective for addressing problems with strength, flexibility, balance, gait, anxiety, depression, and concentration. Varying degrees of these problems occur in individuals with multiple sclerosis (MS). This study examined the effects of a comprehensive, 4-month yoga program on strength, mobility, balance, respiratory function, and quality of life for individuals with MS. Twenty four individuals with MS participated in an intensive Ananda Yoga training followed by 17 weeks of home practice. Significant improvements in functional strength, balance, and peak expiratory flow and a trend toward improvements in mental health and quality of life outcomes were detected following the intervention. The results of this exploratory study suggest that yoga can have a positive impact on physical functioning and quality of life for persons with mild to moderate MS.

  10. Condensation onto grains in the outflows from mass-losing red giants

    NASA Technical Reports Server (NTRS)

    Jura, M.; Morris, M.

    1985-01-01

    In the outflows from red giants, grains are formed which are driven by radiation pressure. For the development of a model of the outflows, a detailed understanding of the interaction between the gas and dust is critical. The present investigation is concerned with condensation processes which occur after the grains nucleate near the stars. A physical process considered results from the cooling of the grains as they flow away from the star. Molecules which initially do not condense onto the grains can do so far from the star. It is shown that for some species this effect can be quite important in determining their gas-phase abundances in the outer circumstellar envelope. One of the major motivations of this investigation was provided by the desire to understand the physical conditions and molecular abundances in the outflows from the considered stars.

  11. Stability of miscible core?annular flows with viscosity stratification

    NASA Astrophysics Data System (ADS)

    Selvam, B.; Merk, S.; Govindarajan, Rama; Meiburg, E.

    The linear stability of variable viscosity, miscible core-annular flows is investigated. Consistent with pipe flow of a single fluid, the flow is stable at any Reynolds number when the magnitude of the viscosity ratio is less than a critical value. This is in contrast to the immiscible case without interfacial tension, which is unstable at any viscosity ratio. Beyond the critical value of the viscosity ratio, the flow can be unstable even when the more viscous fluid is in the core. This is in contrast to plane channel flows with finite interface thickness, which are always stabilized relative to single fluid flow when the less viscous fluid is in contact with the wall. If the more viscous fluid occupies the core, the axisymmetric mode usually dominates over the corkscrew mode. It is demonstrated that, for a less viscous core, the corkscrew mode is inviscidly unstable, whereas the axisymmetric mode is unstable for small Reynolds numbers at high Schmidt numbers. For the parameters under consideration, the switchover occurs at an intermediate Schmidt number of about 500. The occurrence of inviscid instability for the corkscrew mode is shown to be consistent with the Rayleigh criterion for pipe flows. In some parameter ranges, the miscible flow is seen to be more unstable than its immiscible counterpart, and the physical reasons for this behaviour are discussed.A detailed parametric study shows that increasing the interface thickness has a uniformly stabilizing effect. The flow is least stable when the interface between the two fluids is located at approximately 0.6 times the tube radius. Unlike for channel flow, there is no sudden change in the stability with radial location of the interface. The instability originates mainly in the less viscous fluid, close to the interface.

  12. Microscopic theory of traffic-flow instability governing traffic breakdown at highway bottlenecks: Growing wave of increase in speed in synchronized flow.

    PubMed

    Kerner, Boris S

    2015-12-01

    We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the bottleneck; therefore, we call this instability an S→F instability. Whereas the S→F instability leads to a local increase in speed (growing acceleration wave), in contrast, the classical traffic flow instability introduced in the 1950s-1960s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local decrease in speed (growing deceleration wave). We have found that the S→F instability can occur only if there is a finite time delay in driver overacceleration. The initial speed disturbance of increase in speed (called "speed peak") that initiates the S→F instability occurs usually at the downstream front of synchronized flow at the bottleneck. There can be many speed peaks with random amplitudes that occur randomly over time. It has been found that the S→F instability exhibits a nucleation nature: Only when a speed peak amplitude is large enough can the S→F instability occur; in contrast, speed peaks of smaller amplitudes cause dissolving speed waves of a local increase in speed (dissolving acceleration waves) in synchronized flow. We have found that the S→F instability governs traffic breakdown-a phase transition from free flow to synchronized flow (F→S transition) at the bottleneck: The nucleation nature of the S→F instability explains the metastability of free flow with respect to an F→S transition at the bottleneck.

  13. Microscopic theory of traffic-flow instability governing traffic breakdown at highway bottlenecks: Growing wave of increase in speed in synchronized flow

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.

    2015-12-01

    We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the bottleneck; therefore, we call this instability an S →F instability. Whereas the S →F instability leads to a local increase in speed (growing acceleration wave), in contrast, the classical traffic flow instability introduced in the 1950s-1960s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local decrease in speed (growing deceleration wave). We have found that the S →F instability can occur only if there is a finite time delay in driver overacceleration. The initial speed disturbance of increase in speed (called "speed peak") that initiates the S →F instability occurs usually at the downstream front of synchronized flow at the bottleneck. There can be many speed peaks with random amplitudes that occur randomly over time. It has been found that the S →F instability exhibits a nucleation nature: Only when a speed peak amplitude is large enough can the S →F instability occur; in contrast, speed peaks of smaller amplitudes cause dissolving speed waves of a local increase in speed (dissolving acceleration waves) in synchronized flow. We have found that the S →F instability governs traffic breakdown—a phase transition from free flow to synchronized flow (F →S transition) at the bottleneck: The nucleation nature of the S →F instability explains the metastability of free flow with respect to an F →S transition at the bottleneck.

  14. Cultivating Engagement and Enjoyment in Exergames Using Feedback, Challenge, and Rewards.

    PubMed

    Lyons, Elizabeth J

    2015-02-01

    This article reviews theoretical and empirical evidence related to three mechanisms for encouraging enjoyment during exergame play: Feedback, challenge, and rewards. A literature search and narrative review were conducted. Feedback is found in nearly all exergames, and richer, more in-depth feedback is associated with increased activity. Challenge is a vital component of any videogame, and exergames include physical as well as cognitive challenges. Flow states have traditionally been conceptualized as occurring when an optimal match between player skills and game challenge occurs. However, failure and retrial are necessary for feelings of overall satisfaction and fun, despite not necessarily being ideally fun or satisfying themselves. Rewards are a more complicated issue, with significant theoretical and empirical evidence suggesting positive and negative effects of reward systems. How rewards are integrated into the mechanics and storyline of the game likely impacts how they are perceived and, thus, their effectiveness. Finally, integration of these mechanisms into exergames requires specific attention to both cognitive and physical implementations. Movements that are not themselves enjoyable or engaging may lead to cheating and lower energy expenditure. Feedback, challenge, and rewards are promising mechanisms by which exergames could become more enjoyable. How these concepts are operationalized can affect physical and psychological reactions to exergames. Attention to these concepts in future exergame development and implementation would benefit theory, research, and practice.

  15. Cultivating Engagement and Enjoyment in Exergames Using Feedback, Challenge, and Rewards

    PubMed Central

    2015-01-01

    Abstract Objective: This article reviews theoretical and empirical evidence related to three mechanisms for encouraging enjoyment during exergame play: Feedback, challenge, and rewards. Materials and Methods: A literature search and narrative review were conducted. Results: Feedback is found in nearly all exergames, and richer, more in-depth feedback is associated with increased activity. Challenge is a vital component of any videogame, and exergames include physical as well as cognitive challenges. Flow states have traditionally been conceptualized as occurring when an optimal match between player skills and game challenge occurs. However, failure and retrial are necessary for feelings of overall satisfaction and fun, despite not necessarily being ideally fun or satisfying themselves. Rewards are a more complicated issue, with significant theoretical and empirical evidence suggesting positive and negative effects of reward systems. How rewards are integrated into the mechanics and storyline of the game likely impacts how they are perceived and, thus, their effectiveness. Finally, integration of these mechanisms into exergames requires specific attention to both cognitive and physical implementations. Movements that are not themselves enjoyable or engaging may lead to cheating and lower energy expenditure. Conclusions: Feedback, challenge, and rewards are promising mechanisms by which exergames could become more enjoyable. How these concepts are operationalized can affect physical and psychological reactions to exergames. Attention to these concepts in future exergame development and implementation would benefit theory, research, and practice. PMID:26181675

  16. Effects of physical properties on thermo-fluids cavitating flows

    NASA Astrophysics Data System (ADS)

    Chen, T. R.; Wang, G. Y.; Huang, B.; Li, D. Q.; Ma, X. J.; Li, X. L.

    2015-12-01

    The aims of this paper are to study the thermo-fluid cavitating flows and to evaluate the effects of physical properties on cavitation behaviours. The Favre-averaged Navier-Stokes equations with the energy equation are applied to numerically investigate the liquid nitrogen cavitating flows around a NASA hydrofoil. Meanwhile, the thermodynamic parameter Σ is used to assess the thermodynamic effects on cavitating flows. The results indicate that the thermodynamic effects on the thermo-fluid cavitating flows significantly affect the cavitation behaviours, including pressure and temperature distribution, the variation of physical properties, and cavity structures. The thermodynamic effects can be evaluated by physical properties under the same free-stream conditions. The global sensitivity analysis of liquid nitrogen suggests that ρv, Cl and L significantly influence temperature drop and cavity structure in the existing numerical framework, while pv plays the dominant role when these properties vary with temperature. The liquid viscosity μl slightly affects the flow structure via changing the Reynolds number Re equivalently, however, it hardly affects the temperature distribution.

  17. Material flow data for numerical simulation of powder injection molding

    NASA Astrophysics Data System (ADS)

    Duretek, I.; Holzer, C.

    2017-01-01

    The powder injection molding (PIM) process is a cost efficient and important net-shape manufacturing process that is not completely understood. For the application of simulation programs for the powder injection molding process, apart from suitable physical models, exact material data and in particular knowledge of the flow behavior are essential in order to get precise numerical results. The flow processes of highly filled polymers are complex. Occurring effects are very hard to separate, like shear flow with yield stress, wall slip, elastic effects, etc. Furthermore, the occurrence of phase separation due to the multi-phase composition of compounds is quite probable. In this work, the flow behavior of a 316L stainless steel feedstock for powder injection molding was investigated. Additionally, the influence of pre-shearing on the flow behavior of PIM-feedstocks under practical conditions was examined and evaluated by a special PIM injection molding machine rheometer. In order to have a better understanding of key factors of PIM during the injection step, 3D non-isothermal numerical simulations were conducted with a commercial injection molding simulation software using experimental feedstock properties. The simulation results were compared with the experimental results. The mold filling studies amply illustrate the effect of mold temperature on the filling behavior during the mold filling stage. Moreover, the rheological measurements showed that at low shear rates no zero shear viscosity was observed, but instead the viscosity further increased strongly. This flow behavior could be described with the Cross-WLF approach with Herschel-Bulkley extension very well.

  18. Models of volcanic eruption hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohletz, K.H.

    1992-01-01

    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluidmore » flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.« less

  19. Characterization of streamflow, water quality, and instantaneous dissolved solids, selenium, and uranium loads in selected reaches of the Arkansas River, southeastern Colorado, 2009-2010

    USGS Publications Warehouse

    Ivahnenko, Tamara; Ortiz, Roderick F.; Stogner, Sr., Robert W.

    2013-01-01

    As a result of continued water-quality concerns in the Arkansas River, including metal contamination from historical mining practices, potential effects associated with storage and movement of water, point- and nonpoint-source contamination, population growth, storm-water flows, and future changes in land and water use, the Arkansas River Basin Regional Resource Planning Group (RRPG) developed a strategy to address these issues. As such, a cooperative strategic approach to address the multiple water-quality concerns within selected reaches of the Arkansas River was developed to (1) identify stream reaches where stream-aquifer interactions have a pronounced effect on water quality and (or) where reactive transport, and physical and (or) chemical alteration of flow during conveyance, is occurring, (2) quantify loading from point sources, and (3) determine source areas and mass loading for selected constituents. (To see the complete abstract, open Report PDF.)

  20. Analysis of angle effect on particle flocculation in branch flow

    NASA Astrophysics Data System (ADS)

    Prasad, Karthik; Fink, Kathryn; Liepmann, Dorian

    2014-11-01

    Hollow point microneedle drug delivery systems are known to be highly susceptible to blockage, owing to their very small structures. This problem has been especially noted when delivering suspended particle solutions, such as vaccines. Attempts to reduce particle flocculation in such devices through surface treatments of the particles have been largely unsuccessful. Furthermore, the particle clog only forms at the mouths of the microneedle structures, leaving the downstream walls clear. This implies that the sudden change in length scales alter the hydrodynamic interactions, creating the conditions for particle flocculation. However, while it is known that particle flocculation occurs, the physics behind the event are obscure. We utilize micro-PIV to observe how the occurrence and formation of particle flocculation changes in relation to the angle encountered by particle laden flow into microfluidic branch structures. The results offer the ability to optimize particle flocculation in MEMS devices, increasing device efficacy and longevity.

  1. An Experimental Investigation of the Confluent Boundary Layer on a High-Lift System

    NASA Technical Reports Server (NTRS)

    Thomas, F. O.; Nelson, R. C.

    1997-01-01

    This paper describes a fundamental experimental investigation of the confluent boundary layer generated by the interaction of a leading-edge slat wake with the boundary layer on the main element of a multi-element airfoil model. The slat and airfoil model geometry are both fully two-dimensional. The research reported in this paper is performed in an attempt to investigate the flow physics of confluent boundary layers and to build an archival data base on the interaction of the slat wake and the main element wall layer. In addition, an attempt is made to clearly identify the role that slat wake / airfoil boundary layer confluence has on lift production and how this occurs. Although complete LDV flow surveys were performed for a variety of slat gap and overhang settings, in this report the focus is on two cases representing both strong and weak wake boundary layer confluence.

  2. Buried structure for increasing fabrication performance of micromaterial by electromigration

    NASA Astrophysics Data System (ADS)

    Kimura, Yasuhiro; Saka, Masumi

    2016-06-01

    The electromigration (EM) technique is a physical synthetic growth method for micro/nanomaterials. EM causes atomic diffusion in a metal line by high-density electron flows. The intentional control of accumulation and relaxation of atoms by EM can lead to the fabrication of a micro/nanomaterial. TiN passivation has been utilized as a component of sample in the EM technique. Although TiN passivation can simplify the cumbersome processes for preparing the sample, the leakage of current naturally occurs because of the conductivity of TiN as a side effect and decreases the performance of micro/nanomaterial fabrication. In the present work, we propose a buried structure, which contributes to significantly decreasing the current for fabricating an Al micromaterial by confining the current flow in the EM technique. The fabrication performance was evaluated based on the threshold current for fabricating an Al micromaterial using the buried structure and the previous structure with the leakage of current.

  3. Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    2017-01-01

    Time-dependent Navier-Stokes simulations have been carried out for a flexible UH-60A rotor in forward flight, where the rotor wake interacts with the rotor blades. These flow conditions involved blade vortex interaction and dynamic stall, two common conditions that occur as modern helicopter designs strive to achieve greater flight speeds and payload capacity. These numerical simulations utilized high-order spatial accuracy and delayed detached eddy simulation. Emphasis was placed on understanding how improved rotor wake resolution affects the prediction of the normal force, pitching moment, and chord force of the rotor. Adaptive mesh refinement was used to highly resolve the turbulent rotor wake in a computationally efficient manner. Moreover, blade vortex interaction was found to trigger dynamic stall. Time-dependent flow visualization was utilized to provide an improved understanding of the numerical and physical mechanisms involved with three-dimensional dynamic stall.

  4. Models of volcanic eruption hazards

    NASA Astrophysics Data System (ADS)

    Wohletz, K. H.

    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

  5. Pyroclast/snow interactions and thermally driven slurry formation. Part 2: Experiments and theoretical extension to polydisperse tephra

    USGS Publications Warehouse

    Walder, J.S.

    2000-01-01

    Erosion of snow by pyroclastic flows and surges presumably involves mechanical scour, but there may be thermally driven phenomena involved as well. To investigate this possibility, layers of hot (up to 400??C), uniformly sized, fine- to medium-grained sand were emplaced vertically onto finely shaved ice ('snow'); thus there was no relative shear motion between sand and snow and no purely mechanical scour. In some cases large vapor bubbles, commonly more than 10 mm across, rose through the sand layer, burst at the surface, and caused complete convective overturn of the sand, which then scoured and mixed with snow and transformed into a slurry. In other cases no bubbling occurred and the sand passively melted its way downward into the snow as a wetting front moved upward into the sand. A continuum of behaviors between these two cases was observed. Vigorous bubbling and convection were generally favored by high temperature, small grain size, and small layer thickness. A physically based theory of heat- and mass transfer at the pyroclast/snow interface, developed in Part 1 of this paper, does a good job of explaining the observations as a manifestation of unstable vapor-driven fluidization. The theory, when extrapolated to the behavior of actual, poorly sorted pyroclastic flow sediments, leads to the prediction that the observed 'thermal-scour' phenomenon should also occur for many real pyroclastic flows passing over snow. 'Thermal scour' is therefore likely to be involved in the generation of lahars.

  6. Investigation of Instabilities and Heat Transfer Phenomena in Supercritical Fuels at High Heat Flux and Temperatures

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Meyer, Michael L.; Braun, Donald C.; Keller, Dennis J.

    2000-01-01

    A series of heated tube experiments was performed to investigate fluid instabilities that occur during heating of supercritical fluids. In these tests, JP-7 flowed vertically through small diameter tubes at supercritical pressures. Test section heated length, diameter, mass flow rate, inlet temperature, and heat flux were varied in an effort to determine the range of conditions that trigger the instabilities. Heat flux was varied up to 4 BTU/sq in./s, and test section wall temperatures reached as high as 1950 F. A statistical model was generated to explain the trends and effects of the control variables. The model included no direct linear effect of heat flux on the occurrence of the instabilities. All terms involving inlet temperature were negative, and all terms involving mass flow rate were positive. Multiple tests at conditions that produced instabilities provided inconsistent results. These inconsistencies limit the use of the model as a predictive tool. Physical variables that had been previously postulated to control the onset of the instabilities, such as film temperature, velocity, buoyancy, and wall-to-bulk temperature ratio, were evaluated here. Film temperatures at or near critical occurred during both stable and unstable tests. All tests at the highest velocity were stable, but there was no functional relationship found between the instabilities and velocity, or a combination of velocity and temperature ratio. Finally, all of the unstable tests had significant buoyancy at the inlet of the test section, but many stable tests also had significant buoyancy forces.

  7. Impact of Cattaneo-Christov heat flux on electroosmotic transport of third-order fluids in a magnetic environment

    NASA Astrophysics Data System (ADS)

    Misra, J. C.; Mallick, B.; Sinha, A.; Roy Chowdhury, A.

    2018-05-01

    In the case of steady flow of a fluid under the combined influence of external electric and magnetic fields, the fluid moves forward by forming an axial momentum boundary layer. With this end in view a study has been performed here to investigate the problem of entropy generation during electroosmotically modulated flow of a third-order electrically conducting fluid flowing on a microchannel bounded by silicon-made parallel plates under the influence of a magnetic field, by paying due consideration to the steric effect. The associated mechanism of heat transfer has also been duly taken care of, by considering Cattaneo-Christov heat flux. A suitable finite difference scheme has been developed for the numerical procedure. A detailed study of the velocity and temperature distributions has been made by considering their variations with respect to different physical parameters involved in the problem. The results of numerical computation have been displayed graphically. The computational work has been carried out by considering blood as the working fluid, with the motivation of exploring some interesting phenomena in the context of hemodynamical flow in micro-vessels. Among other variables, parametric variations of the important physical variables, viz. i) skin friction and ii) Nusselt number have been investigated. The study confirms that the random motion of the fluid particles can be controlled by a suitable adjustment of the intensity of an externally applied magnetic field in the transverse direction. It is further revealed that the Nusselt number diminishes, as the Prandtl number gradually increases; however, a steady increase in the Nusselt number occurs with increase in thermal relaxation. Entropy generation is also found to be enhanced with increase in Joule heating. The results of the present study have also been validated in a proper manner.

  8. Life and evolution as physics

    PubMed Central

    Bejan, Adrian

    2016-01-01

    ABSTRACT What is evolution and why does it exist in the biological, geophysical and technological realms — in short, everywhere? Why is there a time direction — a time arrow — in the changes we know are happening every moment and everywhere? Why is the present different than the past? These are questions of physics, about everything, not just biology. The answer is that nothing lives, flows and moves unless it is driven by power. Physics sheds light on the natural engines that produce the power destroyed by the flows, and on the free morphing that leads to flow architectures naturally and universally. There is a unifying tendency across all domains to evolve into flow configurations that provide greater access for movement. This tendency is expressed as the constructal law of evolutionary flow organization everywhere. Here I illustrate how this law of physics accounts for and unites the life and evolution phenomena throughout nature, animate and inanimate. PMID:27489579

  9. [Penoscrotal elephantiasis].

    PubMed

    Zugor, V; Horch, R E; Engehausen, D G; Schott, G E

    2007-05-01

    Penoscrotal elephantiasis is not an uncommon clinical picture that may arise as a symptom of many diseases; it is usually a sequela of a recurring inflammatory process, eczema or malignancy. Elephantiasis often occurs after radical operations in the pelvic region. Displacement of lymphatic pathways leads to a local edema which over the course of time may lead to a considerable increase in volume of the patient's genitals or other affected parts. The diagnosis of elephantiasis is not difficult. It is much more difficult to determine which disease has caused the obstruction of the lymphatic pathways. If it is a reversible stage, the object of treatment is to remove the obstruction and reinstate the physiological lymph flow. Conservative measures such as administration of anti-inflammatory drugs and diuretics, physical measures such as baths, massage, elevation of the affected parts and treatment of the underlying disease may be considered. On progression to irreversible elephantiasis a chronic lymphatic edema occurs for which conservative measures will be unsuccessful. For cases where physical and anti-inflammatory measures are unsuccessful, excision and amputation of the affected penoscrotal region is recommended in order to eliminate the functional dysfunction. We report on two cases of penoscrotal elephantiasis, one in a child and the other in an adult man.

  10. Debris flow reconstruction - geomorphologic and numerical approach. A case study from the Selvetta event in Valtellina, Italy, July 2008

    NASA Astrophysics Data System (ADS)

    Blahut, J.; Luna, B. Quan; Akbas, S. O.; van Westen, C. J.

    2009-04-01

    On Sunday morning of 13th July 2008, after more than two days of intense rainfall, several debris and mud flows were released in the central part of Valtellina valley between Morbegno and Berbenno. One of the largest debris flows occurred in Selvetta, a fraction of Colorina municipality. The debris flow event was reconstructed after extensive field work and interviews with local inhabitants and civil protection teams. At first several rock blocks about 2 m3 in size fell down from the direction of the torrent. The blocks were followed by a wave of debris and mud that immediately destroyed one building and caused damage to other nine houses. A stream flow following the debris flow consisting of fine mud with high water content that partially washed away the accumulation of deposits from the debris phase could also be distinguished. Geomorphologic investigations allowed identification of five main sections of the flow: 1) the proper scarp; 2) path in the forested area; 3) path on the alpine meadows; 4) accelerating section; 5) accumulation area. The initiation area of the flow is situated at 1760 m. a.s.l. (1480 m above the deposition zone) in a coniferous forest. The proper scarp consisted of an area of approximately 20 m2 in size, and a height of about 0.8 m. The final volume of the debris was estimated by field mapping to be between 12 000 and 15 000 m3. It was observed that erosion and entrainment played an important role in the development of the debris flow. The Selvetta event was modelled with the FLO2D program. FLO2D is an Eulerian formulation with a finite differences numerical scheme that requires the specification of an input hydrograph. The internal stresses are isotropic and the basal shear stresses are calculated using a quadratic model. Entrainment was modeled at each section of the flow, and different hydrographs were produced in agreement with the behavior of the debris flow during its course. The significance of calculated values of pressure and velocity were investigated in terms of the resulting damage to the affected buildings. The physical damage was quantified for each affected structure within the context of physical vulnerability, which is defined as the ratio between the monetary loss and the reconstruction value. Two different empirical vulnerability curves were obtained, which are functions of debris flow velocity and pressure, respectively.

  11. Physiomodel - an integrative physiology in Modelica.

    PubMed

    Matejak, Marek; Kofranek, Jiri

    2015-08-01

    Physiomodel (http://www.physiomodel.org) is our reimplementation and extension of an integrative physiological model called HumMod 1.6 (http://www.hummod.org) using our Physiolibrary (http://www.physiolibrary.org). The computer language Modelica is well-suited to exactly formalize integrative physiology. Modelica is an equation-based, and object-oriented language for hybrid ordinary differential equations (http:// www.modelica.org). Almost every physiological term can be defined as a class in this language and can be instantiated as many times as it occurs in the body. Each class has a graphical icon for use in diagrams. These diagrams are self-describing; the Modelica code generated from them is the full representation of the underlying mathematical model. Special Modelica constructs of physical connectors from Physiolibrary allow us to create diagrams that are analogies of electrical circuits with Kirchhoff's laws. As electric currents and electric potentials are connected in electrical domain, so are molar flows and concentrations in the chemical domain; volumetric flows and pressures in the hydraulic domain; flows of heat energy and temperatures in the thermal domain; and changes and amounts of members in the population domain.

  12. Indeterminism in Classical Dynamics of Particle Motion

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory; Vishniac, Ethan; Lalescu, Cristian; Aluie, Hussein; Kanov, Kalin; Burns, Randal; Meneveau, Charles; Szalay, Alex

    2013-03-01

    We show that ``God plays dice'' not only in quantum mechanics but also in the classical dynamics of particles advected by turbulent fluids. With a fixed deterministic flow velocity and an exactly known initial position, the particle motion is nevertheless completely unpredictable! In analogy with spontaneous magnetization in ferromagnets which persists as external field is taken to zero, the particle trajectories in turbulent flow remain random as external noise vanishes. The necessary ingredient is a rough advecting field with a power-law energy spectrum extending to smaller scales as noise is taken to zero. The physical mechanism of ``spontaneous stochasticity'' is the explosive dispersion of particle pairs proposed by L. F. Richardson in 1926, so the phenomenon should be observable in laboratory and natural turbulent flows. We present here the first empirical corroboration of these effects in high Reynolds-number numerical simulations of hydrodynamic and magnetohydrodynamic fluid turbulence. Since power-law spectra are seen in many other systems in condensed matter, geophysics and astrophysics, the phenomenon should occur rather widely. Fast reconnection in solar flares and other astrophysical systems can be explained by spontaneous stochasticity of magnetic field-line motion

  13. Large-scale large eddy simulation of nuclear reactor flows: Issues and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merzari, Elia; Obabko, Aleks; Fischer, Paul

    Numerical simulation has been an intrinsic part of nuclear engineering research since its inception. In recent years a transition is occurring toward predictive, first-principle-based tools such as computational fluid dynamics. Even with the advent of petascale computing, however, such tools still have significant limitations. In the present work some of these issues, and in particular the presence of massive multiscale separation, are discussed, as well as some of the research conducted to mitigate them. Petascale simulations at high fidelity (large eddy simulation/direct numerical simulation) were conducted with the massively parallel spectral element code Nek5000 on a series of representative problems.more » These simulations shed light on the requirements of several types of simulation: (1) axial flow around fuel rods, with particular attention to wall effects; (2) natural convection in the primary vessel; and (3) flow in a rod bundle in the presence of spacing devices. Finally, the focus of the work presented here is on the lessons learned and the requirements to perform these simulations at exascale. Additional physical insight gained from these simulations is also emphasized.« less

  14. Nonlinear Binormal Flow of Vortex Filaments

    NASA Astrophysics Data System (ADS)

    Strong, Scott; Carr, Lincoln

    2015-11-01

    With the current advances in vortex imaging of Bose-Einstein condensates occurring at the Universities of Arizona, São Paulo and Cambridge, interest in vortex filament dynamics is experiencing a resurgence. Recent simulations, Salman (2013), depict dissipative mechanisms resulting from vortex ring emissions and Kelvin wave generation associated with vortex self-intersections. As the local induction approximation fails to capture reconnection events, it lacks a similar dissipative mechanism. On the other hand, Strong&Carr (2012) showed that the exact representation of the velocity field induced by a curved segment of vortex contains higher-order corrections expressed in powers of curvature. This nonlinear binormal flow can be transformed, Hasimoto (1972), into a fully nonlinear equation of Schrödinger type. Continued transformation, Madelung (1926), reveals that the filament's square curvature obeys a quasilinear scalar conservation law with source term. This implies a broader range of filament dynamics than is possible with the integrable linear binormal flow. In this talk we show the affect higher-order corrections have on filament dynamics and discuss physical scales for which they may be witnessed in future experiments. Partially supported by NSF.

  15. Spatial and Temporal Scales of Surface Water-Groundwater Interactions

    NASA Astrophysics Data System (ADS)

    Boano, F.

    2016-12-01

    The interfaces between surface water and groundwater (i.e., river and lake sediments) represent hotspots for nutrient transformation in watersheds. This intense biochemical activity stems from the peculiar physicochemical properties of these interface areas. Here, the exchange of water and nutrients between surface and subsurface environments creates an ecotone region that can support the presence of different microbial species responsible for nutrient transformation. Previous studies have elucidated that water exchange between rivers and aquifers is organized in a complex system of nested flow cells. Each cell entails a range of residence timescales spanning multiple order of magnitudes, providing opportunities for different biochemical reactions to occur. Physically-bases models represent useful tools to deal with the wide range of spatial and temporal scales that characterize surface-subsurface water exchange. This contribution will present insights about how hydrodynamic processes control scale organization for surface water - groundwater interactions. The specific focus will be the influence of exchange processes on microbial activity and nutrient transformation, discussing how groundwater flow at watershed scale controls flow conditions and hence constrain microbial reactions at much smaller scales.

  16. Modelling of electronic excitation and radiation in the Direct Simulation Monte Carlo Macroscopic Chemistry Method

    NASA Astrophysics Data System (ADS)

    Goldsworthy, M. J.

    2012-10-01

    One of the most useful tools for modelling rarefied hypersonic flows is the Direct Simulation Monte Carlo (DSMC) method. Simulator particle movement and collision calculations are combined with statistical procedures to model thermal non-equilibrium flow-fields described by the Boltzmann equation. The Macroscopic Chemistry Method for DSMC simulations was developed to simplify the inclusion of complex thermal non-equilibrium chemistry. The macroscopic approach uses statistical information which is calculated during the DSMC solution process in the modelling procedures. Here it is shown how inclusion of macroscopic information in models of chemical kinetics, electronic excitation, ionization, and radiation can enhance the capabilities of DSMC to model flow-fields where a range of physical processes occur. The approach is applied to the modelling of a 6.4 km/s nitrogen shock wave and results are compared with those from existing shock-tube experiments and continuum calculations. Reasonable agreement between the methods is obtained. The quality of the comparison is highly dependent on the set of vibrational relaxation and chemical kinetic parameters employed.

  17. Effective temperature dynamics of shear bands in metallic glasses

    NASA Astrophysics Data System (ADS)

    Daub, Eric G.; Klaumünzer, David; Löffler, Jörg F.

    2014-12-01

    We study the plastic deformation of bulk metallic glasses with shear transformation zone (STZ) theory, a physical model for plasticity in amorphous systems, and compare it with experimental data. In STZ theory, plastic deformation occurs when localized regions rearrange due to applied stress and the density of these regions is determined by a dynamically evolving effective disorder temperature. We compare the predictions of STZ theory to experiments that explore the low-temperature deformation of Zr-based bulk metallic glasses via shear bands at various thermal temperatures and strain rates. By following the evolution of effective temperature with time, strain rate, and temperature through a series of approximate and numerical solutions to the STZ equations, we successfully model a suite of experimentally observed phenomena, including shear-band aging as apparent from slide-hold-slide tests, a temperature-dependent steady-state flow stress, and a strain-rate- and temperature-dependent transition from stick-slip (serrated flow) to steady-sliding (nonserrated flow). We find that STZ theory quantitatively matches the observed experimental data and provides a framework for relating the experimentally measured energy scales to different types of atomic rearrangements.

