Sample records for flow previous studies

  1. Low-flow frequency and flow duration of selected South Carolina streams in the Broad River basin through March 2008

    USGS Publications Warehouse

    Guimaraes, Wladmir B.; Feaster, Toby D.

    2010-01-01

    Of the 23 streamgaging stations for which recurrence interval computations were made, 14 had low-flow statistics that were published in previous U.S. Geological Survey reports. A comparison of the low-flow statistics for the minimum mean flow for a 7-consecutive-day period with a 10-year recurrence interval (7Q10) from this study with the most recently published values indicated that 8 of the 14 streamgaging stations had values that were within plus or minus 25 percent of the previous value. Ten of the 14 streamgaging stations had negative percent differences indicating the low-flow statistic had decreased since the previous study, and 4 streamgaging stations had positive percent differences indicating that the low-flow statistic had increased since the previous study. The low-flow statistics are influenced by length of record, hydrologic regime under which the record was collected, techniques used to do the analysis, and other changes, such as urbanization, diversions, and so on, that may have occurred in the basin.

  2. Pulsatile flow in ventricular catheters for hydrocephalus

    NASA Astrophysics Data System (ADS)

    Giménez, Á.; Galarza, M.; Thomale, U.; Schuhmann, M. U.; Valero, J.; Amigó, J. M.

    2017-05-01

    The obstruction of ventricular catheters (VCs) is a major problem in the standard treatment of hydrocephalus, the flow pattern of the cerebrospinal fluid (CSF) being one important factor thereof. As a first approach to this problem, some of the authors studied previously the CSF flow through VCs under time-independent boundary conditions by means of computational fluid dynamics in three-dimensional models. This allowed us to derive a few basic principles which led to designs with improved flow patterns regarding the obstruction problem. However, the flow of the CSF has actually a pulsatile nature because of the heart beating and blood flow. To address this fact, here we extend our previous computational study to models with oscillatory boundary conditions. The new results will be compared with the results for constant flows and discussed. It turns out that the corrections due to the pulsatility of the CSF are quantitatively small, which reinforces our previous findings and conclusions. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  3. Feedback systems for nontraditional medicines: a case for the signal flow diagram.

    PubMed

    Tice, B S

    1998-11-01

    The signal flow diagram is a graphic method used to represent complex data that is found in the field of biology and hence the field of medicine. The signal flow diagram is analyzed against a table of data and a flow chart of data and evaluated on the clarity and simplicity of imparting this information. The data modeled is from previous clinical studies and nontraditional medicine from Africa, China, and South America. This report is a development from previous presentations of the signal flow diagram.1-4

  4. Reaction patterns in a blinking vortex flow

    NASA Astrophysics Data System (ADS)

    Nugent, Carolyn

    2005-11-01

    We study the patterns formed by the excitable Belousov-Zhabotinsky reaction in a blinking vortex flow produced by magnetohydrodynamic forcing. Mixing in this flow is chaotic, as has been documented extensively in previous studies. The reaction is triggered by a silver wire, and the result is a pulse (``trigger wave'') that propagates through the system. We investigate the patterns formed by the propagating pulse and compare them with theoriesootnotetextT. Tel, A. de Moura, C. Grebogi and G. Karolyi, Phys. Rep. 413, 91 (2005). that predict fractal patterns determined by the unstable manifolds of the flow. We also consider ``burn-like'' reaction fronts, and compare the results with previous experiments for patterns of oscillatory reactions in this flow.

  5. Antecedent flow conditions and nitrate concentrations in the Mississippi River basin

    USGS Publications Warehouse

    Murphy, Jennifer C.; Hirsch, Robert M.; Sprague, Lori A.

    2014-01-01

    The relationship between antecedent flow conditions and nitrate concentrations was explored at eight sites in the 2.9 million square kilometers (km2) Mississippi River basin, USA. Antecedent flow conditions were quantified as the ratio between the mean daily flow of the previous year and the mean daily flow from the period of record (Qratio), and the Qratio was statistically related to nitrate anomalies (the unexplained variability in nitrate concentration after filtering out season, long-term trend, and contemporaneous flow effects) at each site. Nitrate anomaly and Qratio were negatively related at three of the four major tributary sites and upstream in the Mississippi River, indicating that when mean daily streamflow during the previous year was lower than average, nitrate concentrations were higher than expected. The strength of these relationships increased when data were subdivided by contemporaneous flow conditions. Five of the eight sites had significant negative relationships (p ≤ 0.05) at high or moderately high contemporaneous flows, suggesting nitrate that accumulates in these basins during a drought is flushed during subsequent high flows. At half of the sites, when mean daily flow during the previous year was 50 percent lower than average, nitrate concentration can be from 9 to 27 percent higher than nitrate concentrations that follow a year with average mean daily flow. Conversely, nitrate concentration can be from 8 to 21 percent lower than expected when flow during the previous year was 50 percent higher than average. Previously documented for small, relatively homogenous basins, our results suggest that relationships between antecedent flows and nitrate concentrations are also observable at a regional scale. Relationships were not observed (using all contemporaneous flow data together) for basins larger than 1 million km2, suggesting that above this limit the overall size and diversity within these basins may necessitate the use of more complicated statistical approaches or that there may be no discernible basin-wide relationship with antecedent flow. The relationships between nitrate concentration and Qratio identified in this study serve as the basis for future studies that can better define specific hydrologic processes occurring during and after a drought (or high flow period) which influence nitrate concentration, such as the duration or magnitude of low flows, and the timing of low and high flows.

  6. Low-flow frequency and flow duration of selected South Carolina streams in the Savannah and Salkehatchie River Basins through March 2014

    USGS Publications Warehouse

    Feaster, Toby D.; Guimaraes, Wladmir B.

    2016-07-14

    An ongoing understanding of streamflow characteristics of the rivers and streams in South Carolina is important for the protection and preservation of the State’s water resources. Information concerning the low-flow characteristics of streams is especially important during critical flow periods, such as during the historic droughts that South Carolina has experienced in the past few decades.In 2008, the U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control, initiated a study to update low-flow statistics at continuous-record streamgaging stations operated by the U.S. Geological Survey in South Carolina. This report presents the low-flow statistics for 28 selected streamgaging stations in the Savannah and Salkehatchie River Basins in South Carolina. The low-flow statistics include daily mean flow durations for the 5-, 10-, 25-, 50-, 75-, 90-, and 95-percent probability of exceedance and the annual minimum 1-, 3-, 7-, 14-, 30-, 60-, and 90-day mean flows with recurrence intervals of 2, 5, 10, 20, 30, and 50 years, depending on the length of record available at the streamgaging station. The low-flow statistics were computed from records available through March 31, 2014.Low-flow statistics are influenced by length of record, hydrologic regime under which the data were collected, analytical techniques used, and other factors, such as urbanization, diversions, and droughts that may have occurred in the basin. To assess changes in the low-flow statistics from the previously published values, a comparison of the low-flow statistics for the annual minimum 7-day average streamflow with a 10-year recurrence interval (7Q10) from this study was made with the most recently published values. Of the 28 streamgaging stations for which recurrence interval computations were made, 14 streamgaging stations were suitable for comparing to low-flow statistics that were previously published in U.S. Geological Survey reports. These comparisons indicated that seven of the streamgaging stations had values lower than the previous values, two streamgaging stations had values higher than the previous values, and two streamgaging stations had values that were unchanged from previous values. The remaining three stations for which previous 7Q10 values were computed, which are located on the main stem of the Savannah River, were not compared with current estimates because of differences in the way the pre-regulation and regulated flow data were analyzed.

  7. Post-exercise blood flow restriction attenuates hyperemia similarly in males and females.

    PubMed

    Dankel, Scott J; Mouser, J Grant; Jessee, Matthew B; Mattocks, Kevin T; Buckner, Samuel L; Loenneke, Jeremy P

    2017-08-01

    Our laboratory recently demonstrated that post-exercise blood flow restriction attenuated muscle hypertrophy only in females, which we hypothesized may be due to alterations in post-exercise blood flow. The aim of this study is to test our previous hypothesis that sex differences in blood flow would exist when employing the same protocol. Twenty-two untrained individuals (12 females; 10 males) performed two exercise sessions, each involving one set of elbow flexion exercise to volitional failure on the right arm. The experimental condition had blood flow restriction applied for a 3 min post-exercise period, whereas the control condition did not. Blood flow was measured using an ultrasound at the brachial artery and was taken 1 and 4 min post-exercise. This corresponded to 1 min post inflation and 1 min post deflation in the experimental condition. There were no differences in the alterations in blood flow between the control and experimental conditions when examined across sex. Increases in blood flow [mean (standard deviation)] were as follows: males 1 min [control 764 (577) %; experimental 113 (108) %], males 4 min [control 346 (313) %; experimental 449 (371) %], females 1 min [control 558 (367) %; experimental 87 (105) %], and females 4 min [control 191 (183) %; experimental 328 (223) %]. It does not appear that the sex-specific attenuation of muscle hypertrophy we observed previously can be attributed to different alterations in post-exercise blood flow. Future studies may wish to replicate our previous training study, or examine alternative mechanisms which may be sex specific.

  8. Criterion for Identifying Vortices in High-Pressure Flows

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Okong'o, Nora

    2007-01-01

    A study of four previously published computational criteria for identifying vortices in high-pressure flows has led to the selection of one of them as the best. This development can be expected to contribute to understanding of high-pressure flows, which occur in diverse settings, including diesel, gas turbine, and rocket engines and the atmospheres of Jupiter and other large gaseous planets. Information on the atmospheres of gaseous planets consists mainly of visual and thermal images of the flows over the planets. Also, validation of recently proposed computational models of high-pressure flows entails comparison with measurements, which are mainly of visual nature. Heretofore, the interpretation of images of high-pressure flows to identify vortices has been based on experience with low-pressure flows. However, high-pressure flows have features distinct from those of low-pressure flows, particularly in regions of high pressure gradient magnitude caused by dynamic turbulent effects and by thermodynamic mixing of chemical species. Therefore, interpretations based on low-pressure behavior may lead to misidentification of vortices and other flow structures in high-pressure flows. The study reported here was performed in recognition of the need for one or more quantitative criteria for identifying coherent flow structures - especially vortices - from previously generated flow-field data, to complement or supersede the determination of flow structures by visual inspection of instantaneous fields or flow animations. The focus in the study was on correlating visible images of flow features with various quantities computed from flow-field data.

  9. Low-flow frequency and flow duration of selected South Carolina streams in the Pee Dee River basin through March 2007

    USGS Publications Warehouse

    Feaster, Toby D.; Guimaraes, Wladmir B.

    2009-01-01

    Part of the mission of the South Carolina Department of Health and Environmental Control and the South Carolina Department of Natural Resources is to protect and preserve South Carolina's water resources. Doing so requires an ongoing understanding of streamflow characteristics of the rivers and streams in South Carolina. A particular need is information concerning the low-flow characteristics of streams; this information is especially important for effectively managing the State's water resources during critical flow periods such as the severe drought that occurred between 1998 and 2002 and the most recent drought that occurred between 2006 and 2009. In 2008, the U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control, initiated a study to update low-flow statistics at continuous-record streamgaging stations operated by the U.S. Geological Survey in South Carolina. Under this agreement, the low-flow characteristics at continuous-record streamgaging stations will be updated in a systematic manner during the monitoring and assessment of the eight major basins in South Carolina as defined and grouped according to the South Carolina Department of Health and Environmental Control's Watershed Water Quality Management Strategy. Depending on the length of record available at the continuous-record streamgaging stations, low-flow frequency characteristics are estimated for annual minimum 1-, 3-, 7-, 14-, 30-, 60-, and 90-day average flows with recurrence intervals of 2, 5, 10, 20, 30, and 50 years. Low-flow statistics are presented for 18 streamgaging stations in the Pee Dee River basin. In addition, daily flow durations for the 5-, 10-, 25-, 50-, 75-, 90-, and 95-percent probability of exceedance also are presented for the stations. The low-flow characteristics were computed from records available through March 31, 2007. The last systematic update of low-flow characteristics in South Carolina occurred more than 20 years ago and included data through March 1987. Of the 17 streamgaging stations included in this study, 15 had low-flow characteristics that were published in previous U.S. Geological Survey reports. A comparison of the low-flow characteristic for the minimum average flow for a 7-consecutive-day period with a 10-year recurrence interval from this study with the most recently published values indicated that 10 of the 15 streamgaging stations had values that were within ±25 percent of each other. Nine of the 15 streamgaging stations had negative percentage differences indicating the low-flow statistic had decreased since the previous study, 4 streamgaging stations had positive percent differences indicating that the low-flow statistic had increased since the previous study, and 2 streamgaging stations had a zero percent difference indicating no change since the previous study. The low-flow characteristics are influenced by length of record, hydrologic regime under which the record was collected, techniques used to do the analysis, and other changes that may have occurred in the watershed.

  10. Heat flow and near-surface radioactivity in the Australian continental crust

    USGS Publications Warehouse

    Sass, J.H.; Jaeger, J.C.; Munroe, Robert J.

    1976-01-01

    Heat-flow data have been obtained at 44 sites in various parts of Australia. These include seven sites from the old (~ 2500 m.y.) Precambrian shield of Western Australia, seventeen from the younger (~ 600- 2000 m.y.) Precambrian rocks of South Australia, the Northern Territory, and Queensland, and twenty within the eastern Paleozoic and younger rocks. Thirty of the sites are located where no previous heat-flow data existed, and the remainder provide significant extensions or refinements of areas previously studied. Where the holes studied penetrated the crystalline basement rocks, or where the latter rocks were exposed within a few kilometers of the holes, the upper crustal radiogenic heat production has been estimated based on gamma-ray spectrometric determinations of U, Th, and K abundances. Three heat-flow provinces are recognized in Australia based on the linear relation (q = q* + DA0 ) between heat flow q and surface radioactivity A0. New data from the Western Australian shield support earlier studies showing that heat flow is low to normal with values ranging from 0.7 to 1.2 hfu and with the majority of values less than 1.0 hfu, and the parameters q* = 0.63 hfu and 0 = 4.5 km determined previously were confirmed. Heat flow in the Proterozoic shield of central Australia is quite variable, with values ranging between about l and 3 hfu. This variability is attributed mainly to variations in near-surface crustal radioactivity. The parameters of the heat-flow line are q* = 0.64 hfu and 0 = 11.1 km and moderately high temperatures are predicted for the lower crust and upper mantle. Previous suggestions of a band of l ow- to - normal heat flow near the coast in eastern Australia were confirmed in some areas, but the zone is interrupted in at least one region (the Sydney Basin), where heat flow is about 2.0 hfu over a large area. The reduced heat flow, q*, in the Paleozoic intrusive rocks of eastern Australia varies from about 0.8 to 2.0 hfu . This variability might be related to thermal transients associated with Late Tertiary and younger volcanic and tectonic activity, even though the relation between heat-flow values and the age of volcanism is not a simple one. Parts of the high heat-flow area in the southeast might be exploitable for geothermal energy.

  11. Worse than imagined: Unidentified virtual water flows in China.

    PubMed

    Cai, Beiming; Wang, Chencheng; Zhang, Bing

    2017-07-01

    The impact of virtual water flows on regional water scarcity in China had been deeply discussed in previous research. However, these studies only focused on water quantity, the impact of virtual water flows on water quality has been largely neglected. In this study, we incorporate the blue water footprint related with water quantity and grey water footprint related with water quality into virtual water flow analysis based on the multiregional input-output model of 2007. The results find that the interprovincial virtual flows accounts for 23.4% of China's water footprint. The virtual grey water flows are 8.65 times greater than the virtual blue water flows; the virtual blue water and grey water flows are 91.8 and 794.6 Gm 3 /y, respectively. The use of the indicators related with water quantity to represent virtual water flows in previous studies will underestimate their impact on water resources. In addition, the virtual water flows are mainly derived from agriculture, chemical industry and petroleum processing and the coking industry, which account for 66.8%, 7.1% and 6.2% of the total virtual water flows, respectively. Virtual water flows have intensified both quantity- and quality-induced water scarcity of export regions, where low-value-added but water-intensive and high-pollution goods are produced. Our study on virtual water flows can inform effective water use policy for both water resources and water pollution in China. Our methodology about virtual water flows also can be used in global scale or other countries if data available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Flow of two immiscible fluids in a periodically constricted tube: Transitions to stratified, segmented, churn, spray or segregated flow

    NASA Astrophysics Data System (ADS)

    Tsamopoulos, John; Fraggedakis, Dimitris; Dimakopoulos, Yiannis

    2015-11-01

    We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our Volume-of-Fluid algorithm is used to solve the governing equations. First the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results (Cohen et al. (1999)). Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our results provide deeper insights in the mechanism of the pattern transitions and are in agreement with previous studies on core-annular flow (Kouris & Tsamopoulos (2001 & 2002)), segmented flow (Lac & Sherwood (2009)) and churn flow (Bai et al. (1992)). GSRT of Greece through the program ``Excellence'' (Grant No. 1918, entitled ``FilCoMicrA'').

  13. Three-dimensional particle tracking in concave structures made by ultraviolet nanoimprint via total internal reflection fluorescence microscopy and refractive-index-matching method

    NASA Astrophysics Data System (ADS)

    Fujinami, Taku; Kigami, Hiroshi; Unno, Noriyuki; Taniguchi, Jun; Satake, Shin-ichi

    2018-06-01

    Total internal reflection fluorescence microscopy (TIRFM) is a promising method for measuring fluid flow close to a wall with nanoscale resolution in a process that is termed "multilayer nanoparticle image velocimetry" (MnPIV). TIRFM uses evanescent light that is generated on a substrate (typically a glass slide) by total internal reflection of light. Many researchers have previously studied x- y- z (3D) flows of water close to flat glass slides using MnPIV. On the other hand, a fluid flow close to a structured surface is also important. To measure flows of water near micro-patterns, we previously developed an MnPIV technique that uses a refractive-index-matching method. In previous study, the micropattern is made of a thermoplastic material with a refractive index that closely matches that of water. In this study, ultraviolet nanoimprint lithography was used for fabricating the appropriate micro-patterns because this technique can fabricate a pattern with a high resolution. As a result, we succeeded in performing MnPIV in water with a circular hole array pattern made by ultraviolet nanoimprint using a refractive-index-matching method. We believe that this technique will be helpful in elucidating fluid flows around microstructures.

  14. Three-dimensional particle tracking in concave structures made by ultraviolet nanoimprint via total internal reflection fluorescence microscopy and refractive-index-matching method

    NASA Astrophysics Data System (ADS)

    Fujinami, Taku; Kigami, Hiroshi; Unno, Noriyuki; Taniguchi, Jun; Satake, Shin-ichi

    2018-03-01

    Total internal reflection fluorescence microscopy (TIRFM) is a promising method for measuring fluid flow close to a wall with nanoscale resolution in a process that is termed "multilayer nanoparticle image velocimetry" (MnPIV). TIRFM uses evanescent light that is generated on a substrate (typically a glass slide) by total internal reflection of light. Many researchers have previously studied x-y-z (3D) flows of water close to flat glass slides using MnPIV. On the other hand, a fluid flow close to a structured surface is also important. To measure flows of water near micro-patterns, we previously developed an MnPIV technique that uses a refractive-index-matching method. In previous study, the micropattern is made of a thermoplastic material with a refractive index that closely matches that of water. In this study, ultraviolet nanoimprint lithography was used for fabricating the appropriate micro-patterns because this technique can fabricate a pattern with a high resolution. As a result, we succeeded in performing MnPIV in water with a circular hole array pattern made by ultraviolet nanoimprint using a refractive-index-matching method. We believe that this technique will be helpful in elucidating fluid flows around microstructures.

