Sample records for flow pressure-driven flow

  1. Continuous particle separation using pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE).

    PubMed

    Jeon, Hyungkook; Kim, Youngkyu; Lim, Geunbae

    2016-01-28

    In this paper, we introduce pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE), a novel continuous separation method. In our separation system, the external flow and electric field are applied to particles, such that particle movement is affected by pressure-driven flow, electroosmosis, and electrophoresis. We then analyzed the hydrodynamic drag force and electrophoretic force applied to the particles in opposite directions. Based on this analysis, micro- and nano-sized particles were separated according to their electrophoretic mobilities with high separation efficiency. Because the separation can be achieved in a simple T-shaped microchannel, without the use of internal electrodes, it offers the advantages of low-cost, simple device fabrication and bubble-free operation, compared with conventional μ-FFE methods. Therefore, we expect the proposed separation method to have a wide range of filtering/separation applications in biochemical analysis.

  2. Continuous particle separation using pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE)

    PubMed Central

    Jeon, Hyungkook; Kim, Youngkyu; Lim, Geunbae

    2016-01-01

    In this paper, we introduce pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE), a novel continuous separation method. In our separation system, the external flow and electric field are applied to particles, such that particle movement is affected by pressure-driven flow, electroosmosis, and electrophoresis. We then analyzed the hydrodynamic drag force and electrophoretic force applied to the particles in opposite directions. Based on this analysis, micro- and nano-sized particles were separated according to their electrophoretic mobilities with high separation efficiency. Because the separation can be achieved in a simple T-shaped microchannel, without the use of internal electrodes, it offers the advantages of low-cost, simple device fabrication and bubble-free operation, compared with conventional μ-FFE methods. Therefore, we expect the proposed separation method to have a wide range of filtering/separation applications in biochemical analysis. PMID:26819221

  3. Pressure-driven occlusive flow of a confined red blood cell.

    PubMed

    Savin, Thierry; Bandi, M M; Mahadevan, L

    2016-01-14

    When red blood cells (RBCs) move through narrow capillaries in the microcirculation, they deform as they flow. In pathophysiological processes such as sickle cell disease and malaria, RBC motion and flow are severely restricted. To understand this threshold of occlusion, we use a combination of experiment and theory to study the motion of a single swollen RBC through a narrow glass capillary of varying inner diameter. By tracking the movement of the squeezed cell as it is driven by a controlled pressure drop, we measure the RBC velocity as a function of the pressure gradient as well as the local capillary diameter, and find that the effective blood viscosity in this regime increases with both decreasing RBC velocity and tube radius by following a power-law that depends upon the length of the confined cell. Our observations are consistent with a simple elasto-hydrodynamic model and highlight the role of lateral confinement in the occluded pressure-driven slow flow of soft confined objects.

  4. Pressure driven flow of superfluid 4He through a nanopipe

    NASA Astrophysics Data System (ADS)

    Botimer, Jeffrey; Taborek, Peter

    2016-09-01

    Pressure driven flow of superfluid helium through single high-aspect-ratio glass nanopipes into a vacuum has been studied for a wide range of pressure drop (0-30 bars), reservoir temperature (0.8-2.5 K), pipe lengths (1-30 mm), and pipe radii (131 and 230 nm). As a function of pressure drop we observe two distinct flow regimes above and below a critical pressure drop Pc. For P pressure drop approaches Pc, there is a sudden transition to a new flow state with a critical velocity more than an order of magnitude higher. The position of the transition is explained by a simple model that accounts for the fountain pressure generated by evaporative cooling at the outlet of the nanopipe.

  5. Heat Transfer Characteristics of Mixed Electroosmotic and Pressure Driven Micro-Flows

    NASA Astrophysics Data System (ADS)

    Horiuchi, Keisuke; Dutta, Prashanta

    We analyze heat transfer characteristics of steady electroosmotic flows with an arbitrary pressure gradient in two-dimensional straight microchannels considering the effects of Joule heating in electroosmotic pumping. Both the temperature distribution and local Nusselt number are mathematically derived in this study. The thermal analysis takes into consideration of the interaction among advective, diffusive, and Joule heating terms to obtain the thermally developing behavior. Unlike macro-scale pipes, axial conduction in micro-scale cannot be negligible, and the governing energy equation is not separable. Thus, a method that considers an extended Graetz problem is introduced. Analytical results show that the Nusselt number of pure electrooosmotic flow is higher than that of plane Poiseulle flow. Moreover, when the electroosmotic flow and pressure driven flow coexist, it is found that adverse pressure gradient to the electroosmotic flow makes the thermal entrance length smaller and the heat transfer ability stronger than pure electroosmotic flow case.

  6. Analytical study of mixed electroosmotic-pressure-driven flow in rectangular micro-channels

    NASA Astrophysics Data System (ADS)

    Movahed, Saeid; Kamali, Reza; Eghtesad, Mohammad; Khosravifard, Amir

    2013-09-01

    Operational state of many miniaturized devices deals with flow field in microchannels. Pressure-driven flow (PDF) and electroosmotic flow (EOF) can be recognized as the two most important types of the flow field in such channels. EOF has many advantages in comparison with PDF, such as being vibration free and not requiring any external mechanical pumps or moving parts. However, the disadvantages of this type of flow such as Joule heating, electrophoresis demixing, and not being suitable for mobile devices must be taken into consideration carefully. By using mixed electroosmotic/pressure-driven flow, the role of EOF in producing desired velocity profile will be reduced. In this way, the advantages of EOF can be exploited, and its disadvantages can be prevented. Induced pressure gradient can be utilized in order to control the separation in the system. Furthermore, in many complicated geometries such as T-shape microchannels, turns may induce pressure gradient to the electroosmotic velocity. While analytical formulas are completely essential for analysis and control of any industrial and laboratory microdevices, lack of such formulas in the literature for solving Poisson-Boltzmann equation and predicting electroosmotic velocity field in rectangular domains is evident. In the present study, first a novel method is proposed to solve Poisson-Boltzmann equation (PBE). Subsequently, this solution is utilized to find the electroosmotic and the mixed electroosmotic/pressure-driven velocity profile in a rectangular domain of the microchannels. To demonstrate the accuracy of the presented analytical method in solving PBE and finding electroosmotic velocity, a general nondimensional example is analyzed, and the results are compared with the solution of boundary element method. Additionally, the effects of different nondimensional parameters and also aspect ratio of channels on the electroosmotic part of the flow field will be investigated.

  7. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.

    PubMed

    Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric

    2012-03-07

    We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.

  8. Analysis of microfluidic flow driven by electrokinetic and pressure forces

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hsin

    2011-12-01

    This work presents an analysis of microfluidic flow introduced by mixed electrokinetic force and pressure gradient. Analytical solutions are presented for the case of constant surface heat flux, taking the Joule heating effect into account. The present problem is governed by two scale ratios and the dimensionless source term. The two important ratios are the length scale ratio e (the ratio of Debye length to the tube radius R) and the velocity scale ratio Γ (the ratio of the pressuredriven velocity scale for Poiseuille flow to Helmholtz-Smoluchowski velocity for electroosmotic flow). For mixed electroosmotic and pressure-driven flow, the resulting velocity profile is the superimposed effect of both electroosmotic and Poiseuille flow phenomena. It is found that the velocity profile decreases as e increases and the normalized temperature profiles across the tube increases monotonously form the core to the wall. The maximum dimensionless temperature is observed at the wall and the wall temperature increases with increasing Joule heating. Also, the temperature is increased with increasing the value of ɛ . The fully developed Nusselt number takes the maximum value at the limiting case of ɛ --> 0 , and then decreases with increasing ɛ . Moreover, the Nusselt number decreases with Γ and then goes asymptotically to the limit of Poiseuille flow as Γ --> ∞ , where the flow is dominated by the pressure force.

  9. Microfluidic diffusion diluter: bulging of PDMS microchannels under pressure-driven flow

    NASA Astrophysics Data System (ADS)

    Holden, Matthew A.; Kumar, Saurabh; Beskok, Ali; Cremer, Paul S.

    2003-05-01

    The bulging of microfluidic systems during pressure-driven flow is potentially a major consideration for polydimethylsiloxane (PDMS)-based devices. Microchannel cross-sectional areas can change drastically as a function of flow rate and downstream microchannel position. Such geometrical flexibility leads to difficulties in predicting convective/diffusive transport for these systems. We have previously introduced a non-dimensional parameter, kappa, for characterizing convection and diffusion behavior for pressure-driven flow in rigid all-glass systems. This paper describes a modification of that concept for application to non-rigid systems, which is accomplished by incorporating an experimental step to account for the bulging in PDMS/glass microsystems. Specifically, an experimental measurement of channel height by fluorescence microscopy is combined with the aforementioned theory to characterize convective/diffusive behavior at a single location in the device. This allowed the parameter kappa to be determined at that point and applied to predict fluid flow in the subsequent portion of the PDMS microsystem. This procedure was applied to a PDMS/glass microfluidic diffusion dilution (muDD) device designed for generating concentration gradients. Theoretically predicted and experimentally measured distributions of concentrations within the microsystem matched well.

  10. Combined electroosmotically and pressure driven flow in soft nanofluidics.

    PubMed

    Matin, Meisam Habibi; Ohshima, Hiroyuki

    2015-12-15

    The present study is devoted to the analysis of mixed electroosmotic and pressure driven flows through a soft charged nanochannel considering boundary slip and constant charge density on the walls of the slit channel. The sources of the fluid flow are the pressure gradient along the channel axis and the electrokinetic effects that trigger an electroosmotic flow under the influence of a uniformly applied electric field. The polyelectrolyte layer (PEL) is denoted as a fixed charge layer (FCL) and the electrolyte ions can be present both inside and outside the PEL i.e., the PEL-electrolyte interface acts as a semi-penetrable membrane. The Poisson-Boltzmann equation is solved assuming the Debye-Hückel linearization for the low electric potential to provide us with analytical closed form solutions for the conservation equations. The conservation equations are solved to obtain the electric potential and velocity distributions in terms of governing dimensionless parameters. The results for the dimensionless electric potential, the dimensionless velocity and Poiseuille number are presented graphically and discussed in detail. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A pressure-driven flow analysis of gas trapping behavior in nanocomposite thermite films

    NASA Astrophysics Data System (ADS)

    Sullivan, K. T.; Bastea, S.; Kuntz, J. D.; Gash, A. E.

    2013-10-01

    This article is in direct response to a recently published article entitled Electrophoretic deposition and mechanistic studies of nano-Al/CuO thermites (K. T. Sullivan et al., J. Appl. Phys., 112(2), 2012), in which we introduced a non-dimensional parameter as the ratio of gas production to gas escape within a thin porous thermite film. In our original analysis, we had treated the problem as Fickian diffusion of gases through the porous network. However, we believe a more physical representation of the problem is to treat this as pressure-driven flow of gases in a porous medium. We offer a new derivation of the non-dimensional parameter which calculates gas velocity using the well-known Poiseuille's Law for pressure-driven flow in a pipe. This updated analysis incorporates the porosity, gas viscosity, and pressure gradient into the equation.

  12. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium

    PubMed Central

    Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M.; Jan, Kung-ming

    2015-01-01

    Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. PMID:25659484

  13. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium.

    PubMed

    Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M; Jan, Kung-ming; Rumschitzki, David S

    2015-05-01

    Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. Copyright © 2015

  14. Stability of a jet in confined pressure-driven biphasic flows at low reynolds numbers.

    PubMed

    Guillot, Pierre; Colin, Annie; Utada, Andrew S; Ajdari, Armand

    2007-09-07

    Motivated by its importance for microfluidic applications, we study the stability of jets formed by pressure-driven concentric biphasic flows in cylindrical capillaries. The specificity of this variant of the classical Rayleigh-Plateau instability is the role of the geometry which imposes confinement and Poiseuille flow profiles. We experimentally evidence a transition between situations where the flow takes the form of a jet and regimes where drops are produced. We describe this as the transition from convective to absolute instability, within a simple linear analysis using lubrication theory for flows at low Reynolds number, and reach remarkable agreement with the data.

  15. Influence of Reservoirs on Pressure Driven Gas Flow in a Microchannel

    NASA Astrophysics Data System (ADS)

    Shterev, K. S.; Stefanov, S. K.

    2011-11-01

    Rapidly emerging micro-electro-mechanical devices create new potential microfluidic applications. A simulation of an internal and external gas flows with accurate boundary conditions for these devices is important for their design. In this paper we study influence of reservoirs used at the microchannel inlet and outlet on the characteristics of the gas flow in the microchannel. The problem is solved by using finite volume method SIMPLE-TS (continuum approach), which is validated using Direct Simulation Monte Carlo (molecular approach). We investigate two cases: a microchannels with reservoirs and without reservoirs. We compare the microchannels with different aspect ratios A = Lch/Hch = 10,15,20,30,40 and 50, where Lch is the channel length, Hch is the channel height. Comparisons of results obtained by using continuum approach for pressure driven flow in a microchannel with and without reservoirs at the channel ends are presented.

  16. Pulsatile pressure driven rarefied gas flow in long rectangular ducts

    NASA Astrophysics Data System (ADS)

    Tsimpoukis, Alexandros; Valougeorgis, Dimitris

    2018-04-01

    The pulsatile pressure driven fully developed flow of a rarefied gas through an orthogonal duct is investigated, based on the time-dependent linear Bhatnagar, Gross, and Krook equation, by decomposing the flow into its steady and oscillatory parts. The investigation is focused on the oscillatory part, which is characterized by the gas rarefaction and oscillation parameters, the duct aspect ratio, and the accommodation coefficient. As the oscillation frequency is increased, the amplitude of all macroscopic quantities is decreased, while their phase angle lag is increased reaching the limiting value of π/2. As the gas becomes more rarefied, higher frequencies are needed to trigger this behavior. At small and moderate frequencies, there is a critical degree of gas rarefaction, where a maximum flow rate is obtained. As the duct aspect ratio is decreased and tends to zero, the flow rate and mean wall shear stress amplitudes are increased, while their phase angle lags are slightly affected. The accommodation coefficient has a significant effect on the amplitude and a very weak one on the phase angle of the macroscopic quantities. The computation of the inertia and viscous forces clarifies when the flow consists of only one oscillating viscous region or of two regions, namely, the inviscid piston flow in the core and the oscillating Stokes layer at the wall with the velocity overshooting. Finally, the time average oscillatory pumping power is increased as the oscillation frequency is reduced and its maximum value is one half of the corresponding steady one.

  17. Pressure-driven flow of a Herschel-Bulkley fluid with pressure-dependent rheological parameters

    NASA Astrophysics Data System (ADS)

    Panaseti, Pandelitsa; Damianou, Yiolanda; Georgiou, Georgios C.; Housiadas, Kostas D.

    2018-03-01

    The lubrication flow of a Herschel-Bulkley fluid in a symmetric long channel of varying width, 2h(x), is modeled extending the approach proposed by Fusi et al. ["Pressure-driven lubrication flow of a Bingham fluid in a channel: A novel approach," J. Non-Newtonian Fluid Mech. 221, 66-75 (2015)] for a Bingham plastic. Moreover, both the consistency index and the yield stress are assumed to be pressure-dependent. Under the lubrication approximation, the pressure at zero order depends only on x and the semi-width of the unyielded core is found to be given by σ(x) = -(1 + 1/n)h(x) + C, where n is the power-law exponent and the constant C depends on the Bingham number and the consistency-index and yield-stress growth numbers. Hence, in a channel of constant width, the width of the unyielded core is also constant, despite the pressure dependence of the yield stress, and the pressure distribution is not affected by the yield-stress function. With the present model, the pressure is calculated numerically solving an integro-differential equation and then the position of the yield surface and the two velocity components are computed using analytical expressions. Some analytical solutions are also derived for channels of constant and linearly varying widths. The lubrication solutions for other geometries are calculated numerically. The implications of the pressure-dependence of the material parameters and the limitations of the method are discussed.

  18. Interaction of pressure and momentum driven flows with thin porous media: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Naaktgeboren, Christian

    Flow interaction with thin porous media arise in a variety of natural and man-made settings. Examples include flow through thin grids in electronics cooling, and NOx emissions reduction by means of ammonia injection grids, pulsatile aquatic propulsion with complex trailing anatomy (e.g., jellyfish with tentacles) and microbursts from thunderstorm activity over dense vegetation, unsteady combustion in or near porous materials, pulsatile jet-drying of textiles, and pulsed jet agitation of clothing for trace contaminant sampling. Two types of interactions with thin porous media are considered: (i) forced convection or pressure-driven flows, where fluid advection is maintained by external forces, and (ii) inertial or momentum-driven flows, in which fluid motion is generated but not maintained by external forces. Forced convection analysis through thin permeable media using a porous continuum approach requires the knowledge of porous medium permeability and form coefficients, K and C, respectively, which are defined by the Hazen-Dupuit-Darcy (HDD) equation. Their determination, however, requires the measurement of the pressure-drop per unit of porous medium length. The pressure-drop caused by fluid entering and exiting the porous medium, however, is not related to the porous medium length. Hence, for situations in which the inlet and outlet pressure-drops are not negligible, e.g., for short porous media, the definition of Kand C via the HDD equation becomes ambiguous. This aspect is investigated analytically and numerically using the flow through a restriction in circular pipe and parallel plates channels as preliminary models. Results show that inlet and outlet pressure-drop effects become increasingly important when the inlet and outlet fluid surface fraction φ decreases and the Reynolds number Re increases for both laminar and turbulent flow regimes. A conservative estimate of the minimum porous medium length beyond which the core pressure-drop predominates over the

  19. Ultra-sensitive flow measurement in individual nanopores through pressure--driven particle translocation.

    PubMed

    Gadaleta, Alessandro; Biance, Anne-Laure; Siria, Alessandro; Bocquet, Lyderic

    2015-05-07

    A challenge for the development of nanofluidics is to develop new instrumentation tools, able to probe the extremely small mass transport across individual nanochannels. Such tools are a prerequisite for the fundamental exploration of the breakdown of continuum transport in nanometric confinement. In this letter, we propose a novel method for the measurement of the hydrodynamic permeability of nanometric pores, by diverting the classical technique of Coulter counting to characterize a pressure-driven flow across an individual nanopore. Both the analysis of the translocation rate, as well as the detailed statistics of the dwell time of nanoparticles flowing across a single nanopore, allow us to evaluate the permeability of the system. We reach a sensitivity for the water flow down to a few femtoliters per second, which is more than two orders of magnitude better than state-of-the-art alternative methods.

  20. Pressure-Driven Poiseuille Flow: A Major Component of the Torque-Balance Governing Pacific Plate Motion

    NASA Astrophysics Data System (ADS)

    Stotz, I. L.; Iaffaldano, G.; Davies, D. R.

    2018-01-01

    The Pacific Plate is thought to be driven mainly by slab pull, associated with subduction along the Aleutians-Japan, Marianas-Izu-Bonin, and Tonga-Kermadec trenches. This implies that viscous flow within the sub-Pacific asthenosphere is mainly generated by overlying plate motion (i.e., Couette flow) and that the associated shear stresses at the lithosphere's base are resisting such motion. Recent studies on glacial isostatic adjustment and lithosphere dynamics provide tighter constraints on the viscosity and thickness of Earth's asthenosphere and, therefore, on the amount of shear stress that asthenosphere and lithosphere mutually exchange, by virtue of Newton's third law of motion. In light of these constraints, the notion that subduction is the main driver of present-day Pacific Plate motion becomes somewhat unviable, as the pulling force that would be required by slabs exceeds the maximum available from their negative buoyancy. Here we use coupled global models of mantle and lithosphere dynamics to show that the sub-Pacific asthenosphere features a significant component of pressure-driven (i.e., Poiseuille) flow and that this has driven at least 50% of the Pacific Plate motion since, at least, 15 Ma. A corollary of our models is that a sublithospheric pressure difference as high as ±50 MPa is required across the Pacific domain.

  1. Electroviscous effect and electrokinetic energy conversion in time periodic pressure-driven flow through a parallel-plate nanochannel with surface charge-dependent slip

    NASA Astrophysics Data System (ADS)

    Buren, Mandula; Jian, Yongjun; Zhao, Yingchun; Chang, Long

    2018-05-01

    In this paper we analytically investigate the electroviscous effect and electrokinetic energy conversion in the time periodic pressure-driven flow of an incompressible viscous Newtonian liquid through a parallel-plate nanochannel with surface charge-dependent slip. Analytical and semi-analytical solutions for electric potential, velocity and streaming electric field are obtained and are utilized to compute electrokinetic energy conversion efficiency. The results show that velocity amplitude and energy conversion efficiency are reduced when the effect of surface charge on slip length is considered. The surface charge effect increases with zeta potential and ionic concentration. In addition, the energy conversion efficiency is large when the ratio of channel half-height to the electric double layer thickness is small. The boundary slip results in a large increase in energy conversion. Higher values of the frequency of pressure pulsation lead to higher values of the energy conversion efficiency. We also obtain the energy conversion efficiency in constant pressure-driven flow and find that the energy conversion efficiency in periodical pressure-driven flow becomes larger than that in constant pressure-driven flow when the frequency is large enough.

  2. Time-dependent particle migration and margination in the pressure-driven channel flow of blood

    NASA Astrophysics Data System (ADS)

    Qi, Qin M.; Shaqfeh, Eric S. G.

    2018-03-01

    We present a theory to describe the time evolution of the red blood cell (RBC) and platelet concentration distributions in pressure-driven flow through a straight channel. This model is based on our previous theory for the steady-state distributions [Qi and Shaqfeh, Phys. Rev. Fluids 2, 093102 (2017), 10.1103/PhysRevFluids.2.093102] and captures the flow-induced nonuniformity of the concentrations of RBCs and platelets in the cross-flow direction. Starting with a uniform concentration, RBCs migrate away from the channel walls due to a shear-induced lift force and eventually reach steady state due to shear-induced diffusion, i.e., hydrodynamic "collisions" with other RBCs. On the other hand, platelets exit the cell-laden region due to RBC-platelet interactions and enter the cell-free layer, resulting in margination. To validate the theory, we also perform boundary integral simulations of blood flow in microchannels and directly compare various measureables between theory and simulation. The timescales associated with RBC migration and platelet margination are discussed in the context of the simulation and theory, and their importance in the function of microfluidic devices as well as the vascular network are elucidated. Due to the varying shear rate in pressure-driven flow and the wall-induced RBC lift, we report a separation of timescales for the transport in the near-wall region and in the bulk region. We also relate the transient problem to the axial variation of migration and margination, and we demonstrate how the relevant timescales can be used to predict corresponding entrance lengths. Our theory can serve as a fast and convenient alternative to large-scale simulations of these phenomena.

  3. Hydrodynamic bifurcation in electro-osmotically driven periodic flows

    NASA Astrophysics Data System (ADS)

    Morozov, Alexander; Marenduzzo, Davide; Larson, Ronald G.

    2018-06-01

    In this paper, we report an inertial instability that occurs in electro-osmotically driven channel flows. We assume that the charge motion under the influence of an externally applied electric field is confined to a small vicinity of the channel walls that, effectively, drives a bulk flow through a prescribed slip velocity at the boundaries. Here, we study spatially periodic wall velocity modulations in a two-dimensional straight channel numerically. At low slip velocities, the bulk flow consists of a set of vortices along each wall that are left-right symmetric, while at sufficiently high slip velocities, this flow loses its stability through a supercritical bifurcation. Surprisingly, the flow state that bifurcates from a left-right symmetric base flow has a rather strong mean component along the channel, which is similar to pressure-driven velocity profiles. The instability sets in at rather small Reynolds numbers of about 20-30, and we discuss its potential applications in microfluidic devices.

  4. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow.

    PubMed

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2013-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space.

  5. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow

    PubMed Central

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2012-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space. PMID:23554584

  6. Systematic characterization of degas-driven flow for poly(dimethylsiloxane) microfluidic devices

    DOE PAGES

    Liang, David Y.; Tentori, Augusto M.; Dimov, Ivan K.; ...

    2011-01-01

    Degas-driven flow is a novel phenomenon used to propel fluids in poly(dimethylsiloxane) (PDMS)-based microfluidic devices without requiring any external power. This method takes advantage of the inherently high porosity and air solubility of PDMS by removing air molecules from the bulk PDMS before initiating the flow. The dynamics of degas-driven flow are dependent on the channel and device geometries and are highly sensitive to temporal parameters. These dependencies have not been fully characterized, hindering broad use of degas-driven flow as a microfluidic pumping mechanism. Here, we characterize, for the first time, the effect of various parameters on the dynamics ofmore » degas-driven flow, including channel geometry, PDMS thickness, PDMS exposure area, vacuum degassing time, and idle time at atmospheric pressure before loading. We investigate the effect of these parameters on flow velocity as well as channel fill time for the degas-driven flow process. Using our devices, we achieved reproducible flow with a standard deviation of less than 8% for flow velocity, as well as maximum flow rates of up to 3 nL/s and mean flow rates of approximately 1-1.5 nL/s. Parameters such as channel surface area and PDMS chip exposure area were found to have negligible impact on degas-driven flow dynamics, whereas channel cross-sectional area, degas time, PDMS thickness, and idle time were found to have a larger impact. In addition, we develop a physical model that can predict mean flow velocities within 6% of experimental values and can be used as a tool for future design of PDMS-based microfluidic devices that utilize degas-driven flow.« less

  7. Excitation of vertical coronal loop oscillations by impulsively driven flows

    NASA Astrophysics Data System (ADS)

    Kohutova, P.; Verwichte, E.

    2018-05-01

    Context. Flows of plasma along a coronal loop caused by the pressure difference between loop footpoints are common in the solar corona. Aims: We aim to investigate the possibility of excitation of loop oscillations by an impulsively driven flow triggered by an enhanced pressure in one of the loop footpoints. Methods: We carry out 2.5D magnetohydrodynamic (MHD) simulations of a coronal loop with an impulsively driven flow and investigate the properties and evolution of the resulting oscillatory motion of the loop. Results: The action of the centrifugal force associated with plasma moving at high speeds along the curved axis of the loop is found to excite the fundamental harmonic of a vertically polarised kink mode. We analyse the dependence of the resulting oscillations on the speed and kinetic energy of the flow. Conclusions: We find that flows with realistic speeds of less than 100 km s-1 are sufficient to excite oscillations with observable amplitudes. We therefore propose plasma flows as a possible excitation mechanism for observed transverse loop oscillations.

  8. Tidally-driven Surface Flow in a Georgia Estuarine Saltmarsh

    NASA Astrophysics Data System (ADS)

    Young, D.; Bruder, B. L.; Haas, K. A.; Webster, D. R.

    2016-02-01

    Estuarine saltmarshes are diverse, valuable, and productive ecosystems. Vegetation dampens wave and current energy, thereby allowing the estuaries to serve as a nursery habitat for shellfish and fish species. Tidally-driven flow transports nutrients into and out of the estuary, nourishing inshore and offshore vegetation and animals. The effects of vegetation on the marsh hydrodynamics and on the estuary creek and channel flow are, unfortunately, poorly understood, and the knowledge that does exist primarily originates from modeling studies. Field studies addressing marsh surface flows are limited due to the difficulty of accurately measuring the water surface elevation and acquiring concurrent velocity measurements in the dense marsh vegetation. This study partially bridges the gap between the model observations of marsh flow driven by water surface elevation gradients and flume studies of flow through vegetation. Three current meters and three pressure transducers were deployed for three days along a transect perpendicular to the main channel (Little Ogeechee River) in a saltmarsh adjacent to Rose Dhu Island (Savannah, Georgia, USA). The pressure transducer locations were surveyed daily with static GPS yielding highly accurate water surface elevation data. During flood and ebb tide, water surface elevation differences between the marsh and Little Ogeechee River were observed up to 15 cm and pressure gradients were observed up to 0.0017 m of water surface elevation drop per m of linear distance. The resulting channel-to-saltmarsh pressure gradients substantially affected tidal currents at all current meters. At one current meter, the velocity was nearly perpendicular to the Little Ogeechee River bank. The velocity at this location was effectively modeled as a balance between the pressure gradient and marsh vegetation-induced drag force using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow.

  9. Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships

    PubMed Central

    Hoffman, Keegan; Tzeng, Yu-Chieh; Hansen, Alex; Ainslie, Philip N.

    2015-01-01

    We examined the between-day reproducibility of active (squat-stand maneuvers)- and passive [oscillatory lower-body negative pressure (OLBNP) maneuvers]-driven oscillations in blood pressure. These relationships were examined in both younger (n = 10; 25 ± 3 yr) and older (n = 9; 66 ± 4 yr) adults. Each testing protocol incorporated rest (5 min), followed by driven maneuvers at 0.05 (5 min) and 0.10 (5 min) Hz to increase blood-pressure variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis. Beat-to-beat blood pressure, middle cerebral artery velocity, and end-tidal partial pressure of CO2 were monitored. The pressure-flow relationship was quantified in the very low (0.02-0.07 Hz) and low (0.07–0.20 Hz) frequencies (LF; spontaneous data) and at 0.05 and 0.10 Hz (driven maneuvers point estimates). Although there were no between-age differences, very few spontaneous and OLBNP transfer function metrics met the criteria for acceptable reproducibility, as reflected in a between-day, within-subject coefficient of variation (CoV) of <20%. Combined CoV data consist of LF coherence (15.1 ± 12.2%), LF gain (15.1 ± 12.2%), and LF normalized gain (18.5 ± 10.9%); OLBNP data consist of 0.05 (12.1 ± 15.%) and 0.10 (4.7 ± 7.8%) Hz coherence. In contrast, the squat-stand maneuvers revealed that all metrics (coherence: 0.6 ± 0.5 and 0.3 ± 0.5%; gain: 17.4 ± 12.3 and 12.7 ± 11.0%; normalized gain: 16.7 ± 10.9 and 15.7 ± 11.0%; and phase: 11.6 ± 10.2 and 17.3 ± 10.8%) at 0.05 and 0.10 Hz, respectively, were considered biologically acceptable for reproducibility. These findings have important implications for the reliable assessment and interpretation of cerebral pressure-flow dynamics in humans. PMID:26183476

  10. Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships.

    PubMed

    Smirl, Jonathan D; Hoffman, Keegan; Tzeng, Yu-Chieh; Hansen, Alex; Ainslie, Philip N

    2015-09-01

    We examined the between-day reproducibility of active (squat-stand maneuvers)- and passive [oscillatory lower-body negative pressure (OLBNP) maneuvers]-driven oscillations in blood pressure. These relationships were examined in both younger (n = 10; 25 ± 3 yr) and older (n = 9; 66 ± 4 yr) adults. Each testing protocol incorporated rest (5 min), followed by driven maneuvers at 0.05 (5 min) and 0.10 (5 min) Hz to increase blood-pressure variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis. Beat-to-beat blood pressure, middle cerebral artery velocity, and end-tidal partial pressure of CO2 were monitored. The pressure-flow relationship was quantified in the very low (0.02-0.07 Hz) and low (0.07-0.20 Hz) frequencies (LF; spontaneous data) and at 0.05 and 0.10 Hz (driven maneuvers point estimates). Although there were no between-age differences, very few spontaneous and OLBNP transfer function metrics met the criteria for acceptable reproducibility, as reflected in a between-day, within-subject coefficient of variation (CoV) of <20%. Combined CoV data consist of LF coherence (15.1 ± 12.2%), LF gain (15.1 ± 12.2%), and LF normalized gain (18.5 ± 10.9%); OLBNP data consist of 0.05 (12.1 ± 15.%) and 0.10 (4.7 ± 7.8%) Hz coherence. In contrast, the squat-stand maneuvers revealed that all metrics (coherence: 0.6 ± 0.5 and 0.3 ± 0.5%; gain: 17.4 ± 12.3 and 12.7 ± 11.0%; normalized gain: 16.7 ± 10.9 and 15.7 ± 11.0%; and phase: 11.6 ± 10.2 and 17.3 ± 10.8%) at 0.05 and 0.10 Hz, respectively, were considered biologically acceptable for reproducibility. These findings have important implications for the reliable assessment and interpretation of cerebral pressure-flow dynamics in humans. Copyright © 2015 the American Physiological Society.

  11. Flow compensating pressure regulator

    NASA Technical Reports Server (NTRS)

    Baehr, E. F. (Inventor)

    1978-01-01

    An apparatus for regulating pressure of treatment fluid during ophthalmic procedures is described. Flow sensing and pressure regulating diaphragms are used to modulate a flow control valve. The pressure regulating diaphragm is connected to the flow control valve to urge the valve to an open position due to pressure being applied to the diaphragm by bias means such as a spring. The flow sensing diaphragm is mechanically connected to the flow control valve and urges it to an opened position because of the differential pressure on the diaphragm generated by a flow of incoming treatment fluid through an orifice in the diaphragm. A bypass connection with a variable restriction is connected in parallel relationship to the orifice to provide for adjusting the sensitivity of the flow sensing diaphragm. A multiple lever linkage system is utilized between the center of the second diaphragm and the flow control valve to multiply the force applied to the valve by the other diaphragm and reverse the direction of the force.

  12. Cerebral pressure-flow relationship in lowlanders and natives at high altitude.

    PubMed

    Smirl, Jonathan D; Lucas, Samuel J E; Lewis, Nia C S; duManoir, Gregory R; Dumanior, Gregory R; Smith, Kurt J; Bakker, Akke; Basnyat, Aperna S; Ainslie, Philip N

    2014-02-01

    We investigated if dynamic cerebral pressure-flow relationships in lowlanders are altered at high altitude (HA), differ in HA natives and after return to sea level (SL). Lowlanders were tested at SL (n=16), arrival to 5,050 m, after 2-week acclimatization (with and without end-tidal PO2 normalization), and upon SL return. High-altitude natives (n=16) were tested at 5,050 m. Testing sessions involved resting spontaneous and driven (squat-stand maneuvers at very low (VLF, 0.05 Hz) and low (LF, 0.10 Hz) frequencies) measures to maximize blood pressure (BP) variability and improve assessment of the pressure-flow relationship using transfer function analysis (TFA). Blood flow velocity was assessed in the middle (MCAv) and posterior (PCAv) cerebral arteries. Spontaneous VLF and LF phases were reduced and coherence was elevated with acclimatization to HA (P<0.05), indicating impaired pressure-flow coupling. However, when BP was driven, both the frequency- and time-domain metrics were unaltered and comparable with HA natives. Acute mountain sickness was unrelated to TFA metrics. In conclusion, the driven cerebral pressure-flow relationship (in both frequency and time domains) is unaltered at 5,050 m in lowlanders and HA natives. Our findings indicate that spontaneous changes in TFA metrics do not necessarily reflect physiologically important alterations in the capacity of the brain to regulate BP.

  13. Studies of Radiation-Driven and Buoyancy-Driven Fluid Flows and Transport

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.; Fortmeyer, Justin M.

    1994-01-01

    It is well known that radiative heat transport influences many types of buoyant flows due to its effect on the temperature and thus density field in the fluid medium. It is of interest to study gaseous flows driven solely by radiation in the absence of buoyancy, particularly because of its application to astrophysical flows that are well known from astronomical observations and numerical simulation. However, no laboratory-scale experiments of this phenomenon have ever been conducted. To study the possibility of obtaining such flows in the laboratory, an apparatus was built to produce large temperature differences (Delta T) up to 300 K in a gas confined between flat parallel plates. SF6 was used as the radiatively-active gas because its Planck absorption length is much shorter than that of any other common non-reactive gas. The NASA-Lewis 2.2 second drop tower was used to obtain reduced gravity in order to suppress buoyancy effects. To image the resulting flows, a laser shearing interferometer was employed. Initial results indicate the presence of flow that does not appear to be attributable to the residual flow resulting from buoyancy influences before the drop. For Delta T greater than 70 K, slight deformations in the interferometer fringes seen at lower Delta T became large unsteady swirls. Such behavior did not occur for radiatively-inactive gases, suggesting that a flow driven solely by radiation was obtained in SF6 and to a lesser extent in CO2 This was more pronounced at higher pressures and plate spacings, consistent with our scaling predictions.

  14. Studies of Radiation-Driven and Buoyancy-Driven Fluid Flows and Transport

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.; Fortmeyer, Justin M.

    1996-01-01

    It is well known that radiative heat transport influences many types of buoyant flows due to its effect on the temperature and thus density field in the fluid medium. It is of interest to study gaseous flows driven solely by radiation in the absence of buoyancy, particularly because of its application to astrophysical flows that are well known from astronomical observations and numerical simulation. However, no laboratory-scale experiments of this phenomenon have ever been conducted. To study the possibility of obtaining such flows in the laboratory, an apparatus was built to produce large temperature differences (Delta (T)) up to 300 K in a gas confined between flat parallel plates. SF6 was used as the radiatively-active gas because its Planck absorption length is much shorter than that of any other common non-reactive gas. The NASA-Lewis 2.2 second drop tower was used to obtain reduced gravity in order to suppress buoyancy effects. To image the resulting flows, a laser shearing interferometer was employed. Initial results indicate the presence of flow that does not appear to be attributable to the residual flow resulting from buoyancy influences before the drop. For Delta(T) greater than 70 K, slight deformations in the interferometer fringes seen at lower Delta(T) became large unsteady swirls. Such behavior did not occur for radiatively-inactive gases, suggesting that a flow driven solely by radiation was obtained in SF6 and to a lesser extent in CO2. This was more pronounced at higher pressures and plate spacings, consistent with our scaling predictions.

  15. Calculations of separated 3-D flows with a pressure-staggered Navier-Stokes equations solver

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.

    1991-01-01

    A Navier-Stokes equations solver based on a pressure correction method with a pressure-staggered mesh and calculations of separated three-dimensional flows are presented. It is shown that the velocity pressure decoupling, which occurs when various pressure correction algorithms are used for pressure-staggered meshes, is caused by the ill-conditioned discrete pressure correction equation. The use of a partial differential equation for the incremental pressure eliminates the velocity pressure decoupling mechanism by itself and yields accurate numerical results. Example flows considered are a three-dimensional lid driven cavity flow and a laminar flow through a 90 degree bend square duct. For the lid driven cavity flow, the present numerical results compare more favorably with the measured data than those obtained using a formally third order accurate quadratic upwind interpolation scheme. For the curved duct flow, the present numerical method yields a grid independent solution with a very small number of grid points. The calculated velocity profiles are in good agreement with the measured data.

  16. Electroosmotically Driven Liquid Flows in Complex Micro-Geometries

    NASA Astrophysics Data System (ADS)

    Dutta, Prashanta; Warburton, Timothy C.; Beskok, Ali

    1999-11-01

    Electroosmotically driven flows in micro-channels are analyzed analytically and numerically by using a high-order h/p type spectral element simulation suite, Nektar. The high-resolution characteristic of the spectral element method enables us to resolve the sharp electric double layers with successive p-type mesh refinements. For electric double layers that are much smaller than the channel height, the Helmholtz Smoluchowski velocity is used to develop semi-analytical relations for the velocity and the pressure distributions in micro channels. Analytical relations for wall shear stress and pressure distributions are also obtained. These relations show amplification of the normal and shear stresses on the micro-channel walls. Finally, flow through a step-channel is analyzed to document the interaction of the electroosmotic forces with the adverse pressure gradients. Depending on the direction and the magnitude of the electroosmotic force, enhancement or elimination of the separation bubble is observed. These findings can be used to develop innovative strategies for flow control with no moving components and for promotion of mixing in micro-scale geometries.

  17. Pressure-flow reducer for aerosol focusing devices

    DOEpatents

    Gard, Eric; Riot, Vincent; Coffee, Keith; Woods, Bruce; Tobias, Herbert; Birch, Jim; Weisgraber, Todd

    2008-04-22

    A pressure-flow reducer, and an aerosol focusing system incorporating such a pressure-flow reducer, for performing high-flow, atmosphere-pressure sampling while delivering a tightly focused particle beam in vacuum via an aerodynamic focusing lens stack. The pressure-flow reducer has an inlet nozzle for adjusting the sampling flow rate, a pressure-flow reduction region with a skimmer and pumping ports for reducing the pressure and flow to enable interfacing with low pressure, low flow aerosol focusing devices, and a relaxation chamber for slowing or stopping aerosol particles. In this manner, the pressure-flow reducer decouples pressure from flow, and enables aerosol sampling at atmospheric pressure and at rates greater than 1 liter per minute.

  18. Pressure independence of granular flow through an aperture.

    PubMed

    Aguirre, M A; Grande, J G; Calvo, A; Pugnaloni, L A; Géminard, J-C

    2010-06-11

    We experimentally demonstrate that the flow rate of granular material through an aperture is controlled by the exit velocity imposed on the particles and not by the pressure at the base, contrary to what is often assumed in previous work. This result is achieved by studying the discharge process of a dense packing of monosized disks through an orifice. The flow is driven by a conveyor belt. This two-dimensional horizontal setup allows us to independently control the velocity at which the disks escape the horizontal silo and the pressure in the vicinity of the aperture. The flow rate is found to be proportional to the belt velocity, independent of the amount of disks in the container and, thus, independent of the pressure in the outlet region. In addition, this specific configuration makes it possible to get information on the system dynamics from a single image of the disks that rest on the conveyor belt after the discharge.

  19. Large eddy simulations of time-dependent and buoyancy-driven channel flows

    NASA Technical Reports Server (NTRS)

    Cabot, William H.

    1993-01-01

    The primary goal of this work has been to assess the performance of the dynamic SGS model in the large eddy simulation (LES) of channel flows in a variety of situations, viz., in temporal development of channel flow turned by a transverse pressure gradient and especially in buoyancy-driven turbulent flows such as Rayleigh-Benard and internally heated channel convection. For buoyancy-driven flows, there are additional buoyant terms that are possible in the base models, and one objective has been to determine if the dynamic SGS model results are sensitive to such terms. The ultimate goal is to determine the minimal base model needed in the dynamic SGS model to provide accurate results in flows with more complicated physical features. In addition, a program of direct numerical simulation (DNS) of fully compressible channel convection has been undertaken to determine stratification and compressibility effects. These simulations are intended to provide a comparative base for performing the LES of compressible (or highly stratified, pseudo-compressible) convection at high Reynolds number in the future.

  20. The effects of flow on airway pressure during nasal high-flow oxygen therapy.

    PubMed

    Parke, Rachael L; Eccleston, Michelle L; McGuinness, Shay P

    2011-08-01

    Nasal high-flow oxygen therapy increases the mean nasopharyngeal airway pressure in adults, but the relationship between flow and pressure is not well defined. To determine the relationship between flow and pressure with the Optiflow nasal high-flow oxygen therapy system. We invited patients scheduled for elective cardiac surgery to participate. Measurements were performed with nasal high-flow oxygen at flows of 30, 40, and 50 L/min, with the patient's mouth both open and closed. Pressures were recorded over one minute of breathing, and average flows were calculated via simple averaging. With the mouth closed, the mean ± SD airway pressures at 30, 40, and 50 L/min were 1.93 ± 1.25 cm H(2)O, 2.58 ± 1.54 cm H(2)O, and 3.31 ± 1.05 cm H(2)O, respectively. There was a positive linear relationship between flow and pressure. The mean nasopharyngeal pressure during nasal high-flow oxygen increases as flow increases. Australian Clinical Trials Registry http://www.adhb.govt.nz/achicu/hot_2_airway_pressure.htm.

  1. Numerical study of enhanced mixing in pressure-driven flows in microchannels using a spatially periodic electric field

    NASA Astrophysics Data System (ADS)

    Krishnaveni, T.; Renganathan, T.; Picardo, J. R.; Pushpavanam, S.

    2017-09-01

    We propose an innovative mechanism for enhancing mixing in steady pressure driven flow of an electrolytic solution in a straight rectangular microchannel. A transverse electric field is used to generate an electroosmotic flow across the cross-section. The resulting flow field consists of a pair of helical vortices that transport fluid elements along the channel. We show, through numerical simulations, that chaotic advection may be induced by periodically varying the direction of the applied electric field along the channel length. This periodic electric field generates a longitudinally varying, three-dimensional steady flow, such that the streamlines in the first half of the repeating unit cell intersect those in the second half, when projected onto the cross-section. Mixing is qualitatively characterized by tracking passive particles and obtaining Poincaré maps. For quantification of the extent of mixing, Shannon entropy is calculated using particle advection of a binary mixture. The convection diffusion equation is also used to track the evolution of a scalar species and quantify the mixing efficiency as a function of the Péclet number.

  2. Numerical study of enhanced mixing in pressure-driven flows in microchannels using a spatially periodic electric field.

    PubMed

    Krishnaveni, T; Renganathan, T; Picardo, J R; Pushpavanam, S

    2017-09-01

    We propose an innovative mechanism for enhancing mixing in steady pressure driven flow of an electrolytic solution in a straight rectangular microchannel. A transverse electric field is used to generate an electroosmotic flow across the cross-section. The resulting flow field consists of a pair of helical vortices that transport fluid elements along the channel. We show, through numerical simulations, that chaotic advection may be induced by periodically varying the direction of the applied electric field along the channel length. This periodic electric field generates a longitudinally varying, three-dimensional steady flow, such that the streamlines in the first half of the repeating unit cell intersect those in the second half, when projected onto the cross-section. Mixing is qualitatively characterized by tracking passive particles and obtaining Poincaré maps. For quantification of the extent of mixing, Shannon entropy is calculated using particle advection of a binary mixture. The convection diffusion equation is also used to track the evolution of a scalar species and quantify the mixing efficiency as a function of the Péclet number.

  3. The temporal evolution of the resistive pressure-gradient-driven turbulence and anomalous transport in shear flow across the magnetic field

    NASA Astrophysics Data System (ADS)

    Lee, Hae June; Mikhailenko, Vladmir; Mikhailenko, Vladimir

    2017-10-01

    The temporal evolution of the resistive pressure-gradient-driven mode in the sheared flow is investigated by employing the shearing modes approach. It reveals an essential difference in the processes, which occur in the case of the flows with velocity shearing rate less than the growth rate of the instability in the steady plasmas, and in the case of the flows with velocity shear larger than the instability growth rate in steady plasmas. It displays the physical content of the empirical ``quench rule'' which predicts the suppression of the turbulence in the sheared flows when the velocity shearing rate becomes larger than the maximum growth rate of the possible instability. We found that the distortion of the perturbations by the sheared flow with such velocity shear introduces the time dependencies into the governing equations, which prohibits the application of the eigenmodes formalism and requires the solution of the initial value problem.

  4. Conformation and stretching of end-tethered polymers in pressure-driven flow under confinement

    NASA Astrophysics Data System (ADS)

    Roy, Tamal; Hardt, Steffen; InstituteNano-; Microfludics, Technische Universität Darmstadt Team

    2016-11-01

    Understanding of the conformation and dynamics of polymers under confinement is important for both fundamental studies and applications. We experimentally study the conformation and stretching of surface-tethered polymer chains confined between parallel surfaces and exposed to a pressure-driven flow. λ-DNA molecules are tethered to the wall of a microchannel of height smaller than the contour lengths of the molecules. The DNA molecules, stained with a fluorescent dye, are visualized by epifluorescence and laser-scanning confocal microscopy (LSCM). The effects of the channel height, flow rate and contour length on the extension of the molecules are determined from epifluorescence images. From LSCM images the complete conformation and orientation of the DNA molecules is inferred. We find that the fractional extension of the molecules is uniquely determined by the fluid shear stress at the tethering surface and the chain contour length. There is no explicit influence of the channel height in the range of contour lengths we consider. We also derive analytical scaling relationships (in the weak and strong extension limits) that explain the experimentally observed stretching characteristics. This work is supported by Deutsche Forschungsgemeinschaft (Grant No. HA 2696/33-1).

  5. Stability of Buoyancy-Driven Gas Flow: Visualization of Coherent and Incoherent Gas Flow Patterns and Capillary Trapping

    NASA Astrophysics Data System (ADS)

    Geistlinger, H. W.; Samani, S.; Pohlert, M.; Jia, R.; Lazik, D.

    2009-12-01

    There are several mechanisms by which the CO2 can be stored: (1) In hydrodynamic trapping, the buoyant CO2 remains as a mobile fluid but is prevented from flowing back to the surface by an impermeable cap rock. (2) In solution trapping, CO2 dissolves into the brine, possibly enhanced by gravity instabilities due to the larger density of the brine-CO2 liquid mixture. (3) In mineral trapping, geochemical binding to the rock due to mineral precipitation. (4) In capillary trapping, the CO2 phase is disconnected into a coherent, mobile phase and an incoherent, immobile (trapped) phase. Recent analytical and numerical investigations [Juanes et al., 2006, 2009; Hesse et al., 2007 ] of buoyant-driven CO2-plume along a sloped aquifer are based on the following conceptual process model: (1) During the injection period, the less wetting CO2 displaces the more wetting brine in a drainage-like process. It is assumed that no capillary trapping occurs and that the CO2-network is coherent and driven both by the injection pressure and the buoyant pressure. Because of this coherence assumption a generalized Darcy-law can be used for the dynamics of the mobile, gaseous CO2-phase. (2) After injection the buoyant CO2 migrates laterally and upward, and water displaces CO2 at the trailing edge of the plume in an imbibition-like process. During this process, there are several physical mechanisms by which the water can displace the CO2 [Lenormand et al., 1983]. In addition to piston-type displacement, core-annular flow (also called: cooperative pore-body filling) may occur, i.e. the wetting phase moves along the walls and under certain conditions the CO2-core flow becomes unstable (snap-off). For water wet rocks, snap-off is the dominant mechanism [Al-Futaisi and Patzek, 2003; Valvatne and Blunt, 2004]. There seems to be consensus that the capillary trapping mechanism has a huge impact on the migration and distribution of CO2 which, in turn, affects the effectiveness of the other

  6. Temperature and pressure measurements at cold exit of counter-flow vortex tube with flow visualization of reversed flow

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Hazwan bin; Katanoda, Hiroshi; Morita, Hiromitsu

    2015-02-01

    In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube (VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at the cold exit was studied using a simple flow visualization technique consisting of a 0.75mm-diameter needle, and an oil paint droplet. It is observed through this experiment that the Pitot pressure at the cold exit center can either be lower or higher than atmospheric pressure, depending on the inlet pressure and the cold fraction, and that a reversed flow is observed when the Pitot pressure at the cold exit center is lower than atmospheric pressure. In addition, it is observed that when reducing the cold fraction from unity at any arbitrary inlet pressure, the region of reversed and colder flow in the central part of cold exit extends in the downstream direction.

  7. Topographically driven groundwater flow and the San Andreas heat flow paradox revisited

    USGS Publications Warehouse

    Saffer, D.M.; Bekins, B.A.; Hickman, S.

    2003-01-01

    Evidence for a weak San Andreas Fault includes (1) borehole heat flow measurements that show no evidence for a frictionally generated heat flow anomaly and (2) the inferred orientation of ??1 nearly perpendicular to the fault trace. Interpretations of the stress orientation data remain controversial, at least in close proximity to the fault, leading some researchers to hypothesize that the San Andreas Fault is, in fact, strong and that its thermal signature may be removed or redistributed by topographically driven groundwater flow in areas of rugged topography, such as typify the San Andreas Fault system. To evaluate this scenario, we use a steady state, two-dimensional model of coupled heat and fluid flow within cross sections oriented perpendicular to the fault and to the primary regional topography. Our results show that existing heat flow data near Parkfield, California, do not readily discriminate between the expected thermal signature of a strong fault and that of a weak fault. In contrast, for a wide range of groundwater flow scenarios in the Mojave Desert, models that include frictional heat generation along a strong fault are inconsistent with existing heat flow data, suggesting that the San Andreas Fault at this location is indeed weak. In both areas, comparison of modeling results and heat flow data suggest that advective redistribution of heat is minimal. The robust results for the Mojave region demonstrate that topographically driven groundwater flow, at least in two dimensions, is inadequate to obscure the frictionally generated heat flow anomaly from a strong fault. However, our results do not preclude the possibility of transient advective heat transport associated with earthquakes.

  8. Dynamics of High Pressure Reacting Shear Flows

    DTIC Science & Technology

    2015-10-02

    liquid rockets, future gas turbines • When the combustion systems are for propulsion, limited tankage dictates that on-board propellants be stored in...system dynamics • Combustion dynamics always includes acoustic waves, which in enclosed systems can sometimes reach detrimental amplitudes – eg...a high pressure, chemically reacting, multiphase, acoustically driven, shear flow in the form of a coaxial jet flame • Explore how the presence of

  9. Perspectives on continuum flow models for force-driven nano-channel liquid flows

    NASA Astrophysics Data System (ADS)

    Beskok, Ali; Ghorbanian, Jafar; Celebi, Alper

    2017-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  10. Criterion for Identifying Vortices in High-Pressure Flows

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Okong'o, Nora

    2007-01-01

    A study of four previously published computational criteria for identifying vortices in high-pressure flows has led to the selection of one of them as the best. This development can be expected to contribute to understanding of high-pressure flows, which occur in diverse settings, including diesel, gas turbine, and rocket engines and the atmospheres of Jupiter and other large gaseous planets. Information on the atmospheres of gaseous planets consists mainly of visual and thermal images of the flows over the planets. Also, validation of recently proposed computational models of high-pressure flows entails comparison with measurements, which are mainly of visual nature. Heretofore, the interpretation of images of high-pressure flows to identify vortices has been based on experience with low-pressure flows. However, high-pressure flows have features distinct from those of low-pressure flows, particularly in regions of high pressure gradient magnitude caused by dynamic turbulent effects and by thermodynamic mixing of chemical species. Therefore, interpretations based on low-pressure behavior may lead to misidentification of vortices and other flow structures in high-pressure flows. The study reported here was performed in recognition of the need for one or more quantitative criteria for identifying coherent flow structures - especially vortices - from previously generated flow-field data, to complement or supersede the determination of flow structures by visual inspection of instantaneous fields or flow animations. The focus in the study was on correlating visible images of flow features with various quantities computed from flow-field data.

  11. Theory to predict particle migration and margination in the pressure-driven channel flow of blood

    NASA Astrophysics Data System (ADS)

    Qi, Qin M.; Shaqfeh, Eric S. G.

    2017-09-01

    The inhomogeneous concentration distribution of erythrocytes and platelets in microchannel flows particularly in directions normal to the mean flow plays a significant role in hemostasis, drug delivery, and microfluidic applications. In this paper, we develop a coarse-grained theory to predict these distributions in pressure-driven channel flow at zero Reynolds number and compare them to experiments and simulations. We demonstrate that the balance between the deformability-induced lift force and the shear-induced diffusion created by hydrodynamic interactions in the suspension results in both a peak concentration of red blood cells at the channel center and a cell-free or Fahraeus-Lindqvist layer near the walls. On the other hand, the absence of a lift force and the strong red blood cell-platelet interactions result in an excess concentration of platelets in the cell-free layer. We demonstrate a strong role of hematocrit (i.e., erythrocyte volume fraction) in determining the cell-free layer thickness and the degree of platelet margination. We also demonstrate that the capillary number of the erythrocytes, based on the membrane shear modulus, plays a relatively insignificant role in the regimes that we have studied. Our theory serves as a good and simple alternative to large-scale computer simulations of the cross-stream transport processes in these mixtures.

  12. Steady Capillary Driven Flow

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M.

    1996-01-01

    A steady capillary driven flow is developed for a liquid index in a circular tube which is partially coated with a surface modifier to produce a discontinuous wetting condition from one side of the tube to the other. The bulk flow is novel in that it is truly steady, and controlled solely by the physics associated with dynamic wetting. The influence of gravity on the flow is minimized through the use of small diameter tubes approximately O(1 mm) tested horizontally in a laboratory and larger tubes approximately O(10 mm) tested in the low gravity environment of a drop tower. Average steady velocities are predicted and compared against a large experimental data set which includes the effects of tube dimensions and fluid properties. The sensitivity of the velocity to surface cleanliness is dramatic and the advantages of experimentation in a microgravity environment are discussed.

  13. Pressure driven laminar flow of a power-law fluid in a T-channel

    NASA Astrophysics Data System (ADS)

    Dyakova, O. A.; Frolov, O. Yu

    2017-10-01

    Planar flow of a non-Newtonian fluid in a T-channel is investigated. The viscosity is determined by the Ostwald-de Waele power law. Motion of the fluid is caused by pressure drop given in boundary sections of the T-channel. On the solid walls, the no slip boundary condition is used. The problem is numerically solved with using a finite difference method based on the SIMPLE procedure. As a result of this study, characteristic flow regimes have been found. Influence of main parameters on the flow pattern has been demonstrated. Criteria dependences describing basic characteristics of the flow under conditions of the present work have been shown.

  14. Dense, gravity-driven granular-liquid flows down steep channels

    NASA Astrophysics Data System (ADS)

    Armanini, A.; Larcher, M.; Nucci, E.

    2011-12-01

    Debris flows are complex natural phenomena, characterized by a mixture of poorly sorted sediments and water driven by gravity. Depending on the size distribution, on the volume concentration of sediments and on the geometry and topography of the channel, flow conditions may be very different, ranging from very fast flows, dominated by granular collisions and by the turbulence on the liquid phase, to very slow and dense flows, dominated by the frictional contacts among the grains. To investigate the basic physics of debris flows, it is very useful to analyze the flow of a mixture of identical spherical particles saturated by water and driven by gravity down a steep channel in steady flow condition (Armanini et al. 2005). The flow presents three regions: an external one, near to the free surface, dominated by nearly instantaneous contacts among the particles (collisional regime), an internal region dominated by prolonged contacts among the particles (frictional regime) and a static bed in which the particles are immobile. The detailed vertical structure of this kind of flows was obtained by means of experiments carried out by Armanini et al. (2005) and Larcher et al. (2007). Armanini et al. (2009) analysed the stratification of rheological mechanisms inside the flow, focusing on the coexistence of frictional and collisional regimes, on the stress transmission inside the flow and on particles kinematics. In particular, it was observed that debris flows may show locally a typical intermittence of the flow regime, switching alternatively from frictional to collisional. While the rheology of the collisional layers is well described by the dense gas analogy (kinetic theory), a persuasive theoretical description of the frictional regime does not yet exist. A Coulombian scheme is often assumed, but this hypothesis is rather limitative because it requires a constant concentration or a distribution of particles concentration known a priori. An interesting scheme of this kind

  15. Determinants of systemic zero-flow arterial pressure.

    PubMed

    Brunner, M J; Greene, A S; Sagawa, K; Shoukas, A A

    1983-09-01

    Thirteen pentobarbital-anesthetized dogs whose carotid sinuses were isolated and perfused at a constant pressure were placed on total cardiac bypass. With systemic venous pressure held at 0 mmHg (condition 1), arterial inflow was stopped for 20 s at intrasinus pressures of 50, 125, and 200 mmHg. Zero-flow arterial pressures under condition 1 were 16.2 +/- 1.3 (SE), 13.8 +/- 1.1, and 12.5 +/- 0.8 mmHg, respectively. In condition 2, the venous outflow tube was clamped at the instant of stopping the inflow, causing venous pressure to rise. The zero-flow arterial pressures were 19.7 +/- 1.3, 18.5 +/- 1.4, and 16.4 +/- 1.2 mmHg for intrasinus pressures of 50, 125, and 200 mmHg, respectively. At all levels of intrasinus pressure, the zero-flow arterial pressure in condition 2 was higher (P less than 0.005) than in condition 1. In seven dogs, at an intrasinus pressure of 125 mmHg, epinephrine increased the zero-flow arterial pressure by 3.0 mmHg, whereas hexamethonium and papaverine decreased the zero-flow arterial pressure by 2 mmHg. Reductions in the hematocrit from 52 to 11% resulted in statistically significant changes (P less than 0.01) in zero-flow arterial pressures. Thus zero-flow arterial pressure was found to be affected by changes in venous pressure, hematocrit, and vasomotor tone. The evidence does not support the literally interpreted concept of the vascular waterfall as the model for the finite arteriovenous pressure difference at zero flow.

  16. Capillary electrophoresis: Imaging of electroosmotic and pressure driven flow profiles in fused silica capillaries

    NASA Technical Reports Server (NTRS)

    Williams, George O., Jr.

    1996-01-01

    This study is a continuation of the summer of 1994 NASA/ASEE Summer Faculty Fellowship Program. This effort is a portion of the ongoing work by the Biophysics Branch of the Marshall Space Flight Center. The work has focused recently on the separation of macromolecules using capillary electrophoresis (CE). Two primary goals were established for the effort this summer. First, we wanted to use capillary electrophoresis to study the electrohydrodynamics of a sample stream. Secondly, there was a need to develop a methodology for using CE for separation of DNA molecules of various sizes. In order to achieve these goals we needed to establish a procedure for detection of a sample plug under the influence of an electric field Detection of the sample with the microscope and image analysis system would be helpful in studying the electrohydrodynamics of this stream under load. Videotaping this process under the influence of an electric field in real time would also be useful. Imaging and photography of the sample/background electrolyte interface would be vital to this study. Finally, detection and imaging of electroosmotic flow and pressure driven flow must be accomplished.

  17. Behavior of neutral solutes in pressurized flow driven electrochromatography using a mixed stationary phase of ODS and anion-exchange.

    PubMed

    Kitagawa, Shinya; Tsuda, Takao

    2003-05-02

    The behavior of neutral sample solutes in pressurized flow driven electrochromatography using a mixed stationary phase, which consisted of ODS and anion-exchange (ODS-SAX), was studied. Applications of both positive and negative voltage on a column induced increases in retention factors of sample solutes. The direction of an electroosmotic flow under applications of positive and negative voltage were the same, therefore, the sign of the surface charge density under positive and negative voltage was opposite. We proposed a new equation for the relationship between applied voltage and surface charge density, and the practical electroosmotic flow conformed to this equation. Studying the electroosmotic flow using our proposed equation revealed that the applied negative voltage accelerates the protonation of the quaternary ammonium group and dissociation of the silanol group on packing materials. The retention behavior of a neutral solute was affected by the existence of the charged functional groups. We propose that this phenomenon is applicable to the control of the retention behavior of a sample solute using an electric field.

  18. Pressurized water reactor flow skirt apparatus

    DOEpatents

    Kielb, John F.; Schwirian, Richard E.; Lee, Naugab E.; Forsyth, David R.

    2016-04-05

    A pressurized water reactor vessel having a flow skirt formed from a perforated cylinder structure supported in the lower reactor vessel head at the outlet of the downcomer annulus, that channels the coolant flow through flow holes in the wall of the cylinder structure. The flow skirt is supported at a plurality of circumferentially spaced locations on the lower reactor vessel head that are not equally spaced or vertically aligned with the core barrel attachment points, and the flow skirt employs a unique arrangement of hole patterns that assure a substantially balanced pressure and flow of the coolant over the entire underside of the lower core support plate.

  19. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System.

    PubMed

    Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.

  20. Flow Control Device Evaluation for an Internal Flow with an Adverse Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Jenkins, Luther N.; Gorton, Susan Althoff; Anders, Scott G.

    2002-01-01

    The effectiveness of several active and passive devices to control flow in an adverse pressure gradient with secondary flows present was evaluated in the 15 Inch Low Speed Tunnel at NASA Langley Research Center. In this study, passive micro vortex generators, micro bumps, and piezoelectric synthetic jets were evaluated for their flow control characteristics using surface static pressures, flow visualization, and 3D Stereo Digital Particle Image Velocimetry. Data also were acquired for synthetic jet actuators in a zero flow environment. It was found that the micro vortex generator is very effective in controlling the flow environment for an adverse pressure gradient, even in the presence of secondary vortical flow. The mechanism by which the control is effected is a re-energization of the boundary layer through flow mixing. The piezoelectric synthetic jet actuators must have sufficient velocity output to produce strong longitudinal vortices if they are to be effective for flow control. The output of these devices in a laboratory or zero flow environment will be different than the output in a flow environment. In this investigation, the output was higher in the flow environment, but the stroke cycle in the flow did not indicate a positive inflow into the synthetic jet.

  1. The Dynamics of Small-Scale Turbulence Driven Flows

    NASA Astrophysics Data System (ADS)

    Beer, M. A.; Hammett, G. W.

    1997-11-01

    The dynamics of small-scale fluctuation driven flows are of great interest for micro-instability driven turbulence, since nonlinear toroidal simulations have shown that these flows play an important role in the regulation of the turbulence and transport levels. The gyrofluid treatment of these flows was shown to be accurate for times shorter than a bounce time.(Beer, M. A., Ph. D. thesis, Princeton University (1995).) Since the decorrelation times of the turbulence are generally shorter than a bounce time, our original hypothesis was that this description was adequate. Recent work(Hinton, F. L., Rosenbluth, M. N., and Waltz, R. E., International Sherwood Fusion Theory Conference (1997).) pointed out possible problems with this hypothesis, emphasizing the existence of a linearly undamped component of the flow which could build up in time and lower the final turbulence level. While our original gyrofluid model reproduces some aspects of the linear flow, there are differences between the long time gyrofluid and kinetic linear results in some cases. On the other hand, if the long time behavior of these flows is dominated by nonlinear damping (which seems reasonable), then the existing nonlinear gyrofluid simulations may be sufficiently accurate. We test these possibilities by modifying the gyrofluid description of these flows and diagnosing the flow evolution in nonlinear simulations.

  2. Yield Hardening of Electrorheological Fluids in Channel Flow

    NASA Astrophysics Data System (ADS)

    Helal, Ahmed; Qian, Bian; McKinley, Gareth H.; Hosoi, A. E.