  18. Low-Latitude Solar Wind During the Fall 1998 SOHO-Ulysses Quadrature

    NASA Technical Reports Server (NTRS)

    Poletto, G.; Suess, Steven T.; Biesecker, D.; Esser, R.; Gloeckler, G.; Zurbuchen, T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Fall 1998 SOlar-Heliospheric Observatory (SOHO) - Ulysses quadrature occurred when Ulysses was at 5.2 AU, 17.4 deg South of the equator, and off the West line of the Sun. SOHO coronal observations, at heliocentric distances of a few solar radii, showed that the line through the solar center and Ulysses crossed, over the first days of observations, a dark, weakly emitting area and through the northern edge of a streamer complex during the second half of the quadrature campaign. Ulysses in situ observations showed this transition to correspond to a decrease from higher speed wind typical of coronal hole flow to low speed wind. Physical parameters (density, temperature, flow speed) of the low latitude coronal plasma sampled over the campaign are determined using constraints from what is the same plasma measured later in situ and simulating the intensities of the Hydrogen Lyman-alpha and OVI 1032 and 1037 Angstrom lines, measured by the Ultra Violet Coronagraph Spectrometer (UVCS) on SOHO. The densities, temperatures and outflow speed are compared with the same characteristic flow parameters for high-latitude fast wind streams and typical slow solar wind.

  19. Large-scale large eddy simulation of nuclear reactor flows: Issues and perspectives

    DOE PAGES

    Merzari, Elia; Obabko, Aleks; Fischer, Paul; ...

    2016-11-03

    Numerical simulation has been an intrinsic part of nuclear engineering research since its inception. In recent years a transition is occurring toward predictive, first-principle-based tools such as computational fluid dynamics. Even with the advent of petascale computing, however, such tools still have significant limitations. In the present work some of these issues, and in particular the presence of massive multiscale separation, are discussed, as well as some of the research conducted to mitigate them. Petascale simulations at high fidelity (large eddy simulation/direct numerical simulation) were conducted with the massively parallel spectral element code Nek5000 on a series of representative problems.more » These simulations shed light on the requirements of several types of simulation: (1) axial flow around fuel rods, with particular attention to wall effects; (2) natural convection in the primary vessel; and (3) flow in a rod bundle in the presence of spacing devices. Finally, the focus of the work presented here is on the lessons learned and the requirements to perform these simulations at exascale. Additional physical insight gained from these simulations is also emphasized.« less

  20. Pattern database applications from design to manufacturing

    NASA Astrophysics Data System (ADS)

    Zhuang, Linda; Zhu, Annie; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh

    2017-03-01

    Pattern-based approaches are becoming more common and popular as the industry moves to advanced technology nodes. At the beginning of a new technology node, a library of process weak point patterns for physical and electrical verification are starting to build up and used to prevent known hotspots from re-occurring on new designs. Then the pattern set is expanded to create test keys for process development in order to verify the manufacturing capability and precheck new tape-out designs for any potential yield detractors. With the database growing, the adoption of pattern-based approaches has expanded from design flows to technology development and then needed for mass-production purposes. This paper will present the complete downstream working flows of a design pattern database(PDB). This pattern-based data analysis flow covers different applications across different functional teams from generating enhancement kits to improving design manufacturability, populating new testing design data based on previous-learning, generating analysis data to improve mass-production efficiency and manufacturing equipment in-line control to check machine status consistency across different fab sites.

  1. Effect of back-pressure forcing on shock train structures in rectangular channels

    NASA Astrophysics Data System (ADS)

    Gnani, F.; Zare-Behtash, H.; White, C.; Kontis, K.

    2018-04-01

    The deceleration of a supersonic flow to the subsonic regime inside a high-speed engine occurs through a series of shock waves, known as a shock train. The generation of such a flow structure is due to the interaction between the shock waves and the boundary layer inside a long and narrow duct. The understanding of the physics governing the shock train is vital for the improvement of the design of high-speed engines and the development of flow control strategies. The present paper analyses the sensitivity of the shock train configuration to a back-pressure variation. The complex characteristics of the shock train at an inflow Mach number M = 2 in a channel of constant height are investigated with two-dimensional RANS equations closed by the Wilcox k-ω turbulence model. Under a sinusoidal back-pressure variation, the simulated results indicate that the shock train executes a motion around its mean position that deviates from a perfect sinusoidal profile with variation in oscillation amplitude, frequency, and whether the pressure is first increased or decreased.

  2. Cerebral small vessel disease: Capillary pathways to stroke and cognitive decline

    PubMed Central

    Engedal, Thorbjørn S; Moreton, Fiona; Hansen, Mikkel B; Wardlaw, Joanna M; Dalkara, Turgay; Markus, Hugh S; Muir, Keith W

    2015-01-01

    Cerebral small vessel disease (SVD) gives rise to one in five strokes worldwide and constitutes a major source of cognitive decline in the elderly. SVD is known to occur in relation to hypertension, diabetes, smoking, radiation therapy and in a range of inherited and genetic disorders, autoimmune disorders, connective tissue disorders, and infections. Until recently, changes in capillary patency and blood viscosity have received little attention in the aetiopathogenesis of SVD and the high risk of subsequent stroke and cognitive decline. Capillary flow patterns were, however, recently shown to limit the extraction efficacy of oxygen in tissue and capillary dysfunction therefore proposed as a source of stroke-like symptoms and neurodegeneration, even in the absence of physical flow-limiting vascular pathology. In this review, we examine whether capillary flow disturbances may be a shared feature of conditions that represent risk factors for SVD. We then discuss aspects of capillary dysfunction that could be prevented or alleviated and therefore might be of general benefit to patients at risk of SVD, stroke or cognitive decline. PMID:26661176

  3. Tidal-flow, circulation, and flushing changes caused by dredge and fill in Hillsborough Bay, Florida

    USGS Publications Warehouse

    Goodwin, Carl R.

    1991-01-01

    Hillsborough Bay, Florida, underwent extensive physical changes between 1880 and 1972 because of the construction of islands, channels, and shoreline fills. These changes resulted in a progressive reduction in the quantity of tidal water that enters and leaves the bay. Dredging and filling also changed the magnitude and direction of tidal flow in most of the bay. A two-dimensional, finite-difference hydrodynamic model was used to simulate flood, ebb, and residual water transport for physical conditions in Hillsborough Bay and the northeastern part of Middle Tampa Bay during 1880, 1972, and 1985. The calibrated and verified model was used to evaluate cumulative water-transport changes resulting from construction in the study area between 1880 and 1972. The model also was used to evaluate water-transport changes as a result of a major Federal dredging project completed in 1985. The model indicates that transport changes resulting from the Federal dredging project are much less areally extensive than the corresponding transport changes resulting from construction between 1880 and 1972. Dredging-caused changes of more than 50 percent in flood and ebb water transport were computed to occur over only about 8 square miles of the 65-square-mile study area between 1972 and 1985. Model results indicate that construction between 1880 and 1972 caused changes of similar magnitude over about 23 square miles. Dredging-caused changes of more than 50 percent in residual water transport were computed to occur over only 17 square miles between 1972 and 1985. Between 1880 and 1972, changes of similar magnitude were computed to occur over an area of 45 square miles. Model results also reveal historical tide-induced circulation patterns. The patterns consist of a series of about 8 interconnected circulatory features in 1880 and as many as 15 in 1985. Dredging- and construction-caused changes in number, size, position, shape, and intensity of the circulatory features increase tide-induced circulation throughout the bay. Circulation patterns for 1880, 1972, and 1985 levels of development differ in many details, but all exhibit residual landward flow of water in the deep, central part of the bay and residual seaward flow in the shallows along the bay margins. This general residual flow pattern is confirmed by both computed transport of a hypothetical constituent and long-term salinity observations in Hillsborough Bay. The concept has been used to estimate the average time it takes a particle to move from the head to the mouth of the bay. The mean transit time was computed to be 58 days in 1880 and 29 days in 1972 and 1985. This increase in circulation and decrease in transit time since 1880 is estimated to have caused an increase in average salinity of Hillsborough Bay of about 2 parts per thousand. Dredge and fill construction is concluded to have significantly increased circulation and flushing between 1880 and 1972. Little circulation or flushing change is attributed to dredging activity since 1972.

  4. Flow behavior and mobility of contaminated waste rock materials in the abandoned Imgi mine in Korea

    NASA Astrophysics Data System (ADS)

    Jeong, S. W.; Wu, Y.-H.; Cho, Y. C.; Ji, S. W.

    2018-01-01

    Incomplete mine reclamation can cause ecological and environmental impacts. This paper focuses on the geotechnical and rheological characteristics of waste rock materials, which are mainly composed of sand-size particles, potentially resulting in mass movement (e.g., slide or flow) and extensive acid mine drainage. To examine the potential for contaminant mobilization resulting from physicochemical processes in abandoned mines, a series of scenario-based debris flow simulations was conducted using Debris-2D to identify different hazard scenarios and volumes. The flow behavior of waste rock materials was examined using a ball-measuring rheometric apparatus, which can be adapted for large particle samples, such as debris flow. Bingham yield stresses determined in controlled shear rate mode were used as an input parameter in the debris flow modeling. The yield stresses ranged from 100 to 1000 Pa for shear rates ranging from 10- 5 to 102 s- 1. The results demonstrated that the lowest yield stress could result in high mobility of debris flow (e.g., runout distance > 700 m from the source area for 60 s); consequently, the material contaminants may easily reach the confluence of the Suyoung River through a mountain stream. When a fast slide or debris flow occurs at or near an abandoned mine area, it may result in extremely dynamic and destructive geomorphological changes. Even for the highest yield stress of debris flow simulation (i.e., τy = 2000 Pa), the released debris could flow into the mountain stream; therefore, people living near abandoned mines may become exposed to water pollution throughout the day. To maintain safety at and near abandoned mines, the physicochemical properties of waste materials should be monitored, and proper mitigation measures post-mining should be considered in terms of both their physical damage and chemical pollution potential.

  5. A fluid–structure interaction model to characterize bone cell stimulation in parallel-plate flow chamber systems

    PubMed Central

    Vaughan, T. J.; Haugh, M. G.; McNamara, L. M.

    2013-01-01

    Bone continuously adapts its internal structure to accommodate the functional demands of its mechanical environment and strain-induced flow of interstitial fluid is believed to be the primary mediator of mechanical stimuli to bone cells in vivo. In vitro investigations have shown that bone cells produce important biochemical signals in response to fluid flow applied using parallel-plate flow chamber (PPFC) systems. However, the exact mechanical stimulus experienced by the cells within these systems remains unclear. To fully understand this behaviour represents a most challenging multi-physics problem involving the interaction between deformable cellular structures and adjacent fluid flows. In this study, we use a fluid–structure interaction computational approach to investigate the nature of the mechanical stimulus being applied to a single osteoblast cell under fluid flow within a PPFC system. The analysis decouples the contribution of pressure and shear stress on cellular deformation and for the first time highlights that cell strain under flow is dominated by the pressure in the PPFC system rather than the applied shear stress. Furthermore, it was found that strains imparted on the cell membrane were relatively low whereas significant strain amplification occurred at the cell–substrate interface. These results suggest that strain transfer through focal attachments at the base of the cell are the primary mediators of mechanical signals to the cell under flow in a PPFC system. Such information is vital in order to correctly interpret biological responses of bone cells under in vitro stimulation and elucidate the mechanisms associated with mechanotransduction in vivo. PMID:23365189

  6. Experimental Study of Transitional Flow Behavior in a Simulated Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Sohn, Ki Hyeon; DeWitt, Kenneth J.

    1998-01-01

    A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT airfoil onto a flat lower plate. The experiments were carried out for the Reynolds numbers of 35,000, 70,000, 100,000 and 250,000 with four levels of freestream turbulence ranging from 1% to 4%. For the three lower Reynolds numbers, the boundary layer on the flat plate was separated and formed a bubble. The size of laminar separation bubble was measured to be inversely proportional to the freestream turbulence levels and Reynolds numbers. However, no separation was observed for the Re = 250,000 case. The transition on a separated flow was found to proceed through the formation of turbulent spots in the free shear layer as evidenced in the intermittency profiles for Re = 35,000, 70,000 and 100,000. Spectral data show no evidence of Kelvin-Helmholtz or Tollmien-Schlichting instability waves in the free shear layer over a separation bubble (bypass transition). However, the flow visualization revealed the large vortex structures just outside of the bubble and their development to turbulent flow for Re = 50,000, which is similar to that in the free shear layer (separated-flow transition). Therefore, it is fair to say that the bypass and separated-flow transition modes coexist in the transitional flows over the separation bubble for certain conditions. Transition onset and end locations and length determined from intermittency profiles decrease as Reynolds number and freestream turbulence levels increase.

  7. The Spatial and Temporal Variability of Meltwater Flow Paths: Insights From a Grid of Over 100 Snow Lysimeters

    NASA Astrophysics Data System (ADS)

    Webb, R. W.; Williams, M. W.; Erickson, T. A.

    2018-02-01

    Snowmelt is an important part of the hydrologic cycle and ecosystem dynamics for headwater systems. However, the physical process of water flow through snow is a poorly understood aspect of snow hydrology as meltwater flow paths tend to be highly complex. Meltwater flow paths diverge and converge as percolating meltwater reaches stratigraphic layer interfaces creating high spatial variability. Additionally, a snowpack is temporally heterogeneous due to rapid localized metamorphism that occurs during melt. This study uses a snowmelt lysimeter array at tree line in the Niwot Ridge study area of northern Colorado. The array is designed to address the issue of spatial and temporal variability of basal discharge at 105 locations over an area of 1,300 m2. Observed coefficients of variation ranged from 0 to almost 10 indicating more variability than previously observed, though this variability decreased throughout each melt season. Snowmelt basal discharge also significantly increases as snow depth decreases displaying a cluster pattern that peaks during weeks 3-5 of the snowmelt season. These results are explained by the flow of meltwater along snow layer interfaces. As the snowpack becomes less stratified through the melt season, the pattern transforms from preferential flow paths to uniform matrix flow. Correlation ranges of the observed basal discharge correspond to a mean representative elementary area of 100 m2, or a characteristic length of 10 m. Snowmelt models representing processes at scales less than this will need to explicitly incorporate the spatial variability of snowmelt discharge and meltwater flow paths through snow between model pixels.

  8. Experimental Study of Transitional Flow Behavior in a Simulated Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Sohn, Ki Hyeon; DeWitt, Kenneth J.

    2007-01-01

    A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT airfoil onto a flat lower plate. The experiments were carried out for the Reynolds numbers of 35,000, 70,000, 100,000, and 250,000 with four levels of freestream turbulence ranging from 1 to 4 percent. For the three lower Reynolds numbers, the boundary layer on the flat plate was separated and formed a bubble. The size of laminar separation bubble was measured to be inversely proportional to the freestream turbulence levels and Reynolds numbers. However, no separation was observed for the Re = 250,000 case. The transition on a separated flow was found to proceed through the formation of turbulent spots in the free shear layer as evidenced in the intermittency profiles for Re = 35,000, 70,000, and 100,000. Spectral data show no evidence of Kelvin-Helmholtz of Tollmien-Schlichting instability waves in the free shear layer over a separation bubble (bypass transition). However, the flow visualization revealed the large vortex structures just outside of the bubble and their development to turbulent flow for Re = 50,000, which is similar to that in the free shear layer (separated-flow transition). Therefore, it is fair to say that the bypass and separated-flow transition modes coexist in the transition flows over the separation bubble of certain conditions. Transition onset and end locations and length determined from intermittency profiles decreased as Reynolds number and freestream turbulence levels increase.

  9. Subtidal circulation on the Alabama shelf during the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Dzwonkowski, Brian; Park, Kyeong

    2012-03-01

    Water column velocity and hydrographic measurements on the inner Alabama shelf are used to examine the flow field and its forcing dynamics during the Deepwater Horizon oil spill disaster in the spring and summer of 2010. Comparison between two sites provides insight into the flow variability and dynamics of a shallow, highly stratified shelf in the presence of complicating geographic and bathymetric features. Seasonal currents reveal a convergent flow with strong, highly sheared offshore flow near a submarine bank just outside of Mobile Bay. At synoptic time scales, the flow is relatively consistent with typical characteristics of wind-driven Ekman coastal circulation. Analysis of the depth-averaged along-shelf momentum balance indicates that both bottom stress and along-shelf pressure gradient act to counter wind stress. As a consequence of the along-shelf pressure gradient and thermal wind shear, flow reversals in the bottom currents can occur during periods of transitional winds. Despite the relatively short distance between the two sites (14 km), significant spatial variability is observed. This spatial variability is argued to be a result of local variations in the bathymetry and density field as the study region encompasses a submarine bank near the mouth of a major freshwater source. Given the physical parameters of the system, along-shelf flow in this region would be expected to separate from the local isobaths, generating a mean offshore flow. The local, highly variable density field is expected to be, in part, responsible for the differences in the vertical variability in the current profiles.

  10. Larval Transport on the Atlantic Continental Shelf of North America: a Review

    NASA Astrophysics Data System (ADS)

    Epifanio, C. E.; Garvine, R. W.

    2001-01-01

    This review considers transport of larval fish and crustaceans on the continental shelf. Previous reviews have contained only limited treatments of the physical processes involved. The present paper provides a physical background that is considerably more comprehensive. It includes a discussion of three principal forcing agents: (1) wind stress; (2) tides propagating from the deep ocean; and (3) differences in density associated with the buoyant outflow of estuaries, surface heat flux, or the interaction of coastal and oceanic water masses at the seaward margin of the shelf. The authors discuss the effects of these forcing agents on transport of larvae in the Middle Atlantic and South Atlantic Bights along the east coast of North America. The discussion concentrates on three species (blue crab, menhaden, bluefish) that have been the subject of a very recent multi-disciplinary study. Taken as a whole, the reproductive activities of these three species span the entire year and utilize the entire shelf, from the most seaward margin to the estuarine nursery. The blue crab is representative of species affected by physical processes occurring during summer and early autumn on the inner and mid-shelf. Menhaden are impacted by processes occurring in winter on the outer and mid-shelf. Bluefish are influenced primarily by processes occurring during early spring at the outer shelf margin near the western boundary current. The authors conclude that alongshore wind stress and density differences, i.e. buoyancy-driven flow, are the primary agents of larval transport in the region. Circulation associated with the western boundary current is only important at the shelf margin and tidally driven processes are generally inconsequential.

  11. Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach.

    PubMed

    Verbruggen, Stefaan W; Vaughan, Ted J; McNamara, Laoise M

    2014-01-01

    Osteocytes are believed to be the primary sensor of mechanical stimuli in bone, which orchestrate osteoblasts and osteoclasts to adapt bone structure and composition to meet physiological loading demands. Experimental studies to quantify the mechanical environment surrounding bone cells are challenging, and as such, computational and theoretical approaches have modelled either the solid or fluid environment of osteocytes to predict how these cells are stimulated in vivo. Osteocytes are an elastic cellular structure that deforms in response to the external fluid flow imposed by mechanical loading. This represents a most challenging multi-physics problem in which fluid and solid domains interact, and as such, no previous study has accounted for this complex behaviour. The objective of this study is to employ fluid-structure interaction (FSI) modelling to investigate the complex mechanical environment of osteocytes in vivo. Fluorescent staining of osteocytes was performed in order to visualise their native environment and develop geometrically accurate models of the osteocyte in vivo. By simulating loading levels representative of vigorous physiological activity ([Formula: see text] compression and 300 Pa pressure gradient), we predict average interstitial fluid velocities [Formula: see text] and average maximum shear stresses [Formula: see text] surrounding osteocytes in vivo. Interestingly, these values occur in the canaliculi around the osteocyte cell processes and are within the range of stimuli known to stimulate osteogenic responses by osteoblastic cells in vitro. Significantly our results suggest that the greatest mechanical stimulation of the osteocyte occurs in the cell processes, which, cell culture studies have indicated, is the most mechanosensitive area of the cell. These are the first computational FSI models to simulate the complex multi-physics mechanical environment of osteocyte in vivo and provide a deeper understanding of bone mechanobiology.

  12. On the Modelization of the Development of Stream Periphyton

    NASA Astrophysics Data System (ADS)

    Caussade, B. H.; Fothi, A.; Le Boulleur de Courlon, R. A.

    2002-12-01

    Experiments have been performed at the experimental flume scale to try to understand, explain, and model the Benthic algal biomass (periphyton) accrual observed in natural rivers and artificial channels. Many authors have shown that the immigration/colonization phase, the early stage following a flood and the accrual phase are processes dominated by settlement of algal cells, governed by the substratum nature, the substratum texture, the water velocity, and the presence, or not, of blowing through the substratum. But, if these physical factors have been proposed, their real influence have never been evaluated. in other words, the corresponding key factors have never been clearly identified and, accordingly, never been measured. To facilitate the process of immigration/colonization and prevent secondary flows caused by non-uniform roughness of the channel bed, we have chosen to set a single layer of PVC rods, arranged side by side, perpendicular to the side walls of the channel, on the original floor of the flume. One set of experiments has been devoted to the comprehension of the processes of colonization, growing from direct visualization of the growth of the periphytic mats, through digital still photography and video, in combination with numerical simulation of flow over the rods. We show that the anchoring of the first cells of perihyton occurs in a zone of each rod surface where the value of the vertical component of the turbulent shear-stress is below a certain value. After this first stage, the process of growing is engaged. The periphyton adapts to the flow conditions. This essentially concerns the algal composition and the rapidity of accumulation of the biofilm. This accumulation (very important after several weeks) versus time in turn induces significant modifications of the mean flow of the turbulent parameters (turbulent intensities and Reynolds stress). The accrual of periphytic mats reaches a peak just before the beginning of the later stage when occurs the process of degradation of the periphyton communities. This last stage is dominated by the shear stress generated by the flow. All these observations, so as biological and physical data collected impose a revision of the models of stream periphyton development. If the role of the current mean velocity is clearly confirmed, it is also clear that this parameter is unable to explain the dynamics of the biological processes involved. So, we propose to replace, in the models of the scientific literature, the mean velocity by the friction velocity, which is a local parameter directly linked to the shear stress. Applications of this new model will be presented and discussed.

  13. Review of mechanisms, methods, and theory for determining recharge to shallow aquifers in North Dakota

    USGS Publications Warehouse

    Horak, W.F.

    1988-01-01

    Effective management of ground-water resources requires knowledge of all components of the water budget for the aquifer of interest. Efforts to simulate ground-water flow prior to development and the effects of proposed pumping in several of North Dakota's shallow glacial aquifers have been hindered by the lack of reliable estimates of ground-water recharge. This study was done to (1) review the methods that have been used to measure recharge, (2) review the theory of unsaturated flow and the methods for characterizing the physical properties of unsaturated media, (3) consider the relative merits of a rigorous data-intensive approach versus an estimation approach to the study of recharge, and (4) review past and current agronomic research in North Dakota for applicability of the research and the data generated to the study of recharge.Direct, quantitative techniques for evaluating recharge are rarely applied. The theory for computing fluxes in unsaturated media is well established and numerous physics-based models that effectively implement the theory are available, but the data required for the models generally are lacking. Many parametric approaches have been developed to avoid the large data requirements of the physics-based approaches for analyzing flow in the unsaturated zone. However, the parametric approaches normally include fitting coefficients that must be calibrated for every study site, thereby detracting from the general utility of the parametric approach. The functional relation of matric potential to moisture content is required for physics-based soil-water models, whether analytic or numeric. Laboratory methods to determine these relations are tedious, costly, and may not give results representative of the soils as they occur in the field. Many models have been proposed to estimate the moisture-characteristic curve and hydraulic-conductivity function from basic soil properties, but none yield results that are universally satisfactory. In situ methods, because they require minimal disturbance of the soil profile and may be used repeatedly on the same soil mass, have become the preferred means for acquiring physical data, especially hydraulic conductivity. Hydro logic investigations, except for recent studies of hazardous-waste disposal sites, rarely have included physical characterizations of unsaturated media. Any of four phenomena could hinder attempts to simulate unsaturated flow in settings typical of North Dakota; variability of soil properties, hysteresis, frozen ground, and macropore development. The spatial and temporal variability of soil properties probably is the greatest complicating phenomenon and must be dealt with by detailed characterization of the properties. Hysteresis can detract from the accuracy of flow calculations for some soils under certain conditions but, for the present, our scant knowledge of soil physical properties is a greater hindrance to reliable soi1-water mode 1 ing than is the hysteresis phenomenon. A1 though seasona1ly frozen ground undoubtedly affects hydrologic processes in North Dakota, much more research is needed before meaningful quantitative treatment is possible. Finally, macropores can influence soil-water movement significantly, but macropore development may not be common on the intensively farmed, coarse-textured soils that typically overlie North Dakota's glacial aquifers. Lysimetry currently is the only reliable means of analyzing macropore flow.The soil-related research that has been conducted in North Dakota to date (1983) provides little of the type of information required to estimate ground-water recharge. Useful data could be developed by systematically evaluating the hydraulic characteristics of the prominent soil types overlying North Dakota's shallow glacial aquifers. These data would be required to enable use of a physics-based approach to estimating recharge. The size of the aquifer under study, its economic value, and the resources available for data collection should be considered when choosing between parametric or physics-based methods.

  14. Physical limits of flow sensing in the left-right organizer

    PubMed Central

    Ferreira, Rita R; Vilfan, Andrej; Jülicher, Frank; Supatto, Willy; Vermot, Julien

    2017-01-01

    Fluid flows generated by motile cilia are guiding the establishment of the left-right asymmetry of the body in the vertebrate left-right organizer. Competing hypotheses have been proposed: the direction of flow is sensed either through mechanosensation, or via the detection of chemical signals transported in the flow. We investigated the physical limits of flow detection to clarify which mechanisms could be reliably used for symmetry breaking. We integrated parameters describing cilia distribution and orientation obtained in vivo in zebrafish into a multiscale physical study of flow generation and detection. Our results show that the number of immotile cilia is too small to ensure robust left and right determination by mechanosensing, given the large spatial variability of the flow. However, motile cilia could sense their own motion by a yet unknown mechanism. Finally, transport of chemical signals by the flow can provide a simple and reliable mechanism of asymmetry establishment. DOI: http://dx.doi.org/10.7554/eLife.25078.001 PMID:28613157

  15. Orbit-spin coupling and the interannual variability of global-scale dust storm occurrence on Mars

    NASA Astrophysics Data System (ADS)

    Shirley, James H.; Mischna, Michael A.

    2017-05-01

    A new physical hypothesis predicts that a weak coupling of the orbital and rotational motions of extended bodies may give rise to a modulation of circulatory flows within their atmospheres. Driven cycles of intensification and relaxation of large-scale circulatory flows are predicted, with the phasing of these changes linked directly to the rate of change of the orbital angular momentum, dL/dt, with respect to inertial frames. We test the hypothesis that global-scale dust storms (GDS) on Mars may occur when periods of circulatory intensification (associated with positive and negative extrema of the dL/dt waveform) coincide with the southern summer dust storm season on Mars. The orbit-spin coupling hypothesis additionally predicts that the intervening 'transitional' periods, which are characterized by the disappearance and subsequent sign change of dL/dt, may be unfavorable for the occurrence of GDS, when they occur during the southern summer dust storm season. These hypotheses are strongly supported by comparisons between calculated dynamical time series of dL/dt and historic observations. All of the nine known global-scale dust storms on Mars took place during Mars years when circulatory intensification during the dust storm season is 'retrodicted' under the orbit-spin coupling hypothesis. None of the historic global-scale dust storms of our catalog occurred during transitional intervals. Orbit-spin coupling appears to play an important role in the excitation of the interannual variability of the atmospheric circulation of Mars.

  16. Transport and remobilization of multi-walled carbon nanotubes in porous media during dynamic saturation change

    NASA Astrophysics Data System (ADS)

    Sharma, P.

    2012-04-01

    Nanotechnology is one of the most important technologies in this century and it is evoking a new industrial revolution. Carbon nanotubes (CNTs) are important engineered nanoparticles with unique and beneficial properties. As a result, CNT has been used in a wide range of commercial products including electronics, optical devices and drug delivery leading to their disposal in the natural environment. Literature studies have investigated the mobility of CNTs in saturated porous media under differing physical and chemical conditions. However CNT transport in temporarily changing porous media water content has not been investigated thus far (a common scenario with rainfall/infiltration events in the vadose zone). This study investigated the mobilization of multi-walled CNTs (MCNTs) in repeated wetting and drying cycles with varying flow rates and ionic strength of the inflow solution. Imbibition-drainage-imbibition cycle experiments suggest that MCNTs mobilization increased with increase in flow rates. MCNTs mobilization occurred only with first imbibition events at low ionic strengths however less mobilization happened for higher ionic strength inflow solution in the first imbibition cycle and additional MCNTs were found in the outflow solution in second imbibition cycle, using low ionic strength solution. This observation was likely due to the attachment force between MCNTs and sand surface. Most of the MCNT mobilization occurred during liquid-gas interface movement with less chance of MCNTs to jump the energy barrier at higher ionic strength solution. As a result, less detachment of MCNTs occurred from the sand surface during drainage.

  17. Evaluation of SCS-CN method using a fully distributed physically based coupled surface-subsurface flow model

    NASA Astrophysics Data System (ADS)

    Shokri, Ali

    2017-04-01

    The hydrological cycle contains a wide range of linked surface and subsurface flow processes. In spite of natural connections between surface water and groundwater, historically, these processes have been studied separately. The current trend in hydrological distributed physically based model development is to combine distributed surface water models with distributed subsurface flow models. This combination results in a better estimation of the temporal and spatial variability of the interaction between surface and subsurface flow. On the other hand, simple lumped models such as the Soil Conservation Service Curve Number (SCS-CN) are still quite common because of their simplicity. In spite of the popularity of the SCS-CN method, there have always been concerns about the ambiguity of the SCS-CN method in explaining physical mechanism of rainfall-runoff processes. The aim of this study is to minimize these ambiguity by establishing a method to find an equivalence of the SCS-CN solution to the DrainFlow model, which is a fully distributed physically based coupled surface-subsurface flow model. In this paper, two hypothetical v-catchment tests are designed and the direct runoff from a storm event are calculated by both SCS-CN and DrainFlow models. To find a comparable solution to runoff prediction through the SCS-CN and DrainFlow, the variance between runoff predictions by the two models are minimized by changing Curve Number (CN) and initial abstraction (Ia) values. Results of this study have led to a set of lumped model parameters (CN and Ia) for each catchment that is comparable to a set of physically based parameters including hydraulic conductivity, Manning roughness coefficient, ground surface slope, and specific storage. Considering the lack of physical interpretation in CN and Ia is often argued as a weakness of SCS-CN method, the novel method in this paper gives a physical explanation to CN and Ia.

  18. Measurements of Turbulence Attenuation by a Dilute Dispersion of Solid Particles in Homogeneous Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Eaton, John; Hwang, Wontae; Cabral, Patrick

    2002-01-01

    This research addresses turbulent gas flows laden with fine solid particles at sufficiently large mass loading that strong two-way coupling occurs. By two-way coupling we mean that the particle motion is governed largely by the flow, while the particles affect the gas-phase mean flow and the turbulence properties. Our main interest is in understanding how the particles affect the turbulence. Computational techniques have been developed which can accurately predict flows carrying particles that are much smaller than the smallest scales of turbulence. Also, advanced computational techniques and burgeoning computer resources make it feasible to fully resolve very large particles moving through turbulent flows. However, flows with particle diameters of the same order as the Kolmogorov scale of the turbulence are notoriously difficult to predict. Some simple flows show strong turbulence attenuation with reductions in the turbulent kinetic energy by up to a factor of five. On the other hand, some seemingly similar flows show almost no modification. No model has been proposed that allows prediction of when the strong attenuation will occur. Unfortunately, many technological and natural two-phase flows fall into this regime, so there is a strong need for new physical understanding and modeling capability. Our objective is to study the simplest possible turbulent particle-laden flow, namely homogeneous, isotropic turbulence with a uniform dispersion of monodisperse particles. We chose such a simple flow for two reasons. First, the simplicity allows us to probe the interaction in more detail and offers analytical simplicity in interpreting the results. Secondly, this flow can be addressed by numerical simulation, and many research groups are already working on calculating the flow. Our detailed data can help guide some of these efforts. By using microgravity, we can further simplify the flow to the case of no mean velocity for either the turbulence or the particles. In fact the addition of gravity as a variable parameter may help us to better understand the physics of turbulence attenuation. The experiments are conducted in a turbulence chamber capable of producing stationary or decaying isotropic turbulence with nearly zero mean flow and Taylor microscale Reynolds numbers up to nearly 500. The chamber is a 410 mm cubic box with the corners cut off to make it approximately spherical. Synthetic jet turbulence generators are mounted in each of the eight corners of the box. Each generator consists of a loudspeaker forcing a plenum and producing a pulsed jet through a 20 mm diameter orifice. These synthetic jets are directed into ejector tubes pointing towards the chamber center. The ejector tubes increase the jet mass flow and decrease the velocity. The jets then pass through a turbulence grid. Each of the eight loudspeakers is forced with a random phase and frequency. The resulting turbulence is highly Isotropic and matches typical behavior of grid turbulence. Measurements of both phases are acquired using particle image velocimetry (PIV). The gas is seeded with approximately 1 micron diameter seeding particles while the solid phase is typically 150 micron diameter spherical glass particles. A double-pulsed YAG laser and a Kodak ES-1.0 10-bit PIV camera provide the PIV images. Custom software is used to separate the images into individual images containing either gas-phase tracers or large particles. Modern high-resolution PIV algorithms are then used to calculate the velocity field. A large set of image pairs are acquired for each case, then the results are averaged both spatially and over the ensemble of acquired images. The entire apparatus is mounted in two racks which are carried aboard NASA's KC-135 Flying Microgravity Laboratory. The rack containing the turbulence chamber, the laser head, and the camera floats freely in the airplane cabin (constrained by competent NASA personnel) to minimize g-jitter.