  15. Bedforms formed by experimental supercritical density flows

    NASA Astrophysics Data System (ADS)

    Naruse, Hajime; Izumi, Norihiro; Yokokawa, Miwa; Muto, Tetsuji

    2014-05-01

    This study reveals characteristics and formative conditions of bedforms produced by saline density flows in supercritical flow conditions, especially focusing on the mechanism of the formation of plane bed. The motion of sediment particles forming bedforms was resolved by high-speed cameras (1/1000 frame/seconds). Experimental density flows were produced by mixtures of salt water (1.01-1.04 in density) and plastic particles (1.5 in specific density, 140 or 240 mm in diameter). Salt water and plastic particles are analogue materials of muddy water and sand particles in turbidity currents respectively. Acrylic flume (4.0 m long, 2.0 cm wide and 0.5 m deep) was submerged in an experimental tank (6.0 m long, 1.8 m wide and 1.2 m deep) that was filled by clear water. Features of bedforms were observed when the bed state in the flume reached equilibrium condition. The experimental conditions range 1.5-4.2 in densimetric Froude number and 0.2-0.8 in Shields dimensionless stress. We report the two major discoveries as a result of the flume experiments: (1) Plane bed under Froude-supercritical flows and (2) Geometrical characteristics of cyclic steps formed by density flows. (1) Plane bed was formed under the condition of supercritical flow regime. In previous studies, plane bed has been known to be formed by subcritical unidirectional flows (ca. 0.8 in Froude number). However, this study implies that plane bed can also be formed by supercritical conditions with high Shields dimensionless stress (>0.4) and very high Froude number (> 4.0). This discovery may suggest that previous estimations of paleo-hydraulic conditions of parallel lamination in turbidites should be reconsidered. The previous experimental studies and data from high-speed camera suggest that the region of plane bed formation coincides with the region of the sheet flow developments. The particle transport in sheet flow (thick bedload layer) induces transform of profile of flow shear stress, which may be related with the formation of the plane bed. (2) This study also revealed geometrical characteristics of cyclic steps. Cyclic step is a type of bedform that is frequently observed in flanks of submarine levees. This study proved that cyclic steps of density flows show different geometry to those formed by open channel flows. Cyclic steps formed by open channel flows have generally asymmetrical geometry in which lee side is short, whereas cyclic steps formed by density flows are relatively symmetrical and varies their morphology remarkably depending on flow conditions.

  16. Processing of Egomotion-Consistent Optic Flow in the Rhesus Macaque Cortex

    PubMed Central

    Cottereau, Benoit R.; Smith, Andrew T.; Rima, Samy; Fize, Denis; Héjja-Brichard, Yseult; Renaud, Luc; Lejards, Camille; Vayssière, Nathalie; Trotter, Yves; Durand, Jean-Baptiste

    2017-01-01

    Abstract The cortical network that processes visual cues to self-motion was characterized with functional magnetic resonance imaging in 3 awake behaving macaques. The experimental protocol was similar to previous human studies in which the responses to a single large optic flow patch were contrasted with responses to an array of 9 similar flow patches. This distinguishes cortical regions where neurons respond to flow in their receptive fields regardless of surrounding motion from those that are sensitive to whether the overall image arises from self-motion. In all 3 animals, significant selectivity for egomotion-consistent flow was found in several areas previously associated with optic flow processing, and notably dorsal middle superior temporal area, ventral intra-parietal area, and VPS. It was also seen in areas 7a (Opt), STPm, FEFsem, FEFsac and in a region of the cingulate sulcus that may be homologous with human area CSv. Selectivity for egomotion-compatible flow was never total but was particularly strong in VPS and putative macaque CSv. Direct comparison of results with the equivalent human studies reveals several commonalities but also some differences. PMID:28108489

  17. Experimental study of starting plumes simulating cumulus cloud flows in the atmosphere

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, Duvvuri; Sreenivas, K. R.; Bhat, G. S.; Diwan, S. S.; Narasimha, Roddam

    2009-11-01

    Turbulent jets and plumes subjected to off-source volumetric heating have been studied experimentally and numerically by Narasimha and co-workers and others over the past two decades. The off-source heating attempts to simulate the latent heat release that occurs in cumulus clouds on condensation of water vapour. This heat release plays a crucial role in determining the overall cloud shape among other things. Previous studies investigated steady state jets and plumes that had attained similarity upstream of heat injection. A better understanding and appreciation of the fluid dynamics of cumulus clouds should be possible by study of starting plumes. Experiments have been set up at JNCASR (Bangalore) using experimental techniques developed previously but incorporating various improvements. Till date, experiments have been performed on plumes at Re of 1000 and 2250, with three different heating levels in each case. Axial sections of the flow have been studied using standard PLIF techniques. The flow visualization provides us with data on the temporal evolution of the starting plume. It is observed that the broad nature of the effect of off-source heating on the starting plumes is generally consistent with the results obtained previously on steady state flows. More complete results and a critical discussion will be presented at the upcoming meeting.

  18. Impact of finite rate chemistry on the hydrodynamic stability of shear flows in turbulent lean premixed combustion

    NASA Astrophysics Data System (ADS)

    Dagan, Yuval; Ghoniem, Ahmed

    2017-11-01

    Recent experimental observations show that the dynamic response of a reactive flow is strongly impacted by the fuel chemistry. In order to gain insight into some of the underlying mechanisms we formulate a new linear stability model that incorporates the impact of finite rate chemistry on the hydrodynamic stability of shear flows. Contrary to previous studies which typically assume that the velocity field is independent of the kinetic rates, the velocity field in our study is coupled with the temperature field. Using this formulation, we reproduce previous results, e.g., most unstable global modes, obtained for non-reacting shear flow. Moreover, we show that these modes are significantly altered in frequency and gain by the presence of a reaction region within the shear layer. This qualitatively agrees with results of our recent experimental and numerical studies, which show that the flame surface location relative to the shear layer influences the stability characteristics in combustion tunnels. This study suggests a physical explanation for the observed impact of finite rate chemistry on shear flow stability.

  19. Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer

    NASA Astrophysics Data System (ADS)

    Yang, Juan-Cheng; Li, Feng-Chen; Cai, Wei-Hua; Zhang, Hong-Na; Yu, Bo

    2015-08-01

    Our previous experimental studies have confirmed that viscoelastic-fluid-based nanofluid (VFBN) prepared by suspending nanoparticles in a viscoelastic base fluid (VBF, behaves drag reduction at turbulent flow state) can reduce turbulent flow resistance as compared with water and enhance heat transfer as compared with VBF. Direct numerical simulation (DNS) is performed in this study to explore the mechanisms of heat transfer enhancement (HTE) and flow drag reduction (DR) for the VFBN turbulent flow. The Giesekus model is used as the constitutive equation for VFBN. Our previously proposed thermal dispersion model is adopted to take into account the thermal dispersion effects of nanoparticles in the VFBN turbulent flow. The DNS results show similar behaviors for flow resistance and heat transfer to those obtained in our previous experiments. Detailed analyses are conducted for the turbulent velocity, temperature, and conformation fields obtained by DNSs for different fluid cases, and for the friction factor with viscous, turbulent, and elastic contributions and heat transfer rate with conductive, turbulent and thermal dispersion contributions of nanoparticles, respectively. The mechanisms of HTE and DR of VFBN turbulent flows are then discussed. Based on analogy theory, the ratios of Chilton-Colburn factor to friction factor for different fluid flow cases are investigated, which from another aspect show the significant enhancement in heat transfer performance for some cases of water-based nanofluid and VFBN turbulent flows. Project supported by the National Natural Science Foundation of China (Grant No. 51276046), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112302110020), the China Postdoctoral Science Foundation (Grant No. 2014M561037), and the President Fund of University of Chinese Academy of Sciences, China (Grant No. Y3510213N00).

  20. A Detailed Study and Synthesis of Flow Observables in the IP-Glasma+MUSIC+UrQMD Framework

    NASA Astrophysics Data System (ADS)

    McDonald, Scott; Shen, Chun; Fillion-Gourdeau, François; Jeon, Sangyong; Gale, Charles

    2017-11-01

    In this work we use the IP-Glasma+MUSIC+UrQMD framework to systematically study a wide range of hadronic flow observables at 2.76 TeV. In addition to the single particle spectra and anisotropic flow coefficients vn previously studied in [S. McDonald, C. Shen, F. Fillion-Gourdeau, S. Jeon and C. Gale, arxiv:arXiv:1609.02958 [hep-ph

  1. Seed Cotton Mass Flow Measurement in the Gin

    USDA-ARS?s Scientific Manuscript database

    Seed cotton mass flow measurement is necessary for the development of improved gin process control systems that can increase gin efficiency and improve fiber quality. Previous studies led to the development of a seed cotton mass flow rate sensor based on the static pressure drop across the blowbox, ...

  2. Control of Flow Structure in Square Cross-Sectioned U Bend using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Yavuz, Mehmet Metin; Guden, Yigitcan

    2014-11-01

    Due to the curvature in U-bends, the flow development involves complex flow structures including Dean vortices and high levels of turbulence that are quite critical in considering noise problems and structural failure of the ducts. Computational fluid dynamic (CFD) models are developed using ANSYS Fluent to analyze and to control the flow structure in a square cross-sectioned U-bend with a radius of curvature Rc/D = 0.65. The predictions of velocity profiles on different angular positions of the U-bend are compared against the experimental results available in the literature and the previous numerical studies. The performances of different turbulence models are evaluated to propose the best numerical approach that has high accuracy with reduced computation time. The numerical results of the present study indicate improvements with respect to the previous numerical predictions and very good agreement with the available experimental results. In addition, a flow control technique is utilized to regulate the flow inside the bend. The elimination of Dean vortices along with significant reduction in turbulence levels in different cross flow planes are successfully achieved when the flow control technique is applied. The project is supported by Meteksan Defense Industries, Inc.

  3. Influence of system size and solvent flow on the distribution of wormlike micelles in a contraction-expansion geometry

    NASA Astrophysics Data System (ADS)

    Stukan, M. R.; Boek, E. S.; Padding, J. T.; Crawshaw, J. P.

    2008-05-01

    Viscoelastic wormlike micelles are formed by surfactants assembling into elongated cylindrical structures. These structures respond to flow by aligning, breaking and reforming. Their response to the complex flow fields encountered in porous media is particularly rich. Here we use a realistic mesoscopic Brownian Dynamics model to investigate the flow of a viscoelastic surfactant (VES) fluid through individual pores idealized as a step expansion-contraction of size around one micron. In a previous study, we assumed the flow field to be Newtonian. Here we extend the work to include the non-Newtonian flow field previously obtained by experiment. The size of the simulations is also increased so that the pore is much larger than the radius of gyration of the micelles. For the non-Newtonian flow field at the higher flow rates in relatively large pores, the density of the micelles becomes markedly non-uniform. In this case, we find that the density in the large, slowly moving entry corner regions is substantially increased.

  4. Computational Investigation of Cerebrospinal Fluid Dynamics in the Posterior Cranial Fossa and Cervical Subarachnoid Space in Patients with Chiari I Malformation.

    PubMed

    Støverud, Karen-Helene; Langtangen, Hans Petter; Ringstad, Geir Andre; Eide, Per Kristian; Mardal, Kent-Andre

    2016-01-01

    Previous computational fluid dynamics (CFD) studies have demonstrated that the Chiari malformation is associated with abnormal cerebrospinal fluid (CSF) flow in the cervical part of the subarachnoid space (SAS), but the flow in the SAS of the posterior cranial fossa has received little attention. This study extends previous modelling efforts by including the cerebellomedullary cistern, pontine cistern, and 4th ventricle in addition to the cervical subarachnoid space. The study included one healthy control, Con1, and two patients with Chiari I malformation, P1 and P2. Meshes were constructed by segmenting images obtained from T2-weighted turbo spin-echo sequences. CFD simulations were performed with a previously verified and validated code. Patient-specific flow conditions in the aqueduct and the cervical SAS were used. Two patients with the Chiari malformation and one control were modelled. The results demonstrated increased maximal flow velocities in the Chiari patients, ranging from factor 5 in P1 to 14.8 in P2, when compared to Con1 at the level of Foramen Magnum (FM). Maximal velocities in the cervical SAS varied by a factor 2.3, while the maximal flow in the aqueduct varied by a factor 3.5. The pressure drop from the pontine cistern to the cervical SAS was similar in Con1 and P1, but a factor two higher in P2. The pressure drop between the aqueduct and the cervical SAS varied by a factor 9.4 where P1 was the one with the lowest pressure jump and P2 and Con1 differed only by a factor 1.6. This pilot study demonstrates that including the posterior cranial fossa is feasible and suggests that previously found flow differences between Chiari I patients and healthy individuals in the cervical SAS may be present also in the SAS of the posterior cranial fossa.

  5. Validity of thermally-driven small-scale ventilated filling box models

    NASA Astrophysics Data System (ADS)

    Partridge, Jamie L.; Linden, P. F.

    2013-11-01

    The majority of previous work studying building ventilation flows at laboratory scale have used saline plumes in water. The production of buoyancy forces using salinity variations in water allows dynamic similarity between the small-scale models and the full-scale flows. However, in some situations, such as including the effects of non-adiabatic boundaries, the use of a thermal plume is desirable. The efficacy of using temperature differences to produce buoyancy-driven flows representing natural ventilation of a building in a small-scale model is examined here, with comparison between previous theoretical and new, heat-based, experiments.

  6. Solar-cycle Variations of Meridional Flows in the Solar Convection Zone Using Helioseismic Methods

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsien; Chou, Dean-Yi

    2018-06-01

    The solar meridional flow is an axisymmetric flow in solar meridional planes, extending through the convection zone. Here we study its solar-cycle variations in the convection zone using SOHO/MDI helioseismic data from 1996 to 2010, including two solar minima and one maximum. The travel-time difference between northward and southward acoustic waves is related to the meridional flow along the wave path. Applying the ray approximation and the SOLA inversion method to the travel-time difference measured in a previous study, we obtain the meridional flow distributions in 0.67 ≤ r ≤ 0.96R ⊙ at the minimum and maximum. At the minimum, the flow has a three-layer structure: poleward in the upper convection zone, equatorward in the middle convection zone, and poleward again in the lower convection zone. The flow speed is close to zero within the error bar near the base of the convection zone. The flow distribution changes significantly from the minimum to the maximum. The change above 0.9R ⊙ shows two phenomena: first, the poleward flow speed is reduced at the maximum; second, an additional convergent flow centered at the active latitudes is generated at the maximum. These two phenomena are consistent with the surface meridional flow reported in previous studies. The change in flow extends all the way down to the base of the convection zone, and the pattern of the change below 0.9R ⊙ is more complicated. However, it is clear that the active latitudes play a role in the flow change: the changes in flow speed below and above the active latitudes have opposite signs. This suggests that magnetic fields could be responsible for the flow change.

  7. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system

    NASA Astrophysics Data System (ADS)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Bromberger, Benjamin; Tittelmeier, Kai

    2015-07-01

    In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.

  8. Thermal Investigation in the Cappadocia Region, Central Anatolia-Turkey, Analyzing Curie Point Depth, Geothermal Gradient, and Heat-Flow Maps from the Aeromagnetic Data

    NASA Astrophysics Data System (ADS)

    Bilim, Funda; Kosaroglu, Sinan; Aydemir, Attila; Buyuksarac, Aydin

    2017-12-01

    In this study, curie point depth (CPD), heat flow, geothermal gradient, and radiogenic heat production maps of the Cappadocian region in central Anatolia are presented to reveal the thermal structure from the aeromagnetic data. The large, circular pattern in these maps matches with previously determined shallow (2 km in average) depression. Estimated CPDs in this depression filled with loose volcano-clastics and ignimbrite sheets of continental Neogene units vary from 7 to 12 km, while the geothermal gradient increases from 50 to 68 °C/km. Heat flows were calculated using two different conductivity coefficients of 2.3 and 2.7 Wm-1 K-1. The radiogenic heat production was also obtained between 0.45 and 0.70 μW m-3 in this area. Heat-flow maps were compared with the previous, regional heat-flow map of Turkey and significant differences were observed. In contrast to linear heat-flow increment through the northeast in the previous map in the literature, produced maps in this study include a large, caldera-like circular depression between Nevsehir, Aksaray, Nigde, and Yesilhisar cities indicating high geothermal gradient and higher heat-flow values. In addition, active deformation is evident with young magmatism in the Neogene and Quaternary times and a large volcanic cover on the surface. Boundaries of volcanic eruption centers and buried large intrusions are surrounded with the maxspots of the horizontal gradients of magnetic anomalies. Analytic signal (AS) map pointing-out exact locations of causative bodies is also presented in this study. Circular region in the combined map of AS and maxspots apparently indicates a possible caldera.

  9. Asymmetrical reverse vortex flow due to induced-charge electro-osmosis around carbon stacking structures.

    PubMed

    Sugioka, Hideyuki

    2011-05-01

    Broken symmetry of vortices due to induced-charge electro-osmosis (ICEO) around stacking structures is important for the generation of a large net flow in a microchannel. Following theoretical predictions in our previous study, we herein report experimental observations of asymmetrical reverse vortex flows around stacking structures of carbon posts with a large height (~110 μm) in water, prepared by the pyrolysis of a photoresist film in a reducing gas. Further, by the use of a coupled calculation method that considers boundary effects precisely, the experimental results, except for the problem of anomalous flow reversal, are successfully explained. That is, unlike previous predictions, the precise calculations here show that stacking structures accelerate a reverse flow rather than suppressing it for a microfluidic channel because of the deformation of electric fields near the stacking portions; these structures can also generate a large net flow theoretically in the direction opposite that of a previous prediction for a standard vortex flow. Furthermore, by solving the one-dimensional Poisson-Nernst-Plank (PNP) equations in the presence of ac electric fields, we find that the anomalous flow reversal occurs by the phase retardation between the induced diffuse charge and the tangential electric field. In addition, we successfully explain the nonlinearity of the flow velocity on the applied voltage by the PNP analysis. In the future, we expect to improve the pumping performance significantly by using stacking structures of conductive posts along with a low-cost process. © 2011 American Physical Society

  10. Non-Laminar Flow Model for the Impedance of a Rod-Pinch Diode

    NASA Astrophysics Data System (ADS)

    Ottinger, Paul F.; Schumer, Joseph W.; Strasburg, Sean D.; Swanekamp, Stephen B.; Oliver, Bryan V.

    2002-12-01

    A previous laminar flow model for the rod-pinch diode is extended to include a transverse pressure term to study the effects of non-laminar flow. The non-laminar nature of the flow has a significant impact on the diode impedance. Results show that the introduction of the transverse pressure decreases the diode impedance predicted by the model bringing it into better agreement with experimental data.

  11. How rivers remember: The impacts of prior stress history on grain scale topography and bedload transport

    NASA Astrophysics Data System (ADS)

    Masteller, C.; Finnegan, N. J.

    2016-12-01

    Memory is preserved in rivers through the sorting and arrangement of grains on their beds, which reflect previous flow conditions. Manifestations of this phenomenon include observed hysteresis in bedload rating curves (e.g., Moog and Whiting, 1998; Reid et al., 1985) and correlations between the stage at the start of a transport event and the stage at the end of transport during a previous event (Turowski et al., 2011). This observed history dependence represents a key difficulty in the accurate prediction of bedload transport rates. To begin to systematically explore these memory effects on fluvial bedload transport, we experimentally examined how a gravel bed river responds to variations in prior stress history. Specifically, we compare the response of the grain-scale topography of a gravel riverbed to both below and above threshold flow conditions. We find that under low flow, when no sediment transport occurs, the bed compacts as the highest protruding grains pivot into low elevation pockets. This reorganization appears to occur logarithmically with low flow duration, making it analogous to compaction observed in dry granular flows subjected to agitation. The amount of prior compaction affects bedload transport rates at the onset of above threshold flow, with more compact beds yielding less bedload flux. In contrast, we find that under sediment-transporting flows, the bed dilates because grains are re-deposited in relatively precarious positions. During the same applied transport flow, we observe that the most pronounced dilation occurs when the initial bed is the most compact, suggesting that the potential for dilation is related to the degree of previous compaction. These observations highlight that a gravel bed experiences two different behaviors, compaction under low shear stresses, and dilation under high, sediment transporting, shear stresses. This observation is consistent with previous studies on the compaction and dilation of granular media, as well as flume experiments conducted using glass beads. Further, this study highlights the varying response of grain-scale topography and bedload transport rates to prior flow and bed conditions, demonstrating history dependence in fluvial systems.