    2016-06-01

    Electrorheological fluids offer potential for developing rapidly actuated hydraulic devices where shear forces or pressure-driven flow are present. In this study, the Bingham yield stress of electrorheological fluids with different particle volume fractions is investigated experimentally in wall-driven and pressure-driven flow modes using measurements in a parallel-plate rheometer and a microfluidic channel, respectively. A modified Krieger-Dougherty model can be used to describe the effects of the particle volume fraction on the yield stress and is in good agreement with the viscometric data. However, significant yield hardening in pressure-driven channel flow is observed and attributed to an increase and eventual saturation of the particle volume fraction in the channel. A phenomenological physical model linking the densification and consequent microstructure to the ratio of the particle aggregation time scale compared to the convective time scale is presented and used to predict the enhancement in yield stress in channel flow, enabling us to reconcile discrepancies in the literature between wall-driven and pressure-driven flows.

  3. Pressure-flow specificity of inspiratory muscle training.

    PubMed

    Tzelepis, G E; Vega, D L; Cohen, M E; Fulambarker, A M; Patel, K K; McCool, F D

    1994-08-01

    The inspiratory muscles (IM) can be trained by having a subject breathe through inspiratory resistive loads or by use of unloaded hyperpnea. These disparate training protocols are characterized by high inspiratory pressure (force) or high inspiratory flow (velocity), respectively. We tested the hypothesis that the posttraining improvements in IM pressure or flow performance are specific to training protocols in a way that is similar to force-velocity specificity of skeletal muscle training. IM training was accomplished in 15 normal subjects by use of three protocols: high inspiratory pressure-no flow (group A, n = 5), low inspiratory pressure-high flow (group B, n = 5), and intermediate inspiratory pressure and flow (group C, n = 5). A control group (n = 4) did no training. Before and after training, we measured esophageal pressure (Pes) and inspiratory flow (VI) during single maximal inspiratory efforts against a range of external resistances including an occluded airway. Efforts originated below relaxation volume (Vrel), and peak Pes and VI were measured at Vrel. Isovolume maximal Pes-VI plots were constructed to assess maximal inspiratory pressure-flow performance. Group A (pressure training) performed 30 maximal static inspiratory maneuvers at Vrel daily, group B (flow training) performed 30 sets of three maximal inspiratory maneuvers with no added external resistance daily, and group C (intermediate training) performed 30 maximal inspiratory efforts on a midrange external resistance (7 mm ID) daily. Subjects trained 5 days/wk for 6 wk. Data analysis included comparison of posttraining Pes-VI slopes among training groups.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Design of pressure-driven microfluidic networks using electric circuit analogy.

    PubMed

    Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P

    2012-02-07

    This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.

  5. Pressure compensated flow control valve

    DOEpatents

    Minteer, Daniel J.

    1999-01-01

    The invention is an air flow control valve which is capable of maintaining a constant flow at the outlet despite changes in the inlet or outlet pressure. The device consists of a shell assembly with an inlet chamber and outlet chamber separated by a separation plate. The chambers are connected by an orifice. Also located within the inlet chamber is a port controller assembly. The port controller assembly consists of a differential pressure plate and port cap affixed thereon. The cap is able to slide in and out of the orifice separating the inlet and outlet chambers. When the pressure differential is sufficient, the differential pressure plate rises or falls to maintain a constant air flow. Movement of the port controller assembly does not require the use of seals, diaphragms, tight tolerances, bushings, bearings, hinges, guides, or lubricants.

  6. System for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  7. Dynamic simulations of under-rib convection-driven flow-field configurations and comparison with experiment in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Duy, Vinh Nguyen; Lee, Jungkoo; Kim, Kyungcheol; Ahn, Jiwoong; Park, Seongho; Kim, Taeeun; Kim, Hyung-Man

    2015-10-01

    The under-rib convection-driven flow-field design for the uniform distribution of reacting gas and the generation of produced water generates broad scientific interest, especially among those who study the performance of polymer electrolyte membrane fuel cells (PEMFCs). In this study, we simulate the effects of an under-rib convection-driven serpentine flow-field with sub-channel and by-pass (SFFSB) and a conventional advanced serpentine flow-field (CASFF) on single cell performance, and we compare the simulation results with experimental measurements. In the under-rib convection-driven flow-field configuration with SFFSB, the pressure drop is decreased because of the greater cross-sectional area for gas flow, and the decreased pressure drop results in the reduction of the parasitic loss. The anode liquid water mass fraction increases with increasing channel height because of increased back diffusion, while the cathode liquid water mass fraction does not depend upon the sub-channels but is ascribed mainly to the electro-osmotic drag. Simulation results verify that the maximum current and the power densities of the SFFSB are increased by 18.85% and 23.74%, respectively, due to the promotion of under-rib convection. The findings in this work may enable the optimization of the design of under-rib convection-driven flow-fields for efficient PEMFCs.

  8. Miniature Flow-Direction/Pitot-Static Pressure Probes

    NASA Technical Reports Server (NTRS)

    Ashby, George C., Jr.; Coombs, David S.; Eves, John W.; Price, Howard E.; Vasquez, Peter

    1989-01-01

    Precision flow-direction/pitot-static pressure probes, ranging from 0.035 to 0.090 inch (0.89 to 2.29 mm) in outside diameter, successfully fabricated and calibrated for use in Langley 20-inch Mach 6 Tunnel. Probes simultaneously measure flow direction and static and pitot pressures in flow fields about configurations in hypersonic flow at temperatures up to 500 degree F (260 degree C).

  9. Retention behavior of neutral solutes in pressurized flow-driven capillary electrochromatography using an ODS column.

    PubMed

    Nakagawa, Hiroyuki; Kitagawa, Shinya; Araki, Shuki; Ohtani, Hajime

    2006-02-01

    Several alkyl benzenes are separated by pressurized flow-driven capillary electrochromatography using a temperature-controlled capillary column packed with octadecyl siloxane-modified silica gel, and the effect of applied voltage on the retention is investigated. The van't Hoff plot shows good linearity at the column temperature between 305 and 330 K under applications from -6 to +6 kV. The applied voltage causes a relatively large variation in the enthalpy and the entropy of transfer of the solute from the mobile phase to the stationary phase (> 20%). However, the direction of variation in the enthalpy is almost opposite to that in the entropy, both of which might compensate each other. Therefore, the retention factor is not significantly varied (< 4%) by the application of voltage.

  10. Streaming potential generated by a pressure-driven flow over a super-hydrophobic surface

    NASA Astrophysics Data System (ADS)

    Zhao, Hui

    2010-11-01

    The streaming potential generated by a pressured-driven flow over a weakly charged striped slip-stick surface (the zeta potential of the surface is smaller than the thermal potential (25 mV) with an arbitrary double layer thickness is theoretically studied by solving the Poisson-Boltzmann equation and Stokes equation. A series solution of the streaming potential is derived. Approximate expressions for the streaming potential in the limits of thin double layers and thick double layers are also presented, in excellent agreement with the full solution. The streaming potential is compared against that over a homogenously charged smooth surface. Our results indicate that the streaming potential over a super-hydrophobic surface only can be enhanced when the liquid-gas interface is charged. In addition, as the double layer thickness increases, the advantage of the super-hydrophobic surface diminishes. The impact of a slip-stick surface on the streaming potential might provide guidance for designing novel and efficient microfludic energy conversion devices using a super-hydrophobic surface.

  11. Dynamic Pressure Probes Developed for Supersonic Flow-Field Measurements

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert

    2001-01-01

    A series of dynamic flow-field pressure probes were developed for use in large-scale supersonic wind tunnels at the NASA Glenn Research Center. These flow-field probes include pitot and static pressure probes that can capture fast-acting flow-field pressure transients occurring on a millisecond timescale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The flow-field pressure probe contains four major components: 1) Static pressure aerodynamic tip; 2) Pressure-sensing cartridge assembly; 3) Pitot pressure aerodynamic tip; 4) Mounting stem. This modular design allows for a variety of probe tips to be used for a specific application. Here, the focus is on flow-field pressure measurements in supersonic flows, so we developed a cone-cylinder static pressure tip and a pitot pressure tip. Alternatively, probe tips optimized for subsonic and transonic flows could be used with this design. The pressure-sensing cartridge assembly allows the simultaneous measurement of steady-state and transient pressure which allows continuous calibration of the dynamic pressure transducer.

  12. Preliminary research on flow rate and free surface of the accelerator driven subcritical system gravity-driven dense granular-flow target

    PubMed Central

    Li, Xiaodong; Wan, Jiangfeng; Zhang, Sheng; Lin, Ping; Zhang, Yanshi; Yang, Guanghui; Wang, Mengke; Duan, Wenshan; Sun, Jian’an

    2017-01-01

    A spallation target is one of the three core parts of the accelerator driven subcritical system (ADS), which has already been investigated for decades. Recently, a gravity-driven Dense Granular-flow Target (DGT) is proposed, which consists of a cylindrical hopper and an internal coaxial cylindrical beam pipe. The research on the flow rate and free surface are important for the design of the target whether in Heavy Liquid Metal (HLM) targets or the DGT. In this paper, the relations of flow rate and the geometry of the DGT are investigated. Simulations based on the discrete element method (DEM) implementing on Graphics Processing Units (GPUs) and experiments are both performed. It is found that the existence of an internal pipe doesn’t influence the flow rate when the distance from the bottom of the pipe to orifice is large enough even in a larger system. Meanwhile, snapshots of the free surface formed just below the beam pipe are given. It is observed that the free surface is stable over time. The entire research is meaningful for the design of DGT. PMID:29095910

  13. Preliminary research on flow rate and free surface of the accelerator driven subcritical system gravity-driven dense granular-flow target.

    PubMed

    Li, Xiaodong; Wan, Jiangfeng; Zhang, Sheng; Lin, Ping; Zhang, Yanshi; Yang, Guanghui; Wang, Mengke; Duan, Wenshan; Sun, Jian'an; Yang, Lei

    2017-01-01

    A spallation target is one of the three core parts of the accelerator driven subcritical system (ADS), which has already been investigated for decades. Recently, a gravity-driven Dense Granular-flow Target (DGT) is proposed, which consists of a cylindrical hopper and an internal coaxial cylindrical beam pipe. The research on the flow rate and free surface are important for the design of the target whether in Heavy Liquid Metal (HLM) targets or the DGT. In this paper, the relations of flow rate and the geometry of the DGT are investigated. Simulations based on the discrete element method (DEM) implementing on Graphics Processing Units (GPUs) and experiments are both performed. It is found that the existence of an internal pipe doesn't influence the flow rate when the distance from the bottom of the pipe to orifice is large enough even in a larger system. Meanwhile, snapshots of the free surface formed just below the beam pipe are given. It is observed that the free surface is stable over time. The entire research is meaningful for the design of DGT.

  14. The `Henry Problem' of `density-driven' groundwater flow versus Tothian `groundwater flow systems' with variable density: A review of the influential Biscayne aquifer data.

    NASA Astrophysics Data System (ADS)

    Weyer, K. U.

    2017-12-01

    Coastal groundwater flow investigations at the Biscayne Bay, south of Miami, Florida, gave rise to the concept of density-driven flow of seawater into coastal aquifers creating a saltwater wedge. Within that wedge, convection-driven return flow of seawater and a dispersion zone were assumed by Cooper et al. (1964) to be the cause of the Biscayne aquifer `sea water wedge'. This conclusion was based on the chloride distribution within the aquifer and on an analytical model concept assuming convection flow within a confined aquifer without taking non-chemical field data into consideration. This concept was later labelled the `Henry Problem', which any numerical variable density flow program must be able to simulate to be considered acceptable. Both, `density-driven flow' and Tothian `groundwater flow systems' (with or without variable density conditions) are driven by gravitation. The difference between the two are the boundary conditions. 'Density-driven flow' occurs under hydrostatic boundary conditions while Tothian `groundwater flow systems' occur under hydrodynamic boundary conditions. Revisiting the Cooper et al. (1964) publication with its record of piezometric field data (heads) showed that the so-called sea water wedge has been caused by discharging deep saline groundwater driven by gravitational flow and not by denser sea water. Density driven flow of seawater into the aquifer was not found reflected in the head measurements for low and high tide conditions which had been taken contemporaneously with the chloride measurements. These head measurements had not been included in the flow interpretation. The very same head measurements indicated a clear dividing line between shallow local fresh groundwater flow and saline deep groundwater flow without the existence of a dispersion zone or a convection cell. The Biscayne situation emphasizes the need for any chemical interpretation of flow pattern to be supported by head data as energy indicators of flow fields

  15. An implantable blood pressure and flow transmitter.

    NASA Technical Reports Server (NTRS)

    Rader, R. D.; Meehan, J. P.; Henriksen, J. K. C.

    1973-01-01

    A miniature totally implantable FM/FM telemetry system has been developed to simultaneously measure blood pressure and blood flow, thus providing an appreciation of the hemodynamics of the circulation to the entire body or to a particular organ. Developed for work with animal subjects, the telemetry system's transmission time is controlled by an RF signal that permits an operating life of several months. Pressure is detected by a miniature intravascular transducer and flow is detected by an extravascular interferometric ultrasonic technique. Both pressure and flow are calibrated prior to implanting. The pressure calibration can be checked after the implanting by cannulation; flow calibration can be verified only at the end of the experiment by determining the voltage output from the implanted sensing system as a function of several measured flow rates. The utility of this device has been established by its use in investigating canine renal circulation during exercise, emotional encounters, administration of drugs, and application of accelerative forces.

  16. Buoyancy Driven Shear Flows of Bubble Suspensions

    NASA Technical Reports Server (NTRS)

    Koch, D. L.; Hill, R. J.; Chellppannair, T.; Zenit, R.; Zenit, R.; Spelt, P. D. M.

    1999-01-01

    In this work the gas volume fraction and the root-mean-squared fluid velocity are measured in buoyancy driven shear flows of bubble suspensions in a tall, inclined, rectangular channel. The experiments are performed under conditions where We << 1a nd Re >> 1, for which comparisons are made with kinetic theory and numerical simulations. Here Re = gamma(a(exp 2)/nu is the Reynolds number and We = rho(gamma(exp 2))a(exp 3)/sigma is the Weber number; gamma is the shear rate, a is the bubble radius, nu is the kinematic viscosity of the liquid, rho is the density of the liquid, and sigma is the surface tension of the gas/liquid interface. Kang et al. calculated the bubble phase pressure and velocity variance of sheared bubble suspensions under conditions where the bubbles are spherical and the liquid phase velocity field can be approximated using potential flow theory, i.e. We= 0 and Re >> 1. Such conditions can be achieved in an experiment using gas bubbles, with a radius of O(0.5mm), in water. The theory requires that there be no average relative motion of the gas and liquid phases, hence the motivation for an experimental program in microgravity. The necessity of performing preliminary, Earth based experiments, however, requires performing experiments where the gas phase rises in the liquid, which significantly complicates the comparison of experiments with theory. Rather than comparing experimental results with theory for a uniform, homogeneous shear flow, experiments can be compared directly with solutions of the averaged equations of motion for bubble suspensions. This requires accounting for the significant lift force acting on the gas phase when the bubbles rise parallel to the average velocity of the sheared suspension. Shear flows can be produced in which the bubble phase pressure gradient, arising from shear induced collisions amongst the bubbles, balances a body force (centrifugal or gravitational) on the gas phase. A steady, non-uniform gas volume fraction

  17. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, M.W.; Cole, J.H.

    1980-04-23

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  18. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, Michael W.; Cole, Jack H.

    1982-01-01

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  19. Lagrangian chaos in three- dimensional steady buoyancy-driven flows

    NASA Astrophysics Data System (ADS)

    Contreras, Sebastian; Speetjens, Michel; Clercx, Herman

    2016-11-01

    Natural convection plays a key role in fluid dynamics owing to its ubiquitous presence in nature and industry. Buoyancy-driven flows are prototypical systems in the study of thermal instabilities and pattern formation. The differentially heated cavity problem has been widely studied for the investigation of buoyancy-induced oscillatory flow. However, far less attention has been devoted to the three-dimensional Lagrangian transport properties in such flows. This study seeks to address this by investigating Lagrangian transport in the steady flow inside a cubic cavity differentially-heated from the side. The theoretical and numerical analysis expands on previously reported similarities between the current flow and lid-driven flows. The Lagrangian dynamics are controlled by the Péclet number (Pe) and the Prandtl number (Pr). Pe controls the behaviour qualitatively in that growing Pe progressively perturbs the integable state (Pe =0), thus paving the way to chaotic dynamics. Pr plays an entirely quantitative role in that Pr<1 and Pr>1 amplifies and diminishes, respectively, the perturbative effect of non-zero Pe. S.C. acknowledges financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT).

  20. Experimental investigation of certain internal condensing and boiling flows: Their sensitivity to pressure fluctuations and heat transfer enhancements

    NASA Astrophysics Data System (ADS)

    Kivisalu, Michael Toomas

    Space-based (satellite, scientific probe, space station, etc.) and millimeter -- to -- micro-scale (such as are used in high power electronics cooling, weapons cooling in aircraft, etc.) condensers and boilers are shear/pressure driven. They are of increasing interest to system engineers for thermal management because flow boilers and flow condensers offer both high fluid flow-rate-specific heat transfer capacity and very low thermal resistance between the fluid and the heat exchange surface, so large amounts of heat may be removed using reasonably-sized devices without the need for excessive temperature differences. However, flow stability issues and degredation of performance of shear/pressure driven condensers and boilers due to non-desireable flow morphology over large portions of their lengths have mostly prevented their use in these applications. This research is part of an ongoing investigation seeking to close the gap between science and engineering by analyzing two key innovations which could help address these problems. First, it is recommended that the condenser and boiler be operated in an innovative flow configuration which provides a non-participating core vapor stream to stabilize the annular flow regime throughout the device length, accomplished in an energy-efficient manner by means of ducted vapor re-circulation. This is demonstrated experimentally.. Second, suitable pulsations applied to the vapor entering the condenser or boiler (from the re-circulating vapor stream) greatly reduce the thermal resistance of the already effective annular flow regime. For experiments reported here, application of pulsations increased time-averaged heat-flux up to 900 % at a location within the flow condenser and up to 200 % at a location within the flow boiler, measured at the heat-exchange surface. Traditional fully condensing flows, reported here for comparison purposes, show similar heat-flux enhancements due to imposed pulsations over a range of frequencies

  1. Magnetohydrodynamic stability of stochastically driven accretion flows.

    PubMed

    Nath, Sujit Kumar; Mukhopadhyay, Banibrata; Chattopadhyay, Amit K

    2013-07-01

    We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise.

  2. Biased and flow driven Brownian motion in periodic channels

    NASA Astrophysics Data System (ADS)

    Martens, S.; Straube, A.; Schmid, G.; Schimansky-Geier, L.; Hänggi, P.

    2012-02-01

    In this talk we will present an expansion of the common Fick-Jacobs approximation to hydrodynamically as well as by external forces driven Brownian transport in two-dimensional channels exhibiting smoothly varying periodic cross-section. We employ an asymptotic analysis to the components of the flow field and to stationary probability density for finding the particles within the channel in a geometric parameter. We demonstrate that the problem of biased Brownian dynamics in a confined 2D geometry can be replaced by Brownian motion in an effective periodic one-dimensional potential ψ(x) which takes the external bias, the change of the local channel width, and the flow velocity component in longitudinal direction into account. In addition, we study the influence of the external force magnitude, respectively, the pressure drop of the fluid on the particle transport quantities like the averaged velocity and the effective diffusion coefficient. The critical ratio between the external force and pressure drop where the average velocity equals zero is identified and the dependence of the latter on the channel geometry is derived. Analytic findings are confirmed by numerical simulations of the particle dynamics in a reflection symmetric sinusoidal channel.

  3. Compressive sensing based machine learning strategy for characterizing the flow around a cylinder with limited pressure measurements

    NASA Astrophysics Data System (ADS)

    Bright, Ido; Lin, Guang; Kutz, J. Nathan

    2013-12-01

    Compressive sensing is used to determine the flow characteristics around a cylinder (Reynolds number and pressure/flow field) from a sparse number of pressure measurements on the cylinder. Using a supervised machine learning strategy, library elements encoding the dimensionally reduced dynamics are computed for various Reynolds numbers. Convex L1 optimization is then used with a limited number of pressure measurements on the cylinder to reconstruct, or decode, the full pressure field and the resulting flow field around the cylinder. Aside from the highly turbulent regime (large Reynolds number) where only the Reynolds number can be identified, accurate reconstruction of the pressure field and Reynolds number is achieved. The proposed data-driven strategy thus achieves encoding of the fluid dynamics using the L2 norm, and robust decoding (flow field reconstruction) using the sparsity promoting L1 norm.

  4. Method of Simulating Flow-Through Area of a Pressure Regulator

    NASA Technical Reports Server (NTRS)

    Hass, Neal E. (Inventor); Schallhorn, Paul A. (Inventor)

    2011-01-01

    The flow-through area of a pressure regulator positioned in a branch of a simulated fluid flow network is generated. A target pressure is defined downstream of the pressure regulator. A projected flow-through area is generated as a non-linear function of (i) target pressure, (ii) flow-through area of the pressure regulator for a current time step and a previous time step, and (iii) pressure at the downstream location for the current time step and previous time step. A simulated flow-through area for the next time step is generated as a sum of (i) flow-through area for the current time step, and (ii) a difference between the projected flow-through area and the flow-through area for the current time step multiplied by a user-defined rate control parameter. These steps are repeated for a sequence of time steps until the pressure at the downstream location is approximately equal to the target pressure.

  5. Solar Dynamo Driven by Periodic Flow Oscillation

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends

  6. Spectral element simulation of precession driven flows in the outer cores of spheroidal planets

    NASA Astrophysics Data System (ADS)

    Vormann, Jan; Hansen, Ulrich

    2015-04-01

    A common feature of the planets in the solar system is the precession of the rotation axes, driven by the gravitational influence of another body (e.g. the Earth's moon). In a precessing body, the rotation axis itself is rotating around another axis, describing a cone during one precession period. Similar to the coriolis and centrifugal force appearing from the transformation to a rotating system, the addition of precession adds another term to the Navier-Stokes equation, the so called Poincaré force. The main geophysical motivation in studying precession driven flows comes from their ability to act as magnetohydrodynamic dynamos in planets and moons. Precession may either act as the only driving force or operate together with other forces such as thermochemical convection. One of the challenges in direct numerical simulations of such flows lies in the spheroidal shape of the fluid volume, which should not be neglected since it contributes an additional forcing trough pressure torques. Codes developed for the simulation of flows in spheres mostly use efficient global spectral algorithms that converge fast, but lack geometric flexibility, while local methods are usable in more complex shapes, but often lack high accuracy. We therefore adapted the spectral element code Nek5000, developed at Argonne National Laboratory, to the problem. The spectral element method is capable of solving for the flow in arbitrary geometries while still offering spectral convergence. We present first results for the simulation of a purely hydrodynamic, precession-driven flow in a spheroid with no-slip boundaries and an inner core. The driving by the Poincaré force is in a range where theoretical work predicts multiple solutions for a laminar flow. Our simulations indicate a transition to turbulent flows for Ekman numbers of 10-6 and lower.

  7. Nonlinear pressure-flow relationships for passive microfluidic valves.

    PubMed

    Seker, Erkin; Leslie, Daniel C; Haj-Hariri, Hossein; Landers, James P; Utz, Marcel; Begley, Matthew R

    2009-09-21

    An analytical solution is presented for the nonlinear pressure-flow relationship of deformable passive valves, which are formed by bonding a deformable film over etched channels separated by a weir. A fluidic pathway connecting the channels is opened when the upstream pressure creates a tunnel along a predefined narrow strip where the film is not bonded to the weir. When the width of the strip is comparable to the inlet channel width, the predicted closed-form pressure-flow rate relationship is in excellent agreement with experiments, which determine pressures by measuring film deflections for prescribed flow rates. The validated closed-form models involve no fitting parameters, and provide the foundation to design passive diodes with specific nonlinear pressure-flow characteristics.

  8. Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI

    NASA Astrophysics Data System (ADS)

    Delles, Michael; Rengier, Fabian; Azad, Yoo-Jin; Bodenstedt, Sebastian; von Tengg-Kobligk, Hendrik; Ley, Sebastian; Unterhinninghofen, Roland; Kauczor, Hans-Ulrich; Dillmann, Rüdiger

    2015-03-01

    In diagnostics and therapy control of cardiovascular diseases, detailed knowledge about the patient-specific behavior of blood flow and pressure can be essential. The only method capable of measuring complete time-resolved three-dimensional vector fields of the blood flow velocities is velocity-encoded magnetic resonance imaging (MRI), often denoted as 4D flow MRI. Furthermore, relative pressure maps can be computed from this data source, as presented by different groups in recent years. Hence, analysis of blood flow and pressure using 4D flow MRI can be a valuable technique in management of cardiovascular diseases. In order to perform these tasks, all necessary steps in the corresponding process chain can be carried out in our in-house developed software framework MEDIFRAME. In this article, we apply MEDIFRAME for a study of hemodynamics in the pulmonary arteries of five healthy volunteers. The study included measuring vector fields of blood flow velocities by phase-contrast MRI and subsequently computing relative blood pressure maps. We visualized blood flow by streamline depictions and computed characteristic values for the left and the right pulmonary artery (LPA and RPA). In all volunteers, we observed a lower amount of blood flow in the LPA compared to the RPA. Furthermore, we visualized blood pressure maps using volume rendering and generated graphs of pressure differences between the LPA, the RPA and the main pulmonary artery. In most volunteers, blood pressure was increased near to the bifurcation and in the proximal LPA, leading to higher average pressure values in the LPA compared to the RPA.

  9. Pulsatile flow and mass transport over an array of cylinders: gas transfer in a cardiac-driven artificial lung.

    PubMed

    Chan, Kit Yan; Fujioka, Hideki; Bartlett, Robert H; Hirschl, Ronald B; Grotberg, James B

    2006-02-01

    The pulsatile flow and gas transport of a Newtonian passive fluid across an array of cylindrical microfibers are numerically investigated. It is related to an implantable, artificial lung where the blood flow is driven by the right heart. The fibers are modeled as either squared or staggered arrays. The pulsatile flow inputs considered in this study are a steady flow with a sinusoidal perturbation and a cardiac flow. The aims of this study are twofold: identifying favorable array geometry/spacing and system conditions that enhance gas transport; and providing pressure drop data that indicate the degree of flow resistance or the demand on the right heart in driving the flow through the fiber bundle. The results show that pulsatile flow improves the gas transfer to the fluid compared to steady flow. The degree of enhancement is found to be significant when the oscillation frequency is large, when the void fraction of the fiber bundle is decreased, and when the Reynolds number is increased; the use of a cardiac flow input can also improve gas transfer. In terms of array geometry, the staggered array gives both a better gas transfer per fiber (for relatively large void fraction) and a smaller pressure drop (for all cases). For most cases shown, an increase in gas transfer is accompanied by a higher pressure drop required to power the flow through the device.

  10. Bernoulli's Principle Applied to Brain Fluids: Intracranial Pressure Does Not Drive Cerebral Perfusion or CSF Flow.

    PubMed

    Schmidt, Eric; Ros, Maxime; Moyse, Emmanuel; Lorthois, Sylvie; Swider, Pascal

    2016-01-01

    In line with the first law of thermodynamics, Bernoulli's principle states that the total energy in a fluid is the same at all points. We applied Bernoulli's principle to understand the relationship between intracranial pressure (ICP) and intracranial fluids. We analyzed simple fluid physics along a tube to describe the interplay between pressure and velocity. Bernoulli's equation demonstrates that a fluid does not flow along a gradient of pressure or velocity; a fluid flows along a gradient of energy from a high-energy region to a low-energy region. A fluid can even flow against a pressure gradient or a velocity gradient. Pressure and velocity represent part of the total energy. Cerebral blood perfusion is not driven by pressure but by energy: the blood flows from high-energy to lower-energy regions. Hydrocephalus is related to increased cerebrospinal fluid (CSF) resistance (i.e., energy transfer) at various points. Identification of the energy transfer within the CSF circuit is important in understanding and treating CSF-related disorders. Bernoulli's principle is not an abstract concept far from clinical practice. We should be aware that pressure is easy to measure, but it does not induce resumption of fluid flow. Even at the bedside, energy is the key to understanding ICP and fluid dynamics.

  11. Diastolic coronary artery pressure-flow velocity relationships in conscious man.

    PubMed

    Dole, W P; Richards, K L; Hartley, C J; Alexander, G M; Campbell, A B; Bishop, V S

    1984-09-01

    We characterised the diastolic pressure-flow velocity relationship in the normal left coronary artery of conscious man before and after vasodilatation with angiographic contrast medium. Phasic coronary artery pressure and flow velocity were measured in ten patients during individual diastoles (0.5 to 1.0 s) using a 20 MHz catheter-tipped, pulsed Doppler transducer. All pressure-flow velocity curves were linear over the diastolic pressure range of 110 +/- 15 (SD) mmHg to 71 +/- 7 mmHg (r = 0.97 +/- 0.01). In the basal state, values for slope and extrapolated zero flow pressure intercept averaged 0.35 +/- 0.12 cm X s-1 X mmHg-1 and 51.7 +/- 8.6 mmHg, respectively. Vasodilatation resulted in a 2.5 +/- 0.5 fold increase in mean flow velocity. The diastolic pressure-flow velocity relationship obtained during peak vasodilatation compared to that during basal conditions was characterised by a steeper slope (0.80 +/- 0.48 cm X s-1 X mmHg-1, p less than 0.001) and lower extrapolated zero flow pressure intercept (37.9 +/- 9.8 mmHg, p less than 0.05). Mean right atrial pressure for the group averaged 4.4 +/- 1.7 mmHg, while left ventricular end-diastolic pressure averaged 8.7 +/- 2.8 mmHg. These observations in man are similar to data reported in the canine coronary circulation which are consistent with a vascular waterfall model of diastolic flow regulation. In this model, coronary blood flow may be regulated by changes in diastolic zero flow pressure as well as in coronary resistance.

  12. Stability of the electroosmotic flow of a two-layer electrolyte-dielectric system with external pressure gradient⋆.

    PubMed

    Gorbacheva, E V; Ganchenko, G S; Demekhin, E A

    2018-03-27

    The stability of the electroosmotic flow of electrolyte-dielectric viscous liquids under the influence of the DC and AC electric fields along with the external pressure gradient is studied theoretically. Liquids are bounded by two infinite parallel plates. The lower wall bordering the electrolyte is assumed to be a charged surface, and the upper wall is electrically isolated. The charge at the lower boundary is assumed to be immobile, while the surface charge at the free surface is assumed to be mobile. In this paper, we study the micro- and nanosized liquid layers. The mathematical model is described by a nonlinear system of the Nernst-Planck-Poisson-Stokes partial differential equations with the appropriate boundary conditions on the solid surface, the electrolyte/dielectric interface, and on the upper wall. The pressure gradient is highly important for the stability of the flow. For the DC case, the external pressure could either stabilize and destabilize the flow depending on the relative directions of the electroosmotic flow and the pressure-driven flow. For the AC case, the dependence on the value of the external pressure is not monotonous for different wave numbers of perturbations, but, as a rule, the external pressure destabilizes the flow. As the frequency of the electric field increases, the one-dimensional solution of the problem becomes stable.

  13. Method and system for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2001-01-01

    An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.

  14. The pressure-dilatation correlation in compressible flows

    NASA Technical Reports Server (NTRS)

    Sarkar, S.

    1992-01-01

    Simulations of simple compressible flows have been performed to enable the direct estimation of the pressure-dilatation correlation. The generally accepted belief that this correlation may be important in high-speed flows has been verified by the simulations. The pressure-dilatation correlation is theoretically investigated by considering the equation for fluctuating pressure in an arbitrary compressible flow. This leads to the isolation of a component of the pressure-dilatation that exhibits temporal oscillations on a fast time scale. Direct numerical simulations of homogeneous shear turbulence and isotropic turbulence show that this fast component has a negligible contribution to the evolution of turbulent kinetic energy. Then, an analysis for the case of homogeneous turbulence is performed to obtain a formal solution for the nonoscillatory pressure-dilatation. Simplifications lead to a model that algebraically relates the pressure-dilatation to quantities traditionally obtained in incompressible turbulence closures. The model is validated by direct comparison with the simulations.

  15. Flow enhancement of deformable self-driven objects by countercurrent

    NASA Astrophysics Data System (ADS)

    Mashiko, Takashi; Fujiwara, Takashi

    2016-10-01

    We report numerical simulations of the mixed flows of two groups of deformable self-driven objects. The objects belonging to the group A (B) have drift coefficient D =DA (DB), where a positive (negative) value of D denotes the rightward (leftward) driving force. For co-current flows (DA ,DB > 0), the result is rather intuitive: the net flow of one group (QA) increases if the driving force of the other group is stronger than its own driving force (i.e., DB >DA), and decreases otherwise (DB flows (DB < 0 flow of one group (QA) can increase with the driving force of the other group (|DB |), and the net flow with a stronger countercurrent can be larger than the net flow with a weaker co-current. This phenomenon is observed only for deformable objects and results from the entanglement of objects, which in turn is caused by their deformability.

  16. High-flow oxygen therapy: pressure analysis in a pediatric airway model.

    PubMed

    Urbano, Javier; del Castillo, Jimena; López-Herce, Jesús; Gallardo, José A; Solana, María J; Carrillo, Ángel

    2012-05-01

    The mechanism of high-flow oxygen therapy and the pressures reached in the airway have not been defined. We hypothesized that the flow would generate a low continuous positive pressure, and that elevated flow rates in this model could produce moderate pressures. The objective of this study was to analyze the pressure generated by a high-flow oxygen therapy system in an experimental model of the pediatric airway. An experimental in vitro study was performed. A high-flow oxygen therapy system was connected to 3 types of interface (nasal cannulae, nasal mask, and oronasal mask) and applied to 2 types of pediatric manikin (infant and neonatal). The pressures generated in the circuit, in the airway, and in the pharynx were measured at different flow rates (5, 10, 15, and 20 L/min). The experiment was conducted with and without a leak (mouth sealed and unsealed). Linear regression analyses were performed for each set of measurements. The pressures generated with the different interfaces were very similar. The maximum pressure recorded was 4 cm H(2)O with a flow of 20 L/min via nasal cannulae or nasal mask. When the mouth of the manikin was held open, the pressures reached in the airway and pharynxes were undetectable. Linear regression analyses showed a similar linear relationship between flow and pressures measured in the pharynx (pressure = -0.375 + 0.138 × flow) and in the airway (pressure = -0.375 + 0.158 × flow) with the closed mouth condition. According to our hypothesis, high-flow oxygen therapy systems produced a low-level CPAP in an experimental pediatric model, even with the use of very high flow rates. Linear regression analyses showed similar linear relationships between flow and pressures measured in the pharynx and in the airway. This finding suggests that, at least in part, the effects may be due to other mechanisms.

  17. Longitudinal pressure-driven flows between superhydrophobic grooved surfaces: Large effective slip in the narrow-channel limit

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Yariv, Ehud

    2017-07-01

    The gross amplification of the fluid velocity in pressure-driven flows due to the introduction of superhydrophobic walls is commonly quantified by an effective slip length. The canonical duct-flow geometry involves a periodic structure of longitudinal shear-free stripes at either one or both of the bounding walls, corresponding to flat-meniscus gas bubbles trapped within a periodic array of grooves. This grating configuration is characterized by two geometric parameters, namely the ratio κ of channel width to microstructure period and the areal fraction Δ of the shear-free stripes. For wide channels, κ ≫1 , this geometry is known to possess an approximate solution where the dimensionless slip length λ , normalized by the duct semiwidth, is small, indicating a weak superhydrophobic effect. We here address the other extreme of narrow channels, κ ≪1 , identifying large O (κ-2) values of λ for the symmetric configuration, where both bounding walls are superhydrophobic. This velocity enhancement is associated with an unconventional Poiseuille-like flow profile where the parabolic velocity variation takes place in a direction parallel (rather than perpendicular) to the boundaries. Use of matched asymptotic expansions and conformal-mapping techniques provides λ up to O (κ-1) , establishing the approximationλ ˜κ-2Δ/33 +κ-1Δ/2π ln4 +⋯, which is in excellent agreement with a semianalytic solution of the dual equations governing the respective coefficients of a Fourier-series representation of the fluid velocity. No similar singularity occurs in the corresponding asymmetric configuration, involving a single superhydrophobic wall; in that geometry, a Hele-Shaw approximation shows that λ =O (1 ) .

  18. Laser Anemometer Measurements of the Flow Field in a 4:1 Pressure Ratio Centrifugal Impeller

    NASA Technical Reports Server (NTRS)

    Skoch, G. J.; Prahst, P. S.; Wernet, M. P.; Wood, J. R.; Strazisar, A. J.

    1997-01-01

    A laser-doppler anemometer was used to obtain flow-field velocity measurements in a 4:1 pressure ratio, 4.54 kg/s (10 lbm/s), centrifugal impeller, with splitter blades and backsweep, which was configured with a vaneless diffuser. Measured through-flow velocities are reported for ten quasi-orthogonal survey planes at locations ranging from 1% to 99% of main blade chord. Measured through-flow velocities are compared to those predicted by a 3-D viscous steady flow analysis (Dawes) code. The measurements show the development and progression through the impeller and vaneless diffuser of a through-flow velocity deficit which results from the tip clearance flow and accumulation of low momentum fluid centrifuged from the blade and hub surfaces. Flow traces from the CFD analysis show the origin of this deficit which begins to grow in the inlet region of the impeller where it is first detected near the suction surface side of the passage. It then moves toward the pressure side of the channel, due to the movement of tip clearance flow across the impeller passage, where it is cut by the splitter blade leading edge. As blade loading increases toward the rear of the channel the deficit region is driven back toward the suction surface by the cross-passage pressure gradient. There is no evidence of a large wake region that might result from flow separation and the impeller efficiency is relatively high. The flow field in this impeller is quite similar to that documented previously by NASA Lewis in a large low-speed backswept impeller.

  19. Pulsating Flows in a Tube with Expandable Wall

    NASA Astrophysics Data System (ADS)

    Raguso, Frank; Goushcha, Oleg

    2017-11-01

    A mean axial fluid flow inside a cardiovascular system has a periodic behavior driven by a heart. In one period, the flow through aorta is accelerated to a Reynolds number associated with turbulent flow and decelerated to nearly stagnant condition. The cyclic pressure in the aorta also exerts time-dependent forces on the walls of the cardiovascular system. Since walls are not rigid, they can expand under fluidic pressure. It is of interest to examine the effect of expandable walls on the flow regime transition. To achieve this, an experimental apparatus has been set up. The periodic mean axial flow inside the tubes is driven by a motor-controlled piston programmed to induce a periodic flow. A time-resolved particle image velocimetry method has been used to calculate the flow velocity field in two tubes: (1) a rigid tube and (2) a flexible tube with expandable walls. The velocity fields from two tubes were comparted to identify any differences in flow transition mechanisms.

  20. Real-time display of flow-pressure-volume loops.

    PubMed

    Morozoff, P E; Evans, R W

    1992-01-01

    Graphic display of respiratory waveforms can be valuable for monitoring the progress of ventilated patients. A system has been developed that can display flow-pressure-volume loops as derived from a patient's respiratory circuit in real time. It can also display, store, print, and retrieve ventilatory waveforms. Five loops can be displayed at once: current, previous, reference, "ideal," and previously saved. Two components, the data-display device (DDD) and the data-collection device (DCD), comprise the system. An IBM 286/386 computer with a graphics card (VGA) and bidirectional parallel port is used for the DDD; an eight-bit microprocessor card and an A/D convertor card make up the DCD. A real-time multitasking operating system was written to control the DDD, while the DCD operates from in-line assembly code. The DCD samples the pressure and flow sensors at 100 Hz and looks for a complete flow waveform pattern based on flow slope. These waveforms are then passed to the DDD via the mutual parallel port. Within the DDD a process integrates the flow to create a volume signal and performs a multilinear regression on the pressure, flow, and volume data to calculate the elastance, resistance, pressure offset, and coefficient of determination. Elastance, resistance, and offset are used to calculate Pr and Pc where: Pr[k] = P[k]-offset-(elastance.V[k]) and Pc[k] = P[k]-offset-(resistance.F[k]). Volume vs. Pc and flow vs. Pr can be displayed in real time. Patient data from previous clinical tests were loaded into the device to verify the software calculations. An analog waveform generator was used to simulate flow and pressure waveforms that validated the system.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Flow-independent dynamics in aneurysm (FIDA): pressure measurements following partial and complete flow impairment in experimental aneurysm model

    PubMed Central

    Watanabe, Masaki; Chaudhry, Saqib A; Qureshi, Adnan I

    2014-01-01

    Background: There have been growing concerns regarding delayed aneurysm rupture subsequent to the flow-diverting stent deployment. Therefore, more investigations are needed regarding hemodynamic changes secondary to flow-diverting stent deployment. Objective: To study intra-aneurysmal and perianeurysmal pressures after partial and complete flow impairment into the aneurysm. Methods A silicone model of an 8-mm-sized aneurysm (neck diameter: 5 mm, vessel size: 4 mm) was used. The aneurysm wall was encapsulated and sealed within a 5 ml syringe filled with saline and a pressure sensor guide wire (ComboWire, Volcano Corp.) to detect pressure changes in the perivascular compartment (outer aneurysm wall). A second pressure sensor guide wire was advanced inside the aneurysm sac. Both pressure sensors were continuously measuring pressure inside and outside the aneurysm under pulsatile flow under the following conditions: 1) baseline (reference); 2) a 16 mm by 3.75 mm flow-diverting stent (ev3/Covidien Vascular, Mansfield, MA) deployed in front of the aneurysm; 3) two flow-diverting stents (16 mm by 3.5 mm) were deployed; and 4) a covered stent (4 mm by 16 mm VeriFlex coronary artery stent covered with rubber sheet) was deployed. Results: Mean (±SD) baseline pressures inside and outside the aneurysm were 53.9 (±2.4) mmHg (range 120–40 mmHg) and 15.4 (±0.7) mmHg (range 40–8mmHg), respectively. There was no change in pressure inside and outside the aneurysm after deploying the first and second flow-diverting stents (partial flow impairment) and it remained at 53.9 (±2.7) mmHg and 14.9 (±1) mmHg for the pressure inside and outside the aneurysm, respectively. The pressure recording from outside the aneurysm dropped from 15.4 (±0.7) mmHg to 0.3 (±0.7) mmHg after deploying the covered stent (complete flow impairment). There was no change in pressure inside the aneurysm after deploying the covered stent. Mean (±SD) pressure within the aneurysm was 55.1 (±1.7) mmHg and

  2. Pressure difference-flow rate variation in a femoral artery branch casting of man for steady flow

    NASA Technical Reports Server (NTRS)

    Cho, Y. I.; Back, L. H.; Crawford, D. W.

    1983-01-01

    In-vitro, steady flow in a casting of the profunda femoris branch of the femoral artery of man was studied by measuring pressure differences in the main lumen and also in the branch over a large Reynolds number range from 200 to 1600. Effects of viscous and inviscid flows in this femoral artery branch were demonstrated quantitatively. The critical ratio of the flow rate in the branch to the upstream main lumen in this casting was found to be 0.4, above which the inviscid flow analysis indicated a pressure rise and below which it yielded a pressure drop in the main lumen across the branch junction. Pressure rises were experimentally found to occur both in the main lumen and in the branch for certain ranges of the aforementioned ratio.

  3. Pressure-flow relationships in in vitro model of compartment syndrome.

    PubMed

    Shrier, I; Magder, S

    1995-07-01

    Compartment syndrome is a condition in which an increase in intramuscular pressure decreases blood flow to skeletal muscle. According to the Starling resistor (i.e., vascular waterfall) model of blood flow, the decrease in flow could occur through an increase in arterial resistance (Rart) or an increase in the critical closing pressure (Pcrit). To determine which explains the decrease in flow, we pump perfused a canine gastrocnemius muscle placed within an airtight box, controlled box pressures (Pbox) so that flow ranged from 100 to 50%, and measured Pcrit, Rart, arterial compliance, small venular pressure (measured by the double-occlusion technique), and venous pressure. An increase in Pbox limited flow mainly through an increase in Pcrit (75-85%), with only small changes in Rart (15-25%) and no change in arterial compliance. Increases in Pbox also produced a vascular waterfall in the venous circulation, but small venular transmural pressure always remained less than control levels. We conclude that increases in Pbox mostly limit blood flow through increases in Pcrit and that Rart plays a minor role. Transmural pressure across the small venules decreases with increases in intramuscular pressure, which contradicts the currently held belief that compartment syndrome is due to a cycle of swelling-ischemia-swelling.

  4. Flow rate-pressure drop relation for deformable shallow microfluidic channels

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Cognet, Vincent; Shidhore, Tanmay C.; Stone, Howard A.

    2018-04-01

    Laminar flow in devices fabricated from soft materials causes deformation of the passage geometry, which affects the flow rate--pressure drop relation. For a given pressure drop, in channels with narrow rectangular cross-section, the flow rate varies as the cube of the channel height, so deformation can produce significant quantitative effects, including nonlinear dependence on the pressure drop [{Gervais, T., El-Ali, J., G\\"unther, A. \\& Jensen, K.\\ F.}\\ 2006 Flow-induced deformation of shallow microfluidic channels.\\ \\textit{Lab Chip} \\textbf{6}, 500--507]. Gervais et. al. proposed a successful model of the deformation-induced change in the flow rate by heuristically coupling a Hookean elastic response with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbation approach for the flow rate--pressure drop relation in a shallow deformable microchannel using the theory of isotropic quasi-static plate bending and the Stokes equations under a lubrication approximation (specifically, the ratio of the channel's height to its width and of the channel's height to its length are both assumed small). Our result contains no free parameters and confirms Gervais et. al.'s observation that the flow rate is a quartic polynomial of the pressure drop. The derived flow rate--pressure drop relation compares favorably with experimental measurements.

  5. In Situ Measurement of Ground-Surface Flow Resistivity

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1984-01-01

    New instrument allows in situ measurement of flow resistivity on Earth's ground surface. Nonintrusive instrument includes specimen holder inserted into ground. Flow resistivity measured by monitoring compressed air passing through flow-meters; pressure gages record pressure at ground surface. Specimen holder with knife-edged inner and outer cylinders easily driven into ground. Air-stream used in measuring flow resistivity of ground enters through quick-connect fitting and exits through screen and venthole.

  6. Gravity-driven groundwater flow and slope failure potential: 1. Elastic effective-stress model

    USGS Publications Warehouse

    Iverson, Richard M.; Reid, Mark E.

    1992-01-01

    Hilly or mountainous topography influences gravity-driven groundwater flow and the consequent distribution of effective stress in shallow subsurface environments. Effective stress, in turn, influences the potential for slope failure. To evaluate these influences, we formulate a two-dimensional, steady state, poroelastic model. The governing equations incorporate groundwater effects as body forces, and they demonstrate that spatially uniform pore pressure changes do not influence effective stresses. We implement the model using two finite element codes. As an illustrative case, we calculate the groundwater flow field, total body force field, and effective stress field in a straight, homogeneous hillslope. The total body force and effective stress fields show that groundwater flow can influence shear stresses as well as effective normal stresses. In most parts of the hillslope, groundwater flow significantly increases the Coulomb failure potential Φ, which we define as the ratio of maximum shear stress to mean effective normal stress. Groundwater flow also shifts the locus of greatest failure potential toward the slope toe. However, the effects of groundwater flow on failure potential are less pronounced than might be anticipated on the basis of a simpler, one-dimensional, limit equilibrium analysis. This is a consequence of continuity, compatibility, and boundary constraints on the two-dimensional flow and stress fields, and it points to important differences between our elastic continuum model and limit equilibrium models commonly used to assess slope stability.

  7. Surge dynamics coupled to pore-pressure evolution in debris flows

    USGS Publications Warehouse

    Savage, S.B.; Iverson, R.M.; ,

    2003-01-01

    Temporally and spatially varying pore-fluid pressures exert strong controls on debris-flow motion by mediating internal and basal friction at grain contacts. We analyze these effects by deriving a one-dimensional model of pore-pressure diffusion explicitly coupled to changes in debris-flow thickness. The new pore-pressure equation is combined with Iverson's (1997) extension of the depth-averaged Savage-Hutter (1989, 1991) granular avalanche equations to predict motion of unsteady debris-flow surges with evolving pore-pressure distributions. Computational results illustrate the profound effects of pore-pressure diffusivities on debris-flow surge depths and velocities. ?? 2003 Millpress,.

  8. Experimental Investigation of Oscillatory Flow Pressure and Pressure Drop Through Complex Geometries

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir B.; Wang, Meng; Gedeon, David

    2005-01-01

    A series of experiments have been performed to investigate the oscillatory flow pressure and pressure drop through complex geometries. These experiments were conducted at the CSU-SLRE facility which is a horizontally opposed, two-piston, single-acting engine with a split crankshaft driving mechanism. Flow through a rectangular duct, with no insert (obstruction), was studied first. Then four different inserts were examined: Abrupt, Manifold, Diverging Short and Diverging Long. The inserts were mounted in the center of the rectangular duct to represent different type of geometries that could be encountered in Stirling machines. The pressure and pressure drop of the oscillating flow was studied for: 1) different inserts, 2) different phase angle between the two pistons of the engine (zero, 90 lead, 180, and 90 lag), and 3) for different piston frequencies (5, 10, 15, and 20 Hz). It was found that the pressure drop of the oscillatory flow increases with increasing Reynolds number. The pressure drop was shown to be mainly due to the gas inertia for the case of oscillatory flow through a rectangular duct with no insert. On the other hand, for the cases with different inserts into the rectangular duct, the pressure drop has three sources: inertia, friction, and local losses. The friction pressure drop is only a small fraction of the total pressure drop. It was also shown that the dimensionless pressure drop decreases with increasing kinetic Reynolds number.

  9. Time course of pressure and flow in ascending aorta during ejection.

    PubMed

    Perlini, S; Soldà, P L; Piepoli, M; Calciati, A; Paro, M; Marchetti, G; Meno, F; Finardi, G; Bernardi, L

    1991-02-01

    To analyze aortic flow and pressure relationships, 10 closed-chest anaesthetised dogs were instrumented with electromagnetic aortic flow probes and micromanometers in the left ventricle and ascending aorta. Left ventricular ejection time was divided into: time to peak flow (T1) (both pressure and flow rising), peak flow to peak pressure time (T2) (pressure rising, flow decreasing), and peak pressure to dicrotic notch time (T3) (pressure and flow both decreasing). These time intervals were expressed as percent of total ejection time. Load-active interventions rose markedly T2 (from 4.2 +/- 5.5 to 19.4 +/- 3.5 after phenylephrine (p less than 0.02); from 4.2 +/- 6.5 to 21.2 +/- 5.3 after dextran (p less than 0.02)). Conversely, dobutamine reduced T2 from 4.4 +/- 5.9 to -2.5 +/- 6.5 (p less than 0.05). Thus, during load-active interventions aortic pressure increases for a longer T2 time although forward flow is decreasing, as a result of higher aortic elastic recoil during ejection. Conversely, beta 1-adrenergic stimulation significantly shortens T2. Dynamic pressure-flow relationship is thus continuously changing during ejection. T2 seems to be inversely related to the efficiency of left ventricular ejection dynamics.

  10. Flow-driven waves and sink-driven oscillations during aggregation of Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Gholami, Azam; Zykov, Vladimir; Steinbock, Oliver; Bodenschatz, Eberhard

    The slime mold Dictyostelium discoideum (D.d) is a well-known model system for the study of biological pattern formation. Under starvation, D.d. cells aggregate chemotactically towards cAMP signals emitted periodically from an aggregation center. In the natural environment, D.d cells may experience fluid flows that can profoundly change the underlying wave generation process. We investigate spatial-temporal dynamics of a uniformly distributed population of D.d. cells in a flow-through narrow microfluidic channel with a cell-free inlet area. We show that flow can significantly influence the dynamics of the system and lead to a flow- driven instability that initiate downstream traveling cAMP waves. We also show that cell-free boundary regions have a significant effect on the observed patterns and can lead to a new kind of instability. Since there are no cells in the inlet to produce cAMP, the points in the vicinity of the inlet lose cAMP due to advection or diffusion and gain only a little from the upstream of the channel (inlet). In other words, there is a large negative flux of cAMP in the neighborhood close to the inlet, which can be considered as a sink. This negative flux close to the inlet drives a new kind of instability called sink-driven oscillations. Financial support of the MaxSynBio Consortium is acknowledged.

  11. Flow fields of low pressure vent exhausts

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1990-01-01

    The flow field produced by low pressure gas vents are described based on experimental data obtained from tests in a large vacuum chamber. The gas density, pressure, and flux at any location in the flow field are calculated based on the vent plume description and the knowledge of the flow rate and velocity of the venting gas. The same parameters and the column densities along a specified line of sight traversing the plume are also obtained and shown by a computer generated graphical representation. The fields obtained with a radically scanning Pitot probe within the exhausting gas are described by a power of the cosine function, the mass rate, and the distance from the exit port. The field measurements were made for gas at pressures ranging from 2 to 50 torr venting from pipe fittings with diameters to 3/16 to 1-1/2 inches I.D. (4.76 to 38.1 mm). The N2 mass flow rates ranged from 2E-4 to 3.7E-1 g/s.

  12. Flow fields of low pressure vent exhausts

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1989-01-01

    The flow field produced by low pressure gas vents are described based on experimental data obtained from tests in a large vacuum chamber. The gas density, pressure, and flux at any location in the flow field are calculated based on the vent plume description and the knowledge of the flow rate and velocity of the venting gas. The same parameters and the column densities along a specified line of sight traversing the plume are also obtained and shown by a computer-generated graphical representation. The fields obtained with a radially scanning Pitot probe within the exhausting gas are described by a power of the cosine function, the mass rate and the distance from the exit port. The field measurements were made for gas at pressures ranging from 2 to 50 torr venting from pipe fittings with diameters of 3/16 inch to 1-1/2 inches I.D. (4.76 mm to 38.1 mm). The N(2) mass flow rates ranged from 2E-4 to 3.7E-1 g/s.

  13. Experimental Studies of Low-Pressure Turbine Flows and Flow Control. Streamwise Pressure Profiles and Velocity Profiles

    NASA Technical Reports Server (NTRS)

    Volino, Ralph

    2012-01-01

    This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy faculties. The geometry corresponded to "Pak B" LPT airfoil. The test section simulated LPT flow in a passage. Three experimental studies were performed: (a) Boundary layer measurements for ten baseline cases under high and low freestream turbulence conditions at five Reynolds numbers of 25,000, 50,000, 100,000, 200,000, and 300,000, based on passage exit velocity and suction surface wetted length; (b) Passive flow control studies with three thicknesses of two-dimensional bars, and two heights of three-dimensional circular cylinders with different spanwise separations, at same flow conditions as the 10 baseline cases; (c) Active flow control with oscillating synthetic (zero net mass flow) vortex generator jets, for one case with low freestream turbulence and a low Reynolds number of 25,000. The Passive flow control was successful at controlling the separation problem at low Reynolds numbers, with varying degrees of success from case to case and varying levels of impact at higher Reynolds numbers. The active flow control successfully eliminated the large separation problem for the low Reynolds number case. Very detailed data was acquired using hot-wire anemometry, including single and two velocity components, integral boundary layer quantities, turbulence statistics and spectra, turbulent shear stresses and their spectra, and intermittency, documenting transition, separation and reattachment. Models were constructed to correlate the results. The report includes a summary of the work performed and reprints of the publications describing the various studies.This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy

  14. Surface tension driven flow in glass melts and model fluids

    NASA Technical Reports Server (NTRS)

    Mcneil, T. J.; Cole, R.; Subramanian, R. S.

    1982-01-01

    Surface tension driven flow has been investigated analytically and experimentally using an apparatus where a free column of molten glass or model fluids was supported at its top and bottom faces by solid surfaces. The glass used in the experiments was sodium diborate, and the model fluids were silicone oils. In both the model fluid and glass melt experiments, conclusive evidence was obtained to prove that the observed flow was driven primarily by surface tension forces. The experimental observations are in qualitative agreement with predictions from the theoretical model.

  15. Flow Analysis of a Gas Turbine Low- Pressure Subsystem

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1997-01-01

    The NASA Lewis Research Center is coordinating a project to numerically simulate aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The numerical model solves the three-dimensional Navier-Stokes flow equations through all components within the low-pressure subsystem as well as the external flow around the engine nacelle. The Advanced Ducted Propfan Analysis Code (ADPAC), which is being developed jointly by Allison Engine Company and NASA, is the Navier-Stokes flow code being used for LPS simulation. The majority of the LPS project is being done under a NASA Lewis contract with Allison. Other contributors to the project are NYMA and the University of Toledo. For this project, the Energy Efficient Engine designed by GE Aircraft Engines is being modeled. This engine includes a low-pressure system and a high-pressure system. An inlet, a fan, a booster stage, a bypass duct, a lobed mixer, a low-pressure turbine, and a jet nozzle comprise the low-pressure subsystem within this engine. The tightly coupled flow analysis evaluates aerodynamic interactions between all components of the LPS. The high-pressure core engine of this engine is simulated with a one-dimensional thermodynamic cycle code in order to provide boundary conditions to the detailed LPS model. This core engine consists of a high-pressure compressor, a combustor, and a high-pressure turbine. The three-dimensional LPS flow model is coupled to the one-dimensional core engine model to provide a "hybrid" flow model of the complete gas turbine Energy Efficient Engine. The resulting hybrid engine model evaluates the detailed interaction between the LPS components at design and off-design engine operating conditions while considering the lumped-parameter performance of the core engine.

  16. Data flow machine for data driven computing

    DOEpatents

    Davidson, George S.; Grafe, Victor G.

    1995-01-01

    A data flow computer which of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status but to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.

  17. Experimental Study on the Flow Regimes and Pressure Gradients of Air-Oil-Water Three-Phase Flow in Horizontal Pipes

    PubMed Central

    Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645

  18. Experimental study on the flow regimes and pressure gradients of air-oil-water three-phase flow in horizontal pipes.

    PubMed

    Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed.

  19. Active control of Boundary Layer Separation & Flow Distortion in Adverse Pressure Gradient Flows via Supersonic Microjets

    NASA Technical Reports Server (NTRS)

    Alvi, Farrukh S.; Gorton, Susan (Technical Monitor)

    2005-01-01

    Inlets to aircraft propulsion systems must supply flow to the compressor with minimal pressure loss, flow distortion or unsteadiness. Flow separation in internal flows such as inlets and ducts in aircraft propulsion systems and external flows such as over aircraft wings, is undesirable as it reduces the overall system performance. The aim of this research has been to understand the nature of separation and more importantly, to explore techniques to actively control this flow separation. In particular, the use of supersonic microjets as a means of controlling boundary layer separation was explored. The geometry used for the early part of this study was a simple diverging Stratford ramp, equipped with arrays of supersonic microjets. Initial results, based on the mean surface pressure distribution, surface flow visualization and Planar Laser Scattering (PLS) indicated a reverse flow region. We implemented supersonic microjets to control this separation and flow visualization results appeared to suggest that microjets have a favorable effect, at least to a certain extent. However, the details of the separated flow field were difficult to determine based on surface pressure distribution, surface flow patterns and PLS alone. It was also difficult to clearly determine the exact influence of the supersonic microjets on this flow. In the latter part of this study, the properties of this flow-field and the effect of supersonic microjets on its behavior were investigated in further detail using 2-component (planar) Particle Image Velocimetry (PIV). The results clearly show that the activation of microjets eliminated flow separation and resulted in a significant increase in the momentum of the fluid near the ramp surface. Also notable is the fact that the gain in momentum due to the elimination of flow separation is at least an order of magnitude larger (two orders of magnitude larger in most cases) than the momentum injected by the microjets and is accomplished with very

  20. Experimental Studies of Low-Pressure Turbine Flows and Flow Control

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.

    2012-01-01

    This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy faculties. The geometry corresponded to "Pak B" LPT airfoil. The test section simulated LPT flow in a passage. Three experimental studies were performed: (a) Boundary layer measurements for ten baseline cases under high and low freestream turbulence conditions at five Reynolds numbers of 25,000, 50,000, 100,000, 200,000, and 300,000, based on passage exit velocity and suction surface wetted length; (b) Passive flow control studies with three thicknesses of two-dimensional bars, and two heights of three-dimensional circular cylinders with different spanwise separations, at same flow conditions as the 10 baseline cases; (c) Active flow control with oscillating synthetic (zero net mass flow) vortex generator jets, for one case with low freestream turbulence and a low Reynolds number of 25,000. The Passive flow control was successful at controlling the separation problem at low Reynolds numbers, with varying degrees of success from case to case and varying levels of impact at higher Reynolds numbers. The active flow control successfully eliminated the large separation problem for the low Reynolds number case. Very detailed data was acquired using hot-wire anemometry, including single and two velocity components, integral boundary layer quantities, turbulence statistics and spectra, turbulent shear stresses and their spectra, and intermittency, documenting transition, separation and reattachment. Models were constructed to correlate the results. The report includes a summary of the work performed and reprints of the publications describing the various studies.

  1. Broadening of Analyte Streams due to a Transverse Pressure Gradient in Free-Flow Isoelectric Focusing

    PubMed Central

    Dutta, Debashis

    2017-01-01

    Pressure-driven cross-flows can arise in free-flow isoelectric focusing systems (FFIEF) due to a non-uniform electroosmotic flow velocity along the channel width induced by the pH gradient in this direction. In addition, variations in the channel cross-section as well as unwanted differences in hydrostatic heads at the buffer/sample inlet ports can also lead to such pressure-gradients which besides altering the equilibrium position of the sample zones have a tendency to substantially broaden their widths deteriorating the separations. In this situation, a thorough assessment of stream broadening due to transverse pressure-gradients in FFIEF devices is necessary in order to establish accurate design rules for the assay. The present article describes a mathematical framework to estimate the noted zone dispersion in FFIEF separations based on the method-of-moments approach under laminar flow conditions. A closed-form expression has been derived for the spatial variance of the analyte streams at their equilibrium positions as a function of the various operating parameters governing the assay performance. This expression predicts the normalized stream variance under the chosen conditions to be determined by two dimensionless Péclet numbers evaluated based on the transverse pressure-driven and electrophoretic solute velocities in the separation chamber, respectively. Moreover, the analysis shows that while the stream width can be expected to increase with an increase in the value of the first Péclet number, the opposite trend will be followed with respect to the latter. The noted results have been validated using Monte Carlo simulations that also establish a time/length scale over which the predicted equilibrium stream width is attained in the system. PMID:28081900

  2. Pressure evolution equation for the particulate phase in inhomogeneous compressible disperse multiphase flows

    NASA Astrophysics Data System (ADS)

    Annamalai, Subramanian; Balachandar, S.; Sridharan, P.; Jackson, T. L.

    2017-02-01

    An analytical expression describing the unsteady pressure evolution of the dispersed phase driven by variations in the carrier phase is presented. In this article, the term "dispersed phase" represents rigid particles, droplets, or bubbles. Letting both the dispersed and continuous phases be inhomogeneous, unsteady, and compressible, the developed pressure equation describes the particle response and its eventual equilibration with that of the carrier fluid. The study involves impingement of a plane traveling wave of a given frequency and subsequent volume-averaged particle pressure calculation due to a single wave. The ambient or continuous fluid's pressure and density-weighted normal velocity are identified as the source terms governing the particle pressure. Analogous to the generalized Faxén theorem, which is applicable to the particle equation of motion, the pressure expression is also written in terms of the surface average of time-varying incoming flow properties. The surface average allows the current formulation to be generalized for any complex incident flow, including situations where the particle size is comparable to that of the incoming flow. Further, the particle pressure is also found to depend on the dispersed-to-continuous fluid density ratio and speed of sound ratio in addition to dynamic viscosities of both fluids. The model is applied to predict the unsteady pressure variation inside an aluminum particle subjected to normal shock waves. The results are compared against numerical simulations and found to be in good agreement. Furthermore, it is shown that, although the analysis is conducted in the limit of negligible flow Reynolds and Mach numbers, it can be used to compute the density and volume of the dispersed phase to reasonable accuracy. Finally, analogous to the pressure evolution expression, an equation describing the time-dependent particle radius is deduced and is shown to reduce to the Rayleigh-Plesset equation in the linear limit.

  3. Statistical parameters of thermally driven turbulent anabatic flow

    NASA Astrophysics Data System (ADS)

    Hilel, Roni; Liberzon, Dan

    2016-11-01

    Field measurements of thermally driven turbulent anabatic flow over a moderate slope are reported. A collocated hot-films-sonic anemometer (Combo) obtained the finer scales of the flow by implementing a Neural Networks based in-situ calibration technique. Eight days of continuous measurements of the wind and temperature fluctuations reviled a diurnal pattern of unstable stratification that forced development of highly turbulent unidirectional up slope flow. Empirical fits of important turbulence statistics were obtained from velocity fluctuations' time series alongside fully resolved spectra of velocity field components and characteristic length scales. TKE and TI showed linear dependence on Re, while velocity derivative skewness and dissipation rates indicated the anisotropic nature of the flow. Empirical fits of normalized velocity fluctuations power density spectra were derived as spectral shapes exhibited high level of similarity. Bursting phenomenon was detected at 15% of the total time. Frequency of occurrence, spectral characteristics and possible generation mechanism are discussed. BSF Grant #2014075.