  19. Rainfall threshold calculation for debris flow early warning in areas with scarcity of data

    NASA Astrophysics Data System (ADS)

    Pan, Hua-Li; Jiang, Yuan-Jun; Wang, Jun; Ou, Guo-Qiang

    2018-05-01

    Debris flows are natural disasters that frequently occur in mountainous areas, usually accompanied by serious loss of lives and properties. One of the most commonly used approaches to mitigate the risk associated with debris flows is the implementation of early warning systems based on well-calibrated rainfall thresholds. However, many mountainous areas have little data regarding rainfall and hazards, especially in debris-flow-forming regions. Therefore, the traditional statistical analysis method that determines the empirical relationship between rainstorms and debris flow events cannot be effectively used to calculate reliable rainfall thresholds in these areas. After the severe Wenchuan earthquake, there were plenty of deposits deposited in the gullies, which resulted in several debris flow events. The triggering rainfall threshold has decreased obviously. To get a reliable and accurate rainfall threshold and improve the accuracy of debris flow early warning, this paper developed a quantitative method, which is suitable for debris flow triggering mechanisms in meizoseismal areas, to identify rainfall threshold for debris flow early warning in areas with a scarcity of data based on the initiation mechanism of hydraulic-driven debris flow. First, we studied the characteristics of the study area, including meteorology, hydrology, topography and physical characteristics of the loose solid materials. Then, the rainfall threshold was calculated by the initiation mechanism of the hydraulic debris flow. The comparison with other models and with alternate configurations demonstrates that the proposed rainfall threshold curve is a function of the antecedent precipitation index (API) and 1 h rainfall. To test the proposed method, we selected the Guojuanyan gully, a typical debris flow valley that during the 2008-2013 period experienced several debris flow events, located in the meizoseismal areas of the Wenchuan earthquake, as a case study. The comparison with other threshold models and configurations shows that the selected approach is the most promising starting point for further studies on debris flow early warning systems in areas with a scarcity of data.

  20. News Particle Physics: ATLAS unveils mural at CERN Prize: Corti Trust invites essay entries Astrophysics: CERN holds cosmic-ray conference Researchers in Residence: Lord Winston returns to school Music: ATLAS scientists record physics music Conference: Champagne flows at Reims event Competition: Students triumph at physics olympiad Teaching: Physics proves popular in Japanese schools Forthcoming Events

    NASA Astrophysics Data System (ADS)

    2011-01-01

    Particle Physics: ATLAS unveils mural at CERN Prize: Corti Trust invites essay entries Astrophysics: CERN holds cosmic-ray conference Researchers in Residence: Lord Winston returns to school Music: ATLAS scientists record physics music Conference: Champagne flows at Reims event Competition: Students triumph at physics olympiad Teaching: Physics proves popular in Japanese schools Forthcoming Events

  1. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    ERIC Educational Resources Information Center

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  2. Quantification and Control of Wall Effects in Porous Media Experiments

    NASA Astrophysics Data System (ADS)

    Roth, E. J.; Mays, D. C.; Neupauer, R.; Crimaldi, J. P.

    2017-12-01

    Fluid flow dynamics in porous media are dominated by media heterogeneity. This heterogeneity can create preferential pathways in which local seepage velocities dwarf system seepage velocities, further complicating an already incomplete understanding of dispersive processes. In physical models of porous media flows, apparatus walls introduce preferential flow paths (i.e., wall effects) that may overwhelm other naturally occurring preferential pathways within the apparatus, leading to deceptive results. We used planar laser-induced fluorescence (PLIF) in conjunction with refractive index matched (RIM) porous media and pore fluid to observe fluid dynamics in the porous media, with particular attention to the region near the apparatus walls in a 17 cm x 8 cm x 7 cm uniform flow cell. Hexagonal close packed spheres were used to create an isotropic, homogenous porous media field in the interior of the apparatus. Visualization of the movement of a fluorescent dye revealed the influence of the wall in creating higher permeability preferential flow paths in an otherwise homogenous media packing. These preferential flow paths extended approximately one half of one sphere diameter from the wall for homogenously packed regions, with a quickly diminishing effect on flow dynamics for homogenous media adjacent to the preferential pathway, but with major influence on flow dynamics for adjoining heterogeneous regions. Multiple approaches to mitigate wall effects were investigated, and a modified wall was created such that the fluid dynamics near the wall mimics the fluid dynamics within the homogenous porous media. This research supports the design of a two-dimensional experimental apparatus that will simulate engineered pumping schemes for use in contaminant remediation. However, this research could benefit the design of fixed bed reactors or other engineering challenges in which vessel walls contribute to unwanted preferential flow.

  3. Hybrid shallow on-axis and deep off-axis hydrothermal circulation at fast-spreading ridges.

    PubMed

    Hasenclever, Jörg; Theissen-Krah, Sonja; Rüpke, Lars H; Morgan, Jason P; Iyer, Karthik; Petersen, Sven; Devey, Colin W

    2014-04-24

    Hydrothermal flow at oceanic spreading centres accounts for about ten per cent of all heat flux in the oceans and controls the thermal structure of young oceanic plates. It also influences ocean and crustal chemistry, provides a basis for chemosynthetic ecosystems, and has formed massive sulphide ore deposits throughout Earth's history. Despite this, how and under what conditions heat is extracted, in particular from the lower crust, remains largely unclear. Here we present high-resolution, whole-crust, two- and three-dimensional simulations of hydrothermal flow beneath fast-spreading ridges that predict the existence of two interacting flow components, controlled by different physical mechanisms, that merge above the melt lens to feed ridge-centred vent sites. Shallow on-axis flow structures develop owing to the thermodynamic properties of water, whereas deeper off-axis flow is strongly shaped by crustal permeability, particularly the brittle-ductile transition. About 60 per cent of the discharging fluid mass is replenished on-axis by warm (up to 300 degrees Celsius) recharge flow surrounding the hot thermal plumes, and the remaining 40 per cent or so occurs as colder and broader recharge up to several kilometres away from the axis that feeds hot (500-700 degrees Celsius) deep-rooted off-axis flow towards the ridge. Despite its lower contribution to the total mass flux, this deep off-axis flow carries about 70 per cent of the thermal energy released at the ridge axis. This combination of two flow components explains the seismically determined thermal structure of the crust and reconciles previously incompatible models favouring either shallower on-axis or deeper off-axis hydrothermal circulation.

  4. Urine flow is a novel hemodynamic monitoring tool for the detection of hypovolemia.

    PubMed

    Shamir, Micha Y; Kaplan, Leonid; Marans, Rachel S; Willner, Dafna; Klein, Yoram

    2011-03-01

    Noticeable changes in vital signs indicating hypovolemia occur only after 15% of the blood volume is lost. More sensitive variables (e.g., cardiac output, systolic pressure variation and its Δdown component) are invasive and difficult to obtain in the early phase of bleeding. Lately, a new technology for continuous optical measurements of minute-to-minute urine flow rates has become available. We performed a preliminary evaluation to determine whether urine flow can act as an early and sensitive warning of hypovolemia. Eleven patients (ASA physical status I-II) undergoing posterior spine fusion surgery were studied prospectively. Study variables included heart rate, blood pressure (systolic and diastolic), systolic pressure variation and Δdown, minute urinary flow, hemoglobin, blood and urinary sodium, and creatinine in the blood and urine. Urine flow rate was measured using URINFO 2000™ (FlowSense Medical, Misgav, Israel). After recording baseline variables, 10 mL/kg of the patient's blood was shed and a second set of variables was recorded. Subsequently, hypovolemia was reversed by infusing colloid solution (hetastarch 6%) followed by recording a third set of variables. These 3 observations were then compared. An average of 614 ± 143 mL (mean ± SD) of blood was shed. During phlebotomy, the mean urine flow rate decreased from 5.7 ± 8 mL/min to 1.07 ± 2.5 mL/min. Systolic blood pressure and hemoglobin also decreased. Δdown increased. After rehydration, urine flow, blood pressure, and Δdown values returned to baseline. The hemoglobin concentration decreased whereas other variables did not change significantly. Urine flow rate is a dynamic variable that seems to be a reliable indicator of changes in blood volume. These results justify further investigation.

  5. Ultrasound Contrast Agents

    NASA Astrophysics Data System (ADS)

    Cachard, Christian; Basset, Olivier

    While the use of contrast agents in other imaging modalities (X ray, MRI, PET, …) has been routinely accepted for many years, the development and commercialization of contrast agents designed specifically for ultrasound imaging has occurred only very recently. As in the other imaging modalities, the injection of contrast agents during an ultrasound examination is intended to facilitate the detection and diagnosis of specific pathologies. Contrast agents efficiency is based on the backscattering of ultrasound by microbubbles. These microparticules are intravenously injected in the blood flow. After an introduction and generalities on ultrasound contrast agents (UCA) the microbubble physics in an acoustic field will be developed. Second, physics characteristics of contrast agents will be compared (bubbles with or without shell, gas nature, size distribution). Influence of acoustic pressure on the behaviour of the microparticules (linear, non linear and destruction) will be discussed. Finally, a review of specific imaging adapted to contrast agent properties as harmonic imaging, pulse inversion imaging will be presented.

  6. Computation models simulating notochordal cell extinction during early ageing of an intervertebral disc.

    PubMed

    Louman-Gardiner, K M; Coombe, D; Hunter, C J

    2011-12-01

    Lower back pain due to intervertebral disc (IVD) degeneration is a prevalent problem which drastically affects the quality of life of millions of sufferers. Healthy IVDs begin with high populations of notochordal cells in the nucleus pulposus, while by the second stage of degeneration, these cells will be replaced by chondrocyte-like cells. Because the IVD is avascular, these cells rely on passive diffusion of nutrients to survive. It is thought that this transition in cell phenotype causes the shift of the IVD's physical properties, which impede the flow of nutrients. Our computational model of the IVD illustrates its ability to simulate the evolving chemical and mechanical environments occurring during the early ageing process. We demonstrate that, due to the insufficient nutrient supply and accompanying changes in physical properties of the IVD, there was a resultant exponential decay in the number of notochordal cells over time.

  7. Spatial Localization in Dissipative Systems

    NASA Astrophysics Data System (ADS)

    Knobloch, E.

    2015-03-01

    Spatial localization is a common feature of physical systems, occurring in both conservative and dissipative systems. This article reviews the theoretical foundations of our understanding of spatial localization in forced dissipative systems, from both a mathematical point of view and a physics perspective. It explains the origin of the large multiplicity of simultaneously stable spatially localized states present in a parameter region called the pinning region and its relation to the notion of homoclinic snaking. The localized states are described as bound states of fronts, and the notions of front pinning, self-pinning, and depinning are emphasized. Both one-dimensional and two-dimensional systems are discussed, and the reasons behind the differences in behavior between dissipative systems with conserved and nonconserved dynamics are explained. The insights gained are specific to forced dissipative systems and are illustrated here using examples drawn from fluid mechanics (convection and shear flows) and a simple model of crystallization.

  8. Frequency tuning allows flow direction control in microfluidic networks with passive features.

    PubMed

    Jain, Rahil; Lutz, Barry

    2017-05-02

    Frequency tuning has emerged as an attractive alternative to conventional pumping techniques in microfluidics. Oscillating (AC) flow driven through a passive valve can be rectified to create steady (DC) flow, and tuning the excitation frequency to the characteristic (resonance) frequency of the underlying microfluidic network allows control of flow magnitude using simple hardware, such as an on-chip piezo buzzer. In this paper, we report that frequency tuning can also be used to control the direction (forward or backward) of the rectified DC flow in a single device. Initially, we observed that certain devices provided DC flow in the "forward" direction expected from previous work with a similar valve geometry, and the maximum DC flow occurred at the same frequency as a prominent peak in the AC flow magnitude, as expected. However, devices of a slightly different geometry provided the DC flow in the opposite direction and at a frequency well below the peak AC flow. Using an equivalent electrical circuit model, we found that the "forward" DC flow occurred at the series resonance frequency (with large AC flow peak), while the "backward" DC flow occurred at a less obvious parallel resonance (a valley in AC flow magnitude). We also observed that the DC flow occurred only when there was a measurable differential in the AC flow magnitude across the valve, and the DC flow direction was from the channel with large AC flow magnitude to that with small AC flow magnitude. Using these observations and the AC flow predictions from the equivalent circuit model, we designed a device with an AC flowrate frequency profile that was expected to allow the DC flow in opposite directions at two distinct frequencies. The fabricated device showed the expected flow reversal at the expected frequencies. This approach expands the flow control toolkit to include both magnitude and direction control in frequency-tuned microfluidic pumps. The work also raises interesting questions about the origin of flow reversal behavior that may be addressed by the further study of the circuit model behavior or dynamic modeling of the fluid-solid mechanics of the valve under the AC flow.

  9. Two examples of industrial applications of shock physics research

    NASA Astrophysics Data System (ADS)

    Sanai, Mohsen

    1996-05-01

    An in-depth understanding of shock physics phenomena has led to many industrial applications. Two recent applications discussed in this paper are a method for assessing explosion safety in industrial plants and a bomb-resistant luggage container for widebody aircraft. Our explosion safety assessment is based on frequent use of computer simulation of postulated accidents to model in detail the detonation of energetic materials, the formation and propagation of the resulting airblast, and the projection of fragments of known material and mass. Using a general load-damage analysis technique referred to as the pressure-impulse (PI) method, we have developed a PC-based computer algorithm that includes a continually expanding library of PI load and damage curves, which can predict and graphically display common structural damage modes and the response of humans to postulated explosion accidents. A second commercial application of shock physics discussed here is a bomb-resistant luggage container for widebody aircraft that can protect the aircraft from a terrorist bomb hidden inside the luggage. This hardened luggage container (HLC) relies on blast management and debris containment provided by a flexible flow-through blanket woven from threads made with a strong lightweight material, such as Spectra or Kevlar. This mitigation blanket forms a continuous and seamless shell around the sides of the luggage container that are parallel to the aircraft axis, leaving the two ends of the container unprotected. When an explosion occurs, the mitigation blanket expands into a nearly circular shell that contains the flying debris while directing the flow into the adjacent containers. The HLC concept has been demonstrated through full-scale experiments conducted at SRI. We believe that these two examples represent a broad class of potential industrial hazard applications of the experimental, analytical, and computational tools possessed by the shock physics community.

  10. Experimental studies on flow visualization and velocity field of compression ramp with different incoming boundary layers

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Yi, Shi-He; He, Lin; Chen, Zhi; Zhu, Yang-Zhu

    2014-11-01

    Experimental studies which focus on flow visualization and the velocity field of a supersonic laminar/turbulent flow over a compression ramp were carried out in a Mach 3.0 wind tunnel. Fine flow structures and velocity field structures were obtained via NPLS (nanoparticle-tracer planar laser scattering) and PIV (particle image velocimetry) techniques, time-averaged flow structures were researched, and spatiotemporal evolutions of transient flow structures were analyzed. The flow visualization results indicated that when the ramp angles were 25°, a typical separation occurred in the laminar flow, some typical flow structures such as shock induced by the boundary layer, separation shock, reversed flow and reattachment shock were visible clearly. While a certain extent separation occurred in turbulent flow, the separation region was much smaller. When the ramp angles were 28°, laminar flow separated further, and the separation region expanded evidently, flow structures in the separation region were complex. While a typical separation occurred in turbulent flow, reversed flow structures were significant, flow structures in the separation region were relatively simple. The experimental results of velocity field were corresponding to flow visualization, and the velocity field structures of both compression ramp flows agreed with the flow structures well. There were three layered structures in the U component velocity, and the V component velocity appeared like an oblique “v”. Some differences between these two compression ramp flows can be observed in the velocity profiles of the shear layer and the shearing intensity.

  11. Elemental and cooperative diffusion in a liquid, supercooled liquid and glass resolved

    NASA Astrophysics Data System (ADS)

    Cassar, Daniel R.; Lancelotti, Ricardo F.; Nuernberg, Rafael; Nascimento, Marcio L. F.; Rodrigues, Alisson M.; Diz, Luiza T.; Zanotto, Edgar D.

    2017-07-01

    The diffusion mechanisms controlling viscous flow, structural relaxation, liquid-liquid phase separation, crystal nucleation, and crystal growth in multicomponent glass-forming liquids are of great interest and relevance in physics, chemistry, materials, and glass science. However, the diffusing entities that control each of these important dynamic processes are still unknown. The main objective of this work is to shed some light on this mystery, advancing the knowledge on this phenomenon. For that matter, we measured the crystal growth rates, the viscosity, and lead diffusivities in PbSiO3 liquid and glass in a wide temperature range. We compared our measured values with published data covering 16 orders of magnitude. We suggest that above a certain temperature range Td (1.2Tg-1.3Tg), crystal growth and viscous flow are controlled by the diffusion of silicon and lead. Below this temperature, crystal growth and viscous flow are more sluggish than the diffusion of silicon and lead. Therefore, Td marks the temperature where decoupling between the (measured) cationic diffusivity and the effective diffusivities calculated from viscosity and crystal growth rates occurs. We reasonably propose that the nature or size of the diffusional entities controlling viscous flow and crystal growth below Td is quite different; the slowest is the one controlling viscous flow, but both processes require cooperative movements of some larger structural units rather than jumps of only one or a few isolated atoms.

  12. Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow.

    PubMed

    Gudmundsson, Magnús T; Jónsdóttir, Kristín; Hooper, Andrew; Holohan, Eoghan P; Halldórsson, Sæmundur A; Ófeigsson, Benedikt G; Cesca, Simone; Vogfjörd, Kristín S; Sigmundsson, Freysteinn; Högnadóttir, Thórdís; Einarsson, Páll; Sigmarsson, Olgeir; Jarosch, Alexander H; Jónasson, Kristján; Magnússon, Eyjólfur; Hreinsdóttir, Sigrún; Bagnardi, Marco; Parks, Michelle M; Hjörleifsdóttir, Vala; Pálsson, Finnur; Walter, Thomas R; Schöpfer, Martin P J; Heimann, Sebastian; Reynolds, Hannah I; Dumont, Stéphanie; Bali, Eniko; Gudfinnsson, Gudmundur H; Dahm, Torsten; Roberts, Matthew J; Hensch, Martin; Belart, Joaquín M C; Spaans, Karsten; Jakobsson, Sigurdur; Gudmundsson, Gunnar B; Fridriksdóttir, Hildur M; Drouin, Vincent; Dürig, Tobias; Aðalgeirsdóttir, Guðfinna; Riishuus, Morten S; Pedersen, Gro B M; van Boeckel, Tayo; Oddsson, Björn; Pfeffer, Melissa A; Barsotti, Sara; Bergsson, Baldur; Donovan, Amy; Burton, Mike R; Aiuppa, Alessandro

    2016-07-15

    Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption. We use multiparameter geophysical and geochemical data to show that the 110-square-kilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, near-exponential decline of both collapse rate and the intensity of the 180-day-long eruption. Copyright © 2016, American Association for the Advancement of Science.

  13. Timing of susceptibility to post-fire debris flows in the western USA

    USGS Publications Warehouse

    DeGraff, Jerome V.; Cannon, Susan H.; Gartner, Joseph E.

    2015-01-01

    Watersheds recently burned by wildfires can have an increased susceptibility to debris flow, although little is known about how long this susceptibility persists, and how it changes over time. We here use a compilation of 75 debris-flow response and fire-ignition dates, vegetation and bedrock class, rainfall regime, and initiation process from throughout the western U.S. to address these issues. The great majority (85 percent) of debris flows occurred within the first 12 months following wildfire, with 71 percent within the first six months. Seven percent of the debris flows occurred between 1 and 1.5 years after a fire, or during the second rainy season to impact an area. Within the first 1.5 years following fires, all but one of the debris flows initiated through runoff-dominated processes, and debris flows occurred in similar proportions in forested and non-forested landscapes. Geologic materials affected how long debris-flow activity persisted, and the timing of debris flows varied within different rainfall regimes. A second, later period of increased debris flow susceptibility between 2.2 and 10 years after fires is indicated by the remaining 8 percent of events, which occurred primarily in forested terrains and initiated largely through landslide processes. The short time period between fire and debris-flow response within the first 1.5 years after ignition, and the longer-term response between 2.2 and 10 years after fire, demonstrate the necessity of both rapid and long-term reactions by land managers and emergency-response agencies to mitigate hazards from debris flows from recently burned areas in the western U.S.

  14. Nanoparticle transport in water-unsaturated porous media: effects of solution ionic strength and flow rate

    NASA Astrophysics Data System (ADS)

    Prédélus, Dieuseul; Lassabatere, Laurent; Louis, Cédric; Gehan, Hélène; Brichart, Thomas; Winiarski, Thierry; Angulo-Jaramillo, Rafael

    2017-03-01

    This paper presents the influence of ionic strength and flow on nanoparticle (NP) retention rate in an unsaturated calcareous medium, originating from a heterogeneous glaciofluvial deposit of the region of Lyon (France). Laboratory columns 10 cm in diameter and 30 cm in length were used. Silica nanoparticles (Au-SiO2-FluoNPs), with hydrodynamic diameter ranging from 50 to 60 nm and labeled with fluorescein derivatives, were used to simulate particle transport, and bromide was used to characterize flow. Three flow rates and five different ionic strengths were tested. The transfer model based on fractionation of water into mobile and immobile fractions was coupled with the attachment/detachment model to fit NPs breakthrough curves. The results show that increasing flow velocity induces a decrease in nanoparticle retention, probably as the result of several physical but also geochemical factors. The results show that NPs retention increases with ionic strength. However, an inversion of retention occurs for ionic strength >5.10-2 M, which has been scarcely observed in previous studies. The measure of zeta potential and DLVO calculations show that NPs may sorb on both solid-water and air-water interfaces. NPs size distribution shows the potential for nanoparticle agglomeration mostly at low pH, leading to entrapment in the soil pores. These mechanisms are highly sensitive to both hydrodynamic and geochemical conditions, which explains their high sensitivity to flow rates and ionic strength.

  15. Physics of Traffic Flow

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2015-03-01

    The Texas A&M Transportation Institute estimated that traffic congestion cost the United States 121 billion in 2011 (the latest data available). The cost is due to wasted time and fuel. In addition to accidents and road construction, factors contributing to congestion include large demand, instability of high-density free flow and selfish behavior of drivers, which produces self-organized traffic bottlenecks. Extensive data collected on instrumented highways in various countries have led to a better understanding of traffic dynamics. From these measurements, Boris Kerner and colleagues developed a new theory called three-phase theory. They identified three major phases of flow observed in the data: free flow, synchronous flow and wide moving jams. The intermediate phase is called synchronous because vehicles in different lanes tend to have similar velocities. This congested phase, characterized by lower velocities yet modestly high throughput, frequently occurs near on-ramps and lane reductions. At present there are only two widely used methods of congestion mitigation: ramp metering and the display of current travel-time information to drivers. To find more effective methods to reduce congestion, researchers perform large-scale simulations using models based on the new theories. An algorithm has been proposed to realize Wardrop equilibria with real-time route information. Such equilibria have equal travel time on alternative routes between a given origin and destination. An active area of current research is the dynamics of connected vehicles, which communicate wirelessly with other vehicles and the surrounding infrastructure. These systems show great promise for improving traffic flow and safety.

  16. The Physical and Petrologic Evolution of a Multi-vent Volcanic Field Associated With Yellowstone-Newberry Volcanism

    NASA Astrophysics Data System (ADS)

    Brueseke, M. E.; Hart, W. K.

    2004-12-01

    The Santa Rosa-Calico volcanic field (SC) of northern Nevada is perhaps the most chemically and physically diverse of all volcanic fields associated with mid-Miocene northwestern USA volcanism. SC volcanism occurred from 16.5 to 14 Ma and was characterized by the eruption of a complete compositional spectrum from basalt through high-Si rhyolite. Locally derived tholeiitic lava flows and shallow intrusive bodies are chemically and isotopically identical to the Steens Basalt (87/86Sri=<0.7040), the Oregon Plateau-wide mid-Miocene flood basalt. Andesite-dacite lava flows are exposed as at least four geographically and chemically distinct packages representing products of multiple, discrete magmatic systems. The most voluminous of these is calc-alkaline and characterized by abundant granitoid and mafic xenoliths/xenocrysts and radiogenic Sr isotopic ratios. Subalkaline silicic lava flows, domes, and shallow intrusive bodies define three diffuse north-south trending zones. Textural, chemical, and isotopic variability within the silicic units is linked to their spatial and temporal distribution, again necessitating the existence of multiple magmatic systems. The youngest locally derived silicic units are ash flows exposed in the central portion of the SC that erupted in actively forming sedimentary basins at ˜15.4 Ma. Underlying the 400-1500m thick package of SC volcanic rocks are temporally ( ˜103 and ˜85 Ma), chemically, and isotopically (87/86Sr at 16 Ma= 0.7045 to 0.7058 and 0.7061 to >0.7070) heterogeneous granitoid plutons and a package of ˜20-23 Ma calc-alkaline, arc-related intermediate lava flows. The observed disequilibrium textures, xenoliths, and chemical/isotopic diversity suggests that upwelling Steens magma interacted with local crust, siliceous crustal melts, and the mafic plutonic roots of early Miocene arc volcanism in multiple magmatic systems characterized by heterogeneous open system processes. The formation of these systems is tectonically controlled as evidenced by magma eruption/ascent along active zones of lithospheric extension. Thus, the observed physical and chemical diversity in this volcanic field is attributed to a combination of factors; tectonic setting, availability of upwelling mafic magma(s), nature of pre-Miocene crustal addition and lithospheric modification, and the resulting array of magma sources and petrogenetic processes.

  17. Experimental Investigation of Secondary Flow Structures Downstream of a Model Type IV Stent Failure in a 180° Curved Artery Test Section.

    PubMed

    Bulusu, Kartik V; Plesniak, Michael W

    2016-07-19

    The arterial network in the human vasculature comprises of ubiquitously present blood vessels with complex geometries (branches, curvatures and tortuosity). Secondary flow structures are vortical flow patterns that occur in curved arteries due to the combined action of centrifugal forces, adverse pressure gradients and inflow characteristics. Such flow morphologies are greatly affected by pulsatility and multiple harmonics of physiological inflow conditions and vary greatly in size-strength-shape characteristics compared to non-physiological (steady and oscillatory) flows (1 - 7). Secondary flow structures may ultimately influence the wall shear stress and exposure time of blood-borne particles toward progression of atherosclerosis, restenosis, sensitization of platelets and thrombosis (4 - 6, 8 - 13). Therefore, the ability to detect and characterize these structures under laboratory-controlled conditions is precursor to further clinical investigations. A common surgical treatment to atherosclerosis is stent implantation, to open up stenosed arteries for unobstructed blood flow. But the concomitant flow perturbations due to stent installations result in multi-scale secondary flow morphologies (4 - 6). Progressively higher order complexities such as asymmetry and loss in coherence can be induced by ensuing stent failures vis-à-vis those under unperturbed flows (5). These stent failures have been classified as "Types I-to-IV" based on failure considerations and clinical severity (14). This study presents a protocol for the experimental investigation of the complex secondary flow structures due to complete transverse stent fracture and linear displacement of fractured parts ("Type IV") in a curved artery model. The experimental method involves the implementation of particle image velocimetry (2C-2D PIV) techniques with an archetypal carotid artery inflow waveform, a refractive index matched blood-analog working fluid for phase-averaged measurements (15 - 18). Quantitative identification of secondary flow structures was achieved using concepts of flow physics, critical point theory and a novel wavelet transform algorithm applied to experimental PIV data (5, 6, 19 - 26).

  18. Studies on Normal and Microgravity Annular Two Phase Flows

    NASA Technical Reports Server (NTRS)

    Balakotaiah, V.; Jayawardena, S. S.; Nguyen, L. T.

    1999-01-01

    Two-phase gas-liquid flows occur in a wide variety of situations. In addition to normal gravity applications, such flows may occur in space operations such as active thermal control systems, power cycles, and storage and transfer of cryogenic fluids. Various flow patterns exhibiting characteristic spatial and temporal distribution of the two phases are observed in two-phase flows. The magnitude and orientation of gravity with respect to the flow has a strong impact on the flow patterns observed and on their boundaries. The identification of the flow pattern of a flow is somewhat subjective. The same two-phase flow (especially near a flow pattern transition boundary) may be categorized differently by different researchers. Two-phase flow patterns are somewhat simplified in microgravity, where only three flow patterns (bubble, slug and annular) have been observed. Annular flow is obtained for a wide range of gas and liquid flow rates, and it is expected to occur in many situations under microgravity conditions. Slug flow needs to be avoided, because vibrations caused by slugs result in unwanted accelerations. Therefore, it is important to be able to accurately predict the flow pattern which exists under given operating conditions. It is known that the wavy liquid film in annular flow has a profound influence on the transfer of momentum and heat between the phases. Thus, an understanding of the characteristics of the wavy film is essential for developing accurate correlations. In this work, we review our recent results on flow pattern transitions and wavy films in microgravity.

  19. Comprehensive experimental and numerical analysis of instability phenomena in pump turbines

    NASA Astrophysics Data System (ADS)

    Gentner, Ch; Sallaberger, M.; Widmer, Ch; Bobach, B.-J.; Jaberg, H.; Schiffer, J.; Senn, F.; Guggenberger, M.

    2014-03-01

    The changes in the electricity market have led to changed requirements for the operation of pump turbines. Utilities need to change fast and frequently between pumping and generating modes and increasingly want to operate at off-design conditions for extended periods. Operation of the units in instable areas of the machine characteristic is not acceptable and may lead to self-excited vibration of the hydraulic system. In turbine operation of pump turbines unstable behaviour can occur at low load off-design operation close to runaway conditions (S-shape of the turbine characteristic). This type of instability may impede the synchronization of the machine in turbine mode and thus increase start-up and switch over times. A pronounced S-shaped instability can also lead to significant drop of discharge in the event of load rejection. Low pressure on the suction side and in the tail-race tunnel could cause dangerous separation of the water column. Understanding the flow features that lead to the instable behaviour of pump turbines is a prerequisite to the design of machines that can fulfil the growing requirements relating to operational flexibility. Flow simulation in these instability zones is demanding due to the complex and highly unsteady flow patterns. Only unsteady simulation methods are able to reproduce the governing physical effects in these operating regions. ANDRITZ HYDRO has been investigating the stability behaviour of pump turbines in turbine operation in cooperation with several universities using simulation and measurements. In order to validate the results of flow simulation of unstable operating points, the Graz University of Technology (Austria) performed detailed experimental investigations. Within the scope of a long term research project, the operating characteristics of several pump turbine runners have been measured and flow patterns in the pump turbine at speed no load and runaway have been examined by 2D Laser particle image velocimetry (PIV). For several wicket gate positions, the flow fields in the vane-less space at runner inlet observed in the experiment are compared with the results of unsteady CFD flow simulations. Physical phenomena are visualized and insight to flow phenomena is given. Analyses using both results of simulation and measurement allow deriving a consistent explanation of the fluid mechanical mechanisms leading to the S-shaped instability of pump turbines.