  12. Flow pathways in the Slapton Wood catchment using temperature as a tracer

    NASA Astrophysics Data System (ADS)

    Birkinshaw, Stephen J.; Webb, Bruce

    2010-03-01

    SummaryThis study investigates the potential of temperature as a tracer to provide insights into flow pathways. The approach couples fieldwork and modelling experiments for the Eastergrounds Hollow within the Slapton Wood catchment, South Devon, UK. Measurements in the Eastergrounds Hollow were carried out for soil temperature, spring temperature, and the stream temperature and use was made of an existing 1989-1991 data set for the entire Slapton Wood catchment. The predominant flow in this hollow is a result of subsurface stormflow, and previous work has suggested that the water flows vertically down through the soil and then subsurface stormflow occurs at the soil/bedrock interface where the water is deflected laterally. The depth of the subsurface stormflow was previously thought to be around 2.2 m. However, analysis of the new spring, stream and soil temperature data suggests a deeper pathway for the subsurface stormflow. Modelling of water flow and heat transport was carried out using SHETRAN and this was calibrated to reproduce the water flow in the entire Slapton Wood catchment and soil temperatures in the Eastergrounds Hollow. The model was tested for the entire Eastergrounds Hollow with two different soil depths. A depth of 2.2 m, based on previous knowledge, was unable to reproduce the Eastergrounds spring temperature. A depth of 3.7 m produced an excellent comparison between measured and simulated stream and spring temperatures in the Eastergrounds Hollow. This work suggests that the depth of the flow pathways that produce the subsurface stormflow are deeper than previously thought. It also provides a demonstration on the use of temperature as a tracer to understand flow pathways.

  13. Irrigant flow within a prepared root canal using various flow rates: a Computational Fluid Dynamics study.

    PubMed

    Boutsioukis, C; Lambrianidis, T; Kastrinakis, E

    2009-02-01

    To study using computer simulation the effect of irrigant flow rate on the flow pattern within a prepared root canal, during final irrigation with a syringe and needle. Geometrical characteristics of a side-vented endodontic needle and clinically realistic flow rate values were obtained from previous and preliminary studies. A Computational Fluid Dynamics (CFD) model was created using FLUENT 6.2 software. Calculations were carried out for five selected flow rates (0.02-0.79 mL sec(-1)) and velocity and turbulence quantities along the domain were evaluated. Irrigant replacement was limited to 1-1.5 mm apical to the needle tip for all flow rates tested. Low-Reynolds number turbulent flow was detected near the needle outlet. Irrigant flow rate affected significantly the flow pattern within the root canal. Irrigation needles should be placed to within 1 mm from working length to ensure fluid exchange. Turbulent flow of irrigant leads to more efficient irrigant replacement. CFD represents a powerful tool for the study of irrigation.

  14. Flow in the Community College Classroom?: An Autoethnographic Exploration

    ERIC Educational Resources Information Center

    Latz, Amanda O.

    2012-01-01

    Flow theory has not been previously applied to faculty experiences in higher education. Upon carrying out this autoethnographic self-study, I discovered that my experiences as a community college instructor were riddled with periods of being in flow. During the spring academic semester of 2010, I created weekly journals of my teaching life. Then,…

  15. High-speed holocinematographic velocimeter for studying turbulent flow control physics

    NASA Technical Reports Server (NTRS)

    Weinstein, L. M.; Beeler, G. B.; Lindemann, A. M.

    1985-01-01

    Use of a dual view, high speed, holographic movie technique is examined for studying turbulent flow control physics. This approach, which eliminates some of the limitations of previous holographic techniques, is termed a holocinematographic velocimeter (HCV). The data from this system can be used to check theoretical turbulence modeling and numerical simulations, visualize and measure coherent structures in 'non-simple' turbulent flows, and examine the mechanisms operative in various turbulent control/drag reduction concepts. This system shows promise for giving the most complete experimental characterization of turbulent flows yet available.

  16. Methods for estimating peak-flow frequencies at ungaged sites in Montana based on data through water year 2011: Chapter F in Montana StreamStats

    USGS Publications Warehouse

    Sando, Roy; Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.

    2016-04-05

    The U.S. Geological Survey (USGS), in cooperation with the Montana Department of Natural Resources and Conservation, completed a study to update methods for estimating peak-flow frequencies at ungaged sites in Montana based on peak-flow data at streamflow-gaging stations through water year 2011. The methods allow estimation of peak-flow frequencies (that is, peak-flow magnitudes, in cubic feet per second, associated with annual exceedance probabilities of 66.7, 50, 42.9, 20, 10, 4, 2, 1, 0.5, and 0.2 percent) at ungaged sites. The annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.Regional regression analysis is a primary focus of Chapter F of this Scientific Investigations Report, and regression equations for estimating peak-flow frequencies at ungaged sites in eight hydrologic regions in Montana are presented. The regression equations are based on analysis of peak-flow frequencies and basin characteristics at 537 streamflow-gaging stations in or near Montana and were developed using generalized least squares regression or weighted least squares regression.All of the data used in calculating basin characteristics that were included as explanatory variables in the regression equations were developed for and are available through the USGS StreamStats application (http://water.usgs.gov/osw/streamstats/) for Montana. StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. The primary purpose of the Montana StreamStats application is to provide estimates of basin characteristics and streamflow characteristics for user-selected ungaged sites on Montana streams. The regional regression equations presented in this report chapter can be conveniently solved using the Montana StreamStats application.Selected results from this study were compared with results of previous studies. For most hydrologic regions, the regression equations reported for this study had lower mean standard errors of prediction (in percent) than the previously reported regression equations for Montana. The equations presented for this study are considered to be an improvement on the previously reported equations primarily because this study (1) included 13 more years of peak-flow data; (2) included 35 more streamflow-gaging stations than previous studies; (3) used a detailed geographic information system (GIS)-based definition of the regulation status of streamflow-gaging stations, which allowed better determination of the unregulated peak-flow records that are appropriate for use in the regional regression analysis; (4) included advancements in GIS and remote-sensing technologies, which allowed more convenient calculation of basin characteristics and investigation of many more candidate basin characteristics; and (5) included advancements in computational and analytical methods, which allowed more thorough and consistent data analysis.This report chapter also presents other methods for estimating peak-flow frequencies at ungaged sites. Two methods for estimating peak-flow frequencies at ungaged sites located on the same streams as streamflow-gaging stations are described. Additionally, envelope curves relating maximum recorded annual peak flows to contributing drainage area for each of the eight hydrologic regions in Montana are presented and compared to a national envelope curve. In addition to providing general information on characteristics of large peak flows, the regional envelope curves can be used to assess the reasonableness of peak-flow frequency estimates determined using the regression equations.

  17. Numerical study on flow over stepped spillway using Lagrangian method

    NASA Astrophysics Data System (ADS)

    Wang, Junmin; Fu, Lei; Xu, Haibo; Jin, Yeechung

    2018-02-01

    Flow over stepped spillway has been studied for centuries, due to its unstable and the characteristics of cavity, the simulation of this type of spillway flow is always difficult. Most of the early studies of flow over stepped spillway are based on experiment, while in the recent decades, numerical studies of flow over stepped spillway draw most of the researchers’ attentions due to its simplicity and efficiency. In this study, a new Lagrangian based particle method is introduced to reproduce the phenomenon of flow over stepped spillway, the inherent advantages of this particle based method provide a convincing free surface and velocity profiles compared with previous experimental data. The capacity of this new method is proved and it is anticipated to be an alternative tool of traditional mesh based method in environmental engineering field such as the simulation of flow over stepped spillway.

  18. Optimal stretching in the reacting wake of a bluff body.

    PubMed

    Wang, Jinge; Tithof, Jeffrey; Nevins, Thomas D; Colón, Rony O; Kelley, Douglas H

    2017-12-01

    We experimentally study spreading of the Belousov-Zhabotinsky reaction behind a bluff body in a laminar flow. Locations of reacted regions (i.e., regions with high product concentration) correlate with a moderate range of Lagrangian stretching and that range is close to the range of optimal stretching previously observed in topologically different flows [T. D. Nevins and D. H. Kelley, Phys. Rev. Lett. 117, 164502 (2016)]. The previous work found optimal stretching in a closed, vortex dominated flow, but this article uses an open flow and only a small area of appreciable vorticity. We hypothesize that optimal stretching is common in advection-reaction-diffusion systems with an excitation threshold, including excitable and bistable systems, and that the optimal range depends on reaction chemistry and not on flow shape or characteristic speed. Our results may also give insight into plankton blooms behind islands in ocean currents.

  19. Detached Eddy Simulation of Flap Side-Edge Flow

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Shankar K.; Shariff, Karim R.

    2016-01-01

    Detached Eddy Simulation (DES) of flap side-edge flow was performed with a wing and half-span flap configuration used in previous experimental and numerical studies. The focus of the study is the unsteady flow features responsible for the production of far-field noise. The simulation was performed at a Reynolds number (based on the main wing chord) of 3.7 million. Reynolds Averaged Navier-Stokes (RANS) simulations were performed as a precursor to the DES. The results of these precursor simulations match previous experimental and RANS results closely. Although the present DES simulations have not reached statistical stationary yet, some unsteady features of the developing flap side-edge flowfield are presented. In the final paper it is expected that statistically stationary results will be presented including comparisons of surface pressure spectra with experimental data.

  20. Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya

    2010-01-01

    The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions

  1. Analysing the impact of urban areas patterns on the mean annual flow of 43 urbanized catchments

    NASA Astrophysics Data System (ADS)

    Salavati, B.; Oudin, L.; Furusho, C.; Ribstein, P.

    2015-06-01

    It is often argued that urban areas play a significant role in catchment hydrology, but previous studies reported disparate results of urbanization impacts on stream flow. This might stem either from the difficulty to quantify the historical flow changes attributed to urbanization only (and not climate variability) or from the inability to decipher what type of urban planning is more critical for flows. In this study, we applied a hydrological model on 43 urban catchments in the United States to quantify the flow changes attributable to urbanization. Then, we tried to relate these flow changes to the changes of urban/impervious areas of the catchments. We argue that these spatial changes of urban areas can be more precisely characterized by landscape metrics, which enable analysing the patterns of historical urban growth. Landscape metrics combine the richness (the number) and evenness (the spatial distribution) of patch types represented on the landscape. Urbanization patterns within the framework of patch analysis have been widely studied but, to our knowledge, previous research works had not linked them to catchments hydrological behaviours. Our results showed that the catchments with larger impervious areas and larger mean patch areas are likely to have larger increase of runoff yield.

  2. Estimated flow-duration curves for selected ungaged sites in Kansas

    USGS Publications Warehouse

    Studley, S.E.

    2001-01-01

    Flow-duration curves for 1968-98 were estimated for 32 ungaged sites in the Missouri, Smoky Hill-Saline, Solomon, Marais des Cygnes, Walnut, Verdigris, and Neosho River Basins in Kansas. Also included from a previous report are estimated flow-duration curves for 16 ungaged sites in the Cimarron and lower Arkansas River Basins in Kansas. The method of estimation used six unique factors of flow duration: (1) mean streamflow and percentage duration of mean streamflow, (2) ratio of 1-percent-duration streamflow to mean streamflow, (3) ratio of 0.1-percent-duration streamflow to 1-percent-duration streamflow, (4) ratio of 50-percent-duration streamflow to mean streamflow, (5) percentage duration of appreciable streamflow (0.10 cubic foot per second), and (6) average slope of the flow-duration curve. These factors were previously developed from a regionalized study of flow-duration curves using streamflow data for 1921-76 from streamflow-gaging stations with drainage areas of 100 to 3,000 square miles. The method was tested on a currently (2001) measured, continuous-record streamflow-gaging station on Salt Creek near Lyndon, Kansas, with a drainage area of 111 square miles and was found to adequately estimate the computed flow-duration curve for the station. The method also was tested on a currently (2001) measured, continuous-record, streamflow-gaging station on Soldier Creek near Circleville, Kansas, with a drainage area of 49.3 square miles. The results of the test on Soldier Creek near Circleville indicated that the method could adequately estimate flow-duration curves for sites with drainage areas of less than 100 square miles. The low-flow parts of the estimated flow-duration curves were verified or revised using 137 base-flow discharge measurements made during 1999-2000 at the 32 ungaged sites that were correlated with base-flow measurements and flow-duration analyses performed at nearby, long-term, continuous-record, streamflow-gaging stations (index stations). The method did not adequately estimate the flow-duration curves for two sites in the western one-third of the State because of substantial changes in farming practices (terracing and intensive ground-water withdrawal) that were not accounted for in the two previous studies (Furness, 1959; Jordan, 1983). For these two sites, there was enough historic, continuous-streamflow record available to perform record-extension techniques correlated to their respective index stations for the development of the estimated flow-duration curves. The estimated flow-duration curves at the ungaged sites can be used for projecting future flow frequencies for assessment of total maximum daily loads (TMDLs) or other water-quality constituents, water-availability studies, and for basin-characteristic studies.

  3. Flow of two immiscible fluids in a periodically constricted tube: Transitions to stratified, segmented, churn, spray, or segregated flow

    NASA Astrophysics Data System (ADS)

    Fraggedakis, D.; Kouris, Ch.; Dimakopoulos, Y.; Tsamopoulos, J.

    2015-08-01

    We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our volume-of-fluid algorithm is used to solve the governing equations. First, the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then, it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow, or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray, and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results [I. Cohen et al., "Two fluid drop snap-off problem: Experiments and theory," Phys. Rev. Lett. 83, 1147-1150 (1999)]. Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our result provides deeper insights into the mechanism of the pattern transitions and is in agreement with previous studies on core-annular flow [Ch. Kouris and J. Tsamopoulos, "Core-annular flow in a periodically constricted circular tube, I. Steady state, linear stability and energy analysis," J. Fluid Mech. 432, 31-68 (2001) and Ch. Kouris et al., "Comparison of spectral and finite element methods applied to the study of interfacial instabilities of the core-annular flow in an undulating tube," Int. J. Numer. Methods Fluids 39(1), 41-73 (2002)], segmented flow [E. Lac and J. D. Sherwood, "Motion of a drop along the centreline of a capillary in a pressure-driven flow," J. Fluid Mech. 640, 27-54 (2009)], and churn flow [R. Y. Bai et al., "Lubricated pipelining—Stability of core annular-flow. 5. Experiments and comparison with theory," J. Fluid Mech. 240, 97-132 (1992)].

  4. Development of a multiple-parameter nonlinear perturbation procedure for transonic turbomachinery flows: Preliminary application to design/optimization problems

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Elliott, J. P.; Spreiter, J. R.

    1983-01-01

    An investigation was conducted to continue the development of perturbation procedures and associated computational codes for rapidly determining approximations to nonlinear flow solutions, with the purpose of establishing a method for minimizing computational requirements associated with parametric design studies of transonic flows in turbomachines. The results reported here concern the extension of the previously developed successful method for single parameter perturbations to simultaneous multiple-parameter perturbations, and the preliminary application of the multiple-parameter procedure in combination with an optimization method to blade design/optimization problem. In order to provide as severe a test as possible of the method, attention is focused in particular on transonic flows which are highly supercritical. Flows past both isolated blades and compressor cascades, involving simultaneous changes in both flow and geometric parameters, are considered. Comparisons with the corresponding exact nonlinear solutions display remarkable accuracy and range of validity, in direct correspondence with previous results for single-parameter perturbations.

  5. Estimating water flow through a hillslope using the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Devaney, Judy E.; Camillo, P. J.; Gurney, R. J.

    1988-01-01

    A new two-dimensional model of water flow in a hillslope has been implemented on the Massively Parallel Processor at the Goddard Space Flight Center. Flow in the soil both in the saturated and unsaturated zones, evaporation and overland flow are all modelled, and the rainfall rates are allowed to vary spatially. Previous models of this type had always been very limited computationally. This model takes less than a minute to model all the components of the hillslope water flow for a day. The model can now be used in sensitivity studies to specify which measurements should be taken and how accurate they should be to describe such flows for environmental studies.

  6. Chaotic advection and heat transfer in two similar 2-D periodic flows and in their corresponding 3-D periodic flows

    NASA Astrophysics Data System (ADS)

    Vinsard, G.; Dufour, S.; Saatdjian, E.; Mota, J. P. B.

    2016-03-01

    Chaotic advection can effectively enhance the heat transfer rate between a boundary and fluids with high Prandtl number. These fluids are usually highly viscous and thus turbulent agitation is not a viable solution since the energy required to mix the fluid would be prohibitive. Here, we analyze previously obtained results on chaotic advection and heat transfer in two similar 2-D periodic flows and on their corresponding 3-D periodic flows when an axial velocity component is superposed. The two flows studied are the flow between eccentric rotating cylinders and the flow between confocal ellipses. For both of these flows the analysis is simplified because the Stokes equations can be solved analytically to obtain a closed form solution. For both 2-D periodic flows, we show that chaotic heat transfer is enhanced by the displacement of the saddle point location during one period. Furthermore, the enhancement by chaotic advection in the elliptical geometry is approximately double that obtained in the cylindrical geometry because there are two saddle points instead of one. We also explain why, for high eccentricity ratios, there is no heat transfer enhancement in the cylindrical geometry. When an axial velocity component is added to both of these flows so that they become 3-D, previous work has shown that there is an optimum modulation frequency for which chaotic advection and heat transfer enhancement is a maximum. Here we show that the optimum modulation frequency can be derived from results without an axial flow. We also explain by physical arguments other previously unanswered questions in the published data.

  7. Comparison of vacuum and gravity sap flows from paired sugar maple trees

    Treesearch

    H. Clay Smith; Carter B. Gibbs

    1970-01-01

    Paired sugar maple trees with single tapholes were used to compare sap yields from vacuum-pumping with sap yields from gravity flow. Results indicated that vacuum yields were approximately twice as great as gravity flows. These results support previous findings from studies in which vacuum and gravity were compared with two tapholes on the same tree.

  8. Hydrodynamic behavior in the outer shear layer of partly obstructed open channels

    NASA Astrophysics Data System (ADS)

    Ben Meftah, Mouldi; De Serio, Francesca; Mossa, Michele

    2014-06-01

    Despite the many studies on flow in partly obstructed open channels, this issue remains of fundamental importance in order to better understand the interaction between flow behavior and the canopy structure. In the first part of this study we suggest a new theoretical approach able to model the flow pattern within the shear layer in the unobstructed domain, adjacent to the canopy area. Differently from previous studies, the new analytical solution of flow momentum equations takes into account the transversal velocity component of the flow, which is modelled as a linear function of the streamwise velocity. The proposed theoretical model is validated by different experiments carried out on a physical model of a very large rectangular channel by the research group of the Department of Civil, Environmental, Building Engineering and Chemistry of the Technical University of Bari. An array of vertical, rigid, and circular steel cylinders was partially mounted on the bottom in the central part of the flume, leaving two lateral areas of free flow circulation near the walls. The three-dimensional flow velocity components were measured using a 3D Acoustic Doppler Velocimeter. A comparison of the measured and predicted data of the present study with those obtained in other previous studies, carried out with different canopy density, show a non-dependence of this analytical solution on the array density and the Reynolds number. In the second part of the paper, detailed observations of turbulent intensities and spanwise Reynolds stresses in the unobstructed flow are analyzed and discussed. Differently from some earlier studies, it was observed that the peak of the turbulence intensity and that of the spanwise Reynolds stress are significantly shifted toward the center of the shear layer.