  4. Treatment strategy according to findings on pressure-flow study for women with decreased urinary flow rate.

    PubMed

    Tanaka, Yoshinori; Masumori, Naoya; Tsukamoto, Taiji; Furuya, Seiji; Furuya, Ryoji; Ogura, Hiroshi

    2009-01-01

    In women who reported a weak urinary stream, the efficacy of treatment chosen according to the urodynamic findings on pressure-flow study was prospectively evaluated. Twelve female patients with maximum flow rates of 10 mL/sec or lower were analyzed in the present study. At baseline, all underwent pressure-flow study to determine the degree of bladder outlet obstruction (BOO) and status of detrusor contractility on Schäfer's diagram. Distigmine bromide, 10 mg/d, was given to the patients with detrusor underactivity (DUA) defined as weak/very weak contractility, whereas urethral dilatation was performed using a metal sound for those with BOO (linear passive urethral resistance relation 2-6). Treatment efficacy was evaluated using the International Prostate Symptom Score (IPSS), uroflowmetry, and measurement of postvoid residual urine volume. Some patients underwent pressure-flow study after treatment. Urethral dilatation was performed for six patients with BOO, while distigmine bromide was given to the remaining six showing DUA without BOO. IPSS, QOL index, and the urinary flow rate were significantly improved in both groups after treatment. All four of the patients with BOO and one of the three with DUA but no BOO who underwent pressure-flow study after treatment showed decreased degrees of BOO and increased detrusor contractility, respectively. Both BOO and DUA cause a decreased urinary flow rate in women. In the short-term, urethral dilatation and distigmine bromide are efficacious for female patients with BOO and those with DUA, respectively.

  5. Compressible flow at high pressure with linear equation of state

    NASA Astrophysics Data System (ADS)

    Sirignano, William A.

    2018-05-01

    Compressible flow varies from ideal-gas behavior at high pressures where molecular interactions become important. Density is described through a cubic equation of state while enthalpy and sound speed are functions of both temperature and pressure, based on two parameters, A and B, related to intermolecular attraction and repulsion, respectively. Assuming small variations from ideal-gas behavior, a closed-form solution is obtained that is valid over a wide range of conditions. An expansion in these molecular-interaction parameters simplifies relations for flow variables, elucidating the role of molecular repulsion and attraction in variations from ideal-gas behavior. Real-gas modifications in density, enthalpy, and sound speed for a given pressure and temperature lead to variations in many basic compressible flow configurations. Sometimes, the variations can be substantial in quantitative or qualitative terms. The new approach is applied to choked-nozzle flow, isentropic flow, nonlinear-wave propagation, and flow across a shock wave, all for the real gas. Modifications are obtained for allowable mass-flow through a choked nozzle, nozzle thrust, sonic wave speed, Riemann invariants, Prandtl's shock relation, and the Rankine-Hugoniot relations. Forced acoustic oscillations can show substantial augmentation of pressure amplitudes when real-gas effects are taken into account. Shocks at higher temperatures and pressures can have larger pressure jumps with real-gas effects. Weak shocks decay to zero strength at sonic speed. The proposed framework can rely on any cubic equation of state and be applied to multicomponent flows or to more-complex flow configurations.

  6. A High Pressure Flowing Oil Switch For Gigawatt, Repetitive Applications

    DTIC Science & Technology

    2005-06-01

    for testing the high pressure switch concept under repetitive pulse conditions is a 4.8 Ω, 70 ns water pulse forming line (PFL). The water PFL is...Cox Instruments. A pair of Hedland variable area flow sensors monitored relative flow rates in the two oil lines that fed the high pressure switch . High... pressure switch was tested under both single shot and repetitive conditions over a range of pressures, flow rates and temperatures. The primary

  7. Intracompartmental pressure as a predictor of intratesticular blood flow: a rat model.

    PubMed

    Watson, Matthew J; Bartkowski, Donald P; Nelson, Nathan C

    2015-06-01

    We identified an intratesticular pressure at which vascular flow would cease in a testicular compartment syndrome model, defining a critical vascular stop flow pressure. A total of 52 male Sprague Dawley® rats were used for the study. The testicle of each rat was delivered from the scrotum and size measurements were taken. An intracompartment pressure monitor needle was inserted into the testis to record basal intratesticular pressure. The monitor needle remained in the testicle for the duration of the procedure. Vascular flow within the testis was measured using a variable frequency linear ultrasound transducer with color flow and pulse wave Doppler modalities. Saline was infused through the compartment monitor in 5 mm Hg increments via a pressure infusion pump. Following each 5 mm Hg increase intratesticular vascular blood flow and velocities were recorded using color flow and pulse wave, respectively. Data collection proceeded until color flow images indicated a complete absence of flow within the testis. Using a paired t-test (p <0.0001), mean color flow stop flow pressure was 52.17 mm Hg (95% CI 49.57-54.77) and pulse wave stop flow pressure was 36.34 mm Hg (95% CI 33.90-38.77). Regression analysis of pulse wave vs color flow showed a slope of 0.6960 ± 0.09112, a y-intercept of 0.02427 ± 4.824 and an x-intercept of -0.03486. This is the first known study to characterize a stop flow pressure within the testicular parenchyma resulting from an increased intracompartmental pressure. Due to probe sensitivity limitations, color flow appears to provide the most precise mean pressure of occlusion of 52.17 mm Hg. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. Data flow machine for data driven computing

    DOEpatents

    Davidson, G.S.; Grafe, V.G.

    1988-07-22

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information from an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a ''fire'' signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor. 11 figs.

  9. Mass flow and velocity profiles in Neurospora hyphae: partial plug flow dominates intra-hyphal transport.

    PubMed

    Abadeh, Aryan; Lew, Roger R

    2013-11-01

    Movement of nuclei, mitochondria and vacuoles through hyphal trunks of Neurospora crassa were vector-mapped using fluorescent markers and green fluorescent protein tags. The vectorial movements of all three were strongly correlated, indicating the central role of mass (bulk) flow in cytoplasm movements in N. crassa. Profiles of velocity versus distance from the hyphal wall did not match the parabolic shape predicted by the ideal Hagen-Poiseuille model of flow at low Reynolds number. Instead, the profiles were flat, consistent with a model of partial plug flow due to the high concentration of organelles in the flowing cytosol. The intra-hyphal pressure gradients were manipulated by localized external osmotic treatments to demonstrate the dependence of velocity (and direction) on pressure gradients within the hyphae. The data support the concept that mass transport, driven by pressure gradients, dominates intra-hyphal transport. The transport occurs by partial plug flow due to the organelles in the cytosol.

  10. Gravity-driven dense granular flows

    NASA Astrophysics Data System (ADS)

    Ertas, Deniz

    2002-03-01

    Despite their importance in many areas of science and technology, the emergent physics of hard granular systems remain largely obscure, especially when the packing density approaches that of a jammed system. In particular, I will focus on the rheology of gravity-driven dense granular flows on an incline with a ``rough" bottom in two and three dimensions. We have conducted large-scale molecular dynamics simulations of spheres that interact through linear damped spring or Hertzian force laws with a Coulomb failure criterion(D. Ertaş) et al., Europhys. Lett. 56, 214 (2001); L.E. Silbert et al., Phys. Rev. E 64, 051302 (2001).. This flow geometry produces a constant density profile, and reproduces key features of such flows that have been observed experimentally(O. Pouliquen, Phys. Fluids 11), 542 (1999), such as an angle of repose that depends on flow thickness, steady-state solutions at varying heights for a given inclination angle, and the scaling of the mean particle velocity with pile height (< v > ∝ H^3/2). These successes prompted us to carefully examine the rheology in the interior of the pile by measuring the full stress and strain tensors, which are generally unavailable through experiments. The type of force law has little impact on the behavior of the system. The bulk rheology can be approximately described in terms of extensions of Chapman-Enskog theory to dense packings(L. Bocquet et al.), cond-mat/0112072. However, close to the angle of repose, this description fails near the free surface, which exhibits a rheology dominated by normal stress differences that are small in the bulk. This change in rheology can be qualitatively understood in terms of stress-bearing force networks that are continuously formed by ``gravitational inelastic collapse" and destroyed by the imposed strain.

  11. A three-dimensional turbulent separated flow and related mesurements

    NASA Technical Reports Server (NTRS)

    Pierce, F. J.

    1985-01-01

    The applicability of and the limits on the applicability of 11 near wall similarity laws characterizing three-dimensional turbulent boundary layer flows were determined. A direct force sensing local wall shear stress meter was used in both pressure-driven and shear-driven three-dimensional turbulent boundary layers, together with extensive mean velocity field and wall pressure field data. This resulted in a relatively large number of graphical comparisons of the predictive ability of 10 of these 11 similarity models relative to measured data over a wide range of flow conditions. Documentation of a complex, separated three-dimensional turbulent flow as a standard test case for evaluating the predictive ability of numerical codes solving such flows is presented.

  12. A continuum model for pressure-flow relationship in human pulmonary circulation.

    PubMed

    Huang, Wei; Zhou, Qinlian; Gao, Jian; Yen, R T

    2011-06-01

    A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation.

  13. Flow-driven instabilities during pattern formation of Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Gholami, A.; Steinbock, O.; Zykov, V.; Bodenschatz, E.

    2015-06-01

    The slime mold Dictyostelium discoideum is a well known model system for the study of biological pattern formation. In the natural environment, aggregating populations of starving Dictyostelium discoideum cells may experience fluid flows that can profoundly change the underlying wave generation process. Here we study the effect of advection on the pattern formation in a colony of homogeneously distributed Dictyostelium discoideum cells described by the standard Martiel-Goldbeter model. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. The evolution of small perturbations in cAMP concentrations is studied analytically in the linear regime and by corresponding numerical simulations. We show that flow can significantly influence the dynamics of the system and lead to a flow-driven instability that initiate downstream traveling cAMP waves. We also show that boundary conditions have a significant effect on the observed patterns and can lead to a new kind of instability.

  14. Intermittent gravity-driven flow of grains through narrow pipes

    NASA Astrophysics Data System (ADS)

    Alvarez, Carlos A.; de Moraes Franklin, Erick

    2017-01-01

    Grain flows through pipes are frequently found in various settings, such as in pharmaceutical, chemical, petroleum, mining and food industries. In the case of size-constrained gravitational flows, density waves consisting of alternating high- and low-compactness regions may appear. This study investigates experimentally the dynamics of density waves that appear in gravitational flows of fine grains through vertical and slightly inclined pipes. The experimental device consisted of a transparent glass pipe through which different populations of glass spheres flowed driven by gravity. Our experiments were performed under controlled ambient temperature and relative humidity, and the granular flow was filmed with a high-speed camera. Experimental results concerning the length scales and celerities of density waves are presented, together with a one-dimensional model and a linear stability analysis. The analysis exhibits the presence of a long-wavelength instability, with the most unstable mode and a cut-off wavenumber whose values are in agreement with the experimental results.

  15. Redox flow batteries with serpentine flow fields: Distributions of electrolyte flow reactant penetration into the porous carbon electrodes and effects on performance

    NASA Astrophysics Data System (ADS)

    Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.

    2018-04-01

    Redox flow batteries with flow field designs have been demonstrated to boost their capacities to deliver high current density and power density in medium and large-scale energy storage applications. Nevertheless, the fundamental mechanisms involved with improved current density in flow batteries with serpentine flow field designs have been not fully understood. Here we report a three-dimensional model of a serpentine flow field over a porous carbon electrode to examine the distributions of pressure driven electrolyte flow penetrations into the porous carbon electrodes. We also estimate the maximum current densities associated with stoichiometric availability of electrolyte reactant flow penetrations through the porous carbon electrodes. The results predict reasonably well observed experimental data without using any adjustable parameters. This fundamental work on electrolyte flow distributions of limiting reactant availability will contribute to a better understanding of limits on electrochemical performance in flow batteries with serpentine flow field designs and should be helpful to optimizing flow batteries.

  16. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation.

    PubMed

    Kwon, Ronald Y; Meays, Diana R; Meilan, Alexander S; Jones, Jeremiah; Miramontes, Rosa; Kardos, Natalie; Yeh, Jiunn-Chern; Frangos, John A

    2012-01-01

    Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading

  17. Skeletal Adaptation to Intramedullary Pressure-Induced Interstitial Fluid Flow Is Enhanced in Mice Subjected to Targeted Osteocyte Ablation

    PubMed Central

    Kwon, Ronald Y.; Meays, Diana R.; Meilan, Alexander S.; Jones, Jeremiah; Miramontes, Rosa; Kardos, Natalie; Yeh, Jiunn-Chern; Frangos, John A.

    2012-01-01

    Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading

  18. Two Phase Flow Modeling: Summary of Flow Regimes and Pressure Drop Correlations in Reduced and Partial Gravity

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rame, E.; Kizito, J.; Kassemi, M.

    2006-01-01

    The purpose of this report is to provide a summary of state-of-the-art predictions for two-phase flows relevant to Advanced Life Support. We strive to pick out the most used and accepted models for pressure drop and flow regime predictions. The main focus is to identify gaps in predictive capabilities in partial gravity for Lunar and Martian applications. Following a summary of flow regimes and pressure drop correlations for terrestrial and zero gravity, we analyze the fully developed annular gas-liquid flow in a straight cylindrical tube. This flow is amenable to analytical closed form solutions for the flow field and heat transfer. These solutions, valid for partial gravity as well, may be used as baselines and guides to compare experimental measurements. The flow regimes likely to be encountered in the water recovery equipment currently under consideration for space applications are provided in an appendix.

  19. An analysis of induced pressure fields in electroosmotic flows through microchannels.

    PubMed

    Zhang, Yonghao; Gu, Xiao-Jun; Barber, Robert W; Emerson, David R

    2004-07-15

    Induced pressure gradients are found to cause band-broadening effects which are important to the performance of microfluidic devices, such as capillary electrophoresis and capillary chromatography. An improved understanding of the underlying mechanisms causing an induced pressure gradient in electroosmotic flows is presented. The analysis shows that the induced pressure distribution is the key to understanding the experimentally observed phenomena of leakage flows. A novel way of determining the static pressures at the inlet and outlet of microchannels is also presented that takes account of the pressure losses due to flow contraction and expansion. These commonly neglected pressure losses at the channel entrance and outlet are shown to be important in accurately describing the flow. The important parameters that define the effect of induced pressure on the flows are discussed, which may facilitate the design of improved microfluidic devices. The present model clearly identifies the mechanism behind the experimentally observed leakage flows, which is further confirmed by numerical simulations. Not only can the leakage flow occur from the electric-field-free side channel to the main channel, but also the fluid in the main channel can be attracted into the side channel by the induced pressure gradient. Copyright 2004 Elsevier Inc.

  20. The effect of abdominal pressure on urinary flow rate.

    PubMed

    Hasegawa, N; Kitagawa, Y; Takasaki, N; Miyazaki, S

    1983-07-01

    We examined the effect of abdominal pressure on urinary flow rate and urethral closure pressure in 46 subjects, ranging in age from 26 to 82 years. An increase in urinary flow rate caused by abdominal straining was not found when organic obstruction was present in the prostatic urethra in men or the proximal urethra in women, or when dysuria is caused by the lowered detrusor pressure. An increase in urinary flow rate caused by straining was noted when anterior urethral stricture or stress incontinence was present. The increase in urinary flow rate owing to straining was undetermined in the control group. The urethral closure pressure on the anti-stress incontinence zone increased as a result of straining at the same time and to the same degree as did the intravesical pressure. When the anti-stress incontinence zone was subjected to transurethral resection for canal formation urination became possible as a result of straining. The patients who were able to urinate with straining sometimes suffered temporary stress incontinence. The degree of straining did not determine whether the patient could urinate with straining. Therefore, it was concluded that abdominal pressure should be excluded from intravesical pressure in performing several urodynamic studies on the lower urinary tract, such as pressure flow studies, and that it is important to have a sufficient canal formation in the anti-stress incontinence zone when urination with straining is expected when performing an operation on patients with urethral obstruction in the anti-stress incontinence zone.

  1. A stochastic two-scale model for pressure-driven flow between rough surfaces

    PubMed Central

    Larsson, Roland; Lundström, Staffan; Wall, Peter; Almqvist, Andreas

    2016-01-01

    Seal surface topography typically consists of global-scale geometric features as well as local-scale roughness details and homogenization-based approaches are, therefore, readily applied. These provide for resolving the global scale (large domain) with a relatively coarse mesh, while resolving the local scale (small domain) in high detail. As the total flow decreases, however, the flow pattern becomes tortuous and this requires a larger local-scale domain to obtain a converged solution. Therefore, a classical homogenization-based approach might not be feasible for simulation of very small flows. In order to study small flows, a model allowing feasibly-sized local domains, for really small flow rates, is developed. Realization was made possible by coupling the two scales with a stochastic element. Results from numerical experiments, show that the present model is in better agreement with the direct deterministic one than the conventional homogenization type of model, both quantitatively in terms of flow rate and qualitatively in reflecting the flow pattern. PMID:27436975

  2. Nonlinear optimal control policies for buoyancy-driven flows in the built environment

    NASA Astrophysics Data System (ADS)

    Nabi, Saleh; Grover, Piyush; Caulfield, Colm

    2017-11-01

    We consider optimal control of turbulent buoyancy-driven flows in the built environment, focusing on a model test case of displacement ventilation with a time-varying heat source. The flow is modeled using the unsteady Reynolds-averaged equations (URANS). To understand the stratification dynamics better, we derive a low-order partial-mixing ODE model extending the buoyancy-driven emptying filling box problem to the case of where both the heat source and the (controlled) inlet flow are time-varying. In the limit of a single step-change in the heat source strength, our model is consistent with that of Bower et al.. Our model considers the dynamics of both `filling' and `intruding' added layers due to a time-varying source and inlet flow. A nonlinear direct-adjoint-looping optimal control formulation yields time-varying values of temperature and velocity of the inlet flow that lead to `optimal' time-averaged temperature relative to appropriate objective functionals in a region of interest.

  3. Pressure algorithm for elliptic flow calculations with the PDF method

    NASA Technical Reports Server (NTRS)

    Anand, M. S.; Pope, S. B.; Mongia, H. C.

    1991-01-01

    An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.

  4. Channel Incision Driven by Suburbanization: Impacts to Riparian Groundwater Flow and Overbank Flow Frequency

    NASA Astrophysics Data System (ADS)

    Bowles, C. J.; Lawrence, R. L.; Noll, C.; Hancock, G. S.

    2005-12-01

    Channel incision is a widely observed response to increased flow in urbanized watersheds, but the effects of channel lowering on riparian water tables is not well documented. In a rapidly incising suburban stream in the Virginia Coastal Plain, we hypothesize that stream incision has lowered floodplain water tables and decreased the overbank flow frequency. The monitored stream is a tributary to the James River draining 1.3 km2 of which 15% is impervious cover. Incision has occurred largely through upstream migration of a one meter high knickpoint at a rate of ~1.5 m/yr, primarily during high flow events. We installed 63 wells in six stream-perpendicular transects as well as a cluster of wells around the knickpoint to assess water table elevations beneath the floodplain adjacent to the incising stream. Two transects are located 30 and 50 m upstream of the knickpoint in the unincised floodplain, and the remainder are 5, 30, 70, and 100 m downstream in the incised floodplain. In one transect above and two below, pressure transducers attached to dataloggers provide a high-resolution record of water table changes. Erosion pins were installed and channel cross-sections surveyed to determine streambed stability. Significant differences are observed in bank morphology and groundwater flow above vs. below the knickpoint. Above the knickpoint, the banks are stable, ~3 m wide, and ~0.3 m deep, and widen and deepen slightly toward the knickpoint. The water table is relatively flat and is 0.2-0.4 m below the floodplain surface, and groundwater contours suggest flow is parallel to the stream direction. The water table responds immediately to precipitation events, and rises to the floodplain surface in significant rainfall events. Immediately downstream of the knickpoint, channel width increases by about a meter, and stream depth increases to ~1.5 meters. The water table immediately below the knickpoint possesses a steep gradient, and is up to one meter below the floodplain

  5. Two-phase flows within systems with ambient pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.

    1985-01-01

    In systems where the design inlet and outlet pressures are maintained above the thermodynamic critical pressure, it is often assumed that two phase flows within the system cannot occur. Designers rely on this simple rule of thumb to circumvent problems associated with a highly compressible two phase flow occurring within the supercritical pressure system along with the uncertainties in rotordynamics, load capacity, heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low power designs but is inadequate for high performance turbomachines and linear systems, where two phase regions can exist even though outlet pressure is greater than critical pressure. Rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two phase zone can differ significantly from those for a single-phase zone. Using the Reynolds equation the angular velocity, eccentricity, geometry, and ambient conditions are varied to determine the point of two phase flow incipience.

  6. Magnetohydrodynamic pressure drop and flow balancing of liquid metal flow in a prototypic fusion blanket manifold

    NASA Astrophysics Data System (ADS)

    Rhodes, Tyler J.; Smolentsev, Sergey; Abdou, Mohamed

    2018-05-01

    Understanding magnetohydrodynamic (MHD) phenomena associated with the flow of electrically conducting fluids in complex geometry ducts subject to a strong magnetic field is required to effectively design liquid metal (LM) blankets for fusion reactors. Particularly, accurately predicting the 3D MHD pressure drop and flow distribution is important. To investigate these topics, we simulate a LM MHD flow through an electrically non-conducting prototypic manifold for a wide range of flow and geometry parameters using a 3D MHD solver, HyPerComp incompressible MHD solver for arbitrary geometry. The reference manifold geometry consists of a rectangular feeding duct which suddenly expands such that the duct thickness in the magnetic field direction abruptly increases by a factor rexp. Downstream of the sudden expansion, the LM is distributed into several parallel channels. As a first step in qualifying the flow, a magnitude of the curl of the induced Lorentz force was used to distinguish between inviscid, irrotational core flows and boundary and internal shear layers where inertia and/or viscous forces are important. Scaling laws have been obtained which characterize the 3D MHD pressure drop and flow balancing as a function of the flow parameters and the manifold geometry. Associated Hartmann and Reynolds numbers in the computations were ˜103 and ˜101-103, respectively, while rexp was varied from 4 to 12. An accurate model for the pressure drop was developed for the first time for inertial-electromagnetic and viscous-electromagnetic regimes based on 96 computed cases. Analysis shows that flow balance can be improved by lengthening the distance between the manifold inlet and the entrances of the parallel channels by utilizing the effect of flow transitioning to a quasi-two-dimensional state in the expansion region of the manifold.

  7. Wind Effects on Flow Patterns and Net Fluxes in Density-Driven High-Latitude Channel Flow

    NASA Astrophysics Data System (ADS)

    Huntley, Helga S.; Ryan, Patricia

    2018-01-01

    A semianalytic two-dimensional model is used to analyze the interplay between the different forces acting on density-driven flow in high-latitude channels. In particular, the balance between wind stress, viscous forces, baroclinicity, and sea surface slope adjustments under specified flux conditions is examined. Weak winds are found not to change flow patterns appreciably, with minimal (<7%) adjustments to horizontal velocity maxima. In low-viscosity regimes, strong winds change the flow significantly, especially at the surface, by either strengthening the dual-jet pattern, established without wind, by a factor of 2-3 or initiating return flow at the surface. A nonzero flux does not result in the addition of a uniform velocity throughout the channel cross section, but modifies both along-channel and cross-channel velocities to become more symmetric, dominated by a down-channel jet centered in the domain and counter-clockwise lateral flow. We also consider formulations of the model that allow adjustments of the net flux in response to the wind. Flow patterns change, beyond uniform intensification or weakening, only for strong winds and high Ekman number. Comparisons of the model results to observational data collected in Nares Strait in the Canadian Archipelago in the summer of 2007 show rough agreement, but the model misses the upstream surface jet on the east side of the strait and propagates bathymetric effects too strongly in the vertical for this moderately high eddy viscosity. Nonetheless, the broad strokes of the observed high-latitude flow are reproduced.

  8. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Saito, Hidetoshi

    2017-12-01

    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  9. A phenomenological continuum model for force-driven nano-channel liquid flows

    NASA Astrophysics Data System (ADS)

    Ghorbanian, Jafar; Celebi, Alper T.; Beskok, Ali

    2016-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  10. Hypervelocity flows of argon produced in a free piston driven expansion tube

    NASA Technical Reports Server (NTRS)

    Neely, A. J.; Stalker, R. J.

    1992-01-01

    An expansion tube with a free piston driver has been used to generate quasi-steady hypersonic flows in argon at flow velocities in excess of 9 km/s. Irregular test flow unsteadiness has limited the performance of previous expansion tubes. Test section measurements of pitot pressure, static pressure, and flat plate heat transfer rates are used to confirm the presence of quasi-steady flow, and comparisons are made with predictions for the equilibrium flow of an ideal, ionizing, monatomic gas. The results of this work indicate that expansion tubes can be used to generate quasi-steady hypersonic flows in argon at speeds in excess of Earth orbital velocity.

  11. Passive water flows driven across the isolated rabbit ileum by osmotic, hydrostatic and electrical gradients.

    PubMed Central

    Naftalin, R J; Tripathi, S

    1985-01-01

    Water flows generated by osmotic and hydrostatic pressure and electrical currents were measured in sheets of isolated rabbit ileum at 20 degrees C. Flows across the mucosal and serosal surfaces were monitored continuously by simultaneous measurement of tissue volume change (with an optical lever) and net water flows across one surface of the tissue (with a capacitance transducer). Osmotic gradients were imposed across the mucosal and serosal surfaces of the tissue separately, using probe molecules of various sizes from ethanediol (68 Da) to dextrans (161 000 Da). Flows across each surface were elicited with very short delay. The magnitudes of the flows were proportional to the osmotic gradient and related to the size of the probe molecule. Osmotic flow across the mucosal surface was associated with streaming potentials which were due to electro-osmotic water flow. The mucosal surface is a heteroporous barrier with narrow (0.7 nm radius, Lp (hydraulic conductivity) = (7.6 +/- 1.6) X 10(-9) cm s-1 cmH2O-1) cation-selective channels in parallel with wide neutral pores (ca. 6.5 nm radius, Lp = (2.3 +/- 0.2) X 10(-7) cm s-1 cmH2O-1) which admit large pressure-driven backflows from the submucosa to the lumen. There is additional evidence for a further set of narrow electroneutral pores less than 0.4 nm radius with Lp less than 7 X 10(-9) cm s-1 cmH2O-1. The serosal surface has neutral pores of uniform radius (ca. 6.5 nm), Lp = (7.6 +/- 1.6) X 10(-8) cm s-1 cmH2O-1. Hypertonic serosal solutions (100 mM-sucrose) cause osmotic transfer of fluid from isotonic mucosal solutions into the submucosa, expand it, and elevate the tissue pressure to 19.6 +/- 3.2 cmH2O (n = 4). Conversely, hypertonic mucosal solutions (100 mM-sucrose) draw fluid out of the submucosa in the presence of isotonic serosal solutions, collapse the submucosa, and lower the tissue pressure to -87.7 +/- 4.6 cmH2O (n = 5). Water flows coupled to cation movement could be generated across the mucosal surface in

  12. Effect of antiischemic therapy on coronary flow reserve and the pressure-maximal coronary flow relationship in anesthetized swine.

    PubMed

    McFalls, E O; Duncker, D J; Sassen, L M; Gho, B C; Verdouw, P D

    1991-12-01

    The effect of nifedipine (0.5, 1.0, and 2.0 micrograms/kg/min), metoprolol (0.1, 0.5, and 1.0 mg/kg), the beta 1-selective adrenoceptor partial agonist epanolol (10, 50, and 200 micrograms/kg), or equivalent volumes of isotonic saline (n = 6, in each group), on coronary blood flow capacity were studied in anesthetized swine. Intracoronary bolus injections of adenosine (20 micrograms/kg/0.2 ml) were administered without and during three levels of coronary stenosis, prior to and following each dose of drug, to obtain maximal coronary blood flows at different perfusion pressures in the autoregulatory range. Coronary perfusion pressures were varied by partial inflation of a balloon around the left anterior descending coronary artery. Special care was taken that the stenoses not lead to myocardial ischemia. Three indices of coronary blood flow capacity were used: absolute coronary flow reserve (ACFR, the ratio of maximal to resting coronary blood flow), the slope and the extrapolated pressure at zero flow (Pzf) of the pressure-maximal coronary flow (PMCF) relationship, and relative coronary flow reserve (RCFR, the ratio of maximal coronary blood flow with a stenosis to maximal coronary blood flow without a stenosis) at two of the three levels of stenosis. Nifedipine decreased ACFR from 4.5 +/- 1.9 to 1.9 +/- 0.3 (mean +/- SD; p less than 0.05), reflecting in part the increase in resting coronary blood flow. The nifedipine-induced changes in maximal coronary blood flow were not only due to a drop in perfusion pressure, as the slope of the PMCF relationship decreased from 2.27 +/- 0.49 ml/(min.mm Hg) to 1.54 +/- 0.51 ml/(min.mm Hg) (p less than 0.05), and Pzf decreased from 30 +/- 4 mm Hg to 20 +/- 7 mm Hg (p less than 0.05). Consequently, calculated maximal coronary blood flow was attenuated from 114 +/- 31 ml/min to 93 +/- 37 ml/min at 80 mm Hg, but was enhanced from 23 +/- 13 to 37 +/- 24 ml/min at 40 mm Hg coronary perfusion pressure. In concert with the change in the

  13. Pressure Distribution in Nonuniform Two-Dimensional Flow

    NASA Technical Reports Server (NTRS)

    Schwabe, M.

    1943-01-01

    In an attempt to follow the time rate of change of the processes in turbulent flows by quantitative measurements the measurement of the pressure is often beset with insuperable difficulties for the reason that the speeds and hence the pressures to be measured are often very small. On the other hand, the measurement of very small pressures requires, at least, considerable time, so that the follow-up of periodically varying processes is as goad as impossible. In order to obviate these difficulties a method, suggested by Prof. Prandtl, has been developed by which the pressure distribution is simply determined from the photographic flow picture. This method is described and proved on a worked-out example. It was found that quantitatively very satisfactory results can be achieved.

  14. Flow and fracturing of viscoelastic media under diffusion-driven bubble growth: An analogue experiment for eruptive volcanic conduits

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Spieler, O.; Ichihara, M.; Dingwell, D. B.; Scarlato, P.

    2006-03-01

    To visualize the behavior of erupting magma in volcanic conduits, we performed shock tube experiments on the ductile-brittle response of a viscoelastic medium to diffusion-driven bubble expansion. A sample of shear-thinning magma analogue is saturated by gas Ar under high pressure. On rapid decompression, Ar supersaturation causes bubbles to nucleate, grow, and coalesce in the sample, forcing it to expand, flow, and fracture. Experimental variables include saturation pressure and duration, and shape and lubrication of the flow path. Bubble growth in the experiments controls both flow and fracturing, and is consistent with physical models of magma vesiculation. Two types of fractures are observed: i) sharp fractures along the uppermost rim of the sample, and ii) fractures pervasively diffused throughout the sample. Rim fractures open when shear stress accumulates and strain rate is highest at the margin of the flow (a process already inferred from observations and models to occur in magma). Pervasive fractures originate when wall-friction retards expansion of the sample, causing pressure to build-up in the bubbles. When bubble pressure overcomes wall-friction and the tensile strength of the porous sample, fractures open with a range of morphologies. Both types of fracture open normally to flow direction, and both may heal as the flow proceeds. These experiments also illustrate how the development of pervasive fractures allows exsolving gas to escape from the sample before the generation of a permeable network via other processes, e.g., bubble coalescence. This is an observation that potentially impact the degassing of magma and the transition between explosive and effusive eruptions.

  15. Contraction driven flow in the extended vein networks of Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Alim, Karen; Amselem, Gabriel; Peaudecerf, Francois; Pringle, Anne; Brenner, Michael P.

    2011-11-01

    The true slime mold Physarum polycephalum is a basal organism that forms an extended network of veins to forage for food. P. polycephalum is renown for its adaptive changes of vein structure and morphology in response to food sources. These rearrangements presumably occur to establish an efficient transport and mixing of resources throughout the networks thus presenting a prototype to design transport networks under the constraints of laminar flow. The physical flows of cytoplasmic fluid enclosed by the veins exhibit an oscillatory flow termed ``shuttle streaming.'' The flow exceed by far the volume required for growth at the margins suggesting that the additional energy cost for generating the flow is spent for efficient and/or targeted redistribution of resources. We show that the viscous shuttle flow is driven by the radial contractions of the veins that accompany the streaming. We present a model for the fluid flow and resource dispersion arising due to radial contractions. The transport and mixing properties of the flow are discussed.

  16. Pressure-Driven Suspension Flow near Jamming

    NASA Astrophysics Data System (ADS)

    Oh, Sangwon; Song, Yi-qiao; Garagash, Dmitry I.; Lecampion, Brice; Desroches, Jean

    2015-02-01

    We report here magnetic resonance imaging measurements performed on suspensions with a bulk solid volume fraction (ϕ0) up to 0.55 flowing in a pipe. We visualize and quantify spatial distributions of ϕ and velocity across the pipe at different axial positions. For dense suspensions (ϕ0>0.5 ), we found a different behavior compared to the known cases of lower ϕ0. Our experimental results demonstrate compaction within the jammed region (characterized by a zero macroscopic shear rate) from the jamming limit ϕm≈0.58 at its outer boundary to the random close packing limit ϕrcp≈0.64 at the center. Additionally, we show that ϕ and velocity profiles can be fairly well captured by a frictional rheology accounting for both further compaction of jammed regions as well as normal stress differences.

  17. Fluid Flow and Mass Transfer in Micro/Nano-Channels

    NASA Astrophysics Data System (ADS)

    Conlisk, A. T.; McFerran, Jennifer; Hansford, Derek; Zheng, Zhi

    2001-11-01

    In this work the fluid flow and mass transfer due to the presence of an electric field in a rectangular channel is examined. We consider a mixture of water or other neutral solvent and a salt compound such as sodium chloride for which the ionic species are entirely dissociated. Results are produced for the case where the channel height is much greater than the electric double layer(EDL)(microchannel) and for the case where the channel height is of the order or somewhat greater than the width of the EDL(nanochannel). For the electroosmotic flow so induced, the velocity field and the potential are similar. The fluid is assumed to behave as a continuum and the Boltzmann distribution for the mole fractions of the ions emerges from the classical dilute mass transfer equation in the limiting case where the EDL thickness is much less than the channel height. Depending on the relative magnitude of the mole fractions at the walls of the channel, both forward and reversed flow may occur. The volume flow rate is observed to vary linearly with channel height for electrically driven flow in contrast to pressure driven flow which varies as height cubed. This means that power requirements for small channels are much greater for pressure driven flow. Supported by DARPA

  18. Revising the `Henry Problem' of density-driven groundwater flow: A review of historic Biscayne aquifer data.

    NASA Astrophysics Data System (ADS)

    Weyer, K. U.

    2016-12-01

    Coastal groundwater flow investigations at the Cutler site of the Biscayne Bay south of Miami, Florida, gave rise to the dominating concept of density-driven flow of sea water into coastal aquifers indicated as a saltwater wedge. Within that wedge convection type return flow of seawater and a dispersion zone were concluded by Cooper et al. (1964, USGS Water Supply Paper 1613-C) to be the cause of the Biscayne aquifer `sea water wedge'. This conclusion was merely based on the chloride distribution within the aquifer and on an analytical model concept assuming convection flow within a confined aquifer without taking non-chemical field data into consideration. This concept was later labelled the `Henry Problem', which any numerical variable density flow program has to be able to simulate to be considered acceptable. Revisiting the above summarizing publication with its record of piezometric field data (heads) showed that the so-called sea water wedge was actually caused by discharging deep saline groundwater driven by gravitational flow and not by denser sea water. Density driven flow of seawater into the aquifer was not found reflected in the head measurements for low and high tide conditions which had been taken contemporaneously with the chloride measurements. These head measurements had not been included in the flow interpretation. The very same head measurements indicated a clear dividing line between shallow local fresh groundwater flow and saline deep groundwater flow without the existence of a dispersion zone or a convection cell. The Biscayne situation emphasizes the need for any chemical interpretation of flow pattern to be backed up by head data as energy indicators of flow fields. At the Biscayne site density driven flow of seawater did and does not exist. Instead this site and the Florida coast line in general are the end points of local fresh and regional saline groundwater flow systems driven by gravity forces and not by density differences.

  19. Two zero-flow pressure intercepts exist in autoregulating isolated skeletal muscle.

    PubMed

    Braakman, R; Sipkema, P; Westerhof, N

    1990-06-01

    The autoregulating vascular bed of the isolated canine extensor digitorum longus muscle was investigated for the possible existence of two positive zero-flow pressure axis intercepts, a tone-dependent one and a tone-independent one. An isolated preparation, perfused with autologous blood, was used to exclude effects of collateral flow and nervous and humoral regulation while autoregulation was left intact [mean autoregulatory gain 0.50 +/- 0.24 (SD)]. In a first series of experiments, the steady-state (zero flow) pressure axis intercept [mean 8.9 +/- 2.6 (SD) mmHg, tone independent] and the instantaneous (zero flow) pressure axis intercept [mean 28.5 +/- 9.9 (SD) mmHg, tone dependent] were determined as a function of venous pressure (range: 0-45 mmHg) and were independent of venous pressure until the venous pressure exceeded their respective values. Beyond this point the relations between the venous pressure and the steady-state and instantaneous pressure axis intercept followed the line of identity. The findings agree with the predictions of the vascular waterfall model. In a second series it was shown by means of administration of vasoactive drugs that the instantaneous pressure axis intercept is tone dependent, whereas the steady-state pressure axis intercept is not. It is concluded that there is a (proximal) tone-dependent zero-flow pressure at the arteriolar level and a (distal) tone-independent zero-flow pressure at the venous level.

  20. Observation of improved and degraded confinement with driven flow on the LAPD

    NASA Astrophysics Data System (ADS)

    Schaffner, David

    2012-10-01

    External continuous control over azimuthal flow and flow shear has been achieved in a linear plasma device for the first time allowing for a careful study of the effect of flow shear on pressure-gradient-driven turbulence and transport in the edge of the Large Plasma Device (LAPD). The flow is controlled using biasable iris-like limiters situated axially between the cathode source and main plasma chamber. LAPD rotates spontaneously in the ion diamagnetic direction (IDD); positive limiter bias first reduces, then minimizes (producing a near-zero shear state), and finally reverses the flow into the electron diamagnetic direction (EDD). Degradation of particle confinement is observed in the minimum shearing state and reduction in turbulent particle flux is observed with increasing shearing in both flow directions. Near-complete suppression of turbulent particle flux is observed for shearing rates comparable to the turbulent autocorrelation rate measured in the minimum shear state. Turbulent flux suppression is dominated by amplitude reduction in low-frequency (>10kHz) density fluctuations and a reduction in the radial correlation length. An increase in fluctuations for the highest shearing states is observed with the emergence of a coherent mode which does not lead to net particle transport. Magnetic field is varied in order to explore whether and how field effects transport modification. Calculations of transport equations are used to predict density profiles given source and temperature profiles and can show the level of transport predicted to be necessary in order to produce the experimental density profiles observed. Finally, the variations of density fluctuations and radial correlation length are fit well with power-laws and compare favorably to simple models of shear suppression of transport.

  1. Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asahi, Y., E-mail: y.asahi@nr.titech.ac.jp; Tsutsui, H.; Tsuji-Iio, S.

    2014-05-15

    Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger thanmore » or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.« less

  2. Flow-independent dynamics in aneurysms: intra-aneurysm pressure measurements following complete flow cessation in internal carotid artery aneurysms.

    PubMed

    Qureshi, Adnan I; Qureshi, Mushtaq H; Mohindroo, Tanya; Khan, Asif A; Dingmann, Kayla; Sherr, Gregory T; Suri, M Fareed K

    2014-12-01

    To determine if complete flow obliteration by covered stents reduces intra-aneurysm pressures in internal carotid artery (ICA) aneurysms. A single lumen microcatheter was placed into the aneurysm sac prior to covered stent deployment in 3 patients and connected to a pressure monitoring system. The intra-aneurysm pressure was continuously monitored, and readings were recorded prior to and immediately after stent deployment and at 5-minute intervals up to 20 minutes after stent placement. Complete occlusion of flow into the aneurysms was confirmed by carotid angiography. There was no change in mean pressure within the aneurysm before and immediately after stent placement (80 mmHg) in any patient, nor was there a change in waveform of the intra-aneurysm pressure recording. The average of intra-aneurysm pressures among the 3 patients was higher (99 mmHg) at 10 and 15 minutes after stent placement. In 2 patients, the microcatheter was retracted into the parent arterial lumen; no difference in pressure was noted. Our observations suggest no change in the pressures within the aneurysm after complete flow cessation (flow-independent). These findings may assist clinicians in better understanding aneurysm hemodynamics and rupture after covered stent deployment.

  3. Effects of atmospheric pressure conditions on flow rate of an elastomeric infusion pump.

    PubMed

    Wang, Jong; Moeller, Anna; Ding, Yuanpang Samuel

    2012-04-01

    The effects of pressure conditions, both hyperbaric and hypobaric, on the flow rate of an elastomeric infusion pump were investigated. The altered pressure conditions were tested with the restrictor outlet at two different conditions: (1) at the same pressure condition as the Infusor elastomeric balloon and (2) with the outlet exposed to ambient conditions. Five different pressure conditions were tested. These included ambient pressure (98-101 kilopascals [kPa]) and test pressures controlled to be 10 or 20 kPa below or 75 or 150 kPa above the ambient pressure. A theoretical calculation based on the principles of fluid mechanics was also used to predict the pump's flow rate at various ambient conditions. The conditions in which the Infusor elastomeric pump and restrictor outlet were at the same pressure gave rise to average flow rates within the ±10% tolerance of the calculated target flow rate of 11 mL/hr. The flow rate of the Infusor pump decreased when the pressure conditions changed from hypobaric to ambient. The flow rate increased when the pressure conditions changed from hyperbaric to ambient. The flow rate of the Infusor elastomeric pump was not affected when the balloon reservoir and restrictor outlet were at the same pressure. The flow rate varied from 58.54% to 377.04% of the labeled flow rate when the pressure applied to the reservoir varied from 20 kPa below to 150 kPa above the pressure applied to the restrictor outlet, respectively. The maximum difference between observed flow rates and those calculated by applying fluid mechanics was 4.9%.

  4. Pressure sensor to determine spatial pressure distributions on boundary layer flows

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Piroozan, Parham; Corke, Thomas C.

    1997-03-01

    The determination of pressures along the surface of a wind tunnel proves difficult with methods that must introduce devices into the flow stream. This paper presents a sensor that is part of the wall. A special interferometric reflection moire technique is developed and used to produce signals that measures pressure both in static and dynamic settings. The sensor developed is an intelligent sensor that combines optics and electronics to analyze the pressure patterns. The sensor provides the input to a control system that is capable of modifying the shape of the wall and preserve the stability of the flow.

  5. Stability analysis of wall driven nanofluid flow through a tube

    NASA Astrophysics Data System (ADS)

    Hossain, M. Mainul; Khan, M. A. H.

    2017-06-01

    Wall driven incompressible viscous fluid flow with nanoparticles through a tube is considered where two different nanofluids (Cu-water, SiO2-water) are used separately. Flow becomes gradually unstable due to movement of wall and existence of nanoparticles. However, Reynolds number, volume fraction and density ratio are responsible for flow instability. The mathematical model of the problem is constructed and solved by means of series solution method. Special type Hermite-Padé approximation method is used to improve the series solution. The critical point for Reynolds number, volume fraction and density ratio are determined and described using approximation technique and bifurcation diagram for both nanofluids. Moreover, Interaction between these three numbers and their effect on velocity profile are discussed. To indicate the nanofluid which is more effective for flow stability is our major concerned.

  6. What is the relationship between free flow and pressure flow studies in women?

    PubMed

    Duckett, Jonathan; Cheema, Katherine; Patil, Avanti; Basu, Maya; Beale, Sian; Wise, Brian

    2013-03-01

    The relationship between free flow (FFS) and pressure flow (PFS) voiding studies remains uncertain and the effect of a urethral catheter on flow rates has not been determined. The relationship between residuals obtained at FF and PFS has yet to be established. This was a prospective cohort study based on 474 consecutive women undergoing cystometry using different sized urethral catheters at different centres. FFS and PFS data were compared for different conditions and the relationship of residuals analysed for FFS and PFS. The null hypothesis was that urethral catheters do not produce an alteration in maximum flow rates for PFS and FF studies. Urethral catheterisation results in lower flow rates (p < 0.01) and this finding is confirmed when flows are corrected for voided volume (p < 0.01). FFS and PFS maximum flow rates are lower in women with DO than USI (p < 0.01). A 6-F urethral catheter does not have a significantly greater effect than a 4.5-F urethral catheter. A mathematical model can be applied to transform FFS to PFS flow rates and vice versa. There was no significant difference between the mean residuals of the two groups (FFS vs PFS-two-tailed t = 0.54, p = 0.59). Positive residuals in FFS showed a good association with positive residuals in the PFS (r = 0.53, p < 0.01) Urethral catheterisation results in lower maximum flow rates. The relationship can be compared mathematically. The null hypothesis can be rejected.

  7. Numerical investigation of cavitation flow inside spool valve with large pressure drop

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Pan, Dingyi; Xie, Fangfang; Shao, Xueming

    2015-12-01

    Spool valves play an important role in fluid power system. Cavitation phenomena happen frequently inside the spool valves, which cause structure damages, noise and lower down hydrodynamic performance. A numerical tools incorporating the cavitation model, are developed to predict the flow structure and cavitation pattern in the spool valve. Two major flow states in the spool valve chamber, i.e. flow-in and flow-out, are studies. The pressure distributions along the spool wall are first investigated, and the results agree well with the experimental data. For the flow-in cases, the local pressure at the throttling area drops much deeper than the pressure in flow-out cases. Meanwhile, the bubbles are more stable in flow-in cases than those in flow-out cases, which are ruptured and shed into the downstream.

  8. Effects of Initial Conditions on Shock Driven Flows

    NASA Astrophysics Data System (ADS)

    Martinez, Adam A.; Mula, Swathi M.; Charonko, John; Prestridge, Kathy

    2017-11-01

    The spatial and temporal evolution of shock-driven, variable density flows, such as the Richtmyer Meshkov (RM) instability, are strongly influenced by the initial conditions (IC's) of the flow at the time of interaction with shockwave. We study the effects of the IC's on the Vertical Shock Tube (VST) and on flows from Mach =1.2 to Mach =9. Experiments at the VST are of an Air-SF6 (At =0.6) multimode interface. Perturbations are generated using a shear layer with a flapper plate. Planar Laser Induced Fluorescence (PLIF) is used to characterize the IC's. New experiments are occurring using the Powder Gun driver at LANL Proton Radiography (pRad) facility. Mach number up to M =9 accelerate a Xenon-Helium (At =0.94) interface that is perturbed using a membrane supported by different sized grids. This presentation focuses on how to design and characterize different types of initial conditions for experiments.

  9. Spatio-temporal organization of dynamics in a two-dimensional periodically driven vortex flow: A Lagrangian flow network perspective.

    PubMed

    Lindner, Michael; Donner, Reik V

    2017-03-01

    We study the Lagrangian dynamics of passive tracers in a simple model of a driven two-dimensional vortex resembling real-world geophysical flow patterns. Using a discrete approximation of the system's transfer operator, we construct a directed network that describes the exchange of mass between distinct regions of the flow domain. By studying different measures characterizing flow network connectivity at different time-scales, we are able to identify the location of dynamically invariant structures and regions of maximum dispersion. Specifically, our approach allows us to delimit co-existing flow regimes with different dynamics. To validate our findings, we compare several network characteristics to the well-established finite-time Lyapunov exponents and apply a receiver operating characteristic analysis to identify network measures that are particularly useful for unveiling the skeleton of Lagrangian chaos.

  10. A root-mean-square pressure fluctuations model for internal flow applications

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.

    1985-01-01

    A transport equation for the root-mean-square pressure fluctuations of turbulent flow is derived from the time-dependent momentum equation for incompressible flow. Approximate modeling of this transport equation is included to relate terms with higher order correlations to the mean quantities of turbulent flow. Three empirical constants are introduced in the model. Two of the empirical constants are estimated from homogeneous turbulence data and wall pressure fluctuations measurements. The third constant is determined by comparing the results of large eddy simulations for a plane channel flow and an annulus flow.

  11. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocitymore » exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)« less

  12. Flow of two immiscible fluids in a periodically constricted tube: Transitions to stratified, segmented, churn, spray, or segregated flow

    NASA Astrophysics Data System (ADS)

    Fraggedakis, D.; Kouris, Ch.; Dimakopoulos, Y.; Tsamopoulos, J.

    2015-08-01

    We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our volume-of-fluid algorithm is used to solve the governing equations. First, the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then, it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow, or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray, and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results [I. Cohen et al., "Two fluid drop snap-off problem: Experiments and theory," Phys. Rev. Lett. 83, 1147-1150 (1999)]. Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our result provides deeper insights into the mechanism of the pattern transitions and is in agreement with previous studies on core-annular flow [Ch. Kouris and J. Tsamopoulos, "Core-annular flow in a periodically constricted circular tube, I. Steady state, linear stability and energy analysis," J. Fluid Mech. 432, 31-68 (2001) and Ch. Kouris et al., "Comparison of spectral and finite element methods applied to the study of interfacial instabilities of the core-annular flow in an undulating tube," Int. J. Numer. Methods Fluids 39(1), 41-73 (2002)], segmented flow [E. Lac and J. D. Sherwood, "Motion of a drop along the centreline of a capillary in a pressure-driven flow," J. Fluid Mech. 640, 27-54 (2009)], and churn flow [R. Y. Bai et al., "Lubricated pipelining—Stability of core annular-flow. 5. Experiments and comparison with theory," J. Fluid Mech. 240, 97-132 (1992)].

  13. From flying wheel to square flow: Dynamics of a flow driven by acoustic forcing

    NASA Astrophysics Data System (ADS)

    Cambonie, Tristan; Moudjed, Brahim; Botton, Valéry; Henry, Daniel; Ben Hadid, Hamda

    2017-12-01

    Acoustic streaming designates the ability to drive quasisteady flows by acoustic propagation in dissipative fluids and results from an acoustohydrodynamics coupling. It is a noninvasive way of putting a fluid into motion using the volumetric acoustic force and can be used for different applications such as mixing purposes. We present an experimental investigation of a kind of square flow driven by acoustic streaming, with the use of beam reflections, in a water tank. Time-resolved experiments using particle image velocimetry have been performed to investigate the velocity field in the reference plane of the experiments for six powers: 0.5, 1, 2, 4, 6, and 8 W. The evolution of the flow regime from almost steady to strongly unsteady states is characterized using different tools: the plot of time-averaged and instantaneous velocity fields, the calculation of presence density maps for vortex positions and for the maximal velocity and vorticity crest lines, and the use of spatiotemporal maps of the waving observed on the jets created by acoustic streaming. A transition is observed between two regimes at moderate and high acoustic forcing.

  14. Ion sound instability driven by the ion flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshkarov, O., E-mail: koshkarov.alexandr@usask.ca; Smolyakov, A. I.; National Research Centre

    2015-05-15

    Ion sound instabilities driven by the ion flow in a system of a finite length are considered by analytical and numerical methods. The ion sound waves are modified by the presence of stationary ion flow resulting in negative and positive energy modes. The instability develops due to coupling of negative and positive energy modes mediated by reflections from the boundary. It is shown that the wave dispersion due to deviation from quasineutrality is crucial for the stability. In finite length system, the dispersion is characterized by the length of the system measured in units of the Debye length. The instabilitymore » is studied analytically and the results are compared with direct, initial value numerical simulations.« less

  15. Pressure Gradient Effects on Hypersonic Cavity Flow Heating

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Alter, Stephen J.; Merski, N. Ronald; Wood, William A.; Prabhu, Ramadas K.

    2006-01-01

    The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights.

  16. Pressure Gradient Effects on Hypersonic Cavity Flow Heating

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Alter, Stephen J.; Merski, N. Ronald; Wood, William A.; Prabhu, Ramdas K.

    2007-01-01

    The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights.

  17. Flow field in the wake of a bluff body driven through a steady recirculating flow

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane B.; Plesniak, Michael W.

    2015-02-01

    The wake produced by a bluff body driven through a steady recirculating flow is studied experimentally in a water facility using particle image velocimetry. The bluff body has a rectangular cross section of height, , and width, , such that the aspect ratio, AR = H/ D, is equal to 3. The motion of the bluff body is uniform and rectilinear, and corresponds to a Reynolds number based on width, Re D = 9,600. The recirculating flow is confined within a hemicylindrical enclosure and is generated by planar jets emanating from slots of width, , such that . Under these conditions, experiments are performed in a closed-loop facility that enables complete optical access to the near-wake. Velocity fields are obtained up to a distance of downstream of the moving body. Data include a selection of phase-averaged velocity fields representative of the wake for a baseline case (no recirculation) and an interaction case (with recirculation). Results indicate that the transient downwash flow typically observed in wakes behind finite bodies of small aspect ratio is significantly perturbed by the recirculating flow. The wake is displaced from the ground plane and exhibits a shorter recirculation zone downstream of the body. In summary, it was found that the interaction between a bluff body wake and a recirculating flow pattern alters profoundly the dynamics of the wake, which has implications on scalar transport in the wake.

  18. Stability of magnetohydrodynamic Dean Flow as applied to centrifugally confined plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassam, A.B.

    1999-10-01

    Dean Flow is the azimuthal flow of fluid between static concentric cylinders. In a magnetized plasma, there may also be radial stratification of the pressure. The ideal magnetohydrodynamic stability of such a flow in the presence of a strong axial magnetic field and an added radial gravitational force is examined. It is shown that both the Kelvin{endash}Helmholtz instability and pressure-gradient-driven interchanges can be stabilized if the flow is driven by a unidirectional external force and if the plasma annulus is sufficiently thin (large aspect ratio). These results find application in schemes using centrifugal confinement of plasma for fusion. {copyright} {italmore » 1999 American Institute of Physics.}« less

  19. Buoyancy and Pressure Driven Flow of Hot Gases in Vertical Shafts with Natural and Forced Ventilation

    NASA Astrophysics Data System (ADS)

    Tamm, Gunnar; Jaluria, Yogesh

    2003-11-01

    An experimental investigation has been carried out on the buoyancy and pressure induced flow of hot gases in vertical shafts, in order to simulate the propagation of combustion products in elevator shafts due to fire in multilevel buildings. Various geometrical configurations are studied, with regard to natural and forced ventilation imposed at the top or bottom of the vertical shaft. The aspect ratio is taken at a fixed value of 6 and the inflow conditions for the hot gases, at a vent near the bottom, are varied in terms of the Reynolds and Grashof numbers. Temperature measurements within the shaft allow a detailed study of the steady state thermal fields, from which optimal means for smoke alleviation in high-rise building fires may be developed. Flow visualization is also used to study the flow characteristics. The results obtained indicate a wall plume as the primary transport mechanism. Flow recirculation dominates at high Grashof number flows, while increased Reynolds numbers gives rise to greater mixing in the shaft. The development and stability of the flow and its effect on the spread of smoke and hot gases are assessed for the different shaft configurations and inlet conditions. It is found that the fastest smoke removal and lowest shaft temperatures occur for a configuration with natural ventilation at the top and forced ventilation up from the shaft bottom. It is also shown that forced ventilation can be used to arrest smoke spread, as well as to dilute the effects of the fire.

  20. The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegna, C. C.

    2016-05-15

    The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.

  1. Flutter Phenomenon in Flow Driven Energy Harvester-A Unified Theoretical Model for "Stiff" and "Flexible" Materials.

    PubMed

    Chen, Yu; Mu, Xiaojing; Wang, Tao; Ren, Weiwei; Yang, Ya; Wang, Zhong Lin; Sun, Chengliang; Gu, Alex Yuandong

    2016-10-14

    Here, we report a stable and predictable aero-elastic motion in the flow-driven energy harvester, which is different from flapping and vortex-induced-vibration (VIV). A unified theoretical frame work that describes the flutter phenomenon observed in both "stiff" and "flexible" materials for flow driven energy harvester was presented in this work. We prove flutter in both types of materials is the results of the coupled effects of torsional and bending modes. Compared to "stiff" materials, which has a flow velocity-independent flutter frequency, flexible material presents a flutter frequency that almost linearly scales with the flow velocity. Specific to "flexible" materials, pre-stress modulates the frequency range in which flutter occurs. It is experimentally observed that a double-clamped "flexible" piezoelectric P(VDF-TrFE) thin belt, when driven into the flutter state, yields a 1,000 times increase in the output voltage compared to that of the non-fluttered state. At a fixed flow velocity, increase in pre-stress level of the P(VDF-TrFE) thin belt up-shifts the flutter frequency. In addition, this work allows the rational design of flexible piezoelectric devices, including flow-driven energy harvester, triboelectric energy harvester, and self-powered wireless flow speed sensor.

  2. Efficacy and safety of strategies to preserve stable extracorporeal life support flow during simulated hypovolemia.

    PubMed

    Simons, A P; Lindelauf, A A M A; Ganushchak, Y M; Maessen, J G; Weerwind, P W

    2014-01-01

    Without volume-buffering capacity in extracorporeal life support (ELS) systems, hypovolemia can acutely reduce support flow. This study aims at evaluating efficacy and safety of strategies for preserving stable ELS during hypovolemia. Flow and/or pressure-guided servo pump control, a reserve-driven control strategy and a volume buffer capacity (VBC) device were evaluated with respect to pump flow, venous line pressure and arterial gaseous microemboli (GME) during simulated normovolemia and hypovolemia. Normovolemia resulted in a GME-free pump flow of 3.1 ± 0.0 L/min and a venous line pressure of -10 ± 1 mmHg. Hypovolemia without servo pump control resulted in a GME-loaded flow of 2.3 ± 0.4 L/min with a venous line pressure of -114 ± 52 mmHg. Servo control resulted in an unstable and GME-loaded flow of 1.5 ± 1.2 L/min. With and without servo pump control, the VBC device stabilised flow (SD = 0.2 and 0.0 L/min, respectively) and venous line pressure (SD=51 and 4 mmHg, respectively) with near-absent GME activity. Reserve-driven pump control combined with a VBC device restored a near GME-free flow of 2.7 ± 0.0 L/min with a venous line pressure of -9 ± 0 mmHg. In contrast to a reserve-driven pump control strategy combined with a VBC device, flow and pressure servo control for ELS show evident deficits in preserving stable and safe ELS flow during hypovolemia.

  3. Flow and pressure characteristics within a screw compressor

    NASA Astrophysics Data System (ADS)

    Guerrato, D.; Nouri, J. M.; Stosic, N.; Arcoumanis, C.

    2007-10-01

    The angle-resolved mean and turbulence characteristics of the axial air flow inside a screw compressor with both male and female rotors have been measured, using a laser Doppler velocimeter (LDV) with high spatial and temporal resolution at different radial and axial locations for speeds of 800-1600 rpm, discharge pressures of 1-1.6 bar and discharge temperatures of 33-90°C. The velocity measurements were performed through a special transparent window fixed near the discharge port. The results confirmed the ability of the LDV technique to characterise the flow inside the compressor working chamber; an angular resolution of 1.5° was able to fully describe the velocity field within the machine. The flow variation between the different working chambers was established as well as the spatial variation of the axial mean velocity and turbulence velocity fluctuation within the working chamber. The effect of discharge port opening on the axial mean and RMS velocities was found to be significant near the leading edge of the rotors causing an increase in the mean and RMS velocities of the order of 4.2Vp in mean (where Vp is the axial pitched velocity) for male rotor and 5.4Vp for, female rotor and this effect is less pronounced on the flow near the root of the rotor. Moreover, to obtain a better understanding of the flow motion, a high sampling rate pressure transducer was used to provide the internal angular static pressure variation. These measurements are used to validate the in-house CFD model of the fluid flow within twin screw compressors which, in turn, allows reliable optimisation of various compressor designs.

  4. Material processing of convection-driven flow field and temperature distribution under oblique gravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1995-01-01

    A set of mathematical formulation is adopted to study vapor deposition from source materials driven by heat transfer process under normal and oblique directions of gravitational acceleration with extremely low pressure environment of 10(exp -2) mm Hg. A series of time animation of the initiation and development of flow and temperature profiles during the course of vapor deposition has been obtained through the numerical computation. Computations show that the process of vapor deposition has been accomplished by the transfer of vapor through a fairly complicated flow pattern of recirculation under normal direction gravitational acceleration. It is obvious that there is no way to produce a homogeneous thin crystalline films with fine grains under such a complicated flow pattern of recirculation with a non-uniform temperature distribution under normal direction gravitational acceleration. There is no vapor deposition due to a stably stratified medium without convection for reverse normal direction gravitational acceleration. Vapor deposition under oblique direction gravitational acceleration introduces a reduced gravitational acceleration in vertical direction which is favorable to produce a homogeneous thin crystalline films. However, oblique direction gravitational acceleration also induces an unfavorable gravitational acceleration along horizontal direction which is responsible to initiate a complicated flow pattern of recirculation. In other words, it is necessary to carry out vapor deposition under a reduced gravity in the future space shuttle experiments with extremely low pressure environment to process vapor deposition with a homogeneous crystalline films with fine grains. Fluid mechanics simulation can be used as a tool to suggest most optimistic way of experiment with best setup to achieve the goal of processing best nonlinear optical materials.

  5. Partitioning dynamics of unsaturated flows in fractured porous media: Laboratory studies and three-dimensional multi-scale smoothed particle hydrodynamics simulations of gravity-driven flow in fractures

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Bresinsky, L. T.; Shigorina, E.; Noffz, T.; Dentz, M.; Sauter, M.; Tartakovsky, A. M.

    2017-12-01

    Preferential flow dynamics in unsaturated fractures remain a challenging topic on various scales. On pore- and fracture-scales the highly erratic gravity-driven flow dynamics often provoke a strong deviation from classical volume-effective approaches. Against the common notion that flow in fractures (or macropores) can only occur under equilibrium conditions, i.e., if the surrounding porous matrix is fully saturated and capillary pressures are high enough to allow filling of the fracture void space, arrival times suggest the existence of rapid preferential flow along fractures, fracture networks, and fault zones, even if the matrix is not fully saturated. Modeling such flows requires efficient numerical techniques to cover various flow-relevant physics, such as surface tension, static and dynamic contact angles, free-surface (multi-phase) interface dynamics, and formation of singularities. Here we demonstrate the importance of such flow modes on the partitioning dynamics at simple fracture intersections, with a combination of laboratory experiments, analytical solutions and numerical simulations using our newly developed massively parallel smoothed particle hydrodynamics (SPH) code. Flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. This behavior is demonstrated for a multi-inlet laboratory setup where the inlet-specific flow rate is chosen so that either a droplet or rivulet flow persists. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency

  6. Cold-Flow Study of Low Frequency Pressure Instability in Hybrid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Jenkins, Rhonald M.

    1997-01-01

    Past experience with hybrid rockets has shown that certain motor operating conditions are conducive to the formation of low frequency pressure oscillations, or flow instabilities, within the motor. Both past and present work in the hybrid propulsion community acknowledges deficiencies in the understanding of such behavior, though it seems probable that the answer lies in an interaction between the flow dynamics and the combustion heat release. Knowledge of the fundamental flow dynamics is essential to the basic understanding of the overall stability problem. A first step in this direction was a study conducted at NASA Marshall Space Flight Center (MSFC), centered around a laboratory-scale two dimensional water flow model of a hybrid rocket motor. Principal objectives included: (1) visualization of flow and measurement of flow velocity distributions: (2) assessment of the importance of shear layer instabilities in driving motor pressure oscillations; (3) determination of the interactions between flow induced shear layers with the mainstream flow, the secondary (wall) throughflow, and solid boundaries; (4) investigation of the interactions between wall flow oscillations and the mainstream flow pressure distribution.

  7. Experimental investigation on flow patterns of RP-3 kerosene under sub-critical and supercritical pressures

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui

    2014-02-01

    Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.

  8. The physics of debris flows

    NASA Astrophysics Data System (ADS)

    Iverson, Richard M.

    1997-08-01

    permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.

  9. The physics of debris flows

    USGS Publications Warehouse

    Iverson, R.M.

    1997-01-01

    permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.

  10. Realistic Data-Driven Traffic Flow Animation Using Texture Synthesis.

    PubMed

    Chao, Qianwen; Deng, Zhigang; Ren, Jiaping; Ye, Qianqian; Jin, Xiaogang

    2018-02-01

    We present a novel data-driven approach to populate virtual road networks with realistic traffic flows. Specifically, given a limited set of vehicle trajectories as the input samples, our approach first synthesizes a large set of vehicle trajectories. By taking the spatio-temporal information of traffic flows as a 2D texture, the generation of new traffic flows can be formulated as a texture synthesis process, which is solved by minimizing a newly developed traffic texture energy. The synthesized output captures the spatio-temporal dynamics of the input traffic flows, and the vehicle interactions in it strictly follow traffic rules. After that, we position the synthesized vehicle trajectory data to virtual road networks using a cage-based registration scheme, where a few traffic-specific constraints are enforced to maintain each vehicle's original spatial location and synchronize its motion in concert with its neighboring vehicles. Our approach is intuitive to control and scalable to the complexity of virtual road networks. We validated our approach through many experiments and paired comparison user studies.

  11. Optic nerve head blood flow response to reduced ocular perfusion pressure by alteration of either the blood pressure or intraocular pressure.