  20. Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Simpson, James R.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…

  1. Simulation of debris flow events in Sicily by cellular automata model SCIDDICA_SS3

    NASA Astrophysics Data System (ADS)

    Cancelliere, A.; Lupiano, V.; Peres, D. J.; Stancanelli, L.; Avolio, M.; Foti, E.; Di Gregorio, S.

    2013-12-01

    Debris flow models are widely used for hazard mapping or for evaluating the effectiveness of risk mitigation measures. Several models analyze the dynamics of debris flow runout solving Partial Differential Equations. In use of such models, difficulties arise in estimating kinematic geotechnical soil parameters for real phenomena. In order to overcome such difficulties, alternative semi-empirical approaches can be employed, such as macroscopic Cellular Automata (CA). In particular, for CA simulation purposes, the runout of debris flows emerges from local interactions in a dynamical system, subdivided into elementary parts, whose state evolves within a spatial and temporal discretum. The attributes of each cell (substates) describe physical characteristics. For computational reasons, the natural phenomenon is splitted into a number of elementary processes, whose proper composition makes up the CA transition function. By simultaneously applying this function to all the cells, the evolution of the phenomenon can be simulated in terms of modifications of the substates. In this study, we present an application of the macroscopic CA semi-empirical model SCIDDICA_SS3 to the Peloritani Mountains area in Sicily island, Italy. The model was applied using detailed data from the 1 October 2009 debris flow event, which was triggered by a rainfall event of about 250 mm falling in 9 hours, that caused the death of 37 persons. This region is characterized by river valleys with large hillslope angles (30°-60°), catchment basins of small extensions (0.5-12 km2) and soil composed by metamorphic material, which is easy to be eroded. CA usage implies a calibration phase, that identifies an optimal set of parameters capable of adequately play back the considered case, and a validation phase, that tests the model on a sufficient (and different) number of cases similar in terms of physical and geomorphological properties. The performance of the model can be measured in terms of a fitness function that compares the observed landslide with the simulated one. This function returns values from 0 (completely wrong simulation) to 1 (perfect match); values greater than 0.7 are considered acceptable. The adopted version SCIDDICA_SS3 was calibrated on debris-flows occurred in Torrente Sopra Urno, that have caused most of the damage in Giampilieri town. Other 5 events, occurred in the same day and on the same area, were used for validation with fitness function ranging from 0.72 to 0.78. Simulations show a good capability of the model to describe the runout of debris in such highly-urbanized area, according to several performance indices. The calibrated parameters may be reasonably used to simulate debris flow runout in the nearby catchments for predictive purposes, aimed at risk assessment. Acknowledgements: This research was funded by the Italian Education, University and Research Ministry (MIUR), PON Project No. 01_01503 'Integrated Systems for Hydrogeological Risk Monitoring, Early Warning and Mitigation Along the Main Lifelines', CUP B31H11000370005

  2. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli

    PubMed Central

    Green, Daniel J.; Hopman, Maria T. E.; Padilla, Jaume; Laughlin, M. Harold; Thijssen, Dick H. J.

    2017-01-01

    On the 400th anniversary of Harvey's Lumleian lectures, this review focuses on “hemodynamic” forces associated with the movement of blood through arteries in humans and the functional and structural adaptations that result from repeated episodic exposure to such stimuli. The late 20th century discovery that endothelial cells modify arterial tone via paracrine transduction provoked studies exploring the direct mechanical effects of blood flow and pressure on vascular function and adaptation in vivo. In this review, we address the impact of distinct hemodynamic signals that occur in response to exercise, the interrelationships between these signals, the nature of the adaptive responses that manifest under different physiological conditions, and the implications for human health. Exercise modifies blood flow, luminal shear stress, arterial pressure, and tangential wall stress, all of which can transduce changes in arterial function, diameter, and wall thickness. There are important clinical implications of the adaptation that occurs as a consequence of repeated hemodynamic stimulation associated with exercise training in humans, including impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies have demonstrated that direct hemodynamic impacts on the health of the artery wall contribute to the well-established decrease in cardiovascular risk attributed to physical activity. PMID:28151424

  3. A reassessment of the role of tidal dispersion in estuaries and bays

    USGS Publications Warehouse

    Geyer, W. Rockwell; Signell, Richard P.

    1992-01-01

    The role of tidal dispersion is reassessed, based on a consideration of the relevant physical mechanisms, particularly those elucidated by numerical simulations of tide-induced dispersion. It appears that the principal influence of tidal currents on dispersion occurs at length scales of the tidal excursion and smaller; thus the effectiveness of tidal dispersion depends on the relative scale of the tidal excursion to the spacing between major bathymetric and shoreline features. In estuaries where the typical spacing of topographic features is less than the tidal excursion, tidal dispersion may contribute significantly to the overall flushing. In estuaries and embayments in which the typical spacing between major features is larger than the tidal excursion, the influence of tidal dispersion will be localized, and it will not markedly contribute to overall flushing. Tidal dispersion is most pronounced in regions of abrupt topographic changes such as headlands and inlets, where flow separation occurs. The strong strain rate in the region of flow separation tends to stretch patches of fluid into long filaments, which are subsequently rolled up and distorted by the transient eddy field. The dispersion process accomplished by the tides varies strongly as a function of position and tidal phase and thus does not lend itself to parameterization by an eddy diffusion coefficient.

  4. Phreatic explosions during basaltic fissure eruptions: Kings Bowl lava field, Snake River Plain, USA

    NASA Astrophysics Data System (ADS)

    Hughes, Scott S.; Kobs Nawotniak, Shannon E.; Sears, Derek W. G.; Borg, Christian; Garry, William Brent; Christiansen, Eric H.; Haberle, Christopher W.; Lim, Darlene S. S.; Heldmann, Jennifer L.

    2018-02-01

    Physical and compositional measurements are made at the 7 km-long ( 2200 years B.P.) Kings Bowl basaltic fissure system and surrounding lava field in order to further understand the interaction of fissure-fed lavas with phreatic explosive events. These assessments are intended to elucidate the cause and potential for hazards associated with phreatic phases that occur during basaltic fissure eruptions. In the present paper we focus on a general understanding of the geological history of the site. We utilize geospatial analysis of lava surfaces, lithologic and geochemical signatures of lava flows and explosively ejected blocks, and surveys via ground observation and remote sensing. Lithologic and geochemical signatures readily distinguish between Kings Bowl and underlying pre-Kings Bowl lava flows, both of which comprise phreatic ejecta from the Kings Bowl fissure. These basalt types, as well as neighboring lava flows from the contemporaneous Wapi lava field and the older Inferno Chasm vent and outflow channel, fall compositionally within the framework of eastern Snake River Plain olivine tholeiites. Total volume of lava in the Kings Bowl field is estimated to be 0.0125 km3, compared to a previous estimate of 0.005 km3. The main (central) lava lake lost a total of 0.0018 km3 of magma by either drain-back into the fissure system or breakout flows from breached levees. Phreatic explosions along the Kings Bowl fissure system occurred after magma supply was cut off, leading to fissure evacuation, and were triggered by magma withdrawal. The fissure system produced multiple phreatic explosions and the main pit is accompanied by others that occur as subordinate pits and linear blast corridors along the fissure. The drop in magma supply and the concomitant influx of groundwater were necessary processes that led to the formation of Kings Bowl and other pits along the fissure. A conceptual model is presented that has relevance to the broader range of low-volume, monogenetic basaltic fissure eruptions on Earth, the Moon and other planetary bodies.

  5. Nature of Pre-Earthquake Phenomena and their Effects on Living Organisms

    PubMed Central

    Freund, Friedemann; Stolc, Viktor

    2013-01-01

    Simple Summary Earthquakes are invariably preceded by a period when stresses increase deep in the Earth. Animals appear to be able to sense impending seismic events. During build-up of stress, electronic charge carriers are activated deep below, called positive holes. Positive holes have unusual properties: they can travel fast and far into and through the surrounding rocks. As they flow, they generate ultralow frequency electromagnetic waves. When they arrive at the Earth surface, they can ionize the air. When they flow into water, they oxidize it to hydrogen peroxides. All these physical and chemical processes can have noticeable effects on animals. Abstract Earthquakes occur when tectonic stresses build up deep in the Earth before catastrophic rupture. During the build-up of stress, processes that occur in the crustal rocks lead to the activation of highly mobile electronic charge carriers. These charge carriers are able to flow out of the stressed rock volume into surrounding rocks. Such outflow constitutes an electric current, which generates electromagnetic (EM) signals. If the outflow occurs in bursts, it will lead to short EM pulses. If the outflow is continuous, the currents may fluctuate, generating EM emissions over a wide frequency range. Only ultralow and extremely low frequency (ULF/ELF) waves travel through rock and can reach the Earth surface. The outflowing charge carriers are (i) positively charged and (ii) highly oxidizing. When they arrive at the Earth surface from below, they build up microscopic electric fields, strong enough to field-ionize air molecules. As a result, the air above the epicentral region of an impending major earthquake often becomes laden with positive airborne ions. Medical research has long shown that positive airborne ions cause changes in stress hormone levels in animals and humans. In addition to the ULF/ELF emissions, positive airborne ions can cause unusual reactions among animals. When the charge carriers flow into water, they oxidize water to hydrogen peroxide. This, plus oxidation of organic compounds, can cause behavioral changes among aquatic animals. PMID:26487415

  6. Flow of a circulating tumor cell and red blood cells in microvessels

    NASA Astrophysics Data System (ADS)

    Takeishi, Naoki; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji

    2015-12-01

    Quantifying the behavior of circulating tumor cells (CTCs) in the blood stream is of fundamental importance for understanding metastasis. Here, we investigate the flow mode and velocity of CTCs interacting with red blood cells (RBCs) in various sized microvessels. The flow of leukocytes in microvessels has been described previously; a leukocyte forms a train with RBCs in small microvessels and exhibits margination in large microvessels. Important differences in the physical properties of leukocytes and CTCs result from size. The dimensions of leukocytes are similar to those of RBCs, but CTCs are significantly larger. We investigate numerically the size effects on the flow mode and the cell velocity, and we identify similarities and differences between leukocytes and CTCs. We find that a transition from train formation to margination occurs when (R -a ) /tR≈1 , where R is the vessel radius, a is the cell radius, and tR is the thickness of RBCs, but that the motion of RBCs differs from the case of leukocytes. Our results also show that the velocities of CTCs and leukocytes are larger than the average blood velocity, but only CTCs move faster than RBCs for microvessels of R /a ≈1.5 -2.0 . These findings are expected to be useful not only for understanding metastasis, but also for developing microfluidic devices.

  7. Exact Analytical Solution of the Peristaltic Nanofluids Flow in an Asymmetric Channel with Flexible Walls and Slip Condition: Application to the Cancer Treatment

    PubMed Central

    Ebaid, Abdelhalim; Aly, Emad H.

    2013-01-01

    In the cancer treatment, magnetic nanoparticles are injected into the blood vessel nearest to the cancer's tissues. The dynamic of these nanoparticles occurs under the action of the peristaltic waves generated on the flexible walls of the blood vessel. Studying such nanofluid flow under this action is therefore useful in treating tissues of the cancer. In this paper, the mathematical model describing the slip peristaltic flow of nanofluid was analytically investigated. Exact expressions were deduced for the temperature distribution and nano-particle concentration. In addition, the effects of the slip, thermophoresis, and Brownian motion parameters on the temperature and nano-particle concentration profiles were discussed and further compared with other approximate results in the literatures. In particular, these results have been obtained at the same values of the physical examined parameters that was considered in Akbar et al., “Peristaltic flow of a nanofluid with slip effects,” 2012. The results reveal that remarkable differences are detected between the exact current results and those approximately obtained in the literatures for behaviour of the temperature profile and nano-particles concentration. Accordingly, the current analysis and results are considered as optimal and therefore may be taken as a base for any future comparisons. PMID:24151526

  8. Infiltration pattern in a regolith-fractured bedrock profile: field observation of a dye stain pattern

    NASA Astrophysics Data System (ADS)

    Kim, Jae Gon; Lee, Gyoo Ho; Lee, Jin-Soo; Chon, Chul-Min; Kim, Tack Hyun; Ha, Kyoochul

    2006-02-01

    We examined the infiltration pattern of water in a regolith-bedrock profile consisting of two overburdens (OB1 and OB2), a buried rice paddy soil (PS), two texturally distinctive weathered materials (WM1 and WM2) and a fractured sedimentary rock (BR), using a Brilliant Blue FCF dye tracer. A black-coloured coating in conducting fractures in WM1, WM2 and BR was analysed by X-ray diffraction and scanning electron microscopy. The dye tracer penetrated to greater than 2 m depth in the profile. The macropore flow and saturated interflow were the major infiltration patterns in the profile. Macropore flow and saturated interflow were observed along fractures in WM1, WM2 and BR and at the dipping interfaces of PS-WM1, PS-WM2 and PS-BR respectively. Heterogeneous matrix flow occurred in upper overburden (OB1) and PS. Compared with OB1, the coarser textured OB2 acted as a physical barrier for vertical flow of water. The PS with low bulk density and many fine roots was another major conducting route of water in the profile. Manganese oxide and iron oxide were positively identified in the black coating material and had low crystallinity and high surface area, indicating their high reactivity with conducting contaminants.

  9. Turbulent Flame Processes Via Diffusion Flame-Vortex Ring Interactions

    NASA Technical Reports Server (NTRS)

    Dahm, Werner J. A.; Chen, Shin-Juh; Silver, Joel A.; Piltch, Nancy D.; VanderWal, Randall L.

    2001-01-01

    Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in turbulent reacting flows. This configuration contains many of the fundamental aspects of the coupling between fluid dynamics and combustion that could be investigated with more controllable conditions than are possible under direct investigations of turbulent flames. Diffusion flame-vortex ring interaction contains many of the fundamental elements of flow, transport, combustion, and soot processes found in turbulent diffusion flames. Some of these elements include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, soot formation and oxidation, and heat release effects. Such simplified flowfield allows the complex processes to be examined more closely and yet preserving the physical processes present in turbulent reacting flows. Furthermore, experimental results from the study of flame-vortex interactions are useful for the validation of numerical simulations and more importantly to deepen our understanding of the fundamental processes present in reacting flows. Experimental and numerical results obtained under microgravity conditions of the diffusion flame-vortex ring interaction are summarized in this paper. Results are obtained using techniques that include Flame Luminosity Imaging (FLI), Laser Soot-Mie Scattering (LSMS), Computational Fluid Dynamics and Combustion (CFDC), and Diode Laser Spectroscopy/Iterative Temperature with Assumed Chemistry (DLS/ITAC).

  10. Experimental Study of Boundary Layer Behavior in a Simulated Low Pressure Turbine. Degree awarded by the University of Toledo, May 1998

    NASA Technical Reports Server (NTRS)

    Shyne, Rickey J.

    1998-01-01

    A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT blade onto a flat plate. The experiments were carried out at Reynolds numbers of 100,000 and 250,000 with three levels of freestream turbulence. Freestream turbulence levels ranging from 0.8% to 3% was used in this experiment. Smoke-wire flow visualization data was used to confirm that the boundary layer was separated and formed a bubble. Hot-wires (single and x-wire) and surface mounted hot-film gases and static pressure taps were used to map the flowfield. The transition process over the separated flow region is observed to be similar to a laminar free shear layer flow with the formation of a large coherent eddy structure. For each condition, the locations defining the separation bubble were determined by careful examination of pressure and mean velocity profile data. Transition onset location and length determined from intermittency profiles decrease as freestream turbulence levels increase. Additionally, the length and height of the laminar separation bubbles were observed to be inversely proportional to the levels of freestream turbulence.

  11. Transient CFD simulation of a Francis turbine startup

    NASA Astrophysics Data System (ADS)

    Nicolle, J.; Morissette, J. F.; Giroux, A. M.

    2012-11-01

    To assess the life expectancy of hydraulic turbines, it is essential to obtain the loading on the blades, especially during transient operations known to be the most damaging. This paper presents a simplified CFD setup to model the startup phase of a Francis turbine while it goes from rest to speed no-load condition. The fluid domain included one distributor sector coupled with one runner passage. The guide vane motion and change in the angular velocity were included in a commercial code with user functions. Comparisons between numerical results and measurements acquired on a full-size turbine showed that most of the flow physics occurring during startup were captured.

  12. Influence of surface heterogeneity in electroosmotic flows—Implications in chromatography, fluid mixing, and chemical reactions in microdevices

    NASA Astrophysics Data System (ADS)

    Adrover, Alessandra; Giona, Massimiliano; Pagnanelli, Francesca; Toro, Luigi

    2007-04-01

    We analyze the influence of surface heterogeneity, inducing a random ζ-potential at the walls in electroosmotic incompressible flows. Specifically, we focus on how surface heterogeneity modifies the physico-chemical processes (transport, chemical reaction, mixing) occurring in microchannel and microreactors. While the macroscopic short-time features associated with solute transport (e.g. chromatographic patterns) do not depend significantly on ζ-potential heterogeneity, spatial randomness in the surface ζ-potential modifies the spectral properties of the advection-diffusion operator, determining different long-term properties of transport/reaction phenomena compared to the homogeneous case. Examples of physical relevance (chromatography, infinitely fast reactions) are addressed.

  13. Monitoring Accreting X-ray Pulsars with the GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Patel, Sandeep K.; Bhat, P. Narayana; Preece, Robert D.; Meegan, Charles A.

    2007-01-01

    Accreting pulsars are exceptionally good laboratories for probing the detailed physics of accretion onto magnetic stars. While similar accretion flows also occur in other types of astrophysical systems, e.g. magnetic CVs, only neutron stars have a small enough moment of inertia for the accretion of angular momentum to result in measurable changes in spin-frequency in a timescale of days. Long-term monitoring of accreting pulsar spin-frequencies and fluxes was demonstrated with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Here we present sample results from BATSE, discuss measurement techniques appropriate for GBM, and estimate the expected GBM sensitivity.

  14. Symmetry breaking in clogging for oppositely driven particles

    NASA Astrophysics Data System (ADS)

    Glanz, Tobias; Wittkowski, Raphael; Löwen, Hartmut

    2016-11-01

    The clogging behavior of a symmetric binary mixture of colloidal particles that are driven in opposite directions through constrictions is explored by Brownian dynamics simulations and theory. A dynamical state with a spontaneously broken symmetry occurs where one species is flowing and the other is blocked for a long time, which can be tailored by the size of the constrictions. Moreover, we find self-organized oscillations in clogging and unclogging of the two species. Apart from statistical physics, our results are of relevance for fields like biology, chemistry, and crowd management, where ions, microparticles, pedestrians, or other particles are driven in opposite directions through constrictions.

  15. Risk Management and Physical Modelling for Mountainous Natural Hazards

    NASA Astrophysics Data System (ADS)

    Lehning, Michael; Wilhelm, Christian

    Population growth and climate change cause rapid changes in mountainous regions resulting in increased risks of floods, avalanches, debris flows and other natural hazards. Xevents are of particular concern, since attempts to protect against them result in exponentially growing costs. In this contribution, we suggest an integral risk management approach to dealing with natural hazards that occur in mountainous areas. Using the example of a mountain pass road, which can be protected from the danger of an avalanche by engineering (galleries) and/or organisational (road closure) measures, we show the advantage of an optimal combination of both versus the traditional approach, which is to rely solely on engineering structures. Organisational measures become especially important for Xevents because engineering structures cannot be designed for those events. However, organisational measures need a reliable and objective forecast of the hazard. Therefore, we further suggest that such forecasts should be developed using physical numerical modelling. We present the status of current approaches to using physical modelling to predict snow cover stability for avalanche warnings and peak runoff from mountain catchments for flood warnings. While detailed physical models can already predict peak runoff reliably, they are only used to support avalanche warnings. With increased process knowledge and computer power, current developments should lead to a enhanced role for detailed physical models in natural mountain hazard prediction.

  16. Partitioning dynamics of unsaturated flows in fractured porous media: Laboratory studies and three-dimensional multi-scale smoothed particle hydrodynamics simulations of gravity-driven flow in fractures

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Bresinsky, L. T.; Shigorina, E.; Noffz, T.; Dentz, M.; Sauter, M.; Tartakovsky, A. M.

    2017-12-01

    Preferential flow dynamics in unsaturated fractures remain a challenging topic on various scales. On pore- and fracture-scales the highly erratic gravity-driven flow dynamics often provoke a strong deviation from classical volume-effective approaches. Against the common notion that flow in fractures (or macropores) can only occur under equilibrium conditions, i.e., if the surrounding porous matrix is fully saturated and capillary pressures are high enough to allow filling of the fracture void space, arrival times suggest the existence of rapid preferential flow along fractures, fracture networks, and fault zones, even if the matrix is not fully saturated. Modeling such flows requires efficient numerical techniques to cover various flow-relevant physics, such as surface tension, static and dynamic contact angles, free-surface (multi-phase) interface dynamics, and formation of singularities. Here we demonstrate the importance of such flow modes on the partitioning dynamics at simple fracture intersections, with a combination of laboratory experiments, analytical solutions and numerical simulations using our newly developed massively parallel smoothed particle hydrodynamics (SPH) code. Flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. This behavior is demonstrated for a multi-inlet laboratory setup where the inlet-specific flow rate is chosen so that either a droplet or rivulet flow persists. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency increases. For rivulet flows, the initial filling of the horizontal fracture is described by classical plug flow. Meanwhile, for droplet flows, a size-dependent partitioning behavior is observed, and the filling of the fracture takes longer.

  17. Debris-flow hazards caused by hydrologic events at Mount Rainier, Washington

    USGS Publications Warehouse

    Vallance, James W.; Cunico, Michelle L.; Schilling, Steve P.

    2003-01-01

    At 4393 m, ice-clad Mount Rainier has great potential for debris flows owing to its precipitous slopes and incised steep valleys, the large volume of water stored in its glaciers, and a mantle of loose debris on its slopes. In the past 10,000 years, more than sixty Holocene lahars have occurred at Mount Rainier (Scott et al., 1985), and, in addition more than thirty debris flows not related to volcanism have occurred in historical time (Walder and Driedger, 1984). Lahars at Mount Rainier can be classed in 3 groups according to their genesis: (1) flank collapse of hydrothermally altered, water-saturated rock; (2) eruption-related release of water and loose debris; and (3) hydrologic release of water and debris (Scott et al., 1985). Lahars in the first two categories are commonly voluminous and are generally related to unrest and explosions that occur during eruptive episodes. Lahars in the third category, distinguished here as debris flows, are less voluminous than the others but occur frequently at Mount Rainier, often with little or no warning. Historically at Mount Rainier, glacial outburst floods, torrential rains, and stream capture have caused small- to moderate-size debris flows (Walder and Driedger, 1984). Such debris flows are most likely to occur in drainages that have large glaciers in them. Less commonly, a drainage diversion has triggered a debris flow in an unglaciated drainage basin. For example, the diversion of Kautz Glacier meltwater into Van Trump basin triggered debris flows on the south side of Rainier in August 2001. On the basis of historical accounts, debris flows having hydrologic origins are likely to be unheralded, and have occurred as seldom as once in 8 years and as often as four times per year at Mount Rainier (Walder and Driedger, 1984). Such debris flows are most likely to occur during periods of hot dry weather or during periods of intense rainfall, and therefore must occur during the summer and fall. They are likely to begin at or above the elevations of glacier termini and extend down valley. This report discusses potential hazards from debris flows induced by hydrologic events such as glacial outburst floods and torrential rain at Mount Rainier and the surrounding area bounded by Mount Rainier National Park. The report also shows, in the accompanying hazard-zonation maps, which areas are likely to be at risk from future such debris flows at Mount Rainier. Lahar hazards related to avalanches of altered rock and to the interactions of hot rock and ice during eruptions are discussed in Scott and Vallance (1995) and Hoblitt et al. (1998) and are not addressed in this report.

  18. Identifying Hydrogeological Controls of Catchment Low-Flow Dynamics Using Physically Based Modelling

    NASA Astrophysics Data System (ADS)

    Cochand, F.; Carlier, C.; Staudinger, M.; Seibert, J.; Hunkeler, D.; Brunner, P.

    2017-12-01

    Identifying key catchment characteristics and processes which control the hydrological response under low-flow conditions is important to assess the catchments' vulnerability to dry periods. In the context of a Swiss Federal Office for the Environment (FOEN) project, the low-flow behaviours of two mountainous catchments were investigated. These neighboring catchments are characterized by the same meteorological conditions, but feature completely different river flow dynamics. The Roethenbach is characterized by high peak flows and low mean flows. Conversely, the Langete is characterized by relatively low peak flows and high mean flow rates. To understand the fundamentally different behaviour of the two catchments, a physically-based surface-subsurface flow HydroGeoSphere (HGS) model for each catchment was developed. The main advantage of a physically-based model is its ability to realistically reproduce processes which play a key role during low-flow periods such as surface-subsurface interactions or evapotranspiration. Both models were calibrated to reproduce measured groundwater heads and the surface flow dynamics. Subsequently, the calibrated models were used to explore the fundamental physics that control hydrological processes during low-flow periods. To achieve this, a comparative sensitivity analysis of model parameters of both catchments was carried out. Results show that the hydraulic conductivity of the bedrock (and weathered bedrock) controls the catchment water dynamics in both models. Conversely, the properties of other geological formations such as alluvial aquifer or soil layer hydraulic conductivity or porosity play a less important role. These results change significantly our perception of the streamflow catchment dynamics and more specifically the way to assess catchment vulnerability to dry period. This study suggests that by analysing catchment scale bedrock properties, the catchment dynamics and the vulnerability to dry period may be assessed.

  19. Experimental analysis of the flow pattern of a pump turbine model in pump mode

    NASA Astrophysics Data System (ADS)

    Guggenberger, Mark; Senn, Florian; Jaberg, Helmut; Gehrer, Arno; Sallaberger, Manfred; Widmer, Christian

    2016-11-01

    Reversible pump turbines are the only means to store primary energy in an highly efficient way. Within a short time their operation can be switched between the different operational regimes thus enhancing the stabilization of the electric grid. These qualities in combination with the operation even at off-design conditions offer a high flexibility to the energy market. However, pump turbines pass through operational regimes where their behaviour becomes unstable. One of these effects occurs when the flowrate is decreased continuously down to a minimum. This point is the physical limitation of the pump operation and is very difficult to predict properly by numerical design without a model test. The purpose of the present study is to identify the fluid mechanical phenomena leading to the occurrence of instabilities of pump turbines in pump mode. A reduced scale model of a ANDRITZ pump turbine was installed on a 4-quadrant test rig for the experimental investigation of unstable conditions in pump mode. The performed measurements are based on the IEC60193-standard. Characteristic measurements at a single guide vane opening were carried out to get a detailed insight into the instabilities in pump mode. The interaction between runner and guide vane was analysed by Particle Image Velocimetry. Furthermore, high-speed visualizations of the suction side part load flow and the suction recirculation were performed. Like never before the flow pattern in the draft tube cone became visible with the help of a high-speed camera by intentionally caused cavitation effects which allow a qualitative view on the flow pattern in the draft tube cone. Suction recirculation is observed in form of single vortices separating from each runner blade and stretching into the draft tube against the main flow direction. To find an explanation for the flow phenomena responsible for the appearance of the unstable head curve also characteristic velocity distributions on the pressure side were combined with high-speed visualizations on the suction side of the pump turbine model. The results enhance the comprehension of the physical background leading to the instability and improve the numerical predictability of the instability in pump mode.

  20. Mathematical and experimental modelling of the dynamic bubble processes occurring in a two-phase cyclonic separation device

    NASA Astrophysics Data System (ADS)

    Schrage, Dean Stewart

    1998-11-01

    This dissertation presents a combined mathematical and experimental analysis of the fluid dynamics of a gas- liquid, dispersed-phase cyclonic separation device. The global objective of this research is to develop a simulation model of separation process in order to predict the void fraction field within a cyclonic separation device. The separation process is approximated by analyzing the dynamic motion of many single-bubbles, moving under the influence of the far-field, interacting with physical boundaries and other bubbles. The dynamic motion of the bubble is described by treating the bubble as a point-mass and writing an inertial force balance, equating the force applied to the bubble-point-location to the inertial acceleration of the bubble mass (also applied to the point-location). The forces which are applied to the bubble are determined by an integration of the surface pressure over the bubble. The surface pressure is coupled to the intrinsic motion of the bubble, and is very difficult to obtain exactly. However, under moderate Reynolds number, the wake trailing a bubble is small and the near-field flow field can be approximated as an inviscid flow field. Unconventional potential flow techniques are employed to solve for the surface pressure; the hydrodyamic forces are described as a hydrodynamic mass tensor operating on the bubble acceleration vector. The inviscid flow model is augmented with adjunct forces which describe: drag forces, dynamic lift, far-field pressure forces. The dynamic equations of motion are solved both analytically and numerically for the bubble trajectory in specific flow field examples. A validation of these equations is performed by comparing to an experimentally-derived trajectory of a single- bubble, which is released into a cylindrical Couette flow field (inner cylinder rotating) at varying positions. Finally, a simulation of a cyclonic separation device is performed by extending the single-bubble dynamic model to a multi-bubble ensemble. A simplified model is developed to predict the effects of bubble-interaction. The simulation qualitatively depicts the separation physics encountered in an actual cyclonic separation device, supporting the original tenet that the separation process can be approximated by the collective motions of single- bubbles.

  1. Hydrodynamic modeling of juvenile mussel dispersal in a large river: The potential effects of bed shear stress and other parameters

    USGS Publications Warehouse

    Daraio, J.A.; Weber, L.J.; Newton, T.J.

    2010-01-01

    Because unionid mussels have a parasitic larval stage, they are able to disperse upstream and downstream as larvae while attached to their host fish and with flow as juveniles after excystment from the host. Understanding unionid population ecology requires knowledge of the processes that affect juvenile dispersal prior to establishment. We examined presettlement (transport and dispersion with flow) and early postsettlement (bed shear stress) hydraulic processes as negative censoring mechanisms. Our approach was to model dispersal using particle tracking through a 3-dimensional flow field output from hydrodynamic models of a reach of the Upper Mississippi River. We tested the potential effects of bed shear stress (??b) at 5 flow rates on juvenile mussel dispersal and quantified the magnitude of these effects as a function of flow rate. We explored the reach-scale relationships of Froude number (Fr), water depth (H), local bed slope (S), and unit stream power (QS) with the likelihood of juvenile settling (??). We ran multiple dispersal simulations at each flow rate to estimate ??, the parameter of a Poisson distribution, from the number of juveniles settling in each grid cell, and calculated dispersal distances. Virtual juveniles that settled in areas of the river where b > critical shear stress (c) were resuspended in the flow and transported further downstream, so we ran simulations at 3 different conditions for ??c (??c = ??? no resuspension, 0.1, and 0.05 N/m2). Differences in virtual juvenile dispersal distance were significantly dependent upon c and flow rate, and effects of b on settling distribution were dependent upon c. Most simulations resulted in positive correlations between ?? and ??b, results suggesting that during early postsettlement, ??b might be the primary determinant of juvenile settling distribution. Negative correlations between ?? and ??b occurred in some simulations, a result suggesting that physical or biological presettlement processes might determine juvenile settling distributions. Field data are needed to test these hypotheses. Results support the idea that flow patterns and b can act as negative censoring mechanisms controlling settling distributions. Furthermore, a river reach probably has a quantifiable threshold range of flow rates. Above the upper threshold, ??b probably is the primary determinant of juvenile settling distribution. Relationships of ?? with H, Fr, S, and QS were relatively weak. Important physical processes that affect dispersal probably are not captured by approximations based on large-scale hydraulic parameters, such as Fr and H. ?? 2010 The North American Benthological Society.