  9. Temporary targeted renal blood flow interruption using a reverse thermosensitive polymer to facilitate bloodless partial nephrectomy: a swine survival study.

    PubMed

    Harty, Niall J; Laskey, Daniel H; Moinzadeh, Alireza; Flacke, Sebastian; Benn, James A; Villani, Rosanna; Kalra, Aarti; Libertino, John A; Madras, Peter N

    2012-09-01

    What's known on the subject? and What does the study add? Lumagel™ is a reverse thermosensitive polymer (RTP) that has previously been described in the literature as providing temporary vascular occlusion to allow for bloodless partial nephrectomy (PN) while maintaining blood flow to the untargeted portion of the kidney. At body temperature, Lumagel™ has the consistency of a viscous gel but upon cooling rapidly converts to a liquid state and does not reconstitute thereafter. This property has allowed for it to be used in situations requiring temporary vascular occlusion. Previous experience with similar RTPs in coronary arteries proved successful, with no detectable adverse events. We have previously described our technique for temporary vascular occlusion of the main renal artery, as well as segmental and sub-segmental renal branches, to allow for bloodless PN in either an open or minimally invasive approach. These experiments were performed in the acute setting. This study is a two-armed survival trial to assess whether this RTP is as safe as hilar clamping for bloodless PN. Surviving animals showed normal growth after using the RTP, absence of toxicity, no organ dysfunction, and no pathological changes attributable to the RTP. We conclude that Lumagel™ is as safe as conventional PN with hilar clamping, while adding the advantage of uninterrupted perfusion during renal resection. To examine whether randomly selected regions of the kidney could undergo temporary flow interruption with a reverse thermosensitive polymer (RTP), Lumagel™ (Pluromed, Inc., Woburn, MA, USA), followed by partial nephrectomy (PN), without adding risks beyond those encountered in the same procedure with the use of hilar clamping. A two-armed (RTP vs hilar clamp), 6-week swine survival study was performed. Four swine underwent PN using hilar clamps, while six underwent PN with flow interruption using the RTP. The RTP, administered angiographically, was used for intraluminal occlusion of segmental or subsegmental arteries and was compared with main renal artery clamping with hilar clamps. The resection site was randomized for each swine. Laboratory studies were performed preoperatively, and at weeks 1, 3 and 6. Before killing the swine, repeat angiography was performed with emphasis on the site of previous flow interruption. Gross and microscopic examination of kidney, liver, lung, heart, skeletal muscle was later performed, and the vessel that had supported the previous plug was examined. All animals survived. No abnormal chemistry or haematology results were encountered over the 6 weeks. There were no surgical complications in either group. Using angiography we found 100% patency of vessels that had been occluded with the polymer 6 weeks previously for PN. The only gross or microscopic abnormalities were related to the renal resection and scar formation, and were similar in the two groups. Targeted flow interruption with the RTP added no additional risk to PN while allowing bloodless resection and uninterrupted flow to untargeted renal tissue. © 2012 THE AUTHORS. BJU INTERNATIONAL © 2012 BJU INTERNATIONAL.

  10. Effects of linking a soil-water-balance model with a groundwater-flow model

    USGS Publications Warehouse

    Stanton, Jennifer S.; Ryter, Derek W.; Peterson, Steven M.

    2013-01-01

    A previously published regional groundwater-flow model in north-central Nebraska was sequentially linked with the recently developed soil-water-balance (SWB) model to analyze effects to groundwater-flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater-level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root-mean-squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB-generated recharge, the RMS difference between simulated and estimated base-flow target values for the groundwater-flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater-level and base-flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.

  11. WATER QUALITY EFFECTS OF HYPORHEIC PROCESSING IN A LARGE RIVER

    EPA Science Inventory

    Water quality changes along hyporheic flow paths may have
    important effects on river water quality and aquatic habitat. Previous
    studies on the Willamette River, Oregon, showed that river water follows
    hyporheic flow paths through highly porous deposits created by river...

  12. Influence of the renal artery ostium flow diverter on hemodynamics and atherogenesis

    PubMed Central

    Albert, Scott; Balaban, Robert S.; Neufeld, Edward B.; Rossmann, Jenn Stroud

    2014-01-01

    The structure and function of the renal artery ostium flow diverter on the caudal side of the renal branch point were previously reported; in this study, we further evaluate the diverter’s possible functions. The protrusion of this structure into the abdominal aorta suggests that the diverter may preferentially direct blood flow to the renal arteries, and that it may also influence flow patterns and recirculation known to be involved in atherogenesis. Three-dimensional computational fluid dynamics (CFD) simulations of steady and pulsatile blood flow are performed to investigate the influence of diverter size and position, and vascular geometry, on the flow patterns and fluid mechanical forces in the neighborhood of the diverter. CFD results show that the flow diverter does affect the blood distribution: depending on the diverter’s position, the flow to the renal arteries may be increased or reduced. Calculated results also demonstrate the diverter’s effect on the Wall Shear Stress (WSS) distribution, and suggest that the diverter contributes to an atherogenic environment in the abdominal aorta, while being atheroprotective in the renal arteries themselves. These results support previous clinical findings, and suggest directions for further clinical study. The results of this work have direct implications in understanding the physiological significance of the diverter, and its potential role in the pathophysiological development of atherosclerosis. PMID:24703300

  13. Influence of the renal artery ostium flow diverter on hemodynamics and atherogenesis.

    PubMed

    Albert, Scott; Balaban, Robert S; Neufeld, Edward B; Rossmann, Jenn Stroud

    2014-05-07

    The structure and function of the renal artery ostium flow diverter on the caudal side of the renal branch point were previously reported; in this study, we further evaluate the diverter׳s possible functions. The protrusion of this structure into the abdominal aorta suggests that the diverter may preferentially direct blood flow to the renal arteries, and that it may also influence flow patterns and recirculation known to be involved in atherogenesis. Three-dimensional computational fluid dynamics (CFD) simulations of steady and pulsatile blood flow are performed to investigate the influence of diverter size and position, and vascular geometry, on the flow patterns and fluid mechanical forces in the neighborhood of the diverter. CFD results show that the flow diverter does affect the blood distribution; depending on the diverter׳s position, the flow to the renal arteries may be increased or reduced. Calculated results also demonstrate the diverter׳s effect on the wall shear stress (WSS) distribution, and suggest that the diverter contributes to an atherogenic environment in the abdominal aorta, while being atheroprotective in the renal arteries themselves. These results support previous clinical findings, and suggest directions for further clinical study. The results of this work have direct implications in understanding the physiological significance of the diverter, and its potential role in the pathophysiological development of atherosclerosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Numerical investigations in three-dimensional internal flows

    NASA Technical Reports Server (NTRS)

    Rose, William C.

    1991-01-01

    In previous efforts, a two-dimensional full Navier-Stokes (FNS) code (SCRAM2D) was used in a design process that involved parametric modifications of the inlet geometry to arrive at what appeared to be an optimum inlet flowfield that produced a uniform flow at the exit in a very short distance. In these previous studies, the technologies for determining the contours with a 'man-in-the-loop' approach for both the ramp and cowl of the inlet were demonstrated, and nearly shock-free exiting flowfields were shown to be obtainable. The resulting two-dimensional compression contours were then used with swept sidewalls to form a three-dimensional inlet. Then the three-dimensional Navier-Stokes code (SCRAM3D) was used to investigate the inlet's three-dimensional flow. One of the major difficulties encountered in the previous studies was that associated with the relatively long time required to obtain a solution using even the 2D FNS code in the design process. Since one of the goals of high-speed inlet design is to produce inputs to the overall aircraft design in a timely manner, it was proposed for this year's research to examine 2D and 3D viscous flow solver techniques alternative to the NFS codes used to date. Areas of the inlet particularly identified for code speed up are those associated with the forebody and external flow ramp systems of the inlet. In these areas, parabolized, or space-marched, Navier-Stokes codes were proposed to be investigated for their applicability in the design process developed previously. This report describes the results of an investigation into the use of two other codes for analyzing the forebody and inlet ramp systems of high-speed inlets.

  15. A weakly nonlinear theory for wave-vortex interactions in curved channel flow

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Erlebacher, Gordon; Zang, Thomas A.

    1992-01-01

    A weakly nonlinear theory is developed to study the interaction of Tollmien-Schlichting (TS) waves and Dean vortices in curved channel flow. The predictions obtained from the theory agree well with results obtained from direct numerical simulations of curved channel flow, especially for low amplitude disturbances. Some discrepancies in the results of a previous theory with direct numerical simulations are resolved.

  16. Investigation of parabolic computational techniques for internal high-speed viscous flows

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.; Power, G. D.

    1985-01-01

    A feasibility study was conducted to assess the applicability of an existing parabolic analysis (ADD-Axisymmetric Diffuser Duct), developed previously for subsonic viscous internal flows, to mixed supersonic/subsonic flows with heat addition simulating a SCRAMJET combustor. A study was conducted with the ADD code modified to include additional convection effects in the normal momentum equation when supersonic expansion and compression waves were present. It is concluded from the present study that for the class of problems where strong viscous/inviscid interactions are present a global iteration procedure is required.

  17. Are big basins just the sum of small catchments?

    USGS Publications Warehouse

    Shaman, J.; Stieglitz, M.; Burns, D.

    2004-01-01

    Many challenges remain in extending our understanding of how hydrologic processes within small catchments scale to larger river basins. In this study we examine how low-flow runoff varies as a function of basin scale at 11 catchments, many of which are nested, in the 176 km2 Neversink River watershed in the Catskill Mountains of New York. Topography, vegetation, soil and bedrock structure are similar across this river basin, and previous research has demonstrated the importance of deep groundwater springs for maintaining low-flow stream discharge at small scales in the basin. Therefore, we hypothesized that deep groundwater would contribute an increasing amount to low-flow discharge as basin scale increased, resulting in increased runoff. Instead, we find that, above a critical basin size of 8 to 21 km2, low-flow runoff is similar within the Neversink watershed. These findings are broadly consistent with those of a previous study that examined stream chemistry as a function of basin scale for this watershed. However, we find physical evidence of self-similarity among basins greater than 8 km2, whereas the previous study found gradual changes in stream chemistry among basins greater than 3 km 2. We believe that a better understanding of self-similarity and the subsurface flow processes that affect stream runoff will be attained through simultaneous consideration of both chemical and physical evidence. We also suggest that similar analyses of stream runoff in other basins that represent a range of spatial scales, geomorphologies and climate conditions will further elucidate the issue of scaling of hydrologic processes. Copyright ?? 2004 John Wiley & Sons, Ltd.

  18. Potential applications for amylose inclusion complexes produced by steam jet cooking

    USDA-ARS?s Scientific Manuscript database

    Steam jet cooking is a commercially scalable method of thermomechanically processing starch for many applications. Previous studies at NCAUR have revealed the specific effects of heat and shear on various starch types cooked under different steam flow, pressure, and slurry flow conditions. Starch-...

  19. Experimental investigations on characteristics of stable water electrospray in air without discharge

    NASA Astrophysics Data System (ADS)

    Park, Inyong; Hong, Won Seok; Kim, Sang Bok; Kim, Sang Soo

    2017-06-01

    An experimental study was conducted to resolve previous conflicting results on water electrospray in air at atmospheric pressure. Using a small flow rate relative to that used in previous studies and a small nonmetallic nozzle, we observed stable electrospray of water in air without discharge and distinguished three distinct operating regimes for applied voltage and flow rate. The well-known cone-jet mode was observed and the general scaling law of the generated droplet size in the cone-jet mode was confirmed by direct visualization of the meniscus, jet, and generated droplets. We also observed and analyzed whipping motion in the electrified water jet.

  20. Time-Distance Helioseismology with f Modes as a Method for Measurement of Near-Surface Flows

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas L., Jr.; Gizon, Laurent

    1999-01-01

    Travel times measured for the f mode have been used to study flows near the solar surface in conjunction with simultaneous measurements of the magnetic field. Previous flow measurements of doppler surface rotation, small magnetic feature rotation, supergranular pattern rotation, and surface meridional circulation have been confirmed. In addition, the flow in supergranules due to Coriolis forces has been measured. The spatial and temporal power spectra for a six-day observing sequence has been measured.

  1. Skin and muscle components of forearm blood flow in directly heated resting man.

    NASA Technical Reports Server (NTRS)

    Detry, J.-M. R.; Brengelmann, G. L.; Rowell, L. B.; Wyss, C.

    1972-01-01

    Changes in forearm muscle blood flow (FMBF) during direct whole-body heating were measured in 17 normal subjects using three different methods. We conclude that FMBF is not increased by direct whole-body heating. Since renal and splanchnic blood flow fall 30% under these conditions, maximal total skin blood flow in 12 previously studied subjects can be estimated from the rise in cardiac output to be 7.6 L/min (3.0-11.1 L/min).

  2. Surface obstacles in pulsatile flow

    NASA Astrophysics Data System (ADS)

    Carr, Ian A.; Plesniak, Michael W.

    2017-11-01

    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e., constant velocity, unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigate the wake of two canonical obstacles: a cube and a circular cylinder with an aspect ratio of unity. Our previous studies of a surface-mounted hemisphere in pulsatile flow are used as a baseline for these two new, more complex geometries. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings.

  3. Sandbar Response in Marble and Grand Canyons, Arizona, Following the 2008 High-Flow Experiment on the Colorado River

    USGS Publications Warehouse

    Hazel, Joseph E.; Grams, Paul E.; Schmidt, John C.; Kaplinski, Matt

    2010-01-01

    A 60-hour release of water at 1,203 cubic meters per second (m3/s) from Glen Canyon Dam in March 2008 provided an opportunity to analyze channel-margin response at discharge levels above the normal, diurnally fluctuating releases for hydropower plant operations. We compare measurements at sandbars and associated campsites along the mainstem Colorado River, downstream from Glen Canyon Dam, at 57 locations in Marble and Grand Canyons. Sandbar and main-channel response to the 2008 high-flow experiment (2008 HFE) was documented by measuring bar and bed topography at the study sites before and after the controlled flood and twice more in the following 6 months to examine the persistence of flood-formed deposits. The 2008 HFE caused widespread deposition at elevations above the stage equivalent to a flow rate of 227 m3/s and caused an increase in the area and volume of the high-elevation parts of sandbars, thereby increasing the size of campsite areas. In this study, we differentiate between four response styles, depending on how sediment was distributed throughout each study site. Then, we present the longitudinal pattern relevant to the different response styles and place the site responses in context with two previous high-release experiments conducted in 1996 and 2004. We find that (1) nearly every measured sandbar aggraded above the 227-m3/s water-surface elevation, resulting in sandbars as large or larger than occurred following previous high flows; (2) reaches closest to Glen Canyon Dam were characterized by a greater percentage of sites that incurred net erosion, although the total sand volume in all sediment-flux monitoring reaches was greater following the 2008 HFE than following previous high flows; and (3) longitudinal differences in topographic response in eddies and in the channel suggest a greater and more evenly distributed sediment supply than existed during previous controlled floods from Glen Canyon Dam.

  4. A novel method to measure regional muscle blood flow continuously using NIRS kinetics information

    PubMed Central

    Nioka, Shoko; Kime, Ryotaro; Sunar, Ulas; Im, Joohee; Izzetoglu, Meltem; Zhang, Jun; Alacam, Burak; Chance, Britton

    2006-01-01

    Background This article introduces a novel method to continuously monitor regional muscle blood flow by using Near Infrared Spectroscopy (NIRS). We demonstrate the feasibility of the new method in two ways: (1) by applying this new method of determining blood flow to experimental NIRS data during exercise and ischemia; and, (2) by simulating muscle oxygenation and blood flow values using these newly developed equations during recovery from exercise and ischemia. Methods Deoxy (Hb) and oxyhemoglobin (HbO2), located in the blood ofthe skeletal muscle, carry two internal relationships between blood flow and oxygen consumption. One is a mass transfer principle and the other describes a relationship between oxygen consumption and Hb kinetics in a two-compartment model. To monitor blood flow continuously, we transfer these two relationships into two equations and calculate the blood flow with the differential information of HbO2 and Hb. In addition, these equations are used to simulate the relationship between blood flow and reoxygenation kinetics after cuff ischemia and a light exercise. Nine healthy subjects volunteered for the cuff ischemia, light arm exercise and arm exercise with cuff ischemia for the experimental study. Results Analysis of experimental data of both cuff ischemia and light exercise using the new equations show greater blood flow (four to six times more than resting values) during recovery, agreeing with previous findings. Further, the simulation and experimental studies of cuff ischemia and light exercise agree with each other. Conclusion We demonstrate the accuracy of this new method by showing that the blood flow obtained from the method agrees with previous data as well as with simulated data. We conclude that this novel continuous blood flow monitoring method can provide blood flow information non-invasively with NIRS. PMID:16704736

  5. On the Numerical Study of Heavy Rainfall in Taiwan

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chen, Ching-Sen; Chen, Yi-Leng; Jou, Ben Jong-Dao; Lin, Pay-Liam; Starr, David OC. (Technical Monitor)

    2001-01-01

    Heavy rainfall events are frequently observed over the western side of the CMR (central mountain range), which runs through Taiwan in a north-south orientation, in a southwesterly flow regime and over the northeastern side of the CMR in a northeasterly flow regime. Previous studies have revealed the mechanisms by which the heavy rainfall events are formed. Some of them have examined characteristics of the heavy rainfall via numerical simulations. In this paper, some of the previous numerical studies on heavy rainfall events around Taiwan during the Mei-Yu season (May and June), summer (non-typhoon cases) and autumn will be reviewed. Associated mechanisms proposed from observational studies will be reviewed first, and then characteristics of numerically simulated heavy rainfall events will be presented. The formation mechanisms of heavy rainfall from simulated results and from observational analysis are then compared and discussed. Based on these previous modeling studies, we will also discuss what are the major observations and modeling processes which will be needed for understanding the heavy precipitation in the future.

  6. Code Validation Studies of High-Enthalpy Flows

    DTIC Science & Technology

    2006-12-01

    stage of future hypersonic vehicles. The development and design of such vehicles is aided by the use of experimentation and numerical simulation... numerical predictions and experimental measurements. 3. Summary of Previous Work We have studied extensively hypersonic double-cone flows with and in...the experimental measurements and the numerical predictions. When we accounted for that effect in numerical simulations, and also augmented the

  7. Effects of melatonin or maternal nutrient restriction on vascularity and cell proliferation in the ovine placenta

    USDA-ARS?s Scientific Manuscript database

    Previously we reported increased umbilical artery blood flow in ewes supplemented with melatonin from mid- to late-pregnancy, while maternal nutrient restriction decreased uterine artery blood flow. To further unravel these responses, this study was designed to assess placental cell proliferation an...

  8. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    NASA Astrophysics Data System (ADS)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The previous hypothesis that regional groundwater flow from the piedmont groundwater recharge zone predominantly discharges at the coastline may therefore be false. A more reliable alternative might be to conceptualize deep groundwater below the coastal plains a hydrodynamically stagnant zone, responding gradually to landscape and hydrological change on geologic timescales. This study brings a new and original understanding of the groundwater flow system in an important regional basin, in the context of its geometry and evolution over geological timescales. There are important implications for the sustainability of the ongoing high rates of groundwater extraction in the NCB.