    PubMed

    Wang, Lin; Cull, Grant A; Fortune, Brad

    2015-04-01

    To test the hypothesis that blood flow autoregulation in the optic nerve head has less reserve to maintain normal blood flow in the face of blood pressure-induced ocular perfusion pressure decrease than a similar magnitude intraocular pressure-induced ocular perfusion pressure decrease. Twelve normal non-human primates were anesthetized by continuous intravenous infusion of pentobarbital. Optic nerve blood flow was monitored by laser speckle flowgraphy. In the first group of animals (n = 6), the experimental eye intraocular pressure was maintained at 10 mmHg using a saline reservoir connected to the anterior chamber. The blood pressure was gradually reduced by a slow injection of pentobarbital. In the second group (n = 6), the intraocular pressure was slowly increased from 10 mmHg to 50 mmHg by raising the reservoir. In both experimental groups, optic nerve head blood flow was measured continuously. The blood pressure and intraocular pressure were simultaneously recorded in all experiments. The optic nerve head blood flow showed significant difference between the two groups (p = 0.021, repeat measures analysis of variance). It declined significantly more in the blood pressure group compared to the intraocular pressure group when the ocular perfusion pressure was reduced to 35 mmHg (p < 0.045) and below. There was also a significant interaction between blood flow changes and the ocular perfusion pressure treatment (p = 0.004, adjusted Greenhouse & Geisser univariate test), indicating the gradually enlarged blood flow difference between the two groups was due to the ocular perfusion pressure decrease. The results show that optic nerve head blood flow is more susceptible to an ocular perfusion pressure decrease induced by lowering the blood pressure compared with that induced by increasing the intraocular pressure. This blood flow autoregulation capacity vulnerability to low blood pressure may provide experimental evidence related to the

  12. Flow Cage Assemblies

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor)

    2017-01-01

    Apparatus, systems and methods for implementing flow cages and flow cage assemblies in association with high pressure fluid flows and fluid valves are provided. Flow cages and flow assemblies are provided to dissipate the energy of a fluid flow, such as by reducing fluid flow pressure and/or fluid flow velocity. In some embodiments the dissipation of the fluid flow energy is adapted to reduce erosion, such as from high-pressure jet flows, to reduce cavitation, such as by controllably increasing the flow area, and/or to reduce valve noise associated with pressure surge.

  13. Prediction of friction pressure drop for low pressure two-phase flows on the basis of approximate analytical models

    NASA Astrophysics Data System (ADS)

    Zubov, N. O.; Kaban'kov, O. N.; Yagov, V. V.; Sukomel, L. A.

    2017-12-01

    Wide use of natural circulation loops operating at low redused pressures generates the real need to develop reliable methods for predicting flow regimes and friction pressure drop for two-phase flows in this region of parameters. Although water-air flows at close-to-atmospheric pressures are the most widely studied subject in the field of two-phase hydrodynamics, the problem of reliably calculating friction pressure drop can hardly be regarded to have been fully solved. The specific volumes of liquid differ very much from those of steam (gas) under such conditions, due to which even a small change in flow quality may cause the flow pattern to alter very significantly. Frequently made attempts to use some or another universal approach to calculating friction pressure drop in a wide range of steam quality values do not seem to be justified and yield predicted values that are poorly consistent with experimentally measured data. The article analyzes the existing methods used to calculate friction pressure drop for two-phase flows at low pressures by comparing their results with the experimentally obtained data. The advisability of elaborating calculation procedures for determining the friction pressure drop and void fraction for two-phase flows taking their pattern (flow regime) into account is demonstrated. It is shown that, for flows characterized by low reduced pressures, satisfactory results are obtained from using a homogeneous model for quasi-homogeneous flows, whereas satisfactory results are obtained from using an annular flow model for flows characterized by high values of void fraction. Recommendations for making a shift from one model to another in carrying out engineering calculations are formulated and tested. By using the modified annular flow model, it is possible to obtain reliable predictions for not only the pressure gradient but also for the liquid film thickness; the consideration of droplet entrainment and deposition phenomena allows reasonable

  14. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, T.W.; Hamill, P.E. Jr.; Ozgu, M.R.; Padfield, R.C.; Rego, D.N.; Brita, G.P.

    1990-07-24

    A pressurized tundish for controlling a continuous flow of molten metal is characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate. 1 fig.

  15. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, Thomas W.; Hamill, Jr., Paul E.; Ozgu, Mustafa R.; Padfield, Ralph C.; Rego, Donovan N.; Brita, Guido P.

    1990-01-01

    A pressurized tundish for controlling a continous flow of molten metal characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate.

  16. Cerebrospinal fluid bulk flow is driven by the cardiac cycle

    NASA Astrophysics Data System (ADS)

    Tithof, Jeffrey; Mestre, Humberto; Thomas, John; Nedergaard, Maiken; Kelley, Douglas

    2017-11-01

    Recent discoveries have uncovered a cerebrospinal fluid (CSF) transport system in the perivascular spaces (PVS) of the mammalian brain which clears excess extracellular fluid and protein waste products. The oscillatory pattern of CSF flow has long been attributed to arterial pulsations due to cardiac contractility but limitations in imaging techniques have impeded quantitative measurement of flow rates within the PVS. In this talk, we describe quantitative measurements from the first ever direct imaging of CSF flow in the PVS of a mouse brain. We perform particle tracking velocimetry to obtain time-resolved velocity measurements. To identify the cardiac and/or respiratory dependence of the flow, while imaging, we simultaneously record the mouse's electrocardiogram and respiration. Our measurements conclusively indicate that CSF pulsatility in the arterial PVS is directly driven by the cardiac cycle and not by the respiratory cycle or cerebral vasomotion. These results offer a substantial step forward in understanding bulk flow of CSF in the mammalian brain and may have important implications related to neurodegenerative diseases.

  17. Magnetic Fluctuation-Driven Intrinsic Flow in a Toroidal Plasma

    NASA Astrophysics Data System (ADS)

    Brower, D. L.; Ding, W. X.; Lin, L.; Almagri, A. F.; den Hartog, D. J.; Sarff, J. S.

    2012-10-01

    Magnetic fluctuations have been long observed in various magnetic confinement configurations. These perturbations may arise naturally from plasma instabilities such as tearing modes and energetic particle driven modes, but they can also be externally imposed by error fields or external magnetic coils. It is commonly observed that large MHD modes lead to plasma locking (no rotation) due to torque produced by eddy currents on the wall, and it is predicted that stochastic field induces flow damping where the radial electric field is reduced. Flow generation is of great importance to fusion plasma research, especially low-torque devices like ITER, as it can act to improve performance. Here we describe new measurements in the MST reversed field pinch (RFP) showing that the coherent interaction of magnetic and particle density fluctuations can produce a turbulent fluctuation-induced kinetic force, which acts to drive intrinsic plasma rotation. Key observations include; (1) the average kinetic force resulting from density fluctuations, ˜ 0.5 N/m^3, is comparable to the intrinsic flow acceleration, and (2) between sawtooth crashes, the spatial distribution of the kinetic force is directed to create a sheared parallel flow profile that is consistent with the measured flow profile in direction and amplitude, suggesting the kinetic force is responsible for intrinsic plasma rotation.

  18. Wall Driven Cavity Approach to Slug Flow Modeling In a Micro channel

    NASA Astrophysics Data System (ADS)

    Sahu, Avinash; Kulkarni, Shekhar; Pushpavanam, Subramaniam; Pushpavanam Research League Team, Prof.

    2014-03-01

    Slug flow is a commonly observed stable regime and occurs at relatively low flow rates of the fluids. Wettability of channel decides continuous and discrete phases. In these types of biphasic flows, the fluid - fluid interface acts as a barrier that prohibits species movement across the interface. The flow inside a slug is qualitatively similar to the well known shallow cavity flow. In shallow cavities the flow mimics the ``fully developed'' internal circulation in slug flows. Another approach to slug flow modeling can be in a moving reference frame. Here the wall boundary moves in the direction opposite to that of the flow, hence induces circulations within the phases which is analogous to the well known Lid Driven Cavity. The two parallel walls are moved in the opposite directions which generate circulation patterns, equivalent to the ones regularly observed in slug flow in micro channels. A fourth order stream function equation is solved using finite difference approach. The flow field obtained using the two approaches will be used to analyze the effect on mass transfer and chemical reactions in the micro channel. The internal circulations and the performance of these systems will be validated experimentally.

  19. Speed and pressure recording in three-dimensional flow

    NASA Technical Reports Server (NTRS)

    Krisam, F

    1932-01-01

    Van der Megge Zijnen's spherical Pitot tube with its 5 test holes insures a simultaneous record of static pressure and magnitude and direction of velocity in three-dimensional flow. The report treats the method as well as the range of application of this Pitot in the light of modern knowledge on flow around spheres.

  20. Reduction of Secondary Flow in Inclined Orifice Pulse Tubes by Addition of DC Flow

    NASA Astrophysics Data System (ADS)

    Shiraishi, M.; Fujisawa, Y.; Murakami, M.; Nanako, A.

    2004-06-01

    The effect of using a second orifice valve to reduce convective losses caused by gravity-driven convective secondary flow in inclined orifice pulse tube refrigerators was investigated. The second orifice valve was installed between a reservoir and a low-pressure line of a compressor. When the valve was open, an additional DC flow directed to the hot end of the refrigerator was generated to counterbalance the convective secondary flow in the core region by opening the valve. Experimental results indicated that with increasing additional DC flow to an optimum level, the convective secondary flow decreased and the cooling performance improved, although further increase of the DC flow over the level caused the cooling performance to degrade. In summary, the second orifice valve was effective in reducing both the convective losses without affecting the cooling performance at an inclination angle < 70° where convective losses were negligibly small.

  1. Stochastic Estimation and Non-Linear Wall-Pressure Sources in a Separating/Reattaching Flow

    NASA Technical Reports Server (NTRS)

    Naguib, A.; Hudy, L.; Humphreys, W. M., Jr.

    2002-01-01

    Simultaneous wall-pressure and PIV measurements are used to study the conditional flow field associated with surface-pressure generation in a separating/reattaching flow established over a fence-with-splitter-plate geometry. The conditional flow field is captured using linear and quadratic stochastic estimation based on the occurrence of positive and negative pressure events in the vicinity of the mean reattachment location. The results shed light on the dominant flow structures associated with significant wall-pressure generation. Furthermore, analysis based on the individual terms in the stochastic estimation expansion shows that both the linear and non-linear flow sources of the coherent (conditional) velocity field are equally important contributors to the generation of the conditional surface pressure.

  2. Flow-Driven Waves and Phase-Locked Self-Organization in Quasi-One-Dimensional Colonies of Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Gholami, A.; Steinbock, O.; Zykov, V.; Bodenschatz, E.

    2015-01-01

    We report experiments on flow-driven waves in a microfluidic channel containing the signaling slime mold Dictyostelium discoideum. The observed cyclic adenosine monophosphate (cAMP) wave trains developed spontaneously in the presence of flow and propagated with the velocity proportional to the imposed flow velocity. The period of the wave trains was independent of the flow velocity. Perturbations of flow-driven waves via external periodic pulses of the signaling agent cAMP induced 1 ∶1 , 2 ∶1 , 3 ∶1 , and 1 ∶2 frequency responses, reminiscent of Arnold tongues in forced oscillatory systems. We expect our observations to be generic to active media governed by reaction-diffusion-advection dynamics, where spatially bound autocatalytic processes occur under flow conditions.

  3. Constant flow-driven microfluidic oscillator for different duty cycles

    PubMed Central

    Kim, Sung-Jin; Yokokawa, Ryuji; Lesher-Perez, Sasha Cai; Takayama, Shuichi

    2012-01-01

    This paper presents microfluidic devices that autonomously convert two constant flow inputs into an alternating oscillatory flow output. We accomplish this hardware embedded self-control programming using normally closed membrane valves that have an inlet, an outlet, and a membrane-pressurization chamber connected to a third terminal. Adjustment of threshold opening pressures in these 3-terminal flow switching valves enabled adjustment of oscillation periods to between 57–360 s with duty cycles of 0.2–0.5. These values are in relatively good agreement with theoretical values, providing the way for rational design of an even wider range of different waveform oscillations. We also demonstrate the ability to use these oscillators to perform temporally patterned delivery of chemicals to living cells. The device only needs a syringe pump, thus removing the use of complex, expensive external actuators. These tunable waveform microfluidic oscillators are envisioned to facilitate cell-based studies that require temporal stimulation. PMID:22206453

  4. Direct match data flow memory for data driven computing

    DOEpatents

    Davidson, George S.; Grafe, Victor Gerald

    1997-01-01

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.

  5. Multiphase groundwater flow near cooling plutons

    USGS Publications Warehouse

    Hayba, D.O.; Ingebritsen, S.E.

    1997-01-01

    We investigate groundwater flow near cooling plutons with a computer program that can model multiphase flow, temperatures up to 1200??C, thermal pressurization, and temperature-dependent rock properties. A series of experiments examines the effects of host-rock permeability, size and depth of pluton emplacement, single versus multiple intrusions, the influence of a caprock, and the impact of topographically driven groundwater flow. We also reproduce and evaluate some of the pioneering numerical experiments on flow around plutons. Host-rock permeability is the principal factor influencing fluid circulation and heat transfer in hydrothermal systems. The hottest and most steam-rich systems develop where permeability is of the order of 10-15 m2. Temperatures and life spans of systems decrease with increasing permeability. Conduction-dominated systems, in which permeabilities are ???10-16m2, persist longer but exhibit relatively modest increases in near-surface temperatures relative to ambient conditions. Pluton size, emplacement depth, and initial thermal conditions have less influence on hydrothermal circulation patterns but affect the extent of boiling and duration of hydrothermal systems. Topographically driven groundwater flow can significantly alter hydrothermal circulation; however, a low-permeability caprock effectively decouples the topographically and density-driven systems and stabilizes the mixing interface between them thereby defining a likely ore-forming environment.

  6. Pressure-flow characteristics of normal and disordered esophageal motor patterns.

    PubMed

    Singendonk, Maartje M J; Kritas, Stamatiki; Cock, Charles; Ferris, Lara F; McCall, Lisa; Rommel, Nathalie; van Wijk, Michiel P; Benninga, Marc A; Moore, David; Omari, Taher I

    2015-03-01

    To perform pressure-flow analysis (PFA) in a cohort of pediatric patients who were referred for diagnostic manometric investigation. PFA was performed using purpose designed Matlab-based software. The pressure-flow index (PFI), a composite measure of bolus pressurization relative to flow and the impedance ratio, a measure of the extent of bolus clearance failure were calculated. Tracings of 76 pediatric patients (32 males; 9.1 ± 0.7 years) and 25 healthy adult controls (7 males; 36.1 ± 2.2 years) were analyzed. Patients mostly had normal motility (50%) or a category 4 disorder and usually weak peristalsis (31.5%) according to the Chicago Classification. PFA of healthy controls defined reference ranges for PFI ≤142 and impedance ratio ≤0.49. Pediatric patients with pressure-flow (PF) characteristics within these limits had normal motility (62%), most patients with PF characteristics outside these limits also had an abnormal Chicago Classification (61%). Patients with high PFI and disordered motor patterns all had esophagogastric junction outflow obstruction. Disordered PF characteristics are associated with disordered esophageal motor patterns. By defining the degree of over-pressurization and/or extent of clearance failure, PFA may be a useful adjunct to esophageal pressure topography-based classification. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control

    PubMed Central

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-01-01

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved. PMID:28368344

  8. First-order particle acceleration in magnetically driven flows

    DOE PAGES

    Beresnyak, Andrey; Li, Hui

    2016-03-02

    In this study, we demonstrate that particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. Some examples of such flows include spontaneous turbulent reconnection and decaying magnetohydrodynamic turbulence, where a magnetic field relaxes to a lower-energy configuration and transfers part of its energy to kinetic motions of the fluid. We show that this energy transfer, which normally causes turbulent cascade and heating of the fluid, also results in a first-order acceleration of non-thermal particles. Since it is generic, this acceleration mechanism is likely to play a role in the production of non-thermal particle distribution inmore » magnetically dominant environments such as the solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, and γ-ray bursts.« less

  9. Influence of pressure driven secondary flows on the behavior of turbofan forced mixers

    NASA Technical Reports Server (NTRS)

    Anderson, B.; Povinelli, L.; Gerstenmaier, W.

    1980-01-01

    A finite difference procedure was developed to analyze the three dimensional subsonic turbulent flows in turbofan forced mixer nozzles. The method is based on a decomposition of the velocity field into primary and secondary flow components which are determined by solution of the equations governing primary momentum, secondary vorticity, thermal energy, and continuity. Experimentally, a strong secondary flow pattern was identified which is associated with the radial inflow and outflow characteristics of the core and fan streams and forms a very strong vortex system aligned with the radial interface between the core and fan regions. A procedure was developed to generate a similar generic secondary flow pattern in terms of two constants representing the average radial outflow or inflow in the core and fan streams as a percentage of the local streamwise velocity. This description of the initial secondary flow gave excellent agreement with experimental data. By identifying the nature of large scale secondary flow structure and associating it with characteristic mixer nozzle behavior, it is felt that the cause and effect relationship between lobe design and nozzle performance can be understood.

  10. The dynamic behavior of chemically "stiffened" red blood cells in microchannel flows.

    PubMed

    Forsyth, Alison M; Wan, Jiandi; Ristenpart, William D; Stone, Howard A

    2010-07-01

    The rigidity of red blood cells (RBCs) plays an important role in whole blood viscosity and is correlated with several cardiovascular diseases. Two chemical agents that are commonly used to study cell deformation are diamide and glutaraldehyde. Despite diamide's common usage, there are discrepancies in the literature surrounding diamide's effect on the deformation of RBCs in shear and pressure-driven flows; in particular, shear flow experiments have shown that diamide stiffens cells, while pressure-driven flow in capillaries did not give this result. We performed pressure-driven flow experiments with RBCs in a microfluidic constriction and quantified the cell dynamics using high-speed imaging. Diamide, which affects RBCs by cross-linking spectrin skeletal membrane proteins, did not reduce deformation and showed an unchanged effective strain rate when compared to healthy cells. In contrast, glutaraldehyde, which is a non-specific fixative that acts on all components of the cell, did reduce deformation and showed increased instances of tumbling, both of which are characteristic features of stiffened, or rigidified, cells. Because glutaraldehyde increases the effective viscosity of the cytoplasm and lipid membrane while diamide does not, one possible explanation for our results is that viscous effects in the cytoplasm and/or lipid membrane are a dominant factor in dictating dynamic responses of RBCs in pressure-driven flows. Finally, literature on the use of diamide as a stiffening agent is summarized, and provides supporting evidence for our conclusions. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Flow and evaporation in single micrometer and nanometer scale pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velasco, A. E.; Yang, C.; Siwy, Z. S.

    2014-07-21

    We report measurements of pressure driven flow of fluids entering vacuum through a single pipe of micrometer or nanometer scale diameter. Nanopores were fabricated by etching a single ion track in polymer or mica foils. A calibrated mass spectrometer was used to measure the flow rates of nitrogen and helium through pipes with diameter ranging from 10 μm to 31 nm. The flow of gaseous and liquid nitrogen was studied near 77 K, while the flow of helium was studied from the lambda point (2.18 K) to above the critical point (5.2 K). Flow rates were controlled by changing the pressure drop across the pipemore » in the range 0–31 atm. When the pressure in the pipe reached the saturated vapor pressure, an abrupt flow transition was observed. A simple viscous flow model is used to determine the position of the liquid/vapor interface in the pipe. The observed mass flow rates are consistent with no slip boundary conditions.« less

  12. Influence of cerebrovascular resistance on the dynamic relationship between blood pressure and cerebral blood flow in humans.

    PubMed

    Smirl, J D; Tzeng, Y C; Monteleone, B J; Ainslie, P N

    2014-06-15

    We examined the hypothesis that changes in the cerebrovascular resistance index (CVRi), independent of blood pressure (BP), will influence the dynamic relationship between BP and cerebral blood flow in humans. We altered CVRi with (via controlled hyperventilation) and without [via indomethacin (INDO, 1.2 mg/kg)] changes in PaCO2. Sixteen subjects (12 men, 27 ± 7 yr) were tested on two occasions (INDO and hypocapnia) separated by >48 h. Each test incorporated seated rest (5 min), followed by squat-stand maneuvers to increase BP variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis (TFA). Beat-to-beat BP, middle cerebral artery velocity (MCAv), posterior cerebral artery velocity (PCAv), and end-tidal Pco2 were monitored. Dynamic pressure-flow relations were quantified using TFA between BP and MCAv/PCAv in the very low and low frequencies through the driven squat-stand maneuvers at 0.05 and 0.10 Hz. MCAv and PCAv reductions by INDO and hypocapnia were well matched, and CVRi was comparably elevated (P < 0.001). During the squat-stand maneuvers (0.05 and 0.10 Hz), the point estimates of absolute gain were universally reduced, and phase was increased under both conditions. In addition to an absence of regional differences, our findings indicate that alterations in CVRi independent of PaCO2 can alter cerebral pressure-flow dynamics. These findings are consistent with the concept of CVRi being a key factor that should be considered in the correct interpretation of cerebral pressure-flow dynamics as indexed using TFA metrics. Copyright © 2014 the American Physiological Society.

  13. Radiation Pressure-Driven Magnetic Disk Winds in Broad Absorption Line Quasi-Stellar Objects

    NASA Technical Reports Server (NTRS)

    DeKool, Martin; Begelman, Mitchell C.

    1995-01-01

    We explore a model in which QSO broad absorption lines (BALS) are formed in a radiation pressure-driven wind emerging from a magnetized accretion disk. The magnetic field threading the disk material is dragged by the flow and is compressed by the radiation pressure until it is dynamically important and strong enough to contribute to the confinement of the BAL clouds. We construct a simple self-similar model for such radiatively driven magnetized disk winds, in order to explore their properties. It is found that solutions exist for which the entire magnetized flow is confined to a thin wedge over the surface of the disk. For reasonable values of the mass-loss rate, a typical magnetic field strength such that the magnetic pressure is comparable to the inferred gas pressure in BAL clouds, and a moderate amount of internal soft X-ray absorption, we find that the opening angle of the flow is approximately 0.1 rad, in good agreement with the observed covering factor of the broad absorption line region.

  14. Turbulent flow in a partially filled pipe

    NASA Astrophysics Data System (ADS)

    Ng, Henry; Cregan, Hope; Dodds, Jonathan; Poole, Robert; Dennis, David

    2017-11-01

    Turbulent flow in a pressure driven pipe running partially full has been investigated using high-speed 2D-3C Stereoscopic Particle Imaging Velocimetry. With the field-of-view spanning the entire pipe cross section we are able to reconstruct the full three dimensional quasi-instantaneous flow field by invoking Taylor's hypothesis. The measurements were carried out over a range of flow depths at a constant Reynolds number based on hydraulic diameter and bulk velocity of Re = 32 , 000 . In agreement with previous studies, the ``velocity dip'' phenomenon, whereby the location of the maximum streamwise velocity occurs below the free surface was observed. A mean flow secondary current is observed near the free surface with each of the counter-rotating rollers filling the half-width of the pipe. Unlike fully turbulent flow in a rectangular open channel or pressurized square duct flow where the secondary flow cells appear in pairs about a corner bisector, the mean secondary motion observed here manifests only as a single pair of vortices mirrored about the pipe vertical centreline.

  15. Flow Field Measurements of Methane-Oxygen Turbulent Nonpremixed Flames at High Pressure

    NASA Astrophysics Data System (ADS)

    Iino, Kimio; Kikkawa, Hoshitaka; Akamatsu, Fumiteru; Katsuki, Masashi

    We carried out the flow field measurement of methane-oxygen turbulent nonpremixed flame in non-combusting and combusting situations at high pressures using LDV. The main objectives are to study the influences of combustion on the turbulence structure at high pressures and to provide detailed data on which numerical predictions on such flows can rely. Direct observation and CH* chemiluminescence detection are conducted at high pressures up to 1.0MPa. It was found that the flame length at elevated pressures became constant. From flow field measurements, the following features of flames at elevated pressure were found: (1) the existence of flame suppressed turbulence in the upstream region of the jet and enhanced it in the downstream region with increasing pressure; (2) Turbulence in the flame was more anisotropic than in the corresponding cold jet in all regions of the flow with increasing pressure; (3) Reynolds shear stresses did not change at elevated pressure; (4) Combustion processes had a marked influence on the turbulence macroscale under high pressures, however, the turbulence macroscale was not changed even with the increase in pressure.

  16. Flow Rate Driven by Peristaltic Movement in Plasmodial Tube of Physarum Polycephalum

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroyasu; Nakagaki, Toshiyuki

    2008-07-01

    We report a theoretical analysis of protoplasmic streaming driven by peristaltic movement in an elastic tube of an amoeba-like organism. The Plasmodium of Physarum polycephalum, a true slime mold, is a large amoeboid organism that adopts a sheet-like form with a tubular network. The network extends throughout the Plasmodium and enables the transport and circulation of chemical signals and nutrients. This tubular flow is driven by periodically propagating waves of active contraction of the tube cortex, a process known as peristaltic movement. We derive the relationship between the phase velocity of the contraction wave and the flow rate, and we discuss the physiological implications of this relationship.

  17. Direct match data flow memory for data driven computing

    DOEpatents

    Davidson, G.S.; Grafe, V.G.

    1997-10-07

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a ``fire`` signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor. 11 figs.

  18. A Method for Estimating Zero-Flow Pressure and Intracranial Pressure

    PubMed Central

    Caren, Marzban; Paul, Raymond Illian; David, Morison; Anne, Moore; Michel, Kliot; Marek, Czosnyka; Pierre, Mourad

    2012-01-01

    Background It has been hypothesized that critical closing pressure of cerebral circulation, or zero-flow pressure (ZFP), can estimate intracranial pressure (ICP). One ZFP estimation method employs extrapolation of arterial blood pressure versus blood-flow velocity. The aim of this study is to improve ICP predictions. Methods Two revisions are considered: 1) The linear model employed for extrapolation is extended to a nonlinear equation, and 2) the parameters of the model are estimated by an alternative criterion (not least-squares). The method is applied to data on transcranial Doppler measurements of blood-flow velocity, arterial blood pressure, and ICP, from 104 patients suffering from closed traumatic brain injury, sampled across the United States and England. Results The revisions lead to qualitative (e.g., precluding negative ICP) and quantitative improvements in ICP prediction. In going from the original to the revised method, the ±2 standard deviation of error is reduced from 33 to 24 mm Hg; the root-mean-squared error (RMSE) is reduced from 11 to 8.2 mm Hg. The distribution of RMSE is tighter as well; for the revised method the 25th and 75th percentiles are 4.1 and 13.7 mm Hg, respectively, as compared to 5.1 and 18.8 mm Hg for the original method. Conclusions Proposed alterations to a procedure for estimating ZFP lead to more accurate and more precise estimates of ICP, thereby offering improved means of estimating it noninvasively. The quality of the estimates is inadequate for many applications, but further work is proposed which may lead to clinically useful results. PMID:22824923

  19. An investigation of two phase flow pressure drops in a reduced acceleration environment

    NASA Astrophysics Data System (ADS)

    Wheeler, Montgomery W.; Best, Frederick R.; Reinarts, Thomas R.

    1993-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion system advantages include the capability of achieving high specific power levels. Before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a reduced acceleration environment is necessary. To meet these needs, two phase flow experiments were conducted aboard the National Aeronautic and Space Administration's KC-135 using R12 as the working fluid. Annular flow two phase pressure drops were measured through 10.41-mm ID 1.251-m long glass tubing during periods with acceleration levels in the range ±0.05 G. The experiments were conducted with emphasis on achieving data with a high level of accuracy. The reduced acceleration annular flow pressure drops were compred with pressure drops measured in a 1-G environment for similar flow conditions. The reduced acceleration pressure drops were found to be 45% greater than the 1-G pressure drops. In addition, the reduced acceleration annular flow interfacial friction factors were compared with models for vertical up-flow in a 1-G environment. The reduced acceleration interfacial friction factor data was not predicted by the 1-G models.

  20. Free-stream temperature, density, and pressure measurements in an expansion tube flow

    NASA Technical Reports Server (NTRS)

    Haggard, K. V.

    1973-01-01

    An experimental study was conducted to determine test-flow conditions in the Langley pilot model expansion tube. Measurements of temperature, density, wall pressure, pitot pressure, and shock and interface velocities were compared with theoretical calculations based on various models of the flow cycle. The vibrational temperature and integrated density of the molecular oxygen component of the flow were measured by use of vacuum ultraviolet absorption techniques. These measurements indicate both the presence and possible degree of nonequilibrium in the flow. Data are compared with several simplified models of the flow cycle, and data trends are discussed.

  1. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas-liquid/liquid-liquid flows.

    PubMed

    Yue, Jun; Rebrov, Evgeny V; Schouten, Jaap C

    2014-05-07

    We report a three-phase slug flow and a parallel-slug flow as two major flow patterns found under the nitrogen-decane-water flow through a glass microfluidic chip which features a long microchannel with a hydraulic diameter of 98 μm connected to a cross-flow mixer. The three-phase slug flow pattern is characterized by a flow of decane droplets containing single elongated nitrogen bubbles, which are separated by water slugs. This flow pattern was observed at a superficial velocity of decane (in the range of about 0.6 to 10 mm s(-1)) typically lower than that of water for a given superficial gas velocity in the range of 30 to 91 mm s(-1). The parallel-slug flow pattern is characterized by a continuous water flow in one part of the channel cross section and a parallel flow of decane with dispersed nitrogen bubbles in the adjacent part of the channel cross section, which was observed at a superficial velocity of decane (in the range of about 2.5 to 40 mm s(-1)) typically higher than that of water for each given superficial gas velocity. The three-phase slug flow can be seen as a superimposition of both decane-water and nitrogen-decane slug flows observed in the chip when the flow of the third phase (viz. nitrogen or water, respectively) was set at zero. The parallel-slug flow can be seen as a superimposition of the decane-water parallel flow and the nitrogen-decane slug flow observed in the chip under the corresponding two-phase flow conditions. In case of small capillary numbers (Ca ≪ 0.1) and Weber numbers (We ≪ 1), the developed two-phase pressure drop model under a slug flow has been extended to obtain a three-phase slug flow model in which the 'nitrogen-in-decane' droplet is assumed as a pseudo-homogeneous droplet with an effective viscosity. The parallel flow and slug flow pressure drop models have been combined to obtain a parallel-slug flow model. The obtained models describe the experimental pressure drop with standard deviations of 8% and 12% for the

  2. Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation.

    PubMed

    Froelich, Daniel R; Mullendore, Daniel L; Jensen, Kåre H; Ross-Elliott, Tim J; Anstead, James A; Thompson, Gary A; Pélissier, Hélène C; Knoblauch, Michael

    2011-12-01

    Since the first ultrastructural investigations of sieve tubes in the early 1960s, their structure has been a matter of debate. Because sieve tube structure defines frictional interactions in the tube system, the presence of P protein obstructions shown in many transmission electron micrographs led to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch's classical hypothesis. Here, we show that the phloem contains a distinctive network of protein filaments. Stable transgenic lines expressing Arabidopsis thaliana Sieve-Element-Occlusion-Related1 (SEOR1)-yellow fluorescent protein fusions show that At SEOR1 meshworks at the margins and clots in the lumen are a general feature of living sieve tubes. Live imaging of phloem flow and flow velocity measurements in individual tubes indicate that At SEOR1 agglomerations do not markedly affect or alter flow. A transmission electron microscopy preparation protocol has been generated showing sieve tube ultrastructure of unprecedented quality. A reconstruction of sieve tube ultrastructure served as basis for tube resistance calculations. The impact of agglomerations on phloem flow is discussed.

  3. A New Differential Pressure Flow Meter for Measurement of Human Breath Flow: Simulation and Experimental Investigation

    PubMed Central

    Bridgeman, Devon; Tsow, Francis; Xian, Xiaojun; Forzani, Erica

    2016-01-01

    The development and performance characterization of a new differential pressure-based flow meter for human breath measurements is presented in this article. The device, called a “Confined Pitot Tube,” is comprised of a pipe with an elliptically shaped expansion cavity located in the pipe center, and an elliptical disk inside the expansion cavity. The elliptical disk, named Pitot Tube, is exchangeable, and has different diameters, which are smaller than the diameter of the elliptical cavity. The gap between the disk and the cavity allows the flow of human breath to pass through. The disk causes an obstruction in the flow inside the pipe, but the elliptical cavity provides an expansion for the flow to circulate around the disk, decreasing the overall flow resistance. We characterize the new sensor flow experimentally and theoretically, using Comsol Multiphysics® software with laminar and turbulent models. We also validate the sensor, using inhalation and exhalation tests and a reference method. PMID:27818521

  4. In-line pressure within a HOTLINE® Fluid Warmer, under various flow conditions.

    PubMed

    Higashi, Midoriko; Yamaura, Ken; Matsubara, Yukie; Fukudome, Takuya; Hoka, Sumio

    2015-04-01

    Roller pump infusion devices are widely used for rapid infusion, and may be combined with separate warming devices. There may be instances however, where the pressures generated by the roller pump may not be compatible with the warming device. We assessed a commonly used roller pump in combination with a HOTLINE® Fluid Warmer, and found that it could generate pressures exceeding the HOTLINE® manufacturers specifications. This was of concern because the HOTLINE® manufacturer guideline states that not for use with pressure devices generating over 300 mmHg. Pressure greater than 300 mmHg may compromise the integrity of the HOTLINE® Fluid Warming Set. The aim of this study was to compare in-line pressure within a HOTLINE® Fluid Warmer at different infusion rates of a roller pump using various sizes of intravenous cannulae. The rapid infusion system comprised a 500 mL-normal saline bag, roller pump type infusion device, HOTLINE® Fluid Warmer (blood and fluid warmer system), and six different sizes of intravenous cannulae. In-line pressure was measured proximal to the HOTLINE® (pre-warmer) and proximal to the cannula (post-warmer), at flow rate of 50-160 mL/min. The in-line pressures increased significantly with increasing flow rate. The pre-warmer pressures exceeded 300 mmHg when the flow rate was ≥120 mL/min with 20-gauge, 48 mm length cannula, 130 with 20-gauge, 25 mm cannula, and 160 mL/min with 18-gauge, 48 mm cannula. However, they were <300 mmHg at any flow rates with 18-gauge, 30 mm cannula and 16-gauge cannulae. The post-warmer pressures exceeded 300 mmHg at the flow rate of 140 mL/min with 20-gauge, 48 mm cannula, and 160 mL/min with 20-gauge, 25 mm cannula, while they were <300 mmHg at any flow rates with 18 and 16-gauge cannulae. The in-line pressure within a HOTLINE® could exceed 300 mmHg, depending on the flow rate and size and length of cannula. It is important to pay attention to the size and length of cannulae and flow rate to keep the maximum

  5. Scaling laws in granular flow and pedestrian flow

    NASA Astrophysics Data System (ADS)

    Chen, Shumiao; Alonso-Marroquin, Fernando; Busch, Jonathan; Hidalgo, Raúl Cruz; Sathianandan, Charmila; Ramírez-Gómez, Álvaro; Mora, Peter

    2013-06-01

    We use particle-based simulations to examine the flow of particles through an exit. Simulations involve both gravity-driven particles (representing granular material) and velocity-driven particles (mimicking pedestrian dynamics). Contact forces between particles include elastic, viscous, and frictional forces; and simulations use bunker geometry. Power laws are observed in the relation between flow rate and exit width. Simulations of granular flow showed that the power law has little dependence on the coefficient of friction. Polydisperse granular systems produced higher flow rates than those produced by monodisperse ones. We extend the particle model to include the main features of pedestrian dynamics: thoracic shape, shoulder rotation, and desired velocity oriented towards the exit. Higher desired velocity resulted in higher flow rate. Granular simulations always give higher flow rate than pedestrian simulations, despite the values of aspect ratio of the particles. In terms of force distribution, pedestrians and granulates share similar properties with the non-democratic distribution of forces that poses high risks of injuries in a bottleneck situation.

  6. Light-Driven Transport of a Liquid Marble with and against Surface Flows.

    PubMed

    Kavokine, Nikita; Anyfantakis, Manos; Morel, Mathieu; Rudiuk, Sergii; Bickel, Thomas; Baigl, Damien

    2016-09-05

    Liquid marbles, that is, liquid drops coated by a hydrophobic powder, do not wet any solid or liquid substrate, making their transport and manipulation both highly desirable and challenging. Herein, we describe the light-driven transport of floating liquid marbles and emphasize a surprising motion behavior. Liquid marbles are deposited on a water solution containing photosensitive surfactants. Irradiation of the solution generates photoreversible Marangoni flows that transport the liquid marbles toward UV light and away from blue light when the thickness of the liquid substrate is large enough (Marangoni regime). Below a critical thickness, the liquid marbles move in the opposite direction to that of the surface flow at a speed increasing with decreasing liquid thickness (anti-Marangoni). We demonstrate that the anti-Marangoni motion is driven by the free surface deformation, which propels the non-wetting marble against the surface flow. We call this behavior "slide effect". © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A compact model for electroosmotic flows in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Qiao, R.; Aluru, N. R.

    2002-09-01

    A compact model to compute flow rate and pressure in microfluidic devices is presented. The microfluidic flow can be driven by either an applied electric field or a combined electric field and pressure gradient. A step change in the ζ-potential on a channel wall is treated by a pressure source in the compact model. The pressure source is obtained from the pressure Poisson equation and conservation of mass principle. In the proposed compact model, the complex fluidic network is simplified by an electrical circuit. The compact model can predict the flow rate, pressure distribution and other basic characteristics in microfluidic channels quickly with good accuracy when compared to detailed numerical simulation. Using the compact model, fluidic mixing and dispersion control are studied in a complex microfluidic network.

  8. Model of Wave Driven Flow Oscillation for Solar Cycle

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Wolff, Charles L.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    At low latitudes in the Earth's atmosphere, the observed zonal flow velocities are dominated by the semi-annual and quasi-biennial oscillations with periods of 6 months and 20 to 32 months respectively. These terrestrial oscillations, the SAO and QBO respectively, are driven by wave-mean flow interactions due to upward propagating planetary-scale waves (periods of days) and small-scale gravity waves (periods of hours). We are proposing (see also Mayr et al., GRL, 2001) that such a mechanism may drive long period oscillations (reversing flows) in stellar and planetary interiors, and we apply it to the Sun. The reversing flows would occur below the convective envelope where waves can propagate. We apply a simplified, one dimensional, analytical flow model that incorporates a gravity wave parameterization due to Hines (1997). Based on this analysis, our estimates show that relatively small wave amplitudes less than 10 m/s can produce zonal flow amplitudes of 20 m/s, which should be sufficient to generate the observed variations in the magnetic field. To produce the 22-year period of oscillation, a low buoyancy frequency must be chosen, and this places the proposed flow in a region that is close to (and below) the base of the convective envelope. Enhanced turbulence associated with this low stability should help to generate the dynamo currents. With larger stability at deeper levels in the solar interior, the model can readily produce also oscillations with much longer periods. To provide an understanding of the fluid dynamics involved, we present numerical results from a 2D model for the terrestrial atmosphere that exemplify the non-linear nature of the wave interaction for which a mechanical analog is the escapement mechanism of the clock.

  9. Direct numerical simulation of turbulence in injection-driven plane channel flows

    NASA Astrophysics Data System (ADS)

    Venugopal, Prem; Moser, Robert D.; Najjar, Fady M.

    2008-10-01

    Compressible turbulent flow in a periodic plane channel with mass injecting walls is studied as a simplified model for core flow in a solid-propellant rocket motor with homogeneous propellant and other injection-driven internal flows. In this model problem, the streamwise direction was asymptotically homogenized by assuming that at large distances from the closed end, both the mean and rms of turbulent fluctuations evolve slowly in the streamwise direction when compared to the turbulent fluctuations themselves. The Navier-Stokes equations were then modified to account for this slow growth. A direct numerical simulation of the homogenized compressible injection-driven turbulent flow was then conducted for conditions occurring at a streamwise location situated 40 channel half-widths from the closed off end and at an injection Reynolds number of approximately 190. The turbulence in this model flow was found to be only weakly compressible, although significant compressibility existed in the mean flow. As in nontranspired channels, turbulence resulted in increased near-wall shear for the mean streamwise velocity. When normalized by the average rate of turbulence production, the magnitudes of near-wall velocity fluctuations were similar to those in the log region of nontranspired wall-bounded turbulence. However, the sharp peak in streamwise velocity fluctuations observed in nontranspired channels was absent. While streaks and inclined vortices were observed in the near-wall region, their structure was very similar to those observed in the log region of nontranspired channels. These differences are attributed to the absence of a viscous sublayer in the transpired case which in turn is the result of the fact that the no-slip condition for the transpired case is an inviscid boundary condition. That is, unlike nontranspired walls, with transpiration, zero tangential velocity boundary conditions can be imposed at the wall for the Euler (inviscid) equations. The results of

  10. Use of Pressure Sensitive Paint for Diagnostics in Turbomachinery Flows With Shocks

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan; Bencic, Timothy J.

    2001-01-01

    The technology of pressure sensitive paint (PSP) is well established in external aerodynamics. In internal flows in narrow channels and in turbomachinery cascades, however, there are still unresolved problems. In particular, the internal flows with complex shock structures inside highly curved channels present a challenge. It is not always easy and straightforward to distinguish between true signals and "ghost" images due to multiple internal reflections in narrow channels. To address some of the problems, investigations were first carried out in a narrow supersonic channel of Mach number 2.5. A single wedge or a combination of two wedges were used to generate a complex shock wave structure in the flow. The experience gained in a small supersonic channel was used for surface pressure measurements on the stator vane of a supersonic throughflow fan. The experimental results for several fan operating conditions are shown in a concise form, including performance map points, midspan static tap pressure distributions, and vane suction side pressure fields. Finally, the PSP technique was used in the NASA transonic flutter cascade to compliment flow visualization data and to acquire backwall pressure fields to assess the cascade flow periodicity. A summary of shortcomings of the pressure sensitive paint technology for internal flow application and lessons learned are presented in the conclusion of the paper.

  11. Use of pressure-sensitive paint for diagnostics in turbomachinery flows with shocks

    NASA Astrophysics Data System (ADS)

    Lepicovsky, J.; Bencic, T. J.

    2002-07-01

    The technology of pressure-sensitive paint (PSP) is well established in external aerodynamics. In internal flows in narrow channels and in turbomachinery cascades, however, there are still unresolved problems. In particular, the internal flows with complex shock structures inside highly curved channels present a challenge. It is not always easy and straightforward to distinguish between true signals and 'ghost' images due to multiple internal reflections in narrow channels. To address some of the problems, investigations were first carried out in a narrow supersonic channel of Mach number 2.5. A single wedge or a combination of two wedges was used to generate a complex shock wave structure in the flow. The experience gained in a small supersonic channel was used for surface pressure measurements on the stator vane of a supersonic throughflow fan. The experimental results for several fan operating conditions are shown in a concise form, including performance map test points, midspan static tap pressure distributions, and vane suction side pressure fields. Finally, the PSP technique was used in the NASA transonic flutter cascade to compliment flow visualization data and to acquire backwall pressure fields to assess the cascade flow periodicity. Lessons learned from this investigation and shortcomings of the PSP technology for internal flow application are presented in the conclusion of the paper.

  12. Base pressure associated with incompressible flow past wedges at high Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Warpinski, N. R.; Chow, W. L.

    1979-01-01

    A model is suggested to study the viscid-inviscid interaction associated with steady incompressible flow past wedges of arbitrary angles. It is shown from this analysis that the determination of the nearly constant pressure (base pressure) prevailing within the near wake is really the heart of the problem and this pressure can only be determined from these interactive considerations. The basic free streamline flow field is established through two discrete parameters which should adequately describe the inviscid flow around the body and the wake. The viscous flow processes such as boundary-layer buildup along the wedge surface, jet mixing, recompression, and reattachment which occurs along the region attached to the inviscid flow in the sense of the boundary-layer concept, serve to determine the aforementioned parameters needed for the establishment of the inviscid flow. It is found that the point of reattachment behaves as a saddle point singularity for the system of equations describing the viscous recompression process. Detailed results such as the base pressure, pressure distributions on the wedge surface, and the wake geometry as well as the influence of the characteristic Reynolds number are obtained. Discussion of these results and their comparison with the experimental data are reported.

  13. Turbidity current with a roof: Direct numerical simulation of self-stratified turbulent channel flow driven by suspended sediment

    NASA Astrophysics Data System (ADS)

    Cantero, Mariano I.; Balachandar, S.; Cantelli, Alessandro; Pirmez, Carlos; Parker, Gary

    2009-03-01

    In this work we present direct numerical simulations (DNS) of sediment-laden channel flows. In contrast to previous studies, where the flow has been driven by a constant, uniform pressure gradient, our flows are driven by the excess density imposed by suspended sediment. This configuration provides a simplified model of a turbidity current and is thus called the turbidity current with a roof configuration. Our calculations elucidate with DNS for the first time several fascinating features of sediment-laden flows, which may be summarized as follows. First, the presence of sediment breaks the symmetry of the flow because of a tendency to self-stratify. More specifically, this self-stratification is manifested in terms of a Reynolds-averaged suspended sediment concentration that declines in the upward normal direction and a Reynolds-averaged velocity profile with a maximum that is below the channel centerline. Second, this self-stratification damps the turbulence, particularly near the bottom wall. Two regimes are observed, one in which the flow remains turbulent but the level of turbulence is reduced and another in which the flow relaminarizes in a region near the bottom wall, i.e., bed. Third, the analysis allows the determination of a criterion for the break between these two regimes in terms of an appropriately defined dimensionless settling velocity. The results provide guidance for the improvement of Reynolds-averaged closures for turbulent flow in regard to stratification effects. Although the analysis reported here is not performed at the scale of large oceanic turbidity currents, which have sufficiently large Reynolds numbers to be inaccessible via DNS at this time, the implication of flow relaminarization is of considerable importance. Even a swift oceanic turbidity current which at some point crosses the threshold into the regime of relaminarization may lose the capacity to reentrain sediment that settles on the bed and thus may quickly die as it loses its

  14. Measurements of surface-pressure and wake-flow fluctuations in the flow field of a whitcomb supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Roos, F. W.; Riddle, D. W.

    1977-01-01

    Measurements of surface pressure and wake flow fluctuations were made as part of a transonic wind tunnel investigation into the nature of a supercritical airfoil flow field. Emphasis was on a range of high subsonic Mach numbers and moderate lift coefficients corresponding to the development of drag divergence and buffeting. Fluctuation data were analyzed statistically for intensity, frequency content, and spatial coherence. Variations in these parameters were correlated with changes in the mean airfoil flow field.

  15. Lagrangian transport in a class of three-dimensional buoyancy-driven flows

    NASA Astrophysics Data System (ADS)

    Contreras, Sebastian; Speetjens, Michel; Clercx, Herman

    2017-11-01

    The study concerns the Lagrangian dynamics of three-dimensional (3D) buoyancy-driven cavity flows under steady and laminar conditions due to a global temperature gradient imposed via an opposite hot and cold sidewall. This serves as archetypal configuration for natural-convection flows in which gravity is perpendicular to the global temperature gradient. Limited insight into the Lagrangian properties of this class of flows motivates this study. The 3D Lagrangian dynamics are investigated in terms of the generic structure of the Lagrangian flow topology that is described in terms of the Grashof number (Gr) and the Prandtl number (Pr). Gr is the principal control parameter for the flow topology: vanishing Gr yields a state of closed streamlines (integrable state); increasing Gr causes the formation of toroidal coherent structures embedded in chaotic streamlines governed by Hamiltonian mechanisms. Fluid inertia prevails for ``smaller'' Gr. A buoyancy-induced bifurcation of the flow topology occurs for ``larger'' Gr and underlies the emergence of ``secondary rolls'' and secondary tori for ``larger'' Pr. Stagnation points and corresponding manifold interactions are key to the dynamics. S.C. acknowledges financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT).

  16. On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions

    NASA Technical Reports Server (NTRS)

    Schobeiri, Meinhard T.; Ozturk, Burak; Ashpis, David E.

    2005-01-01

    The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the

  17. Capillary Driven Flows Along Differentially Wetted Interior Corners

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L. (Technical Monitor); Nardin, C. L.; Weislogel, M. M.

    2005-01-01

    Closed-form analytic solutions useful for the design of capillary flows in a variety of containers possessing interior corners were recently collected and reviewed. Low-g drop tower and aircraft experiments performed at NASA to date show excellent agreement between theory and experiment for perfectly wetting fluids. The analytical expressions are general in terms of contact angle, but do not account for variations in contact angle between the various surfaces within the system. Such conditions may be desirable for capillary containment or to compute the behavior of capillary corner flows in containers consisting of different materials with widely varying wetting characteristics. A simple coordinate rotation is employed to recast the governing system of equations for flows in containers with interior corners with differing contact angles on the faces of the corner. The result is that a large number of capillary driven corner flows may be predicted with only slightly modified geometric functions dependent on corner angle and the two (or more) contact angles of the system. A numerical solution is employed to verify the new problem formulation. The benchmarked computations support the use of the existing theoretical approach to geometries with variable wettability. Simple experiments to confirm the theoretical findings are recommended. Favorable agreement between such experiments and the present theory may argue well for the extension of the analytic results to predict fluid performance in future large length scale capillary fluid systems for spacecraft as well as for small scale capillary systems on Earth.

  18. Pressure-driven laminar flow switching for rapid exchange of solution environment around surface adhered biological particles

    PubMed Central

    Allen, Peter B.; Milne, Graham; Doepker, Byron R.; Chiu, Daniel T.

    2010-01-01

    This paper describes a technique for rapidly exchanging the solution environment near a surface by displacing laminar flow fluid streams using sudden changes in applied pressure. The method employs off-chip solenoid valves to induce pressure changes, which is important in keeping the microfluidic design simple and the operation of the system robust. The performance of this technique is characterized using simulation and validated with experiments. This technique adds to the microfluidic tool box that is currently available for manipulating the solution environment around biological particles and molecules. PMID:20221560

  19. In situ insights into shock-driven reactive flow

    NASA Astrophysics Data System (ADS)

    Dattelbaum, Dana

    2017-06-01

    Shock-driven reactions are commonplace. Examples include the detonation of high explosives, shock-driven dissociation of polymers, and transformation of carbon from graphite to diamond phases. The study of shock-driven chemical reactions is important for understanding reaction thresholds, their mechanisms and rates, and associated state sensitivities under the extreme conditions generated by shock compression. Reactions are distinguished by their thermicity - e.g. the volume and enthalpy changes along the reaction coordinate. A survey of the hallmarks of shock-driven reactivity for a variety of simple molecules and polymers will be presented, including benzene, acetylenes and nitriles, and formic acid. Many of the examples will illustrate the nature of the reactive flow through particle velocity wave profiles measured by in situ electromagnetic gauging in gas gun-driven plate impact experiments. General trends will be presented linking molecular moieties, shock temperatures, and reaction state sensitivities. Progress in applying bond-specific diagnostics will also be presented, including time-resolved Raman spectroscopy, and recent results of in situ x-ray diffraction of carbon at the Linac Coherent Light Souce (LCLS) free electron laser.

  20. Acute tamponade alters subendo- and subepicardial pressure-flow relations differently during vasodilation.

    PubMed

    Kingma, J G; Martin, J; Rouleau, J R

    1994-07-01

    Instantaneous diastolic left coronary artery pressure-flow relations (PFR) shift during acute tamponade as pressure surrounding the heart increases. Coronary pressure at zero flow (Pf = 0) on the linear portion of the PFR is the weighted mean of the different myocardial waterfall pressures, the distribution of which varies across the left ventricular wall during diastole. However, instantaneous PFR measured in large epicardial coronary arteries cannot be used to estimate Pf = 0 in the different myocardial tissue layers. During coronary vasodilatation in a capacitance-free model, myocardial PFR differs from subendocardium to subepicardium. Therefore, we studied the effects of acute tamponade during maximal pharmacology induced coronary vasodilatation on myocardial PFR in in situ anesthetized dogs. Tamponade reduced cardiac output, aortic pressure, and coronary blood flow. Results demonstrate that different mechanisms influence distribution of myocardial blood flow during tamponade. Subepicardial vascular resistance is unchanged and the extrapolated Pf = 0 is increased, thereby shifting PFR to a higher intercept on the pressure axis. Subendocardial vascular resistance is increased while the extrapolated Pf = 0 remains unchanged. Results indicate that in the setting of acute tamponade with coronary vasodilatation different mechanisms regulate the distribution of myocardial blood flow: in the subepicardium only outflow pressure increases, whereas in the subendocardium only vascular resistance increases.

  1. Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications

    NASA Astrophysics Data System (ADS)

    Jang, Jaesung; Wereley, Steven T.

    2007-02-01

    The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both walls. The sensors consist of a pair of capacitive pressure sensors, inlet/outlet and a microchannel. The main microchannel is 128.0 µm wide, 4.64 µm deep and 5680 µm long, and operated under nearly atmospheric conditions where the outlet Knudsen number is 0.0137. The sensor was fabricated using silicon wet etching, ultrasonic drilling, deep reactive ion etching (DRIE) and anodic bonding. The capacitance change of the sensor and the mass flow rate of nitrogen were measured as the inlet-to-outlet pressure ratio was varied from 1.00 to 1.24. The measured maximum mass flow rate was 3.86 × 10-10 kg s-1 (0.019 sccm) at the highest pressure ratio tested. As the pressure difference increased, both the capacitance of the differential pressure sensor and the flow rate through the main microchannel increased. The laminar friction constant f sdot Re, an important consideration in sensor design, varied from the incompressible no-slip case and the mass sensitivity and resolution of this sensor were discussed. Using the current slip flow formulae, a microchannel with much smaller mass flow rates can be designed at the same pressure ratios.

  2. Intracellular fluid flow in rapidly moving cells

    PubMed Central

    Keren, Kinneret; Yam, Patricia T.; Kinkhabwala, Anika; Mogilner, Alex; Theriot, Julie A.

    2010-01-01

    Cytosolic fluid dynamics have been implicated in cell motility1–5 because of the hydrodynamic forces they induce and because of their influence on transport of components of the actin machinery to the leading edge. To investigate the existence and the direction of fluid flow in rapidly moving cells, we introduced inert quantum dots into the lamellipodia of fish epithelial keratocytes and analysed their distribution and motion. Our results indicate that fluid flow is directed from the cell body towards the leading edge in the cell frame of reference, at about 40% of cell speed. We propose that this forward-directed flow is driven by increased hydrostatic pressure generated at the rear of the cell by myosin contraction, and show that inhibition of myosin II activity by blebbistatin reverses the direction of fluid flow and leads to a decrease in keratocyte speed. We present a physical model for fluid pressure and flow in moving cells that quantitatively accounts for our experimental data. PMID:19767741

  3. Flow of two immiscible fluids in a periodically constricted tube: Transitions to stratified, segmented, churn, spray or segregated flow

    NASA Astrophysics Data System (ADS)

    Tsamopoulos, John; Fraggedakis, Dimitris; Dimakopoulos, Yiannis

    2015-11-01

    We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our Volume-of-Fluid algorithm is used to solve the governing equations. First the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results (Cohen et al. (1999)). Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our results provide deeper insights in the mechanism of the pattern transitions and are in agreement with previous studies on core-annular flow (Kouris & Tsamopoulos (2001 & 2002)), segmented flow (Lac & Sherwood (2009)) and churn flow (Bai et al. (1992)). GSRT of Greece through the program ``Excellence'' (Grant No. 1918, entitled ``FilCoMicrA'').

  4. Active flow control of subsonic flow in an adverse pressure gradient using synthetic jets and passive micro flow control devices

    NASA Astrophysics Data System (ADS)

    Denn, Michael E.

    Several recent studies have shown the advantages of active and/or passive flow control devices for boundary layer flow modification. Many current and future proposed air vehicles have very short or offset diffusers in order to save vehicle weight and create more optimal vehicle/engine integration. Such short coupled diffusers generally result in boundary layer separation and loss of pressure recovery which reduces engine performance and in some cases may cause engine stall. Deployment of flow control devices can alleviate this problem to a large extent; however, almost all active flow control devices have some energy penalty associated with their inclusion. One potential low penalty approach for enhancing the diffuser performance is to combine the passive flow control elements such as micro-ramps with active flow control devices such as synthetic jets to achieve higher control authority. The goal of this dissertation is twofold. The first objective is to assess the ability of CFD with URANS turbulence models to accurately capture the effects of the synthetic jets and micro-ramps on boundary layer flow. This is accomplished by performing numerical simulations replicating several experimental test cases conducted at Georgia Institute of Technology under the NASA funded Inlet Flow Control and Prediction Technologies Program, and comparing the simulation results with experimental data. The second objective is to run an expanded CFD matrix of numerical simulations by varying various geometric and other flow control parameters of micro-ramps and synthetic jets to determine how passive and active control devices interact with each other in increasing and/or decreasing the control authority and determine their influence on modification of boundary layer flow. The boundary layer shape factor is used as a figure of merit for determining the boundary layer flow quality/modification and its tendency towards separation. It is found by a large number of numerical experiments and

  5. Heated, humidified high-flow nasal cannula therapy: yet another way to deliver continuous positive airway pressure?

    PubMed

    Kubicka, Zuzanna J; Limauro, Joseph; Darnall, Robert A

    2008-01-01

    The goal was to estimate the level of delivered continuous positive airway pressure by measuring oral cavity pressure with the mouth closed in infants of various weights and ages treated with heated, humidified high-flow nasal cannula at flow rates of 1-5 L/minute. We hypothesized that clinically relevant levels of continuous positive airway pressure would not be achieved if a nasal leak is maintained. After performing bench measurements and demonstrating that oral cavity pressure closely approximated levels of traditionally applied nasal continuous positive airway pressure, we successfully measured oral cavity pressure during heated, humidified, high-flow nasal cannula treatment in 27 infants. Small (outer diameter: 0.2 cm) cannulae were used for all infants, and flow rates were left as ordered by providers. Bench measurements showed that, for any given leak size, there was a nearly linear relationship between flow rate and pressure. The highest pressure achieved was 4.5 cmH2O (flow rate: 8 L/minute; leak: 3 mm). In our study infants (postmenstrual age: 29.1-44.7 weeks; weight: 835-3735 g; flow rate: 1-5 L/minute), no pressure was generated with the mouth open at any flow rate. With the mouth closed, the oral cavity pressure was related to both flow rate and weight. For infants of < or = 1500 g, there was a linear relationship between flow rate and oral cavity pressure. Oral cavity pressure can estimate the level of continuous positive airway pressure. Continuous positive airway pressure generated with heated, humidified, high-flow nasal cannula treatment depends on the flow rate and weight. Only in the smallest infants with the highest flow rates, with the mouth fully closed, can clinically significant but unpredictable levels of continuous positive airway pressure be achieved. We conclude that heated, humidified high-flow nasal cannula should not be used as a replacement for delivering continuous positive airway pressure.

  6. In-line pressure-flow module for in vitro modelling of haemodynamics and biosensor validation

    NASA Technical Reports Server (NTRS)

    Koenig, S. C.; Schaub, J. D.; Ewert, D. L.; Swope, R. D.; Convertino, V. A. (Principal Investigator)

    1997-01-01

    An in-line pressure-flow module for in vitro modelling of haemodynamics and biosensor validation has been developed. Studies show that good accuracy can be achieved in the measurement of pressure and of flow, in steady and pulstile flow systems. The model can be used for development, testing and evaluation of cardiovascular-mechanical-electrical anlogue models, cardiovascular prosthetics (i.e. valves, vascular grafts) and pressure and flow biosensors.

  7. Experimental observations of pressure oscillations and flow regimes in an analogue volcanic system

    USGS Publications Warehouse

    Lane, S.J.; Chouet, B.A.; Phillips, J.C.; Dawson, P.; Ryan, G.A.; Hurst, E.

    2001-01-01

    Gas-liquid flows, designed to be analogous to those in volcanic conduits, are generated in the laboratory using organic gas-gum rosin mixtures expanding in a vertically mounted tube. The expanding fluid shows a range of both flow and pressure oscillation behaviors. Weakly supersaturated source liquids produce a low Reynolds number flow with foam expanding from the top surface of a liquid that exhibits zero fluid velocity at the tube wall; i.e., the conventional "no-slip" boundary condition. Pressure oscillations, often with strong long-period characteristics and consistent with longitudinal and radial resonant oscillation modes, are detected in these fluids. Strongly supersaturated source liquids generate more energetic flows that display a number of flow regimes. These regimes include a static liquid source, viscous flow, detached flow (comprising gas-pockets-at-wall and foam-in-gas annular flow, therefore demonstrating strong radial heterogeneity), and a fully turbulent transonic fragmented or mist flow. Each of these flow regimes displays characteristic pressure oscillations that can be related to resonance of flow features or wall impact phenomena. The pressure oscillations are produced by the degassing processes without the need of elastic coupling to the confining medium or flow restrictors and valvelike features. The oscillatory behavior of the experimental flows is compared to seismoacoustic data from a range of volcanoes where resonant oscillation of the fluid within the conduit is also often invoked as controlling the observed oscillation frequencies. On the basis of the experimental data we postulate on the nature of seismic signals that may be measured during large-scale explosive activity. Copyright 2001 by the American Geophysical Union.

  8. PLASMA FLOWS AT VOYAGER 2 AWAY FROM THE MEASURED SUPRATHERMAL PRESSURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McComas, D. J.; Schwadron, N. A., E-mail: dmccomas@swri.edu

    2014-11-01

    Plasma flows measured by Voyager 2 show a clear rotation away from radially outward with increasing penetration into the inner heliosheath while the overall flow speed remains roughly constant. However, the direction of rotation is far more into the transverse, and less into the polar direction, than predicted. No current model reproduces the key observational results of (1) the direction of flow rotation or (2) constancy of the flow speed. Here we show that the direction is consistent with flow away from the region of maximum pressure in the inner heliosheath, ∼20° south of the upwind direction, as measured bymore » the Interstellar Boundary Explorer (IBEX). Further, we show that the dominance of the suprathermal ion pressure in the inner heliosheath measured by IBEX can explain both the observed flow rotation and constancy of the flow speed. These results indicate the critical importance of suprathermal ions in the physics of the inner heliosheath and have significant implications for understanding this key region of the heliosphere's interstellar interaction and astrophysical plasmas more broadly.« less

  9. Gas flow meter and method for measuring gas flow rate

    DOEpatents

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  10. The enigmatic ultra-long run-out of seafloor density driven flows

    NASA Astrophysics Data System (ADS)

    Dorrell, R. M.

    2017-12-01

    Dilute, particulate-laden, density-driven flows - turbidity currents - are a predominant mechanism for transporting sediment from source to sink in deep marine environments. These flows sculpt channels on the seafloor and, as evidenced by a wealth of bathymetric data, can travel for >1000km, forming some of the largest sedimentary landforms on the planet. For turbidity currents to travel such large dsitances, sediment must be self-maintained in suspension, i.e., be in a state of autosuspension. It has been shown that such self-maintained sediment suspensions can only occur whilst inertial forces are greater than gravitational forces, entailing supercritical flow. This conclusion is paradoxical, as inertia dominated flows rapidly entrain fluid, thereby thickening and slowing to become subcritical. However, current theory can only truly be applied to the proximal upper slope regions of seafloor channels where incised flows are fully confined. This contrasts with the distal reaches of long run out turbidity current systems, where the flow is only partially confined through self-channelization. Here it is shown that overspill of partially confined flow has a significant effect on the hydro- and morphodynamics of turbidity current systems. A new model is derived that shows that channel overspill acts to negate the effects of ambient fluid entrainment: a dynamic balance that limits increases in flow depth and maintains supercritical flow throughout the channel. In the new model mass, momentum and energy conservation is modulated by flow overspill onto channel banks, necessarily requiring description of the vertical structure of the flow. Analysis of continuously stratified steady state flow dynamics shows that the integration of overspill and stratification is necessary to enable maintained autosuspension and thus predict the ultra-long run-out of turbidity currents.

  11. Wind effect on diurnal thermally driven flow in vegetated nearshore of a lake

    NASA Astrophysics Data System (ADS)

    Lin, Y. T.

    2014-12-01

    In this study, a highly idealized model is developed to discuss the interplay of diurnal heating/cooling induced buoyancy and wind stress on thermally driven flow over a vegetated slope. Since the model is linear, the horizontal velocity components can be broken into buoyancy-driven and surface wind-driven parts. Due to the presence of rooted emergent vegetation, the circulation strength even under the surface wind condition is still significantly reduced, and the transient (adjustment) stage for the initial conditions is shorter than that without vegetation. The flow in shallows is dominated by a viscosity/buoyancy balance as the case without wind, while the effect of wind stress is limited to the upper layer in deep water. In the lower layer of deep regions, vegetative drag is prevailing except the near bottom regions, where viscosity dominates. Under the unidirectional wind condition, a critical dimensionless shear stress to stop the induced flow can be found and is a function of horizontal location . For the periodic wind condition, if the two forcing mechanisms work in concert, the circulation magnitude can be increased. For the case where buoyancy and wind shear stress act against each other, the circulation strength is reduced and its structure becomes more complex. However, the flow magnitudes near the bottom for and are comparable because surface wind almost has no influence.