  2. Turbulent flow separation in three-dimensional asymmetric diffusers

    NASA Astrophysics Data System (ADS)

    Jeyapaul, Elbert

    2011-12-01

    Turbulent three-dimensional flow separation is more complicated than 2-D. The physics of the flow is not well understood. Turbulent flow separation is nearly independent of the Reynolds number, and separation in 3-D occurs at singular points and along convergence lines emanating from these points. Most of the engineering turbulence research is driven by the need to gain knowledge of the flow field that can be used to improve modeling predictions. This work is motivated by the need for a detailed study of 3-D separation in asymmetric diffusers, to understand the separation phenomena using eddy-resolving simulation methods, assess the predictability of existing RANS turbulence models and propose modeling improvements. The Cherry diffuser has been used as a benchmark. All existing linear eddy-viscosity RANS models k--o SST,k--epsilon and v2- f fail in predicting such flows, predicting separation on the wrong side. The geometry has a doubly-sloped wall, with the other two walls orthogonal to each other and aligned with the diffuser inlet giving the diffuser an asymmetry. The top and side flare angles are different and this gives rise to different pressure gradient in each transverse direction. Eddyresolving simulations using the Scale adaptive simulation (SAS) and Large Eddy Simulation (LES) method have been used to predict separation in benchmark diffuser and validated. A series of diffusers with the same configuration have been generated, each having the same streamwise pressure gradient and parametrized only by the inlet aspect ratio. The RANS models were put to test and the flow physics explored using SAS-generated flow field. The RANS model indicate a transition in separation surface from top sloped wall to the side sloped wall at an inlet aspect ratio much lower than observed in LES results. This over-sensitivity of RANS models to transverse pressure gradients is due to lack of anisotropy in the linear Reynolds stress formulation. The complexity of the flow separation is due to effects of lateral straining, streamline curvature, secondary flow of second kind, transverse pressure gradient on turbulence. Resolving these effects is possible with anisotropy turbulence models as the Explicit Algebraic Reynolds stress model (EARSM). This model has provided accurate prediction of streamwise and transverse velocity, however the wall pressure is under predicted. An improved EARSM model is developed by correcting the coefficients, which predicts a more accurate wall pressure. There exists scope for improvement of this model, by including convective effects and dynamics of velocity gradient invariants.

  3. Physical and Thermal Structure of the Bishop Tuff, California

    NASA Astrophysics Data System (ADS)

    Wilson, C. J.; Hildreth, W.

    2001-12-01

    The 0.76 Ma Bishop Tuff, California, includes an ignimbrite constructed from a series of overlapping packages of material erupted sequentially and simultaneously from multiple sources around the ring fracture of Long Valley caldera (Wilson, C.J.N., Hildreth, W., 1997, Journal of Geology 105, 407-439). Exceptionally good continuous exposures of the ignimbrite in the walls of Owens Gorge to the east of Long Valley provide a cross-section through the east-side packages (Ig1E and Ig2E). We have measured 10 sections up the gorge walls to draw up a cross section of the ignimbrite down Owens Gorge, using lithic abundances and lithologies to define the physical eruptive packages and their subdivisions, and measurements of tuff bulk density (as an easily measured proxy for welding intensity) to define the thermal eruptive packages. The physically emplaced bodies of ignimbrite represent an overlapping, shingling suite of material such that successively later ignimbrite occurs most prominently farther away from source. Two major and two lesser zones of maximum density (welding) are present, the lower two (in Ig1Ea and lower Ig1Eb) in upper Owens Gorge, and the two most prominent (upper Ig1Eb and Ig2Eb) in middle and lower parts of the gorge. Welding fluctuations are controlled by bulk temperatures of individual batches of hotter and cooler material, but the intensity of the welding also depends on deposit thickness (i.e. load stress). Physically defined contacts between ignimbrite packages show that time breaks inferred to be of hours may not result in formation of any visible parting or flow unit boundary. Furthermore, positions of density (welding) minima between zones of higher density tuff do not coincide with horizons of stratigraphic significance. These observations lead to two conclusions. (1) The absence of clear partings or flow unit boundaries in an ignimbrite sequence is not diagnostic either of the material representing a single flow unit, or of the material being continuously progressively aggraded. (2) Use of the density (welding) minimum to locate the boundaries of cooling units and in measuring and modelling the emplacement and thermal history of compound cooling units may lead to errors.

  4. A Study on the Priority Selection of Sediment-related Desaster Evacuation Using Debris Flow Combination Degree of Risk

    NASA Astrophysics Data System (ADS)

    Woo, C.; Kang, M.; Seo, J.; Kim, D.; Lee, C.

    2017-12-01

    As the mountainous urbanization has increased the concern about landslides in the living area, it is essential to develop the technology to minimize the damage through quick identification and sharing of the disaster occurrence information. In this study, to establish an effective system of alert evacuation that has influence on the residents, we used the debris flow combination degree of risk to predict the risk of the disaster and the level of damage and to select evacuation priorities. Based on the GIS information, the physical strength and social vulnerability were determined by following the debris flow combination of the risk formula. The results classify the physical strength hazard rating of the debris flow combination of the through the normalization process. Debris flow the estimated residential population included in the damage range of the damage prediction map is based on the area and the unit size data. Prediction of occupant formula was calculated by applying different weighting to the resident population and users, and the result was classified into 5 classes as the debris flow physical strength. The debris flow occurrence physical strength and social and psychological vulnerability were classified into the classifications to be reflected in the debris flow integrated risk map using the matrix technique. In addition, to supplement the risk of incorporation of debris flow, we added weight to disaster vulnerable facilities that require a lot of time and manpower to evacuate. The basic model of welfare facilities was supplemented by using basic data, population density, employment density and GDP. First, evacuate areas with high integrated degree of risk level, and evacuate with consideration of physical class differences if classification difficult because of the same or similar grade among the management areas. When the physical hazard class difference is similar, the population difference of the area including the welfare facility is considered first, and the priority is decided in order of age distribution, population density by period, and class difference of residential facility. The results of this study are expected be used as basic data for establishing a safety net for landslide by evacuation systems for disasters. Keyword: Landslide, Debris flow, Early warning system, evacuation

  5. Film cooling from inclined cylindrical holes using large eddy simulations

    NASA Astrophysics Data System (ADS)

    Peet, Yulia V.

    2006-12-01

    The goal of the present study is to investigate numerically the physics of the flow, which occurs during the film cooling from inclined cylindrical holes, Film cooling is a technique used in gas turbine industry to reduce heat fluxes to the turbine blade surface. Large Eddy Simulation (LES) is performed modeling a realistic film cooling configuration, which consists of a large stagnation-type reservoir, feeding an array of discrete cooling holes (film holes) flowing into a flat plate turbulent boundary layer. Special computational methodology is developed for this problem, involving coupled simulations using multiple computational codes. A fully compressible LES code is used in the area above the flat plate, while a low Mach number LES code is employed in the plenum and film holes. The motivation for using different codes comes from the essential difference in the nature of the flow in these different regions. Flowfield is analyzed inside the plenum, film hole and a crossflow region. Flow inside the plenum is stagnating, except for the region close to the exit, where it accelerates rapidly to turn into the hole. The sharp radius of turning at the trailing edge of the plenum pipe connection causes the flow to separate from the downstream wall of the film hole. After coolant injection occurs, a complex flowfield is formed consisting of coherent vortical structures responsible for bringing hot crossflow fluid in contact with the walls of either the film hole or the blade, thus reducing cooling protection. Mean velocity and turbulent statistics are compared to experimental measurements, yielding good agreement for the mean flowfield and satisfactory agreement for the turbulence quantities. LES results are used to assess the applicability of basic assumptions of conventional eddy viscosity turbulence models used with Reynolds-averaged (RANS) approach, namely the isotropy of an eddy viscosity and thermal diffusivity. It is shown here that these assumptions do not hold for the film cooling flows. Comparison of film cooling effectiveness with experiments shows fair agreement for the centerline and laterally-averaged effectiveness. Lateral growth of the jet as judged from the lateral distribution of effectiveness is predicted correctly.

  6. Physical modeling of the influence of bedrock topography and ablation on ice flow and meteorite concentration in Antarctica

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Zeoli, Antonio; Belmaggio, Pietro; Folco, Luigi

    2008-03-01

    Three-dimensional laboratory physical experiments have been used to investigate the influence of bedrock topography and ablation on ice flow. Different models were tested in a Plexiglas box, where a transparent silicone simulating ice in nature was allowed to flow. Experimental results show how the flow field (in terms of both flow lines and velocity) and variations in the topography of the free surface and internal layers of the ice are strongly influenced by the presence and height of bedrock obstacles. In particular, the buttressing effect forces the ice to slow down, rise up, and avoid the obstacle; the higher the bedrock barrier, the more pronounced the process. Only limited uplift of internal layers is observed in these experiments. In order to exhume deep material embedded in the ice, ablation (simulated by physically removing portions of silicone from the model surface to maintain a constant topographic depression) must be included in the physical models. In this case, the analogue ice replenishes the area of material removal, thereby allowing deep layers to move vertically to the surface and severely altering the local ice flow pattern. This process is analogous to the ice flow model proposed in the literature for the origin of meteorite concentrations in blue ice areas of the Antarctic plateau.

  7. Prediction of gas-liquid two-phase flow regime in microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Jinho; Platt, Jonathan A.

    1993-01-01

    An attempt is made to predict gas-liquid two-phase flow regime in a pipe in a microgravity environment through scaling analysis based on dominant physical mechanisms. Simple inlet geometry is adopted in the analysis to see the effect of inlet configuration on flow regime transitions. Comparison of the prediction with the existing experimental data shows good agreement, though more work is required to better define some physical parameters. The analysis clarifies much of the physics involved in this problem and can be applied to other configurations.

  8. Microgravity Fluid Separation Physics: Experimental and Analytical Results

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. Michael; Schrage, Dean S.

    1997-01-01

    Effective, low power, two-phase separation systems are vital for the cost-effective study and utilization of two-phase flow systems and flow physics of two-phase flows. The study of microgravity flows have the potential to reveal significant insight into the controlling mechanisms for the behavior of flows in both normal and reduced gravity environments. The microgravity environment results in a reduction in gravity induced buoyancy forces acting on the discrete phases. Thus, surface tension, viscous, and inertial forces exert an increased influence on the behavior of the flow as demonstrated by the axisymmetric flow patterns. Several space technology and operations groups have studied the flow behavior in reduced gravity since gas-liquid flows are encountered in several systems such as cabin humidity control, wastewater treatment, thermal management, and Rankine power systems.

  9. Integral Mindflow: A Process of Mindfulness-in-Flow to Enhance Individual and Organization Learning

    ERIC Educational Resources Information Center

    Cacioppe, Ron Lewis

    2017-01-01

    Purpose: This paper aims to examine the differences in mindfulness, meditation and flow and the conditions in which each occurs. It summarizes research that demonstrates positive benefits of these three for employee and organizational learning. While mindfulness focuses awareness on what is occurring in the moment, flow involves total immersion in…

  10. A paradigm for modeling and computation of gas dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Liu, Chang

    2017-02-01

    In the continuum flow regime, the Navier-Stokes (NS) equations are usually used for the description of gas dynamics. On the other hand, the Boltzmann equation is applied for the rarefied flow. These two equations are based on distinguishable modeling scales for flow physics. Fortunately, due to the scale separation, i.e., the hydrodynamic and kinetic ones, both the Navier-Stokes equations and the Boltzmann equation are applicable in their respective domains. However, in real science and engineering applications, they may not have such a distinctive scale separation. For example, around a hypersonic flying vehicle, the flow physics at different regions may correspond to different regimes, where the local Knudsen number can be changed significantly in several orders of magnitude. With a variation of flow physics, theoretically a continuous governing equation from the kinetic Boltzmann modeling to the hydrodynamic Navier-Stokes dynamics should be used for its efficient description. However, due to the difficulties of a direct modeling of flow physics in the scale between the kinetic and hydrodynamic ones, there is basically no reliable theory or valid governing equations to cover the whole transition regime, except resolving flow physics always down to the mean free path scale, such as the direct Boltzmann solver and the Direct Simulation Monte Carlo (DSMC) method. In fact, it is an unresolved problem about the exact scale for the validity of the NS equations, especially in the small Reynolds number cases. The computational fluid dynamics (CFD) is usually based on the numerical solution of partial differential equations (PDEs), and it targets on the recovering of the exact solution of the PDEs as mesh size and time step converging to zero. This methodology can be hardly applied to solve the multiple scale problem efficiently because there is no such a complete PDE for flow physics through a continuous variation of scales. For the non-equilibrium flow study, the direct modeling methods, such as DSMC, particle in cell, and smooth particle hydrodynamics, play a dominant role to incorporate the flow physics into the algorithm construction directly. It is fully legitimate to combine the modeling and computation together without going through the process of constructing PDEs. In other words, the CFD research is not only to obtain the numerical solution of governing equations but to model flow dynamics as well. This methodology leads to the unified gas-kinetic scheme (UGKS) for flow simulation in all flow regimes. Based on UGKS, the boundary for the validation of the Navier-Stokes equations can be quantitatively evaluated. The combination of modeling and computation provides a paradigm for the description of multiscale transport process.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, Mani; Gammie, Charles F.; Foucart, Francois, E-mail: manic@illinois.edu, E-mail: gammie@illinois.edu, E-mail: fvfoucart@lbl.gov

    Hot, diffuse, relativistic plasmas such as sub-Eddington black-hole accretion flows are expected to be collisionless, yet are commonly modeled as a fluid using ideal general relativistic magnetohydrodynamics (GRMHD). Dissipative effects such as heat conduction and viscosity can be important in a collisionless plasma and will potentially alter the dynamics and radiative properties of the flow from that in ideal fluid models; we refer to models that include these processes as Extended GRMHD. Here we describe a new conservative code, grim, that enables all of the above and additional physics to be efficiently incorporated. grim combines time evolution and primitive variablemore » inversion needed for conservative schemes into a single step using an algorithm that only requires the residuals of the governing equations as inputs. This algorithm enables the code to be physics agnostic as well as flexibility regarding time-stepping schemes. grim runs on CPUs, as well as on GPUs, using the same code. We formulate a performance model and use it to show that our implementation runs optimally on both architectures. grim correctly captures classical GRMHD test problems as well as a new suite of linear and nonlinear test problems with anisotropic conduction and viscosity in special and general relativity. As tests and example applications, we resolve the shock substructure due to the presence of dissipation, and report on relativistic versions of the magneto-thermal instability and heat flux driven buoyancy instability, which arise due to anisotropic heat conduction, and of the firehose instability, which occurs due to anisotropic pressure (i.e., viscosity). Finally, we show an example integration of an accretion flow around a Kerr black hole, using Extended GRMHD.« less

  12. The Challenge of Incorporating Charged Dust in the Physics of Flowing Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Russell, C. T.; Ma, Y.; Lai, H.; Jian, L.; Toth, G.

    2013-12-01

    The presence of two oppositely charged species with very different mass ratios leads to interesting physical processes and difficult numerical simulations. The reconnection problem is a classic example of this principle with a proton-electron mass ratio of 1836, but it is not the only example. Increasingly we are discovering situations in which heavy, electrically charged dust particles are major players in a plasma interaction. The mass of a 1mm dust particle is about 2000 proton masses and of a 10 mm dust particle about 2 million proton masses. One example comes from planetary magnetospheres. Charged dust pervades Enceladus' southern plume. The saturnian magnetospheric plasma flows through this dusty plume interacting with the charged dust and ionized plume gas. Multiple wakes are seen downstream. The flow is diverted in one direction. The field aligned-current systems are elsewhere. How can these two wake features be understood? Next we have an example from the solar wind. When asteroids collide in a disruptive collision, the solar wind strips the nano-scale charged dust from the debris forming a dusty plasma cloud that may be over 106km in extent and containing over 100 million kg of dust accelerated to the solar wind speed. How does this occur, especially as rapidly as it appears to happen? In this paper we illustrate a start on understanding these phenomena using multifluid MHD simulations but these simulations are only part of the answer to this complex problem that needs attention from a broader range of the community.

  13. Geographic distance affects dispersal of the patchy distributed greater long-tailed hamster (Tscherskia triton).

    PubMed

    Xue, Huiliang; Zhong, Min; Xu, Jinhui; Xu, Laixiang

    2014-01-01

    Dispersal is a fundamental process in ecology influencing the genetic structure and the viability of populations. Understanding how variable factors influence the dispersal of the population is becoming an important question in animal ecology. To date, geographic distance and geographic barriers are often considered as main factors impacting dispersal, but their effects are variable depending on different conditions. In general, geographic barriers affect more significantly than geographic distance on dispersal. In rapidly expanding populations, however, geographic barriers have less effect on dispersal than geographic distance. The effects of both geographic distance and geographic barriers in low-density populations with patchy distributions are poorly understood. By using a panel of 10 microsatellite loci we investigated the genetic structure of three patchy-distributed populations of the Greater long-tailed hamster (Tscherskia triton) from Raoyang, Guan and Shunyi counties of the North China Plain. The results showed that (i) high genetic diversity and differentiation exist in three geographic populations with patchy distributions; (ii) gene flow occurs among these three populations with physical barriers of Beijing city and Hutuo River, which potentially restricted the dispersal of the animal; (iii) the gene flow is negatively correlated with the geographic distance, while the genetic distance shows the positive correlation. Our results suggest that the effect of the physical barriers is conditional-dependent, including barrier capacity or individual potentially dispersal ability. Geographic distance also acts as an important factor affecting dispersal for the patchy distributed geographic populations. So, gene flow is effective, even at relatively long distances, in balancing the effect of geographic barrier in this study.

  14. Final Report “Electrical and mechanical characterization of rocks at the sub-millimeter scale” DE-SC0000757

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scales, John

    The broad purpose of CSM's 6-year (3 years plus renewal) DOE project was to develop and apply new experimental physics technology to the material characterization of rocks at the grain scale or smaller. This is motivated by a knowledge that the bulk chemistry and physics of rocks are strongly influenced by processes occurring at the grain scale: the flow of fluids, cation exchange, the state of cementation of grains, and many more. It may also be possible in some cases to ``upscale'' or homogenize the mesoscopic properties of rocks in order to directly infer the large-scale properties of formations, butmore » that is not our central goal. Understanding the physics and chemistry at the small scale is. During the first 3 years, most effort was devoted to developing and validating the near-field scanning technology. During the 3 year renewal phase, most effort was focused on applying the technology in the labs Professors Batzle (now deceased) in Geophysics and Prasad in Petroleum engineering.« less

  15. Dispositional Flow in Physical Education: Relationships with Motivational Climate, Social Goals, and Perceived Competence

    ERIC Educational Resources Information Center

    Gonzalez-Cutre, David; Sicilia, Alvaro; Moreno, Juan Antonio; Fernandez-Balboa, Juan Miguel

    2009-01-01

    The purpose of this study was to analyze the mediating effects of social goals and perceived competence on students' perceptions of motivational climates and dispositional flow in physical education. At the beginning of the physical education unit, 779 students, 12 to 16 years old, were asked to complete four questionnaires: Perceived Motivational…

  16. Winnowing and Flocculation in Bio-physical Cohesive Substrate: A Flume Experimental and Estuarine Study

    NASA Astrophysics Data System (ADS)

    Ye, L.; Parsons, D. R.; Manning, A. J.

    2016-12-01

    Cohesive sediment, or mud, is ubiquitously found in most aqueous environments, such as coasts and estuaries. The study of cohesive sediment behaviors requires the synchronous description of mutual interactions of grains (e.g., winnowing and flocculation), their physical properties (e.g., grain size) and also the ambient water. Herein, a series of flume experiments (14 runs) with different substrate mixtures of sand-clay-EPS (Extracellular Polymeric Substrates: secreted by aquatic microorganisms) are combined with an estuarine field survey (Dee estuary, NW England) to investigate the behavior of suspensions over bio-physical cohesive substrates. The experimental results indicate that winnowing and flocculation occur pervasively in bio-physical cohesive flow systems. Importantly however, the evolution of the bed and bedform dynamics and hence turbulence production can be lower when cohesivity is high. The estuarine survey also revealed that the bio-physical cohesion provided by both the clay and microorganism fractions in the bed, that pervasively exists in many natural estuarine systems, plays a significant role in controlling the interactions between bed substrate and sediment suspension and deposition, including controlling processes such as sediment winnowing, flocculation and re-deposition. Full understanding of these processes are essential in advancing sediment transport modelling and prediction studies across natural estuarine systems and the work will report on an improved conceptual model for sediment sorting deposition in bio-physical cohesive substrates.

  17. Streaming Potential Modeling to Understand the Identification of Hydraulically Active Fractures and Fracture-Matrix Fluid Interactions Using the Self-Potential Method

    NASA Astrophysics Data System (ADS)

    Jougnot, D.; Roubinet, D.; Linde, N.; Irving, J.

    2016-12-01

    Quantifying fluid flow in fractured media is a critical challenge in a wide variety of research fields and applications. To this end, geophysics offers a variety of tools that can provide important information on subsurface physical properties in a noninvasive manner. Most geophysical techniques infer fluid flow by data or model differencing in time or space (i.e., they are not directly sensitive to flow occurring at the time of the measurements). An exception is the self-potential (SP) method. When water flows in the subsurface, an excess of charge in the pore water that counterbalances electric charges at the mineral-pore water interface gives rise to a streaming current and an associated streaming potential. The latter can be measured with the SP technique, meaning that the method is directly sensitive to fluid flow. Whereas numerous field experiments suggest that the SP method may allow for the detection of hydraulically active fractures, suitable tools for numerically modeling streaming potentials in fractured media do not exist. Here, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid-flow and associated self-potential problems in fractured domains. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods due to computational limitations. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  18. Estimated monthly streamflows for selected locations on the Kabul and Logar Rivers, Aynak copper, cobalt, and chromium area of interest, Afghanistan, 1951-2010

    USGS Publications Warehouse

    Vining, Kevin C.; Vecchia, Aldo V.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, used the stochastic monthly water-balance model and existing climate data to estimate monthly streamflows for 1951–2010 for selected streamgaging stations located within the Aynak copper, cobalt, and chromium area of interest in Afghanistan. The model used physically based, nondeterministic methods to estimate the monthly volumetric water-balance components of a watershed. A comparison of estimated and recorded monthly streamflows for the streamgaging stations Kabul River at Maidan and Kabul River at Tangi-Saidan indicated that the stochastic water-balance model was able to provide satisfactory estimates of monthly streamflows for high-flow months and low-flow months even though withdrawals for irrigation likely occurred. A comparison of estimated and recorded monthly streamflows for the streamgaging stations Logar River at Shekhabad and Logar River at Sangi-Naweshta also indicated that the stochastic water-balance model was able to provide reasonable estimates of monthly streamflows for the high-flow months; however, for the upstream streamgaging station, the model overestimated monthly streamflows during periods when summer irrigation withdrawals likely occurred. Results from the stochastic water-balance model indicate that the model should be able to produce satisfactory estimates of monthly streamflows for locations along the Kabul and Logar Rivers. This information could be used by Afghanistan authorities to make decisions about surface-water resources for the Aynak copper, cobalt, and chromium area of interest.

  19. An experimental investigation of the flow physics of high-lift systems

    NASA Technical Reports Server (NTRS)

    Thomas, Flint O.; Nelson, R. C.

    1995-01-01

    This progress report is a series of overviews outlining experiments on the flow physics of confluent boundary layers for high-lift systems. The research objectives include establishing the role of confluent boundary layer flow physics in high-lift production; contrasting confluent boundary layer structures for optimum and non-optimum C(sub L) cases; forming a high quality, detailed archival data base for CFD/modelling; and examining the role of relaminarization and streamline curvature. Goals of this research include completing LDV study of an optimum C(sub L) case; performing detailed LDV confluent boundary layer surveys for multiple non-optimum C(sub L) cases; obtaining skin friction distributions for both optimum and non-optimum C(sub L) cases for scaling purposes; data analysis and inner and outer variable scaling; setting-up and performing relaminarization experiments; and a final report establishing the role of leading edge confluent boundary layer flow physics on high-lift performance.

  20. Physical Limits on the Predictability of Erosion and Sediment Transport by Landslides and Debris Flows

    NASA Astrophysics Data System (ADS)

    Iverson, R. M.

    2015-12-01

    Episodic landslides and debris flows play a key role in sculpting many steep landscapes, and they also pose significant natural hazards. Field evidence, laboratory experiments, and theoretical analyses show that variations in the quantity, speed, and distance of sediment transport by landslides and debris flows can depend strongly on nuanced differences in initial conditions. Moreover, initial conditions themselves can be strongly dependent on the geological legacy of prior events. The scope of these dependencies is revealed by the results of landslide dynamics experiments [Iverson et al., Science, 2000], debris-flow erosion experiments [Iverson et al., Nature Geosci., 2011], and numerical simulations of the highly destructive 2014 Oso, Washington, landslide [Iverson et al., Earth Planet. Sci. Let., 2015]. In each of these cases, feedbacks between basal sediment deformation and pore-pressure generation cause the speed and distance of sediment transport to be very sensitive to subtle differences in the ambient sediment porosity and water content. On the other hand, the onset of most landslides and debris flows depends largely on pore-water pressure distributions and only indirectly on sediment porosity and water content. Thus, even if perfect predictions of the locations and timing of landslides and debris flows were available, the dynamics of the events - and their consequent hazards and sediment transport - would be difficult to predict. This difficulty is a manifestation of the nonlinear physics involved, rather than of poor understanding of those physics. Consequently, physically based models for assessing the hazards and sediment transport due to landslides and debris flows must take into account both evolving nonlinear dynamics and inherent uncertainties about initial conditions. By contrast, landscape evolution models that use prescribed algebraic formulas to represent sediment transport by landslides and debris flows lack a sound physical basis.

  1. Autogenic dynamics of debris-flow fans

    NASA Astrophysics Data System (ADS)

    van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten

    2015-04-01

    Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously, the debris flows started to channelize, forced by increasingly effective concentration of the flow impulse to the flow front, which caused more effective lateral levee formation and an increasingly well-defined channel. This process continued until the debris flows reached their maximum possible extent and the cycle was reverted. Channelization occurred in the absence of erosion, in contrast with fluvial fans. Backfilling and channelization cycles were gradual and symmetric, requiring multiple debris flows to be completed. These results add debris-flow fans to the spectrum of fan-shaped aqueous systems that are affected by autogenic dynamics, now ranging from low-gradient rivers systems to steep-gradient mass-flow fans.

  2. Avoiding cumulative trauma disorders in shops and offices.

    PubMed

    Kroemer, K H

    1992-09-01

    Cumulative trauma disorders have been medically described for about 100 yr and have been related to physical activities for nearly 300 yr. Yet, avoiding these disorders in the shop and office is becoming of urgent concern only now, particularly because of the Occupational Safety and Health Administration's (OSHA's) investigation and enforcement program. Such disorders occur most often in soft tissues of the body, particularly at tendons and their sheaths. They may irritate or damage nerves and impede blood flow. They are frequent in the hand/wrist/forearm area; for example, in the carpal tunnel and in the shoulder and neck. Although controversy exists, occupational and leisure activities are generally believed to cause or aggravate cumulative trauma disorders. The major activity-related factors are rapid repetitive movements, forceful movements, static muscle loading, inappropriate body postures, vibrations, and cold. Yet, the quantitative thresholds above which cumulative trauma disorders are expected to occur are largely unknown and need to be researched. Furthermore, certain health conditions may make individuals predisposed to cumulative disorders. For most cumulative trauma disorders, physical activities and job procedures can be identified that are related to the occurrence of cumulative trauma disorders. This allows the establishment of generic and specific recommendations for the avoidance of conditions that may lead to cumulative trauma disorders in the workshop or the office.

  3. Andic soil features and debris flows in Italy. New perspective towards prediction

    NASA Astrophysics Data System (ADS)

    Scognamiglio, Solange; Calcaterra, Domenico; Iamarino, Michela; Langella, Giuliano; Orefice, Nadia; Vingiani, Simona; Terribile, Fabio

    2016-04-01

    Debris flows are dangerous hazards causing fatalities and damage. Previous works have demonstrated that the materials involved by debris flows in Campania (southern Italy) are soils classified as Andosols. These soils have peculiar chemical and physical properties which make them fertile but also vulnerable to landslide. In Italy, andic soil properties are found both in volcanic and non-volcanic mountain ecosystems (VME and NVME). Here, we focused on the assessment of the main chemical and physical properties of the soils in the detachment areas of eight debris flows occurred in NVME of Italy in the last 70 years. Such landslides were selected by consulting the official Italian geodatabase (IFFI Project). Andic properties (by means of ammonium oxalate extractable Fe, Si and Al forms for the calculation of Alo+1/2Feo) were also evaluated and a comparison with soils of VME was performed to assess possible common features. Landslide source areas were characterised by slope gradient ranging from 25° to 50° and lithological heterogeneity of the bedrock. The soils showed similar, i.e. all were very deep, had a moderately thick topsoil with a high organic carbon (OC) content decreasing regularly with depth. The cation exchange capacity trend was generally consistent with the OC and the pH varied from extremely to slightly acid, but increased with depth. Furthermore, the soils had high water retention values both at saturation (0.63 to 0.78 cm3 cm-3) and in the dryer part of the water retention curve, and displayed a prevalent loamy texture. Such properties denote the chemical and physical fertility of the investigated ecosystems. The values of Alo+1/2Feoindicated that the soils had vitric or andic features and can be classified as Andosols. The comparison between NVME soils and those of VME showed similar depth, thickness of soil horizons, and family texture, whereas soil pH, degree of development of andic properties and allophane content were higher for VME soils. Such results are consistent with the different soil environments; indeed, in VME a continuous soil enrichment of weatherable volcanic glass affects both soil pH and formation of short range order clay minerals. In conclusion, the direct relationship between debris flows and Andosols, previously found in the Campania VME, is confirmed in some NVME. These findings highlight the similarity of the materials involved by debris flows both in VME and NVME and suggest the existence of a pedological control on debris flow initiation. Furthermore, these results encourage a further extension of soil studies to other European mountain ecosystems. The evidence that andic soils may play a crucial role in debris flows initiation in Italy enables to develop a new strategy for debris flows forecasting. For the case of Sarno 1998 landslides, we provide an example of innovative approach exploring the results obtained by combining the spatial distribution of these andic soils with "on the fly" simulation modelling of the soil water balance, using real time weather forecasting data. The obtained results enable to develop promising Geospatial Decision Support Systems to improve our ability to predict debris flows on soil-covered slopes.

  4. Flow characteristics of the Clearwater River and tributaries from Clearbrook to Plummer, northwestern Minnesota

    USGS Publications Warehouse

    Payne, G.A.

    1989-01-01

    During March through October 1986, 52,560 acre-feet of water passed the continuous-record stream gaging station on the Clearwater River near Clearbrook, Minnesota, 4.8 river miles upstream from the Red Lake Indian Reservation. Flow at the downstream boundary of the Reservation totaled 93,770 acre-feet. The increase in Clearwater River flow in the reach bordering the Reservation equaled 32,950 acre-feet; 60 percent of the increase occurred during March, April, and May. During those months, flow in the Clearwater River was augmented by flow from Kiwosay Reservoir and Butcher Knife Creek, which are located on the Reservation. Daily streamflow records showed that flow in the river increased in the Reservation reach throughout the study except for 13 days during October when losses occurred. At the downstream Reservation boundary, all daily mean flows exceeded the 36 cubic feet per second minimum flow required by the Minnesota Department of Natural Resources for the gaging station at Plummer, Minnesota located 29.9 miles downstream from the Reservation boundary. Monthly flows generally followed expected seasonal trends, with the highest monthly totals occurring in April and May and the lowest monthly totals occurring during August, September, and October. Seasonal trends were modified by reservoir releases, withdrawals for irrigation, and return flows that resulted from drainage of adjacent wild-rice fields. A series of flow measurements showed that localized withdrawals and return flows at times exceeded 20 percent of total streamflow. Discharge measurements made during low flow indicated higher rates of groundwater discharge in the vicinity of the Kiwosay Reservoir than in other parts of the study reach. Measurements made during August indicated that groundwater discharge in the reach of the river bordering the Reservation resulted in a flow gain of about 20 percent. Analysis of long-term streamflow records showed that near-average hydrologic conditions prevailed during the study period.