  9. Determination of the hypersonic-continuum/rarefied-flow drag coefficient of the Viking lander capsule 1 aeroshell from flight data

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Walberg, G. D.

    1980-01-01

    Results of an investigation to determine the full scale drag coefficient in the high speed, low density regime of the Viking lander capsule 1 entry vehicle are presented. The principal flight data used in the study were from onboard pressure, mass spectrometer, and accelerometer instrumentation. The hypersonic continuum flow drag coefficient was unambiguously obtained from pressure and accelerometer data; the free molecule flow drag coefficient was indirectly estimated from accelerometer and mass spectrometer data; the slip flow drag coefficient variation was obtained from an appropriate scaling of existing experimental sphere data. Comparison of the flight derived drag hypersonic continuum flow regime except for Reynolds numbers from 1000 to 100,000, for which an unaccountable difference between flight and ground test data of about 8% existed. The flight derived drag coefficients in the free molecule flow regime were considerably larger than those previously calculated with classical theory. The general character of the previously determined temperature profile was not changed appreciably by the results of this investigation; however, a slightly more symmetrical temperature variation at the highest altitudes was obtained.

  10. Vortex dynamics in ruptured and unruptured intracranial aneurysms

    NASA Astrophysics Data System (ADS)

    Trylesinski, Gabriel; Varble, Nicole; Xiang, Jianping; Meng, Hui

    2013-11-01

    Intracranial aneurysms (IAs) are potentially devastating pathological dilations of arterial walls that affect 2-5% of the population. In our previous CFD study of 119 IAs, we found that ruptured aneurysms were correlated with complex flow pattern and statistically predictable by low wall shear stress and high oscillatory shear index. To understand flow mechanisms that drive the pathophysiology of aneurysm wall leading to either stabilization or growth and rupture, we aim at exploring vortex dynamics of aneurysmal flow and provide insight into the correlation between the previous predictive morphological parameters and wall hemodynamic metrics. We adopt the Q-criterion definition of coherent structures (CS) and analyze the CS dynamics in aneurysmal flows for both ruptured and unruptured IA cases. For the first time, we draw relevant biological conclusions concerning aneurysm flow mechanisms and pathophysiological outcome. In pulsatile simulations, the coherent structures are analyzed in these 119 patient-specific geometries obtained using 3D angiograms. The images were reconstructed and CFD were performed. Upon conclusion of this work, better understanding of flow patterns of unstable aneurysms may lead to improved clinical outcome.

  11. Flow-field characteristics of high-temperature annular buoyant jets and their development laws influenced by ventilation system.

    PubMed

    Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan

    2013-01-01

    The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to -5 Pa.

  12. Flow-Field Characteristics of High-Temperature Annular Buoyant Jets and Their Development Laws Influenced by Ventilation System

    PubMed Central

    Liu, Jiaping; Wang, Hai; Liu, Qiuhan

    2013-01-01

    The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to −5 Pa. PMID:24000278

  13. Experimental and Model Studies on Loading Path-Dependent and Nonlinear Gas Flow Behavior in Shale Fractures

    NASA Astrophysics Data System (ADS)

    Li, Honglian; Lu, Yiyu; Zhou, Lei; Tang, Jiren; Han, Shuaibin; Ao, Xiang

    2018-01-01

    Interest in shale gas as an energy source is growing worldwide. Because the rock's natural fracture system can contribute to gas production, it is important to understand the flow behavior of natural fractures in shale. Previous studies on the flow characteristics in shale fractures were limited and did not consider the effect of nonlinearity. To understand the basic mechanics of the gas flow behavior in shale fractures, laboratory investigations with consideration of the fluid pressure gradient, the confining stress, the loading history and the fracture geometry were conducted in this paper. Izbash's equation was used to analyze the nonlinearity of the flow. The results show that the behavior of the friction factors is similar to that shown in flow tests in smooth and rough pipes. The increase of the confining stress and the irreversible damage to the shale decreased the hydraulic aperture and increased the relative roughness. Thus, turbulent flow could appear at a low Reynolds number, resulting in a significant pressure loss. The limits of the cubic law and the existing correction factor for transmissivity are discussed. It is found that the previous friction models overestimate the friction factor in the laminar regime and underestimate the friction factor in the turbulent regime. For this reason, a new friction model based on a linear combination of the Reynolds number and the relative roughness was developed.

  14. On the Importance of Spatial Resolution for Flap Side Edge Noise Prediction

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Khorrami, Mehdi R.

    2017-01-01

    A spatial resolution study of flap tip flow and the effects on the farfield noise signature for an 18%-scale, semispan Gulfstream aircraft model are presented. The NASA FUN3D unstructured, compressible Navier-Stokes solver was used to perform the highly resolved, time-dependent, detached eddy simulations of the flow field associated with the flap for this high-fidelity aircraft model. Following our previous work on the same model, the latest computations were undertaken to determine the causes of deficiencies observed in our earlier predictions of the steady and unsteady surface pressures and off-surface flow field at the flap tip regions, in particular the outboard tip area, where the presence of a cavity at the side-edge produces very complex flow features and interactions. The present results show gradual improvement in steady loading at the outboard flap edge region with increasing spatial resolution, yielding more accurate fluctuating surface pressures, off-surface flow field, and farfield noise with improved high-frequency content when compared with wind tunnel measurements. The spatial resolution trends observed in the present study demonstrate that the deficiencies reported in our previous computations are mostly caused by inadequate spatial resolution and are not related to the turbulence model.

  15. Viscoelastic Transient of Confined Red Blood Cells

    PubMed Central

    Prado, Gaël; Farutin, Alexander; Misbah, Chaouqi; Bureau, Lionel

    2015-01-01

    The unique ability of a red blood cell to flow through extremely small microcapillaries depends on the viscoelastic properties of its membrane. Here, we study in vitro the response time upon flow startup exhibited by red blood cells confined into microchannels. We show that the characteristic transient time depends on the imposed flow strength, and that such a dependence gives access to both the effective viscosity and the elastic modulus controlling the temporal response of red cells. A simple theoretical analysis of our experimental data, validated by numerical simulations, further allows us to compute an estimate for the two-dimensional membrane viscosity of red blood cells, ηmem2D ∼ 10−7 N⋅s⋅m−1. By comparing our results with those from previous studies, we discuss and clarify the origin of the discrepancies found in the literature regarding the determination of ηmem2D, and reconcile seemingly conflicting conclusions from previous works. PMID:25954871

  16. Elucidating the effects of river fluctuation on microbial removal during riverbank filtration

    NASA Astrophysics Data System (ADS)

    Derx, J.; Sommer, R.; Farnleitner, A. H.; Blaschke, A. P.

    2010-12-01

    The transfer of microbial pathogens from surface or waste water can have adverse effects on groundwater quality at riverbank filtration sites. Previous studies on groundwater protection in sandy unconfined aquifers with the focus on virus transport and health based water quality targets, such as done in the Netherlands, revealed larger protection zones than zones limited by 60 days of groundwater travel time. The 60 days of travel time are the design criterion in Austria for drinking water protection. However, in gravel aquifers, microbial transport processes differ significantly to those in sandy aquifers. Preferential flow and aquifer heterogeneities dominate microbial transport in sandy gravels and gravel aquifers. Microbial mass transfer and dual domain transport models were used previously to reproduce these effects. Furthermore, microbial transport has mainly been studied in the field during steady state groundwater flow situations. Hence, previous microbial transport models have seldom accounted for transient groundwater flow conditions. These dynamic flow conditions could have immense effects on the fate of microorganisms because of the variations in flow velocities, which are dominating microbial transport. In the current study, we used a variably saturated, three-dimensional groundwater flow and transport model coupled to a hydrodynamic surface water model at a riverbank filtration site. With this model, we estimated the required groundwater protection zones based on 8 log10 viral reductions and compared them to the 60 days travel time zones. The 8 log10 removal steps were based on a preliminary microbial risk assessment scheme for enteroviruses at the riverbank infiltration sites. The groundwater protection zones were estimated for a set of well withdrawal rates, river fluctuation ranges and frequencies, river gradients and bank slopes. The river flow dynamics and the morphology of the riverbed and banks are potentially important factors affecting microbial transport processes during riverbank filtration, which were previously not accounted for. Acknowledgments We would like to thank the Austrian Science Funds FWF for financial support as part of the Doctoral program DK-plus W1219-N22 on Water Resource Systems and the Vienna Waterworks (MA31) as part of the GWRS-Vienna project. We would also like to thank the MA39 (IFUM) for helping at the preliminary risk assessment.

  17. Decadal oscillations and extreme value distribution of river peak flows in the Meuse catchment

    NASA Astrophysics Data System (ADS)

    De Niel, Jan; Willems, Patrick

    2017-04-01

    In flood risk management, flood probabilities are often quantified through Generalized Pareto distributions of river peak flows. One of the main underlying assumptions is that all data points need to originate from one single underlying distribution (i.i.d. assumption). However, this hypothesis, although generally assumed to be correct for variables such as river peak flows, remains somehow questionable: flooding might indeed be caused by different hydrological and/or meteorological conditions. This study confirms these findings from previous research by showing a clear indication of the link between atmospheric conditions and flooding for the Meuse river in The Netherlands: decadal oscillations of river peak flows can (at least partially) be attributed to the occurrence of westerly weather types. The study further proposes a method to take this correlation between atmospheric conditions and river peak flows into account when calibrating an extreme value distribution for river peak flows. Rather than calibrating one single distribution to the data and potentially violating the i.i.d. assumption, weather type depending extreme value distributions are derived and composed. The study shows that, for the Meuse river in The Netherlands, such approach results in a more accurate extreme value distribution, especially with regards to extrapolations. Comparison of the proposed method with a traditional extreme value analysis approach and an alternative model-based approach for the same case study shows strong differences in the peak flow extrapolation. The design-flood for a 1,250 year return period is estimated at 4,800 m3s-1 for the proposed method, compared with 3,450 m3s-1 and 3,900 m3s-1 for the traditional method and a previous study. The methods were validated based on instrumental and documentary flood information of the past 500 years.

  18. Study of compressible flow through a rectangular-to-semiannular transition duct

    NASA Technical Reports Server (NTRS)

    Foster, Jeffry; Okiishi, Theodore H.; Wendt, Bruce J.; Reichert, Bruce A.

    1995-01-01

    Detailed flow field measurements are presented for compressible flow through a diffusing rectangular-to-semiannular transition duct. Comparisons are made with published computational results for flow through the duct. Three-dimensional velocity vectors and total pressures were measured at the exit plane of the diffuser model. The inlet flow was also measured. These measurements are made using calibrated five-hole probes. Surface oil flow visualization and surface static pressure data were also taken. The study was conducted with an inlet Mach number of 0.786. The diffuser Reynolds based on the inlet centerline velocity and the exit diameter of the diffuser was 3,200,000. Comparison of the measured data with previously published computational results are made. Data demonstrating the ability of vortex generators to reduce flow separation and circumferential distortion is also presented.

  19. Prediction of myocardial functional recovery by noninvasive evaluation of Basal and hyperemic coronary flow in patients with previous myocardial infarction.

    PubMed

    Djordjevic-Dikic, Ana; Beleslin, Branko; Stepanovic, Jelena; Giga, Vojislav; Tesic, Milorad; Dobric, Milan; Stojkovic, Sinisa; Nedeljkovic, Milan; Vukcevic, Vladan; Dikic, Nenad; Petrasinovic, Zorica; Nedeljkovic, Ivana; Tomasevic, Miloje; Vujisic-Tesic, Bosiljka; Ostojic, Miodrag

    2011-05-01

    The aim of this study was to evaluate the relation of basal and hyperemic coronary flow with myocardial functional improvement in patients with previous myocardial infarction undergoing elective percutaneous coronary intervention (PCI). Coronary flow was measured using transthoracic Doppler echocardiography in 50 patients (41 men; mean age, 53 ± 8 years) with previous myocardial infarction before, 24 hours, and 3 months after elective PCI. Diastolic deceleration time (DDT) was measured from the peak diastolic velocity to the point of intercept of initial decay slope with baseline. Coronary flow reserve (CFR) was calculated as the ratio of hyperemic to basal peak diastolic flow velocities. In comparison with patients without improvements in left ventricular function, patients with recovered left ventricular function had longer DDTs before angioplasty (841 ± 286 vs. 435 ± 80 msec, P < .001). CFR was significantly higher in recovered compared with nonrecovered patients (2.60 ± 0.70 vs. 2.16 ± 0.34, P = .034) 24 hours after PCI. Global and regional wall motion scores before PCI, end-diastolic and end-systolic volumes, and CFR 24 hours after PCI and DDT before PCI were univariate predictors of left ventricular functional recovery. By multivariate analysis, DDT and regional wall motion score before PCI were independent predictors of left ventricular recovery in the follow-up period (P = .003 and P = .007, respectively). In patients with previous myocardial infarction undergoing elective PCI, evaluation of basal coronary flow pattern and measurement of DDT before angioplasty may predict functional improvement of myocardium in the follow-up period and could be useful quantitative parameters in the evaluation of potential improvement in myocardial function. Copyright © 2011 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  20. Export of nutrients and major ionic solutes from a rain forest catchment in the Central Amazon Basin

    NASA Astrophysics Data System (ADS)

    Lesack, Lance F. W.

    1993-03-01

    The relative roles of base flow runoff versus storm flow runoff versus subsurface outflow in controlling total export of solutes from a 23.4-ha catchment of undisturbed rain forest in the central Amazon Basin were evaluated from water and solute flux measurements performed over a 1 year period. Solutes exported via 173 storms during the study were estimated from stream water samples collected during base flow conditions and during eight storms, and by utilizing a hydrograph separation technique in combination with a mixing model to partition storm flow from base flow fluxes. Solutes exported by subsurface outflow were estimated from groundwater samples from three nests of piezometers installed into the streambed, and concurrent measurements of hydraulic conductivity and hydraulic head gradients. Base flow discharge represented 92% of water outflow from the basin and was the dominant pathway of solute export. Although storm flow discharge represented only 5% of total water outflow, storm flow solute fluxes represented up to 25% of the total annual export flux, though for many solutes the portion was less. Subsurface outflow represented only 2.5% of total water outflow, and subsurface solute fluxes never represented more than 5% of the total annual export flux. Measurement errors were relatively high for storm flow and subsurface outflow fluxes, but cumulative measurement errors associated with the total solute fluxes exported from the catchment, in most cases, ranged from only ±7% to 14% because base flow fluxes were measured relatively well. The export fluxes of most solutes are substantially less than previously reported for comparable small catchments in the Amazon basin, and these differences cannot be reconciled by the fact that storm flow and subsurface outflows were not appropriately measured in previous studies.

  1. Weighted complex network analysis of the Beijing subway system: Train and passenger flows

    NASA Astrophysics Data System (ADS)

    Feng, Jia; Li, Xiamiao; Mao, Baohua; Xu, Qi; Bai, Yun

    2017-05-01

    In recent years, complex network theory has become an important approach to the study of the structure and dynamics of traffic networks. However, because traffic data is difficult to collect, previous studies have usually focused on the physical topology of subway systems, whereas few studies have considered the characteristics of traffic flows through the network. Therefore, in this paper, we present a multi-layer model to analyze traffic flow patterns in subway networks, based on trip data and an operation timetable obtained from the Beijing Subway System. We characterize the patterns in terms of the spatiotemporal flow size distributions of both the train flow network and the passenger flow network. In addition, we describe the essential interactions between these two networks based on statistical analyses. The results of this study suggest that layered models of transportation systems can elucidate fundamental differences between the coexisting traffic flows and can also clarify the mechanism that causes these differences.

  2. Study of viscous flow about airfoils by the integro-differential method

    NASA Technical Reports Server (NTRS)

    Wu, J. C.; Sampath, S.

    1975-01-01

    An integro-differential method was used for numerically solving unsteady incompressible viscous flow problems. A computer program was prepared to solve the problem of an impulsively started 9% thick symmetric Joukowski airfoil at an angle of attack of 15 deg and a Reynolds number of 1000. Some of the results obtained for this problem were discussed and compared with related work completed previously. Two numerical procedures were used, an Alternating Direction Implicit (ADI) method and a Successive Line Relaxation (SLR) method. Generally, the ADI solution agrees well with the SLR solution and with previous results are stations away from the trailing edge. At the trailing edge station, the ADI solution differs substantially from previous results, while the vorticity profiles obtained from the SLR method there are in good qualitative agreement with previous results.

  3. Comparing DNS and Experiments of Subcritical Flow Past an Isolated Surface Roughness Element

    NASA Astrophysics Data System (ADS)

    Doolittle, Charles; Goldstein, David

    2009-11-01

    Results are presented from computational and experimental studies of subcritical roughness within a Blasius boundary layer. This work stems from discrepancies presented by Stephani and Goldstein (AIAA Paper 2009-585) where DNS results did not agree with hot-wire measurements. The near wake regions of cylindrical surface roughness elements corresponding to roughness-based Reynolds numbers Rek of about 202 are of specific concern. Laser-Doppler anemometry and flow visualization in water, as well as the same spectral DNS code used by Stephani and Goldstein are used to obtain both quantitative and qualitative comparisons with previous results. Conclusions regarding previous studies will be presented alongside discussion of current work including grid resolution studies and an examination of vorticity dynamics.

  4. Shear-Flow Instability Saturation by Stable Modes: Hydrodynamics and Gyrokinetics

    NASA Astrophysics Data System (ADS)

    Fraser, Adrian; Pueschel, M. J.; Terry, P. W.; Zweibel, E. G.

    2017-10-01

    We present simulations of shear-driven instabilities, focusing on the impact of nonlinearly excited, large-scale, linearly stable modes on the nonlinear cascade, momentum transport, and secondary instabilities. Stable modes, which have previously been shown to significantly affect instability saturation [Fraser et al. PoP 2017], are investigated in a collisionless, gyrokinetic, periodic zonal flow using the Gene code by projecting the results of nonlinear simulations onto a basis of linear eigenmodes that includes both stable and unstable modes. Benchmarking growth rates against previous gyrokinetic studies and an equivalent fluid system demonstrates comparable linear dynamics in the fluid and gyrokinetic systems. Cases of driven and decaying shear-flow turbulence are compared in Gene by using a Krook operator as an effective forcing. For comparison with existing hydrodynamic and MHD shear-flow instability studies, we present results for the shear layer obtained by similar means with the code Dedalus. Supported by U.S. DOE Grant No. DE-FG02-89ER53291, the NSF, and UW-Madison.

  5. Flow field interactions between two tandem cyclists

    NASA Astrophysics Data System (ADS)

    Barry, Nathan; Burton, David; Sheridan, John; Thompson, Mark; Brown, Nicholas A. T.

    2016-12-01

    Aerodynamic drag is the primary resistive force acting on cyclists at racing speeds. Many events involve cyclists travelling in very close proximity. Previous studies have shown that interactions result in significant drag reductions for inline cyclists. However, the interaction between cyclist leg position (pedalling) and the vortical flow structures that contribute significantly to the drag on an isolated cyclist has not previously been quantified or described for tandem cyclists of varying separation. To this end, scale model cyclists were constructed for testing in a water channel for inline tandem configurations. Particle image velocimetry was used to capture time-averaged velocity fields around two tandem cyclists. Perhaps surprisingly, the wake of a trailing cyclist maintains strong similarity to the characteristic wake of a single cyclist despite a significant disturbance to the upstream flow. Together with streamwise velocity measurements through the wake and upstream of the trailing cyclist, this work supports previous findings, which showed that the trailing cyclist drag reduction is primarily due to upstream sheltering effects reducing the stagnation pressure on forward-facing surfaces.