  12. Flutter Phenomenon in Flow Driven Energy Harvester–A Unified Theoretical Model for “Stiff” and “Flexible” Materials

    PubMed Central

    Chen, Yu; Mu, Xiaojing; Wang, Tao; Ren, Weiwei; Yang, Ya; Wang, Zhong Lin; Sun, Chengliang; Gu, Alex Yuandong

    2016-01-01

    Here, we report a stable and predictable aero-elastic motion in the flow-driven energy harvester, which is different from flapping and vortex-induced-vibration (VIV). A unified theoretical frame work that describes the flutter phenomenon observed in both “stiff” and “flexible” materials for flow driven energy harvester was presented in this work. We prove flutter in both types of materials is the results of the coupled effects of torsional and bending modes. Compared to “stiff” materials, which has a flow velocity-independent flutter frequency, flexible material presents a flutter frequency that almost linearly scales with the flow velocity. Specific to “flexible” materials, pre-stress modulates the frequency range in which flutter occurs. It is experimentally observed that a double-clamped “flexible” piezoelectric P(VDF-TrFE) thin belt, when driven into the flutter state, yields a 1,000 times increase in the output voltage compared to that of the non-fluttered state. At a fixed flow velocity, increase in pre-stress level of the P(VDF-TrFE) thin belt up-shifts the flutter frequency. In addition, this work allows the rational design of flexible piezoelectric devices, including flow-driven energy harvester, triboelectric energy harvester, and self-powered wireless flow speed sensor. PMID:27739484

  13. Numerical Simulations of Plasma Based Flow Control Applications

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Jacob, J. D.; Ashpis, D. E.

    2005-01-01

    A mathematical model was developed to simulate flow control applications using plasma actuators. The effects of the plasma actuators on the external flow are incorporated into Navier Stokes computations as a body force vector. In order to compute this body force vector, the model solves two additional equations: one for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The model is calibrated against an experiment having plasma-driven flow in a quiescent environment and is then applied to simulate a low pressure turbine flow with large flow separation. The effects of the plasma actuator on control of flow separation are demonstrated numerically.

  14. Sound attenuation of a finite length dissipative flow duct silencer with internal mean flow in the absorbent

    NASA Astrophysics Data System (ADS)

    Cummings, A.; Chang, I.-J.

    1988-11-01

    Internal mean flow within the pores of a bulk-reacting porous acoustic absorbent, driven by mean static pressure gradients, is shown here to be an important feature of the acoustics of dissipative silencers in flow ducts, particularly in the case of internal combustion engine exhaust silencers. Theoretical treatments are presented here, both to describe the effect of internal flow on the bulk acoustic perties of the porous medium and to find the effect of the absorbent in situ, in the form of the sound transmission loss of the silencer. The measured transmission loss of an experimental silencer is compared to predicted data and good agreement between the two is obtained. The effects of mean fluid flow in the central passage and internal flow in the absorbent are separately demonstrated.

  15. Prediction of Transitional Flows in the Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Huang, George; Xiong, Guohua

    1998-01-01

    Current turbulence models tend to give too early and too short a length of flow transition to turbulence, and hence fail to predict flow separation induced by the adverse pressure gradients and streamline flow curvatures. Our discussion will focus on the development and validation of transition models. The baseline data for model comparisons are the T3 series, which include a range of free-stream turbulence intensity and cover zero-pressure gradient to aft-loaded turbine pressure gradient flows. The method will be based on the conditioned N-S equations and a transport equation for the intermittency factor. First, several of the most popular 2-equation models in predicting flow transition are examined: k-e [Launder-Sharina], k-w [Wilcox], Lien-Leschiziner and SST [Menter] models. All models fail to predict the onset and the length of transition, even for the simplest flat plate with zero-pressure gradient(T3A). Although the predicted onset position of transition can be varied by providing different inlet turbulent energy dissipation rates, the appropriate inlet conditions for turbulence quantities should be adjusted to match the decay of the free-stream turbulence. Arguably, one may adjust the low-Reynolds-number part of the model to predict transition. This approach has so far not been very successful. However, we have found that the low-Reynolds-number model of Launder and Sharma [1974], which is an improved version of Jones and Launder [1972] gave the best overall performance. The Launder and Sharma model was designed to capture flow re-laminarization (a reverse of flow transition), but tends to give rise to a too early and too fast transition in comparison with the physical transition. The three test cases were for flows with zero pressure gradient but with different free-stream turbulent intensities. The same can be said about the model when considering flows subject to pressure gradient(T3C1). To capture the effects of transition using existing turbulence

  16. Pressure sensitivity of flow oscillations in postocclusive reactive skin hyperemia.

    PubMed

    Strucl, M; Peterec, D; Finderle, Z; Maver, J

    1994-05-01

    Skin blood flow was monitored using a laser-Doppler (LD) flowmeter in 21 healthy volunteers after an occlusion of the digital arteries. The peripheral vascular bed was exposed to occlusion ischemia of varying duration (1, 4, or 8 min) and to a change in digital arterial pressure produced by different positions of the arm above heart level to characterize the pattern of LD flow oscillations in postocclusive reactive hyperemia (PRH) and to elucidate the relevance of metabolic and myogenic mechanisms in governing its fundamental frequency. The descending part of the hyperemic flow was characterized by the appearance of conspicuous periodic oscillations with a mean fundamental frequency of 7.2 +/- 1.5 cycles/min (SD, n = 9), as assessed by a Fourier transform frequency analysis of 50-s sections of flow. The mean respiratory frequency during the periods of flow frequency analysis was 17.0 +/- 2.2 (SD, n = 9), and the PRH oscillations remained during apnea in all tested subjects. The area under the maximum flow curve increased significantly with prolongation of the occlusion (paired t test, P < 0.001; n = 9), but showed no dependence on the estimated blood pressure in the digital arteries, which suggests the predominant role of a metabolic component in this part of the PRH response. In contrast, the fundamental frequency of PRH oscillations exhibited a significant decrease with a reduction in the estimated digital arterial pressure (linear regression, b = 0.08, P < 0.001; n = 12), but did not change with the prolongation of arterial occlusion despite a significant increase in mean LD flow (paired t test, P < 0.001; n = 9).(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  18. Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetric Flow Control-Part I: Non-Axisymmetrical Flow in Centrifugal Compressor.

    PubMed

    Yang, Mingyang; Zheng, Xinqian; Zhang, Yangjun; Bamba, Takahiro; Tamaki, Hideaki; Huenteler, Joern; Li, Zhigang

    2013-03-01

    This is Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the nonaxisymmetrical flow in a centrifugal compressor induced by the nonaxisymmetrical geometry of the volute while Part II describes the development of an asymmetric flow control method to avoid the stall on the basis of the characteristic of nonaxisymmetrical flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experimental results show that there is an evident nonaxisymmetrical flow pattern throughout the compressor due to the asymmetric geometry of the overhung volute. The static pressure field in the diffuser is distorted at approximately 90 deg in the rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion slightly varies with the rotational speed. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the aforementioned unsteady effects found in the experiments and cannot predict the phase shift, however, a detailed asymmetric flow field structure is obviously obtained.

  19. Pressure fluctuations and time scales in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Septham, Kamthon; Morrison, Jonathan; Diwan, Sourabh

    2015-11-01

    Pressure fluctuations in turbulent channel flow subjected to globally stabilising linear feedback control are investigated at Reτ = 400 . The passivity-based control is adopted and explained by the conservative characteristics of the nonlinear terms contributing to the Reynolds-Orr equation (Sharma et al. Phys. Fluids 2011). The linear control operates via vU' ; the maximum forcing is located at y+ ~ 20 , corresponding to the location of the maximum in the mean-square pressure gradient. The responses of the rapid (linear) and slow (nonlinear) pressure fluctuations to the linear control are investigated using the Green's function representations. It demonstrates that the linear control operates via the linear source terms of the Poisson equation for pressure fluctuations. Landahl's timescales of the minimal flow unit (MFU) in turbulent channel flow are examined at y+ = 20 . It shows that the timescales of MFU agree well with the theoretical values proposed by Landahl (1993). Therefore, the effectiveness of the linear control to attenuate wall turbulence is explained by Landahl's theory for timescales, in that the control proceeds via the shear interaction timescale which is significantly shorter than both the nonlinear and viscous timescales.

  20. Bayes to the Rescue: Continuous Positive Airway Pressure Has Less Mortality Than High-Flow Oxygen.

    PubMed

    Modesto I Alapont, Vicent; Khemani, Robinder G; Medina, Alberto; Del Villar Guerra, Pablo; Molina Cambra, Alfred

    2017-02-01

    The merits of high-flow nasal cannula oxygen versus bubble continuous positive airway pressure are debated in children with pneumonia, with suggestions that randomized controlled trials are needed. In light of a previous randomized controlled trial showing a trend for lower mortality with bubble continuous positive airway pressure, we sought to determine the probability that a new randomized controlled trial would find high-flow nasal cannula oxygen superior to bubble continuous positive airway pressure through a "robust" Bayesian analysis. Sample data were extracted from the trial by Chisti et al, and requisite to "robust" Bayesian analysis, we specified three prior distributions to represent clinically meaningful assumptions. These priors (reference, pessimistic, and optimistic) were used to generate three scenarios to represent the range of possible hypotheses. 1) "Reference": we believe bubble continuous positive airway pressure and high-flow nasal cannula oxygen are equally effective with the same uninformative reference priors; 2) "Sceptic on high-flow nasal cannula oxygen": we believe that bubble continuous positive airway pressure is better than high-flow nasal cannula oxygen (bubble continuous positive airway pressure has an optimistic prior and high-flow nasal cannula oxygen has a pessimistic prior); and 3) "Enthusiastic on high-flow nasal cannula oxygen": we believe that high-flow nasal cannula oxygen is better than bubble continuous positive airway pressure (high-flow nasal cannula oxygen has an optimistic prior and bubble continuous positive airway pressure has a pessimistic prior). Finally, posterior empiric Bayesian distributions were obtained through 100,000 Markov Chain Monte Carlo simulations. In all three scenarios, there was a high probability for more death from high-flow nasal cannula oxygen compared with bubble continuous positive airway pressure (reference, 0.98; sceptic on high-flow nasal cannula oxygen, 0.982; enthusiastic on high-flow

  1. Thermally Driven Josephson Effect

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin; Chui, Talso

    2008-01-01

    A concept is proposed of the thermally driven Josephson effect in superfluid helium. Heretofore, the Josephson effect in a superfluid has been recognized as an oscillatory flow that arises in response to a steady pressure difference between two superfluid reservoirs separated by an array of submicron-sized orifices, which act in unison as a single Josephson junction. Analogously, the thermally driven Josephson effect is an oscillatory flow that arises in response to a steady temperature difference. The thermally driven Josephson effect is partly a consequence of a quantum- mechanical effect known as the fountain effect, in which a temperature difference in a superfluid is accompanied by a pressure difference. The thermally driven Josephson effect may have significance for the development of a high-resolution gyroscope based on the Josephson effect in a superfluid: If the pressure-driven Josephson effect were used, then the fluid on the high-pressure side would become depleted, necessitating periodic interruption of operation to reverse the pressure difference. If the thermally driven Josephson effect were used, there would be no net flow and so the oscillatory flow could be maintained indefinitely by maintaining the required slightly different temperatures on both sides of the junction.

  2. Patterning flows and polymers

    NASA Astrophysics Data System (ADS)

    Stroock, Abraham Duncan

    This thesis presents the use of patterned surfaces for controlling fluid dynamics on a sub-millimeter scale, and for fabricating a new class of polymeric materials. In chapters 1--4, chemical and mechanical structures were used to control the form of flows of fluids in microchannels. This work was done in the context of the development of microfluidic technology for performing chemical tasks in portable, integrated devices. Chapter 1 reviews this work for an audience of chemists who are potential users of these techniques in the development of micro-analytical and micro-synthetic devices. Appendix 1 contains a more general review of microfluidics. Chapter 2 presents experimental results on the use of patterned surface charge density to create new electroosmotic (EO) flows in microchannels; the chapter includes a successful model of the observed flows. In Chapter 3, patterns of topography on the wall of a microchannel were used to generate recirculation in pressure-driven flows. The design and characterization of an efficient mixer based on these flows is presented. A theoretical treatment of these flows is given in Appendix 2. The experimental methods used for the work with both EO and pressure-driven flows are presented in Chapter 4. In Chapter 5, a pattern of asymmetrical grooves in a heated plate was used to perturb Marangoni-Benard (M-B) convection, a dynamic system that spontaneously forms patterned flows. The interaction of the imposed pattern and the inherent pattern of the M-B convection led to a net flow in the plane of convecting layer of fluid. The direction of this flow depended on the orientation of the asymmetrical grooves, the temperature difference across the layer, and the thickness of the layer. A phenomenological model is presented to explain this ratchet effect in which local recirculation was coupled into a global flow. In Chapter 6, surfaces patterned by microcontact printing were used as a workbench on which to build molecularly thin polymer

  3. Bifurcation analysis of nephron pressure and flow regulation

    NASA Astrophysics Data System (ADS)

    Barfred, Mikael; Mosekilde, Erik; Holstein-Rathlou, Niels-Henrik

    1996-09-01

    One- and two-dimensional continuation techniques are applied to study the bifurcation structure of a model of renal flow and pressure control. Integrating the main physiological mechanisms by which the individual nephron regulates the incoming blood flow, the model describes the interaction between the tubuloglomerular feedback and the response of the afferent arteriole. It is shown how a Hopf bifurcation leads the system to perform self-sustained oscillations if the feedback gain becomes sufficiently strong, and how a further increase of this parameter produces a folded structure of overlapping period-doubling cascades. Similar phenomena arise in response to increasing blood pressure. The numerical analyses are supported by existing experimental results on anesthetized rats.

  4. Experimental Investigation of Rainfall Impact on Overland Flow Driven Erosion Processes and Flow Hydrodynamics on a Steep Hillslope

    NASA Astrophysics Data System (ADS)

    Tian, P.; Xu, X.; Pan, C.; Hsu, K. L.; Yang, T.

    2016-12-01

    Few attempts have been made to investigate the quantitative effects of rainfall on overland flow driven erosion processes and flow hydrodynamics on steep hillslopes under field conditions. Field experiments were performed in flows for six inflow rates (q: 6-36 Lmin-1m-1) with and without rainfall (60 mm h-1) on a steep slope (26°) to investigate: (1) the quantitative effects of rainfall on runoff and sediment yield processes, and flow hydrodynamics; (2) the effect of interaction between rainfall and overland flow on soil loss. Results showed that the rainfall increased runoff coefficients and the fluctuation of temporal variations in runoff. The rainfall significantly increased soil loss (10.6-68.0%), but this increment declined as q increased. When the interrill erosion dominated (q=6 Lmin-1m-1), the increment in the rill erosion was 1.5 times that in the interrill erosion, and the effect of the interaction on soil loss was negative. When the rill erosion dominated (q=6-36 Lmin-1m-1), the increment in the interrill erosion was 1.7-8.8 times that in the rill erosion, and the effect of the interaction on soil loss became positive. The rainfall was conducive to the development of rills especially for low inflow rates. The rainfall always decreased interrill flow velocity, decreased rill flow velocity (q=6-24 Lmin-1m-1), and enhanced the spatial uniformity of the velocity distribution. Under rainfall disturbance, flow depth, Reynolds number (Re) and resistance were increased but Froude number was reduced, and lower Re was needed to transform a laminar flow to turbulent flow. The rainfall significantly increased flow shear stress (τ) and stream power (φ), with the most sensitive parameters to sediment yield being τ (R2=0.994) and φ (R2=0.993), respectively, for non-rainfall and rainfall conditions. Compared to non-rainfall conditions, there was a reduction in the critical hydrodynamic parameters of mean flow velocity, τ, and φ by the rainfall. These findings

  5. Viscous analyses for flow through subsonic and supersonic intakes

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Towne, Charles E.

    1986-01-01

    A parabolized Navier-Stokes code was used to analyze a number of diffusers typical of a modern inlet design. The effect of curvature of the diffuser centerline and transitioning cross sections was evaluated to determine the primary cause of the flow distortion in the duct. Results are presented for S-shaped intakes with circular and transitioning cross sections. Special emphasis is placed on verification of the analysis to accurately predict distorted flow fields resulting from pressure-driven secondary flows. The effect of vortex generators on reducing the distortion of intakes is presented. Comparisons of the experimental and analytical total pressure contours at the exit of the intake exhibit good agreement. In the case of supersonic inlets, computations of the inlet flow field reveal that large secondary flow regions may be generated just inside of the intake. These strong flows may lead to separated flow regions and cause pronounced distortions upstream of the compressor.

  6. On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions

    NASA Technical Reports Server (NTRS)

    Schobeiri, Meinhard T.; Ozturk, Burak; Ashpis, David E.

    2003-01-01

    The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flowconditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the

  7. Solenoid Driven Pressure Valve System: Toward Versatile Fluidic Control in Paper Microfluidics.

    PubMed

    Kim, Taehoon H; Hahn, Young Ki; Lee, Jungmin; van Noort, Danny; Kim, Minseok S

    2018-02-20

    As paper-based diagnostics has become predominantly driven by more advanced microfluidic technology, many of the research efforts are still focused on developing reliable and versatile fluidic control devices, apart from improving sensitivity and reproducibility. In this work, we introduce a novel and robust paper fluidic control system enabling versatile fluidic control. The system comprises a linear push-pull solenoid and an Arduino Uno microcontroller. The precisely controlled pressure exerted on the paper stops the flow. We first determined the stroke distance of the solenoid to obtain a constant pressure while examining the fluidic time delay as a function of the pressure. Results showed that strips of grade 1 chromatography paper had superior reproducibility in fluid transport. Next, we characterized the reproducibility of the fluidic velocity which depends on the type and grade of paper used. As such, we were able to control the flow velocity on the paper and also achieve a complete stop of flow with a pressure over 2.0 MPa. Notably, after the actuation of the pressure driven valve (PDV), the previously pressed area regained its original flow properties. This means that, even on a previously pressed area, multiple valve operations can be successfully conducted. To the best of our knowledge, this is the first demonstration of an active and repetitive valve operation in paper microfluidics. As a proof of concept, we have chosen to perform a multistep detection system in the form of an enzyme-linked immunosorbent assay with mouse IgG as the target analyte.

  8. Physiologic Pressure and Flow Changes During Parabolic Flight (Pilot Study)

    NASA Technical Reports Server (NTRS)

    Pantalos, George; Sharp, M. Keith; Mathias, John R.; Hargens, Alan R.; Watenpaugh, Donald E.; Buckey, Jay C.

    1999-01-01

    The objective of this study was to obtain measurement of cutaneous tissue perfusion central and peripheral venous pressure, and esophageal and abdominal pressure in human test subjects during parabolic flight. Hemodynamic data recorded during SLS-I and SLS-2 missions have resulted in the paradoxical finding of increased cardiac stroke volume in the presence of a decreased central venous pressure (CVP) following entry in weightlessness. The investigators have proposed that in the absence of gravity, acceleration-induced peripheral vascular compression is relieved, increasing peripheral vascular capacity and flow while reducing central and peripheral venous pressure, This pilot study seeks to measure blood pressure and flow in human test subjects during parabolic flight for different postures.

  9. Granular flow through an aperture: influence of the packing fraction.

    PubMed

    Aguirre, M A; De Schant, R; Géminard, J-C

    2014-07-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.

  10. Granular flow through an aperture: Influence of the packing fraction

    NASA Astrophysics Data System (ADS)

    Aguirre, M. A.; De Schant, R.; Géminard, J.-C.

    2014-07-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.

  11. Unified Application Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2008-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  12. Topographically driven crustal flow and its implication to the development of pinned oroclines

    NASA Technical Reports Server (NTRS)

    Hsui, Albert T.; Wilkerson, M. Scott; Marshak, Stephen

    1990-01-01

    Pinned oroclines, a type of curved orogen which results from lateral pinning of a growing fold-thrust belt, tend to resemble parabolic Newtonian curvature modified by different degrees of flattening at the flow front. It is proposed that such curves can be generated by Newtonian crustal flow driven by topographic variations. In this model, regional topographic differences create a regional flow which produces a parabolic flow front on interaction with lateral bounding obstacles. Local topographic variations modify the parabolic curves and yield more flat-crested, non-Newtonian-type curvatures. A finite-difference thin-skin tectonic simulation demonstrates that both Newtonian and non-Newtonian curved orogens can be produced within a Newtonian crust.

  13. Phloem Ultrastructure and Pressure Flow: Sieve-Element-Occlusion-Related Agglomerations Do Not Affect Translocation[W

    PubMed Central

    Froelich, Daniel R.; Mullendore, Daniel L.; Jensen, Kåre H.; Ross-Elliott, Tim J.; Anstead, James A.; Thompson, Gary A.; Pélissier, Hélène C.; Knoblauch, Michael

    2011-01-01

    Since the first ultrastructural investigations of sieve tubes in the early 1960s, their structure has been a matter of debate. Because sieve tube structure defines frictional interactions in the tube system, the presence of P protein obstructions shown in many transmission electron micrographs led to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch’s classical hypothesis. Here, we show that the phloem contains a distinctive network of protein filaments. Stable transgenic lines expressing Arabidopsis thaliana Sieve-Element-Occlusion-Related1 (SEOR1)–yellow fluorescent protein fusions show that At SEOR1 meshworks at the margins and clots in the lumen are a general feature of living sieve tubes. Live imaging of phloem flow and flow velocity measurements in individual tubes indicate that At SEOR1 agglomerations do not markedly affect or alter flow. A transmission electron microscopy preparation protocol has been generated showing sieve tube ultrastructure of unprecedented quality. A reconstruction of sieve tube ultrastructure served as basis for tube resistance calculations. The impact of agglomerations on phloem flow is discussed. PMID:22198148

  14. First-order approximation for the pressure-flow relationship of spontaneously contracting lymphangions.

    PubMed

    Quick, Christopher M; Venugopal, Arun M; Dongaonkar, Ranjeet M; Laine, Glen A; Stewart, Randolph H

    2008-05-01

    To return lymph to the great veins of the neck, it must be actively pumped against a pressure gradient. Mean lymph flow in a portion of a lymphatic network has been characterized by an empirical relationship (P(in) - P(out) = -P(p) + R(L)Q(L)), where P(in) - P(out) is the axial pressure gradient and Q(L) is mean lymph flow. R(L) and P(p) are empirical parameters characterizing the effective lymphatic resistance and pump pressure, respectively. The relation of these global empirical parameters to the properties of lymphangions, the segments of a lymphatic vessel bounded by valves, has been problematic. Lymphangions have a structure like blood vessels but cyclically contract like cardiac ventricles; they are characterized by a contraction frequency (f) and the slopes of the end-diastolic pressure-volume relationship [minimum value of resulting elastance (E(min))] and end-systolic pressure-volume relationship [maximum value of resulting elastance (E(max))]. Poiseuille's law provides a first-order approximation relating the pressure-flow relationship to the fundamental properties of a blood vessel. No analogous formula exists for a pumping lymphangion. We therefore derived an algebraic formula predicting lymphangion flow from fundamental physical principles and known lymphangion properties. Quantitative analysis revealed that lymph inertia and resistance to lymph flow are negligible and that lymphangions act like a series of interconnected ventricles. For a single lymphangion, P(p) = P(in) (E(max) - E(min))/E(min) and R(L) = E(max)/f. The formula was tested against a validated, realistic mathematical model of a lymphangion and found to be accurate. Predicted flows were within the range of flows measured in vitro. The present work therefore provides a general solution that makes it possible to relate fundamental lymphangion properties to lymphatic system function.

  15. Effect of flow rate and temperature on transmembrane blood pressure drop in an extracorporeal artificial lung.

    PubMed

    Park, M; Costa, E L V; Maciel, A T; Barbosa, E V S; Hirota, A S; Schettino, G de P; Azevedo, L C P

    2014-11-01

    Transmembrane pressure drop reflects the resistance of an artificial lung system to blood transit. Decreased resistance (low transmembrane pressure drop) enhances blood flow through the oxygenator, thereby, enhancing gas exchange efficiency. This study is part of a previous one where we observed the behaviour and the modulation of blood pressure drop during the passage of blood through artificial lung membranes. Before and after the induction of multi-organ dysfunction, the animals were instrumented and analysed for venous-venous extracorporeal membrane oxygenation, using a pre-defined sequence of blood flows. Blood flow and revolutions per minute (RPM) of the centrifugal pump varied in a linear fashion. At a blood flow of 5.5 L/min, pre- and post-pump blood pressures reached -120 and 450 mmHg, respectively. Transmembrane pressures showed a significant spread, particularly at blood flows above 2 L/min; over the entire range of blood flow rates, there was a positive association of pressure drop with blood flow (0.005 mmHg/mL/minute of blood flow) and a negative association of pressure drop with temperature (-4.828 mmHg/(°Celsius). These associations were similar when blood flows of below and above 2000 mL/minute were examined. During its passage through the extracorporeal system, blood is exposed to pressure variations from -120 to 450 mmHg. At high blood flows (above 2 L/min), the drop in transmembrane pressure becomes unpredictable and highly variable. Over the entire range of blood flows investigated (0-5500 mL/min), the drop in transmembrane pressure was positively associated with blood flow and negatively associated with body temperature. © The Author(s) 2014.

  16. Over atmospheric pressure flowing afterglow

    NASA Astrophysics Data System (ADS)

    Ganciu, Mihai; Orphal, Johannes; Vervloet, Michel; Pointu, Anne-Marie; Touzeau, Michel

    2002-10-01

    A Tabletop discharge * created above atmospheric pressure in a N2 gas flow, uses some 10 kV very fast high voltage pulses applied between needle electrodes with some 10 kHz repetition rate. It is followed by a post-discharge, in a plastic tube with 6-mm internal diameter. Adjusting the flow and the repetition rate, the post-discharge exhibits a surprisingly long size, 9-10 m, as shown by the tube fluorescence. Preliminary spectroscopic measurements demonstrate that fluorescence is due to internal gas excited molecules (CN and NH) that are locally created by active species interaction with organic impurities. The discharge emission spectrum evidences a high nitrogen atom production rate, much higher than attainable rate with a Dielectric Barrier Discharge with same applied voltage pulses. For small air quantities added in the post-discharge, spectrum exhibits rich UV range corresponding to NO excited states. Further studies will be devoted to the post-discharge kinetics and to possible applications to medical sterilization. *M. Ganciu, private communication

  17. Apparent Viscosity of Active Nematics in Poiseuille Flow

    NASA Astrophysics Data System (ADS)

    Cui, Zhenlu; Su, Jianbing; Zeng, Xiaoming

    2015-09-01

    A Leslie-Erickson continuum hydrodynamic for flowing active nematics has been used to characterize active particle systems such as bacterial suspensions. The behavior of such a system under a plane pressure-driven Poiseuille flow is analyzed. When plate anchoring is tangential and normal, we find the apparent viscosity formula indicating a significant difference between tangential anchoring and normal anchoring conditions for both active rodlike and discoid nematics.

  18. Multiple buoyancy driven flows in a vertical cylinder heated from below

    NASA Technical Reports Server (NTRS)

    Yamaguchi, Y.; Chang, C. J.; Brown, R. A.

    1983-01-01

    The structure of axisymmetric buoyancy-driven convection in a vertical cylinder heated from below is probed by finite element solution of the Boussinesq equations coupled with computed-implemented perturbation techniques for detecting and tracking multiple flows and for determining flow stability. Results are reported for fluids with Prandtl number of one and for cylinders with aspect ratio (Lambda) (defined as the height to radius of the cylinder) between 0.5 and 2.25. Extensive calculations of the neutral stability curve for the static solution and of the nonlinear motions along the bifurcating flow families show a continuous evolution of the primary cellular motion from a single toroidal cell to two and three cells nested radially in the cylinder, instead of the sharp transitions found for a cylinder with shear-free sidewalls. The smooth transitions in flow structure with Rayleigh number and lambda are explained by nonlinear connectivity between the first two bifurcating flow families formed either by a secondary bifurcation point for Lambda or = Lambda * approximately 0.80 or by a limit point for Lambda Lambda *. The transition between these two modes may be described by the theory of multiple limit point bifurcation.

  19. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Storey, Andrew P.; Zeiri, Offer M.; Ray, Steven J.; Hieftje, Gary M.

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data.

  20. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry.

    PubMed

    Storey, Andrew P; Zeiri, Offer M; Ray, Steven J; Hieftje, Gary M

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data. Graphical Abstract ᅟ.

  1. Grouping of optic flow stimuli during binocular rivalry is driven by monocular information.

    PubMed

    Holten, Vivian; Stuit, Sjoerd M; Verstraten, Frans A J; van der Smagt, Maarten J

    2016-10-01

    During binocular rivalry, perception alternates between two dissimilar images, presented dichoptically. Although binocular rivalry is thought to result from competition at a local level, neighboring image parts with similar features tend to be perceived together for longer durations than image parts with dissimilar features. This simultaneous dominance of two image parts is called grouping during rivalry. Previous studies have shown that this grouping depends on a shared eye-of-origin to a much larger extent than on image content, irrespective of the complexity of a static image. In the current study, we examine whether grouping of dynamic optic flow patterns is also primarily driven by monocular (eye-of-origin) information. In addition, we examine whether image parameters, such as optic flow direction, and partial versus full visibility of the optic flow pattern, affect grouping durations during rivalry. The results show that grouping of optic flow is, as is known for static images, primarily affected by its eye-of-origin. Furthermore, global motion can affect grouping durations, but only under specific conditions. Namely, only when the two full optic flow patterns were presented locally. These results suggest that grouping during rivalry is primarily driven by monocular information even for motion stimuli thought to rely on higher-level motion areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The NASA Low-Pressure Turbine Flow Physics Program

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.

    1998-01-01

    An overview of the NASA Lewis Low-Pressure Turbine (LPT) Flow Physics Program will be presented. The program was established in response to the aero-engine industry's need for improved LPT efficiency and designs. Modern jet engines have four to seven LPT stages, significantly contributing to engine weight. In addition, there is a significant efficiency degradation between takeoff and cruise conditions, of up to 2 points. Reducing the weight and part count of the LPT and minimizing the efficiency degradation will translate into fuel savings. Accurate prediction methods of LPT flows and losses are needed to accomplish those improvements. The flow in LPT passages is at low Reynolds number, and is dominated by interplay of three basic mechanisms: transition, separation and wake interaction. The affecting parameters traditionally considered are Reynolds number, freestream turbulence intensity, wake frequency parameter, and the pressure distribution (loading). Three-dimensional effects and additional parameters, particularly turbulence characteristics like length scales, spectra and other statistics, as well as wake turbulence intensity and properties also play a role. The flow of most interest is on the suction surface, where large losses are generated as the flow tends to separate at the low Reynolds numbers. Ignoring wakes, a common flow scenario, there is laminar separation, followed by transition on the separation bubble and turbulent reattachment. If transition starts earlier the separation will be eliminated and the boundary layer will be attached leading to the well known bypass transition issues. In contrast, transition over a separation bubble is closer to free shear layer transition and was not investigated as well, particularly in the turbine environment. Unsteadiness created by wakes complicates the picture. Wakes induce earlier transition, and the calmed regions trailing the induced turbulent spots can delay or eliminate separation via shear stress

  3. Multimodal Pressure-Flow Analysis: Application of Hilbert Huang Transform in Cerebral Blood Flow Regulation

    NASA Astrophysics Data System (ADS)

    Lo, Men-Tzung; Hu, Kun; Liu, Yanhui; Peng, C.-K.; Novak, Vera

    2008-12-01

    Quantification of nonlinear interactions between two nonstationary signals presents a computational challenge in different research fields, especially for assessments of physiological systems. Traditional approaches that are based on theories of stationary signals cannot resolve nonstationarity-related issues and, thus, cannot reliably assess nonlinear interactions in physiological systems. In this review we discuss a new technique called multimodal pressure flow (MMPF) method that utilizes Hilbert-Huang transformation to quantify interaction between nonstationary cerebral blood flow velocity (BFV) and blood pressure (BP) for the assessment of dynamic cerebral autoregulation (CA). CA is an important mechanism responsible for controlling cerebral blood flow in responses to fluctuations in systemic BP within a few heart-beats. The MMPF analysis decomposes BP and BFV signals into multiple empirical modes adaptively so that the fluctuations caused by a specific physiologic process can be represented in a corresponding empirical mode. Using this technique, we showed that dynamic CA can be characterized by specific phase delays between the decomposed BP and BFV oscillations, and that the phase shifts are significantly reduced in hypertensive, diabetics and stroke subjects with impaired CA. Additionally, the new technique can reliably assess CA using both induced BP/BFV oscillations during clinical tests and spontaneous BP/BFV fluctuations during resting conditions.

  4. Tracheostomy Tube Type and Inner Cannula Selection Impact Pressure and Resistance to Air Flow.

    PubMed

    Pryor, Lee N; Baldwin, Claire E; Ward, Elizabeth C; Cornwell, Petrea L; O'Connor, Stephanie N; Chapman, Marianne J; Bersten, Andrew D

    2016-05-01

    Advancements in tracheostomy tube design now provide clinicians with a range of options to facilitate communication for individuals receiving ventilator assistance through a cuffed tube. Little is known about the impact of these modern design features on resistance to air flow. We undertook a bench model test to measure pressure-flow characteristics and resistance of a range of tubes of similar outer diameter, including those enabling subglottic suction and speech. A constant inspiratory ± expiratory air flow was generated at increasing flows up to 150 L/min through each tube (with or without optional, mandatory, or interchangeable inner cannula). Driving pressures were measured, and resistance was calculated (cm H2O/L/s). Pressures changed with increasing flow (P < .001) and tube type (P < .001), with differing patterns of pressure change according to the type of tube (P < .001) and direction of air flow. The single-lumen reference tube encountered the lowest inspiratory and expiratory pressures compared with all double-lumen tubes (P < .001); placement of an optional inner cannula increased bidirectional tube resistance by a factor of 3. For a tube with interchangeable inner cannulas, the type of cannula altered pressure and resistance differently (P < .001); the speech cannula in particular amplified pressure-flow changes and increased tube resistance by more than a factor of 4. Tracheostomy tube type and inner cannula selection imposed differing pressures and resistance to air flow during inspiration and expiration. These differences may be important when selecting airway equipment or when setting parameters for monitoring, particularly for patients receiving supported ventilation or during the weaning process. Copyright © 2016 by Daedalus Enterprises.

  5. Pressure Drop Across Woven Screens Under Uniform and Nonuniform Flow Conditions. [flow characteristics of water through Dutch twill and square weave fabrics

    NASA Technical Reports Server (NTRS)

    Ludewig, M.; Omori, S.; Rao, G. L.

    1974-01-01

    Tests were conducted to determine the experimental pressure drop and velocity data for water flowing through woven screens. The types of materials used are dutch twill and square weave fabrics. Pressure drop measures were made at four locations in a rectangular channel. The data are presented as change in pressure compared with the average entry velocity and the numerical relationship is determined by dividing the volumetric flow rate by the screen area open to flow. The equations of continuity and momentum are presented. A computer program listing an extension of a theoretical model and data from that computer program are included.

  6. Electroosmotic Flow Driven by DC and AC Electric Fields in Curved Microchannels

    NASA Astrophysics Data System (ADS)

    Chen, Jia-Kun; Luo, Win-Jet; Yang, Ruey-Jen

    2006-10-01

    The purpose of this study is to investigate electroosmotic flows driven by externally applied DC and AC electric fields in curved microchannels. For the DC electric driving field, the velocity distribution and secondary flow patterns are investigated in microchannels with various curvature ratios. We use the Dean number to describe the curvature effect of the flow field in DC electric field. The result implies that the effect of curvatures and the strength of the secondary flows become get stronger when the curvature ratio of C/A (where C is the radius of curvature of the microchannel and A is the half-height of rectangular curved tube.) is smaller. For the AC electric field, the velocity distribution and secondary flow patterns are investigated for driving frequencies in the range of 2.0 kHz (\\mathit{Wo}=0.71) to 11 kHz (\\mathit{Wo}=1.66). The numerical results reveal that the velocity at the center of the microchannel becomes lower at higher frequencies of the AC electric field and the strength of the secondary flow decreases. When the applied frequency exceeds 3.0 kHz (\\mathit{Wo}=0.87), vortices are no longer observed at the corners of the microchannel. Therefore, it can be concluded that the secondary flow induced at higher AC electric field frequencies has virtually no effect on the axial flow field in the microchannel.

  7. Application of Pressure Sensitive Paint to Confined Flow at Mach Number 2.5

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Bencic, T. J.; Bruckner, R. J.

    1998-01-01

    Pressure sensitive paint (PSP) is a novel technology that is being used frequently in external aerodynamics. For internal flows in narrow channels, and applications at elevated nonuniform temperatures, however, there are still unresolved problems that complicate the procedures for calibrating PSP signals. To address some of these problems, investigations were carried out in a narrow channel with supersonic flows of Mach 2.5. The first set of tests focused on the distribution of the wall pressure in the diverging section of the test channel downstream of the nozzle throat. The second set dealt with the distribution of wall static pressure due to the shock/wall interaction caused by a 25 deg. wedge in the constant Mach number part of the test section. In addition, the total temperature of the flow was varied to assess the effects of temperature on the PSP signal. Finally, contamination of the pressure field data, caused by internal reflection of the PSP signal in a narrow channel, was demonstrated. The local wall pressures were measured with static taps, and the wall pressure distributions were acquired by using PSP. The PSP results gave excellent qualitative impressions of the pressure field investigated. However, the quantitative results, specifically the accuracy of the PSP data in narrow channels, show that improvements need to be made in the calibration procedures, particularly for heated flows. In the cases investigated, the experimental error had a standard deviation of +/- 8.0% for the unheated flow, and +/- 16.0% for the heated flow, at an average pressure of 11 kpa.

  8. Experimental study of flow distribution and pressure loss with circumferential inlet and outlet manifolds

    NASA Technical Reports Server (NTRS)

    Dittrich, R. T.

    1972-01-01

    Water flow tests with circumferential inlet and outlet manifolds were conducted to determine factors affecting fluid distribution and pressure losses. Various orifice sizes and manifold geometries were tested over a range of flow velocities. With inlet manifolds, flow distribution was related directly to orifice discharge coefficients. A correlation indicated that nonuniform distribution resulted when the velocity head ratio at the orifice was not in the range of constant discharge coefficient. With outlet manifolds, nonuniform flow was related to static pressure variations along the manifold. Outlet manifolds had appreciably greater pressure losses than comparable inlet manifolds.

  9. Simultaneous velocity and pressure quantification using pressure-sensitive flow tracers in air

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Peterson, Sean; Porfiri, Maurizio

    2017-11-01

    Particle-based measurement techniques for assessing the velocity field of a fluid have advanced rapidly over the past two decades. Full-field pressure measurement techniques have remained elusive, however. In this work, we aim to demonstrate the possibility of direct simultaneous planar velocity and pressure measurement of a high speed aerodynamic flow by employing novel pressure-sensitive tracer particles for particle image velocimetry (PIV). Specifically, the velocity and pressure variations of an airflow through a converging-diverging channel are studied. Polystyrene microparticles embedded with a pressure-sensitive phosphorescent dye-platinum octaethylporphyrin (PtOEP)-are used as seeding particles. Due to the oxygen quenching effect, the emission lifetime of PtOEP is highly sensitive to the oxygen concentration, that is, the partial pressure of oxygen, in the air. Since the partial pressure of oxygen is linearly proportional to the air pressure, we can determine the air pressure through the phosphorescence emission lifetime of the dye. The velocity field is instead obtained using traditional PIV methods. The particles have a pressure resolution on the order of 1 kPa, which may be improved by optimizing the particle size and dye concentration to suit specific flow scenarios. This work was supported by the National Science Foundation under Grant Number CBET-1332204.

  10. Streaming driven by sessile microbubbles: Explaining flow patterns and frequency response

    NASA Astrophysics Data System (ADS)

    Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha

    2013-11-01

    Ultrasound excitation of bubbles drives powerful steady streaming flows which have found widespread applications in microfluidics, where bubbles are typically of semicircular cross section and attached to walls of the device (sessile). While bubble-driven streaming in bulk fluid is well understood, this practically relevant case presents additional complexity introduced by the wall and contact lines. We develop an asymptotic theory that takes into account the presence of the wall as well as the oscillation dynamics of the bubble, providing a complete description of the streaming flow as a function only of the driving frequency, the bubble size, and the physical properties of the fluid. We show that the coupling between different bubble oscillation modes sustains the experimentally observed streaming flow vortex pattern over a broad range of frequencies, greatly exceeding the widths of individual mode resonances. Above a threshold frequency, we predict, and observe in experiment, reversal of the flow direction. Our analytical theory can be used to guide the design of microfluidic devices, both in situations where robust flow patterns insensitive to parameter changes are desired (e.g. lab-on-a-chip sorters), and in cases where intentional modulation of the flow field appearance is key (e.g. efficient mixers). Current address: Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology.

  11. Controlling flows in microchannels with patterned surface charge and topography.

    PubMed

    Stroock, Abraham D; Whitesides, George M

    2003-08-01

    This Account reviews two procedures for controlling the flow of fluids in microchannels. The first procedure involves patterning the density of charge on the inner surfaces of a channel. These patterns generate recirculating electroosmotic flows in the presence of a steady electric field. The second procedure involves patterning topography on an inner surface of a channel. These patterns generate recirculation in the cross-section of steady, pressure-driven flows. This Account summarizes applications of these flow to mixing and to controlling dispersion (band broadening).

  12. DNA Molecules in Microfluidic Oscillatory Flow

    PubMed Central

    Chen, Y.-L.; Graham, M.D.; de Pablo, J.J.; Jo, K.; Schwartz, D.C.

    2008-01-01

    The conformation and dynamics of a single DNA molecule undergoing oscillatory pressure-driven flow in microfluidic channels is studied using Brownian dynamics simulations, accounting for hydrodynamic interactions between segments in the bulk and between the chain and the walls. Oscillatory flow provides a scenario under which the polymers may remain in the channel for an indefinite amount of time as they are stretched and migrate away from the channel walls. We show that by controlling the chain length, flow rate and oscillatory flow frequency, we are able to manipulate the chain extension and the chain migration from the channel walls. The chain stretch and the chain depletion layer thickness near the wall are found to increase as the Weissenberg number increases and as the oscillatory frequency decreases. PMID:19057656

  13. Surface-tension-driven flow in a glass melt

    NASA Technical Reports Server (NTRS)

    Mcneil, Thomas J.; Cole, Robert; Shankar Subramanian, R.

    1985-01-01

    Motion driven by surface tension gradients was observed in a vertical capillary liquid bridge geometry in a sodium borate melt. The surface tension gradients were introduced by maintaining a temperature gradient on the free melt surface. The flow velocities at the free surface of the melt, which were measured using a tracer technique, were found to be proportional to the applied temperature difference and inversely proportional to the melt viscosity. The experimentally observed velocities were in reasonable accord with predictions from a theoretical model of the system.

  14. Primary flow meter for calibrating a sniffer test leak artefact by a pressure rise method

    NASA Astrophysics Data System (ADS)

    Arai, Kenta; Yoshida, Hajime

    2014-10-01

    Sniffer tests are used to locate leaks in equipment during operation. The sensitivity of a sniffer leak detector must be calibrated against a known gas flow to atmospheric pressure generated by a sniffer test leak artefact. We have developed a primary flow meter for calibrating gas flows to atmospheric pressure through the leak artefact. The flow meter is based on a pressure rise method and two chambers are used to measure the pressure rise with small uncertainty even at atmospheric pressure. The calibration range of the flow rate is 5 × 10-7 Pa m3 s-1 to 7 × 10-4 Pa m3 s-1 to atmospheric pressure at 23.0 °C with a minimum uncertainty of 1.4% (k = 2), as well as 4 × 10-8 Pa m3 s-1 to 5 × 10-4 Pa m3 s-1 to a vacuum at 23.0 °C. The long term stability of the flow meter was determined as 0.41% by repeated measurements of the conductance of the leak artefact. In case of the flow rate into a vacuum, the flow meter was successfully linked to the international reference value of CCM.P-K12 by a lab-internal comparison.

  15. A color video display technique for flow field surveys

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Tsao, C. P.

    1982-01-01

    A computer driven color video display technique has been developed for the presentation of wind tunnel flow field survey data. The results of both qualitative and quantitative flow field surveys can be presented in high spatial resolutions color coded displays. The technique has been used for data obtained with a hot-wire probe, a split-film probe, a Conrad (pitch) probe and a 5-tube pressure probe in surveys above and behind a wing with partially stalled and fully stalled flow.

  16. Impact of Pulmonary Flow Study Pressure on Outcomes After One-Stage Unifocalization.

    PubMed

    Trezzi, Matteo; Albanese, Sonia B; Albano, Antonio; Rinelli, Gabriele; D'Anna, Carolina; Polito, Angelo; Cetrano, Enrico; Carotti, Adriano

    2017-12-01

    The purpose of this study was to evaluate the accuracy of the pulmonary flow study in (1) predicting the feasibility of concomitant intracardiac repair after one-stage unifocalization; and in (2) predicting long-term survival and the onset of right ventricular dysfunction after surgery. Between October 1996 and July 2015, a flow study was obtained in 95 patients undergoing complete one-stage unifocalization for pulmonary atresia with ventricular septal defect and major aortopulmonary collaterals. The ability to achieve 100% flow (approximately 2.5 L · min -1 · m -2 ) into the pulmonary bed at a mean pressure of 30 mm Hg or less was utilized as an indicator for acceptability of ventricular septal defect closure. Overall survival was 78% ± 6% at 15 years. Sixty-four patients underwent successful one-stage intracardiac repair. The flow study accurately predicted suitability for VSD closure (area under the curve = 0.855). After one-stage ventricular septal defect closure, no difference in survival was observed after stratification according to flow study pressures (25 mm Hg or less versus greater than 25 mm Hg, log rank p = 0.20). At a median follow-up of 7 years, no association was found between flow study pressure and the onset of right ventricular dysfunction (p = 0.21). Overall, the inability to achieve final intracardiac repair was a strong predictor of death (hazard ratio 9.14, 95% confidence interval: 1.98 to 42.07, p < 0.0001). Suitability for ventricular septal defect closure is reliably defined by the flow study with a cutoff of 30 mm Hg. Flow study pressure values do not affect long-term outcomes. The ability to obtain intracardiac repair (in either one or more stages) is the strongest predictor of survival. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Grain-size-independent plastic flow at ultrahigh pressures and strain rates.

    PubMed

    Park, H-S; Rudd, R E; Cavallo, R M; Barton, N R; Arsenlis, A; Belof, J L; Blobaum, K J M; El-dasher, B S; Florando, J N; Huntington, C M; Maddox, B R; May, M J; Plechaty, C; Prisbrey, S T; Remington, B A; Wallace, R J; Wehrenberg, C E; Wilson, M J; Comley, A J; Giraldez, E; Nikroo, A; Farrell, M; Randall, G; Gray, G T

    2015-02-13

    A basic tenet of material science is that the flow stress of a metal increases as its grain size decreases, an effect described by the Hall-Petch relation. This relation is used extensively in material design to optimize the hardness, durability, survivability, and ductility of structural metals. This Letter reports experimental results in a new regime of high pressures and strain rates that challenge this basic tenet of mechanical metallurgy. We report measurements of the plastic flow of the model body-centered-cubic metal tantalum made under conditions of high pressure (>100  GPa) and strain rate (∼10(7)  s(-1)) achieved by using the Omega laser. Under these unique plastic deformation ("flow") conditions, the effect of grain size is found to be negligible for grain sizes >0.25  μm sizes. A multiscale model of the plastic flow suggests that pressure and strain rate hardening dominate over the grain-size effects. Theoretical estimates, based on grain compatibility and geometrically necessary dislocations, corroborate this conclusion.

  18. Unified Application of Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2010-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  19. Recognition and measurement gas-liquid two-phase flow in a vertical concentric annulus at high pressures

    NASA Astrophysics Data System (ADS)

    Li, Hao; Sun, Baojiang; Guo, Yanli; Gao, Yonghai; Zhao, Xinxin

    2018-02-01

    The air-water flow characteristics under pressure in the range of 1-6 MPa in a vertical annulus were evaluated in this report. Time-resolved bubble rising velocity and void fraction were also measured using an electrical void fraction meter. The results showed that the pressure has remarkable effect on the density, bubble size and rise velocity of the gas. Four flow patterns (bubble, cap-bubble, cap-slug, and churn) were also observed instead of Taylor bubble at high pressure. Additionally, the transition process from bubble to cap-bubble was investigated at atmospheric and high pressures, respectively. The results revealed that the flow regime transition criteria for atmospheric pressure do not work at high pressure, hence a new flow regime transition model for annular flow channel geometry was developed to predict the flow regime transition, which thereafter exhibited high accuracy at high pressure condition.

  20. Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring.

    PubMed

    Wang, Meng; Zhang, Jiahao; Tang, Yingjie; Li, Jun; Zhang, Baosen; Liang, Erjun; Mao, Yanchao; Wang, Xudong

    2018-06-04

    Respiration is one of the most important vital signs of humans, and respiratory monitoring plays an important role in physical health management. A low-cost and convenient real-time respiratory monitoring system is extremely desirable. In this work, we demonstrated an air-flow-driven triboelectric nanogenerator (TENG) for self-powered real-time respiratory monitoring by converting mechanical energy of human respiration into electric output signals. The operation of the TENG was based on the air-flow-driven vibration of a flexible nanostructured polytetrafluoroethylene (n-PTFE) thin film in an acrylic tube. This TENG can generate distinct real-time electric signals when exposed to the air flow from different breath behaviors. It was also found that the accumulative charge transferred in breath sensing corresponds well to the total volume of air exchanged during the respiration process. Based on this TENG device, an intelligent wireless respiratory monitoring and alert system was further developed, which used the TENG signal to directly trigger a wireless alarm or dial a cell phone to provide timely alerts in response to breath behavior changes. This research offers a promising solution for developing self-powered real-time respiratory monitoring devices.

  1. Cilia driven flow networks in the brain

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Faubel, Regina; Westendorf, Chrsitian; Eichele, Gregor; Bodenschatz, Eberhard

    Neurons exchange soluble substances via the cerebrospinal fluid (CSF) that fills the ventricular system. The walls of the ventricular cavities are covered with motile cilia that constantly beat and thereby induce a directional flow. We recently discovered that cilia in the third ventricle generate a complex flow pattern leading to partitioning of the ventricular volume and site-directed transport paths along the walls. Transient and daily recurrent alterations in the cilia beating direction lead to changes in the flow pattern. This has consequences for delivery of CSF components along the near wall flow. The contribution of this cilia-induced flow to overall CSF flow remains to be investigated. The state-of-art lattice Boltzmann method is adapted for studying the CFS flow. The 3D geometry of the third ventricle at high resolution was reconstructed. Simulation of CSF flow without cilia in this geometry confirmed that the previous idea about unidirectional flow does not explain how different components of CSF can be delivered to their various target sites. We study the contribution of the cilia-induced flow pattern to overall CSF flow and identify target areas for site-specific delivery of CSF-constituents with respect to the temporal changes.

  2. Forces on particles in microstreaming flows

    NASA Astrophysics Data System (ADS)

    Hilgenfeldt, Sascha; Rallabandi, Bhargav; Thameem, Raqeeb

    2015-11-01

    In various microfluidic applications, vortical steady streaming from ultrasonically driven microbubbles is used in concert with a pressure-driven channel flow to manipulate objects. While a quantitative theory of this boundary-induced streaming is available, little work has been devoted to a fundamental understanding of the forces exerted on microparticles in boundary streaming flows, even though the differential action of such forces is central to applications like size-sensitive sorting. Contrary to other microfluidic sorting devices, the forces in bubble microstreaming act over millisecond times and micron length scales, without the need for accumulated deflections over long distances. Accordingly, we develop a theory of hydrodynamic forces on the fast time scale of bubble oscillation using the lubrication approximation, showing for the first time how particle displacements are rectified near moving boundaries over multiple oscillations in parallel with the generation of the steady streaming flow. The dependence of particle migration on particle size and the flow parameters is compared with experimental data. The theory is applicable to boundary streaming phenomena in general and demonstrates how particles can be sorted very quickly and without compromising device throughput. We acknowledge support by the National Science Foundation under grant number CBET-1236141.

  3. Intercooler cooling-air weight flow and pressure drop for minimum drag loss

    NASA Technical Reports Server (NTRS)

    Reuter, J George; Valerino, Michael F

    1944-01-01

    An analysis has been made of the drag losses in airplane flight of cross-flow plate and tubular intercoolers to determine the cooling-air weight flow and pressure drop that give a minimum drag loss for any given cooling effectiveness and, thus, a maximum power-plant net gain due to charge-air cooling. The drag losses considered in this analysis are those due to (1) the extra drag imposed on the airplane by the weight of the intercooler, its duct, and its supports and (2) the drag sustained by the cooling air in flowing through the intercooler and its duct. The investigation covers a range of conditions of altitude, airspeed, lift-drag ratio, supercharger-pressure ratio, and supercharger adiabatic efficiency. The optimum values of cooling air pressure drop and weight flow ratio are tabulated. Curves are presented to illustrate the results of the analysis.

  4. Idealized debris flow in flume with bed driven by a conveyor belt

    USGS Publications Warehouse

    Ling, Chi-Hai; Chen, Cheng-lung

    1989-01-01

    The generalized viscoplastic fluid (GVF) model is used to derive the theoretical expressions of two-dimensional velocities and surface profile for debris flow established in a flume with bed driven by a conveyor belt. The rheological parameters of the GVF model are evaluated through the comparison of theoretical results with measured data. A slip velocity of the established (steady) nonuniform flow on the moving bed (i.e., the conveyor belt) is observed, and a relation between the slip velocity and the velocity gradient at the bed is derived. Two belts, one rough and the other smooth, were tested. The flow profile in the flume is found to be linear and dependent on the roughness of the belt, but not much on its speed.

  5. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel.

    PubMed

    Park, H M; Lee, W M

    2008-07-01

    Many lab-on-a-chip based microsystems process biofluids such as blood and DNA solutions. These fluids are viscoelastic and show extraordinary flow behaviors, not existing in Newtonian fluids. Adopting appropriate constitutive equations these exotic flow behaviors can be modeled and predicted reasonably using various numerical methods. In the present paper, we investigate viscoelastic electroosmotic flows through a rectangular straight microchannel with and without pressure gradient. It is shown that the volumetric flow rates of viscoelastic fluids are significantly different from those of Newtonian fluids under the same external electric field and pressure gradient. Moreover, when pressure gradient is imposed on the microchannel there appear appreciable secondary flows in the viscoelastic fluids, which is never possible for Newtonian laminar flows through straight microchannels. The retarded or enhanced volumetric flow rates and secondary flows affect dispersion of solutes in the microchannel nontrivially.

  6. Preferential paths in yield stress fluid flow through a porous medium

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Waisbord, Nicolas; Stoop, Norbert; Dunkel, Jörn

    2016-11-01

    A broad range of biological, geological, and industrial materials with complex rheological properties are subjected to flow through porous media in applications ranging from oil recovery to food manufacturing. In this experimental study, we examine the flow of a model yield stress fluid (Carbopol micro-gel) through a quasi-2D porous medium, fabricated in a microfluidic channel. The flow is driven by applying a precisely-controlled pressure gradient and measured by particle tracking velocimetry, and our observations are complemented by a pore-network model of the yield stress fluid flow. While remaining unyielded at small applied pressure, the micro-gel begins to yield at a critical pressure gradient, exhibiting a single preferential flow path that percolates through the porous medium. As the applied pressure gradient increases, we observe a subsequent coarsening and invasion of the yielded, fluidized network. An examination of both the yielded network topology and pore-scale flow reveal that two cooperative phenomena are involved in sculpting the preferential flow paths: (1) the geometry of the porous microstructure, and (2) the adhesive surface interactions between the micro-gel and substrate. NSF CBET-1511340.

  7. Rarefaction effects in microchannel gas flow driven by rhythmic wall contractions

    NASA Astrophysics Data System (ADS)

    Chatterjee, Krishnashis; Staples, Anne; Department of Biomedical Engineering; Mechanics, Virginia Tech Collaboration

    2015-11-01

    Current state of the art microfluidic devices employ precise and timely operation of a complex arrangement of micropumps and valves for fluid transport. A much more novel flow transport mechanism is found in entomological respiratory systems, which involve rhythmic wall contractions for driving the fluid flow. The practical viability of using this technique in future microfluidic devices has been studied earlier. The present study investigates the incorporation of rarefaction effects in the above model of microscale gas flow by including slip boundary conditions. The Navier Stokes equations for gas flow in rectangular microchannel are solved analytically with microscale and lubrication theory assumptions. First order slip boundary conditions are incorporated to account for the rarefaction effects. The dependence of fluid velocities and pressure gradient on the slip boundary conditions is studied. Time averaged unidirectional fluid flow rates are plotted for different phase lags between the contractions, with and without slip in order to obtain an optimum range under different conditions.

  8. Bridge pressure flow scour for clear water conditions

    DOT National Transportation Integrated Search

    2009-10-01

    The equilibrium scour at a bridge caused by pressure flow with critical approach velocity in clear-water simulation conditions was studied both analytically and experimentally. The flume experiments revealed that (1) the measured equilibrium scour pr...

  9. Flow Instabilities in Feather Seals due to Upstream Harmonic Pressure Fluctuations

    NASA Technical Reports Server (NTRS)

    Deng, D.; Braun, M. J.; Henricks, Robert C.

    2008-01-01

    Feather seals (also called slot seals) typically found in turbine stators limit leakage from the platform into the core cavities and from the shroud to the case. They are of various geometric shapes, yet all are contoured to fit the aerodynamic shape of the stator and placed as close as thermomechanically reasonable the powerstream flow passage. Oscillations engendered in the compressor or combustor alter the steady leakage characteristics of these sealing elements and in some instances generate flow instabilities downstream of the seal interface. In this study, a generic feather seal geometry was studied numerically by imposing an upstream harmonic pressure disturbance on the simulated stator-blade gap. The flow and thermal characteristics were determined; it was found that for high pressure drops, large fluctuations in flows in the downstream blade-stator gap can occur. These leakages and pulsations in themselves are not all that significant, yet if coupled with cavity parameters, they could set up resonance events. Computationally generated time-dependent flow fields are captured in sequence video streaming.

  10. [Aerodynamics study on pressure changes inside pressure-type whole-body plethysmograph produced by flowing air].

    PubMed

    Xu, Wei-Hua; Shen, Hua-Hao

    2010-02-25

    When using pressure-type plethysmography to test lung function of rodents, calculation of lung volume is always based on Boyle's law. The precondition of Boyle's law is that perfect air is static. However, air in the chamber is flowing continuously when a rodent breathes inside the chamber. Therefore, Boyle's law, a principle of air statics, may not be appropriate for measuring pressure changes of flowing air. In this study, we deduced equations for pressure changes inside pressure-type plethysmograph and then designed three experiments to testify the theoretic deduction. The results of theoretic deduction indicated that increased pressure was generated from two sources: one was based on Boyle's law, and the other was based on the law of conservation of momentum. In the first experiment, after injecting 0.1 mL, 0.2 mL, 0.4 mL of air into the plethysmograph, the pressure inside the chamber increased sharply to a peak value, then promptly decreased to horizontal pressure. Peak values were significantly higher than the horizontal values (P<0.001). This observation revealed that flowing air made an extra effect on air pressure in the plethysmograph. In the second experiment, the same volume of air was injected into the plethysmograph at different frequencies (0, 0.5, 1, 2, 3 Hz) and pressure changes inside were measured. The results showed that, with increasing frequencies, the pressure changes in the chamber became significantly higher (P<0.001). In the third experiment, small animal ventilator and pipette were used to make two types of airflow with different functions of time. The pressure changes produced by the ventilator were significantly greater than those produced by the pipette (P<0.001). Based on the data obtained, we draw the conclusion that, the flow of air plays a role in pressure changes inside the plethysmograph, and the faster the airflow is, the higher the pressure changes reach. Furthermore, the type of airflow also influences the pressure changes.

  11. The effect of flow recirculation on abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Taib, Ishkrizat; Amirnordin, Shahrin Hisham; Madon, Rais Hanizam; Mustafa, Norrizal; Osman, Kahar

    2012-06-01

    The presences of flow recirculation at the abdominal aortic aneurysm (AAA) region yield the unpredictable failure of aneurismal wall. The failure of the aneurismal wall is closely related to the hemodynamic factor. Hemodynamic factor such as pressure and velocity distribution play a significance role of aneurysm growth and rupture. By using the computational approach, the influence of hemodynamic factor is investigated using computational fluid dynamic (CFD) method on the virtual AAA model. The virtual 3D AAAs model was reconstructed from Spiral Computed Tomography scan (CT-scan). The blood flow is assumed as being transient, laminar and Newtonian within a rigid section of the vessel. The blood flow also driven by an imposed of pressure gradient in the form of physiological waveform. The pulsating blood flow is also considered in this simulation. The results on pressure distribution and velocity profile are analyzed to interpret the behaviour of flow recirculation. The results show the forming of vortices is seen at the aneurysm bulge. This vortices is form at the aneurysm region then destroyed rapidly by flow recirculation. Flow recirculation is point out much higher at distal end of aneurysm closed to iliac bifurcation. This phenomenon is managed to increase the possibility of aneurysm growth and rupture.

  12. BRIEF COMMUNICATION: On the drift kinetic equation driven by plasma flows

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.

    2010-07-01

    A drift kinetic equation that is driven by plasma flows has previously been derived by Shaing and Spong 1990 (Phys. Fluids B 2 1190). The terms that are driven by particle speed that is parallel to the magnetic field B have been neglected. Here, such terms are discussed to examine their importance to the equation and to show that these terms do not contribute to the calculations of plasma viscosity in large aspect ratio toroidal plasmas, e.g. tokamaks and stellarators.

  13. Pressure-Sensitive Paint Investigation of Double-Delta Wing Vortex Flow Manipulation

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Gonzalez, Hugo A.

    2004-01-01

    A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the effect of wing fillets on the global vortex-induced surface static pressure field about a sharp leading-edge 76o/40o double delta wing, or strake-wing, model at subsonic and transonic speeds. Global calibrations of the PSP were obtained at M = 0.50, 0.70, 0.85, 0.95, and 1.20, a Reynolds number per unit length of 2.0 million, and angles of attack from 10 degrees to 20 degrees using an in-situ method featuring the simultaneous acquisition of electronically-scanned pressures (ESP) at discrete locations on the model. The mean error in the PSP measurements relative to the ESP data was approximately 2 percent or less at M = 0.50 to 0.85 but increased to several percent at M =0.95 and 1.20. The PSP pressure distributions and pseudo-colored planform view pressure maps clearly revealed the vortex-induced pressure signatures at all Mach numbers and angles of attack. Small fillets having a parabolic or diamond planform situated at the strake-wing intersection were designed to manipulate the vortical flows by, respectively, removing the leading-edge discontinuity or introducing additional discontinuities. The fillets caused global changes in the vortex-dominated surface pressure field that were effectively captured in the PSP measurements. The vortex surface pressure signatures were compared to available off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The fillet effects on the PSP pressure distributions and the observed leading-edge vortex flow characteristics were consistent with the trends in the measured lift, drag, and pitching moment coefficients.

  14. Pressure-Sensitive Paint Investigation of Double-Delta Wing Vortex Flow Manipulation

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Gonzalez, Hugo A.

    2005-01-01

    A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the effect of wing fillets on the global vortex-induced surface static pressure field about a sharp leading-edge 76 deg/40 deg double delta wing, or strake-wing, model at subsonic and transonic speeds. Global calibrations of the PSP were obtained at M = 0.50, 0.70, 0.85, 0.95, and 1.20, a Reynolds number per unit length of 2.0 million, and angles of attack from 10 degrees to 30 degrees using an in-situ method featuring the simultaneous acquisition of electronically-scanned pressures (ESP) at discrete locations on the model. The mean error in the PSP measurements relative to the ESP data was approximately 2 percent or less at M = 0.50 to 0.85 but increased to several percent at M = 0.95 and 1.20. The PSP pressure distributions and pseudo-colored planform view pressure maps clearly revealed the vortex-induced pressure signatures at all Mach numbers and angles of attack. Small fillets having a parabolic or diamond planform situated at the strake-wing intersection were designed to manipulate the vortical flows by, respectively, removing the leading-edge discontinuity or introducing additional discontinuities. The fillets caused global changes in the vortex-dominated surface pressure field that were effectively captured in the PSP measurements. The vortex surface pressure signatures were compared to available off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The fillet effects on the PSP pressure distributions and the observed leading-edge vortex flow characteristics were consistent with the trends in the measured lift, drag, and pitching moment coefficients.

  15. Three-dimensional flows in a hyperelastic vessel under external pressure.

    PubMed

    Zhang, Sen; Luo, Xiaoyu; Cai, Zongxi

    2018-05-09

    We study the collapsible behaviour of a vessel conveying viscous flows subject to external pressure, a scenario that could occur in many physiological applications. The vessel is modelled as a three-dimensional cylindrical tube of nonlinear hyperelastic material. To solve the fully coupled fluid-structure interaction, we have developed a novel approach based on the Arbitrary Lagrangian-Eulerian (ALE) method and the frontal solver. The method of rotating spines is used to enable an automatic mesh adaptation. The numerical code is verified extensively with published results and those obtained using the commercial packages in simpler cases, e.g. ANSYS for the structure with the prescribed flow, and FLUENT for the fluid flow with prescribed structure deformation. We examine three different hyperelastic material models for the tube for the first time in this context and show that at the small strain, all three material models give similar results. However, for the large strain, results differ depending on the material model used. We further study the behaviour of the tube under a mode-3 buckling and reveal its complex flow patterns under various external pressures. To understand these flow patterns, we show how energy dissipation is associated with the boundary layers created at the narrowest collapsed section of the tube, and how the transverse flow forms a virtual sink to feed a strong axial jet. We found that the energy dissipation associated with the recirculation does not coincide with the flow separation zone itself, but overlaps with the streamlines that divide the three recirculation zones. Finally, we examine the bifurcation diagrams for both mode-3 and mode-2 collapses and reveal that multiple solutions exist for a range of the Reynolds number. Our work is a step towards modelling more realistic physiological flows in collapsible arteries and veins.