  5. Aerospace Thematic Workshop (4th): Fundamentals of Aerodynamic Flow and Combustion Control by Plasmas

    DTIC Science & Technology

    2013-04-01

    Supersonic Flow Control by Microwave Discharge and Non-equilibrium Processes in Viscous Gas Flows Elena Kustova (Saint Petersburg State University...implying new technologies (direct injection, turbocharging, exhaust gas recirculation, ...) and introducing new physics ( liquid films, flame propagation...combustion  Discharges physics and kinetics A visit was also organized in the afternoon of April 10 to the supersonic and hypersonic wind tunnels

  6. The Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This volume contains the papers presented at the Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows, held at the California State University, Long Beach, from 13 to 15 January 1992. The symposium, like its immediate predecessors, considers the calculation of flows of relevance to aircraft, ships, and missiles with emphasis on the solution of two-dimensional unsteady and three-dimensional equations.

  7. Mineral Precipitation Upgradient from a Zero-Valent Iron Permeable Reactive Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R. L.; Thoms, R. B.; Johnson, R. O.

    2008-07-01

    Core samples taken from a zero-valent iron permeable reactive barrier (ZVI PRB) at Cornhusker Army Ammunition Plant, Nebraska, were analyzed for physical and chemical characteristics. Precipitates containing iron and sulfide were present at much higher concentrations in native aquifer materials just upgradient of the PRB than in the PRB itself. Sulfur mass balance on core solids coupled with trends in ground water sulfate concentrations indicates that the average ground water flow after 20 months of PRB operation was approximately twenty fold less than the regional ground water velocity. Transport and reaction modeling of the aquifer PRB interface suggests that, atmore » the calculated velocity, both iron and hydrogen could diffuse upgradient against ground water flow and thereby contribute to precipitation in the native aquifer materials. The initial hydraulic conductivity (K) of the native materials is less than that of the PRB and, given the observed precipitation in the upgradient native materials, it is likely that K reduction occurred upgradient to rather than within the PRB. Although not directly implicated, guar gum used during installation of the PRB is believed to have played a role in the precipitation and flow reduction processes by enhancing microbial activity.« less

  8. Multiscale Simulation of Gas Film Lubrication During Liquid Droplet Collision

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Khare, Prashant; Ma, Dongjun; Yang, Vigor

    2012-02-01

    Droplet collision plays an elementary role in dense spray combustion process. When two droplets approach each other, a gas film forms in between. The pressure generated within the film prevents motion of approaching droplets. This fluid mechanics is fluid film lubrication that occurs when opposing bearing surfaces are completely separated by fluid film. The lubrication flow in gas film decides the collision outcome, coalescence or bouncing. Present study focuses on gas film drainage process over a wide range of Weber numbers during equal- and unequal-sized droplet collision. The formulation is based on complete set of conservation equations for both liquid and surrounding gas phases. An improved volume-of-fluid technique, augmented by an adaptive mesh refinement algorithm, is used to track liquid/gas interfaces. A unique thickness-based refinement algorithm based on topology of interfacial flow is developed and implemented to efficiently resolve the multiscale problem. The grid size on interface is up O(10-4) of droplet size with a max resolution of 0.015 μm. An advanced visualization technique using the Ray-tracing methodology is used to gain direct insights to detailed physics. Theories are established by analyzing the characteristics of shape changing and flow evolution.

  9. Improved Cook-off Modeling of Multi-component Cast Explosives

    NASA Astrophysics Data System (ADS)

    Nichols, Albert

    2017-06-01

    In order to understand the hazards associated with energetic materials, it is important to understand their behavior in adverse thermal environments. These processes have been relatively well understood for solid explosives, however, the same cannot be said for multi-component melt-cast explosives. Here we describe the continued development of ALE3D, a coupled thermal/chemical/mechanical code, to improve its description of fluid explosives. The improved physics models include: 1) Chemical potential driven species segregation. This model allows us to model the complex flow fields associated with the melting and decomposing Comp-B, where the denser RDX tends to settle and the decomposing gasses rise, 2) Automatically scaled stream-wise diffusion model for thermal, species, and momentum diffusion. These models add sufficient numerical diffusion in the direction of flow to maintain numerical stability when the system is under resolved, as occurs for large systems. And 3) a slurry viscosity model, required to properly define the flow characteristics of the multi-component fluidized system. These models will be demonstrated on a simple Comp-B system. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  10. Time-Frequency Analysis of Rocket Nozzle Wall Pressures During Start-up Transients

    NASA Technical Reports Server (NTRS)

    Baars, Woutijn J.; Tinney, Charles E.; Ruf, Joseph H.

    2011-01-01

    Surveys of the fluctuating wall pressure were conducted on a sub-scale, thrust- optimized parabolic nozzle in order to develop a physical intuition for its Fourier-azimuthal mode behavior during fixed and transient start-up conditions. These unsteady signatures are driven by shock wave turbulent boundary layer interactions which depend on the nozzle pressure ratio and nozzle geometry. The focus however, is on the degree of similarity between the spectral footprints of these modes obtained from transient start-ups as opposed to a sequence of fixed nozzle pressure ratio conditions. For the latter, statistically converged spectra are computed using conventional Fourier analyses techniques, whereas the former are investigated by way of time-frequency analysis. The findings suggest that at low nozzle pressure ratios -- where the flow resides in a Free Shock Separation state -- strong spectral similarities occur between fixed and transient conditions. Conversely, at higher nozzle pressure ratios -- where the flow resides in Restricted Shock Separation -- stark differences are observed between the fixed and transient conditions and depends greatly on the ramping rate of the transient period. And so, it appears that an understanding of the dynamics during transient start-up conditions cannot be furnished by a way of fixed flow analysis.

  11. A Long-Term Cultivation of an Anaerobic Methane-Oxidizing Microbial Community from Deep-Sea Methane-Seep Sediment Using a Continuous-Flow Bioreactor

    PubMed Central

    Aoki, Masataka; Ehara, Masayuki; Saito, Yumi; Yoshioka, Hideyoshi; Miyazaki, Masayuki; Saito, Yayoi; Miyashita, Ai; Kawakami, Shuji; Yamaguchi, Takashi; Ohashi, Akiyoshi; Nunoura, Takuro; Takai, Ken; Imachi, Hiroyuki

    2014-01-01

    Anaerobic oxidation of methane (AOM) in marine sediments is an important global methane sink, but the physiological characteristics of AOM-associated microorganisms remain poorly understood. Here we report the cultivation of an AOM microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor with polyurethane sponges, called the down-flow hanging sponge (DHS) bioreactor. We anaerobically incubated deep-sea methane-seep sediment collected from the Nankai Trough, Japan, for 2,013 days in the bioreactor at 10°C. Following incubation, an active AOM activity was confirmed by a tracer experiment using 13C-labeled methane. Phylogenetic analyses demonstrated that phylogenetically diverse Archaea and Bacteria grew in the bioreactor. After 2,013 days of incubation, the predominant archaeal components were anaerobic methanotroph (ANME)-2a, Deep-Sea Archaeal Group, and Marine Benthic Group-D, and Gammaproteobacteria was the dominant bacterial lineage. Fluorescence in situ hybridization analysis showed that ANME-1 and -2a, and most ANME-2c cells occurred without close physical interaction with potential bacterial partners. Our data demonstrate that the DHS bioreactor system is a useful system for cultivating fastidious methane-seep-associated sedimentary microorganisms. PMID:25141130

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merzari, E.; Yuan, Haomin; Kraus, A.

    The NEAMS program aims to develop an integrated multi-physics simulation capability “pellet-to-plant” for the design and analysis of future generations of nuclear power plants. In particular, the Reactor Product Line code suite's multi-resolution hierarchy is being designed to ultimately span the full range of length and time scales present in relevant reactor design and safety analyses, as well as scale from desktop to petaflop computing platforms. Flow-induced vibration (FIV) is widespread problem in energy systems because they rely on fluid movement for energy conversion. Vibrating structures may be damaged as fatigue or wear occurs. Given the importance of reliable componentsmore » in the nuclear industry, flow-induced vibration has long been a major concern in safety and operation of nuclear reactors. In particular, nuclear fuel rods and steam generators have been known to suffer from flow-induced vibration and related failures. Advanced reactors, such as integral Pressurized Water Reactors (PWRs) considered for Small Modular Reactors (SMR), often rely on innovative component designs to meet cost and safety targets. One component that is the subject of advanced designs is the steam generator, some designs of which forego the usual shell-and-tube architecture in order to fit within the primary vessel. In addition to being more cost- and space-efficient, such steam generators need to be more reliable, since failure of the primary vessel represents a potential loss of coolant and a safety concern. A significant amount of data exists on flow-induced vibration in shell-and-tube heat exchangers, and heuristic methods are available to predict their occurrence based on a set of given assumptions. In contrast, advanced designs have far less data available. Advanced modeling and simulation based on coupled structural and fluid simulations have the potential to predict flow-induced vibration in a variety of designs, reducing the need for expensive experimental programs, especially at the design stage. Over the past five years, the Reactor Product Line has developed the integrated multi-physics code suite SHARP. The goal of developing such a tool is to perform multi-physics neutronics, thermal/fluid, and structural mechanics modeling of the components inside the full reactor core or portions of it with a user-specified fidelity. In particular SHARP contains high-fidelity single-physics codes Diablo for structural mechanics and Nek5000 for fluid mechanics calculations. Both codes are state-of-the-art, highly scalable tools that have been extensively validated. These tools form a strong basis on which to build a flow-induced vibration modeling capability. In this report we discuss one-way coupled calculations performed with Nek5000 and Diablo aimed at simulating available FIV experiments in helical steam generators in the turbulent buffeting regime. In this regime one-way coupling is judged sufficient because the pressure loads do not cause substantial displacements. It is also the most common source of vibration in helical steam generators at the low flows expected in integral PWRs. The legacy data is obtained from two datasets developed at Argonne and B&W.« less

  13. Estimation of Vulnerability Functions for Debris Flows Using Different Intensity Parameters

    NASA Astrophysics Data System (ADS)

    Akbas, S. O.; Blahut, J.; Luna, B. Q.; Sterlacchini, S.

    2009-04-01

    In landslide risk research, the majority of past studies have focused on hazard analysis, with only few targeting the concept of vulnerability. When debris flows are considered, there is no consensus or even modest agreement on a generalized methodology to estimate physical vulnerability of the affected buildings. Very few quantitative relationships have been proposed between intensities and vulnerability values. More importantly, in most of the existing relationships, information on process intensity is often missing or only described semi-quantitatively. However, robust assessment of vulnerabilities along with the associated uncertainties is of utmost importance from a quantitative risk analysis point of view. On the morning of 13th July 2008, after more than two days of intense rainfall, several debris and mud flows were released in the central part of Valtellina, an Italian alpine valley in Lombardy Region. One of the largest muddy-debris flows occurred in Selvetta, a fraction of Colorina municipality. The result was the complete destruction of two buildings, and damage at varying severity levels to eight others. The authors had the chance to gather detailed information about the event, by conducting extensive field work and interviews with local inhabitants, civil protection teams, and officials. In addition to the data gathered from the field studies, the main characteristics of the debris flow have been estimated using numerical and empirical approaches. The extensive data obtained from Selvetta event gave an opportunity to develop three separate empirical vulnerability curves, which are functions of deposition height, debris flow velocity, and pressure, respectively. Deposition heights were directly obtained from field surveys, whereas the velocity and pressure values were back-calculated using the finite difference program FLO2D. The vulnerability was defined as the ratio between the monetary loss and the reconstruction value. The monetary losses were obtained from official RASDA documents, which were compiled for claim purposes. For each building, the approximate reconstruction value was calculated according to the building type and size, using the official data given in the Housing Prices Index prepared by the Engineers and Architects of Milan. The resulting vulnerability curves were compared to those in the literature, and among themselves. Specific recommendations were given regarding the most suitable parameter to be used for characterizing the intensity of debris flows within the context of physical vulnerability.

  14. Physical training improves flow-mediated dilation in patients with the polymetabolic syndrome.

    PubMed

    Lavrencic, A; Salobir, B G; Keber, I

    2000-02-01

    Endothelial dysfunction that can be detected as impaired flow-mediated dilation by ultrasonography is an early event in atherogenesis and has been demonstrated in healthy subjects with risk factors for atherosclerosis many years before the appearance of atheromatous plaques. We examined the influence of physical training on flow-mediated dilation in patients with the polymetabolic syndrome. Twenty-nine asymptomatic men aged 40 to 60 years with the polymetabolic syndrome were randomly divided between the control group and the training group, which trained 3 times a week for 12 weeks. On high-resolution ultrasound images, the diameter of the brachial artery was measured at rest, after reactive hyperemia (causing flow-mediated, endothelium-dependent dilation), and after sublingual glyceryltrinitrate (causing endothelium-independent vasodilation) in all subjects before and after the training period. The training program induced an increase of 18% in physical fitness. Flow-mediated dilation increased from 5.3+/-2.8% to 7.3+/-2.7% (P<0. 05). There was no change in body mass index, blood pressure, insulin resistance, lipids, and big endothelin-1 in either group. Flow-mediated dilation measured before training was negatively correlated with resting heart rate, waist-to-hip ratio, and insulin resistance. Resting heart rate emerged as the only independent determinant, which explained 22% of the variation in flow-mediated dilation. In conclusion, our findings suggest that a 3-month physical training program, which improved maximal exercise capacity, enhances flow-mediated dilation in patients with the polymetabolic syndrome.

  15. Representation and display of vector field topology in fluid flow data sets

    NASA Technical Reports Server (NTRS)

    Helman, James; Hesselink, Lambertus

    1989-01-01

    The visualization of physical processes in general and of vector fields in particular is discussed. An approach to visualizing flow topology that is based on the physics and mathematics underlying the physical phenomenon is presented. It involves determining critical points in the flow where the velocity vector vanishes. The critical points, connected by principal lines or planes, determine the topology of the flow. The complexity of the data is reduced without sacrificing the quantitative nature of the data set. By reducing the original vector field to a set of critical points and their connections, a representation of the topology of a two-dimensional vector field that is much smaller than the original data set but retains with full precision the information pertinent to the flow topology is obtained. This representation can be displayed as a set of points and tangent curves or as a graph. Analysis (including algorithms), display, interaction, and implementation aspects are discussed.

  16. Laboratory and Physical Modelling of Building Ventilation Flows

    NASA Astrophysics Data System (ADS)

    Hunt, Gary

    2001-11-01

    Heating and ventilating buildings accounts for a significant fraction of the total energy budget of cities and an immediate challenge in building physics is for the design of sustainable, low-energy buildings. Natural ventilation provides a low-energy solution as it harness the buoyancy force associated with temperature differences between the internal and external environment, and the wind to drive a ventilating flow. Modern naturally-ventilated buildings use innovative design solutions, e.g. glazed atria and solar chimneys, to enhance the ventilation and demand for these and other designs has far outstripped our understanding of the fluid mechanics within these buildings. Developing an understanding of the thermal stratification and movement of air provides a considerable challenge as the flows involve interactions between stratification and turbulence and often in complex geometries. An approach that has provided significant new insight into these flows and which has led to the development of design guidelines for architects and ventilation engineers is laboratory modelling at small-scale in water tanks combined with physical modelling. Density differences to drive the flow in simplified plexiglass models of rooms or buildings are provided by fresh and salt water solutions, and wind flow is represented by a mean flow in a flume tank. In tandom with the experiments, theoretical models that capture the essential physics of these flows have been developed in order to generalise the experimental results to a wide range of typical building geometries and operating conditions. This paper describes the application and outcomes of these modelling techniques to the study of a variety of natural ventilation flows in buildings.

  17. Driven magnetic reconnection in three dimensions - Energy conversion and field-aligned current generation

    NASA Technical Reports Server (NTRS)

    Sato, T.; Walker, R. J.; Ashour-Abdalla, M.

    1984-01-01

    The energy conversion processes occurring in three-dimensional driven reconnection is analyzed. In particular, the energy conversion processes during localized reconnection in a taillike magnetic configuration are studied. It is found that three-dimensional driven reconnection is a powerful energy converter which transforms magnetic energy into plasma bulk flow and thermal energy. Three-dimensional driven reconnection is an even more powerful energy converter than two-dimensional reconnection, because in the three-dimensional case, plasmas were drawn into the reconnection region from the sides as well as from the top and bottom. Field-aligned currents are generated by three-dimensional driven reconnection. The physical mechanism responsible for these currents which flow from the tail toward the ionosphere on the dawnside of the reconnection region and from the ionosphere toward the tail on the duskside is identified. The field-aligned currents form as the neutral sheet current is diverted through the slow shocks which form on the outer edge of the reconnected field lines (outer edge of the plasma sheet).

  18. Effect of Toki-Shakuyaku-San on Regional Cerebral Blood Flow in Patients with Mild Cognitive Impairment and Alzheimer's Disease

    PubMed Central

    Matsuoka, Teruyuki; Narumoto, Jin; Shibata, Keisuke; Okamura, Aiko; Taniguchi, Shogo; Kitabayashi, Yurinosuke; Fukui, Kenji

    2012-01-01

    The aim of this study was to examine the effect of toki-shakuyaku-san (TSS) on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using single-photon emission computed tomography (SPECT). All subjects were administered TSS (7.5 g/day) for eight weeks. SPECT and evaluations using the Mini Mental State Examination (MMSE), Neuropsychiatric Inventory, and Physical Self-Maintenance Scale were performed before and after treatment with TSS. Three patients with MCI and five patients with AD completed the study. No adverse events occurred during the study period. After treatment with TSS, regional cerebral blood flow (rCBF) in the posterior cingulate was significantly higher than that before treatment. No brain region showed a significant decrease in rCBF. TSS treatment also tended to improve the score for orientation to place on the MMSE. These results suggest that TSS could be useful for treatment of MCI and AD. PMID:22454658

  19. Stick-slip instabilities in sheared granular flow: The role of friction and acoustic vibrations.

    PubMed

    Lieou, Charles K C; Elbanna, Ahmed E; Langer, J S; Carlson, J M

    2015-08-01

    We propose a theory of shear flow in dense granular materials. A key ingredient of the theory is an effective temperature that determines how the material responds to external driving forces such as shear stresses and vibrations. We show that, within our model, friction between grains produces stick-slip behavior at intermediate shear rates, even if the material is rate strengthening at larger rates. In addition, externally generated acoustic vibrations alter the stick-slip amplitude, or suppress stick-slip altogether, depending on the pressure and shear rate. We construct a phase diagram that indicates the parameter regimes for which stick-slip occurs in the presence and absence of acoustic vibrations of a fixed amplitude and frequency. These results connect the microscopic physics to macroscopic dynamics and thus produce useful information about a variety of granular phenomena, including rupture and slip along earthquake faults, the remote triggering of instabilities, and the control of friction in material processing.

  20. Comparative assessment of two agriculturally-influenced estuaries: Similar pressure, different response.

    PubMed

    Lemley, Daniel A; Adams, Janine B; Taljaard, Susan

    2017-04-15

    This study compared the spatio-temporal dynamics in two agriculturally-influenced South African estuaries - Gamtoos and Sundays - to investigate how contrasting hydrological alterations influence physical, chemical and biological responses. With the Gamtoos Estuary experiencing regular high flow conditions, a key difference between the two systems is the propensity for natural flushing events to occur; a mechanism largely eliminated from the highly-regulated Sundays Catchment. Phytoplankton blooms (>20Chl-aμgl -1 ) were persistent and seasonal in the Sundays, inducing summer bottom-water hypoxia (<2mgl -1 ), whilst those in the Gamtoos were episodic and flow-dependent. Of concern in the Sundays Estuary, was the magnitude (>550μgl -1 ) and recurrent nature of two harmful algal bloom (HAB) species. This study provides the first account of HAB persistence and seasonal hypoxia in a South African estuary, demonstrating the possible consequences of shifting an ecosystem into a new stable state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Simultaneous measurements of velocity, temperature, and pressure using rapid CW wavelength-modulation laser-induced fluorescence of OH

    NASA Technical Reports Server (NTRS)

    Chang, A. Y.; Battles, B. E.; Hanson, R. K.

    1990-01-01

    In high speed flows, laser induced fluorescence (LIF) on Doppler shifted transitions is an attractive technique for velocity measurement. LIF velocimetry was applied to combined single-point measurements of velocity, temperature, and pressure and 2-D imaging of velocity and pressure. Prior to recent research using NO, LIF velocimetry in combustion related flows relied largely on the use of seed molecules. Simultaneous, single-point LIF measurements is reported of velocity, temperature, and pressure using the naturally occurring combustion species OH. This experiment is an extension of earlier research in which a modified ring dye laser was used to make time resolved temperature measurements behind reflected shock waves by using OH absorption an in postflame gases by using OH LIF. A pair of fused-silica rhombs mounted on a single galvanonmeter in an intracavity-doubled Spectra-Physics 380 ring laser permit the UV output to be swept continuously over a few wave numbers at an effective frequency of 3kHz.

  2. Tritium Management Loop Design Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rader, Jordan D.; Felde, David K.; McFarlane, Joanna

    This report summarizes physical, chemical, and engineering analyses that have been done to support the development of a test loop to study tritium migration in 2LiF-BeF2 salts. The loop will operate under turbulent flow and a schematic of the apparatus has been used to develop a model in Mathcad to suggest flow parameters that should be targeted in loop operation. The introduction of tritium into the loop has been discussed as well as various means to capture or divert the tritium from egress through a test assembly. Permeation was calculated starting with a Modelica model for a transport through amore » nickel window into a vacuum, and modifying it for a FLiBe system with an argon sweep gas on the downstream side of the permeation interface. Results suggest that tritium removal with a simple tubular permeation device will occur readily. Although this system is idealized, it suggests that rapid measurement capability in the loop may be necessary to study and understand tritium removal from the system.« less

  3. Radiative amplification of sound waves in the winds of O and B stars

    NASA Technical Reports Server (NTRS)

    Macgregor, K. B.; Hartmann, L.; Raymond, J. C.

    1979-01-01

    The velocity perturbation associated with an outwardly propagating sound wave in a radiation-driven stellar wind gives rise to a periodic Doppler shifting of absorption lines formed in the flow. A linearized theory applicable to optically thin waves is used to show that the resulting fluctuation in the absorption-line force can cause the wave amplitude to grow. Detailed calculations of the acceleration due to a large number of lines indicate that significant amplification can occur throughout the high-velocity portion of winds in which the dominant force-producing lines have appreciable optical depths. In the particular case of the wind of Zeta Pup (O4f), it is found that the e-folding distance for wave growth is considerably shorter than the scale lengths over which the physical properties of the flow vary. A qualitative estimate of the rate at which mechanical energy due to nonlinear waves can be dissipated suggests that this mechanism may be important in heating the supersonic portion of winds of early-type stars.

  4. The Disk Wind Model of the Broad Line Regions in Active Galactic Nuclei and Cataclysmic Variables

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell

    2002-01-01

    This is the final progress report for our Astrophysics Theory Program (NRA 97-OSS12) grant NAG5-7723. We have made considerable progress on incorporating photoionization calculations with a 2.5D hydrodynamical code to model disk winds in AGNs. Following up on our simultaneous broad band monitoring campaign of the type I Seyfert galaxy NGC 5548, we have investigated the constraints imposed on models of accretion in Seyfert galaxies by their optical, UV, and X-ray spectral energy distributions (SEDs). Using results from thermal Comptonization models that relate the physical properties of the hot inner accretion flow to the thermal reprocessing that occurs in the surrounding colder thin disk, we find that we can constrain the central black hole mass, accretion rate and size scale of the hot central flow. We have applied our model to observations of Seyfert galaxies NGC 3516, NGC 7469 and NGC 5548. Our mass and accretion rate estimates for these objects roughly agree with those found using other methods.

  5. PHYSICAL EFFECTS OCCURRING DURING GENERATION AND AMPLIFICATION OF LASER RADIATION: Efficiency of the vibrational excitation of CO2 molecules pumped by a capacitative discharge

    NASA Astrophysics Data System (ADS)

    Baranov, G. A.; Efremov, Yu V.; Smirnov, A. S.; Frolov, K. S.; Shevchenko, Yu I.

    1989-02-01

    An investigation was made of the distributions of the gain and input energy per unit volume along the discharge chamber length in a CO2-N2-He mixture stream excited by an rf discharge. The dependences of the gain and discharge luminescence intensity on the coordinate x were determined along the direction of the gas flow. The discharge luminescence intensity was shown to characterize the input energy distribution along the X axis. Calculations were made of the small-signal gain in the rf discharge. Experimental data on the distributions of the input energy and of the electric field in the discharge and the average values of the kinetic coefficients were used in the calculations. The efficiency of pumping CO2 lasers with an rf discharge was found to be close to the dc pumping efficiency. The results obtained provide evidence of promising prospects for using an rf discharge in fast-flow industrial lasers.

  6. Bed structure and bedload transport: Sediment grain reorientation in response to high and low flows in an experimental flume

    NASA Astrophysics Data System (ADS)

    Gurer, M.; Sullivan, S.; Masteller, C.

    2016-12-01

    Bedload is a regime of sediment transport that occurs when particles roll, hop, or bounce downstream. This mode of transport represents an important portion of the sediment load in a gravel river. Despite numerous studies focused on bedload transport, it still remains difficult to predict accurately due to the complex arrangement of riverbed particles. The formation of gravel clusters, stones being imbricated, or streamlined, and other interlocked arrangements, as well as grains armoring the bed, all tend to stabilize gravel channels and decrease bed mobility. Typically, the development of bed structure usually occurs as sediment moves downstream. However, it is unclear that gravel bed structure can be developed during weaker flows that do not generate significant sediment transport. We examine how individual sediment grains reorient themselves during low flow conditions, in the absence of sediment transport, and during high flow conditions, as bedload transport occurs. We then perform flume experiments where we expose a gravel bed to varying durations of low flow and raise the water level, simulating a flood and transporting sediment. We also compare the long-axis orientations of grains before and after each low flow period and transport. We find that sediment grains reorient themselves differently during low and high flows. During low flow, grains appear to reorient themselves with the long-axes towards cross-stream direction, or perpendicular to the flow, with longer duration flows resulting in more pronounced cross-stream orientation. During high flow, grains orient themselves with their long-axes facing downstream or parallel to the flow, similar to imbricated grains observed in the sedimentary record. Further, when transport occurs, we find that median grain orientation is strongly correlated with bedload transport rates (R^2 = 0.98). We also observe that median grain orientations more perpendicular to downstream flow result in reduced transport rates. This new result suggests that the low flow reorientation of grains perpendicular to downstream flow drives observed differences in bedload transport during high flows. We conclude that low flow periods are important for the creation of bed structure and the stabilization of gravel river channels.

  7. Development and application of gravity-capillary wave fourier analysis for the study of air-sea interaction physics

    NASA Astrophysics Data System (ADS)

    MacKenzie Laxague, Nathan Jean

    Short ocean waves play a crucial role in the physical coupling between the ocean and the atmosphere. This is particularly true for gravity-capillary waves, waves of a scale (O(0.01-0.1) m) such that they are similarly restored to equilibrium by gravitational and interfacial tension (capillary) effects. These waves are inextricably linked to the turbulent boundary layer processes which characterize near-interfacial flows, acting as mediators of the momentum, gas, and heat fluxes which bear greatly on surface material transport, tropical storms, and climatic processes. The observation of these waves and the fluid mechanical phenomena which govern their behavior has long posed challenges to the would-be observer. This is due in no small part to the delicacy of centimeter-scale waves and the sensitivity of their properties to disruption via tactile measurement. With the ever-growing interest in satellite remote sensing, direct observations of short wave characteristics are needed along coastal margins. These zones are characterized by a diversity of physical processes which can affect the short-scale sea surface topography that is directly sensed via radar backscatter. In a related vein, these observations are needed to more fully understand the specific hydrodynamic relationship between young, wind-generated gravity-capillary waves and longer gravity waves. Furthermore, understanding of the full oceanic current profile is hampered by a lack of observations in the near-surface domain (z = O(0.01-0.1) m), where flows can differ greatly from those at depth. Here I present the development of analytical techniques for describing gravity-capillary ocean surface waves in order to better understand their role in the mechanical coupling between the atmosphere and ocean. This is divided amongst a number of research topics, each connecting short ocean surface waves to a physical forcing process via the transfer of momentum. One involves the examination of the sensitivity of short ocean surface waves to atmospheric forcing. Another is the exploration of long wave-short wave interactions and their effects on air-sea interaction vis-a-vis hydrodynamic modulation. The third and final topic is the characterization of the gravity-capillary regime of the wavenumber-frequency spectrum for the purpose of retrieving near-surface, wind-driven current. All of these fit as part of the desire to more fully describe the mechanism by which momentum is transferred across the air-sea interface and to discuss the consequences of this flux in the very near-surface layer of the ocean. Gravity-capillary waves are found to have an outsize share of ocean surface roughness, with short wave spectral peaks showing a connection to turbulent atmospheric stress. Short wave modulation is found to occur strongest at high wavenumbers at the lowest wind speeds, with peak modulation occurring immediately downwind of the long wave crest. Furthermore, short scale roughness enhancement is found to occur upwind of the long wave crest for increasing wind forcing magnitude. Observations of the near-surface current profile show that flows retrieved via this method agree well with the results of camera-tracked dye. Application of this method to data collected in the mouth of the Columbia River (MCR) indicates the presence of a near-surface current component that departs considerably from the tidal flow and orients into the wind stress direction. These observations demonstrate that wind speed-based parameterizations may not be sufficient to estimate wind drift and hold implications for the way in which surface material (e.g., debris or spilled oil) transport is estimated when atmospheric stress is of relatively high magnitude or is steered off the mean wind direction.

  8. Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason-Smith, Nicholas; Duke, Daniel J.; Kastengren, Alan L.

    Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second withmore » 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. Furthermore, the flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.« less

  9. Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol.

    PubMed

    Mason-Smith, Nicholas; Duke, Daniel J; Kastengren, Alan L; Traini, Daniela; Young, Paul M; Chen, Yang; Lewis, David A; Edgington-Mitchell, Daniel; Honnery, Damon

    2017-04-01

    Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second with 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. The flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.

  10. Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol

    DOE PAGES

    Mason-Smith, Nicholas; Duke, Daniel J.; Kastengren, Alan L.; ...

    2017-01-17

    Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second withmore » 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. Furthermore, the flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.« less

  11. Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections

    USGS Publications Warehouse

    Bencala, K.E.; Gooseff, M.N.; Kimball, B.A.

    2011-01-01

    Although surface water and groundwater are increasingly referred to as one resource, there remain environmental and ecosystem needs to study the 10 m to 1 km reach scale as one hydrologic system. Streams gain and lose water over a range of spatial and temporal scales. Large spatial scales (kilometers) have traditionally been recognized and studied as river-aquifer connections. Over the last 25 years hyporheic exchange flows (1-10 m) have been studied extensively. Often a transient storage model has been used to quantify the physical solute transport setting in which biogeochemical processes occur. At the longer 10 m to 1 km scale of stream reaches it is now clear that streams which gain water overall can coincidentally lose water to the subsurface. At this scale, the amounts of water transferred are not necessarily significant but the exchanges can, however, influence solute transport. The interpretation of seemingly straightforward questions about water, contaminant, and nutrient fluxes into and along a stream can be confounded by flow losses which are too small to be apparent in stream gauging and along flow paths too long to be detected in tracer experiments. We suggest basic hydrologic approaches, e.g., measurement of flow along the channel, surface and subsurface solute sampling, and routine measurements of the water table that, in our opinion, can be used to extend simple exchange concepts from the hyporheic exchange scale to a scale of stream-catchment connection. Copyright 2011 by the American Geophysical Union.

  12. Availability of high-magnitude streamflow for groundwater banking in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Kocis, Tiffany N.; Dahlke, Helen E.

    2017-08-01

    California’s climate is characterized by the largest precipitation and streamflow variability observed within the conterminous US This, combined with chronic groundwater overdraft of 0.6-3.5 km3 yr-1, creates the need to identify additional surface water sources available for groundwater recharge using methods such as agricultural groundwater banking, aquifer storage and recovery, and spreading basins. High-magnitude streamflow, i.e. flow above the 90th percentile, that exceeds environmental flow requirements and current surface water allocations under California water rights, could be a viable source of surface water for groundwater banking. Here, we present a comprehensive analysis of the magnitude, frequency, duration and timing of high-magnitude streamflow (HMF) for 93 stream gauges covering the Sacramento, San Joaquin and Tulare basins in California. The results show that in an average year with HMF approximately 3.2 km3 of high-magnitude flow is exported from the entire Central Valley to the Sacramento-San Joaquin Delta often at times when environmental flow requirements of the Delta and major rivers are exceeded. High-magnitude flow occurs, on average, during 7 and 4.7 out of 10 years in the Sacramento River and the San Joaquin-Tulare Basins, respectively, from just a few storm events (5-7 1-day peak events) lasting for 25-30 days between November and April. The results suggest that there is sufficient unmanaged surface water physically available to mitigate long-term groundwater overdraft in the Central Valley.