  6. Transient heat transfer in viscous rarefied gas between concentric cylinders. Effect of curvature

    NASA Astrophysics Data System (ADS)

    Gospodinov, P.; Roussinov, V.; Dankov, D.

    2015-10-01

    The thermoacoustic waves arising in cylindrical or planar Couette rarefied gas flow between rotating cylinders is studied in the cases of suddenly cylinder (active) wall velocity direction turn on. An unlimited increase in the radius of the inner cylinder flow can be interpreted as Couette flow between the two flat plates. Based on the developed in previous publications Navier-Stockes-Fourier (NSF) model and Direct Simulation Monte Carlo (DSMC) method and their numerical solutions, are considered transient processes in the gas phase. Macroscopic flow characteristics (velocity, density, temperature) are received. The cylindrical flow cases for fixed velocity and temperature of the both walls are considered. The curvature effects over the wave's distribution and attenuation are studied numerically.

  7. Pattern formation and three-dimensional instability in rotating flows

    NASA Astrophysics Data System (ADS)

    Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.

    1997-03-01

    A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.

  8. Experimental study of the effect of drag reducing agent on pressure drop and thermal efficiency of an air cooler

    NASA Astrophysics Data System (ADS)

    Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Saffarian, H.; Shekari, F.

    2016-01-01

    Effect of polymeric drag reduction agents (DRAs) on pressure drop and heat transfer was studied. Aqueous solutions of carboxy methyl cellulose were used inside an air-finned heat exchanger. Despite the previous studies which indicated the importance of drag reduction just in turbulent flow, results of this study in laminar flow indicated that the addition of DRA increases drag reduction, and decreases the overall heat transfer coefficient.

  9. Local evolution of pyrethroid resistance offsets gene flow among Aedes aegypti collections in Yucatan State, Mexico.

    PubMed

    Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C

    2015-01-01

    The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1-4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. © The American Society of Tropical Medicine and Hygiene.

  10. High-throughput autofluorescence flow cytometry of breast cancer metabolism (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shah, Amy T.; Cannon, Taylor M.; Higginbotham, Jim N.; Skala, Melissa C.

    2016-02-01

    Tumor heterogeneity poses challenges for devising optimal treatment regimens for cancer patients. In particular, subpopulations of cells can escape treatment and cause relapse. There is a need for methods to characterize tumor heterogeneity of treatment response. Cell metabolism is altered in cancer (Warburg effect), and cells use the autofluorescent cofactor NADH in numerous metabolic reactions. Previous studies have shown that microscopy measurements of NADH autofluorescence are sensitive to treatment response in breast cancer, and these techniques typically assess hundreds of cells per group. An alternative approach is flow cytometry, which measures fluorescence on a single-cell level and is attractive for characterizing tumor heterogeneity because it achieves high-throughput analysis and cell sorting in millions of cells per group. Current applications for flow cytometry rely on staining with fluorophores. This study characterizes flow cytometry measurements of NADH autofluorescence in breast cancer cells. Preliminary results indicate flow cytometry of NADH is sensitive to cyanide perturbation, which inhibits oxidative phosphorylation, in nonmalignant MCF10A cells. Additionally, flow cytometry is sensitive to higher NADH intensity for HER2-positive SKBr3 cells compared with triple-negative MDA-MB-231 cells. These results agree with previous microscopy studies. Finally, a mixture of SKBr3 and MDA-MB-231 cells were sorted into each cell type using NADH intensity. Sorted cells were cultured, and microscopy validation showed the expected morphology for each cell type. Ultimately, flow cytometry could be applied to characterize tumor heterogeneity based on treatment response and sort cell subpopulations based on metabolic profile. These achievements could enable individualized treatment strategies and improved patient outcomes.

  11. An experimental study of geyser-like flows induced by a pressurized air pocket

    NASA Astrophysics Data System (ADS)

    Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.

    2015-12-01

    Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.

  12. High-Latitude Paleomagnetic and Ar-Ar Study of 0 - 6 MA Lavas from Eastern Iceland: Contribution to the Time-Averaged Field Initiative

    NASA Astrophysics Data System (ADS)

    Døssing, A.; Muxworthy, A. R.; Mac Niocaill, C.; Riishuus, M. S.

    2013-12-01

    Statistical analyses of paleomagnetic data from sequential lava flows allow us to study the geomagnetic field behavior on kyr to Myr timescales. Previous paleomagnetic studies have lacked high-latitude, high-quality measurements and resolution necessary to investigate the persistence of high-latitude geomagnetic field anomalies observed in the recent and historical field records, and replicated in some numerical geodynamo simulations. As part of the Time-Averaged Field Initiative (TAFI) project, the lava sequences found in Nordurdalur (by Fljótsdalur) and Jökuldalur in eastern Iceland provide an excellent opportunity to improve high-latitude data suitable for investigating the 0-5 Ma TAF and paleosecular variation. These adjacent valleys, separated by 40 km, are known to comprise a fairly continuous record of lava flows erupted from the Northern Rift Zone between 0.5 and 5-7 Ma. During a five weeks field campaign in summer 2013, we collected a total of ~1900 cores (10-16 cores/site; mean = ~13 cores/site) from ~140 separate lava flows (165 in total) along eight stratigraphic profiles in Nordurdalur and Jökuldalur. In addition, hand samples were collected from ~70 sites to deliver ~40 new 40Ar/39Ar radiometric age measurements. We present a preliminary composite magnetostratigraphic interpretation of the exposed volcanic pile in Nordurdalur and Jökuldalur. The new data will be compared and contrasted with previously published paleomagnetic and geochronological results. In addition, determinations of the anisotropy of the magnetic susceptibility of individual lava flows is sought to deliver fossil lava flow directions. The aim of the study is ultimately to present a high-quality study of paleomagnetic directions and intensities from Iceland spanning the past 6-7 Myr. The new Fjlotsdalur and Jökuldalur data will be combined with previously published paleomagnetic results.

  13. Mixing zone hydrodynamics in a large confluence: a case study of the Snake and Clearwater Rivers confluence

    NASA Astrophysics Data System (ADS)

    Shehata, M. M.; Petrie, J.

    2015-12-01

    Confluences are a basic component in all fluvial systems, which are often characterized by complex flow and sediment transport patterns. Addressing confluences, however, started only recently in parallel with new advances of flow measurement tools and computational techniques. A limited number of field studies exist investigating flow hydrodynamics through confluences, particularly for large confluences with central zone widths of 100 m or greater. Previous studies have indicated that the size of the confluent rivers and the post-confluence zone may impact flow and sediment transport processes in the confluence zone, which consequently could impact the biodiversity within the river network. This study presents the results of a field study conducted at the confluence of the Snake and the Clearwater rivers near the towns of Clarkston, WA and Lewiston, ID (average width of 700 m at the confluence center). This confluence supports many different and, sometimes, conflicting purposes including commercial navigation, recreation, and fish and wildlife conservation. The confluence properties are affected by dredging operations carried out periodically to maintain the minimum water depth required for safe flow conveyance and navigation purposes. Also, a levee system was constructed on the confluence banks as an extra flood control measure. In the recent field work, an Acoustic Doppler Current Profiler was used to measure water velocity profiles at cross sections in the confluence region. Fixed and moving vessel measurements were taken at selected locations to evaluate both the spatial and temporal variation in velocity throughout the confluence. The confluence bathymetry was surveyed with a multi-beam sonar to investigate existent bed morphological elements. The results identify the velocity pattern in the mixing zone between the two rivers. The present findings are compared to previous studies on small confluences to demonstrate the influence of scale on flow processes.

  14. Enhanced water vapour flow in silica microchannels and interdiffusive water vapour flow through anodic aluminium oxide (AAO) membranes

    NASA Astrophysics Data System (ADS)

    Lei, Wenwen; McKenzie, David R.

    2015-12-01

    Enhanced liquid water flows through carbon nanotubes reinvigorated the study of moisture permeation through membranes and micro- and nano-channels. The study of water vapour through micro-and nano-channels has been neglected even though water vapour is as important as liquid water for industry, especially for encapsulation of electronic devices. Here we measure moisture flow rates in silica microchannels and interdiffusive water vapour flows in anodic aluminium oxide (AAO) membrane channels for the first time. We construct theory for the flow rates of the dominant modes of water transport through four previously defined standard configurations and benchmark it against our new measurements. The findings show that measurements of leak behaviour made using other molecules, such as helium, are not reliable. Single phase water vapour flow is overestimated by a helium measurement, while Washburn or capillary flow is underestimated or for all channels when boundary slip applies, to an extent that depends on the slip length for the liquid phase flows.

  15. Intensity-duration threshold of rainfall-triggered debris flows in the Wenchuan Earthquake affected area, China

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojun; Cui, Peng; Li, Yong; Ma, Li; Ge, Yonggang; Mahoney, William B.

    2016-01-01

    The Ms 8.0 Wenchuan Earthquake has greatly altered the rainfall threshold for debris flows in the affected areas. This study explores the local intensity-duration (I-D) relationship based on 252 post-earthquake debris flows. It was found that I = 5.25 D-0.76 accounts for more than 98% of the debris flow occurrences with rainfall duration between 1 and 135 h; therefore the curve defines the threshold for debris flows in the study area. This gives much lower thresholds than those proposed by the previous studies, suggesting that the earthquake has greatly decreased the thresholds in the past years. Moreover, the rainfall thresholds appear to increase annually in the period of 2008-2013, and present a logarithmic increasing tendency, indicating that the thresholds will recover in the future decades.

  16. Secondary Vortex Structures in Vortex Generator Induced Flow

    NASA Astrophysics Data System (ADS)

    Velte, Clara; Okulov, Valery; Hansen, Martin

    2010-11-01

    Passive rectangular vane actuators can induce a longitudinal vortex that redistributes the momentum in the boundary layer to control the flow. Recent experiments [1] as well as previous studies [2] have shown that a secondary vortex of opposite sign is generated along with the primary one, supposedly from local separation of the boundary layer due to the primary vortex. 2D flow visualizations of a vortex in the vicinity of a boundary support this hypothesis [3]. These secondary vortices are studied for various configurations -- single generator, counter- and co-rotating cascades. The objective is to study their removal through cancelation in cascades using Stereoscopic Particle Image Velocimetry and flow visualization.[4pt] [1] Velte, Hansen and Okulov, J. Fluid Mech. 619, 2009.[0pt] [2] Zhang, Int. J. Heat Fluid Flow 21 2000.[0pt] [3] Harris, Miller and Williamson, APS abstract 2009.

  17. Fluid flow and convective transport of solutes within the intervertebral disc.

    PubMed

    Ferguson, Stephen J; Ito, Keita; Nolte, Lutz P

    2004-02-01

    Previous experimental and analytical studies of solute transport in the intervertebral disc have demonstrated that for small molecules diffusive transport alone fulfils the nutritional needs of disc cells. It has been often suggested that fluid flow into and within the disc may enhance the transport of larger molecules. The goal of the study was to predict the influence of load-induced interstitial fluid flow on mass transport in the intervertebral disc. An iterative procedure was used to predict the convective transport of physiologically relevant molecules within the disc. An axisymmetric, poroelastic finite-element structural model of the disc was developed. The diurnal loading was divided into discrete time steps. At each time step, the fluid flow within the disc due to compression or swelling was calculated. A sequentially coupled diffusion/convection model was then employed to calculate solute transport, with a constant concentration of solute being provided at the vascularised endplates and outer annulus. Loading was simulated for a complete diurnal cycle, and the relative convective and diffusive transport was compared for solutes with molecular weights ranging from 400 Da to 40 kDa. Consistent with previous studies, fluid flow did not enhance the transport of low-weight solutes. During swelling, interstitial fluid flow increased the unidirectional penetration of large solutes by approximately 100%. Due to the bi-directional temporal nature of disc loading, however, the net effect of convective transport over a full diurnal cycle was more limited (30% increase). Further study is required to determine the significance of large solutes and the timing of their delivery for disc physiology.

  18. Rotating coherent flow structures as a source for narrowband tip clearance noise from axial fans

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Lallier-Daniels, Dominic; Sanjosé, Marlène; Moreau, Stéphane; Carolus, Thomas

    2018-03-01

    Noise from axial fans typically increases significantly as the tip clearance is increased. In addition to the broadband tip clearance noise at the design flow rate, narrowband humps also associated with the tip flow are observed in the far-field acoustic spectra at lower flow rate. In this study, both experimental and numerical methods are used to shed more light on the noise generation mechanism of this narrowband tip clearance noise and provide a unified description of this source. Unsteady aeroacoustic predictions with the Lattice-Boltzmann Method (LBM) are successfully compared with experiment. Such a validation allows using LBM data to conduct a detailed modal analysis of the pressure field for detecting rotating coherent flow structures which might be considered as noise sources. As previously found in ring fans the narrowband humps in the far-field noise spectra are found to be related to the tip clearance noise that is generated by an interaction of coherent flow structures present in the tip region with the leading edge of the impeller blades. The visualization of the coherent structures shows that they are indeed part of the unsteady tip clearance vortex structures. They are hidden in a complex, spatially and temporally inhomogeneous flow field, but can be recovered by means of appropriate filtering techniques. Their pressure trace corresponds to the so-called rotational instability identified in previous turbomachinery studies, which brings a unified picture of this tip-noise phenomenon for the first time.

  19. (DURIP 10) High Speed Intensified Imaging System For Studies Of Mixing And Combustion In Supersonic Flows And Hydrocarbon Flame Structure Measurements At Elevated Pressures

    DTIC Science & Technology

    2016-11-09

    software, and their networking to augment optical diagnostics employed in supersonic reacting and non-reacting flow experiments . A high-speed...facility at Caltech. Experiments to date have made use of this equipment, extending previous capabilities to high-speed schlieren quantitative flow...visualization and image correlation velocimetry, with further experiments currently in progress. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17

  20. Feasibility Assessment of CO2 Sequestration and Enhanced Recovery in Gas Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Vermylen, J. P.; Hagin, P. N.; Zoback, M. D.

    2008-12-01

    CO2 sequestration and enhanced methane recovery may be feasible in unconventional, organic-rich, gas shale reservoirs in which the methane is stored as an adsorbed phase. Previous studies have shown that organic-rich, Appalachian Devonian shales adsorb approximately five times more carbon dioxide than methane at reservoir conditions. However, the enhanced recovery and sequestration concept has not yet been tested for gas shale reservoirs under realistic flow and production conditions. Using the lessons learned from previous studies on enhanced coalbed methane (ECBM) as a starting point, we are conducting laboratory experiments, reservoir modeling, and fluid flow simulations to test the feasibility of sequestration and enhanced recovery in gas shales. Our laboratory work investigates both adsorption and mechanical properties of shale samples to use as inputs for fluid flow simulation. Static and dynamic mechanical properties of shale samples are measured using a triaxial press under realistic reservoir conditions with varying gas saturations and compositions. Adsorption is simultaneously measured using standard, static, volumetric techniques. Permeability is measured using pulse decay methods calibrated to standard Darcy flow measurements. Fluid flow simulations are conducted using the reservoir simulator GEM that has successfully modeled enhanced recovery in coal. The results of the flow simulation are combined with the laboratory results to determine if enhanced recovery and CO2 sequestration is feasible in gas shale reservoirs.

  1. Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio

    NASA Astrophysics Data System (ADS)

    Ba, Yan; Liu, Haihu; Li, Qing; Kang, Qinjun; Sun, Jinju

    2016-08-01

    In this paper we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with high density ratio and high Reynolds number. The model applies a multirelaxation-time (MRT) collision operator to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a form of the equilibrium density distribution function is used to simplify the source term. To validate the proposed model, steady flows of a static droplet and the layered channel flow are first simulated with density ratios up to 1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike and bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and Reynolds number up to 500.

  2. Geomorphic investigation of craters in Alba Mons, Mars: Implications for Late Amazonian glacial activity in the region

    NASA Astrophysics Data System (ADS)

    Sinha, Rishitosh K.; Vijayan, S.

    2017-09-01

    Evidence for mid-high latitude glacial episodes existing within the Late Amazonian history of Mars has been reported from analysis of variety of glacial/periglacial landforms and their stratigraphic relationships. In this study, using the Context Camera (CTX) images, we have surveyed the interior of craters within the Alba Mons region of Mars (30°-60°N; 80°-140°W) to decipher the presence of ice-related flow features. The primary goals of this study are to (1) suggest from observations that the flow features identified in the interior of Alba Mons craters have flow characteristic possibly different from concentric crater fill (CCF) landforms and (2) interpret the extent of glacial activity that led to formation of flow features with respect to previously described mid-latitude ice-related landforms. Our geomorphic investigation revealed evidence for the presence of tongue-like or lobate shaped ice-related flow feature from the interior of ∼346 craters in the study region. The presence of ring-mold crater morphologies and brain-terrain texture preserved on the surface of flow features suggests that they are possibly formed of near-surface ice-rich bodies. We found that these flow features tend to form inside both the smaller (<5 km) and larger (>5 km) diameter craters emplaced at a wide range of elevation (from ∼ -3.3 km to 6.1 km). The measurement of overall length and flow direction of flow features is suggestive that they are similar to pole-facing small-scale lobate debris apron (LDA) formed inside craters. Crater size-frequency distribution of these small-scale LDAs reveals a model age of ∼10-100 Ma. Together with topographic and geomorphic observations, orientation measurements, and distribution within the study region, we suggest that the flow features (identified as pole-facing small-scale LDAs in the interior of craters) have flow characteristic possibly different from CCF landforms. Our observations and findings support the results of previous analyses that suggests Mars to have preserved records of multiple debris-covered glacial episodes occurred in the Late Amazonian.

  3. Controls of channel morphology and sediment concentration on flow resistance in a large sand-bed river: A case study of the lower Yellow River

    NASA Astrophysics Data System (ADS)

    Ma, Yuanxu; Huang, He Qing

    2016-07-01

    Accurate estimation of flow resistance is crucial for flood routing, flow discharge and velocity estimation, and engineering design. Various empirical and semiempirical flow resistance models have been developed during the past century; however, a universal flow resistance model for varying types of rivers has remained difficult to be achieved to date. In this study, hydrometric data sets from six stations in the lower Yellow River during 1958-1959 are used to calibrate three empirical flow resistance models (Eqs. (5)-(7)) and evaluate their predictability. A group of statistical measures have been used to evaluate the goodness of fit of these models, including root mean square error (RMSE), coefficient of determination (CD), the Nash coefficient (NA), mean relative error (MRE), mean symmetry error (MSE), percentage of data with a relative error ≤ 50% and 25% (P50, P25), and percentage of data with overestimated error (POE). Three model selection criterions are also employed to assess the model predictability: Akaike information criterion (AIC), Bayesian information criterion (BIC), and a modified model selection criterion (MSC). The results show that mean flow depth (d) and water surface slope (S) can only explain a small proportion of variance in flow resistance. When channel width (w) and suspended sediment concentration (SSC) are involved, the new model (7) achieves a better performance than the previous ones. The MRE of model (7) is generally < 20%, which is apparently better than that reported by previous studies. This model is validated using the data sets from the corresponding stations during 1965-1966, and the results show larger uncertainties than the calibrating model. This probably resulted from the temporal shift of dominant controls caused by channel change resulting from varying flow regime. With the advancements of earth observation techniques, information about channel width, mean flow depth, and suspended sediment concentration can be effectively extracted from multisource satellite images. We expect that the empirical methods developed in this study can be used as an effective surrogate in estimation of flow resistance in the large sand-bed rivers like the lower Yellow River.

  4. Burnout and distribution of liquid between the flow core and wall films in narrow slot channels

    NASA Astrophysics Data System (ADS)

    Boltenko, E. A.; Shpakovskii, A. A.