  16. An accessible micro-capillary electrophoresis device using surface-tension-driven flow

    PubMed Central

    Mohanty, Swomitra K.; Warrick, Jay; Gorski, Jack; Beebe, David J.

    2010-01-01

    We present a rapidly fabricated micro-capillary electrophoresis chip that utilizes surface-tension-driven flow for sample injection and extraction of DNA. Surface-tension-driven flow (i.e. passive pumping) injects a fixed volume of sample that can be predicted mathematically. Passive pumping eliminates the need for tubing, valves, syringe pumps, and other equipment typically needed for interfacing with microelectrophoresis chips. This method requires a standard micropipette to load samples before separation, and remove the resulting bands after analysis. The device was made using liquid phase photopolymerization to rapidly fabricate the chip without the need of special equipment typically associated with the construction of microelectrophoresis chips (e.g. cleanroom). Batch fabrication time for the device presented here was 1.5 h including channel coating time to suppress electroosmotic flow. Devices were constructed out of poly-isobornyl acrylate and glass. A standard microscope with a UV source was used for sample detection. Separations were demonstrated using Promega BenchTop 100 bp ladder in hydroxyl ethyl cellulose (HEC) and oligonucleotides of 91 and 118 bp were used to characterize sample injection and extraction of DNA bands. The end result was an inexpensive micro-capillary electrophoresis device that uses tools (e.g. micropipette, electrophoretic power supplies, and microscopes) already present in most labs for sample manipulation and detection, making it more accessible for potential end users. PMID:19425002

  17. Enhanced Forced Convection Heat Transfer using Small Scale Vorticity Concentrations Effected by Flow Driven, Aeroelastically Vibrating Reeds

    DTIC Science & Technology

    2016-08-03

    insulated from behind (using an air gap) as shown in figure III.3-1c. Each of the heated side walls are instrumented with seven equally-spaced T-Type...AFRL-AFOSR-VA-TR-2016-0339 Enhanced convection heat transfer using small-scale vorticity concentrations effected by flow-driven, aeroelastically...public release. Enhanced Forced Convection Heat Transfer using Small-Scale Vorticity Concentrations Effected by Flow-Driven, Aeroelastically Vibrating

  18. Ductile crustal flow in Europe's lithosphere

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Burov, Evgene B.; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.

    2011-12-01

    Potential gravity theory (PGT) predicts the presence of significant gravity-induced horizontal stresses in the lithosphere associated with lateral variations in plate thickness and composition. New high resolution crustal thickness and density data provided by the EuCRUST-07 model are used to compute the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. To investigate relationships between crustal and mantle lithospheric movements, we compare these results with the observed directions of mantle lithospheric anisotropy and GPS velocity vectors. We identify areas whose evolution could have been significantly affected by gravity-driven ductile crustal flow. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Gravitational forces directed from areas of high gravitational potential energy to subsiding basin areas can strongly reduce lithospheric extension in the latter, leading to a gradual late stage inversion of the entire system. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. In particular, in a

  19. Elasto-Aerodynamics-Driven Triboelectric Nanogenerator for Scavenging Air-Flow Energy.

    PubMed

    Wang, Shuhua; Mu, Xiaojing; Wang, Xue; Gu, Alex Yuandong; Wang, Zhong Lin; Yang, Ya

    2015-10-27

    Efficient scavenging the kinetic energy from air-flow represents a promising approach for obtaining clean, sustainable electricity. Here, we report an elasto-aerodynamics-driven triboelectric nanogenerator (TENG) based on contact electrification. The reported TENG consists of a Kapton film with two Cu electrodes at each side, fixed on two ends in an acrylic fluid channel. The relationship between the TENG output power density and its fluid channel dimensions is systematically studied. TENG with a fluid channel size of 125 × 10 × 1.6 mm(3) delivers the maximum output power density of about 9 kW/m(3) under a loading resistance of 2.3 MΩ. Aero-elastic flutter effect explains the air-flow induced vibration of Kapton film well. The output power scales nearly linearly with parallel wiring of multiple TENGs. Connecting 10 TENGs in parallel gives an output power of 25 mW, which allows direct powering of a globe light. The TENG is also utilized to scavenge human breath induced air-flow energy to sustainably power a human body temperature sensor.

  20. A study of pressure-based methodology for resonant flows in non-linear combustion instabilities

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Pindera, M. Z.; Przekwas, A. J.; Tucker, K.

    1992-01-01

    This paper presents a systematic assessment of a large variety of spatial and temporal differencing schemes on nonstaggered grids by the pressure-based methods for the problems of fast transient flows. The observation from the present study is that for steady state flow problems, pressure-based methods can be very competitive with the density-based methods. For transient flow problems, pressure-based methods utilizing the same differencing scheme are less accurate, even though the wave speeds are correctly predicted.

  1. Cross-stream diffusion under pressure-driven flow in microchannels with arbitrary aspect ratios: a phase diagram study using a three-dimensional analytical model.

    PubMed

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2012-01-01

    This article presents a three-dimensional analytical model to investigate cross-stream diffusion transport in rectangular microchannels with arbitrary aspect ratios under pressure-driven flow. The Fourier series solution to the three-dimensional convection-diffusion equation is obtained using a double integral transformation method and associated eigensystem calculation. A phase diagram derived from the dimensional analysis is presented to thoroughly interrogate the characteristics in various transport regimes and examine the validity of the model. The analytical model is verified against both experimental and numerical models in terms of the concentration profile, diffusion scaling law, and mixing efficiency with excellent agreement (with <0.5% relative error). Quantitative comparison against other prior analytical models in extensive parameter space is also performed, which demonstrates that the present model accommodates much broader transport regimes with significantly enhanced applicability.

  2. Performance of a low-pressure fan stage with reverse flow

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Lewis, G. W., Jr.; Tysl, E. R.

    1976-01-01

    The reverse flow aerodynamic performance of a 51-centimeter-diameter fan stage is presented. The stage was tested with the variable pitch rotor blades set through feather at -75 deg, -80 deg, and -85 deg from design setting angle. Of the three tested the stage with the rotor blades set at -75 deg exhibited the highest pressure ratio and highest flow. For all three configurations, there was little or no flow in the inner third of the exit passage due to the rotor blade being almost perpendicular to the axial direction in the hub region.

  3. A study of the compressible flow through a diffusing S-duct

    NASA Technical Reports Server (NTRS)

    Wellborn, Steven R.; Okiishi, Theodore H.; Reichert, Bruce A.

    1993-01-01

    Benchmark aerodynamic data are presented for compressible flow through a representative S-duct configuration. A numerical prediction of the S-duct flow field, obtained from a subsonic parabolized Navier-Stokes algorithm, is also shown. The experimental and numerical results are compared. Measurements of the three-dimensional velocity field, total pressures, and static pressures were obtained at five cross-sectional planes. Aerodynamic data were gathered with calibrated pneumatic probes. Surface static pressure and surface flow visualization data were also acquired. All reported tests were conducted with an inlet centerline Mach number of 0.6. The Reynolds number, based on the inlet centerline velocity and duct inlet diameter, was 2.6 x 10(exp 6). Thin inlet turbulent boundary layers existed. The collected data should be beneficial to aircraft inlet designers and the measurements are suitable for the validation of computational codes. The results show that a region of streamwise flow separation occurred within the duct. Details about the separated flow region, including mechanisms which drive this complicated flow phenomenon, are discussed. Results also indicate that the duct curvature induces strong pressure driven secondary flows. The cross flows evolve into counter-rotating vortices. These vortices convect low momentum fluid of the boundary layer toward the center of the duct, degrading both the uniformity and magnitude of the total pressure profile.

  4. Characterization of Rare Reverse Flow Events in Adverse Pressure Gradient Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Kaehler, Christian J.; Bross, Matthew; Fuchs, Thomas

    2017-11-01

    Time-resolved tomographic flow fields measured in the viscous sublayer region of a turbulent boundary layer subjected to an adverse pressure gradient (APG) are examined with the aim to resolve and characterize reverse flow events at Reτ = 5000. The fields were measured using a novel high resolution tomographic particle tracking technique. It is shown that this technique is able to fully resolve mean and time dependent features of the complex three-dimensional flow with high accuracy down to very near-wall distances ( 10 μm). From time resolved Lagrangian particle trajectories, statistical information as well as instantaneous topological features of near-wall flow events are deduced. Similar to the zero pressure gradient case (ZPG), it was found that individual events with reverse flow components still occur relatively rarely under the action of the pressure gradient investigated here. However, reverse flow events comprised of many individual events, are shown to appear in relatively organized groupings in both spanwise and streamise directions. Furthermore, instantaneous measurements of reverse flow events show that these events are associated with the motion of low-momentum streaks in the near-wall region. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures and the individual project Grant KA1808/8-2 of the Deutsche Forschungsgemeinschaft.

  5. Hydraulic transport across hydrophilic and hydrophobic nanopores: Flow experiments with water and n-hexane.

    PubMed

    Gruener, Simon; Wallacher, Dirk; Greulich, Stefanie; Busch, Mark; Huber, Patrick

    2016-01-01

    We experimentally explore pressure-driven flow of water and n-hexane across nanoporous silica (Vycor glass monoliths with 7- or 10-nm pore diameters, respectively) as a function of temperature and surface functionalization (native and silanized glass surfaces). Hydraulic flow rates are measured by applying hydrostatic pressures via inert gases (argon and helium, pressurized up to 70 bar) on the upstream side in a capacitor-based membrane permeability setup. For the native, hydrophilic silica walls, the measured hydraulic permeabilities can be quantitatively accounted for by bulk fluidity provided we assume a sticking boundary layer, i.e., a negative velocity slip length of molecular dimensions. The thickness of this boundary layer is discussed with regard to previous capillarity-driven flow experiments (spontaneous imbibition) and with regard to velocity slippage at the pore walls resulting from dissolved gas. Water flow across the silanized, hydrophobic nanopores is blocked up to a hydrostatic pressure of at least 70 bar. The absence of a sticking boundary layer quantitatively accounts for an enhanced n-hexane permeability in the hydrophobic compared to the hydrophilic nanopores.

  6. Field aligned flows driven by neutral puffing at MAST

    NASA Astrophysics Data System (ADS)

    Waters, I.; Frerichs, H.; Silburn, S.; Feng, Y.; Harrison, J.; Kirk, A.; Schmitz, O.

    2018-06-01

    Neutral deuterium gas puffing at the high field side of the mega ampere spherical tokamak (MAST) is shown to drive carbon impurity flows that are aligned with the trajectory of the magnetic field lines in the plasma scrape-off-layer. These impurity flows were directly imaged with emissions from C2+ ions at MAST by coherence imaging spectroscopy and were qualitatively reproduced in deuterium plasmas by modeling with the EMC3-EIRENE plasma edge fluid and kinetic neutral transport code. A reduced one-dimensional momentum and particle balance shows that a localized increase in the static plasma pressure in front of the neutral gas puff yields an acceleration of the plasma due to local ionization. Perpendicular particle transport yields a decay from which a parallel length scale can be determined. Parameter scans in EMC3-EIRENE were carried out to determine the sensitivity of the deuterium plasma flow phenomena to local fueling and diffusion parameters and it is found that these flows robustly form across a wide variety of plasma conditions. Finally, efforts to couple this behavior in the background plasma directly to the impurity flows observed experimentally in MAST using a trace impurity model are discussed. These results provide insight into the fueling and exhaust features at this pivotal point of the radial and parallel particle flux balance, which is a major part of the plasma fueling and exhaust characteristics in a magnetically confined fusion device.

  7. A 3D Culture Model to Study How Fluid Pressure and Flow Affect the Behavior of Aggregates of Epithelial Cells.

    PubMed

    Piotrowski-Daspit, Alexandra S; Simi, Allison K; Pang, Mei-Fong; Tien, Joe; Nelson, Celeste M

    2017-01-01

    Cells are surrounded by mechanical stimuli in their microenvironment. It is important to determine how cells respond to the mechanical information that surrounds them in order to understand both development and disease progression, as well as to be able to predict cell behavior in response to physical stimuli. Here we describe a protocol to determine the effects of interstitial fluid flow on the migratory behavior of an aggregate of epithelial cells in a three-dimensional (3D) culture model. This protocol includes detailed methods for the fabrication of a 3D cell culture chamber with hydrostatic pressure control, the culture of epithelial cells as an aggregate in a collagen gel, and the analysis of collective cell behavior in response to pressure-driven flow.

  8. Effects of adenosine on pressure-flow relationships in an in vitro model of compartment syndrome.

    PubMed

    Shrier, I; Baratz, A; Magder, S

    1997-03-01

    Blood flow through skeletal muscle is best modeled with a vascular waterfall at the arteriolar level. Under these conditions, flow is determined by the difference between perfusion pressure (Pper) and the waterfall pressure (Pcrit), divided by the arterial resistance (Ra). By pump perfusing an isolated canine gastrocnemius muscle (n = 6) after it was placed within an airtight box, with and without adenosine infusion, we observed an interaction between the pressure surrounding a muscle (as occurs in compartment syndrome) and baseline vascular tone. We titrated adenosine concentration to double baseline flow. We measured Pcrit and Ra at box pressures (Pbox), which resulted in 100 (Pbox = 0), 90, 75, and 50% flow without adenosine; and 200, 180, 150, 100, and 50% flow with adenosine. Without adenosine, each 10% decline in flow was associated with a 5.7 mmHg increase in Pcrit (P < 0.01). With adenosine, the same decrease in flow was associated with a 2.6-mmHg increase in Pcrit (P < 0.01). Values of Pcrit at 50% of flow were almost identical. Each 10% decrease in flow was also associated with 2.2% increase in Ra with or without adenosine (P < 0.001). Ra decreased with adenosine infusion (P < 0.05), and there was no interaction between adenosine and flow (P > 0.9). We conclude that increases in pressure surrounding a muscle limit flow primarily through changes in Pcrit with and without adenosine-induced vasodilation. The interaction between Pbox and adenosine with respect to Pcrit but not Ra suggests that Pbox affects the tone of the vessels responsible for Pcrit but not Ra.

  9. Pressure Probe Designs for Dynamic Pressure Measurements in a Supersonic Flow Field. [conducted in the Glenn Supersonic Wind Tunnel (SWT)

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert

    2001-01-01

    A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10- by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor stall and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.

  10. Statistical properties of gravity-driven granular discharge flow under the influence of an obstacle

    NASA Astrophysics Data System (ADS)

    Endo, Keita; Katsuragi, Hiroaki

    2017-06-01

    Two-dimensional granular discharge flow driven by gravity under the influence of an obstacle is experimentally investigated. A horizontal exit of width W is opened at the bottom of vertical Hele-Shaw cell filled with stainless-steel particles to start the discharge flow. In this experiment, a circular obstacle is placed in front of the exit. Thus, the distance between the exit and obstacle L is also an important parameter. During the discharge, granular-flow state is acquired by a high-speed camera. The bulk discharge-flow rate is also measured by load cell sensors. The obtained high-speed-image data are analyzed to clarify the particle-level granular-flow dynamics. Using the measured data, we find that the obstacle above the exit affects the granular- flow field. Specifically, the existence of obstacle results in large horizontal granular temperature and small packing fraction. This tendency becomes significant when L is smaller than approximately 6Dg when W ≃ 4Dg, where Dg is diameter of particles.

  11. Unsteady flow motions in the supraglottal region during phonation

    NASA Astrophysics Data System (ADS)

    Luo, Haoxiang; Dai, Hu

    2008-11-01

    The highly unsteady flow motions in the larynx are not only responsible for producing the fundamental frequency tone in phonation, but also have a significant contribution to the broadband noise in the human voice. In this work, the laryngeal flow is modeled either as an incompressible pulsatile jet confined in a two-dimensional channel, or a pressure-driven flow modulated by a pair of viscoelastic vocal folds through the flow--structure interaction. The flow in the supraglottal region is found to be dominated by large-scale vortices whose unsteady motions significantly deflect the glottal jet. In the flow--structure interaction, a hybrid model based on the immersed-boundary method is developed to simulate the flow-induced vocal fold vibration, which involves a three-dimensional vocal fold prototype and a two-dimensional viscous flow. Both the flow behavior and the vibratory characteristics of the vocal folds will be presented.

  12. Pressure-strain-rate events in homogeneous turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Brasseur, James G.; Lee, Moon J.

    1988-01-01

    A detailed study of the intercomponent energy transfer processes by the pressure-strain-rate in homogeneous turbulent shear flow is presented. Probability density functions (pdf's) and contour plots of the rapid and slow pressure-strain-rate show that the energy transfer processes are extremely peaky, with high-magnitude events dominating low-magnitude fluctuations, as reflected by very high flatness factors of the pressure-strain-rate. A concept of the energy transfer class was applied to investigate details of the direction as well as magnitude of the energy transfer processes. In incompressible flow, six disjoint energy transfer classes exist. Examination of contours in instantaneous fields, pdf's and weighted pdf's of the pressure-strain-rate indicates that in the low magnitude regions all six classes play an important role, but in the high magnitude regions four classes of transfer processes, dominate. The contribution to the average slow pressure-strain-rate from the high magnitude fluctuations is only 50 percent or less. The relative significance of high and low magnitude transfer events is discussed.

  13. Combining liquid inertia with pressure recovery from bubble expansion for enhanced flow boiling

    NASA Astrophysics Data System (ADS)

    Kalani, A.; Kandlikar, S. G.

    2015-11-01

    In this paper, we demonstrate using liquid inertia force in a taper gap microchannel geometry to provide a high level of heat dissipation capacity accompanied by a high heat transfer coefficient and low pressure drop during flow boiling. The high mass flux increases liquid inertia force and promotes vapor removal from the manifold, thereby increasing critical heat flux (CHF) and heat transfer coefficient. The tapered gap above the microchannels provides an increasing cross-sectional area in the flow direction. This gap allows bubbles to emerge from microchannels and expand within the gap along the flow direction. The bubble evaporation and expansion in tapered gap causes pressure recovery and reduces the total pressure drop. The pressure recovery increases with the increased evaporation rate at higher heat fluxes. Using a 6% taper and a moderately high inlet liquid flow Reynolds number of 1095, we have reached a CHF of 1.07 kW/cm2 with a heat transfer coefficient of 295 kW/m2 °C and a pressure drop of 30 kPa.

  14. The Ames 12-Foot Pressure Tunnel: Tunnel Empty Flow Calibration Results and Discussion

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.; Banducci, David E. (Technical Monitor)

    1996-01-01

    An empty test section flow calibration of the refurbished NASA Ames 12-Foot Pressure Tunnel was recently completed. Distributions of total pressure, dynamic pressure, Mach number, flow angularity temperature, and turbulence are presented along with results obtained prior to facility demolition. Axial static pressure distributions along tunnel centerline are also compared. Test section model support geometric configurations will be presented along with a discussion of the issues involved with different model mounting schemes.

  15. Measurements of Heat Transfer, Flow, and Pressures in a Simulated Turbine Blade Internal Cooling Passage

    NASA Technical Reports Server (NTRS)

    Russell, Louis M.; Thurman, Douglas R.; Poinsatte, Philip E.; Hippensteele, Steven A.

    1998-01-01

    An experimental study was made to obtain quantitative information on heat transfer, flow, and pressure distribution in a branched duct test section that had several significant features of an internal cooling passage of a turbine blade. The objective of this study was to generate a set of experimental data that could be used for validation of computer codes that would be used to model internal cooling. Surface heat transfer coefficients and entrance flow conditions were measured at nominal entrance Reynolds numbers of 45,000, 335,000, and 726,000. Heat transfer data were obtained by using a steady-state technique in which an Inconel heater sheet is attached to the surface and coated with liquid crystals. Visual and quantitative flow-field data from particle image velocimetry measurements for a plane at midchannel height for a Reynolds number of 45,000 were also obtained. The flow was seeded with polystyrene particles and illuminated by a laser light sheet. Pressure distribution measurements were made both on the surface with discrete holes and in the flow field with a total pressure probe. The flow-field measurements yielded flow-field velocities at selected locations. A relatively new method, pressure sensitive paint, was also used to measure surface pressure distribution. The pressure paint data obtained at Reynolds numbers of 335,000 and 726,000 compared well with the more standard method of measuring pressures by using discrete holes.

  16. Flow Mode Dependent Partitioning Processes of Preferential Flow Dynamics in Unsaturated Fractures - Findings From Analogue Percolation Experiments

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Noffz, T.; Dentz, M.; Sauter, M.

    2017-12-01

    To assess the vulnerability of an aquifer system it is of utmost importance to recognize the high potential for a rapid mass transport offered by ow through unsaturated fracture networks. Numerical models have to reproduce complex effects of gravity-driven flow dynamics to generate accurate predictions of flow and transport. However, the non-linear characteristics of free surface flow dynamics and partitioning behaviour at unsaturated fracture intersections often exceed the capacity of classical volume-effective modelling approaches. Laboratory experiments that manage to isolate single aspects of the mass partitioning process can enhance the understanding of underlying dynamics, which ultimately influence travel time distributions on multiple scales. Our analogue fracture network consists of synthetic cubes with dimensions of 20 x 20 x 20 cm creating simple geometries of a single or a cascade of consecutive horizontal fractures. Gravity-driven free surface flow (droplets; rivulets) is established via a high precision multichannel dispenser at flow rates ranging from 1.5 to 4.5 ml/min. Single-inlet experiments show the influence of variable flow rate, atmospheric pressure and temperature on the stability of flow modes and allow to delineate a droplet and rivulet regime. The transition between these regimes exhibits mixed flow characteristics. In addition, multi-inlet setups with constant total infow rates decrease the variance induced by erratic free-surface flow dynamics. We investigate the impacts of variable aperture widths, horizontal offsets of vertical fracture surfaces, and alternating injection methods for both flow regimes. Normalized fracture inflow rates allow to demonstrate and compare the effects of variable geometric features. Firstly, the fracture filling can be described by plug flow. At later stages it transitions into a Washburn-type flow, which we compare to an analytical solution for the case of rivulet flow. Observations show a considerably

  17. Role of Coronary Myogenic Response in Pressure-Flow Autoregulation in Swine: A Meta-Analysis With Coronary Flow Modeling

    PubMed Central

    Dick, Gregory M.; Namani, Ravi; Patel, Bhavesh; Kassab, Ghassan S.

    2018-01-01

    Myogenic responses (pressure-dependent contractions) of coronary arterioles play a role in autoregulation (relatively constant flow vs. pressure). Publications on myogenic reactivity in swine coronaries vary in caliber, analysis, and degree of responsiveness. Further, data on myogenic responses and autoregulation in swine have not been completely compiled, compared, and modeled. Thus, it has been difficult to understand these physiological phenomena. Our purpose was to: (a) analyze myogenic data with standard criteria; (b) assign results to diameter categories defined by morphometry; and (c) use our novel multiscale flow model to determine the extent to which ex vivo myogenic reactivity can explain autoregulation in vivo. When myogenic responses from the literature are an input for our model, the predicted coronary autoregulation approaches in vivo observations. More complete and appropriate data are now available to investigate the regulation of coronary blood flow in swine, a highly relevant model for human physiology and disease. PMID:29875686

  18. An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump

    NASA Technical Reports Server (NTRS)

    Lindley, B. K.; Martinson, A. R.

    1971-01-01

    The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.

  19. Control of respiration-driven retrograde flow in the subdiaphragmatic venous return of the Fontan circulation

    PubMed Central

    Vukicevic, M; Conover, T; Jaeggli, M; Zhou, J; Pennati, G; Hsia, TY; Figliola, RS

    2014-01-01

    Respiration influences the subdiaphragmatic venous return in the total cavopulmonary connection (TCPC) of the Fontan circulation whereby both the inferior vena cava (IVC) and hepatic vein flows can experience retrograde motion. Controlling retrograde flows could improve patient outcomes. Using a patient-specific model within a Fontan mock circulatory system with respiration, we inserted a valve into the IVC to examine its effects on local hemodynamics while varying retrograde volumes by changing vascular impedances. A bovine valved conduit reduced IVC retrograde flow to within 3% of antegrade flow in all cases. The valve closed only under conditions supporting retrograde flow and its effects on local hemodynamics increased with larger retrograde volume. Liver and TCPC pressures improved only while the valve leaflets were closed while cycle-averaged pressures improved only slightly (italic>1 mm Hg). Increased pulmonary vascular resistance raised mean circulation pressures but the valve functioned and cardiac output improved and stabilized. Power loss across the TCPC improved by 12–15% (pbold>0.05) with a valve. The effectiveness of valve therapy is dependent on patient vascular impedance. PMID:24814833

  20. Compressible flow in a diffusing S-duct with flow separation

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.; Bhat, M. K.; Liver, P.

    1987-01-01

    Local flow velocity vectors, as well as static and total pressures along ten radial traverses, were obtained at six stations for secondary flows in a diffusing 30-30-deg S-duct with circular cross section. The strong secondary flow measured in the first bend continued into the second with new vorticity produced in the opposite direction. Contour plots representing the transverse velocity field, as well as total and static pressure contours, have been obtained. As a result of the secondary flow and subsequent separation, substantial total pressure distortion is noted to occur at the duct exit.

  1. Medication and volume delivery by gravity-driven micro-drip intravenous infusion: potential variations during "wide-open" flow.

    PubMed

    Pierce, Eric T; Kumar, Vikram; Zheng, Hui; Peterfreund, Robert A

    2013-03-01

    Gravity-driven micro-drip infusion sets allow control of medication dose delivery by adjusting drops per minute. When the roller clamp is fully open, flow in the drip chamber can be a continuous fluid column rather than discrete, countable, drops. We hypothesized that during this "wide-open" state, drug delivery becomes dependent on factors extrinsic to the micro-drip set and is therefore difficult to predict. We conducted laboratory experiments to characterize volume delivery under various clinically relevant conditions of wide-open flow in an in vitro laboratory model. A micro-drip infusion set, plugged into a bag of normal saline, was connected to a high-flow stopcock at the distal end. Vertically oriented IV catheters (gauges 14-22) were connected to the stopcock. The fluid meniscus height in the bag was fixed (60-120 cm) above the outflow point. The roller clamp on the infusion set was in fully open position for all experiments resulting in a continuous column of fluid in the drip chamber. Fluid volume delivered in 1 minute was measured 4 times with each condition. To model resistive effects of carrier flow, volumetric infusion pumps were used to deliver various flow rates of normal saline through a carrier IV set into which a micro-drip infusion was "piggybacked." We also compared delivery by micro-drip infusion sets from 3 manufacturers. The volume of fluid delivered by gravity-driven infusion under wide-open conditions (continuous fluid column in drip chamber) varied 2.9-fold (95% confidence interval, 2.84-2.96) depending on catheter size and fluid column height. Total model resistance of the micro-drip with stopcock and catheter varied with flow rate. Volume delivered by the piggybacked micro-drip decreased up to 29.7% ± 0.8% (mean ± SE) as the carrier flow increased from 0 to 1998 mL/min. Delivery characteristics of the micro-drip infusion sets from 3 different manufacturers were similar. Laboratory simulation of clinical situations with gravity-driven

  2. A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system.

    PubMed

    Oldham, James M; Abeysekera, Chamara; Joalland, Baptiste; Zack, Lindsay N; Prozument, Kirill; Sims, Ian R; Park, G Barratt; Field, Robert W; Suits, Arthur G

    2014-10-21

    We report the development of a new instrument that combines chirped-pulse microwave spectroscopy with a pulsed uniform supersonic flow. This combination promises a nearly universal detection method that can deliver isomer and conformer specific, quantitative detection and spectroscopic characterization of unstable reaction products and intermediates, product vibrational distributions, and molecular excited states. This first paper in a series of two presents a new pulsed-flow design, at the heart of which is a fast, high-throughput pulsed valve driven by a piezoelectric stack actuator. Uniform flows at temperatures as low as 20 K were readily achieved with only modest pumping requirements, as demonstrated by impact pressure measurements and pure rotational spectroscopy. The proposed technique will be suitable for application in diverse fields including fundamental studies in spectroscopy, kinetics, and reaction dynamics.

  3. On controlling the flow behavior driven by induction electrohydrodynamics in microfluidic channels.

    PubMed

    Li, Yanbo; Ren, Yukun; Liu, Weiyu; Chen, Xiaoming; Tao, Ye; Jiang, Hongyuan

    2017-04-01

    In this study, we develop a nondimensional physical model to demonstrate fluid flow at the micrometer dimension driven by traveling-wave induction electrohydrodynamics (EHD) through direct numerical simulation. In order to realize an enhancement in the pump flow rate as well as a flexible adjustment of anisotropy of flow behavior generated by induction EHD in microchannels, while not adding the risk of causing dielectric breakdown of working solution and material for insulation, a pair of synchronized traveling-wave voltage signals are imposed on double-sided electrode arrays that are mounted on the top and bottom insulating substrate, respectively. Accordingly, we present a model evidence, that not only the pump performance is improved evidently, but a variety of flow profiles, including the symmetrical and parabolic curve, plug-like shape and even biased flow behavior of quite high anisotropy are produced by the device design of "mix-type", "superimposition-type" and "adjustable-type" proposed herein as well, with the resulting controllable fluid motion being able to greatly facilitate an on-demand transportation mode of on-chip bio-microfluidic samples. Besides, automatic conversion in the direction of pump flow is achievable by switching on and off a second voltage wave. Our results provide utilitarian guidelines for constructing flexible electrokinetic framework useful in controllable transportation of particle and fluid samples in modern microfluidic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Modeling steam pressure under martian lava flows

    USGS Publications Warehouse

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2013-01-01

    Rootless cones on Mars are a valuable indicator of past interactions between lava and water. However, the details of the lava–water interactions are not fully understood, limiting the ability to use these features to infer new information about past water on Mars. We have developed a model for the pressurization of a dry layer of porous regolith by melting and boiling ground ice in the shallow subsurface. This model builds on previous models of lava cooling and melting of subsurface ice. We find that for reasonable regolith properties and ice depths of decimeters, explosive pressures can be reached. However, the energy stored within such lags is insufficient to excavate thick flows unless they draw steam from a broader region than the local eruption site. These results indicate that lag pressurization can drive rootless cone formation under favorable circumstances, but in other instances molten fuel–coolant interactions are probably required. We use the model results to consider a range of scenarios for rootless cone formation in Athabasca Valles. Pressure buildup by melting and boiling ice under a desiccated lag is possible in some locations, consistent with the expected distribution of ice implanted from atmospheric water vapor. However, it is uncertain whether such ice has existed in the vicinity of Athabasca Valles in recent history. Plausible alternative sources include surface snow or an aqueous flood shortly before the emplacement of the lava flow.

  5. Numerical study of turbulent secondary flows in curved ducts

    NASA Technical Reports Server (NTRS)

    Hur, N.; Thangam, S.; Speziale, C. G.

    1990-01-01

    The pressure driven, fully-developed turbulent flow of an incompressible viscous fluid in curved ducts of square-section is studied numerically by making use of a finite volume method. A nonlinear Kappa - Iota model is used to represent the turbulence. The results for both straight and curved ducts are presented. For the case of fully-developed turbulent flow in straight and curved ducts, the secondary flow is characterized by an eight-vortex structure for which the computed flowfield is shown to be in good agreement with available experimental data. The introduction of moderate curvature is shown to cause a substantial increase in the strength of the secondary flow and to change the secondary flow pattern to either a double-vortex or a four-vortex configuration.

  6. Numerical study of turbulent secondary flows in curved ducts

    NASA Technical Reports Server (NTRS)

    Hur, N.; Thangam, S.; Speziale, C. G.

    1989-01-01

    The pressure driven, fully-developed turbulent flow of an incompressible viscous fluid in curved ducts of square cross-section is studied numerically by making use of a finite volume method. A nonlinear Kappa - Iota model is used to represent the turbulence. The results for both straight and curved ducts are presented. For the case of fully-developed turbulent flow in straight ducts, the secondary flow is characterized by an eight-vortex structure for which the computed flowfield is shown to be in good agreement with available experimental data. The introduction of moderate curvature is shown to cause a substantial increase in the strength of the secondary flow and to change the secondary flow pattern to either a double-vortex or a four-vortex configuration.

  7. A kinetic theory treatment of heat transfer in plane Poiseuille flow with uniform pressure

    NASA Technical Reports Server (NTRS)

    Bahrami, Parviz A.

    1992-01-01

    Plane compressible Poiseuille flow with uniform pressure (Couette flow with stationary boundaries) is revisited where the Lees two-steam method with the Enskog equation of change is applied. Single particle velocity distribution functions are chosen, which preserve the essential physical features of this flow with arbitrary but uniform plate temperatures and gas pressure. Lower moments are shown to lead to expressions for the parameter functions, molecular number densities, and temperatures which are entirely in agreement with those obtained in the analysis of Lees for compressible plane Couette flow in the limit of low Mach number and vanishing mean gas velocity. Important simplifications result, which are helpful in gaining insight into the power of kinetic theory in fluid mechanics. The temperature distribution, heat flux, as well as density, are completely determined for the whole range of Knudson numbers from free molecular flow to the continuum regime, when the pressure level is specified.

  8. Libration-driven flows in ellipsoidal shells

    NASA Astrophysics Data System (ADS)

    Lemasquerier, D.; Grannan, A. M.; Vidal, J.; Cébron, D.; Favier, B.; Le Bars, M.; Aurnou, J. M.

    2017-09-01

    Planets and satellites can undergo physical librations, which consist of forced periodic variations in their rotation rate induced by gravitational interactions with nearby bodies. This mechanical forcing may drive turbulence in interior fluid layers such as subsurface oceans and metallic liquid cores through a libration-driven elliptical instability (LDEI) that refers to the resonance of two inertial modes with the libration-induced base flow. LDEI has been studied in the case of a full ellipsoid. Here we address for the first time the question of the persistence of LDEI in the more geophysically relevant ellipsoidal shell geometries. In the experimental setup, an ellipsoidal container with spherical inner cores of different sizes is filled with water. Direct side view flow visualizations are made in the librating frame using Kalliroscope particles. A Fourier analysis of the light intensity fluctuations extracted from recorded movies shows that the presence of an inner core leads to spatial heterogeneities but does not prevent LDEI. Particle image velocimetry and direct numerical simulations are performed on selected cases to confirm our results. Additionally, our survey at a fixed forcing frequency and variable rotation period (i.e., variable Ekman number, E) shows that the libration amplitude at the instability threshold varies as ˜E0.65. This scaling is explained by a competition between surface and bulk dissipation. When extrapolating to planetary interior conditions, this leads to the E1/2 scaling commonly considered. We argue that Enceladus' subsurface ocean and the core of the exoplanet 55 CnC e should both be unstable to LDEI.

  9. Influence of Hall Current and Viscous Dissipation on Pressure Driven Flow of Pseudoplastic Fluid with Heat Generation: A Mathematical Study.

    PubMed

    Noreen, Saima; Qasim, Muhammad

    2015-01-01

    In this paper, we study the influence of heat sink (or source) on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones.

  10. Flow Instability and Flow Control Scaling Laws

    NASA Astrophysics Data System (ADS)

    van Ness, Daniel; Corke, Thomas; Morris, Scott

    2006-11-01

    A flow instability that is receptive to perturbations is present in the tip clearance leakage flow over the tip of a turbine blade. This instability was investigated through the introduction of active flow control in the viscous flow field. Control was implemented in the form of a dielectric barrier discharge created by a weakly-ionized plasma actuation arrangement. The experimental setup consisted of a low-speed linear turbine cascade made up of an array of nine Pratt & Whitney ``PakB'' turbine blades. This idealized cascade configuration was used to examine the tip clearance leakage flow that exists within the low pressure turbine stage of a gas-turbine engine. The center blade of the cascade array had a variable tip clearance up to five percent chord. Reynolds numbers based on axial blade chord varied from 10^4 to 10^5. Multi-port pressure probe measurements, as well as Stereo Particle Image Velocimetry were used to document the dependence of the instability on the frequency and amplitude of flow control perturbations. Scaling laws based on the variation of blade tip clearance height and inflow conditions were investigated. These results permitted an improved understanding of the mechanism of flow instability.

  11. Developing flow in S-shaped ducts. 2: Circular cross-section duct

    NASA Technical Reports Server (NTRS)

    Taylor, A. M. K. P.; Whitelaw, J. H.; Yianneskis, M.

    1984-01-01

    Laser-Doppler velocimetry measured the laminar and turbulent streamwise flow in a S-duct. The wall pressure distribution and one component of cross-stream velocity were also obtained for the turbulent flow case. Boundary layers near the duct inlet were about 25 percent of the hydraulic diameter in the laminar flow and varied around the periphery of the pipe between 10 percent and 20 percent in turbulent flow. Pressure-driven secondary flows develop in the first half of the S-duct and are attenuated and reversed in the second half. For both Reynolds numbers there is a region near the outer wall of the second half of the duct where the sign of the radial vorticity results in an enforcement of the secondary flow which was established in the first half of the S-duct. The core flow migrates, for both Reynolds numbers, to the outside wall of the first half and lies towards the inside wall of the second half of the S-duct at the outlet. The thinner inlet boundary layers in the turbulent flow give rise to weaker secondary motion.

  12. Cross-stream diffusion under pressure-driven flow in microchannels with arbitrary aspect ratios: a phase diagram study using a three-dimensional analytical model

    PubMed Central

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2011-01-01

    This article presents a three-dimensional analytical model to investigate cross-stream diffusion transport in rectangular microchannels with arbitrary aspect ratios under pressure-driven flow. The Fourier series solution to the three-dimensional convection–diffusion equation is obtained using a double integral transformation method and associated eigensystem calculation. A phase diagram derived from the dimensional analysis is presented to thoroughly interrogate the characteristics in various transport regimes and examine the validity of the model. The analytical model is verified against both experimental and numerical models in terms of the concentration profile, diffusion scaling law, and mixing efficiency with excellent agreement (with <0.5% relative error). Quantitative comparison against other prior analytical models in extensive parameter space is also performed, which demonstrates that the present model accommodates much broader transport regimes with significantly enhanced applicability. PMID:22247719

  13. Mach-Number Measurement with Laser and Pressure Probes in Humid Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Herring, G. C.

    2008-01-01

    Mach-number measurements using a nonintrusive optical technique, laser-induced thermal acoustics (LITA), are compared to pressure probes in humid supersonic airflow. The two techniques agree well in dry flow (-35 C dew point), but LITA measurements show about five times larger fractional change in Mach number than that of the pressure-probe when water is purposefully introduced into the flow. Possible reasons for this discrepancy are discussed.

  14. Pressure-dependent surface viscosity and its surprising consequences in interfacial lubrication flows

    NASA Astrophysics Data System (ADS)

    Manikantan, Harishankar; Squires, Todd M.

    2017-02-01

    The surface shear rheology of many insoluble surfactants depends strongly on the surface pressure (or concentration) of that surfactant. Here we highlight the dramatic consequences that surface-pressure-dependent surface viscosities have on interfacially dominant flows, by considering lubrication-style geometries within high Boussinesq (Bo) number flows. As with three-dimensional lubrication, high-Bo surfactant flows through thin gaps give high surface pressures, which in turn increase the local surface viscosity, further amplifying lubrication stresses and surface pressures. Despite their strong nonlinearity, the governing equations are separable, so that results from two-dimensional Newtonian lubrication analyses may be immediately adapted to treat surfactant monolayers with a general functional form of ηs(Π ) . Three paradigmatic systems are analyzed to reveal qualitatively new features: a maximum, self-limiting value for surfactant fluxes and particle migration velocities appears for Π -thickening surfactants, and kinematic reversibility is broken for the journal bearing and for suspensions more generally.

  15. Sheared velocity flows as a source of pressure anisotropy in low collisionality plasmas

    NASA Astrophysics Data System (ADS)

    Del Sarto, D.; Pegoraro, F.; Califano, F.

    2014-12-01

    Non-Maxwellian metaequilibrium states may exist in low-collisionality plasmas as evidenced by direct (particle distributions) and indirect (e.g., instabilities driven by pressure anisotropy) satellite and laboratory measurements. These are directly observed in the solar wind (e.g. [1]), in magnetospheric reconnection events [2], in magnetically confined plasmas [3] or in simulations of Vlasov turbulence [4]. By including the full pressure tensor dynamics in a fluid plasma model, we show that a sheared velocity field can provide an effective mechanism that makes an initial isotropic state anisotropic. We discuss how the propagation of magneto-elastic waves can affect the pressure tensor anisotropization and the small scale formation that arise from the interplay between the gyrotropic terms due to the magnetic field and the flow vorticity and the non-gyropropic effect of the flow strain tensor. We support this analysis by a numerical integration of the nonlinear equations describing the pressure tensor evolution. This anisotropization mechanism might provide a good candidate for the understanding of the observed correlation between the presence of a sheared velocity flow and the signature of pressure anisotropies which are not yet explained within the standard models based e.g. on the CGL paradigm. Examples of these signatures are provided e.g. by the threshold lowering of ion-Weibel instabilities in the geomagnetic tail, observed in concomitance to the presence of a velocity shear in the near-earth plasma profile [5], or by the relatively stronger anisotropization measured for core protons in the fast solar wind [4,6] or in "space simulation" laboratory plasma experiments [3]. [1] E. Marsch et al., Journ. Geophys. Res. 109, A04120 (2004); Yu. V. Khotyainstev at el., Phys. Rev. Lett. 106, 165001 (2011). [2] N. Aunai et al., Ann. Geophys. 29, 1571 (2011); N. Aunai et al., Journ. Geophys. Res. 116, A09232 (2011). [3] E.E. Scime et al., Phys. Plasmas 7, 2157 (2000). [4

  16. Effect of pulse pressure on borehole stability during shear swirling flow vibration cementing.

    PubMed

    Cui, Zhihua; Ai, Chi; Lv, Lei; Yin, Fangxian

    2017-01-01

    The shear swirling flow vibration cementing (SSFVC) technique rotates the downhole eccentric cascade by circulating cementing fluid. It makes the casing eccentrically revolve at high speed around the borehole axis. It produces strong agitation action to the annulus fluid, makes it in the state of shear turbulent flow, and results in the formation of pulse pressure which affects the surrounding rock stress. This study was focused on 1) the calculation of the pulse pressure in an annular turbulent flow field based on the finite volume method, and 2) the analysis of the effect of pulse pressure on borehole stability. On the upside, the pulse pressure is conducive to enhancing the liquidity of the annulus fluid, reducing the fluid gel strength, and preventing the formation of fluid from channeling. But greater pulse pressure may cause lost circulation and even formation fracturing. Therefore, in order to ensure smooth cementing during SSFVC, the effect of pulse pressure should be considered when cementing design.

  17. The Debye-Huckel Approximation in Electroosmotic Flow in Micro- and Nano-channels

    NASA Astrophysics Data System (ADS)

    Conlisk, A. Terrence

    2002-11-01

    In this work we consider the electroosmotic flow in a rectangular channel. We consider a mixture of water or other neutral solvent and a salt compound such as sodium chloride and other buffers for which the ionic species are entirely dissociated. Results are produced for the case where the channel height is much greater than the electric double layer(EDL)(microchannel) and for the case where the channel height is of the order or slightly greater than the width of the EDL(nanochannel). At small cation, anion concentration differences the Debye-Huckel approximation is appropriate; at larger concentration differences, the Gouy-Chapman picture of the electric double emerges naturally. In the symmetric case for the electroosmotic flow so induced, the velocity field and the potential are similar. We specifically focus in this paper on the limits of the Debye-Huckel approximation for a simplified version of a phosphate buffered saline(PBS) mixture. The fluid is assumed to behave as a continuum and the volume flow rate is observed to vary linearly with channel height for electrically driven flow in contrast to pressure driven flow which varies as height cubed. This means that very large pressure drops are required to drive flows in small channels. However, useful volume flow rates may be obtained at a very low driving voltage.

  18. Internal flow characteristics in scaled pressure-swirl atomizer

    NASA Astrophysics Data System (ADS)

    Malý, Milan; Sapík, Marcel; Jedelský, Jan; Janáčková, Lada; Jícha, Miroslav; Sláma, Jaroslav; Wigley, Graham

    2018-06-01

    Pressure-swirl atomizers are used in a wide range of industrial applications, e.g.: combustion, cooling, painting, food processing etc. Their spray characteristics are closely linked to the internal flow which predetermines the parameters of the liquid sheet formed at the discharge orifice. To achieve a better understanding of the spray formation process, the internal flow was characterised using Laser Doppler Anemometry (LDA) and high-speed imaging in a transparent model made of cast PMMA (Poly(methyl methacrylate)). The design of the transparent atomizer was derived from a pressure-swirl atomizer as used in a small gas turbine. Due to the small dimensions, it was manufactured in a scale of 10:1. It has modular concept and consists of three parts which were ground, polished and bolted together. The original kerosene-type jet A-1 fuel had to be replaced due to the necessity of a refractive index match. The new working liquid should also be colourless, non-aggressive to the PMMA and have the appropriate viscosity to achieve the same Reynolds number as in the original atomizer. Several liquids were chosen and tested to satisfy these requirements. P-Cymene was chosen as the suitable working liquid. The internal flow characteristics were consequently examined by LDA and high-speed camera using p-Cymene and Kerosene-type jet A-1 in comparative manner.

  19. Neuroimaging and Neuroenergetics: Brain Activations as Information-Driven Reorganization of Energy Flows

    ERIC Educational Resources Information Center

    Strelnikov, Kuzma

    2010-01-01

    There is increasing focus on the neurophysiological underpinnings of brain activations, giving birth to an emerging branch of neuroscience--neuroenergetics. However, no common definition of "brain activation" exists thus far. In this article, we define brain activation as the information-driven reorganization of energy flows in a population of…

  20. Flow of a Gas Turbine Engine Low-Pressure Subsystem Simulated

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1997-01-01

    The NASA Lewis Research Center is managing a task to numerically simulate overnight, on a parallel computing testbed, the aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The model solves the three-dimensional Navier- Stokes flow equations through all the components within the LPS, as well as the external flow around the engine nacelle. The LPS modeling task is being performed by Allison Engine Company under the Small Engine Technology contract. The large computer simulation was evaluated on networked computer systems using 8, 16, and 32 processors, with the parallel computing efficiency reaching 75 percent when 16 processors were used.

  1. The role of turbulence-flow interactions in L- to H-mode transition dynamics: recent progress

    NASA Astrophysics Data System (ADS)

    Schmitz, L.

    2017-02-01

    Recent experimental and simulation work has substantially advanced the understanding of L-mode plasma edge turbulence and plasma flows and their mutual interaction across the L-H transition. Flow acceleration and E   ×   B shear flow amplification via the turbulent Reynolds stress have been directly observed in multiple devices, using multi-tip probe arrays, Doppler backscattering, beam emission spectroscopy, and gas puff imaging diagnostics. L-H transitions characterized by limit-cycle oscillations (LCO) allow probing of the trigger dynamics and the synergy of turbulence-driven and pressure-gradient-driven flows with high spatio-temporal resolution. L-mode turbulent structures exhibit characteristic changes in topology (tilting) and temporal and radial correlation preceding the L-H transition. Long-range toroidal flow correlations increase preceding edge-transport-barrier formation. The energy transfer from the turbulence spectrum to large-scale axisymmetric flows has been quantified in L-LCO and fast L-H transitions in several devices. After formation of a transient barrier, the increasing ion pressure gradient (via the E   ×   B flow shear associated with diamagnetic flow) sustains fluctuation suppression and secures the transition to H-mode. Heuristic models of the L-H trigger dynamics have progressed from 0D predator-prey models to 1D extended models, including neoclassical ion flow-damping and pressure-gradient evolution. Initial results from 2D and 3D reduced fluid models have been obtained for high-collisionality regimes.

  2. An experimental study of geyser-like flows induced by a pressurized air pocket

    NASA Astrophysics Data System (ADS)

    Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.

    2015-12-01

    Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.

  3. Effects of hyperbaric oxygen on intracranial pressure and cerebral blood flow in experimental cerebral oedema1

    PubMed Central

    Miller, J. D.; Ledingham, I. McA.; Jennett, W. B.

    1970-01-01

    Increased intracranial pressure was induced in anaesthetized dogs by application of liquid nitrogen to the dura mater. Intracranial pressure and cerebral blood flow were measured, together with arterial blood pressure and arterial and cerebral venous blood gases. Carbon dioxide was administered intermittently to test the responsiveness of the cerebral circulation, and hyperbaric oxygen was delivered at intervals in a walk-in hyperbaric chamber, pressurized to two atmospheres absolute. Hyperbaric oxygen caused a 30% reduction of intracranial pressure and a 19% reduction of cerebral blood flow in the absence of changes in arterial PCO2 or blood pressure, but only as long as administration of carbon dioxide caused an increase in both intracranial pressure and cerebral blood flow. When carbon dioxide failed to influence intracranial pressure or cerebral blood flow then hyperbaric oxygen had no effect. This unresponsive state was reached at high levels of intracranial pressure. Images PMID:5497875

  4. On solving the compressible Navier-Stokes equations for unsteady flows at very low Mach numbers

    NASA Technical Reports Server (NTRS)

    Pletcher, R. H.; Chen, K.-H.

    1993-01-01

    The properties of a preconditioned, coupled, strongly implicit finite difference scheme for solving the compressible Navier-Stokes equations in primitive variables are investigated for two unsteady flows at low speeds, namely the impulsively started driven cavity and the startup of pipe flow. For the shear-driven cavity flow, the computational effort was observed to be nearly independent of Mach number, especially at the low end of the range considered. This Mach number independence was also observed for steady pipe flow calculations; however, rather different conclusions were drawn for the unsteady calculations. In the pressure-driven pipe startup problem, the compressibility of the fluid began to significantly influence the physics of the flow development at quite low Mach numbers. The present scheme was observed to produce the expected characteristics of completely incompressible flow when the Mach number was set at very low values. Good agreement with incompressible results available in the literature was observed.

  5. Direct match data flow machine apparatus and process for data driven computing

    DOEpatents

    Davidson, George S.; Grafe, Victor Gerald

    1997-01-01

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status but to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.

  6. Flow-driven rotor simulation of vertical axis tidal turbines: A comparison of helical and straight blades

    NASA Astrophysics Data System (ADS)

    Le, Tuyen Quang; Lee, Kwang-Soo; Park, Jin-Soon; Ko, Jin Hwan

    2014-06-01

    In this study, flow-driven rotor simulations with a given load are conducted to analyze the operational characteristics of a vertical-axis Darrieus turbine, specifically its self-starting capability and fluctuations in its torque as well as the RPM. These characteristics are typically observed in experiments, though they cannot be acquired in simulations with a given tip speed ratio (TSR). First, it is shown that a flow-driven rotor simulation with a two-dimensional (2D) turbine model obtains power coefficients with curves similar to those obtained in a simulation with a given TSR. 3D flowdriven rotor simulations with an optimal geometry then show that a helical-bladed turbine has the following prominent advantages over a straight-bladed turbine of the same size: an improvement of its self-starting capabilities and reduced fluctuations in its torque and RPM curves as well as an increase in its power coefficient from 33% to 42%. Therefore, it is clear that a flow-driven rotor simulation provides more information for the design of a Darrieus turbine than a simulation with a given TSR before experiments.

  7. Coronary oscillatory flow amplitude is more affected by perfusion pressure than ventricular pressure.

    PubMed

    Krams, R; Sipkema, P; Westerhof, N

    1990-06-01

    In this study on the isolated, maximally vasodilated, blood-perfused cat heart we investigated the relation between left ventricular developed pressure (delta Piv) and coronary oscillatory flow amplitude (diastolic minus systolic flow, delta F) at different levels of constant perfusion pressure (Pp). We hypothesized that the effect of cardiac contraction on the phasic flow results from the changing elastic properties of cardiac muscle. The coronary vessel compartment can, as can the left ventricular lumen compartment, be described by a time-varying elastance. This concept predicts that the effect of left ventricular pressure on delta F is small, whereas the effect of Pp is considerable. Both the waterfall model and the intramyocardial pump model predict the inverse. The relation between delta Piv and delta F at a Pp of 10 kPa is delta F = (4.71 +/- 3.08).delta Piv + 337 +/- 75 (slope in ml.min-1.100 g-1.kPa-1 and intercept in ml.min-1.100 g-1; n = 7); the relation between (constant levels of) Pp and delta F at a constant delta Piv of 10 kPa is delta F = 51.Pp + 211 (slope in ml.min-1.100 g-1.kPa-1 and intercept in ml.min-1.100 g-1; n = 6). The differences in slope are best predicted by the time-varying elastance concept.

  8. Multiphase flow calculation software

    DOEpatents

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  9. Viscous interaction of flow redevelopment after flow reattachment with supersonic external streams

    NASA Technical Reports Server (NTRS)

    Chow, W. L.; Spring, D. J.

    1975-01-01

    A flow model has been developed to study the flow development after reattachment with supersonic external streams. Special attention is given to the pressure difference across the viscous layer, and it is suggested that such a flow redevelopment can be treated as a relaxation of this pressure difference. Upon correlating the pressure difference with a slope parameter of the velocity profile, the system of equations governing the flow would produce a saddle point singularity corresponding to the fully rehabilitated asymptotic flow condition. A method of calculation for this flowfield, in conjunction with the matching of the upstream flow, has been derived and is discussed. Samples of calculations are also presented. Reasonably good agreement with experimental data has also been observed.

  10. Unsteady flow through in-vitro models of the glottis

    NASA Astrophysics Data System (ADS)

    Hofmans, G. C. J.; Groot, G.; Ranucci, M.; Graziani, G.; Hirschberg, A.

    2003-03-01

    The unsteady two-dimensional flow through fixed rigid in vitro models of the glottis is studied in some detail to validate a more accurate model based on the prediction of boundary-layer separation. The study is restricted to the flow phenomena occurring within the glottis and does not include effects of vocal-fold movement on the flow. Pressure measurements have been carried out for a transient flow through a rigid scale model of the glottis. The rigid model with a fixed geometry driven by an unsteady pressure is used in order to achieve a high accuracy in the specification of the geometry of the glottis. The experimental study is focused on flow phenomena as they might occur in the glottis, such as the asymmetry of the flow due to the Coanda effect and the transition to turbulent flow. It was found that both effects need a relatively long time to establish themselves and are therefore unlikely to occur during the production of normal voiced speech when the glottis closes completely during part of the oscillation cycle. It is shown that when the flow is still laminar and symmetric the prediction of the boundary-layer model and the measurement of the pressure drop from the throat of the glottis to the exit of the glottis agree within 40%. Results of the boundary-layer model are compared with a two-dimensional vortex-blob method for viscous flow. The difference between the results of the simpiflied boundary-layer model and the experimental results is explained by an additional pressure difference between the separation point and the far field within the jet downstream of the separation point. The influence of the movement of the vocal folds on our conclusions is still unclear.

  11. Propellant-Flow-Actuated Rocket Engine Igniter

    NASA Technical Reports Server (NTRS)

    Wollen, Mark

    2013-01-01

    A rocket engine igniter has been created that uses a pneumatically driven hammer that, by specialized geometry, is induced into an oscillatory state that can be used to either repeatedly impact a piezoelectric crystal with sufficient force to generate a spark capable of initiating combustion, or can be used with any other system capable of generating a spark from direct oscillatory motion. This innovation uses the energy of flowing gaseous propellant, which by means of pressure differentials and kinetic motion, causes a hammer object to oscillate. The concept works by mass flows being induced through orifices on both sides of a cylindrical tube with one or more vent paths. As the mass flow enters the chamber, the pressure differential is caused because the hammer object is supplied with flow on one side and the other side is opened with access to the vent path. The object then crosses the vent opening and begins to slow because the pressure differential across the ball reverses due to the geometry in the tube. Eventually, the object stops because of the increasing pressure differential on the object until all of the kinetic energy has been transferred to the gas via compression. This is the point where the object reverses direction because of the pressure differential. This behavior excites a piezoelectric crystal via direct impact from the hammer object. The hammer strikes a piezoelectric crystal, then reverses direction, and the resultant high voltage created from the crystal is transferred via an electrode to a spark gap in the ignition zone, thereby providing a spark to ignite the engine. Magnets, or other retention methods, might be employed to favorably position the hammer object prior to start, but are not necessary to maintain the oscillatory behavior. Various manifestations of the igniter have been developed and tested to improve device efficiency, and some improved designs are capable of operation at gas flow rates of a fraction of a gram per second (0

  12. Development of Dynamic Flow Field Pressure Probes Suitable for Use in Large Scale Supersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert

    2000-01-01

    A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10-by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor staff and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.

  13. Gravity-Driven Thin Film Flow of an Ellis Fluid.

    PubMed

    Kheyfets, Vitaly O; Kieweg, Sarah L

    2013-12-01

    The thin film lubrication approximation has been studied extensively for moving contact lines of Newtonian fluids. However, many industrial and biological applications of the thin film equation involve shear-thinning fluids, which often also exhibit a Newtonian plateau at low shear. This study presents new numerical simulations of the three-dimensional (i.e. two-dimensional spreading), constant-volume, gravity-driven, free surface flow of an Ellis fluid. The numerical solution was validated with a new similarity solution, compared to previous experiments, and then used in a parametric study. The parametric study centered around rheological data for an example biological application of thin film flow: topical drug delivery of anti-HIV microbicide formulations, e.g. hydroxyethylcellulose (HEC) polymer solutions. The parametric study evaluated how spreading length and front velocity saturation depend on Ellis parameters. A lower concentration polymer solution with smaller zero shear viscosity ( η 0 ), τ 1/2 , and λ values spread further. However, when comparing any two fluids with any possible combinations of Ellis parameters, the impact of changing one parameter on spreading length depends on the direction and magnitude of changes in the other two parameters. In addition, the isolated effect of the shear-thinning parameter, λ , on the front velocity saturation depended on τ 1/2 . This study highlighted the relative effects of the individual Ellis parameters, and showed that the shear rates in this flow were in both the shear-thinning and plateau regions of rheological behavior, emphasizing the importance of characterizing the full range of shear-rates in rheological measurements. The validated numerical model and parametric study provides a useful tool for future steps to optimize flow of a fluid with rheological behavior well-described by the Ellis constitutive model, in a range of industrial and biological applications.

  14. Interactions between bedforms, turbulence and pore flow

    NASA Astrophysics Data System (ADS)

    Blois, G.; Best, J.; Sambrook Smith, G.; Hardy, R. J.; Lead, J.

    2010-12-01

    A widespread occurrence of flow-form interaction in rivers is represented by subaqueous bedforms such as dunes. Many models have been proposed to explain how bedform generation and evolution are driven by turbulent flow structures that control the incipient motion of cohesionless sediments and later bedform development. However, most of these models have assumed such bedforms to be migrating over an impermeable bed, and that any surface-subsurface flow interaction is negligible. However, for some gravel-bed rivers the porosity can be high, up to 43%, which may result in significant flow both through the permeable bed (hyporheic flow) and across the surface-subsurface interface. The mass and momentum exchange occurring at the interface may have a strong impact on the structure of turbulent flow in the near-bed region. In the case of a dune, its topography induces a local pressure gradient that enhances flow across the interface. This results in a flow structure that may be radically different from that commonly proposed by past work. This paper presents results from a simplified laboratory model akin to a fine-grained bedform generated on top of a coarser sediment bed. Particle imaging velocimetry (PIV) measurements were conducted in order to characterise flow both over and underneath an idealised 2-dimensional dune (0.41 m long, 0.056 m high and having a leeside angle of 27°) overlaying a packed bed of uniform size spheres (D = 0.04 m diameter). Experiments were conducted in free surface flow conditions (Froude number = 0.1; Reynolds number = 25,000) for one bedform height: flow depth ratio (0.31). The flow above the dune was measured using a standard PIV technique while a novel endoscopic PIV (EPIV) system allowed collection of flow data within the pore spaces beneath the dune. The results show that topographically-induced subsurface flow significantly modifies the structure of flow in the leeside of the dune, resulting in a flow field that is radically different

  15. Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks

    NASA Astrophysics Data System (ADS)

    Chang, C.-C.; Yang, R.-J.

    2004-04-01

    Electroosmotic flow in microchannels is restricted to low Reynolds number regimes characterized by extremely weak inertia forces and laminar flow. Consequently, the mixing of different species occurs primarily through diffusion, and hence cannot readily be achieved within a short mixing channel. The current study presents a numerical investigation of electrokinetically driven flow mixing in microchannels with various numbers of incorporated patterned rectangular blocks. Furthermore, a novel approach is introduced which patterns heterogeneous surfaces on the upper faces of these rectangular blocks in order to enhance species mixing. The simulation results confirm that the introduction of rectangular blocks within the mixing channel slightly enhances species mixing by constricting the bulk flow, hence creating a stronger diffusion effect. However, it is noted that a large number of blocks and hence a long mixing channel are required if a complete mixing of the species is to be obtained. The results also indicate that patterning heterogeneous upper surfaces on the rectangular blocks is an effective means of enhancing the species mixing. It is shown that increasing the magnitude of the heterogeneous surface zeta potential enables a reduction in the mixing channel length and an improved degree of mixing efficiency.

  16. Modeling the pharyngeal pressure during adult nasal high flow therapy.

    PubMed

    Kumar, Haribalan; Spence, Callum J T; Tawhai, Merryn H

    2015-12-01

    Subjects receiving nasal high flow (NHF) via wide-bore nasal cannula may experience different levels of positive pressure depending on the individual response to NHF. In this study, airflow in the nasal airway during NHF-assisted breathing is simulated and nasopharyngeal airway pressure numerically computed, to determine whether the relationship between NHF and pressure can be described by a simple equation. Two geometric models are used for analysis. In the first, 3D airway geometry is reconstructed from computed tomography images of an adult nasal airway. For the second, a simplified geometric model is derived that has the same cross-sectional area as the complex model, but is more readily amenable to analysis. Peak airway pressure is correlated as a function of nasal valve area, nostril area and cannula flow rate, for NHF rates of 20, 40 and 60 L/min. Results show that airway pressure is related by a power law to NHF rate, valve area, and nostril area. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Flow-driven Assembly of Microcapsule Towers

    NASA Astrophysics Data System (ADS)

    Shum, Henry; Balazs, Anna

    2016-11-01

    Large populations of the slime mold, Dictyostelium discoideum, are able to aggregate over a surface and collectively form a long, vertical stalk. Inspired by this biological behavior, we develop a synthetic mechanism for assembling tower-like structures using microcapsules as the building blocks. We accomplish this in simulations by generating a fluid flow field that draws microcapsules together along a surface and lifts them up at a central point. We considered a fluid flow generated by the local release of a chemical species from a patch on the surface. The concentration gradient of the diffusing chemical species causes radial diffusioosmotic flow along the solid surface toward the patch. Adhesive interactions keep the microcapsules attached to the surface as they are drawn together above the patch. To build a tower-like structure, some of the microcapsules must detach from the surface but remain attached to the rest of the cluster. The upward directed fluid flow above the patch then draws out the cluster into a tower shape. The final morphology of the aggregate structure depends on the flow field, the adhesive capsule-capsule and capsule-surface interaction strengths, and the sedimentation force on the capsules. Tuning these factors changes the structures that are produced.

  18. Transient, hypervelocity flow in an axisymmetric nozzle

    NASA Technical Reports Server (NTRS)

    Jacobs, P. A.

    1991-01-01

    The performance of an axisymmetric nozzle was examined which was designed to produce uniform, parallel flow with a nominal Mach number of 8. A free-piston driven shock tube was used to supply the nozzle with high-temperature, high-pressure test gas. Performance was assessed by measuring Pitot pressures across the exit plane of the nozzle and, over the range of operating conditions examined, the nozzle produced satisfactory test flows. However, there were flow disturbances that persisted for significant times after flow initiation. The detailed starting process of the nozzle was also investigated by performing numerical simulations at several nominal test conditions. The classical description of the starting process, based on a quasi-one-dimensional model, provided a reasonable approximation and was used to demonstrate that the starting process could consume a significant fraction of the otherwise usable test gas. This was especially important at high operating enthalpies where nozzle supply conditions were maintained for shorter times. Multidimensional simulations illustrated a mechanism by which the starting process in the actual nozzle could take longer than that predicted by the quasi-one-dimensional analysis. However, the cause of the persistent disturbances observed in the experimental calibration was not identified.

  19. Anomalous Chained Turbulence in Actively Driven Flows on Spheres

    NASA Astrophysics Data System (ADS)

    Mickelin, Oscar; Słomka, Jonasz; Burns, Keaton J.; Lecoanet, Daniel; Vasil, Geoffrey M.; Faria, Luiz M.; Dunkel, Jörn

    2018-04-01

    Recent experiments demonstrate the importance of substrate curvature for actively forced fluid dynamics. Yet, the covariant formulation and analysis of continuum models for nonequilibrium flows on curved surfaces still poses theoretical challenges. Here, we introduce and study a generalized covariant Navier-Stokes model for fluid flows driven by active stresses in nonplanar geometries. The analytical tractability of the theory is demonstrated through exact stationary solutions for the case of a spherical bubble geometry. Direct numerical simulations reveal a curvature-induced transition from a burst phase to an anomalous turbulent phase that differs distinctly from externally forced classical 2D Kolmogorov turbulence. This new type of active turbulence is characterized by the self-assembly of finite-size vortices into linked chains of antiferromagnetic order, which percolate through the entire fluid domain, forming an active dynamic network. The coherent motion of the vortex chain network provides an efficient mechanism for upward energy transfer from smaller to larger scales, presenting an alternative to the conventional energy cascade in classical 2D turbulence.