  13. Bottom currents and sediment transport in Long Island Sound: A modeling study

    USGS Publications Warehouse

    Signell, R.P.; List, J.H.; Farris, A.S.

    2000-01-01

    A high resolution (300-400 m grid spacing), process oriented modeling study was undertaken to elucidate the physical processes affecting the characteristics and distribution of sea-floor sedimentary environments in Long Island Sound. Simulations using idealized forcing and high-resolution bathymetry were performed using a three-dimensional circulation model ECOM (Blumberg and Mellor, 1987) and a stationary shallow water wave model HISWA (Holthuijsen et al., 1989). The relative contributions of tide-, density-, wind- and wave-driven bottom currents are assessed and related to observed characteristics of the sea-floor environments, and simple bedload sediment transport simulations are performed. The fine grid spacing allows features with scales of several kilometers to be resolved. The simulations clearly show physical processes that affect the observed sea-floor characteristics at both regional and local scales. Simulations of near-bottom tidal currents reveal a strong gradient in the funnel-shaped eastern part of the Sound, which parallels an observed gradient in sedimentary environments from erosion or nondeposition, through bedload transport and sediment sorting, to fine-grained deposition. A simulation of estuarine flow driven by the along-axis gradient in salinity shows generally westward bottom currents of 2-4 cm/s that are locally enhanced to 6-8 cm/s along the axial depression of the Sound. Bottom wind-driven currents flow downwind along the shallow margins of the basin, but flow against the wind in the deeper regions. These bottom flows (in opposition to the wind) are strongest in the axial depression and add to the estuarine flow when winds are from the west. The combination of enhanced bottom currents due to both estuarine circulation and the prevailing westerly winds provide an explanation for the relatively coarse sediments found along parts of the axial depression. Climatological simulations of wave-driven bottom currents show that frequent high-energy events occur along the shallow margins of the Sound, explaining the occurrence of relatively coarse sediments in these regions. Bedload sediment transport calculations show that the estuarine circulation coupled with the oscillatory tidal currents result in a net westward transport of sand in much of the eastern Sound. Local departures from this regional westward trend occur around topographic and shoreline irregularities, and there is strong predicted convergence of bedload transport over most of the large, linear sand ridges in the eastern Sound, providing a mechanism which prevents their decay. The strong correlation between the near-bottom current intensity based on the model results and the sediment response, as indicated by the distribution of sedimentary environments, provides a framework for predicting the long-term effects of anthropogenic activities.

  14. Dynamics of coherent flow structures of a pulsating unsteady glottal jet in human phonation.

    NASA Astrophysics Data System (ADS)

    Neubauer, Juergen; Miraghaie, Reza; Berry, David

    2004-11-01

    The primary sound source for human voice is oscillation of the vocal folds in the larynx. Phonation is the self-sustained oscillation of the viscoelastic vocal fold tissue driven by the air flow from the lung. It is due to the flow-induced Hopf instability of the biomechanical-aerodynamic system of vocal folds coupled to the aeroacoustic driving air flow. The aim of this study is to provide insight to the aero-acoustic part of the primary sound source of human voice. A physical rubber model of vocal folds with air flow conditions typical for human phonation was used. This model exhibits self-sustained oscillations similar to those in human phonation. The oscillating physical model can be regarded as a dynamic slit-like orifice that discharges a pulsating unsteady jet. A left-right flapping of the glottal jet axis was detected using hotwire anemometer measurements of the unsteady glottal jet. Flow visualization experiments revealed the detachment of the glottal jet from the physical model folds during the accelerating and decelerating phase of the jet pulsation. Roll-up of large-scale vortex rings as well as secondary vortex shedding in the form of Von Karman street due to shear layer instability were found downstream of the physical model.

  15. Investigation of the validity of Reynolds averaged turbulence models at the frequencies that occur in turbomachinery

    NASA Technical Reports Server (NTRS)

    Kuhn, Gary D.

    1988-01-01

    Turbulent flows subjected to various kinds of unsteady disturbances were simulated using a large-eddy-simulation computer code for flow in a channel. The disturbances were: a normal velocity expressed as a traveling wave on one wall of the channel; staggered blowing and suction distributions on the opposite walls of the channel; and oscillations of the mean flow through the channel. The wall boundary conditions were designed to simulate the effects of wakes of a stator stage passing through a rotor channel in a turbine. The oscillating flow simulated the effects of a pressure pulse moving over the rotor blade boundary layer. The objective of the simulations was to provide better understanding of the effects of time-dependent disturbances on the turbulence of a boundary layer and of the underlying physical phenomena regarding the basic interaction between the turbulence and external disturbances of the type found in turbomachinery. Results showed that turbulence is sensitive to certain ranges of frequencies of disturbances. However, no direct connection was found between the frequency of imposed disturbances and characteristic burst frequency of turbulence. New insight into the nature of turbulence at high frequencies was found. The viscous phenomena near solid walls was found to be the dominant influence for high frequency perturbations. At high frequencies, the turbulence was found to be undisturbed, remaining the same as for the steady mean flow. A transition range exists between the high frequency range and the low, or quasi-steady, range in which the turbulence is not predictable by either quasi-steady models or the steady flow model. The limiting lowest frequency for use of the steady flow turbulence model is that for which the viscous Stokes layer based on the blade passing frequency is thicker than the laminar sublayer.

  16. Flow and fracturing of viscoelastic media under diffusion-driven bubble growth: An analogue experiment for eruptive volcanic conduits

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Spieler, O.; Ichihara, M.; Dingwell, D. B.; Scarlato, P.

    2006-03-01

    To visualize the behavior of erupting magma in volcanic conduits, we performed shock tube experiments on the ductile-brittle response of a viscoelastic medium to diffusion-driven bubble expansion. A sample of shear-thinning magma analogue is saturated by gas Ar under high pressure. On rapid decompression, Ar supersaturation causes bubbles to nucleate, grow, and coalesce in the sample, forcing it to expand, flow, and fracture. Experimental variables include saturation pressure and duration, and shape and lubrication of the flow path. Bubble growth in the experiments controls both flow and fracturing, and is consistent with physical models of magma vesiculation. Two types of fractures are observed: i) sharp fractures along the uppermost rim of the sample, and ii) fractures pervasively diffused throughout the sample. Rim fractures open when shear stress accumulates and strain rate is highest at the margin of the flow (a process already inferred from observations and models to occur in magma). Pervasive fractures originate when wall-friction retards expansion of the sample, causing pressure to build-up in the bubbles. When bubble pressure overcomes wall-friction and the tensile strength of the porous sample, fractures open with a range of morphologies. Both types of fracture open normally to flow direction, and both may heal as the flow proceeds. These experiments also illustrate how the development of pervasive fractures allows exsolving gas to escape from the sample before the generation of a permeable network via other processes, e.g., bubble coalescence. This is an observation that potentially impact the degassing of magma and the transition between explosive and effusive eruptions.

  17. Development of tearing instability in a current sheet forming by sheared incompressible flow

    NASA Astrophysics Data System (ADS)

    Tolman, Elizabeth A.; Loureiro, Nuno F.; Uzdensky, Dmitri A.

    2018-02-01

    Sweet-Parker current sheets in high Lundquist number plasmas are unstable to tearing, suggesting they will not form in physical systems. Understanding magnetic reconnection thus requires study of the stability of a current sheet as it forms. Formation can occur due to sheared, sub-Alfvénic incompressible flows which narrow the sheet. Standard tearing theory (Furth et al. Phys. Fluids, vol. 6 (4), 1963, pp. 459-484, Rutherford, Phys. Fluids, vol. 16 (11), 1973, pp. 1903-1908, Coppi et al. Fizika Plazmy, vol. 2, 1976, pp. 961-966) is not immediately applicable to such forming sheets for two reasons: first, because the flow introduces terms not present in the standard calculation; second, because the changing equilibrium introduces time dependence to terms which are constant in the standard calculation, complicating the formulation of an eigenvalue problem. This paper adapts standard tearing mode analysis to confront these challenges. In an initial phase when any perturbations are primarily governed by ideal magnetohydrodynamics, a coordinate transformation reveals that the flow compresses and stretches perturbations. A multiple scale formulation describes how linear tearing mode theory (Furth et al. Phys. Fluids, vol. 6 (4), 1963, pp. 459-484, Coppi et al. Fizika Plazmy, vol. 2, 1976, pp. 961-966) can be applied to an equilibrium changing under flow, showing that the flow affects the separable exponential growth only implicitly, by making the standard scalings time dependent. In the nonlinear Rutherford stage, the coordinate transformation shows that standard theory can be adapted by adding to the stationary rates time dependence and an additional term due to the strengthening equilibrium magnetic field. Overall, this understanding supports the use of flow-free scalings with slight modifications to study tearing in a forming sheet.

  18. Direct Numerical Simulation of Low Capillary Number Pore Scale Flows

    NASA Astrophysics Data System (ADS)

    Esmaeilzadeh, S.; Soulaine, C.; Tchelepi, H.

    2017-12-01

    The arrangement of void spaces and the granular structure of a porous medium determines multiple macroscopic properties of the rock such as porosity, capillary pressure, and relative permeability. Therefore, it is important to study the microscopic structure of the reservoir pores and understand the dynamics of fluid displacements through them. One approach for doing this, is direct numerical simulation of pore-scale flow that requires a robust numerical tool for prediction of fluid dynamics and a detailed understanding of the physical processes occurring at the pore-scale. In pore scale flows with a low capillary number, Eulerian multiphase methods are well-known to produce additional vorticity close to the interface. This is mainly due to discretization errors which lead to an imbalance of capillary pressure and surface tension forces that causes unphysical spurious currents. At the pore scale, these spurious currents can become significantly stronger than the average velocity in the phases, and lead to unphysical displacement of the interface. In this work, we first investigate the capability of the algebraic Volume of Fluid (VOF) method in OpenFOAM for low capillary number pore scale flow simulations. Afterward, we compare VOF results with a Coupled Level-Set Volume of Fluid (CLSVOF) method and Iso-Advector method. It has been shown that the former one reduces the VOF's unphysical spurious currents in some cases, and both are known to capture interfaces sharper than VOF. As the conclusion, we will investigate that whether the use of CLSVOF or Iso-Advector will lead to less spurious velocities and more accurate results for capillary driven pore-scale multiphase flows or not. Keywords: Pore-scale multiphase flow, Capillary driven flows, Spurious currents, OpenFOAM

  19. Flow acceleration structure of Aurelia aurita: implications on propulsion

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Tae; Piper, Matthew; Chamorro, Leonardo P.

    2017-11-01

    The jetting and paddling mechanisms used by Aurelia aurita jellyfish allows for one of the most efficient propulsion among other metazoans. Characterization of the induced flow acceleration is critical to uncover distinctive patterns. We found four acceleration structures using 3D measurements of body and flow dynamics in Lagrangian frame of reference. Two intense structures occur near the bell margin and are generated by paddling; the other two around the center of the jellyfish and half magnitude are a result of jetting. Their interaction leads to the maximum flow velocity in the middle of the relaxation, where relatively straight flow trajectories occur. The jellyfish achieves an efficient relaxation by generating flow deceleration with minor body deceleration.

  20. Thermal control of electroosmotic flow in a microchannel through temperature-dependent properties.

    PubMed

    Kwak, Ho Sang; Kim, Hyoungsoo; Hyun, Jae Min; Song, Tae-Ho

    2009-07-01

    A numerical investigation is conducted on the electroosmotic flow and associated heat transfer in a two-dimensional microchannel. The objective of this study is to explore a new conceptual idea that is control of an electroosmotic flow by using a thermal field effect through the temperature-dependent physical properties. Two exemplary problems are examined: a flow in a microchannel with a constant vertical temperature difference between two horizontal walls and a flow in a microchannel with the wall temperatures varying horizontally in a sinusoidal manner. The results of numerical computations showed that a proper control of thermal field may be a viable means to manipulate various non-plug-like flow patterns. A constant vertical temperature difference across the channel produces a shear flow. The horizontally-varying thermal condition results in spatial variation of physical properties to generate fluctuating flow patterns. The temperature variation at the wall with alternating vertical temperature gradient induces a wavy flow.

  1. Insights on Flow Behavior of Foam in Unsaturated Porous Media during Soil Flushing.

    PubMed

    Zhao, Yong S; Su, Yan; Lian, Jing R; Wang, He F; Li, Lu L; Qin, Chuan Y

    2016-11-01

      One-dimensional column and two-dimensional tank experiments were carried out to determine (1) the physics of foam flow and propagation of foaming gas, foaming liquid, and foam; (2) the pressure distribution along foam flow and the effect of media permeability, foam flow rate and foam quality on foam injection pressure; and (3) the migration and distribution property of foam flow in homogeneous and heterogeneous sediments. The results demonstrated that: (1) gas and liquid front were formed ahead of the foam flow front, the transport speed order is foaming gas > foaming liquid > foam flowing; (2) injection pressure mainly comes from the resistance to bubble migration. Effect of media permeability on foam injection pressure mainly depends on the physics and behavior of foam flow; (3) foam has a stronger capacity of lateral spreading, besides, foam flow was uniformly distributed across the foam-occupied region, regardless of the heterogeneity of porous media.

  2. High-speed holocinematographic velocimeter for studying turbulent flow control physics

    NASA Technical Reports Server (NTRS)

    Weinstein, L. M.; Beeler, G. B.; Lindemann, A. M.

    1985-01-01

    Use of a dual view, high speed, holographic movie technique is examined for studying turbulent flow control physics. This approach, which eliminates some of the limitations of previous holographic techniques, is termed a holocinematographic velocimeter (HCV). The data from this system can be used to check theoretical turbulence modeling and numerical simulations, visualize and measure coherent structures in 'non-simple' turbulent flows, and examine the mechanisms operative in various turbulent control/drag reduction concepts. This system shows promise for giving the most complete experimental characterization of turbulent flows yet available.

  3. Direct Numerical Simulations of Transitional/Turbulent Wakes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2011-01-01

    The interest in transitional/turbulent wakes spans the spectrum from an intellectual pursuit to understand the complex underlying physics to a critical need in aeronautical engineering and other disciplines to predict component/system performance and reliability. Cylinder wakes have been studied extensively over several decades to gain a better understanding of the basic flow phenomena that are encountered in such flows. Experimental, computational and theoretical means have been employed in this effort. While much has been accomplished there are many important issues that need to be resolved. The physics of the very near wake of the cylinder (less than three diameters downstream) is perhaps the most challenging of them all. This region comprises the two detached shear layers, the recirculation region and wake flow. The interaction amongst these three components is to some extent still a matter of conjecture. Experimental techniques have generated a large percentage of the data that have provided us with the current state of understanding of the subject. More recently computational techniques have been used to simulate cylinder wakes, and the data from such simulations are being used to both refine our understanding of such flows as well as provide new insights. A few large eddy and direct numerical simulations (LES and DNS) of cylinder wakes have appeared in the literature in the recent past. These investigations focus on the low Reynolds number range where the cylinder boundary layer is laminar (sub-critical range). However, from an engineering point of view, there is considerable interest in the situation where the upper and/or lower boundary layer of an airfoil is turbulent, and these turbulent boundary layers separate from the airfoil to contribute to the formation of the wake downstream. In the case of cylinders, this only occurs at relatively large unit Reynolds numbers. However, in the case of airfoils, the boundary layer has the opportunity to transition to turbulence on the airfoil surface at a relatively lower unit Reynolds number because the characteristic length of the airfoil is typically one to two orders of magnitude larger than the trailing edge diameter. This transition to turbulence would occur unless there is a strong favorable pressure gradient that results in the boundary layer remaining laminar or transitional over the surface of the airfoil. This presentation will focus on two direct numerical simulations that have been performed at NASA ARC. The first is of a cylinder wake with laminar separating boundary layers. The second is the wake of a flat plate with a circular trailing edge. The upper and lower plate surface boundary layers are both turbulent and statistically identical. Thus the computed wake is symmetric in a statistical sense. This flow is more representative of airfoil wakes than cylinder wakes. Results from the two simulations including flow visualization and turbulence statistics in the near wake will be presented at the seminar.

  4. An analysis of 5-day midtropospheric flow patterns for the South Pole: 1985-1989

    NASA Astrophysics Data System (ADS)

    Harris, Joyce M.

    1992-09-01

    An analysis of 5-day midtropospheric flow patterns for the South Pole during 1985-1989 is presented. Cluster analysis was used to summarize trajectories by year and by month. The results indicate that flow from the east was most often anticyclonic and light, occurring 8-18% of the time. Westerly flow patterns were the strongest and most frequent (37-51% occurrence). They were consistently cyclonic, usually reflecting storms in the Ross Sea area, the average center of the circumpolar vortex. Strong northerly flow occurred more often in 1987 than in other years. Year-to-year variability was also evident in southwesterly flow, which was enhanced in 1988, and weaker in 1987, compared with other years. The lightest winds over the South Pole occur during January, while the most vigorous long-range transport to South Pole occurs from July through October. Selected isentropic trajectories were examined to determine errors inherent in the isobaric estimates. Isentropic trajectories from the east showed little vertical motion and good agreement with isobaric ones. Over west Antarctica, however, isentropic trajectories consistently showed positive vertical motion. As a result, their isobaric counterparts were too long and overestimated the cyclonic curvature in the flow. Preferred transport from the west with warm-air advection results from the circumpolar vortex being asymmetrical, and the average isotherms, though roughly circular, being offset to the east of the South Pole.

  5. Modeling four occurred debris flow events in the Dolomites area (North-Eastern Italian Alps)

    NASA Astrophysics Data System (ADS)

    Boreggio, Mauro; Gregoretti, Carlo; Degetto, Massimo; Bernard, Martino

    2016-04-01

    Four occurred debris flows in the Dolomites area (North-Eastern Italian Alps) are modeled by back-analysis. The four debris flows events are those occurred at Rio Lazer (Trento) on the 4th of November 1966, at Fiames (Belluno) on the 5th of July 2006, at Rovina di Cancia (Belluno) on the 18th of July 2009 and at Rio Val Molinara (Trento) on the 15th of August 2010. In all the events, runoff entrained sediments present on natural channels and formed a solid-liquid wave that routed downstream. The first event concerns the routing of debris flow on an inhabited fan. The second event the deviation of debris flow from the usual path due to an obstruction with the excavation of a channel in the scree and the downstream spreading in a wood. The third event concerns the routing of debris flow in a channel with an ending the reservoir, its overtopping and final spreading in the inhabited area. The fourth event concerns the routing of debris flow along the main channel downstream the initiation area until spreading just upstream a village. All the four occurred debris flows are simulated by modeling runoff that entrained debris flow for determining the solid-liquid hydrograph. The routing of the solid-liquid hydrograph is simulated by a bi-phase cell model based on the kinematic approach. The comparison between simulated and measured erosion and deposition depths is satisfactory. Nearly the same parameters for computing erosion and deposition were used for all the four occurred events. The maps of erosion and deposition depths are obtained by comparing the results of post-event surveys with the pre-event DEM. The post-event surveys were conducted by using different instruments (LiDAR and GPS) or the combination photos-single points depth measurements (in this last case it is possible obtaining the deposition/erosion depths by means of stereoscopy techniques).

  6. Three occurred debris flows in North-Eastern Italian Alps: documentation and modeling

    NASA Astrophysics Data System (ADS)

    Boreggio, Mauro; Gregoretti, Carlo; Degetto, Massimo; Bernard, Martino

    2015-04-01

    Three occurred events of debris flows are documented and modeled by back-analysis. The three debris flows events are those occurred at Rio Lazer on the 4th of November 1966, at Fiames on the 5th of July 2006 and at Rovina di Cancia on the 18th of July 2009. All the three sites are located in the North-Eastern Italian Alps. In all the events, runoff entrained sediments present on natural channels and formed a solid-liquid wave that routed downstream. The first event concerns the routing of debris flow on an inhabited fan. Map of deposition pattern of sediments are built by using post-events photos through stereoscopy techniques. The second event concerns the routing of debris flow along the main channel descending from Pomagagnon Fork. Due to the obstruction of the cross-section debris flow deviated from the original path on the left side and routed downstream by cutting a new channel on the fan. It dispersed in multiple paths when met the wooden area. Map of erosion and deposition depths are built after using a combination of Lidar and GPS data. The third event concerns the routing of debris flow in the Rovina di Cancia channel that filled the reservoir built at the end of the channel and locally overtopped the retaining wall on the left side. A wave of mud and debris inundated the area downstream the overtopping point. Map of erosion and deposition depths are obtained by subtracting two GPS surveys, pre and post event. All the three occurred debris flows are simulated by modeling runoff that entrained debris flow for determining the solid-liquid hydrograph downstream the triggering areas. The routing of the solid-liquid hydrograph was simulated by a bi-phase cell model based on the kinematic approach. The comparison between simulated and measured erosion and deposition depths is satisfactory. The same parameters for computing erosion and deposition were used for the three occurred events.

  7. Estimates of Lava Eruption Rates at Alba Patera, Mars

    NASA Technical Reports Server (NTRS)

    Baloga, S. M.; Pieri, D. C.

    1985-01-01

    The Martian volcanic complex Alba Patera exhibits a suite of well-defined, long and relatively narrow lava flows qualitatively resembling those found in Hawaii. Even without any information on the duration of the Martian flows, eruption rates (total volume discharge/duration of the extrusion) estimates are implied by the physical dimensions of the flows and the likely conjecture that Stephan-Boltzmann radiation is the dominating thermal loss mechanism. The ten flows in this analysis emanate radially from the central vent and were recently measured in length, plan areas, and average thicknesses by shadow measurement techniques. The dimensions of interest are shown. Although perhaps morphologically congruent to certain Hawaiian flows, the dramatically expanded physical dimensions of the Martian flows argues for some markedly distinct differences in lava flow composition for eruption characteristics.

  8. 3-D High-Lift Flow-Physics Experiment - Transition Measurements

    NASA Technical Reports Server (NTRS)

    McGinley, Catherine B.; Jenkins, Luther N.; Watson, Ralph D.; Bertelrud, Arild

    2005-01-01

    An analysis of the flow state on a trapezoidal wing model from the NASA 3-D High Lift Flow Physics Experiment is presented. The objective of the experiment was to characterize the flow over a non-proprietary semi-span three-element high-lift configuration to aid in assessing the state of the art in the computation of three-dimensional high-lift flows. Surface pressures and hot-film sensors are used to determine the flow conditions on the slat, main, and flap. The locations of the attachments lines and the values of the attachment line Reynolds number are estimated based on the model surface pressures. Data from the hot-films are used to determine if the flow is laminar, transitional, or turbulent by examining the hot-film time histories, statistics, and frequency spectra.

  9. Study of shock waves and related phenomena motivated by astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, R. P.; Keiter, P. A.; Kuranz, C. C.

    This study discusses the recent research in High-Energy-Density Physics at our Center. Our work in complex hydrodynamics is now focused on mode coupling in the Richtmyer-Meshkov process and on the supersonic Kelvin-Helmholtz instability. These processes are believed to occur in a wide range of astrophysical circumstances. In radiation hydrodynamics, we are studying radiative reverse shocks relevant to cataclysmic variable stars. Our work on magnetized flows seeks to produce magnetized jets and study their interactions. We build the targets for all these experiments, and simulate them using our CRASH code. We also conduct diagnostic research, focused primarily on imaging x-ray spectroscopymore » and its applications to scattering and fluorescence.« less

  10. Study of shock waves and related phenomena motivated by astrophysics

    DOE PAGES

    Drake, R. P.; Keiter, P. A.; Kuranz, C. C.; ...

    2016-04-01

    This study discusses the recent research in High-Energy-Density Physics at our Center. Our work in complex hydrodynamics is now focused on mode coupling in the Richtmyer-Meshkov process and on the supersonic Kelvin-Helmholtz instability. These processes are believed to occur in a wide range of astrophysical circumstances. In radiation hydrodynamics, we are studying radiative reverse shocks relevant to cataclysmic variable stars. Our work on magnetized flows seeks to produce magnetized jets and study their interactions. We build the targets for all these experiments, and simulate them using our CRASH code. We also conduct diagnostic research, focused primarily on imaging x-ray spectroscopymore » and its applications to scattering and fluorescence.« less

  11. Shot-noise in resistive-diode mixers and the attenuator noise model

    NASA Technical Reports Server (NTRS)

    Kerr, A. R.

    1979-01-01

    The representation of a pumped exponential diode, operating as a mixer, by an equivalent lossy network, is reexamined. It is shown that the model is correct provided the network has ports for all sideband frequencies at which (real) power flow can occur between the diode and its embedding. The temperature of the equivalent network is eta/2 times the physical temperature of the diode. The model is valid only if the series resistance and nonlinear capacitance of the diode are negligible. Expressions are derived for the input and output noise temperature and the noise-temperature ratio of ideal mixers. Some common beliefs concerning noise-figure and noise-temperature ratio are shown to be incorrect.

  12. Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder

    NASA Astrophysics Data System (ADS)

    Kirkil, Gokhan; Constantinescu, George

    2015-07-01

    The turbulent horseshoe vortex (HV) system and the near-wake flow past a circular cylinder mounted on a flat bed in an open channel are investigated based on the results of eddy-resolving simulations and supporting flow visualizations. Of particular interest are the changes in the mean flow and turbulence statistics within the HV region as the necklace vortices wrap around the cylinder's base and the variation of the mean flow and turbulence statistics in the near wake, in between the channel bed and the free surface. While it is well known that the drag crisis induces important changes in the flow past infinitely long circular cylinders, the changes are less understood and more complex for the case of flow past a surface-mounted cylinder. This is because even at very high cylinder Reynolds numbers, ReD, the flow regime remains subcritical in the vicinity of the bed surface due to the reduction of the incoming flow velocity within the bottom boundary layer. The paper provides a detailed discussion of the changes in the flow physics between cylinder Reynolds numbers at which the flow in the upstream part of the separated shear layers (SSLs) is laminar (ReD = 16 000, subcritical flow regime) and Reynolds numbers at which the transition occurs inside the attached boundary layers away from the bed and the flow within the SSLs is turbulent (ReD = 5 ∗ 105, supercritical flow regime). The changes between the two regimes in the dynamics and level of coherence of the large-scale coherent structures (necklace vortices, vortex tubes shed in the SSLs and roller vortices shed in the wake) and their capacity to induce high-magnitude bed friction velocities in the mean and instantaneous flow fields and to amplify the near-bed turbulence are analyzed. Being able to quantitatively and qualitatively describe these changes is critical to understand Reynolds-number-induced scale effects on sediment erosion mechanisms around cylinders mounted on a loose bed, which is a problem of great practical relevance (e.g., for pier scour studies).

  13. Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics

    NASA Technical Reports Server (NTRS)

    LaGraff, John E.; Povinelli, Louis A.; Gostelow, J. Paul; Glauser, Mark

    2010-01-01

    Topics covered include: Flow Physics and control for Internal and External Aerodynamics (not in TOC...starts on pg13); Breaking CFD Bottlenecks in Gas-Turbine Flow-Path Design; Streamwise Vortices on the Convex Surfaces of Circular Cylinders and Turbomachinery Blading; DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines; Cavitation, Flow Structure and Turbulence in the Tip Region of a Rotor Blade; Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows; Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions; Closed-Loop Control of Vortex Formation in Separated Flows; Global Instability on Laminar Separation Bubbles-Revisited; Very Large-Scale Motions in Smooth and Rough Wall Boundary Layers; Instability of a Supersonic Boundary-Layer With Localized Roughness; Active Control of Open Cavities; Amplitude Scaling of Active Separation Control; U.S. Air Force Research Laboratory's Need for Flow Physics and Control With Applications Involving Aero-Optics and Weapon Bay Cavities; Some Issues Related to Integrating Active Flow Control With Flight Control; Active Flow Control Strategies Using Surface Pressure Measurements; Reduction of Unsteady Forcing in a Vaned, Contra-Rotating Transonic Turbine Configuration; Active Flow Control Stator With Coanda Surface; Controlling Separation in Turbomachines; Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets; Reduced Order Modeling Incompressible Flows; Study and Control of Flow Past Disk, and Circular and Rectangular Cylinders Aligned in the Flow; Periodic Forcing of a Turbulent Axisymmetric Wake; Control of Vortex Breakdown in Critical Swirl Regime Using Azimuthal Forcing; External and Turbomachinery Flow Control Working Group; Boundary Layers, Transitions and Separation; Efficiency Considerations in Low Pressure Turbines; Summary of Conference; and Final Plenary Session Transcript.

  14. 2D VARIABLY SATURATED FLOWS: PHYSICAL SCALING AND BAYESIAN ESTIMATION

    EPA Science Inventory

    A novel dimensionless formulation for water flow in two-dimensional variably saturated media is presented. It shows that scaling physical systems requires conservation of the ratio between capillary forces and gravity forces. A direct result of this finding is that for two phys...

  15. Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Guidos, Mike

    2008-01-01

    Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.

  16. On modeling weak sinks in MODPATH

    USGS Publications Warehouse

    Abrams, Daniel B.; Haitjema, Henk; Kauffman, Leon J.

    2012-01-01

    Regional groundwater flow systems often contain both strong sinks and weak sinks. A strong sink extracts water from the entire aquifer depth, while a weak sink lets some water pass underneath or over the actual sink. The numerical groundwater flow model MODFLOW may allow a sink cell to act as a strong or weak sink, hence extracting all water that enters the cell or allowing some of that water to pass. A physical strong sink can be modeled by either a strong sink cell or a weak sink cell, with the latter generally occurring in low resolution models. Likewise, a physical weak sink may also be represented by either type of sink cell. The representation of weak sinks in the particle tracing code MODPATH is more equivocal than in MODFLOW. With the appropriate parameterization of MODPATH, particle traces and their associated travel times to weak sink streams can be modeled with adequate accuracy, even in single layer models. Weak sink well cells, on the other hand, require special measures as proposed in the literature to generate correct particle traces and individual travel times and hence capture zones. We found that the transit time distributions for well water generally do not require special measures provided aquifer properties are locally homogeneous and the well draws water from the entire aquifer depth, an important observation for determining the response of a well to non-point contaminant inputs.

  17. Local and System Level Considerations for Plasma-Based Techniques in Hypersonic Flight

    NASA Astrophysics Data System (ADS)

    Suchomel, Charles; Gaitonde, Datta

    2007-01-01

    The harsh environment encountered due to hypersonic flight, particularly when air-breathing propulsion devices are utilized, poses daunting challenges to successful maturation of suitable technologies. This has spurred the quest for revolutionary solutions, particularly those exploiting the fact that air under these conditions can become electrically conducting either naturally or through artificial enhancement. Optimized development of such concepts must emphasize not only the detailed physics by which the fluid interacts with the imposed electromagnetic fields, but must also simultaneously identify system level issues integration and efficiencies that provide the greatest leverage. This paper presents some recent advances at both levels. At the system level, an analysis is summarized that incorporates the interdependencies occurring between weight, power and flow field performance improvements. Cruise performance comparisons highlight how one drag reduction device interacts with the vehicle to improve range. Quantified parameter interactions allow specification of system requirements and energy consuming technologies that affect overall flight vehicle performance. Results based on on the fundamental physics are presented by distilling numerous computational studies into a few guiding principles. These highlight the complex non-intuitive relationships between the various fluid and electromagnetic fields, together with thermodynamic considerations. Generally, energy extraction is an efficient process, while the reverse is accompanied by significant dissipative heating and inefficiency. Velocity distortions can be detrimental to plasma operation, but can be exploited to tailor flows through innovative electromagnetic configurations.