    2010-03-01

    Previous works on studying distribution of liquid between the flow core and wall films in narrow slot channels are briefly reviewed. Interrelation between mass transfer processes and burnout is shown. A procedure for calculating burnout on convex and concave heat-transfer surfaces in narrow slot channels is presented.

  5. Disturbed flow mediated modulation of shear forces on endothelial plane: A proposed model for studying endothelium around atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Balaguru, Uma Maheswari; Sundaresan, Lakshmikirupa; Manivannan, Jeganathan; Majunathan, Reji; Mani, Krishnapriya; Swaminathan, Akila; Venkatesan, Saravanakumar; Kasiviswanathan, Dharanibalan; Chatterjee, Suvro

    2016-06-01

    Disturbed fluid flow or modulated shear stress is associated with vascular conditions such as atherosclerosis, thrombosis, and aneurysm. In vitro simulation of the fluid flow around the plaque micro-environment remains a challenging approach. Currently available models have limitations such as complications in protocols, high cost, incompetence of co-culture and not being suitable for massive expression studies. Hence, the present study aimed to develop a simple, versatile model based on Computational Fluid Dynamics (CFD) simulation. Current observations of CFD have shown the regions of modulated shear stress by the disturbed fluid flow. To execute and validate the model in real sense, cell morphology, cytoskeletal arrangement, cell death, reactive oxygen species (ROS) profile, nitric oxide production and disturbed flow markers under the above condition were assessed. Endothelium at disturbed flow region which had been exposed to low shear stress and swirling flow pattern showed morphological and expression similarities with the pathological disturbed flow environment reported previously. Altogether, the proposed model can serve as a platform to simulate the real time micro-environment of disturbed flow associated with eccentric plaque shapes and the possibilities of studying its downstream events.

  6. Reply to "Comment on 'Hydrodynamics of fractal continuum flow' and 'Map of fluid flow in fractal porous medium into fractal continuum flow'".

    PubMed

    Balankin, Alexander S; Elizarraraz, Benjamin Espinoza

    2013-11-01

    The aim of this Reply is to elucidate the difference between the fractal continuum models used in the preceding Comment and the models of fractal continuum flow which were put forward in our previous articles [Phys. Rev. E 85, 025302(R) (2012); 85, 056314 (2012)]. In this way, some drawbacks of the former models are highlighted. Specifically, inconsistencies in the definitions of the fractal derivative, the Jacobian of transformation, the displacement vector, and angular momentum are revealed. The proper forms of the Reynolds' transport theorem and angular momentum principle for the fractal continuum are reaffirmed in a more illustrative manner. Consequently, we emphasize that in the absence of any internal angular momentum, body couples, and couple stresses, the Cauchy stress tensor in the fractal continuum should be symmetric. Furthermore, we stress that the approach based on the Cartesian product measured and used in the preceding Comment cannot be employed to study the path-connected fractals, such as a flow in a fractally permeable medium. Thus, all statements of our previous works remain unchallenged.

  7. Hydrological characterization of cave drip waters in a porous limestone: Golgotha Cave, Western Australia

    NASA Astrophysics Data System (ADS)

    Mahmud, Kashif; Mariethoz, Gregoire; Baker, Andy; Treble, Pauline C.

    2018-02-01

    Cave drip water response to surface meteorological conditions is complex due to the heterogeneity of water movement in the karst unsaturated zone. Previous studies have focused on the monitoring of fractured rock limestones that have little or no primary porosity. In this study, we aim to further understand infiltration water hydrology in the Tamala Limestone of SW Australia, which is Quaternary aeolianite with primary porosity. We build on our previous studies of the Golgotha Cave system and utilize the existing spatial survey of 29 automated cave drip loggers and a lidar-based flow classification scheme, conducted in the two main chambers of this cave. We find that a daily sampling frequency at our cave site optimizes the capture of drip variability with the least possible sampling artifacts. With the optimum sampling frequency, most of the drip sites show persistent autocorrelation for at least a month, typically much longer, indicating ample storage of water feeding all stalactites investigated. Drip discharge histograms are highly variable, showing sometimes multimodal distributions. Histogram skewness is shown to relate to the wetter-than-average 2013 hydrological year and modality is affected by seasonality. The hydrological classification scheme with respect to mean discharge and the flow variation can distinguish between groundwater flow types in limestones with primary porosity, and the technique could be used to characterize different karst flow paths when high-frequency automated drip logger data are available. We observe little difference in the coefficient of variation (COV) between flow classification types, probably reflecting the ample storage due to the dominance of primary porosity at this cave site. Moreover, we do not find any relationship between drip variability and discharge within similar flow type. Finally, a combination of multidimensional scaling (MDS) and clustering by k means is used to classify similar drip types based on time series analysis. This clustering reveals four unique drip regimes which agree with previous flow type classification for this site. It highlights a spatial homogeneity in drip types in one cave chamber, and spatial heterogeneity in the other, which is in agreement with our understanding of cave chamber morphology and lithology.

  8. Cerebral blood perfusion after treatment with zolpidem and flumazenil in the baboon.

    PubMed

    Clauss, Ralf P; Dormehl, Irene C; Kilian, Elmaré; Louw, Werner K A; Nel, Wally H; Oliver, Douglas W

    2002-01-01

    Previous studies have shown that zolpidem (CAS 82626-48-0) can lead to improved perfusion in damaged brain tissue. Zolpidem belongs to the imidazopyridine chemical class and it illicits its pharmacological action via the gamma-aminobutyric acid (GABA) receptor system through stimulation of particularly the omega 1 receptors and to a lesser extent omega 2 receptors. Previously it was reported that no cerebral blood flow effects were observed in normal baboons after treatment with zolpidem, whereas an asymmetric regional increase in cerebral blood flow was observed in a neurologically abnormal baboon. In this study, the effect of a combination of the benzodiazepine receptor antagonist flumazenil (CAS 78755-81-4) and zolpidem on brain perfusion was examined by the 99mTc-hexamethyl-propylene amine oxime (99mTc-HMPAO) split dose brain single photon emission computed tomography (SPECT). Four normal baboons and the neurologically abnormal baboon from the previous zolpidem study were examined. In the current study the asymmetric changes observed after zolpidem--only treatment in the abnormal baboon was attenuated by flumazenil intervention. A decreased brain blood flow was observed after combination treatment of zolpidem and flumazenil in the normal baboons. The involvement of the omega receptors is suggested by these results. Up- or down-regulation of omega receptors may also contribute to the observed responses in the abnormal baboon and a brain injured patient.

  9. Field Detection of Chemical Assimilation in A Basaltic Lava Flow

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Bleacher, J. E.; Needham, D. H.; Evans, C. A.; Whelley, P. L.; Scheidt, S. P.; Williams, D. A.; Rogers, A. D.; Glotch, T.

    2017-01-01

    Lava channels are features seen throughout the inner Solar System, including on Earth, the Moon, and Mars. Flow emplacement is therefore a crucial process in the shaping of planetary surfaces. Many studies, including some completed by members of this team at the December 1974 lava flow, have investigated the dynamics of lava flow emplacement, both on Earth and on the Moon and how pre-flow terrain can impact final channel morphology, but far fewer have focused on how the compositional characteristics of the substrate over which a flow was em-placed influenced its final flow morphology. Within the length of one flow, it is common for flows to change in morphology, a quality linked to rheology (a function of multiple factors including viscosi-ty, temperature, composition, etc.). The relationship between rheology and temperature has been well-studied but less is known about the relationship between an older flow's chemistry and how the interaction between this flow and the new flow might affect lava rheology and therefore emplacement dynamics. Lava erosion. Through visual observations of active terrestrial flows, mechanical erosion by flowing lava has been well-documented. Lava erosion by which flow composition is altered as the active lava melts and assimilates the pre-flow terrain over which it moves is also hypothesized to affect channel formation. However, there is only one previous field study that geochemically documents the process in recent basaltic flow systems.

  10. Computational and Experimental Study of Supersonic Nozzle Flow and Shock Interactions

    NASA Technical Reports Server (NTRS)

    Carter, Melissa B.; Elmiligui, Alaa A.; Nayani, Sudheer N.; Castner, Ray; Bruce, Walter E., IV; Inskeep, Jacob

    2015-01-01

    This study focused on the capability of NASA Tetrahedral Unstructured Software System's CFD code USM3D capability to predict the interaction between a shock and supersonic plume flow. Previous studies, published in 2004, 2009 and 2013, investigated USM3D's supersonic plume flow results versus historical experimental data. This current study builds on that research by utilizing the best practices from the early papers for properly capturing the plume flow and then adding a wedge acting as a shock generator. This computational study is in conjunction with experimental tests conducted at the Glenn Research Center 1'x1' Supersonic Wind Tunnel. The comparison of the computational and experimental data shows good agreement for location and strength of the shocks although there are vertical shifts between the data sets that may be do to the measurement technique.

  11. COMIS -- an international multizone air-flow and contaminant transport model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feustel, H.E.

    1998-08-01

    A number of interzonal models have been developed to calculate air flows and pollutant transport mechanisms in both single and multizone buildings. A recent development in multizone air-flow modeling, the COMIS model, has a number of capabilities that go beyond previous models, much as COMIS can be used as either a stand-alone air-flow model with input and output features or as an infiltration module for thermal building simulation programs. COMIS was designed during a 12 month workshop at Lawrence Berkeley National Laboratory (LBNL) in 1988-89. In 1990, the Executive Committee of the International Energy Agency`s Energy Conservation in Buildings andmore » Community Systems program created a working group on multizone air-flow modeling, which continued work on COMIS. The group`s objectives were to study physical phenomena causing air flow and pollutant (e.g., moisture) transport in multizone buildings, develop numerical modules to be integrated in the previously designed multizone air flow modeling system, and evaluate the computer code. The working group supported by nine nations, officially finished in late 1997 with the release of IISiBat/COMIS 3.0, which contains the documented simulation program COMIS, the user interface IISiBat, and reports describing the evaluation exercise.« less

  12. PIV Measurement of Transient 3-D (Liquid and Gas Phases) Flow Structures Created by a Spreading Flame over 1-Propanol

    NASA Technical Reports Server (NTRS)

    Hassan, M. I.; Kuwana, K.; Saito, K.

    2001-01-01

    In the past, we measured three-D flow structure in the liquid and gas phases that were created by a spreading flame over liquid fuels. In that effort, we employed several different techniques including our original laser sheet particle tracking (LSPT) technique, which is capable of measuring transient 2-D flow structures. Recently we obtained a state-of-the-art integrated particle image velocimetry (IPIV), whose function is similar to LSPT, but it has an integrated data recording and processing system. To evaluate the accuracy of our IPIV system, we conducted a series of flame spread tests using the same experimental apparatus that we used in our previous flame spread studies and obtained a series of 2-D flow profiles corresponding to our previous LSPT measurements. We confirmed that both LSPT and IPIV techniques produced similar data, but IPIV data contains more detailed flow structures than LSPT data. Here we present some of newly obtained IPIV flow structure data, and discuss the role of gravity in the flame-induced flow structures. Note that the application of IPIV to our flame spread problems is not straightforward, and it required several preliminary tests for its accuracy including this IPIV comparison to LSPT.

  13. Facilitating higher-fidelity simulations of axial compressor instability and other turbomachinery flow conditions

    NASA Astrophysics Data System (ADS)

    Herrick, Gregory Paul

    The quest to accurately capture flow phenomena with length-scales both short and long and to accurately represent complex flow phenomena within disparately sized geometry inspires a need for an efficient, high-fidelity, multi-block structured computational fluid dynamics (CFD) parallel computational scheme. This research presents and demonstrates a more efficient computational method by which to perform multi-block structured CFD parallel computational simulations, thus facilitating higher-fidelity solutions of complicated geometries (due to the inclusion of grids for "small'' flow areas which are often merely modeled) and their associated flows. This computational framework offers greater flexibility and user-control in allocating the resource balance between process count and wall-clock computation time. The principal modifications implemented in this revision consist of a "multiple grid block per processing core'' software infrastructure and an analytic computation of viscous flux Jacobians. The development of this scheme is largely motivated by the desire to simulate axial compressor stall inception with more complete gridding of the flow passages (including rotor tip clearance regions) than has been previously done while maintaining high computational efficiency (i.e., minimal consumption of computational resources), and thus this paradigm shall be demonstrated with an examination of instability in a transonic axial compressor. However, the paradigm presented herein facilitates CFD simulation of myriad previously impractical geometries and flows and is not limited to detailed analyses of axial compressor flows. While the simulations presented herein were technically possible under the previous structure of the subject software, they were much less computationally efficient and thus not pragmatically feasible; the previous research using this software to perform three-dimensional, full-annulus, time-accurate, unsteady, full-stage (with sliding-interface) simulations of rotating stall inception in axial compressors utilized tip clearance periodic models, while the scheme here is demonstrated by a simulation of axial compressor stall inception utilizing gridded rotor tip clearance regions. As will be discussed, much previous research---experimental, theoretical, and computational---has suggested that understanding clearance flow behavior is critical to understanding stall inception, and previous computational research efforts which have used tip clearance models have begged the question, "What about the clearance flows?''. This research begins to address that question.

  14. Traveltime and dispersion in the Potomac River, Cumberland, Maryland, to Washington, D.C.

    USGS Publications Warehouse

    Taylor, Kenneth R.; James, Robert W.; Helinsky, Bernard M.

    1985-01-01

    A travel-time and dispersion study using rhodamine dye was conducted on the Potomac River between Cumberland, Maryland, and Washington, D.C., a distance of 189 miles. The flow during the study was at approximately the 90-percent flow-duration level. A similar study was conducted by Wilson and Forrest in 1964 at a flow duration of approximately 60 percent. The two sets of data were used to develop a generalized procedure for predicting travel-times and downstream concentrations resulting from spillage of water-soluble substances at any point along the river. The procedure will allow the user to calculate travel-time and concentration data for almost any spillage problem that occurs during periods of relatively steady flow between 50- and 95-percent flow duration. A new procedure for calculating unit peak concentration was derived. The new procedure depends on an analogy between a time-concentration curve and a scalene triangle. As a result of this analogy, the unit peak concentration can be expressed in terms of the length of the _lye or contaminant cloud. The new procedure facilitates the calculation of unit peak concentration for long reaches of river. Previously, there was no way to link unit peak concentration curves for studies in which the river was divided into subreaches for study. Variable dispersive characteristics caused mainly by low-head dams precluded useful extrapolation of the unit peak-concentration attenuation curves, as has been done in previous studies. The procedure is applied to a hypothetical situation in which 20,000 pounds of contaminant is spilled at a railroad crossing at Magnolia, West Virginia. The times required for the leading edge, the peak concentration, and the trailing edge of the contaminant cloud to reach Point of Rocks, Maryland (110 river miles downstream), are 295, 375, and 540 hours respectively, during a period when flow is at the 80-percent flow-duration level. The peak conservative concentration would be approximately 340 micrograms per liter at Point of Rocks.

  15. Paleomagnetic investigation of some volcanic rocks from the McMurdo volcanic province, Antarctica

    USGS Publications Warehouse

    Mankinen, E.A.; Cox, A.

    1988-01-01

    Paleomagnetic data for lava flows from sporadic but long-lived eruptions in the McMurdo Sound region are combined with previously published geologic and geochronologic data to determine the general eruptive sequence of the area. Lava flows in the Walcott Bay area were erupted during the Gauss Normal, Matuyama Reversed, and Brunhes Normal Polarity Chrons. The youngest flows on Black Island probably erupted near the boundary between the Gilbert and Gauss chrons. The most recent activity was concentrated on the volcanic edifices of Mounts Morning and Discovery and on Ross Island sampled during this study with those of eight flows that were published previously yields a mean paleomagnetic pole at 87.3??N, 317.3??E (??95 = 6.3??). The ancient geomagnetic field dispersion about this mean pole is 23.5??, with upper and lower limits of 95% confidence equal to 27.4?? and 20.5??, respectively. This value probably is a reasonable estimate of secular variation for the Antarctic continent during Pliocene and Pleistocene time. -Authors

  16. Analysis of Hepatic Blood Flow Using Chaotic Models

    PubMed Central

    Cohen, M. E.; Moazamipour, H.; Hudson, D. L.; Anderson, M. F.

    1990-01-01

    The study of chaos in physical systems is an important new theoretical development in modeling which has emerged in the last fifteen years. It is particularly useful in explaining phenomena which arise in nonlinear dynamic systems, for which previous mathematical models produced results with intractable solutions. Analysis of blood flow is such an application. In the work described here, chaotic models are used to analyze hepatic artery and portal vein blood flow obtained from a pulsed Doppler ultrasonic flowmeter implanted in dogs. ImagesFigure 3

  17. Comment on "the one dimensional acoustic field with arbitrary mean axial temperature gradient and mean flow" (J.Li and A.S.Morgans, Journal of Sound and Vibration 400 (2017) 248-269)

    NASA Astrophysics Data System (ADS)

    Dokumaci, Erkan

    2017-12-01

    In a recent study, Li and Morgans [1] present an ingenious WKB approximation for the acoustic plane wave field in a straight uniform duct with mean temperature gradient and mean flow. The authors state that the previous solutions are limited to small linear mean temperature gradients and low mean flow Mach numbers and claim that their solution applies for arbitrary mean temperature profiles and moderate-to-large mean flow velocity Mach numbers at both low and high frequencies.

  18. Revisiting the accuracy of peak flow meters: a double-blind study using formal methods of agreement.

    PubMed

    Nazir, Z; Razaq, S; Mir, S; Anwar, M; Al Mawlawi, G; Sajad, M; Shehab, A; Taylor, R S

    2005-05-01

    There is widespread use of peak flow meters in both hospitals and general practice. Previous studies to assess peak flow meter accuracy have shown significant differences in the values obtained from different meters. However, many of these studies did not use human subjects for peak flow measurements and did not compare meters of varying usage. In this study human subjects have been used with meters of varying usage. Participants were tested using two new (meters A and C) and one old peak flow meter (meter B) in random order. The study was double-blinded. Participants were recruited from the university campus. Four hundred and nine individuals participated. The difference between peak flow means of A and B was -9.93 l/min (95% CI: -12.37 to -7.48, P<0.0001). The difference between peak flow means of B and C was 20.08 l/min (95% CI: 17.85-22.29, P<0.0001). The difference between peak flow means of A and C was 10.15 l/min (95% CI: 7.68-12.61, P<0.0001). There was a significant difference between the values obtained from the new and old peak flow meters and also between the two new peak flow meters. We conclude that there is need for caution in interchangeably using flow meters in clinical practice.

  19. Coupling modes between liquid/gas coaxial jets and transverse acoustic waves

    NASA Astrophysics Data System (ADS)

    Helland, Chad; Hilliker, Cullen; Forliti, David; University of St. Thomas Team

    2017-11-01

    The interactions between shear flows and acoustic disturbances plays a very important role in many propulsion and energy applications. Liquid jets, either independent or air assisted, respond to acoustic disturbances in a manner that alters the primary and secondary atomization processes. The current study focused on the response of an air-assisted liquid jet to disturbances associated with a transverse acoustic wave. The jet is placed in the pressure node (velocity antinode) region of the resonant mode shape. It has been shown in previous studies, under certain conditions, that the acoustic forces can cause the jet flow to distort and atomize. Both liquid and coaxial gas/ liquid jet flows have been shown to distort via acoustic forces. The purpose of the current study is to understand the predictive characteristics that cause the distortion behaviors of a liquid and coaxial jet flow, and how a how a coaxial flow affects the behavior.