  20. Pulmonary and heart diseases with inhalation of atmospheric pressure plasma flow

    NASA Astrophysics Data System (ADS)

    Hirata, Takamichi; Murata, Shigeru; Kishimoto, Takumi; Tsutsui, Chihiro; Kondo, Akane; Mori, Akira

    2012-10-01

    We examined blood pressure in the abdominal aorta of mini pig under plasma inhalation of atmospheric pressure plasma flow. The coaxial atmospheric pressure plasma source has a tungsten wire inside a glass capillary, that is surrounded by a grounded tubular electrode. Plasma was generated under the following conditions; applied voltage: 8 kVpp, frequency: 3 kHz, and helium (He) gas flow rate: 1 L/min. On the other hand, sphygmomanometry of a blood vessel proceeded using a device comprising a disposable force transducer, and a bedside monitor for simultaneous electrocardiography and signal pressure measurements. We directly measured Nitric oxide (NO) using a catheter-type NO sensor placed in the coronary sinus through an angiography catheter from the abdomen. Blood pressure decreased from 110/65 to 90/40 mm Hg in the animals in vivo under plasma inhalation. The NO concentration in the abdominal aorta like the blood pressure, reached a maximum value at about 40 s and then gradually decreased.

  1. Thermally driven up-slope flows: state of the art and open questions

    NASA Astrophysics Data System (ADS)

    Zardi, D.

    2015-12-01

    Thermally driven flows over simple slopes are a relevant research topic, not only per se, but also as a source of key concepts for understanding and modelling many other flows over more complex topographies. However, compared to down-slope, up-slope flows have received much less attention in the literature. Indeed, to investigate katabatic winds many extensive and well equipped field measurements were performed in recent years under various research projects, and a series of high-resolution numerical simulations were run. On the contrary, few field experiments have provided detailed datasets documenting the development of anabatic flows, and the analysis of numerical investigations still relies on Schumann's (1990) pioneering LES simulations. Also, analytic solutions - such as Prandtl's (1942) constant-K profiles - reproduce fairly well katabatic flows, but are definitely inadequate to accurately reproduce field data for up-slope flows (Defant 1949). In particular, some open questions still claim for further investigations, such as the conditions of instability of slope-parallel flow vs. vertical motions, and the related possible occurrence of flow separation, and the similarity analysis of slope-normal velocity profiles of temperature anomaly, wind intensity and turbulence related quantities. Here a review of the state of the art on the subject is proposed, along with some insights into possible future developments. ReferencesDefant, F., 1949: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. [A theory of slope winds, along with remarks on the theory of mountain winds and valley winds]. Arch. Meteor. Geophys. Bioclimatol., Ser. A, 1, 421-450 (Theoretical and Applied Climatology). [English translation: Whiteman, C.D., and E. Dreiseitl, 1984: Alpine meteorology: Translations of classic contributions by A. Wagner, E. Ekhart and F. Defant. PNL-5141 / ASCOT-84-3. Pacific Northwest Laboratory, Richland, Washington, 121 pp]. Prandtl, L

  2. Application of boundary element method to Stokes flows over a striped superhydrophobic surface with trapped gas bubbles

    NASA Astrophysics Data System (ADS)

    Ageev, A. I.; Golubkina, I. V.; Osiptsov, A. N.

    2018-01-01

    A slow steady flow of a viscous fluid over a superhydrophobic surface with a periodic striped system of 2D rectangular microcavities is considered. The microcavities contain small gas bubbles on the curved surface of which the shear stress vanishes. The general case is analyzed when the bubble occupies only a part of the cavity, and the flow velocity far from the surface is directed at an arbitrary angle to the cavity edge. Due to the linearity of the Stokes flow problem, the solution is split into two parts, corresponding to the flows perpendicular and along the cavities. Two variants of a boundary element method are developed and used to construct numerical solutions on the scale of a single cavity with periodic boundary conditions. By averaging these solutions, the average slip velocity and the slip length tensor components are calculated over a wide range of variation of governing parameters for the cases of a shear-driven flow and a pressure-driven channel flow. For a sufficiently high pressure drop in a microchannel of finite length, the variation of the bubble surface shift into the cavities induced by the streamwise pressure variation is estimated from numerical calculations.

  3. Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duangprasert, Tanabordee; Sirivat, Anuvat; Siemanond, Kitipat

    2008-01-15

    Two-phase gas/liquid flows in vertical pipes have been systematically investigated. Water and SDS surfactant solutions at various concentrations were used as the working fluids. In particular, we focus our work on the influence of surfactant addition on the flow regimes, the corresponding pressure gradients, and the bubble sizes and velocity. Adding the surfactant lowers the air critical Reynolds numbers for the bubble-slug flow and the slug flow transitions. The pressure gradients of SDS solutions are lower than those of pure water especially in the slug flow and the slug-churn flow regimes, implying turbulent drag reduction. At low Re{sub air}, themore » bubble sizes of the surfactant solution are lower than those of pure water due to the increase in viscosity. With increasing and at high Re{sub air}, the bubble sizes of the SDS solution become greater than those of pure water which is attributed to the effect of surface tension. (author)« less

  4. Modeling Wave Driven Non-linear Flow Oscillations: The Terrestrial QBO and a Solar Analog

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The Quasi Biennial Oscillation (QBO) of the zonal circulation observed in the terrestrial atmosphere at low latitudes is driven by wave mean flow interaction as was demonstrated first by Lindzen and Holton (1968), shown in a laboratory experiment by Plumb and McEwan (1978), and modeled by others (e.g., Plumb, Dunkerton). Although influenced by the seasonal cycle of solar forcing, the QBO, in principle, represents a nonlinear flow oscillation that can be maintained by a steady source of upward propagating waves. The wave driven non-linearity is of third or odd order in the flow velocity, which regenerates the fundamental harmonic itself to keep the oscillation going - the fluid dynamical analog of the displacement mechanism in the mechanical clock. Applying Hines' Doppler Spread Parameterization (DSP) for gravity waves (GW), we discuss with a global-scale spectral model numerical experiments that elucidate some properties of the QBO and its possible effects on the climatology of the atmosphere. Depending on the period of the QBO, wave filtering can cause interaction with the seasonal variations to produce pronounced oscillations with beat periods around 10 years. Since the seasonal cycle and its variability influence the period of the QBO, it may also be a potent conduit of solar activity variations to lower altitudes. Analogous to the terrestrial QBO, we propose that a flow oscillation may account for the 22-year periodicity of the solar magnetic cycle, potentially answering Dicke (1978) who asked, "Is there a chronometer hidden deep inside the Sun?" The oscillation would occur below the convection region, where gravity waves can propagate. Employing a simplified, analytic model, Hines' DSP is applied to estimate the flow oscillation. Depending on the adopted horizontal wavelengths of GW's, wave amplitudes less than 10 m/s can be made to produce oscillating zonal flows of about 20 m/s that should be large enough to generate a significant oscillation in the magnetic

  5. Comparative in vitro flow study of 3 different Ex-PRESS miniature glaucoma device models.

    PubMed

    Estermann, Stephan; Yuttitham, Kanokwan; Chen, Julie A; Lee, On-Tat; Stamper, Robert L

    2013-03-01

    To determine the flow characteristics of the 3 different models of the Ex-PRESS miniature glaucoma device in a controlled laboratory study. The 3 different Ex-PRESS models (P-50, R-50, and P-200; Optonol Ltd; now Alcon Lab) were tested using a gravity-driven flow test. Three samples of each of the 3 Ex-PRESS models were subjected to a constant gravitational force of fluid at 5 different pressure levels (5 to 25 mm Hg). Four measurements per sample were taken at each pressure level. The main outcome measure was flow rate (Q) (µL/min). Resistance (R) was calculated by dividing pressure (P) by the measured flow (Q). The flow rate was primarily pressure dependent. The P-200 model (internal diameter 200 µm) showed a statistically significant higher flow rate and lower resistance compared with both the P-50 and R-50 models (internal diameter 50 µm) (P<0.0001). The P-50 and R-50 models demonstrated similar flow rates (P=0.08) despite their difference in tube length (2.64 vs. 2.94 mm). The 3 models of the Ex-PRESS mini shunt behaved in vitro as simple flow resistors by creating a relatively constant resistance to flow. Tube diameter was the only parameter with significant impact on flow and resistance. All models demonstrated flow rates per unit of pressure much higher than the outflow facility of a healthy human eye.

  6. Modification of the MML turbulence model for adverse pressure gradient flows. M.S. Thesis - Akron Univ., 1993

    NASA Technical Reports Server (NTRS)

    Conley, Julianne M.

    1994-01-01

    Computational fluid dynamics is being used increasingly to predict flows for aerospace propulsion applications, yet there is still a need for an easy to use, computationally inexpensive turbulence model capable of accurately predicting a wide range of turbulent flows. The Baldwin-Lomax model is the most widely used algebraic model, even though it has known difficulties calculating flows with strong adverse pressure gradients and large regions of separation. The modified mixing length model (MML) was developed specifically to handle the separation which occurs on airfoils and has given significantly better results than the Baldwin-Lomax model. The success of these calculations warrants further evaluation and development of MML. The objective of this work was to evaluate the performance of MML for zero and adverse pressure gradient flows, and modify it as needed. The Proteus Navier-Stokes code was used for this study and all results were compared with experimental data and with calculations made using the Baldwin-Lomax algebraic model, which is currently available in Proteus. The MML model was first evaluated for zero pressure gradient flow over a flat plate, then modified to produce the proper boundary layer growth. Additional modifications, based on experimental data for three adverse pressure gradient flows, were also implemented. The adapted model, called MMLPG (modified mixing length model for pressure gradient flows), was then evaluated for a typical propulsion flow problem, flow through a transonic diffuser. Three cases were examined: flow with no shock, a weak shock and a strong shock. The results of these calculations indicate that the objectives of this study have been met. Overall, MMLPG is capable of accurately predicting the adverse pressure gradient flows examined in this study, giving generally better agreement with experimental data than the Baldwin-Lomax model.

  7. Oscillatory mode transition for supersonic open cavity flows

    NASA Astrophysics Data System (ADS)

    Kumar, Mayank; Vaidyanathan, Aravind

    2018-02-01

    The transition in the primary oscillatory mode in an open cavity has been experimentally investigated and the associated characteristics in a Mach 1.71 flow has been analyzed. The length-to-depth (L/D) ratios of the rectangular cavities are varied from 1.67 to 3.33. Unsteady pressure measurement and flow visualization are employed to understand the transitional flow physics. Flow visualization revealed the change in oscillation pattern from longitudinal mode to transverse mode and is also characterized by the presence of two bow shocks at the trailing edge instead of one. The transition is found to occur between L/D 1.67 and 2, marked by a change in the feedback mechanism, resulting in a shift from the vortex circulation driven transverse feedback mode to the oscillating shear layer driven longitudinal feedback mode. Cavities oscillating in the transition mode exhibit multiple tones of comparable strength. Correlation analysis indicated the shift in the feedback mechanism. Wavelet analysis revealed the temporal behaviour of tones during transition. Tone switching is observed in deeper cavities and is attributed to the occurrence of two bow shocks as evident from the temporo-spectral characteristics of transition that affects the shear layer modal shape.

  8. Performance of 1.15-pressure-ratio fan stage at several rotor blade setting angles with reverse flow

    NASA Technical Reports Server (NTRS)

    Kovich, G.; Moore, R. D.

    1976-01-01

    A 51 cm diameter low pressure ratio fan stage was tested in reverse flow. Survey flow data were taken over the range of rotative speed from 50 percent to 100 percent design speed at several rotor blade setting angles through both flat and feather pitch. Normal flow design values of pressure ratio and weight flow were 1.15 and 29.9 kg/sec with a rotor tip speed of 243.8 m/sec. The maximum thrust in reverse flow was 52.5 percent of design thrust in normal flow.

  9. Red blood cell (RBC) suspensions in confined microflows: Pressure-flow relationship.

    PubMed

    Stauber, Hagit; Waisman, Dan; Korin, Netanel; Sznitman, Josué

    2017-10-01

    Microfluidic-based assays have become increasingly popular to explore microcirculation in vitro. In these experiments, blood is resuspended to a desired haematocrit level in a buffer solution, where frequent choices for preparing RBC suspensions comprise notably Dextran and physiological buffer. Yet, the rational for selecting one buffer versus another is often ill-defined and lacks detailed quantification, including ensuing changes in RBC flow characteristics. Here, we revisit RBC suspensions in microflows and attempt to quantify systematically some of the differences emanating between buffers. We measure bulk flow rate (Q) of RBC suspensions, using PBS- and Dextran-40, as a function of the applied pressure drop (ΔP) for two hematocrits (∼0% and 23%). Two distinct microfluidic designs of varying dimensions are employed: a straight channel larger than and a network array similar to the size of individual RBCs. Using the resulting pressure-flow curves, we extract the equivalent hydrodynamic resistances and estimate the relative viscosities. These efforts are a first step in rigorously quantifying the influence of the 'background' buffer on RBC flows within microfluidic devices and thereby underline the importance of purposefully selecting buffer suspensions for microfluidic in vitro assays. Copyright © 2017. Published by Elsevier Ltd.

  10. Direct match data flow machine apparatus and process for data driven computing

    DOEpatents

    Davidson, G.S.; Grafe, V.G.

    1997-08-12

    A data flow computer and method of computing are disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status but to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a ``fire`` signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor. 11 figs.

  11. Separation Dynamics of Controlled Internal Flow in an Adverse Pressure Gradient

    NASA Astrophysics Data System (ADS)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2017-11-01

    The effects of fluidic actuation on the dynamic evolution of aggressive internal flow separation is investigated at speeds up to M = 0.4 within a constant-width diffuser branching off of a primary flow duct. It is shown that a spanwise array of fluidic actuators upstream of the separation actively controls the flow constriction (and losses) within the diffuser and consequently the local pressure gradient at its entrance. The effectiveness of the actuation, as may be measured by the increased flow rate that is diverted through the diffuser, scales with its flow rate coefficient. In the presence of actuation (0.7% mass fraction), the mass flow rate in the primary duct increases by 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45%. The flow dynamics near separation in the absence and presence of actuation are characterized using high speed particle image velocimetry and analyzed using proper orthogonal and spectral decompositions. In particular, the spectral contents of the incipient boundary layer separation are compared in the absence and presence of actuation with emphasis on the changes in local dynamics near separation as the characteristic cross stream scale of the boundary layer increases with separation delay.

  12. Relationships between heat flow, thermal and pressure fields in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Husson, L.; Henry, P.; Le Pichon, X.

    2004-12-01

    The thermal field of the Gulf of Mexico (GoM) is restored from a comprehensive temperature-depth database. A striking feature is the systematic sharp gradient increase between 2500 and 4000 m. The analysis of the pressure (fracturation tests and mud weights) indicates a systematic correlation between the pressure and temperature fields, as well as with the thickness of Plio-Pleistocene sedimentary layer, and is interpreted as the fact of cooling from fluid flow in the upper, almost hydrostatically pressured layer. The Nusselt number, that we characterize by the ratio between the near high-P gradient over low-P gradient varies spatially and is correlated to the structural pattern of the GoM; this observation outlines the complex relationships between heat and fluid flows, structure and sedimentation. The deep thermal signal is restored in terms of gradient and heat flow density from a statistical analysis of the thermal data combined to the thermal modelling of about 175 wells. At a regional scale, although the sedimentary cover is warmer in Texas than in Louisiana in terms of temperature, the steady state basal heat flow is higher in Louisiana. In addition, beneath the Corsair Fault, which lay offshore parallel to the Texan coast, the high heat flow suggests a zone of Tertiary lithospheric thinning.

  13. Pressure-Aware Control Layer Optimization for Flow-Based Microfluidic Biochips.

    PubMed

    Wang, Qin; Xu, Yue; Zuo, Shiliang; Yao, Hailong; Ho, Tsung-Yi; Li, Bing; Schlichtmann, Ulf; Cai, Yici

    2017-12-01

    Flow-based microfluidic biochips are attracting increasing attention with successful biomedical applications. One critical issue with flow-based microfluidic biochips is the large number of microvalves that require peripheral control pins. Even using the broadcasting addressing scheme, i.e., one control pin controls multiple microvalves simultaneously, thousands of microvalves would still require hundreds of control prins, which is unrealistic. To address this critical challenge in control scalability, the control-layer multiplexer is introduced to effectively reduce the number of control pins into log scale of the number of microvalves. There are two practical design issues with the control-layer multiplexer: (1) the reliability issue caused by the frequent control-valve switching, and (2) the pressure degradation problem caused by the control-valve switching without pressure refreshing from the pressure source. This paper addresses these two design issues by the proposed Hamming-distance-based switching sequence optimization method and the XOR-based pressure refreshing method. Simulation results demonstrate the effectiveness and efficiency of the proposed methods with an average 77.2% (maximum 89.6%) improvement in total pressure refreshing cost, and an average 88.5% (maximum 90.0%) improvement in pressure deviation.

  14. Brachial blood flow under relative levels of blood flow restriction is decreased in a nonlinear fashion.

    PubMed

    Mouser, J Grant; Ade, Carl J; Black, Christopher D; Bemben, Debra A; Bemben, Michael G

    2018-05-01

    Blood flow restriction (BFR), the application of external pressure to occlude venous return and restrict arterial inflow, has been shown to increase muscular size and strength when combined with low-load resistance exercise. BFR in the research setting uses a wide range of pressures, applying a pressure based upon an individual's systolic pressure or a percentage of occlusion pressure; not a directly determined reduction in blood flow. The relationship between relative pressure and blood flow has not been established. To measure blood flow in the arm under relative levels of BFR. Forty-five people (18-40 years old) participated. Arterial occlusion pressure in the right arm was measured using a 5-cm pneumatic cuff. Blood flow in the brachial artery was measured at rest and at pressures between 10% and 90% of occlusion using ultrasound. Blood flow decreased in a nonlinear, stepped fashion. Blood flow decreased at 10% of occlusion and remained constant until decreasing again at 40%, where it remained until 90% of occlusion. The decrease in brachial blood flow is not proportional to the applied relative pressure. The prescription of blood flow restriction should take into account the stimulus provided at each relative level of blood flow. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  15. Numerical study of the transient flow in the driven tube and the nozzle section of a shock tunnel

    NASA Technical Reports Server (NTRS)

    Tokarcik-Polsky, Susan; Cambier, Jean-Luc

    1993-01-01

    The initial flow in a shock tunnel was examined numerically using computational fluid dynamics (CFD). A finite-volume total variation diminishing (TVD) scheme was used to calculate the transient flow in a shock tunnel. Both viscous and inviscid, chemically nonreacting flows were studied. The study consisted of two parts, the first dealt with the transient flow in the driven-tube/nozzle interface region (inviscid calculations). The effects of varying the geometry in this region was examined. The second part of the study examined the transient flow in the nozzle (viscous calculations). The results were compared to experimental data.

  16. Studies on unsteady pressure fields in the region of separating and reattaching flows

    NASA Astrophysics Data System (ADS)

    Govinda Ram, H. S.; Arakeri, V. H.

    1990-12-01

    Experimental studies on the measurement of pressure fields in the region of separating and reattaching flows behind several two-dimensional fore-bodies and one axisymmetric body are reported. In particular, extensive measurements of mean pressure, surface pressure fluctuation, and pressure fluctuation within the flow were made for a series of two-dimensional fore-body shapes consisting of triangular nose with varying included angle. The measurements from different bodies are compared and one of the important findings is that the maximum values of rms pressure fluctuation levels in the shear layer approaching reattachment are almost equal to the maximum value of the surface fluctuation levels.

  17. Prediction of blood pressure and blood flow in stenosed renal arteries using CFD

    NASA Astrophysics Data System (ADS)

    Jhunjhunwala, Pooja; Padole, P. M.; Thombre, S. B.; Sane, Atul

    2018-04-01

    In the present work an attempt is made to develop a diagnostive tool for renal artery stenosis (RAS) which is inexpensive and in-vitro. To analyse the effects of increase in the degree of severity of stenosis on hypertension and blood flow, haemodynamic parameters are studied by performing numerical simulations. A total of 16 stenosed models with varying degree of stenosis severity from 0-97.11% are assessed numerically. Blood is modelled as a shear-thinning, non-Newtonian fluid using the Carreau model. Computational Fluid Dynamics (CFD) analysis is carried out to compute the values of flow parameters like maximum velocity and maximum pressure attained by blood due to stenosis under pulsatile flow. These values are further used to compute the increase in blood pressure and decrease in available blood flow to kidney. The computed available blood flow and secondary hypertension for varying extent of stenosis are mapped by curve fitting technique using MATLAB and a mathematical model is developed. Based on these mathematical models, a quantification tool is developed for tentative prediction of probable availability of blood flow to the kidney and severity of stenosis if secondary hypertension is known.

  18. Method and apparatus to measure vapor pressure in a flow system

    DOEpatents

    Grossman, Mark W.; Biblarz, Oscar

    1991-01-01

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

  19. Fluctuating pressures in flow fields of jets

    NASA Technical Reports Server (NTRS)

    Schroeder, J. C.; Haviland, J. K.

    1976-01-01

    The powered lift configurations under present development for STOL aircraft are the externally blown flap (EBF), involving direct jet impingement on the aircraft flaps, and the upper surface blown (USB), where the jet flow is attached on the upper surface of the wing and directed downwards. Towards the goal of developing scaling laws to predict unsteady loads imposed on the structural components of these STOL aircraft from small model tests, the near field fluctuating pressure behavior for the simplified cases of a round free cold jet and the same jet impinging on a flat plate was investigated. Examples are given of coherences, phase lags (giving convection velocities), and overall fluctuating pressure levels measured. The fluctuating pressure levels measured on the flat plate are compared to surface fluctuating pressure levels measured on full-scale powered-lift configuration models.

  20. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment

    USGS Publications Warehouse

    Iverson, R.M.; Reid, M.E.; Logan, M.; LaHusen, R.G.; Godt, J.W.; Griswold, J.P.

    2011-01-01

    Debris flows typically occur when intense rainfall or snowmelt triggers landslides or extensive erosion on steep, debris-mantled slopes. The flows can then grow dramatically in size and speed as they entrain material from their beds and banks, but the mechanism of this growth is unclear. Indeed, momentum conservation implies that entrainment of static material should retard the motion of the flows if friction remains unchanged. Here we use data from large-scale experiments to assess the entrainment of bed material by debris flows. We find that entrainment is accompanied by increased flow momentum and speed only if large positive pore pressures develop in wet bed sediments as the sediments are overridden by debris flows. The increased pore pressure facilitates progressive scour of the bed, reduces basal friction and instigates positive feedback that causes flow speed, mass and momentum to increase. If dryer bed sediment is entrained, however, the feedback becomes negative and flow momentum declines. We infer that analogous feedbacks could operate in other types of gravity-driven mass flow that interact with erodible beds. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  1. Effect of Unsaturated Flow Modes on Partitioning Dynamics of Gravity-Driven Flow at a Simple Fracture Intersection: Laboratory Study and Three-Dimensional Smoothed Particle Hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Kordilla, Jannes; Noffz, Torsten; Dentz, Marco; Geyer, Tobias; Tartakovsky, Alexandre M.

    2017-11-01

    In this work, we study gravity-driven flow of water in the presence of air on a synthetic surface intersected by a horizontal fracture and investigate the importance of droplet and rivulet flow modes on the partitioning behavior at the fracture intersection. We present laboratory experiments, three-dimensional smoothed particle hydrodynamics (SPH) simulations using a heavily parallelized code, and a theoretical analysis. The flow-rate-dependent mode switching from droplets to rivulets is observed in experiments and reproduced by the SPH model, and the transition ranges agree in SPH simulations and laboratory experiments. We show that flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), the flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency increases. For rivulet flows, the initial filling of the horizontal fracture is described by classical plug flow. Meanwhile, for droplet flows, a size-dependent partitioning behavior is observed, and the filling of the fracture takes longer. For the case of rivulet flow, we provide an analytical solution that demonstrates the existence of classical Washburn flow within the horizontal fracture.

  2. Vasopressin and nitroglycerin decrease portal and hepatic venous pressure and hepato-splanchnic blood flow.

    PubMed

    Wisén, E; Svennerholm, K; Bown, L S; Houltz, E; Rizell, M; Lundin, S; Ricksten, S-E

    2018-03-26

    Various methods are used to reduce venous blood pressure in the hepato-splanchnic circulation, and hence minimise blood loss during liver surgery. Previous studies show that combination of vasopressin and nitroglycerin reduces portal pressure and flow in patients with portal hypertension, and in this study we investigated this combination in patients with normal portal pressure. In all, 13 patients were studied. Measurements were made twice to confirm baseline (C1 and BL), during vasopressin infusion 4.8 U/h (V), and during vasopressin infusion combined with nitroglycerin infusion (V + N). Portal venous pressure (PVP), hepatic venous pressure (HVP), central haemodynamics and arterial and venous blood gases were obtained at each measuring point, and portal (splanchnic) and hepato-splanchnic blood flow changes were calculated. Vasopressin alone did not affect PVP, whereas HVP increased slightly. In combination with nitroglycerin, PVP decreased from 10.1 ± 1.6 to 8.9 ± 1.3 mmHg (P < 0.0001), and HVP decreased from 7.9 ± 1.9 to 6.2 ± 1.3 mmHg (P = 0.001). Vasopressin reduced portal blood flow by 47 ± 19% and hepatic venous flow by 11 ± 18%, respectively. Addition of nitroglycerin further reduced portal- and hepatic flow by 55 ± 13% and 30 ± 13%, respectively. Vasopressin alone had minor effects on central haemodynamics, whereas addition of nitroglycerin reduced cardiac index (3.2 ± 0.7 to 2.7 ± 0.5; P < 0.0001). The arterial-portal vein lactate gradient was unaffected. The combination of vasopressin and nitroglycerin decreases portal pressure and hepato-splanchnic blood flow, and could be a potential treatment to reduce bleeding in liver resection surgery. © 2018 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  3. Effect of excess pore pressure on the long runout of debris flows over low gradient channels: A case study of the Dongyuege debris flow in Nu River, China

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen-Hua; Ren, Zhe; Wang, Kun; Yang, Kui; Tang, Yong-Jun; Tian, Lin; Xu, Ze-Min

    2018-05-01

    Debris flows with long reaches are one of the major natural hazards to human life and property on alluvial fans, as shown by the debris flow that occurred in the Dongyuege (DYG) Gully in August 18, 2010, and caused 96 deaths. The travel distance and the runout distance of the DYG large-scale tragic debris flow were 11 km and 9 km, respectively. In particular, the runout distance over the low gradient channel (channel slope < 5°) upstream of the depositional fan apex reached up to 3.3 km. The build-up and maintenance of excess pore pressure in the debris-flow mass might have played a crucial role in the persistence and long runout of the bouldery viscous debris flow. Experiments to measure pore pressure and pore water escape have been carried out by reconstituting the debris flow bodies with the DYG debris flow deposit. The slurrying of the debris is governed by solid volumetric concentration (SVC), and the difference between the lower SVC limit and the upper SVC limit can be defined as debris flow index (Id). Peak value (Kp) and rate of dissipation (R) of relative excess pore pressure are dependent on SVC. Further, the SVC that gives the lowest rate of dissipation is regarded as the optimum SVC (Cvo). The dissipation response of excess pore pressure can be characterized by the R value under Cvo at a given moment (i.e., 0.5 h, 1 h or 2 h later after peak time). The results reveal that a relatively high level of excess pore pressure developed within the DYG debris-flow mass and had a strong persistence capability. Further research shows that the development, peak value and dissipation of excess pore pressure in a mixture of sediment and water are related to the maximum grain size (MGS), gradation and mineralogy of clay-size particles of the sediment. The layer-lattice silicates in clay particles can be the typical clay minerals, including kaolinite, montmorillonite and illite, and also the unrepresentative clay minerals such as muscovite and chlorite. Moreover

  4. A dilation-driven vortex flow in sheared granular materials explains a rheometric anomaly.

    PubMed

    Krishnaraj, K P; Nott, Prabhu R

    2016-02-11

    Granular flows occur widely in nature and industry, yet a continuum description that captures their important features is yet not at hand. Recent experiments on granular materials sheared in a cylindrical Couette device revealed a puzzling anomaly, wherein all components of the stress rise nearly exponentially with depth. Here we show, using particle dynamics simulations and imaging experiments, that the stress anomaly arises from a remarkable vortex flow. For the entire range of fill heights explored, we observe a single toroidal vortex that spans the entire Couette cell and whose sense is opposite to the uppermost Taylor vortex in a fluid. We show that the vortex is driven by a combination of shear-induced dilation, a phenomenon that has no analogue in fluids, and gravity flow. Dilatancy is an important feature of granular mechanics, but not adequately incorporated in existing models.

  5. Numerical Study of the Buoyancy-Driven Flow in a Four-Electrode Rectangular Electrochemical Cell

    NASA Astrophysics Data System (ADS)

    Sun, Zhanyu; Agafonov, Vadim; Rice, Catherine; Bindler, Jacob

    2009-11-01

    Two-dimensional numerical simulation is done on the buoyancy-driven flow in a four-electrode rectangular electrochemical cell. Two kinds of electrode layouts, the anode-cathode-cathode-anode (ACCA) and the cathode-anode-anode-cathode (CAAC) layouts, are studied. In the ACCA layout, the two anodes are placed close to the channel outlets while the two cathodes are located between the two anodes. The CAAC layout can be converted from the ACCA layout by applying higher electric potential on the two middle electrodes. Density gradient was generated by the electrodic reaction I3^-+2e^- =3I^-. When the electrochemical cell is accelerated axially, buoyancy-driven flow occurs. In our model, electro-neutrality is assumed except at the electrodes. The Navier-Stokes equations with the Boussinesq approximation and the Nernst-Planck equations are employed to model the momentum and mass transports, respectively. It is found that under a given axial acceleration, the electrolyte density between the two middle electrodes determines the bulk flow through the electrochemical cell. The cathodic current difference is found to be able to measure the applied acceleration. Other important electro-hydrodynamic characteristics are also discussed.

  6. The Influence of Preferential Flow on Pressure Propagation and Landslide Triggering of the Rocca Pitigliana Landslide

    NASA Astrophysics Data System (ADS)

    Shao, W.; Bogaard, T.; Bakker, M.; Berti, M.; Savenije, H. H. G.

    2016-12-01

    The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately.

  7. Field emission microplasma actuation for microchannel flows

    NASA Astrophysics Data System (ADS)

    Sashank Tholeti, Siva; Shivkumar, Gayathri; Alexeenko, Alina A.

    2016-06-01

    Microplasmas offer attractive flow control methodology for gas transport in microsystems where large viscous losses make conventional pumping methods highly inefficient. We study microscale flow actuation by dielectric-barrier discharge (DBD) with field emission (FE) of electrons, which allows lowering the operational voltage from kV to a few hundred volts and below. A feasibility study of FE-DBD for flow actuation is performed using 2D particle-in-cell method with Monte Carlo collisions (PIC/MCC) at 10 MHz in nitrogen at atmospheric pressure. The free diffusion dominated, high velocity field emission electrons create a large positive space charge and a body force on the order of 106 N m-3. The body force and Joule heat decrease with increase in dielectric thickness and electrode thickness. The body force also decreases at lower pressures. The plasma body force distribution along with the Joule heating is then used in the Navier-Stokes simulations to quantify the flow actuation in a microchannel. Theoretical analysis and simulations for plasma actuated planar Poiseuille flow show that the gain in flow rate is inversely proportional to Reynolds number. This theoretical analysis is in good agreement with the simulations for a microchannel with closely placed actuators under incompressible conditions. Flow rate of FE-DBD driven 2D microchannel is around 100 ml min-1 mm-1 for an input power of 64 μW mm-1. The gas temperature rises by 1500 K due to the Joule heating, indicating FE-DBD’s potential for microcombustion, micropropulsion and chemical sensing in addition to microscale pumping and mixing applications.

  8. Demonstration of the role of turbulence-driven poloidal flow generation in the L-H transition

    NASA Astrophysics Data System (ADS)

    Yu, C. X.; Xu, Y. H.; Luo, J. R.; Mao, J. S.; Liu, B. H.; Li, J. G.; Wan, B. N.; Wan, Y. X.

    2000-05-01

    This paper presents the evidence for the role of turbulence-driven poloidal flow generation in the L-H transition induced by a turbulent heating pulse on the HT-6M tokamak. It is found that the poloidal flow υθ plays a key role in developing the electric field Er and triggering the transition. The acceleration of υθ across the transition is clearly correlated with the enhancement of the Reynolds stress gradient.

  9. Portable wastewater flow meter

    DOEpatents

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  10. Portable wastewater flow meter

    DOEpatents

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  11. A compressibility correction of the pressure strain correlation model in turbulent flow

    NASA Astrophysics Data System (ADS)

    Klifi, Hechmi; Lili, Taieb

    2013-07-01

    This paper is devoted to the second-order closure for compressible turbulent flows with special attention paid to modeling the pressure-strain correlation appearing in the Reynolds stress equation. This term appears as the main one responsible for the changes of the turbulence structures that arise from structural compressibility effects. From the analysis and DNS results of Simone et al. and Sarkar, the compressibility effects on the homogeneous turbulence shear flow are parameterized by the gradient Mach number. Several experiment and DNS results suggest that the convective Mach number is appropriate to study the compressibility effects on the mixing layers. The extension of the LRR model recently proposed by Marzougui, Khlifi and Lili for the pressure-strain correlation gives results that are in disagreement with the DNS results of Sarkar for high-speed shear flows. This extension is revised to derive a turbulence model for the pressure-strain correlation in which the compressibility is included in the turbulent Mach number, the gradient Mach number and then the convective Mach number. The behavior of the proposed model is compared to the compressible model of Adumitroiae et al. for the pressure-strain correlation in two turbulent compressible flows: homogeneous shear flow and mixing layers. In compressible homogeneous shear flows, the predicted results are compared with the DNS data of Simone et al. and those of Sarkar. For low compressibility, the two compressible models are similar, but they become substantially different at high compressibilities. The proposed model shows good agreement with all cases of DNS results. Those of Adumitroiae et al. do not reflect any effect of a change in the initial value of the gradient Mach number on the Reynolds stress anisotropy. The models are used to simulate compressible mixing layers. Comparison of our predictions with those of Adumitroiae et al. and with the experimental results of Goebel et al. shows good qualitative

  12. Method and apparatus to measure vapor pressure in a flow system

    DOEpatents

    Grossman, M.W.; Biblarz, O.

    1991-10-15

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process. 2 figures.

  13. Radial pressure profiles in a cold‐flow gas‐solid vortex reactor

    PubMed Central

    Pantzali, Maria N.; Kovacevic, Jelena Z.; Marin, Guy B.; Shtern, Vladimir N.

    2015-01-01

    A unique normalized radial pressure profile characterizes the bed of a gas‐solid vortex reactor over a range of particle densities and sizes, solid capacities, and gas flow rates: 950–1240 kg/m3, 1–2 mm, 2 kg to maximum solids capacity, and 0.4–0.8 Nm3/s (corresponding to gas injection velocities of 55–110 m/s), respectively. The combined momentum conservation equations of both gas and solid phases predict this pressure profile when accounting for the corresponding measured particle velocities. The pressure profiles for a given type of particles and a given solids loading but for different gas injection velocities merge into a single curve when normalizing the pressures with the pressure value downstream of the bed. The normalized—with respect to the overall pressure drop—pressure profiles for different gas injection velocities in particle‐free flow merge in a unique profile. © 2015 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 61: 4114–4125, 2015 PMID:27667827

  14. Flow Velocity Profiles in Actively-Driven 2D Nozzle Experiments using Freely-Suspended Smectic Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Dutch, Evan; Briggs, Corrina; Ferguson, Kyle; Green, Adam; Park, Cheol; Glaser, Matt; Maclennan, Joe; Clark, Noel

    Freely-suspended smectic A liquid crystal films have been used to explore a large range of interesting flow phenomena. Passive microrheology experiments have confirmed previously that such films are ideal systems with which to investigate two-dimensional (2D) hydrodynamics. Here we describe an experiment that uses smectic films to study actively-driven 2D flows. Flow excited by blowing air over a film of smectic liquid crystal material containing small inclusions is captured using digital video microscopy. The flow fields are extracted using particle imaging velocimetry. We have measured the velocity field generated by flow through a thin nozzle into a large rectangular reservoir and compared this to a theoretical model based on 2D complex potential flows. The observations confirm that there is parabolic flow in straight channels, and that the theory accurately models the film velocity flow field in the reservoir. This work was supported by NASA Grant No. NNX-13AQ81G, and NSF MRSEC Grants No. DMR-0820579 and DMR-1420736.

  15. Flow-driven triboelectric generator for directly powering a wireless sensor node.

    PubMed

    Wang, Shuhua; Mu, Xiaojing; Yang, Ya; Sun, Chengliang; Gu, Alex Yuandong; Wang, Zhong Lin

    2015-01-14

    A triboelectric generator (TEG) for scavenging flow-driven mechanical -energy to directly power a wireless sensor node is demonstrated for the first time. The output performances of TEGs with different dimensions are systematically investigated, indicating that a largest output power of about 3.7 mW for one TEG can be achieved under an external load of 3 MΩ. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Blood in the gastric lumen increases splanchnic blood flow and portal pressure in portal-hypertensive rats.

    PubMed

    Chen, L; Groszmann, R J

    1996-10-01

    In portal-hypertensive humans, portal blood flow and pressure increase after a meal. These hemodynamic changes may increase variceal rupture risk. The aim of this study was to determine whether blood in the stomach lumen increases splanchnic flow and portal pressure (PP) in portal-hypertensive rats. superior mesenteric artery flow and PP were measured in conscious, unrestrained, fasted partial portal vein-ligated rats with chronically implanted Doppler flow probes or portal vein catheters before and after gavage with heparinized, warmed blood from donor rats, air, standard meal, or empty tube. Percentage of changes in flow and pressure from baseline were significantly greater after gavage with blood (an increase of 22.6% +/- 3.5% and an increase of 16.4% +/- 3.1%, respectively) than empty tube (an increase of 3.4% +/- 0.6% and a decrease of 5.4% +/- 3.5%, respectively) (P < 0.005). Percentage of changes in flow and pressure were slightly but insignificantly greater after gavage with air vs. empty tube (P < 0.005). In portal-hypertensive rats, blood in the stomach lumen significantly increases splanchnic blood flow and PP. Splanchnic hyperemia from absorption of blood's calories probably contributes to these hemodynamic changes. In patients with variceal hemorrhage, blood in the stomach may increase the risk of persistent variceal bleeding or rebleeding.

  17. Computational Fluid Dynamics Simulation of Flows in an Oxidation Ditch Driven by a New Surface Aerator.

    PubMed

    Huang, Weidong; Li, Kun; Wang, Gan; Wang, Yingzhe

    2013-11-01

    In this article, we present a newly designed inverse umbrella surface aerator, and tested its performance in driving flow of an oxidation ditch. Results show that it has a better performance in driving the oxidation ditch than the original one with higher average velocity and more uniform flow field. We also present a computational fluid dynamics model for predicting the flow field in an oxidation ditch driven by a surface aerator. The improved momentum source term approach to simulate the flow field of the oxidation ditch driven by an inverse umbrella surface aerator was developed and validated through experiments. Four kinds of turbulent models were investigated with the approach, including the standard k - ɛ model, RNG k - ɛ model, realizable k - ɛ model, and Reynolds stress model, and the predicted data were compared with those calculated with the multiple rotating reference frame approach (MRF) and sliding mesh approach (SM). Results of the momentum source term approach are in good agreement with the experimental data, and its prediction accuracy is better than MRF, close to SM. It is also found that the momentum source term approach has lower computational expenses, is simpler to preprocess, and is easier to use.

  18. Numerical analysis of flows of rarefied gases in long channels with octagonal cross section shapes

    NASA Astrophysics Data System (ADS)

    Szalmas, L.

    2014-12-01

    Isothermal, pressure driven rarefied gas flows through long channels with octagonal cross section shapes are analyzed computationally. The capillary is between inlet and outlet reservoirs. The cross section is constant along the axial direction. The boundary condition at the solid-gas interface is assumed to be diffuse reflection. Since the channel is long, the gaseous velocity is small compared to the average molecular speed. Consequently, a linearized description can be used. The flow is described by the linearized Bhatnagar-Gross-Krook kinetic model. The solution of the problem is divided into two stages. First, the local flow field is determined by assuming the local pressure gradient. Secondly, the global flow behavior is deduced by the consideration of the conservation of the mass along the axis of the capillary. The kinetic equation is solved by the discrete velocity method on the cross section. Both spatial and velocity spaces are discretized. A body fitted rectangular grid is used for the spatial space. Near the boundary, first-order, while in the interior part of the flow domain, second-order finite-differences are applied to approximate the spatial derivatives. This combination results into an efficient and straightforward numerical treatment. The velocity space is represented by a Gauss-Legendre quadrature. The kinetic equation is solved in an iterative manner. The local dimensionless flow rate is calculated and tabulated for a wide range of the gaseous rarefaction for octagonal cross sections with various geometrical parameters. It exhibits the Knudsen minimum phenomenon. The flow rates in the octagonal channel are compared to those through capillaries with circular and square cross sections. Typical velocity profiles are also shown. The mass flow rate and the distribution of the pressure are determined and presented for global pressure driven flows.

  19. Application of Pressure Sensitive Paint in Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Carbonaro, Mario; Zemsch, Stephan

    1995-01-01

    It is well known in the aerodynamic field that pressure distribution measurement over the surface of an aircraft model is a problem in experimental aerodynamics. For one thing, a continuous pressure map can not be obtained with the current experimental methods since they are discrete. Therefore, interpolation or CFD methods must be used for a more complete picture of the phenomenon under study. For this study, a new technique was investigated which would provide a continuous pressure distribution over the surface under consideration. The new method is pressure sensitive paint. When pressure sensitive paint is applied to an aerodynamic surface and placed in an operating wind-tunnel under appropriate lighting, the molecules luminesce as a function of the local pressure of oxygen over the surface of interest during aerodynamic flow. The resulting image will be brightest in the areas of low pressure (low oxygen concentration), and less intense in the areas of high pressure (where oxygen is most abundant on the surface). The objective of this investigation was to use pressure sensitive paint samples from McDonnell Douglas (MDD) for calibration purpose in order to assess the response of the paint under appropriate lighting and to use the samples over a flat plate/conical fin mounted at 75 degrees from the center of the plate in order to study the shock/boundary layer interaction at Mach 6 in the Von Karman wind-tunnel. From the result obtained it was concluded that temperature significantly affects the response of the paint and should be given the uppermost attention in the case of hypersonic flows. Also, it was found that past a certain temperature threshold, the paint intensity degradation became irreversible. The comparison between the pressure tap measurement and the pressure sensitive paint showed the right trend. However, there exists a shift when it comes to the actual value. Therefore, further investigation is under way to find the cause of the shift.

  20. Noninvasive calculation of the aortic blood pressure waveform from the flow velocity waveform: a proof of concept.

    PubMed

    Vennin, Samuel; Mayer, Alexia; Li, Ye; Fok, Henry; Clapp, Brian; Alastruey, Jordi; Chowienczyk, Phil

    2015-09-01

    Estimation of aortic and left ventricular (LV) pressure usually requires measurements that are difficult to acquire during the imaging required to obtain concurrent LV dimensions essential for determination of LV mechanical properties. We describe a novel method for deriving aortic pressure from the aortic flow velocity. The target pressure waveform is divided into an early systolic upstroke, determined by the water hammer equation, and a diastolic decay equal to that in the peripheral arterial tree, interposed by a late systolic portion described by a second-order polynomial constrained by conditions of continuity and conservation of mean arterial pressure. Pulse wave velocity (PWV, which can be obtained through imaging), mean arterial pressure, diastolic pressure, and diastolic decay are required inputs for the algorithm. The algorithm was tested using 1) pressure data derived theoretically from prespecified flow waveforms and properties of the arterial tree using a single-tube 1-D model of the arterial tree, and 2) experimental data acquired from a pressure/Doppler flow velocity transducer placed in the ascending aorta in 18 patients (mean ± SD: age 63 ± 11 yr, aortic BP 136 ± 23/73 ± 13 mmHg) at the time of cardiac catheterization. For experimental data, PWV was calculated from measured pressures/flows, and mean and diastolic pressures and diastolic decay were taken from measured pressure (i.e., were assumed to be known). Pressure reconstructed from measured flow agreed well with theoretical pressure: mean ± SD root mean square (RMS) error 0.7 ± 0.1 mmHg. Similarly, for experimental data, pressure reconstructed from measured flow agreed well with measured pressure (mean RMS error 2.4 ± 1.0 mmHg). First systolic shoulder and systolic peak pressures were also accurately rendered (mean ± SD difference 1.4 ± 2.0 mmHg for peak systolic pressure). This is the first noninvasive derivation of aortic pressure based on fluid dynamics (flow and wave speed) in the

  1. Noninvasive calculation of the aortic blood pressure waveform from the flow velocity waveform: a proof of concept

    PubMed Central

    Vennin, Samuel; Mayer, Alexia; Li, Ye; Fok, Henry; Clapp, Brian; Alastruey, Jordi

    2015-01-01

    Estimation of aortic and left ventricular (LV) pressure usually requires measurements that are difficult to acquire during the imaging required to obtain concurrent LV dimensions essential for determination of LV mechanical properties. We describe a novel method for deriving aortic pressure from the aortic flow velocity. The target pressure waveform is divided into an early systolic upstroke, determined by the water hammer equation, and a diastolic decay equal to that in the peripheral arterial tree, interposed by a late systolic portion described by a second-order polynomial constrained by conditions of continuity and conservation of mean arterial pressure. Pulse wave velocity (PWV, which can be obtained through imaging), mean arterial pressure, diastolic pressure, and diastolic decay are required inputs for the algorithm. The algorithm was tested using 1) pressure data derived theoretically from prespecified flow waveforms and properties of the arterial tree using a single-tube 1-D model of the arterial tree, and 2) experimental data acquired from a pressure/Doppler flow velocity transducer placed in the ascending aorta in 18 patients (mean ± SD: age 63 ± 11 yr, aortic BP 136 ± 23/73 ± 13 mmHg) at the time of cardiac catheterization. For experimental data, PWV was calculated from measured pressures/flows, and mean and diastolic pressures and diastolic decay were taken from measured pressure (i.e., were assumed to be known). Pressure reconstructed from measured flow agreed well with theoretical pressure: mean ± SD root mean square (RMS) error 0.7 ± 0.1 mmHg. Similarly, for experimental data, pressure reconstructed from measured flow agreed well with measured pressure (mean RMS error 2.4 ± 1.0 mmHg). First systolic shoulder and systolic peak pressures were also accurately rendered (mean ± SD difference 1.4 ± 2.0 mmHg for peak systolic pressure). This is the first noninvasive derivation of aortic pressure based on fluid dynamics (flow and wave speed) in the

  2. Effects of coarse grain size distribution and fine particle content on pore fluid pressure and shear behavior in experimental debris flows

    NASA Astrophysics Data System (ADS)

    Kaitna, Roland; Palucis, Marisa C.; Yohannes, Bereket; Hill, Kimberly M.; Dietrich, William E.

    2016-02-01

    Debris flows are typically a saturated mixture of poorly sorted particles and interstitial fluid, whose density and flow properties depend strongly on the presence of suspended fine sediment. Recent research suggests that grain size distribution (GSD) influences excess pore pressures (i.e., pressure in excess of predicted hydrostatic pressure), which in turn plays a governing role in debris flow behaviors. We report a series of controlled laboratory experiments in a 4 m diameter vertically rotating drum where the coarse particle size distribution and the content of fine particles were varied independently. We measured basal pore fluid pressures, pore fluid pressure profiles (using novel sensor probes), velocity profiles, and longitudinal profiles of the flow height. Excess pore fluid pressure was significant for mixtures with high fines fraction. Such flows exhibited lower values for their bulk flow resistance (as measured by surface slope of the flow), had damped fluctuations of normalized fluid pressure and normal stress, and had velocity profiles where the shear was concentrated at the base of the flow. These effects were most pronounced in flows with a wide coarse GSD distribution. Sustained excess fluid pressure occurred during flow and after cessation of motion. Various mechanisms may cause dilation and contraction of the flows, and we propose that the sustained excess fluid pressures during flow and once the flow has stopped may arise from hindered particle settling and yield strength of the fluid, resulting in transfer of particle weight to the fluid. Thus, debris flow behavior may be strongly influenced by sustained excess fluid pressures controlled by particle settling rates.

  3. An Experimental and numerical Study for squeezing flow

    NASA Astrophysics Data System (ADS)

    Nathan, Rungun; Lang, Ji; Wu, Qianhong; Vucbmss Team

    2017-11-01

    We report an experimental and numerical study to examine the transient squeezing flow driven by sudden external impacts. The phenomenon is widely observed in industrial applications, e.g. squeeze dampers, or in biological systems, i.e. joints lubrication. However, there is a lack of investigation that captures the transient flow feature during the process. An experimental setup was developed that contains a piston instrumented with a laser displacement sensor and a pressure transducer. The heavy piston was released from rest, creating a fast compaction on the thin fluid gap underneath. The motion of the piston and the fluid pressure build-up was recorded. For this dynamic process, a CFD simulation was performed which shows excellent agreement with the experimental data. Both the numerical and experimental results show that, the squeezing flow starts with the inviscid limit when the viscous fluid effect has no time to appear, and thereafter becomes a developing flow, in which the inviscid core flow region decreases and the viscous wall region increases until the entire fluid gap is filled with viscous fluid flow. The study presented herein, filling the gap in the literature, will have broad impacts in industrial and biomedical applications. This research was supported by the National Science Foundation under Award 1511096, and supported by the Seed Grant from The Villanova Center for the Advancement of Sustainability in Engineering (VCASE).

  4. Effects of wheelchair cushions and pressure relief maneuvers on ischial interface pressure and blood flow in people with spinal cord injury.

    PubMed

    Sonenblum, Sharon E; Vonk, Teddie E; Janssen, Thomas W; Sprigle, Stephen H

    2014-07-01

    To investigate the effectiveness and interactions of 2 methods of pressure ulcer prevention, wheelchair cushions and pressure relief maneuvers, on interface pressure (IP) and blood flow of the buttocks. Within-subject repeated measures. Rehabilitation center. Wheelchair users with a spinal cord injury or disorder (N=17). Participants performed 3 forward leans and 2 sideward leans with different degrees of lean while seated on each of 3 different wheelchair cushions. IP measured with a custom sensor and blood flow measured with laser Doppler flowmetry were collected at the ischial tuberosity. Pressure relief maneuvers had a significant main effect on the ischial IP (P<.001); all maneuvers except for the small frontward lean resulted in a significant reduction in IP compared with upright sitting. Blood flow significantly varied across postures (P<.001) with flow during upright sitting and small forward leans being significantly lower than during the full and intermediate leans in both the forward and sideward directions. The results of the study highlight the importance of positioning wheelchair users in a manner that facilitates in-seat movement. Regardless of the cushion being used, the pressure relief maneuvers resulted in very large reductions in IPs and significant increases in buttock blood flow. Only the small frontward lean was shown to be ineffective in reducing pressure or increasing blood flow. Because these pressure relief maneuvers involved postural changes that can occur during functional activities, these pressure relief maneuvers can become a part of volitional pressure relief and functional weight shifts. Therefore, clinical instruction should cover both as a means to impart sitting behaviors that may lead to better tissue health. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Experimental feasibility of investigating acoustic waves in Couette flow with entropy and pressure gradients

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.

    1990-01-01

    The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.

  6. Effects of adenosine on intraocular pressure, optic nerve head blood flow, and choroidal blood flow in healthy humans.

    PubMed

    Polska, Elzbieta; Ehrlich, Paulina; Luksch, Alexandra; Fuchsjäger-Mayrl, Gabriele; Schmetterer, Leopold

    2003-07-01

    There is evidence from a variety of animal studies that the adenosine system plays a role in the control of intraocular pressure (IOP) and ocular blood flow. However, human data on the effect of adenosine on IOP and choroidal and optic nerve blood flow are not available. The effect of stepwise increases in doses of adenosine (10, 20, and 40 micro g/kg per minute, 30 minutes per infusion step) on optic nerve head blood flow, choroidal blood flow, and IOP was determined in a placebo-controlled double-masked clinical trial in 12 healthy male volunteers. Blood flow in the optic nerve head and choroid was measured with laser Doppler flowmetry. In addition, fundus pulsation amplitude in the macula (FPAM) and the optic nerve head (FPAO) were assessed with laser interferometry. Adenosine induced a small but significant decrease in IOP (at 40 microg/kg per minute: 12% +/- 13%), which was significant versus placebo (P = 0.046). In addition, adenosine induced a significant increase in choroidal blood flow (P < 0.001) and optic nerve head blood flow (P = 0.037), and FPAM (P = 0.0014) and tended to increase FPAO (P = 0.057). At the highest administered dose, the effect on choroidal hemodynamic parameters between 14% and 17%, whereas the effect on optic nerve hemodynamic parameters was between 3% and 11%. These data are consistent with adenosine inducing choroidal and optic nerve head vasodilatation and reducing IOP in healthy humans. Considering the neuroprotective properties of adenosine described in previous animal experiments the adenosine system is an attractive target system for therapeutic approaches in glaucoma.

  7. Numerical investigation of coupled density-driven flow and hydrogeochemical processes below playas

    NASA Astrophysics Data System (ADS)

    Hamann, Enrico; Post, Vincent; Kohfahl, Claus; Prommer, Henning; Simmons, Craig T.

    2015-11-01

    Numerical modeling approaches with varying complexity were explored to investigate coupled groundwater flow and geochemical processes in saline basins. Long-term model simulations of a playa system gain insights into the complex feedback mechanisms between density-driven flow and the spatiotemporal patterns of precipitating evaporites and evolving brines. Using a reactive multicomponent transport model approach, the simulations reproduced, for the first time in a numerical study, the evaporite precipitation sequences frequently observed in saline basins ("bull's eyes"). Playa-specific flow, evapoconcentration, and chemical divides were found to be the primary controls for the location of evaporites formed, and the resulting brine chemistry. Comparative simulations with the computationally far less demanding surrogate single-species transport models showed that these were still able to replicate the major flow patterns obtained by the more complex reactive transport simulations. However, the simulated degree of salinization was clearly lower than in reactive multicomponent transport simulations. For example, in the late stages of the simulations, when the brine becomes halite-saturated, the nonreactive simulation overestimated the solute mass by almost 20%. The simulations highlight the importance of the consideration of reactive transport processes for understanding and quantifying geochemical patterns, concentrations of individual dissolved solutes, and evaporite evolution.

  8. Non-axisymmetric flow characteristics in centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Wang, Leilei; Lao, Dazhong; Liu, Yixiong; Yang, Ce

    2015-06-01

    The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute. The experimental and numerical simulation methods were adopted in this work to study the compressor flow field distribution with different flow conditions. The results show that the pressure distributionin volute is characterized by the circumferential non-uniform phenomenon and the pressure fluctuation on the high static pressure zone propagates reversely to upstream, which results in the non-axisymmetric flow inside the compressor. The non-uniform level of pressure distribution in large flow condition is higher than that in small flow condition, its effect on the upstream flow field is also stronger. Additionally, the non-uniform circumferential pressure distribution in volute brings the non-axisymmetric flow at impeller outlet. In different flow conditions,the circumferential variation of the absolute flow angle at impeller outlet is also different. Meanwhile, the non-axisymmetric flow characteristics in internal impeller can be also reflected by the distribution of the mass flow. The high static pressure region of the volute corresponds to the decrease of mass flow in upstream blade channel, while the low static pressure zone of the volute corresponds to the increase of the mass flow. In small flow condition, the mass flow difference in the blade channel is bigger than that in the large flow condition.

  9. Wall pressure measurements of flooding in vertical countercurrent annular air–water flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choutapalli, I., Vierow, K.

    2010-01-01

    An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet andmore » is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.« less

  10. CSF Flow in the Brain in the Context of Normal Pressure Hydrocephalus.

    PubMed

    Bradley, W G

    2015-05-01

    CSF normally flows back and forth through the aqueduct during the cardiac cycle. During systole, the brain and intracranial vasculature expand and compress the lateral and third ventricles, forcing CSF craniocaudad. During diastole, they contract and flow through the aqueduct reverses. Hyperdynamic CSF flow through the aqueduct is seen when there is ventricular enlargement without cerebral atrophy. Therefore, patients presenting with clinical normal pressure hydrocephalus who have hyperdynamic CSF flow have been found to respond better to ventriculoperitoneal shunting than those with normal or decreased CSF flow. Patients with normal pressure hydrocephalus have also been found to have larger intracranial volumes than sex-matched controls, suggesting that they may have had benign external hydrocephalus as infants. While their arachnoidal granulations clearly have decreased CSF resorptive capacity, it now appears that this is fixed and that the arachnoidal granulations are not merely immature. Such patients appear to develop a parallel pathway for CSF to exit the ventricles through the extracellular space of the brain and the venous side of the glymphatic system. This pathway remains functional until late adulthood when the patient develops deep white matter ischemia, which is characterized histologically by myelin pallor (ie, loss of lipid). The attraction between the bare myelin protein and the CSF increases resistance to the extracellular outflow of CSF, causing it to back up, resulting in hydrocephalus. Thus idiopathic normal pressure hydrocephalus appears to be a "2 hit" disease: benign external hydrocephalus in infancy followed by deep white matter ischemia in late adulthood. © 2015 by American Journal of Neuroradiology.

  11. Lava Fountaining Discharge Regime driven by Slug-to-Churn Flow Transition. (Invited)

    NASA Astrophysics Data System (ADS)

    Ripepe, M.; Pioli, L.; Marchetti, E.; Ulivieri, G.

    2013-12-01

    Lava fountaining episodes at Etna volcano appear characterized by the transition between Strombolian and Hawaiian end-member eruptive styles. There is no evidence for this transition in the seismic (i.e. seismic tremor) signal. However, infrasonic records provide unprecedented evidence on this flow transition. Each eruptive episode is characterized by distinctive common trend in the amplitude, waveform and frequency content of the infrasonic wavefield, which evidences the shift from discrete, and transient, strombolian to sustained, and oscillatory, lava fountain dynamics. Large scale experiments on the dynamics of two-phase flow of basaltic magmas show how the transition between different regimes mainly depends on gas volume flow, which in turn controls pressure distribution within the conduit and also magma vesicularity. In particular, while regular large bubble bursting is associated with slug flow regime, large amplitude and low frequency column oscillations are associated with churn flow. In large pipes, transition from slug to churn flow regime is independent on conduit diameter and it is reached at high superficial gas velocity. Lava fountaining episodes at Etna can be thus interpreted as induced by the transition from the slug (discrete strombolian) to churn flow (sustained lava fountain) regimes that is reflecting an increase in the gas discharge rate. Based on laboratory experiments, we calculate that transition between these two end-member explosive regimes at Etna occurs when gas superficial velocity is 76 m/s for near-the-vent stagnant magma conditions.

  12. Cardiac contractile dysfunction during mild coronary flow reductions is due to an altered calcium-pressure relationship in rat hearts.

    PubMed Central

    Figueredo, V M; Brandes, R; Weiner, M W; Massie, B M; Camacho, S A

    1992-01-01

    Coronary artery stenosis or occlusion results in reduced coronary flow and myocardial contractile depression. At severe flow reductions, increased inorganic phosphate (Pi) and intracellular acidosis clearly play a role in contractile depression. However, during milder flow reductions the mechanism(s) underlying contractile depression are less clear. Previous perfused heart studies demonstrated no change of Pi or pH during mild flow reductions, suggesting that changes of intravascular pressure (garden hose effect) may be the mediator of this contractile depression. Others have reported conflicting results regarding another possible mediator of contractility, the cytosolic free calcium (Cai). To examine the respective roles of Cai, Pi, pH, and vascular pressure in regulating contractility during mild flow reductions, Indo-1 calcium fluorescence and 31P magnetic resonance spectroscopy measurements were performed on Langendorff-perfused rat hearts. Cai and diastolic calcium levels did not change during flow reductions to 50% of control. Pi demonstrated a close relationship with developed pressure and significantly increased from 2.5 +/- 0.3 to 4.2 +/- 0.4 mumol/g dry weight during a 25% flow reduction. pH was unchanged until a 50% flow reduction. Increasing vascular pressure to superphysiological levels resulted in further increases of developed pressure, with no change in Cai. These findings are consistent with the hypothesis that during mild coronary flow reductions, contractile depression is mediated by an altered relationship between Cai and pressure, rather than by decreased Cai. Furthermore, increased Pi and decreased intravascular pressure may be responsible for this altered calcium-pressure relationship during mild coronary flow reductions. PMID:1430205

  13. The influence of preferential flow on pressure propagation and landslide triggering of the Rocca Pitigliana landslide

    NASA Astrophysics Data System (ADS)

    Shao, Wei; Bogaard, Thom; Bakker, Mark; Berti, Matteo

    2016-12-01

    The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately. In conclusion, the 1D dual-permeability model is a promising tool for landslides under similar conditions.

  14. Determination of psychostimulants and their metabolites by electrochemistry linked on-line to flowing atmospheric pressure afterglow mass spectrometry.

    PubMed

    Smoluch, Marek; Mielczarek, Przemyslaw; Reszke, Edward; Hieftje, Gary M; Silberring, Jerzy

    2014-09-07

    The flowing atmospheric pressure afterglow (FAPA) ion source operates in the ambient atmosphere and has been proven to be a promising tool for direct and rapid determination of numerous compounds. Here we linked a FAPA-MS system to an electrochemical flow cell for the identification of drug metabolites generated electrochemically in order to study simulated metabolic pathways. Psychostimulants and their metabolites produced by electrochemistry (EC) were detected on-line by FAPA-MS. The FAPA source has never been used before for an on-line connection with liquid flow, neither for identification of products generated in an electrochemical flow cell. The system was optimized to achieve the highest ionization efficiency by adjusting several parameters, including distances and angles between the ion source and the outlet of the EC system, the high voltage for plasma generation, flow-rates, and EC parameters. Simulated metabolites from tested compounds [methamphetamine (MAF), para-methoxy-N-methylamphetamine (PMMA), dextromethorphan (DXM), and benzydamine (BAM)] were formed in the EC cell at various pH levels. In all cases the main products were oxidized substrates and compounds after N-demethylation. Generation of such products and their thorough on-line identification confirm that the cytochrome P450 - driven metabolism of pharmaceuticals can be efficiently simulated in an electrochemical cell; this approach may serve as a step towards predictive pharmacology using a fast and robust design.

  15. Cerebral blood flow changes in response to elevated intracranial pressure in rabbits and bluefish: a comparative study.

    PubMed

    Beiner, J M; Olgivy, C S; DuBois, A B

    1997-03-01

    In mammals, the cerebrovascular response to increases in intracranial pressure may take the form of the Cushing response, which includes increased mean systemic arterial pressure, bradycardia and diminished respirations. The mechanism, effect and value of these responses are debated. Using laser-Doppler flowmetry to measure cerebral blood flow, we analyzed the cardiovascular responses to intracranial pressure raised by epidural infusion of mock cerebrospinal fluid in the bluefish and in the rabbit, and compare the results. A decline in cerebral blood flow preceding a rise in mean systemic arterial pressure was observed in both species. Unlike bluefish, rabbits exhibit a threshold of intracranial pressure below which cerebral blood flow was maintained and no cardiovascular changes were observed. The difference in response between the two species was due to the presence of an active autoregulatory system in the cerebral tissue of rabbits and its absence in bluefish. For both species studied, the stimulus for the Cushing response seems to be a decrement in cerebral blood flow. The resulting increase in the mean systemic arterial pressure restores cerebral blood flow to levels approaching controls.

  16. The effect of power-law body forces on a thermally driven flow between concentric rotating spheres

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1986-01-01

    A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.

  17. The effect of power law body forces on a thermally-driven flow between concentric rotating spheres

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1985-01-01

    A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.

  18. Experiments on two- and three-dimensional vortex flows in lid-driven cavities

    NASA Astrophysics Data System (ADS)

    Siegmann-Hegerfeld, Tanja; Albensoeder, Stefan; Kuhlmann, Hendrik C.

    2009-11-01

    Vortex flows in one-sided lid-driven cavities with different cross-sectional aspect ratios (γ = 0.26 up to γ = 6.3) are investigated experimentally. In all cases the spanwise aspect ratio λ>>γ is very large and much larger than most previous experiments. Flow-structure visualizations will be presented together with quantitative LDA and PIV measurements. The experimental results are in good agreement with the critical data from numerical stability analyses and with nonlinear simulations. Experimentally, we find four different three-dimensional instabilities. Particular attention is paid to the so-called C4 mode which arises at large cross-sectional aspect ratios. When the spanwise aspect ratio is small the first bifurcation of the C4 mode is strongly imperfect.