  18. The dynamic compressive behavior and constitutive modeling of D1 railway wheel steel over a wide range of strain rates and temperatures

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Su, Xingya; Zhao, Longmao

    The dynamic compressive behavior of D1 railway wheel steel at high strain rates was investigated using a split Hopkinson pressure bar (SHPB) apparatus. Three types of specimens, which were derived from the different positions (i.e., the rim, web and hub) of a railway wheel, were tested over a wide range of strain rates from 10-3 s-1 to 2.4 × 103 s-1 and temperatures from 213 K to 973 K. Influences of the strain rate and temperature on flow stress were discussed, and rate- and temperature-dependent constitutive relationships were assessed by the Cowper-Symonds model, Johnson-Cook model and a physically-based model, respectively. The experimental results show that the compressive true stress versus true strain response of D1 wheel steel is strain rate-dependent, and the strain hardening rate during the plastic flow stage decreases with the elevation of strain rate. Besides, the D1 wheel steel displays obvious temperature-dependence, and the third-type strain aging (3rd SA) is occurred at the temperature region of 673-973 K at a strain rate of ∼1500 s-1. Comparisons of experimental results with theoretical predictions indicate that the physically-based model has a better prediction capability for the 3rd SA characteristic of the tested D1 wheel steel.

  19. The monitoring method of water quality in Ciliwung River for post restoration

    NASA Astrophysics Data System (ADS)

    Diyanti; Saleh Pallu, Muh.; Tahir Lopa, Rita; Arsyad Thaha, M.

    2018-04-01

    Ciliwung River is the biggest river which flows across DKI Jakarta, where the river flows through the city, the settlements, and slums in Jakarta. Problems that occur in the Ciliwung River in Jakarta one of which is the quality of water. This research using some datas, there are secondary and primary data like river dimension and visualization of water quality of Ciliwung River. This research using a descriptive method which describes the comparison between a physical and chemical parameter for the durationn of three (3) years post-restoration. The physical parameters used in this reasearch are temperature and TDS, the chemical parameters are pH dan DO. Based on the result of data analyzing, we get the temperature average parameter pre-restoration is 28.30°C and TDS level is 151.96 mg/L, so the logical of standard quality criteria match with class 3. Post-restoration got the temperature 22.06°C and TDS level 224.20mg/L, so that water quality criteria match with class 2. For the chemical parameters the average pH and DO values pre-restoration are 6.84 and 4mg/L, respectively which match with class 2 category. Post-restoration, the chemical parameter about pH level is 7.41 and DO 8.4 mg/L, so the standard quality criteria match with class 1.

  20. Overview Experimental Diagnostics for Rarefied Flows - Selected Topics

    DTIC Science & Technology

    2011-01-01

    flows occurring e.g. in electrical thrusters or plasma wind tunnels. Classical intrusive techniques like Pitot, heat flux, and enthalpy probe as well as...and applied at the IRS, especially designed for the characterisation of flows produced by electrical thrusters and within the plasma wind tunnels for...occurring e.g. in electrical thrusters or plasma wind tunnels. Classical intrusive techniques like Pitot, heat flux, and enthalpy probe as well as mass

  1. Physical and Hydrological Meaning of the Spectral Information from Hydrodynamic Signals at Karst Springs

    NASA Astrophysics Data System (ADS)

    Dufoyer, A.; Lecoq, N.; Massei, N.; Marechal, J. C.

    2017-12-01

    Physics-based modeling of karst systems remains almost impossible without enough accurate information about the inner physical characteristics. Usually, the only available hydrodynamic information is the flow rate at the karst outlet. Numerous works in the past decades have used and proven the usefulness of time-series analysis and spectral techniques applied to spring flow, precipitations or even physico-chemical parameters, for interpreting karst hydrological functioning. However, identifying or interpreting the karst systems physical features that control statistical or spectral characteristics of spring flow variations is still challenging, not to say sometimes controversial. The main objective of this work is to determine how the statistical and spectral characteristics of the hydrodynamic signal at karst springs can be related to inner physical and hydraulic properties. In order to address this issue, we undertake an empirical approach based on the use of both distributed and physics-based models, and on synthetic systems responses. The first step of the research is to conduct a sensitivity analysis of time-series/spectral methods to karst hydraulic and physical properties. For this purpose, forward modeling of flow through several simple, constrained and synthetic cases in response to precipitations is undertaken. It allows us to quantify how the statistical and spectral characteristics of flow at the outlet are sensitive to changes (i) in conduit geometries, and (ii) in hydraulic parameters of the system (matrix/conduit exchange rate, matrix hydraulic conductivity and storativity). The flow differential equations resolved by MARTHE, a computer code developed by the BRGM, allows karst conduits modeling. From signal processing on simulated spring responses, we hope to determine if specific frequencies are always modified, thanks to Fourier series and multi-resolution analysis. We also hope to quantify which parameters are the most variable with auto-correlation analysis: first results seem to show higher variations due to conduit conductivity than the ones due to matrix/conduit exchange rate. Future steps will be using another computer code, based on double-continuum approach and allowing turbulent conduit flow, and modeling a natural system.

  2. Dependence of Substorm Evolution on Solar Wind Condition: Simulation Study

    NASA Astrophysics Data System (ADS)

    Kamiyoshikawa, N.; Ebihara, Y.; Tanaka, T.

    2017-12-01

    A substorm is one of the remarkable disturbances occurring in the magnetosphere. It is known that the substorm occurs frequently when IMF is southward and solar wind speed is high. However, the physical process to determine substorm scale is not well understood. We reproduced substorms by using global MHD simulation, calculated auroral electrojet (ionospheric Hall current) flowing in the ionosphere to investigate the dependence of substorm evolution on solar wind condition. Solar wind speed of 372.4 km/s and IMF Bz of 5.0 nT were imposed to, obtain the quasi-stationary state of the magnetosphere. Then the solar wind parameters were changed as a step function. For the solar wind speed, we assumed 300 km/s, 500 km/s and 700 km/s. For IMF, we assumed -1.0 nT, -3.0 nT, -5.0 nT, -7.0 nT and -9.0 nT. In total, 15 simulation runs were performed. In order to objectively evaluate the substorm, the onset was identified with the method based on the one proposed by Newell et al. (2011). This method uses the SME index that is an extension of the AE index. In this study, the geomagnetic variation induced by the ionospheric Hall current was obtained every 1 degree from the magnetic latitude 40 degrees to 80 degrees and in every 0.5 hours in the magnetic region direction. The upper and the lower envelopes of the geomagnetic variation are regarded as SMU index and SML index, respectively. The larger the solar wind speed, the larger the southward IMF, the more the onset tends to be faster. This tendency is consistent with the onset occurrence probability indicated by Newell et al. (2016). Moreover, the minimum value of the SML index within 30 minutes from the beginning of the onset tends to decrease with the solar wind speed and the magnitude of the southward IMF. A rapid decrease of the SML index can be explained by a rapid increase in the field-aligned currents flowing in and out of the nightside ionosphere. This means that electromagnetic energies flowing into the ionosphere increase abruptly. To the analogy with electric circuit, dynamo is necessary in the magnetosphere to supply electromagnetic energy to the ionosphere as a load. We will discuss the physical process that may determine the intensity of the electrojet as seen by the SML index in terms of energy flow from the solar wind to the ionosphere and the convection by analyzing the global MHD simulation.

  3. Physical Monitoring of Flow Into and Within Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Kenney, T. A.; Naftz, D. L.; Perschon, W. C.

    2006-12-01

    Great Salt Lake (GSL) is the hydrologic terminus for the eastern part of the Great Basin. As the largest inland waterbody in the Western United States, GSL plays a critical ecologic role for many migratory bird species. In terms of harvest quantity and quality, the brine shrimp (Artemia) fishery of GSL is among the strongest in the world. The characteristic of GSL as a hydrologic sink amplifies anthropogenic activities throughout the basin, most specifically activities that occur along its eastern and southern shores, the urban corridor of the Wasatch Front. In 1959 GSL was divided into north and south parts by a rock-fill railroad causeway. Since then, an extreme density gradient between the north and south part exists as a result of limited conveyance of water from the south part where more than 95 percent of the total freshwater input occurs (Loving, and others, 2000). To date, little is known about the loading and cycling of various chemical constituents associated with human activities including nutrients, selenium, and mercury. Hydroacoustic technology, specifically acoustic Doppler technology, is currently being used to obtain a better physical understanding of GSL. Since 1999, stratified bi-directional discharge has been measured at the causeway breach with an acoustic Doppler current profiler. From these measurements, net flow components to the north and south have been used to assess the movement of water and salt through the causeway. Low hydraulic gradients and variable backwater conditions at the two largest inflows to GSL required the deployment of in-situ acoustic Doppler velocity meters to accurately compute continuous discharge, critical for constituent loading analyses. These discharge records, computed using the index velocity method, show sensitivity to large wind events that can lead to a complete reversal of flow. Velocity profiles acquired during two multi-day water-quality synoptic sampling runs with acoustic Doppler current profilers have identified surface currents related to both freshwater inflow and wind throughout main body GSL. Velocity profiles have also determined the flow direction and magnitude of a persistent anoxic layer at depth in the south part of GSL. Movement of this layer between the two main basins of the south along a topographically high divide has also been documented (5 to 31 centimeters per second). References Cited Loving, B.L., Waddell, K.M., and Miller, C.W., 2000, Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway, 1987-98, U.S. Geological Survey Water-Resources Investigations Report 00-4221, 31 p.

  4. A natural example of fluid-mediated brittle-ductile cyclicity in quartz veins from Olkiluoto Island, SW Finland

    NASA Astrophysics Data System (ADS)

    Marchesini, Barbara; Garofalo, Paolo S.; Viola, Giulio; Mattila, Jussi; Menegon, Luca

    2017-04-01

    Brittle faults are well known as preferential conduits for localised fluid flow in crystalline rocks. Their study can thus reveal fundamental details of the physical-chemical properties of the flowing fluid phase and of the mutual feedbacks between mechanical properties of faults and fluids. Crustal deformation at the brittle-ductile transition may occur by a combination of competing brittle fracturing and viscous flow processes, with short-lived variations in fluid pressure as a viable mechanism to produce this cyclicity switch. Therefore, a detailed study of the fluid phases potentially present in faults can help to better constrain the dynamic evolution of crustal strength within the seismogenic zone, as a function of varying fluid phase characteristics. With the aim to 1) better understand the complexity of brittle-ductile cyclicity under upper to mid-crustal conditions and 2) define the physical and chemical features of the involved fluid phase, we present the preliminary results of a recently launched (micro)structural and geochemical project. We study deformed quartz veins associated with brittle-ductile deformation zones on Olkiluoto Island, chosen as the site for the Finnish deep repository for spent nuclear fuel excavated in the Paleoproterozoic crust of southwestern Finland. The presented results stem from the study of brittle fault zone BFZ300, which is a mixed brittle and ductile deformation zone characterized by complex kinematics and associated with multiple generations of quartz veins, and which serves as a pertinent example of the mechanisms of fluid flow-deformation feedbacks during brittle-ductile cyclicity in nature. A kinematic and dynamic mesostructural study is being integrated with the detailed analysis of petrographic thin sections from the fault core and its immediate surroundings with the aim to reconstruct the mechanical deformation history along the entire deformation zone. Based on the observed microstructures, it was possible to recognize three distinct episodes of ductile deformation alternating with at least three brittle episodes. Preliminary fluid inclusion data show that, during crystallization and brittle-viscous deformation, quartz crystals hosted homogeneous and heterogeneous (boiling) aqueous fluids with a large salinity (11.7-0 wt% NaCleq) and Thtot (410-200 °C) range. Boiling occurred at 200-260 °C. Variations of fluid temperature and density (hence, viscosity) may thus have induced localized cyclic switches between brittle and ductile deformation in quartz, with implications on the bulk regional crustal strength. Preliminary EBSD analysis also supports the hypothesis of cyclic switches between brittle and viscous deformation.

  5. Wave propagation reversal for wavy vortices in wide-gap counter-rotating cylindrical Couette flow.

    PubMed

    Altmeyer, S; Lueptow, Richard M

    2017-05-01

    We present a numerical study of wavy supercritical cylindrical Couette flow between counter-rotating cylinders in which the wavy pattern propagates either prograde with the inner cylinder or retrograde opposite the rotation of the inner cylinder. The wave propagation reversals from prograde to retrograde and vice versa occur at distinct values of the inner cylinder Reynolds number when the associated frequency of the wavy instability vanishes. The reversal occurs for both twofold and threefold symmetric wavy vortices. Moreover, the wave propagation reversal only occurs for sufficiently strong counter-rotation. The flow pattern reversal appears to be intrinsic in the system as either periodic boundary conditions or fixed end wall boundary conditions for different system sizes always result in the wave propagation reversal. We present a detailed bifurcation sequence and parameter space diagram with respect to retrograde behavior of wavy flows. The retrograde propagation of the instability occurs when the inner Reynolds number is about two times the outer Reynolds number. The mechanism for the retrograde propagation is associated with the inviscidly unstable region near the inner cylinder and the direction of the global average azimuthal velocity. Flow dynamics, spatio-temporal behavior, global mean angular velocity, and torque of the flow with the wavy pattern are explored.

  6. Co-registered Geochemistry and Metatranscriptomics Reveal Unexpected Distributions of Microbial Activity within a Hydrothermal Vent Field

    PubMed Central

    Olins, Heather C.; Rogers, Daniel R.; Preston, Christina; Ussler, William; Pargett, Douglas; Jensen, Scott; Roman, Brent; Birch, James M.; Scholin, Christopher A.; Haroon, M. Fauzi; Girguis, Peter R.

    2017-01-01

    Despite years of research into microbial activity at diffuse flow hydrothermal vents, the extent of microbial niche diversity in these settings is not known. To better understand the relationship between microbial activity and the associated physical and geochemical conditions, we obtained co-registered metatranscriptomic and geochemical data from a variety of different fluid regimes within the ASHES vent field on the Juan de Fuca Ridge. Microbial activity in the majority of the cool and warm fluids sampled was dominated by a population of Gammaproteobacteria (likely sulfur oxidizers) that appear to thrive in a variety of chemically distinct fluids. Only the warmest, most hydrothermally-influenced flows were dominated by active populations of canonically vent-endemic Epsilonproteobacteria. These data suggest that the Gammaproteobacteria collected during this study may be generalists, capable of thriving over a broader range of geochemical conditions than the Epsilonproteobacteria. Notably, the apparent metabolic activity of the Gammaproteobacteria—particularly carbon fixation—in the seawater found between discrete fluid flows (the intra-field water) suggests that this area within the Axial caldera is a highly productive, and previously overlooked, habitat. By extension, our findings suggest that analogous, diffuse flow fields may be similarly productive and thus constitute a very important and underappreciated aspect of deep-sea biogeochemical cycling that is occurring at the global scale. PMID:28659879

  7. ­Understanding Information Flow Interaction along Separable Causal Paths in Environmental Signals

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Kumar, P.

    2017-12-01

    Multivariate environmental signals reflect the outcome of complex inter-dependencies, such as those in ecohydrologic systems. Transfer entropy and information partitioning approaches have been used to characterize such dependencies. However, these approaches capture net information flow occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within an interested subsystem through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [2015] to develop a framework for quantifying information decomposition along separable causal paths. Momentary information transfer along causal paths captures the amount of information flow between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique and redundant information flow through separable causal paths. Multivariate analysis using this novel approach reveals precise understanding of causality and feedback. We illustrate our approach with synthetic and observed time series data. We believe the proposed framework helps better delineate the internal structure of complex systems in geoscience where huge amounts of observational datasets exist, and it will also help the modeling community by providing a new way to look at the complexity of real and modeled systems. Runge, Jakob. "Quantifying information transfer and mediation along causal pathways in complex systems." Physical Review E 92.6 (2015): 062829.

  8. Development of a High-Order Space-Time Matrix-Free Adjoint Solver

    NASA Technical Reports Server (NTRS)

    Ceze, Marco A.; Diosady, Laslo T.; Murman, Scott M.

    2016-01-01

    The growth in computational power and algorithm development in the past few decades has granted the science and engineering community the ability to simulate flows over complex geometries, thus making Computational Fluid Dynamics (CFD) tools indispensable in analysis and design. Currently, one of the pacing items limiting the utility of CFD for general problems is the prediction of unsteady turbulent ows.1{3 Reynolds-averaged Navier-Stokes (RANS) methods, which predict a time-invariant mean flowfield, struggle to provide consistent predictions when encountering even mild separation, such as the side-of-body separation at a wing-body junction. NASA's Transformative Tools and Technologies project is developing both numerical methods and physical modeling approaches to improve the prediction of separated flows. A major focus of this e ort is efficient methods for resolving the unsteady fluctuations occurring in these flows to provide valuable engineering data of the time-accurate flow field for buffet analysis, vortex shedding, etc. This approach encompasses unsteady RANS (URANS), large-eddy simulations (LES), and hybrid LES-RANS approaches such as Detached Eddy Simulations (DES). These unsteady approaches are inherently more expensive than traditional engineering RANS approaches, hence every e ort to mitigate this cost must be leveraged. Arguably, the most cost-effective approach to improve the efficiency of unsteady methods is the optimal placement of the spatial and temporal degrees of freedom (DOF) using solution-adaptive methods.

  9. Inferring shallow groundwater flow in saprolite and fractured rock using environmental tracers

    USGS Publications Warehouse

    Cook, P.G.; Solomon, D.K.; Sanford, W.E.; Busenberg, E.; Plummer, Niel; Poreda, R.J.

    1996-01-01

    The Ridge and Valley Province of eastern Tennessee is characterized by (1) substantial topographic relief, (2) folded and highly fractured rocks of various lithologies that have low primary permeability and porosity, and (3) a shallow residuum of medium permeability and high total porosity. Conceptual models of shallow groundwater flow and solute transport in this system have been developed but are difficult to evaluate using physical characterization or short‐term tracer methods due to extreme spatial variability in hydraulic properties. In this paper we describe how chlorofluorocarbon 12, 3H, and 3He were used to infer groundwater flow and solute transport in saprolite and fractured rock near Oak Ridge, Tennessee. In the shallow residuum, fracture spacings are <0.05 m, suggesting that concentrations of these tracers in fractures and in the matrix have time to diffusionally equilibrate. The relatively smooth nature of tracer concentrations with depth in the residuum is consistent with this model and quantitatively suggests recharge fluxes of 0.2 to 0.4 m yr−1. In contrast, groundwater flow within the unweathered rock appears to be controlled by fractures with spacings of the order of 2 to 5 m, and diffusional equilibration of fractures and matrix has not occurred. For this reason, vertical fluid fluxes in the unweathered rock cannot be estimated from the tracer data.

  10. Temperature-driven groundwater convection in cold climates

    NASA Astrophysics Data System (ADS)

    Engström, Maria; Nordell, Bo

    2016-08-01

    The aim was to study density-driven groundwater flow and analyse groundwater mixing because of seasonal changes in groundwater temperature. Here, density-driven convection in groundwater was studied by numerical simulations in a subarctic climate, i.e. where the water temperature was <4 °C. The effects of soil permeability and groundwater temperature (i.e. viscosity and density) were determined. The influence of impermeable obstacles in otherwise homogeneous ground was also studied. An initial disturbance in the form of a horizontal groundwater flow was necessary to start the convection. Transient solutions describe the development of convective cells in the groundwater and it took 22 days before fully developed convection patterns were formed. The thermal convection reached a maximum depth of 1.0 m in soil of low permeability (2.71 · 10-9 m2). At groundwater temperature close to its density maximum (4 °C), the physical size (in m) of the convection cells was reduced. Small stones or frost lenses in the ground slightly affect the convective flow, while larger obstacles change the size and shape of the convection cells. Performed simulations show that "seasonal groundwater turnover" occurs. This knowledge may be useful in the prevention of nutrient leakage to underlying groundwater from soils, especially in agricultural areas where no natural vertical groundwater flow is evident. An application in northern Sweden is discussed.

  11. Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation.

    PubMed

    Fogelson, Aaron L; Tania, Nessy

    2005-01-01

    A mathematical model of intravascular coagulation is presented; it encompasses the biochemistry of the tissue factor pathway, platelet activation and deposition on the subendothelium, and flow- and diffusion-mediated transport of coagulation proteins and platelets. Simulation experiments carried out with the model indicate the predominant role played by the physical processes of platelet deposition and flow-mediated removal of enzymes in inhibiting coagulation in the vicinity of vascular injury. Sufficiently rapid production of factors IXa and Xa by the TF:VIIa complex can overcome this inhibition and lead to formation of significant amounts of the tenase complex on the surface of activated platelets and, as a consequence, to substantial thrombin production. Chemical inhibitors are seen to play almost no (TFPI) or little (AT-III and APC) role in determining whether substantial thrombin production will occur. The role of APC is limited by the necessity for diffusion of thrombin from the site of injury to nearby endothelial cells to form the thrombomodulin-thrombin complex and for diffusion in the reverse direction of the APC made by this complex. TFPI plays an insignificant part in inhibiting the TF:VIIa complex under the conditions studied whether its action involves sequential binding of TFPI to Xa and then TFPI:Xa to TF:VIIa, or direct binding of TFPI to Xa already bound to the TF:VIIa complex. Copyright 2005 S. Karger AG, Basel.

  12. Multiscale modeling of interfacial flow in particle-solidification front dynamics

    NASA Astrophysics Data System (ADS)

    Garvin, Justin

    2005-11-01

    Particle-solidification front interactions are important in many applications, such as metal-matrix composite manufacture, frost heaving in soils and cryopreservation. The typical length scale of the particles and the solidification fronts are of the order of microns. However, the force of interaction between the particle and the front typically arises when the gap between them is of the order of tens of nanometers. Thus, a multiscale approach is necessary to analyze particle-front interactions. Solving the Navier-Stokes equations to simulate the dynamics by including the nano-scale gap between the particle and the front would be impossible. Therefore, the microscale dynamics is solved using a level-set based Eulerian technique, while an embedded model is developed for solution in the nano-scale (but continuum) gap region. The embedded model takes the form of a lubrication equation with disjoining pressure acting as a body force and is coupled to the outer solution. A particle is pushed by the front when the disjoining pressure is balanced by the viscous drag. The results obtained show that this balance can only occur when the thermal conductivity ratio of the particle to the melt is less than 1.0. The velocity of the front at which the particle pushing/engulfment transition occurs is predicted. In addition, this novel method allows for an in-depth analysis of the flow physics that cause particle pushing/engulfment.

  13. Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes

    NASA Astrophysics Data System (ADS)

    Zhu, Yajun; Zhong, Chengwen; Xu, Kun

    2016-06-01

    This paper presents an implicit unified gas-kinetic scheme (UGKS) for non-equilibrium steady state flow computation. The UGKS is a direct modeling method for flow simulation in all regimes with the updates of both macroscopic flow variables and microscopic gas distribution function. By solving the macroscopic equations implicitly, a predicted equilibrium state can be obtained first through iterations. With the newly predicted equilibrium state, the evolution equation of the gas distribution function and the corresponding collision term can be discretized in a fully implicit way for fast convergence through iterations as well. The lower-upper symmetric Gauss-Seidel (LU-SGS) factorization method is implemented to solve both macroscopic and microscopic equations, which improves the efficiency of the scheme. Since the UGKS is a direct modeling method and its physical solution depends on the mesh resolution and the local time step, a physical time step needs to be fixed before using an implicit iterative technique with a pseudo-time marching step. Therefore, the physical time step in the current implicit scheme is determined by the same way as that in the explicit UGKS for capturing the physical solution in all flow regimes, but the convergence to a steady state speeds up through the adoption of a numerical time step with large CFL number. Many numerical test cases in different flow regimes from low speed to hypersonic ones, such as the Couette flow, cavity flow, and the flow passing over a cylinder, are computed to validate the current implicit method. The overall efficiency of the implicit UGKS can be improved by one or two orders of magnitude in comparison with the explicit one.

  14. Relationship between parietal blood flow studies in the left colon and the rectum in dogs. Colonic pressure and blood flow.

    PubMed

    Arhan, P; Bouchoucha, M; Martelli, H; Rimbert, J N; Berdeaux, A; Gallix, P; Héro, M; Barritault, L; Pellerin, D; Devroede, G

    1988-01-01

    An animal model was proposed to clarify the difference in occurrence of enterocolitis in congenital aganglionosis. When gaseous distention of the colon was localized to the rectosigmoid area, enterocolitis never occurred. On the contrary, when it involved the left colon, enterocolitis occurred in 13 of 15 patients. Intestinal blood flow rates were simultaneously measured in the left colon and rectum of six dogs by using labeled microspheres and expressed in function of the intraluminal pressure. Results show that for elevated values of intraluminal pressure, blood flow was significantly lower in the left colon than in the rectum. These results may explain why ischemia and necrosis occurred more frequently in the left colon than in the rectum.

  15. Groundwater flow cycling between a submarine spring and an inland fresh water spring

    USGS Publications Warehouse

    Davis, J. Hal; Verdi, Richard

    2014-01-01

    Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half.

  16. A Data-Driven Approach to Develop Physically Sound Predictors: Application to Depth-Averaged Velocities and Drag Coefficients on Vegetated Flows

    NASA Astrophysics Data System (ADS)

    Tinoco, R. O.; Goldstein, E. B.; Coco, G.

    2016-12-01

    We use a machine learning approach to seek accurate, physically sound predictors, to estimate two relevant flow parameters for open-channel vegetated flows: mean velocities and drag coefficients. A genetic programming algorithm is used to find a robust relationship between properties of the vegetation and flow parameters. We use data published from several laboratory experiments covering a broad range of conditions to obtain: a) in the case of mean flow, an equation that matches the accuracy of other predictors from recent literature while showing a less complex structure, and b) for drag coefficients, a predictor that relies on both single element and array parameters. We investigate different criteria for dataset size and data selection to evaluate their impact on the resulting predictor, as well as simple strategies to obtain only dimensionally consistent equations, and avoid the need for dimensional coefficients. The results show that a proper methodology can deliver physically sound models representative of the processes involved, such that genetic programming and machine learning techniques can be used as powerful tools to study complicated phenomena and develop not only purely empirical, but "hybrid" models, coupling results from machine learning methodologies into physics-based models.

  17. Mud Flow Characteristics Occurred in Izuoshima Island, 2013

    NASA Astrophysics Data System (ADS)

    Takebayashi, H.; Egashira, S.; Fujita, M.

    2015-12-01

    Landslides and mud flows were occurred in the west part of the Izuoshima Island, Japan on 16 October 2013. The Izuoshima Island is a volcanic island and the land surface is covered by the volcanic ash sediment in 1m depth. Hence, the mud flow with high sediment concentration was formed. The laminar layer is formed in the debris flow from the bed to the fluid surface. On the other hand, the laminar flow is restricted near the bed in the mud flow and the turbulence flow is formed on the laminar flow layer. As a result, the equilibrium slope of the mud flow becomes smaller comparing to the debris flow. In this study, the numerical analysis mud flow model considering the effect of turbulence flow on the equilibrium slope of the mud flow is developed. Subsequently, the model is applied to the mud flow occurred in the Izuoshima Island and discussed the applicability of the model and the flow characteristics of the mud flow. The differences of the horizontal flow areas between the simulated results and the field data are compared and it was found that the outline of the horizontal shape of the flow areas is reproduced well. Furthermore, the horizontal distribution of the erosion and deposition area is reproduced by the numerical analysis well except for the residential area (Kandachi area). Kandachi area is judged as the erosion area by the field observation, but the sediment was deposited in the numerical analysis. It is considered that the 1.5hour heavy rain over 100mm/h after the mud flow makes the discrepancy. The difference of the horizontal distribution of the maximum flow surface elevation between the simulated results and the field data are compared and it was found that the simulated flow depth is overestimated slightly, because of the wider erosion area due to the coarse resolution elevation data. The averaged velocity and the depth of the mud flow was enough large to collapse the houses.

  18. Portal hemodynamic responses after oral intake of glucose in patients with cirrhosis.

    PubMed

    Tsunoda, T; Ohnishi, K; Tanaka, H

    1988-04-01

    Changes of portal, superior mesenteric, and splenic venous flows, and portohepatic gradient (portal vein pressure minus free hepatic vein pressure) after a meal were studied in patients with cirrhosis using the duplex ultrasonic Doppler flowmeter, and portal and hepatic vein catheterizations after ingestion of 227 ml of 33% glucose solution (300 kcal). As a control, changes of portal venous flow and portohepatic gradient after drinking 227 ml of water, were studied. Portal and superior mesenteric venous flows increased significantly at 30 min after glucose intake, and they returned gradually to the basal values, whereas no significant postprandial change occurred in splenic venous flow. The sum of superior mesenteric and splenic venous flows was greater than the estimated portal venous flow before glucose intake, and the difference widened during post-prandial mesenteric hyperemia, indicating an increase of blood flow into the portal-systemic shunts. After glucose intake, portohepatic gradient elevated immediately, in parallel with an increase of portal venous flow, and these changes persisted for the 30 min studied; however, no significant change occurred in these parameters after drinking water. 1) In patients with cirrhosis, hyperemia occurs in the intestine but not in the spleen after glucose intake, and 2) postprandial mesenteric hyperemia causes an increase of portal venous inflow, portal-systemic collateral flow, portal venous flow, and an elevation of portohepatic gradient.

  19. Numerical Simulation of Complex Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Chernobrovkin, A. A.; Lakshiminarayana, B.

    1999-01-01

    An unsteady, multiblock, Reynolds Averaged Navier Stokes solver based on Runge-Kutta scheme and Pseudo-time step for turbo-machinery applications was developed. The code was validated and assessed against analytical and experimental data. It was used to study a variety of physical mechanisms of unsteady, three-dimensional, turbulent, transitional, and cooling flows in compressors and turbines. Flow over a cylinder has been used to study effects of numerical aspects on accuracy of prediction of wake decay and transition, and to modify K-epsilon models. The following simulations have been performed: (a) Unsteady flow in a compressor cascade: Three low Reynolds number turbulence models have been assessed and data compared with Euler/boundary layer predictions. Major flow features associated with wake induced transition were predicted and studied; (b) Nozzle wake-rotor interaction in a turbine: Results compared to LDV data in design and off-design conditions, and cause and effect of unsteady flow in turbine rotors were analyzed; (c) Flow in the low-pressure turbine: Assessed capability of the code to predict transitional, attached and separated flows at a wide range of low Reynolds numbers and inlet freestream turbulence intensity. Several turbulence and transition models have been employed and comparisons made to experiments; (d) leading edge film cooling at compound angle: Comparisons were made with experiments, and the flow physics of the associated vortical structures were studied; and (e) Tip leakage flow in a turbine. The physics of the secondary flow in a rotor was studied and sources of loss identified.

  20. Microscale electrokinetic transport and stability

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Hua

    Electrokinetics is a leading mechanism for transport and separation of biochemical samples in microdevices due to its favorable scaling at small scales. However, electrokinetic systems can become highly unstable, and this instability adversely affects key processes such as sample stacking and electrophoretic separation. This dissertation deals with two major topics: a novel planar micropump exploiting the favorable scaling of electroosmosis at the microscale, and a fundamental study of electrokinetic flow instabilities induced by electrical conductivity gradients. Electroosmotic micropumps use field-induced ion drag to drive liquids and achieve high pressures in a compact design with no moving parts. An analytical model applicable to planar, etched-structure micropumps was developed to guide the geometrical design and working fluid selection. Standard microlithography and wet etching techniques were used to fabricate a pump 1 mm long along the flow direction and 0.9 mum by 38 mm in cross section. The pump produced a maximum pressure of 0.33 atm and a maximum flow rate of 15 mul/min at 1 kV applied potential with deionized water as working fluid. The pump performance agreed well with the theoretical model. Electrokinetic flow instabilities occur under high electric field in the presence of electrical conductivity gradients. In a microfluidic T-junction 11 mum by 155 mum in cross section, aqueous electrolytes of 10:1 conductivity ratio were electrokinetically driven into a common mixing channel. Convectively unstable waves were observed at 0.5 kV/cm, and upstream propagating waves at 1.5 kV/cm. A physical model for this instability has been developed. A linear stability analysis of the governing equations in the thin-layer limit predicts both qualitative trends and quantitative features that agree well with experimental data. Briggs-Bers criteria were applied to select physically unstable modes and determine the nature of instability. Conductivity gradients and bulk charge accumulation are a crucial factor in the instability. The role of electroosmotic flow is mainly as a convecting medium. The instability is governed by two key controlling parameters: the ratio of dynamic to dissipative forces which determines the onset of instability, and the ratio of electroviscous to electroosmotic velocities which governs the convective versus absolute nature of instability.

Top