  19. Subsonic Flows through S-Ducts with Flow Control

    NASA Astrophysics Data System (ADS)

    Chen, Yi

    An inlet duct of an aircraft connects the air intake mounted on the fuselage to the engine within the aircraft body. The ideal outflow quality of the duct is steady, uniform and of high total pressure. Recently compact S-shaped inlet ducts are drawing more attention in the design of UAVs with short propulsion system. Compact ducts usually involve strong streamwise adverse pressure gradient and transverse secondary flow, leading to large-scale harmful vortical structures in the outflow. To improve the outflow quality modern flow control techniques have to be applied. Before designing successful flow control methods a solid understanding of the baseline flow field with the duct is crucial. In this work the fundamental mechanism of how the three dimensional flow topology evolves when the relevant parameters such as the duct geometry and boundary layer thickness are varied, is studied carefully. Two distinct secondary-flow patterns are identified. For the first time the sensitivity of the flow topology to the inflow boundary layer thickness in long ducts is clearly addressed. The interaction between the transverse motion induced by the transverse pressure gradient and the streamwise separation is revealed as the crucial reason for the various flow patterns existing in short ducts. A non-symmetric flow pattern is identified for the first time in both experiments and simulations in short ducts in which the intensity of the streamwise separation and the transverse invasion are in the same order of magnitude. A theory of energy accumulation and solution bifurcation is used to give a reasonable explanation for this non-symmetry. After gaining the knowledge of where and how the harmful vortical structures are generated several flow control techniques are tested to achieve a better outflow quality. The analysis of the flow control cases also provides a deeper insight into the behavior of the three-dimensional flow within the ducts. The conventional separation control method

  20. Comprehensive Validation of an Intermittency Transport Model for Transitional Low-Pressure Turbine Flows

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.

    2005-01-01

    A transport equation for the intermittency factor is employed to predict transitional flows under the effects of pressure gradients, freestream turbulence intensities, Reynolds number variations, flow separation and reattachment. and unsteady wake-blade interactions representing diverse operating conditions encountered in low-pressure turbines. The intermittent behaviour of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, Mu(sub t), with the intermittency factor, gamma. Turbulent quantities are predicted by using Menter's two-equation turbulence model (SST). The onset location of transition is obtained from correlations based on boundary-layer momentum thickness, acceleration parameter, and turbulence intensity. The intermittency factor is obtained from a transport model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The intermittency transport model is tested and validated against several well documented low pressure turbine experiments ranging from flat plate cases to unsteady wake-blade interaction experiments. Overall, good agreement between the experimental data and computational results is obtained illustrating the predicting capabilities of the model and the current intermittency transport modelling approach for transitional flow simulations.

  1. Excess flow shutoff valve

    DOEpatents

    Kiffer, Micah S.; Tentarelli, Stephen Clyde

    2016-02-09

    Excess flow shutoff valve comprising a valve body, a valve plug, a partition, and an activation component where the valve plug, the partition, and activation component are disposed within the valve body. A suitable flow restriction is provided to create a pressure difference between the upstream end of the valve plug and the downstream end of the valve plug when fluid flows through the valve body. The pressure difference exceeds a target pressure difference needed to activate the activation component when fluid flow through the valve body is higher than a desired rate, and thereby closes the valve.

  2. Aero-acoustics of Drag Generating Swirling Exhaust Flows

    NASA Technical Reports Server (NTRS)

    Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.

    2007-01-01

    Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.

  3. Integrated Microfluidic Flow-Through Microbial Fuel Cells

    PubMed Central

    Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang

    2017-01-01

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time. PMID:28120875

  4. Integrated Microfluidic Flow-Through Microbial Fuel Cells

    NASA Astrophysics Data System (ADS)

    Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang

    2017-01-01

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time.

  5. Relationship between cerebral blood flow and blood pressure in long-term heart transplant recipients.

    PubMed

    Smirl, Jonathan D; Haykowsky, Mark J; Nelson, Michael D; Tzeng, Yu-Chieh; Marsden, Katelyn R; Jones, Helen; Ainslie, Philip N

    2014-12-01

    Heart transplant recipients are at an increased risk for cerebral hemorrhage and ischemic stroke; yet, the exact mechanism for this derangement remains unclear. We hypothesized that alterations in cerebrovascular regulation is principally involved. To test this hypothesis, we studied cerebral pressure-flow dynamics in 8 clinically stable male heart transplant recipients (62±8 years of age and 9±7 years post transplant, mean±SD), 9 male age-matched controls (63±8 years), and 10 male donor controls (27±5 years). To increase blood pressure variability and improve assessment of the pressure-flow dynamics, subjects performed squat-stand maneuvers at 0.05 and 0.10 Hz. Beat-to-beat blood pressure, middle cerebral artery velocity, and end-tidal carbon dioxide were continuously measured during 5 minutes of seated rest and throughout the squat-stand maneuvers. Cardiac baroreceptor sensitivity gain and cerebral pressure-flow responses were assessed with linear transfer function analysis. Heart transplant recipients had reductions in R-R interval power and baroreceptor sensitivity low frequency gain (P<0.01) compared with both control groups; however, these changes were unrelated to transfer function metrics. Thus, in contrast to our hypothesis, the increased risk of cerebrovascular complication after heart transplantation does not seem to be related to alterations in cerebral pressure-flow dynamics. Future research is, therefore, warranted. © 2014 American Heart Association, Inc.

  6. Flow characteristics around a deformable stenosis under pulsatile flow condition

    NASA Astrophysics Data System (ADS)

    Choi, Woorak; Park, Jun Hong; Byeon, Hyeokjun; Lee, Sang Joon

    2018-01-01

    A specific portion of a vulnerable stenosis is deformed periodically under a pulsatile blood flow condition. Detailed analysis of such deformable stenosis is important because stenotic deformation can increase the likelihood of rupture, which may lead to sudden cardiac death or stroke. Various diagnostic indices have been developed for a nondeformable stenosis by using flow characteristics and resultant pressure drop across the stenosis. However, the effects of the stenotic deformation on the flow characteristics remain poorly understood. In this study, the flows around a deformable stenosis model and two different rigid stenosis models were investigated under a pulsatile flow condition. Particle image velocimetry was employed to measure flow structures around the three stenosis models. The deformable stenosis model was deformed to achieve high geometrical slope and height when the flow rate was increased. The deformation of the stenotic shape enhanced jet deflection toward the opposite vessel wall of the stenosis. The jet deflection in the deformable model increased the rate of jet velocity and turbulent kinetic energy (TKE) production as compared with those in the rigid models. The effect of stenotic deformation on the pulsating waveform related with the pressure drop was analyzed using the TKE production rate. The deformable stenosis model exhibited a phase delay of the peak point in the waveform. These results revealed the potential use of pressure drop waveform as a diagnostic index for deformable stenosis.

  7. Effect of Water Cut on Pressure Drop of Oil (D130) -Water Flow in 4″Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Basha, Mehaboob; Shaahid, S. M.; Al-Hems, Luai M.

    2018-03-01

    The oil-water flow in pipes is a challenging subject that is rich in physics and practical applications. It is often encountered in many oil and chemical industries. The pressure gradient of two phase flow is still subject of immense research. The present study reports pressure measurements of oil (D130)-water flow in a horizontal 4″ diameter stainless steel pipe at different flow conditions. Experiments were carried out for different water cuts (WC); 0-100%. Inlet oil-water flow rates were varied from 4000 to 8000 barrels-per-day in steps of 2000. It has been found that the frictional pressure drop decreases for WC = 0 - 40 %. With further increase in WC, friction pressure drop increases, this could be due to phase inversion.

  8. Satellite-driven modeling approach for monitoring lava flow hazards during the 2017 Etna eruption

    NASA Astrophysics Data System (ADS)

    Del Negro, C.; Bilotta, G.; Cappello, A.; Ganci, G.; Herault, A.; Zago, V.

    2017-12-01

    The integration of satellite data and modeling represents an efficient strategy that may provide immediate answers to the main issues raised at the onset of a new effusive eruption. Satellite-based thermal remote sensing of hotspots related to effusive activity can effectively provide a variety of products suited to timing, locating, and tracking the radiant character of lava flows. Hotspots show the location and occurrence of eruptive events (vents). Discharge rate estimates may indicate the current intensity (effusion rate) and potential magnitude (volume). High-spatial resolution multispectral satellite data can complement field observations for monitoring the front position (length) and extension of flows (area). Physics-based models driven, or validated, by satellite-derived parameters are now capable of fast and accurate forecast of lava flow inundation scenarios (hazard). Here, we demonstrate the potential of the integrated application of satellite remote-sensing techniques and lava flow models during the 2017 effusive eruption at Mount Etna in Italy. This combined approach provided insights into lava flow field evolution by supplying detailed views of flow field construction (e.g., the opening of ephemeral vents) that were useful for more accurate and reliable forecasts of eruptive activity. Moreover, we gave a detailed chronology of the lava flow activity based on field observations and satellite images, assessed the potential extent of impacted areas, mapped the evolution of lava flow field, and executed hazard projections. The underside of this combination is the high sensitivity of lava flow inundation scenarios to uncertainties in vent location, discharge rate, and other parameters, which can make interpreting hazard forecasts difficult during an effusive crisis. However, such integration at last makes timely forecasts of lava flow hazards during effusive crises possible at the great majority of volcanoes for which no monitoring exists.

  9. Experimental Study of Transitional Flow Behavior in a Simulated Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Sohn, Ki Hyeon; DeWitt, Kenneth J.

    1998-01-01

    A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT airfoil onto a flat lower plate. The experiments were carried out for the Reynolds numbers of 35,000, 70,000, 100,000 and 250,000 with four levels of freestream turbulence ranging from 1% to 4%. For the three lower Reynolds numbers, the boundary layer on the flat plate was separated and formed a bubble. The size of laminar separation bubble was measured to be inversely proportional to the freestream turbulence levels and Reynolds numbers. However, no separation was observed for the Re = 250,000 case. The transition on a separated flow was found to proceed through the formation of turbulent spots in the free shear layer as evidenced in the intermittency profiles for Re = 35,000, 70,000 and 100,000. Spectral data show no evidence of Kelvin-Helmholtz or Tollmien-Schlichting instability waves in the free shear layer over a separation bubble (bypass transition). However, the flow visualization revealed the large vortex structures just outside of the bubble and their development to turbulent flow for Re = 50,000, which is similar to that in the free shear layer (separated-flow transition). Therefore, it is fair to say that the bypass and separated-flow transition modes coexist in the transitional flows over the separation bubble for certain conditions. Transition onset and end locations and length determined from intermittency profiles decrease as Reynolds number and freestream turbulence levels increase.

  10. Experimental Study of Transitional Flow Behavior in a Simulated Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Sohn, Ki Hyeon; DeWitt, Kenneth J.

    2007-01-01

    A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT airfoil onto a flat lower plate. The experiments were carried out for the Reynolds numbers of 35,000, 70,000, 100,000, and 250,000 with four levels of freestream turbulence ranging from 1 to 4 percent. For the three lower Reynolds numbers, the boundary layer on the flat plate was separated and formed a bubble. The size of laminar separation bubble was measured to be inversely proportional to the freestream turbulence levels and Reynolds numbers. However, no separation was observed for the Re = 250,000 case. The transition on a separated flow was found to proceed through the formation of turbulent spots in the free shear layer as evidenced in the intermittency profiles for Re = 35,000, 70,000, and 100,000. Spectral data show no evidence of Kelvin-Helmholtz of Tollmien-Schlichting instability waves in the free shear layer over a separation bubble (bypass transition). However, the flow visualization revealed the large vortex structures just outside of the bubble and their development to turbulent flow for Re = 50,000, which is similar to that in the free shear layer (separated-flow transition). Therefore, it is fair to say that the bypass and separated-flow transition modes coexist in the transition flows over the separation bubble of certain conditions. Transition onset and end locations and length determined from intermittency profiles decreased as Reynolds number and freestream turbulence levels increase.

  11. Effect of Very-High-Flow Nasal Therapy on Airway Pressure and End-Expiratory Lung Impedance in Healthy Volunteers.

    PubMed

    Parke, Rachael L; Bloch, Andreas; McGuinness, Shay P

    2015-10-01

    Previous research has demonstrated a positive linear correlation between flow delivered and airway pressure generated by high-flow nasal therapy. Current practice is to use flows over a range of 30-60 L/min; however, it is technically possible to apply higher flows. In this study, airway pressure measurements and electrical impedance tomography were used to assess the relationship between flows of up to 100 L/min and changes in lung physiology. Fifteen healthy volunteers were enrolled into this study. A high-flow nasal system capable of delivering a flow of 100 L/min was purpose-built using 2 Optiflow systems. Airway pressure was measured via the nasopharynx, and cumulative changes in end-expiratory lung impedance were recorded using the PulmoVista 500 system at gas flows of 30-100 L/min in increments of 10 L/min. The mean age of study participants was 31 (range 22-44) y, the mean ± SD height was 171.8 ± 7.5 cm, the mean ± SD weight was 69.7 ± 10 kg, and 47% were males. Flows ranged from 30 to 100 L/min with resulting mean ± SD airway pressures of 2.7 ± 0.7 to 11.9 ± 2.7 cm H2O. A cumulative and linear increase in end-expiratory lung impedance was observed with increasing flows, as well as a decrease in breathing frequency. Measured airway pressure and lung impedance increased linearly with increased gas flow. Observed airway pressures were in the range used clinically with face-mask noninvasive ventilation. Developments in delivery systems may result in this therapy being an acceptable alternative to face-mask noninvasive ventilation. Copyright © 2015 by Daedalus Enterprises.

  12. Influence of variations in systemic blood flow and pressure on cerebral and systemic oxygen saturation in cardiopulmonary bypass patients.

    PubMed

    Moerman, A; Denys, W; De Somer, F; Wouters, P F; De Hert, S G

    2013-10-01

    Although both pressure and flow are considered important determinants of regional organ perfusion, the relative importance of each is less established. The aim of the present study was to evaluate the impact of variations in flow, pressure, or both on cerebral and whole-body oxygen saturation. Thirty-four consenting patients undergoing elective cardiac surgery on cardiopulmonary bypass were included. Using a randomized cross-over design, four different haemodynamic states were simulated: (i) 20% flow decrease, (ii) 20% flow decrease with phenylephrine to restore baseline pressure, (iii) 20% pressure decrease with sodium nitroprusside (SNP) under baseline flow, and (iv) increased flow with baseline pressure. The effect of these changes was evaluated on cerebral (Sc(O₂)) and systemic (Sv(O₂)) oxygen saturation, and on systemic oxygen extraction ratio (OER). Data were assessed by within- and between-group comparisons. Decrease in flow was associated with a decrease in [from 63.5 (7.4) to 62.0 (8.5) %, P<0.001]. When arterial pressure was restored with phenylephrine during low flow, Sc(O₂) further decreased from 61.0 (9.7) to 59.2 (10.2) %, P<0.001. Increase in flow was associated with an increase in Sc(O₂) from 62.6 (7.7) to 63.6 (8.9) %, P=0.03, while decreases in pressure with the use of SNP did not affect Sc(O₂). Sv(O₂) was significantly lower (P<0.001) and OER was significantly higher (P<0.001) in the low flow arms. In the present elective cardiac surgery population, Sc(O₂) and Sv(O₂) were significantly lower with lower flow, regardless of systemic arterial pressure. Moreover, phenylephrine administration was associated with a reduced cerebral and systemic oxygen saturation.

  13. Towards DMD-Based Estimation and Control of Flow Separation using an Array of Surface Pressure Sensors

    NASA Astrophysics Data System (ADS)

    Deem, Eric; Cattafesta, Louis; Zhang, Hao; Rowley, Clancy

    2016-11-01

    Closed-loop control of flow separation requires the spatio-temporal states of the flow to be fed back through the controller in real time. Previously, static and dynamic estimation methods have been employed that provide reduced-order model estimates of the POD-coefficients of the flow velocity using surface pressure measurements. However, this requires a "learning" dataset a priori. This approach is effective as long as the dynamics during control do not stray from the learning dataset. Since only a few dynamical features are required for feedback control of flow separation, many of the details provided by full-field snapshots are superfluous. This motivates a state-observation technique that extracts key dynamical features directly from surface pressure, without requiring PIV snapshots. The results of identifying DMD modes of separated flow through an array of surface pressure sensors in real-time are presented. This is accomplished by employing streaming DMD "on the fly" to surface pressure snapshots. These modal characteristics exhibit striking similarities to those extracted from PIV data and the pressure field obtained via solving Poisson's equation. Progress towards closed-loop separation control based on the dynamic modes of surface pressure will be discussed. Supported by AFOSR Grant FA9550-14-1-0289.

  14. Direct Numerical Simulation of Low Capillary Number Pore Scale Flows

    NASA Astrophysics Data System (ADS)

    Esmaeilzadeh, S.; Soulaine, C.; Tchelepi, H.

    2017-12-01

    The arrangement of void spaces and the granular structure of a porous medium determines multiple macroscopic properties of the rock such as porosity, capillary pressure, and relative permeability. Therefore, it is important to study the microscopic structure of the reservoir pores and understand the dynamics of fluid displacements through them. One approach for doing this, is direct numerical simulation of pore-scale flow that requires a robust numerical tool for prediction of fluid dynamics and a detailed understanding of the physical processes occurring at the pore-scale. In pore scale flows with a low capillary number, Eulerian multiphase methods are well-known to produce additional vorticity close to the interface. This is mainly due to discretization errors which lead to an imbalance of capillary pressure and surface tension forces that causes unphysical spurious currents. At the pore scale, these spurious currents can become significantly stronger than the average velocity in the phases, and lead to unphysical displacement of the interface. In this work, we first investigate the capability of the algebraic Volume of Fluid (VOF) method in OpenFOAM for low capillary number pore scale flow simulations. Afterward, we compare VOF results with a Coupled Level-Set Volume of Fluid (CLSVOF) method and Iso-Advector method. It has been shown that the former one reduces the VOF's unphysical spurious currents in some cases, and both are known to capture interfaces sharper than VOF. As the conclusion, we will investigate that whether the use of CLSVOF or Iso-Advector will lead to less spurious velocities and more accurate results for capillary driven pore-scale multiphase flows or not. Keywords: Pore-scale multiphase flow, Capillary driven flows, Spurious currents, OpenFOAM

  15. Project Rulison gas flow analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montan, D.N.

    1971-01-01

    An analysis of the well performance was attempted by fitting a simple model of the chimney, gas sands, and explosively created fracturing to the 2 experimentally measured variables, flow rate, and chimney pressure. The gas-flow calculations for various trial models were done by a finite difference solution to the nonlinear partial differential equation for radial Darcy flow. The TRUMP computer program was used to perform the numerical calculations. In principle, either the flow rate or the chimney pressure could be used as the independent variable in the calculations. In the present case, the flow rate was used as the independentmore » variable, since chimney pressure measurements were not made until after the second flow period in early Nov. 1970. Furthermore, the formation pressure was not accurately known and, hence, was considered a variable parameter in the modeling process. The chimney pressure was assumed equal to the formation pressure at the beginning of the flow testing. The model consisted of a central zone, representing the chimney, surrounded by a number of concentric zones, representing the formation. The effect of explosive fracturing was simulated by increasing the permeability in the zones near the central zone.« less

  16. Relationship between parietal blood flow studies in the left colon and the rectum in dogs. Colonic pressure and blood flow.

    PubMed

    Arhan, P; Bouchoucha, M; Martelli, H; Rimbert, J N; Berdeaux, A; Gallix, P; Héro, M; Barritault, L; Pellerin, D; Devroede, G

    1988-01-01

    An animal model was proposed to clarify the difference in occurrence of enterocolitis in congenital aganglionosis. When gaseous distention of the colon was localized to the rectosigmoid area, enterocolitis never occurred. On the contrary, when it involved the left colon, enterocolitis occurred in 13 of 15 patients. Intestinal blood flow rates were simultaneously measured in the left colon and rectum of six dogs by using labeled microspheres and expressed in function of the intraluminal pressure. Results show that for elevated values of intraluminal pressure, blood flow was significantly lower in the left colon than in the rectum. These results may explain why ischemia and necrosis occurred more frequently in the left colon than in the rectum.

  17. A velocity-pressure integrated, mixed interpolation, Galerkin finite element method for high Reynolds number laminar flows

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook

    1988-01-01

    A velocity-pressure integrated, mixed interpolation, Galerkin finite element method for the Navier-Stokes equations is presented. In the method, the velocity variables were interpolated using complete quadratic shape functions and the pressure was interpolated using linear shape functions. For the two dimensional case, the pressure is defined on a triangular element which is contained inside the complete biquadratic element for velocity variables; and for the three dimensional case, the pressure is defined on a tetrahedral element which is again contained inside the complete tri-quadratic element. Thus the pressure is discontinuous across the element boundaries. Example problems considered include: a cavity flow for Reynolds number of 400 through 10,000; a laminar backward facing step flow; and a laminar flow in a square duct of strong curvature. The computational results compared favorable with those of the finite difference methods as well as experimental data available. A finite elememt computer program for incompressible, laminar flows is presented.

  18. Flow rate impacts on capillary pressure and interface curvature of connected and disconnected fluid phases during multiphase flow in sandstone

    NASA Astrophysics Data System (ADS)

    Herring, Anna L.; Middleton, Jill; Walsh, Rick; Kingston, Andrew; Sheppard, Adrian

    2017-09-01

    We investigate capillary pressure-saturation (PC-S) relationships for drainage-imbibition experiments conducted with air (nonwetting phase) and brine (wetting phase) in Bentheimer sandstone cores. Three different flow rate conditions, ranging over three orders of magnitude, are investigated. X-ray micro-computed tomographic imaging is used to characterize the distribution and amount of fluids and their interfacial characteristics. Capillary pressure is measured via (1) bulk-phase pressure transducer measurements, and (2) image-based curvature measurements, calculated using a novel 3D curvature algorithm. We distinguish between connected (percolating) and disconnected air clusters: curvatures measured on the connected phase interfaces are used to validate the curvature algorithm and provide an indication of the equilibrium condition of the data; curvature and volume distributions of disconnected clusters provide insight to the snap-off processes occurring during drainage and imbibition under different flow rate conditions.

  19. Multiscale modeling and simulation for polymer melt flows between parallel plates

    NASA Astrophysics Data System (ADS)

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for ωτR≲1 , and the crossover between the liquidlike and solidlike regime takes place around ωτα≃1 (where ω is the angular frequency of the plate and τR and τα are Rouse and α relaxation time, respectively).

  20. Multiscale modeling and simulation for polymer melt flows between parallel plates.

    PubMed

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for omegatauR < approximately 1 , and the crossover between the liquidlike and solidlike regime takes place around omegataualpha approximately equal 1 (where omega is the angular frequency of the plate and tauR and taualpha are Rouse and alpha relaxation time, respectively).

  1. Heat transfer and pressure drop for air flow through enhanced passages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effectmore » depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.« less

  2. Flow limitation and wheezes in a constant flow and volume lung preparation.

    PubMed

    Gavriely, N; Grotberg, J B

    1988-01-01

    To facilitate the study of respiratory wheezes in an animal lung model, an isovolume, constant-flow excised dog lung preparation was developed. Dog lungs were inflated to 26 +/- 4 cmH2O and coated with layers of epoxy glue and polyester compound. A rigid shell 2 mm thick was obtained around the entire pleural surface and the extra-pulmonary airways. The adhesive forces between the pleura and the shell were strong enough to hold the lung distended after the inflation pressure was removed. Holes 2 mm diam were drilled through the shell over one of the lung lobes in an array, 4 cm across. The holes penetrated the pleural surface, so that constant flow could be maintained in the expiratory direction by activating a suction pump connected to the trachea. Downstream suction pressure and flow rate were measured with a mercury manometer and a rotameter, respectively. Sounds were recorded by a small (0.6 cm OD) microphone inserted into the trachea. When suction pressure was increased, flow initially increased to 31 +/- 3 l/min. Further increase of suction pressure caused only very slight additional increase in flow (i.e., flow limitation). During this plateau of flow, a pure tone was generated with acoustic properties similar to respiratory wheezes. Both the flow plateau and the wheezing sounds could be eliminated by freezing the lungs. It is concluded that wheezing sounds were associated with flow limitation in this preparation. It is suggested that the stable acoustic properties obtained by this preparation may become useful in the analysis of mechanisms of wheezing lung sounds generation.

  3. Dynamic behaviors of cavitation bubble for the steady cavitating flow

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Huai, Xiulan; Li, Xunfeng

    2009-12-01

    In this paper, by introducing the flow velocity item into the classical Rayleigh-Plesset dynamic equation, a new equation, which does not involve the time term and can describe the motion of cavitation bubble in the steady cavitating flow, has been obtained. By solving the new motion equation using Runge-Kutta fourth order method with adaptive step size control, the dynamic behaviors of cavitation bubble driven by the varying pressure field downstream of a venturi cavitation reactor are numerically simulated. The effects of liquid temperature (corresponding to the saturated vapor pressure of liquid), cavitation number and inlet pressure of venturi on radial motion of bubble and pressure pulse due to the radial motion are analyzed and discussed in detail. Some dynamic behaviors of bubble different from those in previous papers are displayed. In addition, the internal relationship between bubble dynamics and process intensification is also discussed. The simulation results reported in this work reveal the variation laws of cavitation intensity with the flow conditions of liquid, and will lay a foundation for the practical application of hydrodynamic cavitation technology.

  4. Time-Dependent Thermally-Driven Interfacial Flows in Multilayered Fluid Structures

    NASA Technical Reports Server (NTRS)

    Haj-Hariri, Hossein; Borhan, A.

    1996-01-01

    A computational study of thermally-driven convection in multilayered fluid structures will be performed to examine the effect of interactions among deformable fluid-fluid interfaces on the structure of time-dependent flow in these systems. Multilayered fluid structures in two models configurations will be considered: the differentially heated rectangular cavity with a free surface, and the encapsulated cylindrical liquid bridge. An extension of a numerical method developed as part of our recent NASA Fluid Physics grant will be used to account for finite deformations of fluid-fluid interfaces.

  5. Characterization of an induced pressure pumping force for microfluidics

    NASA Astrophysics Data System (ADS)

    Jiang, Hai; Fan, Na; Peng, Bei; Weng, Xuan

    2017-05-01

    The electro-osmotic pumping and pressure-driven manipulation of fluids are considered as the most common strategies in microfluidic devices. However, both of them exhibit major disadvantages such as hard integration and high reagent consumption, and they are destructive methods for detection and photo bleaching. In this paper, an electric field-effect flow control approach, combining the electro-osmotic pumping force and the pressure-driven pumping force, was developed to generate the induced pressure-driven flow in a T-shaped microfluidic chip. Electro-osmotic flow between the T-intersection and two reservoirs was demonstrated, and it provided a stable, continuous, and electric field-free flow in the section of the microchannel without the electrodes. The velocity of the induced pressure-driven flow was linearly proportional to the applied voltages. Both numerical and experimental investigations were conducted to prove the concept, and the experimental results showed good agreement with the numerical simulations. In comparison to other induced pressure pumping methods, this approach can induce a high and controllable pressure drop in the electric field-free segment, subsequently causing an induced pressure-driven flow for transporting particles or biological cells. In addition, the generation of bubbles and the blocking of the microchannel are avoided.

  6. An Assessment of Artificial Compressibility and Pressure Projection Methods for Incompressible Flow Simulations

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, C.; Smith, Charles A. (Technical Monitor)

    1998-01-01

    Performance of the two commonly used numerical procedures, one based on artificial compressibility method and the other pressure projection method, are compared. These formulations are selected primarily because they are designed for three-dimensional applications. The computational procedures are compared by obtaining steady state solutions of a wake vortex and unsteady solutions of a curved duct flow. For steady computations, artificial compressibility was very efficient in terms of computing time and robustness. For an unsteady flow which requires small physical time step, pressure projection method was found to be computationally more efficient than an artificial compressibility method. This comparison is intended to give some basis for selecting a method or a flow solution code for large three-dimensional applications where computing resources become a critical issue.

  7. Is the Heart a Pressure or Flow Generator? Possible Implications and Suggestions for Cardiovascular Pedagogy

    ERIC Educational Resources Information Center

    Mitchell, Jamie R.

    2015-01-01

    In this article, a physiology instructor with primarily a cardiovascular (CV) background has wondered what approach to take, with both novice and senior learners, when it comes to delivering material on the pressure or flow generation of the heart. A debate surrounds the pressure propulsion versus flow generation theories, where some understand…

  8. Flow Glottogram and Subglottal Pressure Relationship in Singers and Untrained Voices.

    PubMed

    Sundberg, Johan

    2018-01-01

    This article combines results from three earlier investigations of the glottal voice source during phonation at varying degrees of vocal loudness (1) in five classically trained baritone singers (Sundberg et al., 1999), (2) in 15 female and 14 male untrained voices (Sundberg et al., 2005), and (3) in voices rated as hyperfunctional by an expert panel (Millgård et al., 2015). Voice source data were obtained by inverse filtering. Associated subglottal pressures were estimated from oral pressure during the occlusion for the consonant /p/. Five flow glottogram parameters, (1) maximum flow declination rate (MFDR), (2) peak-to-peak pulse amplitude, (3) level difference between the first and the second harmonics of the voice source, (4) closed quotient, and (5) normalized amplitude quotient, were averaged across the singer subjects and related to associated MFDR values. Strong, quantitative relations, expressed as equations, are found between subglottal pressure and MFDR and between MFDR and each of the other flow glottogram parameters. The values for the untrained voices, as well as those for the voices rated as hyperfunctional, deviate systematically from the values derived from the equations. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  9. Observation of the L-H confinement bifurcation triggered by a turbulence-driven shear flow in a tokamak plasma.

    PubMed

    Yan, Z; McKee, G R; Fonck, R; Gohil, P; Groebner, R J; Osborne, T H

    2014-03-28

    Comprehensive 2D turbulence and eddy flow velocity measurements on DIII-D demonstrate a rapidly increasing turbulence-driven shear flow that develops ∼100  μs prior to the low-confinement (L mode) to high-confinement (H mode) transition and appears to trigger it. These changes are localized to a narrow layer 1-2 cm inside the magnetic boundary. Increasing heating power increases the Reynolds stress, the energy transfer from turbulence to the poloidal flow, and the edge flow shearing rate that then exceeds the decorrelation rate, suppressing turbulence and triggering the transition.

  10. Direct Simulation Monte Carlo for astrophysical flows - II. Ram-pressure dynamics

    NASA Astrophysics Data System (ADS)

    Weinberg, Martin D.

    2014-03-01

    We use the Direct Simulation Monte Carlo method combined with an N-body code to study the dynamics of the interaction between a gas-rich spiral galaxy and intracluster or intragroup medium, often known as the ram pressure scenario. The advantage of this gas kinetic approach over traditional hydrodynamics is explicit treatment of the interface between the hot and cold, dense and rarefied media typical of astrophysical flows and the explicit conservation of energy and momentum and the interface. This approach yields some new physical insight. Owing to the shock and backward wave that forms at the point intracluster medium (ICM)-interstellar medium (ISM) contact, ICM gas is compressed, heated and slowed. The shock morphology is Mach disc like. In the outer galaxy, the hot turbulent post-shock gas flows around the galaxy disc while heating and ablating the initially cool disc gas. The outer gas and angular momentum are lost to the flow. In the inner galaxy, the hot gas pressurizes the neutral ISM gas causing a strong two-phase instability. As a result, the momentum of the wind is no longer impulsively communicated to the cold gas as assumed in the Gunn-Gott formula, but oozes through the porous disc, transferring its linear momentum to the disc en masse. The escaping gas mixture has a net positive angular momentum and forms a slowly rotating sheath. The shear flow caused by the post-shock ICM flowing through the porous multiphase ISM creates a strong Kelvin-Helmholtz instability in the disc that results in Cartwheel-like ring and spoke morphology.

  11. Computational Fluid Dynamics Simulation of Flows in an Oxidation Ditch Driven by a New Surface Aerator

    PubMed Central

    Huang, Weidong; Li, Kun; Wang, Gan; Wang, Yingzhe

    2013-01-01

    Abstract In this article, we present a newly designed inverse umbrella surface aerator, and tested its performance in driving flow of an oxidation ditch. Results show that it has a better performance in driving the oxidation ditch than the original one with higher average velocity and more uniform flow field. We also present a computational fluid dynamics model for predicting the flow field in an oxidation ditch driven by a surface aerator. The improved momentum source term approach to simulate the flow field of the oxidation ditch driven by an inverse umbrella surface aerator was developed and validated through experiments. Four kinds of turbulent models were investigated with the approach, including the standard k−ɛ model, RNG k−ɛ model, realizable k−ɛ model, and Reynolds stress model, and the predicted data were compared with those calculated with the multiple rotating reference frame approach (MRF) and sliding mesh approach (SM). Results of the momentum source term approach are in good agreement with the experimental data, and its prediction accuracy is better than MRF, close to SM. It is also found that the momentum source term approach has lower computational expenses, is simpler to preprocess, and is easier to use. PMID:24302850

  12. Dynamics of polymers in elongational flow studied by the neutron spin-echo technique

    NASA Astrophysics Data System (ADS)

    Rheinstädter, Maikel C.; Sattler, Rainer; Häußler, Wolfgang; Wagner, Christian

    2010-09-01

    The nanoscale fluctuation dynamics of semidilute high molecular weight polymer solutions of polyethylenoxide (PEO) in D 2O under non-equilibrium flow conditions were studied by the neutron spin-echo technique. The sample cell was in contraction flow geometry and provided a pressure driven flow with a high elongational component that stretched the polymers most efficiently. Neutron scattering experiments in dilute polymer solutions are challenging because of the low polymer concentration and corresponding small quasi-elastic signals. A relaxation process with relaxation times of about 10 ps was observed, which shows anisotropic dynamics with applied flow.

  13. Magnetically Driven Flows of Suspensions of Rods to Deliver Clot-Busting Drugs to Dead-End Arteries

    NASA Astrophysics Data System (ADS)

    Bonnecaze, Roger; Clements, Michael

    2014-11-01

    Suspensions of iron particles in the presence of a magnetic field create flows that could significantly increase the delivery of drugs to dissolve clots in stroke victims. An explanation of this flow rests on the foundation of the seminal works by Prof. Acrivos and his students on effective magnetic permittivity of suspensions of rods, hydrodynamic diffusion of particles, and the flow of suspensions. Intravenous administration of the clot dissolving tissue plasminogen activator (tPA) is the most used therapy for stroke. This therapy is often unsuccessful because the tPA delivery is diffusion-limited and too slow to be effective. Observations show that added iron particles in a rotating magnetic field form rotating rods along the wall of the occluded vessel, creating a convective flow that can carry tPA much faster than diffusion. We present a proposed mechanism for this magnetically driven flow in the form of coupled particle-scale and vessel-scale flow models. At the particle-scale, particles chain up to form rods that rotate, diffuse and translate in the presence of the flow and magnetic fields. Localized vorticity created by the rotating particles drives a macroscopic convective flow in the vessel. Suspension transport equations describe the flow at the vessel-scale. The flow affects the convection and diffusion of the suspension of particles, linking the two scales. The model equations are solved asymptotically and numerically to understand how to create convective flows in dead-end or blocked vessels.

  14. Radial flow pulse jet mixer

    DOEpatents

    VanOsdol, John G.

    2013-06-25

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  15. Blood flow

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    A heuristic treatment of blood flow in the heart and the aorta together with some of the main branches considers the effects of fluid viscosity and vessel elasticity as well as pressure distribution in the typical pulsating flow.

  16. Flow Visualization at Cryogenic Conditions Using a Modified Pressure Sensitive Paint Approach

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Goad, William K.; Obara, Clifford J.; Sprinkle, Danny R.; Campbell, Richard L.; Carter, Melissa B.; Pendergraft, Odis C., Jr.; Bell, James H.; Ingram, JoAnne L.; Oglesby, Donald M.

    2005-01-01

    A modification to the Pressure Sensitive Paint (PSP) method was used to visualize streamlines on a Blended Wing Body (BWB) model at full-scale flight Reynolds numbers. In order to achieve these conditions, the tests were carried out in the National Transonic Facility operating under cryogenic conditions in a nitrogen environment. Oxygen is required for conventional PSP measurements, and several tests have been successfully completed in nitrogen environments by injecting small amounts (typically < 3000 ppm) of oxygen into the flow. A similar technique was employed here, except that air was purged through pressure tap orifices already existent on the model surface, resulting in changes in the PSP wherever oxygen was present. The results agree quite well with predicted results obtained through computational fluid dynamics analysis (CFD), which show this to be a viable technique for visualizing flows without resorting to more invasive procedures such as oil flow or minitufts.

  17. Fluid-structure interaction for nonlinear response of shells conveying pulsatile flow

    NASA Astrophysics Data System (ADS)

    Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.

    2016-06-01

    Circular cylindrical shells with flexible boundary conditions conveying pulsatile flow and subjected to pulsatile pressure are investigated. The equations of motion are obtained based on the nonlinear Novozhilov shell theory via Lagrangian approach. The flow is set in motion by a pulsatile pressure gradient. The fluid is modeled as a Newtonian pulsatile flow and it is formulated using a hybrid model that contains the unsteady effects obtained from the linear potential flow theory and the pulsatile viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior. The case of shells containing quiescent fluid subjected to the action of a pulsatile transmural pressure is also addressed. Geometrically nonlinear vibration response to pulsatile flow and transmural pressure are here presented via frequency-response curves and time histories. The vibrations involving both a driven mode and a companion mode, which appear due to the axial symmetry, are also investigated. This theoretical framework represents a pioneering study that could be of great interest for biomedical applications. In particular, in the future, a more refined model of the one here presented will possibly be applied to reproduce the dynamic behavior of vascular prostheses used for repairing and replacing damaged and diseased thoracic aorta in cases of aneurysm, dissection or coarctation. For this purpose, a pulsatile time-dependent blood flow model is here considered by applying physiological waveforms of velocity and pressure during the heart beating period. This study provides, for the first time in literature, a fully coupled fluid-structure interaction model with deep insights in the nonlinear vibrations of circular cylindrical shells subjected to pulsatile pressure and pulsatile flow.

  18. Cerebral pressure–flow relationship in lowlanders and natives at high altitude

    PubMed Central

    Smirl, Jonathan D; Lucas, Samuel J E; Lewis, Nia C S; duManior, Gregory R; Smith, Kurt J; Bakker, Akke; Basnyat, Aperna S; Ainslie, Philip N

    2014-01-01

    We investigated if dynamic cerebral pressure–flow relationships in lowlanders are altered at high altitude (HA), differ in HA natives and after return to sea level (SL). Lowlanders were tested at SL (n=16), arrival to 5,050 m, after 2-week acclimatization (with and without end-tidal PO2 normalization), and upon SL return. High-altitude natives (n=16) were tested at 5,050 m. Testing sessions involved resting spontaneous and driven (squat–stand maneuvers at very low (VLF, 0.05 Hz) and low (LF, 0.10 Hz) frequencies) measures to maximize blood pressure (BP) variability and improve assessment of the pressure–flow relationship using transfer function analysis (TFA). Blood flow velocity was assessed in the middle (MCAv) and posterior (PCAv) cerebral arteries. Spontaneous VLF and LF phases were reduced and coherence was elevated with acclimatization to HA (P<0.05), indicating impaired pressure–flow coupling. However, when BP was driven, both the frequency- and time-domain metrics were unaltered and comparable with HA natives. Acute mountain sickness was unrelated to TFA metrics. In conclusion, the driven cerebral pressure–flow relationship (in both frequency and time domains) is unaltered at 5,050 m in lowlanders and HA natives. Our findings indicate that spontaneous changes in TFA metrics do not necessarily reflect physiologically important alterations in the capacity of the brain to regulate BP. PMID:24169852

  19. Global Change and Human Consumption of Freshwater Driven by Flow Regulation and Irrigation

    NASA Astrophysics Data System (ADS)

    Jaramillo, F.; Destouni, G.

    2015-12-01

    Recent studies show major uncertainties about the magnitude and key drivers of global freshwater change, historically and projected for the future. The tackling of these uncertainties should be a societal priority to understand: 1) the role of human change drivers for freshwater availability changes, 2) the global water footprint of humanity and 3) the relation of human freshwater consumption to a proposed planetary boundary. This study analyses worldwide hydroclimatic changes, as observed during 1900-2009 in 99 large hydrological basins across all continents. We test whether global freshwater change may be driven by major developments of flow regulation and irrigation (FRI) occurring over this period. Independent categorization of the variability of FRI-impact strength among the studied basins is used to identify statistical basin differences in occurrence and strength of characteristic hydroclimatic signals of FRI. Our results show dominant signals of increasing relative evapotranspiration in basins affected by flow regulation and/or irrigation, in conjunction with decreasing relative intra-annual variability of runoff in basins affected by flow regulation. The FRI-related increase in relative evapotranspiration implies an increase of 4,688 km3/yr in global annual average water flow from land to the atmosphere. This observation-based estimate extends considerably the upper quantification limits of both FRI-driven and total global human consumption of freshwater, as well as the global water footprint of humanity. Our worldwide analysis shows clear FRI-related change signals emerging directly from observations, in spite of large change variability among basins and many other coexisting change drivers in both the atmosphere and the landscape. These results highlight the importance of considering local water use as a key change driver in Earth system studies and modelling, of relevance for global change and human consumption of freshwater.

  20. Model of Pressure Distribution in Vortex Flow Controls

    NASA Astrophysics Data System (ADS)

    Mielczarek, Szymon; Sawicki, Jerzy M.

    2015-06-01

    Vortex valves belong to the category of hydrodynamic flow controls. They are important and theoretically interesting devices, so complex from hydraulic point of view, that probably for this reason none rational concept of their operation has been proposed so far. In consequence, functioning of vortex valves is described by CFD-methods (computer-aided simulation of technical objects) or by means of simple empirical relations (using discharge coefficient or hydraulic loss coefficient). Such rational model of the considered device is proposed in the paper. It has a simple algebraic form, but is well grounded physically. The basic quantitative relationship, which describes the valve operation, i.e. dependence between the flow discharge and the circumferential pressure head, caused by the rotation, has been verified empirically. Conformity between calculated and measured parameters of the device allows for acceptation of the proposed concept.

  1. Water imbibition by mica pores: what happens when capillary flow is suppressed?

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Qiao, Rui

    2017-11-01

    The imbibition of liquids into porous media plays a critical role in numerous applications. Most prior studies focused on imbibition driven by capillary flows. In this work, we study the imbibition of water into slit-shaped mica pores filled with pressurized methane using molecular simulations. Despite that capillary flow is suppressed by the high gas pressure, water is imbibed into the pore as monolayer liquid films. Since the classical hydrodynamic flow is not readily applicable for the monolayer water film propagating on the mica wall and the imbibition is driven by the strong affinity of water molecules to the mica walls, the observed imbibition is best taken as surface hydration. We show that the dynamics of water's imbibition front follows a simple diffusive scaling law. The effective diffusion coefficient of the imbibition front, however, is more than ten times larger than the diffusion coefficient of the water molecules in the water film adsorbed on the mica walls. Using a molecular theory originally developed for the spreading of monolayer films on solid substrates, we clarify the mechanism underlying the rapid water imbibition observed here.

  2. Measurements in the turbulent boundary layer at constant pressure in subsonic and supersonic flow. Part 1: Mean flow

    NASA Technical Reports Server (NTRS)

    Collins, D. J.; Coles, D. E.; Hicks, J. W.

    1978-01-01

    Experiments were carried out to test the accuracy of laser Doppler instrumentation for measurement of Reynolds stresses in turbulent boundary layers in supersonic flow. Two facilities were used to study flow at constant pressure. In one facility, data were obtained on a flat plate at M sub e = 0.1, with Re theta up to 8,000. In the other, data were obtained on an adiabatic nozzle wall at M sub e = 0.6, 0.8, 1.0, 1.3, and 2.2, with Re theta = 23,000 and 40,000. The mean flow as observed using Pitot tube, Preston tube, and floating element instrumentation is described. Emphasis is on the use of similarity laws with Van Driest scaling and on the inference of the shearing stress profile and the normal velocity component from the equations of mean motion. The experimental data are tabulated.

  3. Witness of fluid-flow organization during high-pressure antigorite dehydration

    NASA Astrophysics Data System (ADS)

    López Sánchez-Vizcaíno, Vicente; Padrón-Navarta, José Alberto; Garrido, Carlos J.; Gómez-Pugnaire, María. Teresa

    2010-05-01

    The link between devolatilization reactions and fluid flow is crucial to unravel important geodynamic processes in subduction zones as deformation and element transfer is extremely controlled by the presence of water. At high confining pressure, significant fluid pressure gradients are expected in a reacting rock being dehydrated, because of its rather limited permeability [1]. Compactation-driven fluid flow seems to be an intrinsic mechanism occurring at devolatilization of viscolastic rocks. Nevertheless, and despite the important implications of this coupled deformation/fluid-migration mechanism for fluid transport, a conclusive confirmation of these processes by petrological and textural evidences in metamorphic terrains has been hampered by the scarcity of devolatilization fronts in the geological record. Evidences of high-pressure antigorite dehydration found at Cerro del Almirez (Betic Cordillera, Spain) [2] represent a noteworthy exception. Here, the transition between the hydrous protolith (antigorite serpentinite) and the prograde product assemblage (olivine + orthopyroxene + chlorite, chlorite harzburgite) is extremely well preserved and can be surveyed in detail. The maximum stability of the antigorite has been experimentally determined at ~680°C at 1.6-1.9 GPa [3]. Antigorite dehydration is accompanied by release of high amounts of high-pressure water-rich fluids (~ 9 wt.% fluid). Distinctive layers (up to 1 m thick) of transitional lithologies occur in between atg-serpentinite and chl-harburgite all along the devolatilization front, consisting of (1) chlorite-antigorite olivine-serpentinite, which gradually changes to (2) chlorite-antigorite-olivine-orthopyroxene serpentinite. These transitional lithologies are more massive and darker in color than atg-serpentinite and largely consist of coarse sized grains of antigorite and chlorite (250-500 μm). Antigorite in these assemblages is characterized by microstructural disorder features, which are

  4. Critical capillary channel flow

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.

    The main subject are numerical studies on capillary channel flow, based on results of the sounding rocket experiments TEXUS 41/42. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behaviour, a dimensionless transient model was developed. It is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The pressure is related to the curvature of the free liquid surface by the dimensionless Gauss-Laplace equation with two principal radii. The experimental and evaluated contour data shows good agreement for a sequence of transient flow rate perturbations. The surface oscillation frequencies and amplitudes can be predicted with quite high accuracy. The dynamic of the pump is defined by the increase of the flow rate in a time period. To study the unsteady system behavior in the "worst case", we use a perturbations related to the natural frequency of the oscillating liquid. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value Sca = 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show

  5. End wall flow characteristics and overall performance of an axial flow compressor stage

    NASA Technical Reports Server (NTRS)

    Sitaram, N.; Lakshminarayana, B.

    1983-01-01

    This review indicates the possible future directions for research on endwall flows in axial flow compressors. Theoretical investigations on the rotor blade endwall flows in axial flow compressors reported here include the secondary flow calculation and the development of the momentum integral equations for the prediction of the annulus wall boundary layer. The equations for secondary vorticity at the rotor exit are solved analytically. The solution includes the effects of rotation and the viscosity. The momentum integral equations derived include the effect of the blade boundary layers. The axial flow compressor facility of the Department of Aerospace Engineering at The Pennsylvania State University, which is used for the experimental investigations of the endwall flows, is described in some detail. The overall performance and other preliminary experimental results are presented. Extensive radial flow surveys are carried out at the design and various off design conditions. These are presented and interpreted in this report. The following experimental investigations of the blade endwall flows are carried out. (1) Rotor blade endwall flows: The following measurements are carried out at four flow coefficients. (a) The rotor blade static pressures at various axial and radial stations (with special emphasis near the blade tips). (b) The hub wall static pressures inside the rotor blade passage at various axial and tangential stations. (2) IGV endwall flows: The following measurements are carried out at the design flow coefficient. (a) The boundary layer profiles at various axial and tangential stations inside the blade passage and at the blade exit. (b) Casing static pressures and limiting streamline angles inside the blade passage.

  6. Influence of fracture network physical properties on stability criteria of density-driven flow in a dual-porosity system

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, H.; Jafari Raad, S. M.

    2017-12-01

    Linear stability analysis is conducted to study the onset of buoyancy-driven convection involved in solubility trapping of CO2 into deep fractured aquifers. In this study, the effect of fracture network physical properties on the stability criteria in a brine-rich fractured porous layer is investigated using dual porosity concept for both single and variable matrix block size distributions. Linear stability analysis results show that both fracture interporosity flow and fracture storativity factors play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in a fractured rock with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations that relate the onset of convective instability in fractured aquifers. These findings improve our understanding of buoyancy driven flow in fractured aquifers and are particularly important in estimation of potential storage capacity, risk assessment, and storage sites characterization and screening.Keywords: CO2 sequestration; fractured rock; buoyancy-driven convection; stability analysis

  7. Cerebral blood flow velocity declines before arterial pressure in patients with orthostatic vasovagal presyncope

    NASA Technical Reports Server (NTRS)

    Dan, Dan; Hoag, Jeffrey B.; Ellenbogen, Kenneth A.; Wood, Mark A.; Eckberg, Dwain L.; Gilligan, David M.

    2002-01-01

    OBJECTIVES: We studied hemodynamic changes leading to orthostatic vasovagal presyncope to determine whether changes of cerebral artery blood flow velocity precede or follow reductions of arterial pressure. BACKGROUND: Some evidence suggests that disordered cerebral autoregulation contributes to the occurrence of orthostatic vasovagal syncope. We studied cerebral hemodynamics with transcranial Doppler recordings, and we closely examined the temporal sequence of changes of cerebral artery blood flow velocity and systemic arterial pressure in 15 patients who did or did not faint during passive 70 degrees head-up tilt. METHODS: We recorded photoplethysmographic arterial pressure, RR intervals (electrocardiogram) and middle cerebral artery blood flow velocities (mean, total, mean/RR interval; Gosling's pulsatility index; and cerebrovascular resistance [mean cerebral velocity/mean arterial pressure, MAP]). RESULTS: Eight men developed presyncope, and six men and one woman did not. Presyncopal patients reported light-headedness, diaphoresis, or a sensation of fatigue 155 s (range: 25 to 414 s) before any cerebral or systemic hemodynamic change. Average cerebral blood flow velocity (CBFV) changes (defined by an iterative linear regression algorithm) began 67 s (range: 9 to 198 s) before reductions of MAP. Cerebral and systemic hemodynamic measurements remained constant in nonsyncopal patients. CONCLUSIONS: Presyncopal symptoms and CBFV changes precede arterial pressure reductions in patients with orthostatic vasovagal syncope. Therefore, changes of cerebrovascular regulation may contribute to the occurrence of vasovagal reactions.

  8. Instabilities, rheology and spontaneous flows in magnetotactic bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Alonso-Matilla, Roberto; Saintillan, David

    2017-11-01

    Magnetotactic bacteria are motile prokaryotes, mostly present in marine habitats, that synthesize intracellular magnetic membrane-bounded crystals known as magnetosomes. They behave as self-propelled permanent magnetic dipoles that orient and migrate along the geomagnetic field lines of the Earth. In this work, we analyze the macroscopic transport properties of suspensions of such bacteria in microfluidic devices. When placed in an external magnetic field, these microorganisms feel a net magnetic torque which is transmitted to the surrounding fluid, and can give rise to a net unidirectional fluid flow in a planar channel, with a flow rate and direction that can be controlled by adjusting both the magnitude and orientation of the external field. Using a continuum kinetic model, we provide a physical explanation for the onset of these spontaneous flows. We also study the rheological properties and stability of these suspensions in both an applied shear flow and a pressure-driven flow.

  9. Instabilities and spin-up behaviour of a rotating magnetic field driven flow in a rectangular cavity

    NASA Astrophysics Data System (ADS)

    Galindo, V.; Nauber, R.; Räbiger, D.; Franke, S.; Beyer, H.; Büttner, L.; Czarske, J.; Eckert, S.

    2017-11-01

    This study presents numerical simulations and experiments considering the flow of an electrically conducting fluid inside a cube driven by a rotating magnetic field (RMF). The investigations are focused on the spin-up, where a liquid metal (GaInSn) is suddenly exposed to an azimuthal body force generated by the RMF and the subsequent flow development. The numerical simulations rely on a semi-analytical expression for the induced electromagnetic force density in an electrically conducting medium inside a cuboid container with insulating walls. Velocity distributions in two perpendicular planes are measured using a novel dual-plane, two-component ultrasound array Doppler velocimeter with continuous data streaming, enabling long term measurements for investigating transient flows. This approach allows identifying the main emerging flow modes during the transition from stable to unstable flow regimes with exponentially growing velocity oscillations using the Proper Orthogonal Decomposition method. Characteristic frequencies in the oscillating flow regimes are determined in the super critical range above the critical magnetic Taylor number T ac≈1.26 ×1 05, where the transition from the steady double vortex structure of the secondary flow to an unstable regime with exponentially growing oscillations is detected. The mean flow structures and the temporal evolution of the flow predicted by the numerical simulations and observed in experiments are in very good agreement.

  10. In-flight flow visualization with pressure measurements at low speeds on the NASA F-18 high alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Delfrate, John H.; Fisher, David F.; Zuniga, Fanny A.

    1990-01-01

    In-flight results from surface and off-surface flow visualizations and from extensive pressure distributions document the vortical flow on the leading edge extensions (LEX) and forebody of the NASA F-18 high alpha research vehicle for low speeds and angles of attack up to 50 degs. Surface flow visualization data, obtained using the emitted fluid technique, were used to define separation lines and laminar separation bubbles. Off-surface flow visualization data, obtained by smoke injection, were used to document both the path of the vortex cores and the location of vortex core breakdown. The location of vortex core breakdown correlated well with the loss of suction pressure on the LEX and with the flow visualization results from ground facilities. Surface flow separation lines on the LEX and forebody corresponded well with the end of pressure recovery under the vortical flows. Correlation of the pressures with wind tunnel results show fair to good correlation.

  11. Balanced Flow Meters without Moving Parts

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R.; VanBuskirk, Paul

    2008-01-01

    Balanced flow meters are recent additions to an established class of simple, rugged flow meters that contain no moving parts in contact with flow and are based on measurement of pressure drops across objects placed in flow paths. These flow meters are highly accurate, minimally intrusive, easily manufacturable, and reliable. A balanced flow meter can be easily mounted in a flow path by bolting it between conventional pipe flanges. A balanced flow meter can be used to measure the flow of any of a variety of liquids or gases, provided that it has been properly calibrated. Relative to the standard orifice-plate flow meter, the balanced flow meter introduces less turbulence and two times less permanent pressure loss and is therefore capable of offering 10 times greater accuracy and repeatability with less dissipation of energy. A secondary benefit of the reduction of turbulence is the reduction of vibration and up to 15 times less acoustic noise generation. Both the balanced flow meter and the standard orifice-plate flow meter are basically disks that contain holes and are instrumented with pressure transducers on their upstream and downstream faces. The most obvious difference between them is that the standard orifice plate contains a single, central hole while the balanced flow meter contains multiple holes. The term 'balanced' signifies that in designing the meter, the sizes and locations of the holes are determined in an optimization procedure that involves balancing of numerous factors, including volumetric flow, mass flow, dynamic pressure, kinetic energy, all in an effort to minimize such undesired effects as turbulence, pressure loss, dissipation of kinetic energy, and non-repeatability and nonlinearity of response over the anticipated range of flow conditions. Due to proper balancing of these factors, recent testing demonstrated that the balanced flow-meter performance was similar to a Venturi tube in both accuracy and pressure recovery, but featured reduced

  12. Investigation on heat transfer characteristics and flow performance of Methane at supercritical pressures

    NASA Astrophysics Data System (ADS)

    Xian, Hong Wei; Oumer, A. N.; Basrawi, F.; Mamat, Rizalman; Abdullah, A. A.

    2018-04-01

    The aim of this study is to investigate the heat transfer and flow characteristic of cryogenic methane in regenerative cooling system at supercritical pressures. The thermo-physical properties of supercritical methane were obtained from the National institute of Standards and Technology (NIST) webbook. The numerical model was developed based on the assumptions of steady, turbulent and Newtonian flow. For mesh independence test and model validation, the simulation results were compared with published experimental results. The effect of four different performance parameter ranges namely inlet pressure (5 to 8 MPa), inlet temperature (120 to 150 K), heat flux (2 to 5 MW/m2) and mass flux (7000 to 15000 kg/m2s) on heat transfer and flow performances were investigated. It was found that the simulation results showed good agreement with experimental data with maximum deviation of 10 % which indicates the validity of the developed model. At low inlet temperature, the change of specific heat capacity at near-wall region along the tube length was not significant while the pressure drop registered was high. However, significant variation was observed for the case of higher inlet temperature. It was also observed that the heat transfer performance and pressure drop penalty increased when the mass flux was increased. Regarding the effect of inlet pressure, the heat transfer performance and pressure drop results decreased when the inlet pressure is increased.

  13. Navier-Stokes flow field analysis of compressible flow in a high pressure safety relief valve

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Wang, Ten-See; Shih, Ming-Hsin; Soni, Bharat

    1993-01-01

    The objective of this study is to investigate the complex three-dimensional flowfield of an oxygen safety pressure relieve valve during an incident, with a computational fluid dynamic (CFD) analysis. Specifically, the analysis will provide a flow pattern that would lead to the expansion of the eventual erosion pattern of the hardware, so as to combine it with other findings to piece together a most likely scenario for the investigation. The CFD model is a pressure based solver. An adaptive upwind difference scheme is employed for the spatial discretization, and a predictor, multiple corrector method is used for the velocity-pressure coupling. The computational result indicated vortices formation near the opening of the valve which matched the erosion pattern of the damaged hardware.

  14. Experimental and analytical dynamic flow characteristics of an axial-flow fan from an air cushion landing system model

    NASA Technical Reports Server (NTRS)

    Thompson, W. C.; Boghani, A. B.; Leland, T. J. W.

    1977-01-01

    An investigation was conducted to compare the steady-state and dynamic flow characteristics of an axial-flow fan which had been used previously as the air supply fan for some model air cushion landing system studies. Steady-state flow characteristics were determined in the standard manner by using differential orifice pressures for the flow regime from free flow to zero flow. In this same regime, a correlative technique was established so that fan inlet and outlet pressures could be used to measure dynamic flow as created by a rotating damper. Dynamic tests at damper frequencies up to 5 Hz showed very different flow characteristics when compared with steady-state flow, particularly with respect to peak pressures and the pressure-flow relationship at fan stall and unstall. A generalized, rational mathematical fan model was developed based on physical fan parameters and a steady-state flow characteristic. The model showed good correlation with experimental tests at damper frequencies up to 5 Hz.

  15. A microcomputer model for simulating pressurized flow in a storm sewer system : final report.

    DOT National Transportation Integrated Search

    1989-01-01

    A review was made of several computer programs capable of simulating sewer flows under surcharge or pressurized flow conditions. A modified version of the EXTRAN module of the SYMM model, called PFSM, was developed and attached to the FHYA Pooled Fun...

  16. Length and time for development of laminar flow in tubes following a step increase of volume flux

    NASA Astrophysics Data System (ADS)

    Chaudhury, Rafeed A.; Herrmann, Marcus; Frakes, David H.; Adrian, Ronald J.

    2015-01-01

    Laminar flows starting up from rest in round tubes are relevant to numerous industrial and biomedical applications. The two most common types are flows driven by an abruptly imposed constant pressure gradient or by an abruptly imposed constant volume flux. Analytical solutions are available for transient, fully developed flows, wherein streamwise development over the entrance length is absent (Szymanski in J de Mathématiques Pures et Appliquées 11:67-107, 1932; Andersson and Tiseth in Chem Eng Commun 112(1):121-133, 1992, respectively). They represent the transient responses of flows in tubes that are very long compared with the entrance length, a condition that is seldom satisfied in biomedical tube networks. This study establishes the entrance (development) length and development time of starting laminar flow in a round tube of finite length driven by a piston pump that produces a step change from zero flow to a constant volume flux for Reynolds numbers between 500 and 3,000. The flows are examined experimentally, using stereographic particle image velocimetry and computationally using computational fluid dynamics, and are then compared with the known analytical solutions for fully developed flow conditions in infinitely long tubes. Results show that step function volume flux start-up flows reach steady state and fully developed flow five times more quickly than those driven by a step function pressure gradient, a 500 % change when compared with existing estimates. Based on these results, we present new, simple guidelines for achieving experimental flows that are fully developed in space and time in realistic (finite) tube geometries. To a first approximation, the time to achieve steady spatially developing flow is nearly equal to the time needed to achieve steady, fully developed flow. Conversely, the entrance length needed to achieve fully developed transient flow is approximately equal to the length needed to achieve fully developed steady flow. Beyond this

  17. An Experimental Study of Continuous Plasma Flows Driven by a Confined Arc in a Transverse Magnetic Field

    NASA Technical Reports Server (NTRS)

    Barger, R. L.; Brooks, J. D.; Beasley, W. D.

    1961-01-01

    A crossed-field, continuous-flow plasma accelerator has been built and operated. The highest measured velocity of the flow, which was driven by the interaction of the electric and magnetic fields, was about 500 meters per second. Some of the problems discussed are ion slip, stability and uniformity of the discharge, effect of the magnetic field on electron emission, use of preionization, and electrode contamination.

  18. Pressure- and flow-controlled media perfusion differently modify vascular mechanics in lung decellularization.

    PubMed

    da Palma, Renata K; Campillo, Noelia; Uriarte, Juan J; Oliveira, Luis V F; Navajas, Daniel; Farré, Ramon

    2015-09-01

    Organ biofabrication is a potential future alternative for obtaining viable organs for transplantation. Achieving intact scaffolds to be recellularized is a key step in lung bioengineering. Perfusion of decellularizing media through the pulmonary artery has shown to be effective. How vascular perfusion pressure and flow vary throughout lung decellularization, which is not well known, is important for optimizing the process (minimizing time) while ensuring scaffold integrity (no barotrauma). This work was aimed at characterizing the pressure/flow relationship at the pulmonary vasculature and at how effective vascular resistance depends on pressure- and flow-controlled variables when applying different methods of media perfusion for lung decellularization. Lungs from 43 healthy mice (C57BL/6; 7-8 weeks old) were investigated. After excision and tracheal cannulation, lungs were inflated at 10 cmH2O airway pressure and subjected to conventional decellularization with a solution of 1% sodium dodecyl sulfate (SDS). Pressure (PPA) and flow (V'PA) at the pulmonary artery were continuously measured. Decellularization media was perfused through the pulmonary artery: (a) at constant PPA=20 cmH2O or (b) at constant V'PA=0.5 and 0.2 ml/min. Effective vascular resistance was computed as Rv=PPA/V'PA. Rv (in cmH2O/(ml/min)); mean±SE) considerably varied throughout lung decellularization, particularly for pressure-controlled perfusion (from 29.1±3.0 in baseline to a maximum of 664.1±164.3 (p<0.05), as compared with flow-controlled perfusion (from 49.9±3.3 and 79.5±5.1 in baseline to a maximum of 114.4±13.9 and 211.7±70.5 (p<0.05, both), for V'PA of 0.5 and 0.2 ml/min respectively. Most of the media infused to the pulmonary artery throughout decellularization circulated to the airways compartment across the alveolar-capillary membrane. This study shows that monitoring perfusion mechanics throughout decellularization provides information relevant for optimizing the process

  19. UV DRIVEN EVAPORATION OF CLOSE-IN PLANETS: ENERGY-LIMITED, RECOMBINATION-LIMITED, AND PHOTON-LIMITED FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, James E.; Alvarez, Marcelo A., E-mail: jowen@ias.edu

    2016-01-01

    We have investigated the evaporation of close-in exoplanets irradiated by ionizing photons. We find that the properties of the flow are controlled by the ratio of the recombination time to the flow timescale. When the recombination timescale is short compared to the flow timescale, the flow is in approximate local ionization equilibrium with a thin ionization front where the photon mean free path is short compared to the flow scale. In this “recombination-limited” flow the mass-loss scales roughly with the square root of the incident flux. When the recombination time is long compared to the flow timescale the ionization frontmore » becomes thick and encompasses the entire flow with the mass-loss rate scaling linearly with flux. If the planet's potential is deep, then the flow is approximately “energy-limited”; however, if the planet's potential is shallow, then we identify a new limiting mass-loss regime, which we term “photon-limited.” In this scenario, the mass-loss rate is purely limited by the incoming flux of ionizing photons. We have developed a new numerical approach that takes into account the frequency dependence of the incoming ionizing spectrum and performed a large suite of 1D simulations to characterize UV driven mass-loss around low-mass planets. We find that the flow is “recombination-limited” at high fluxes but becomes “energy-limited” at low fluxes; however, the transition is broad occurring over several orders of magnitude in flux. Finally, we point out that the transitions between the different flow types do not occur at a single flux value but depend on the planet's properties, with higher-mass planets becoming “energy-limited” at lower fluxes.« less

  20. Transient flow analysis linked to fast pressure disturbance monitored in pipe systems

    NASA Astrophysics Data System (ADS)

    Kueny, J. L.; Lourenco, M.; Ballester, J. L.

    2012-11-01

    EDF Hydro Division has launched the RENOUVEAU program in order to increase performance and improve plant availability through anticipation. Due to this program, a large penstocks fleet is equipped with pressure transducers linked to a special monitoring system. Any significant disturbance of the pressure is captured in a snapshot and the waveform of the signal is stored and analyzed. During these transient states, variations in flow are unknown. In order to determine the structural impact of such overpressure occurring during complex transients conditions over the entire circuit, EDF DTG has asked ENSE3 GRENOBLE to develop a code called ACHYL CF*. The input data of ACHYL CF are circuit topology and pressure boundaries conditions. This article provide a description of the computer code developed for modeling the transient flow in a pipe network using the signals from pressure transducers as boundary conditions. Different test cases will be presented, simulating real hydro power plants for which measured pressure signals are available.