  20. A theoretical study of the acoustic impedance of orifices in the presence of a steady grazing flow

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1976-01-01

    An analysis of the oscillatory fluid flow in the vicinity of a circular orifice with a steady grazing flow is presented. The study is similar to that of Hersh and Rogers but with the addition of the grazing flow. Starting from the momentum and continuity equations, a considerably simplified system of partial differential equations is developed with the assumption that the flow can be described by an oscillatory motion superimposed upon the known steady flow. The equations are seen to be linear in the region where the grazing flow effects are dominant, and a solution and the resulting orifice impedance are presented for this region. The nonlinearity appears to be unimportant for the usual conditions found in aircraft noise suppressors. Some preliminary conclusions of the study are that orifice resistance is directly proportional to grazing flow velocity (known previously from experimental data) and that the orifice inductive (mass reactance) end correction is not a function of grazing flow. This latter conclusion is contrary to the widely held notion that grazing flow removes the effect of the orifice inductive end correction. This conclusion also implies that the experimentally observed total inductance reduction with grazing flow might be in the flow within the orifice rather than in the end correction.

  1. The Influence of Individual Driver Characteristics on Congestion Formation

    NASA Astrophysics Data System (ADS)

    Wang, Lanjun; Zhang, Hao; Meng, Huadong; Wang, Xiqin

    Previous works have pointed out that one of the reasons for the formation of traffic congestion is instability in traffic flow. In this study, we investigate theoretically how the characteristics of individual drivers influence the instability of traffic flow. The discussions are based on the optimal velocity model, which has three parameters related to individual driver characteristics. We specify the mappings between the model parameters and driver characteristics in this study. With linear stability analysis, we obtain a condition for when instability occurs and a constraint about how the model parameters influence the unstable traffic flow. Meanwhile, we also determine how the region of unstable flow densities depends on these parameters. Additionally, the Langevin approach theoretically validates that under the constraint, the macroscopic characteristics of the unstable traffic flow becomes a mixture of free flows and congestions. All of these results imply that both overly aggressive and overly conservative drivers are capable of triggering traffic congestion.

  2. Geohydrology of, and simulation of ground-water flow in, the Milford-Souhegan glacial-drift aquifer, Milford, New Hampshire

    USGS Publications Warehouse

    Harte, P.T.; Mack, Thomas J.

    1992-01-01

    Hydrogeologic data collected since 1990 were assessed and a ground-water-flow model was refined in this study of the Milford-Souhegan glacial-drift aquifer in Milford, New Hampshire. The hydrogeologic data collected were used to refine estimates of hydraulic conductivity and saturated thickness of the aquifer, which were previously calculated during 1988-90. In October 1990, water levels were measured at 124 wells and piezometers, and at 45 stream-seepage sites on the main stem of the Souhegan River, and on small tributary streams overlying the aquifer to improve an understanding of ground-water-flow patterns and stream-seepage gains and losses. Refinement of the ground-water-flow model included a reduction in the number of active cells in layer 2 in the central part of the aquifer, a revision of simulated hydraulic conductivity in model layers 2 and representing the aquifer, incorporation of a new block-centered finite-difference ground-water-flow model, and incorporation of a new solution algorithm and solver (a preconditioned conjugate-gradient algorithm). Refinements to the model resulted in decreases in the difference between calculated and measured heads at 22 wells. The distribution of gains and losses of stream seepage calculated in simulation with the refined model is similar to that calculated in the previous model simulation. The contributing area to the Savage well, under average pumping conditions, decreased by 0.021 square miles from the area calculated in the previous model simulation. The small difference in the contrib- uting recharge area indicates that the additional data did not enhance model simulation and that the conceptual framework for the previous model is accurate.

  3. An experimental facility for the visual study of turbulent flows.

    NASA Technical Reports Server (NTRS)

    Brodkey, R. S.; Hershey, H. C.; Corino, E. R.

    1971-01-01

    An experimental technique which allows visual observations of the wall area in turbulent pipe flow is described in detail. It requires neither the introduction of any injection or measuring device into the flow nor the presence of a two-phase flow or of a non-Newtonian fluid. The technique involves suspending solid MgO particles of colloidal size in trichloroethylene and photographing their motions near the wall with a high speed movie camera moving with the flow. Trichloroethylene was chosen in order to eliminate the index of refraction problem in a curved wall. Evaluation of the technique including a discussion of limitations is included. Also the technique is compared with previous methods of visual observations of turbulent flow.

  4. Effects of anesthesia on the cerebral capillary blood flow in young and old mice

    NASA Astrophysics Data System (ADS)

    Moeini, Mohammad; Tabatabaei, Maryam S.; Bélanger, Samuel; Avti, Pramod; Castonguay, Alexandre; Pouliot, Philippe; Lesage, Frédéric

    2015-03-01

    Despite recent findings on the possible role of age-related cerebral microvasculature changes in cognition decline, previous studies of capillary blood flow in aging (using animal models) are scarce and limited to anesthetized conditions. Since anesthesia can have different effects in young and old animals, it may introduce a confounding effect in aging studies. The present study aimed to eliminate the potential confound introduced by anesthesia by measuring capillary blood flow parameters in both awake conditions and under isoflurane anesthesia. We used 2-photon laser scanning fluorescence microscopy to measure capillary diameter, red blood cell velocity and flux, hematocrit and capillary volumetric flow in individual capillaries in the barrel cortex of 6- and 24-month old C57Bl/6 mice. It was observed that microvascular properties are significantly affected by anesthesia leading to different trends in capillary blood flow parameters with aging when measured under awake or anesthetized conditions. The findings in this study suggest taking extra care in interpreting aging studies from anesthetized animals.

  5. Radiocarbon dates for lava flows from northeast rift zone of Mauna Loa Volcano, Hilo 7 1/2 minute quadrangle, Island of Hawaii

    USGS Publications Warehouse

    Buchanan-Banks, J. M.; Lockwood, J.P.; Rubin, M.

    1989-01-01

    Twenty-eight 14C analyses are reported for carbonized roots and other plant material collected from beneath 15 prehistoric lava flows erupted from the northeast rift zone (NERZ) of Mauna Loa Volcano (ML). The new 14C dates establish ages for 13 previously undated lava flows, and correct or add to information previously reported. Limiting ages on other flows that lie either above or below the dated flows are also established. These dates help to unravel the eruptive history of ML's NERZ. -from Authors

  6. A study of cooling flows in poor clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.; Dillingham, Stephen

    1995-01-01

    We observed three poor clusters with central dominant galaxies (AWM 4, MKW 4, and MKW 3's) using the Position Sensitive Proportional Counter on the ROSAT X-ray satellite. The images reveal smooth, symmetrical X-ray emission filling the cluster with a sharp peak on each central galaxy. The cluster surface brightness profiles can be decomposed using superposed King models for the central galaxy and the intracluster medium. The King model parameters for the cluster portions are consistent with previous observations of these clusters. The newly measured King model parameters for the central galaxies are typical of the X-ray surface brightness distributions of isolated elliptical galaxies. Spatially resolved temperature measurements in annular rings throughout the clusters show a nearly isothermal profile. Temperatures are consistent with previously measured values, but are much better determined. There is no significant drop in temperature noted in the innermost bins where cooling flows are likely to be present, nor is any excess absorption by cold gas required. All cold gas columns are consistent with galactic foreground absorption. We derive mass profiles for the clusters assuming both isothermal temperature profiles and cooling flow models with constant mass flow rates. Our results are consistent with previous Einstein IPC observations by Kriss, Cioffi, & Canizares, but extend the mass profiles out to 1 Mpc in these poor clusters.

  7. An anisotropic numerical model for thermal hydraulic analyses: application to liquid metal flow in fuel assemblies

    NASA Astrophysics Data System (ADS)

    Vitillo, F.; Vitale Di Maio, D.; Galati, C.; Caruso, G.

    2015-11-01

    A CFD analysis has been carried out to study the thermal-hydraulic behavior of liquid metal coolant in a fuel assembly of triangular lattice. In order to obtain fast and accurate results, the isotropic two-equation RANS approach is often used in nuclear engineering applications. A different approach is provided by Non-Linear Eddy Viscosity Models (NLEVM), which try to take into account anisotropic effects by a nonlinear formulation of the Reynolds stress tensor. This approach is very promising, as it results in a very good numerical behavior and in a potentially better fluid flow description than classical isotropic models. An Anisotropic Shear Stress Transport (ASST) model, implemented into a commercial software, has been applied in previous studies, showing very trustful results for a large variety of flows and applications. In the paper, the ASST model has been used to perform an analysis of the fluid flow inside the fuel assembly of the ALFRED lead cooled fast reactor. Then, a comparison between the results of wall-resolved conjugated heat transfer computations and the results of a decoupled analysis using a suitable thermal wall-function previously implemented into the solver has been performed and presented.

  8. Experimental and analytical dynamic flow characteristics of an axial-flow fan from an air cushion landing system model

    NASA Technical Reports Server (NTRS)

    Thompson, W. C.; Boghani, A. B.; Leland, T. J. W.

    1977-01-01

    An investigation was conducted to compare the steady-state and dynamic flow characteristics of an axial-flow fan which had been used previously as the air supply fan for some model air cushion landing system studies. Steady-state flow characteristics were determined in the standard manner by using differential orifice pressures for the flow regime from free flow to zero flow. In this same regime, a correlative technique was established so that fan inlet and outlet pressures could be used to measure dynamic flow as created by a rotating damper. Dynamic tests at damper frequencies up to 5 Hz showed very different flow characteristics when compared with steady-state flow, particularly with respect to peak pressures and the pressure-flow relationship at fan stall and unstall. A generalized, rational mathematical fan model was developed based on physical fan parameters and a steady-state flow characteristic. The model showed good correlation with experimental tests at damper frequencies up to 5 Hz.

  9. Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  10. Flow Behavior Around a Fast-Starting Robotic Fish

    NASA Astrophysics Data System (ADS)

    Ma, Ganzhong; Currier, Todd; Modarres-Sadeghi, Yahya

    2017-11-01

    A robotic fish is used to study the flow behavior around the body of a fast-starting fish as it experiences a fast-start. The robotic fish is designed and built emulating a Northern Pike, Esox Lucius, which can accelerate at up to 245 m/s2. In previous studies, we had focused on the flow around the tail during the fast-start, by using a tail which acted flexibly in the preparatory stage and rigidly in the propulsive stage. We have extended that study by including the fish body in the experimental setup, where the body can bend into a C-shape, so that the influence of the body motion on the resulting flow around the structure can be understood as well. In the tests, the fish can rotate about a vertical axis, where a multi-axis force sensor measures flow forces acting on the body. Synchronized with the force measurement, flow visualizations using bubble image velocimetry are conducted, and the observed shed vortices are related to the peak forces observed during the maneuver.

  11. Hemodynamics in a giant intracranial aneurysm characterized by in vitro 4D flow MRI

    PubMed Central

    Schiavazzi, Daniele; Moen, Sean; Jagadeesan, Bharathi; Van de Moortele, Pierre-François; Coletti, Filippo

    2018-01-01

    Experimental and computational data suggest that hemodynamics play a critical role in the development, growth, and rupture of cerebral aneurysms. The flow structure, especially in aneurysms with a large sac, is highly complex and three-dimensional. Therefore, volumetric and time-resolved measurements of the flow properties are crucial to fully characterize the hemodynamics. In this study, phase-contrast Magnetic Resonance Imaging is used to assess the fluid dynamics inside a 3D-printed replica of a giant intracranial aneurysm, whose hemodynamics was previously simulated by multiple research groups. The physiological inflow waveform is imposed in a flow circuit with realistic cardiovascular impedance. Measurements are acquired with sub-millimeter spatial resolution for 16 time steps over a cardiac cycle, allowing for the detailed reconstruction of the flow evolution. Moreover, the three-dimensional and time-resolved pressure distribution is calculated from the velocity field by integrating the fluid dynamics equations, and is validated against differential pressure measurements using precision transducers. The flow structure is characterized by vortical motions that persist within the aneurysm sac for most of the cardiac cycle. All the main flow statistics including velocity, vorticity, pressure, and wall shear stress suggest that the flow pattern is dictated by the aneurysm morphology and is largely independent of the pulsatility of the inflow, at least for the flow regimes investigated here. Comparisons are carried out with previous computational simulations that used the same geometry and inflow conditions, both in terms of cycle-averaged and systolic quantities. PMID:29300738

  12. Study of the Effect of Turbulence and Large Obstacles on the Evaporation from Bare Soil Surface through Coupled Free-flow and Porous-medium Flow Model

    NASA Astrophysics Data System (ADS)

    Gao, B.; Smits, K. M.

    2017-12-01

    Evaporation is a strongly coupled exchange process of mass, momentum and energy between the atmosphere and the soil. Several mechanisms influence evaporation, such as the atmospheric conditions, the structure of the soil surface, and the physical properties of the soil. Among the previous studies associated with evaporation modeling, most efforts use uncoupled models which simplify the influences of the atmosphere and soil through the use of resistance terms. Those that do consider the coupling between the free flow and porous media flow mainly consider flat terrain with grain-scale roughness. However, larger obstacles, which may form drags or ridges allowing normal convective air flow through the soil, are common in nature and may affect the evaporation significantly. Therefore, the goal of this work is to study the influence of large obstacles such as wavy surfaces on the flow behavior within the soil and exchange processes to the atmosphere under turbulent free-flow conditions. For simplicity, the soil surface with large obstacles are represented by a simple wavy surface. To do this, we modified a previously developed theory for two-phase two-component porous-medium flow, coupling it to single-phase two-component turbulent flow to simulate and analyze the evaporation from wavy soil surfaces. Detailed laboratory scale experiments using a wind tunnel interfaced with a porous media tank were carried out to test the modeling results. The characteristics of turbulent flow across a permeable wavy surface are discussed. Results demonstrate that there is an obvious recirculation zone formed at the surface, which is special because of the accumulation of water vapor and the thicker boundary layer in this area. In addition, the influences of both the free flow and porous medium on the evaporation are also analyzed. The porous medium affects the evaporation through the amount of water it can provide to the soil surface; while the atmosphere influences the evaporation through the gradients formed within the boundary layer. This study gives a primary cognition on the evaporation from bare soil surface with obstacles. Ongoing work will include a deep understanding of the mechanisms which may provide the basis for land-atmosphere study on field scale.

  13. Study flow diagrams in Cochrane systematic review updates: an adapted PRISMA flow diagram.

    PubMed

    Stovold, Elizabeth; Beecher, Deirdre; Foxlee, Ruth; Noel-Storr, Anna

    2014-05-29

    Cochrane systematic reviews are conducted and reported according to rigorous standards. A study flow diagram must be included in a new review, and there is clear guidance from the PRISMA statement on how to do this. However, for a review update, there is currently no guidance on how study flow diagrams should be presented. To address this, a working group was formed to find a solution and produce guidance on how to use these diagrams in review updates.A number of different options were devised for how these flow diagrams could be used in review updates, and also in cases where multiple searches for a review or review update have been conducted. These options were circulated to the Cochrane information specialist community for consultation and feedback. Following the consultation period, the working group refined the guidance and made the recommendation that for review updates an adapted PRISMA flow diagram should be used, which includes an additional box with the number of previously included studies feeding into the total. Where multiple searches have been conducted, the results should be added together and treated as one set of results.There is no existing guidance for using study flow diagrams in review updates. Our adapted diagram is a simple and pragmatic solution for showing the flow of studies in review updates.

  14. Wild Steelhead and introduced spring Chinook Salmon in the Wind River, Washington: Overlapping populations and interactions

    USGS Publications Warehouse

    Jezorek, I.G.; Connolly, P.J.

    2010-01-01

    We investigated interactions of introduced juvenile spring Chinook salmon Oncorhynchus tshawytscha with wild juvenile steelhead O. mykiss in the upper Wind River watershed (rkm 24.6 to rkm 43.8), Washington. Our objective was to determine if the presence of introduced spring Chinook salmon influenced populations of wild juvenile steelhead and if other biotic or abiotic factors influenced distribution and populations of these species. We snorkeled to assess distribution and abundance in one to six stream reaches per year during 2001 through 2007. Juvenile steelhead were found in each sampled reach each year, but juvenile Chinook salmon were not. The upstream extent of distribution of juvenile Chinook salmon varied from rkm 29.7 to 42.5. Our analyses suggest that juvenile Chinook salmon distribution was much influenced by flow during the spawning season. Low flow appeared to limit access of escaped adult Chinook salmon to upper stream reaches. Abundance of juvenile Chinook salmon was also influenced by base flow during the previous year, with base flow occurring post spawn in late August or early September. There were no relationships between juvenile Chinook salmon abundance and number of Chinook salmon spawners, magnitude of winter flow that might scour redds, or abundance of juvenile steelhead. Abundance of age-0 steelhead was influenced primarily by the number of steelhead spawners the previous year, and abundance of age-1 steelhead was influenced primarily by abundance of age-0 steelhead the previous year. Juvenile steelhead abundance did not show a relationship with base or peak flows, nor with number of escaped Chinook salmon adults during the previous year. We did not detect a negative influence of the relatively low abundance of progeny of escaped Chinook salmon on juvenile steelhead abundance. This low abundance of juvenile Chinook salmon was persistent throughout our study and is likely a result of hatchery management and habitat conditions. Should one or both change in the future, the potential for negative interactions with wild steelhead could change.

  15. Cilia driven flow networks in the brain

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Faubel, Regina; Westendorf, Chrsitian; Eichele, Gregor; Bodenschatz, Eberhard

    Neurons exchange soluble substances via the cerebrospinal fluid (CSF) that fills the ventricular system. The walls of the ventricular cavities are covered with motile cilia that constantly beat and thereby induce a directional flow. We recently discovered that cilia in the third ventricle generate a complex flow pattern leading to partitioning of the ventricular volume and site-directed transport paths along the walls. Transient and daily recurrent alterations in the cilia beating direction lead to changes in the flow pattern. This has consequences for delivery of CSF components along the near wall flow. The contribution of this cilia-induced flow to overall CSF flow remains to be investigated. The state-of-art lattice Boltzmann method is adapted for studying the CFS flow. The 3D geometry of the third ventricle at high resolution was reconstructed. Simulation of CSF flow without cilia in this geometry confirmed that the previous idea about unidirectional flow does not explain how different components of CSF can be delivered to their various target sites. We study the contribution of the cilia-induced flow pattern to overall CSF flow and identify target areas for site-specific delivery of CSF-constituents with respect to the temporal changes.

  16. Mixed convection flow of viscoelastic fluid by a stretching cylinder with heat transfer.

    PubMed

    Hayat, Tasawar; Anwar, Muhammad Shoaib; Farooq, Muhammad; Alsaedi, Ahmad

    2015-01-01

    Flow of viscoelastic fluid due to an impermeable stretching cylinder is discussed. Effects of mixed convection and variable thermal conductivity are present. Thermal conductivity is taken temperature dependent. Nonlinear partial differential system is reduced into the nonlinear ordinary differential system. Resulting nonlinear system is computed for the convergent series solutions. Numerical values of skin friction coefficient and Nusselt number are computed and discussed. The results obtained with the current method are in agreement with previous studies using other methods as well as theoretical ideas. Physical interpretation reflecting the contribution of influential parameters in the present flow is presented. It is hoped that present study serves as a stimulus for modeling further stretching flows especially in polymeric and paper production processes.

  17. Mixed Convection Flow of Viscoelastic Fluid by a Stretching Cylinder with Heat Transfer

    PubMed Central

    Hayat, Tasawar; Anwar, Muhammad Shoaib; Farooq, Muhammad; Alsaedi, Ahmad

    2015-01-01

    Flow of viscoelastic fluid due to an impermeable stretching cylinder is discussed. Effects of mixed convection and variable thermal conductivity are present. Thermal conductivity is taken temperature dependent. Nonlinear partial differential system is reduced into the nonlinear ordinary differential system. Resulting nonlinear system is computed for the convergent series solutions. Numerical values of skin friction coefficient and Nusselt number are computed and discussed. The results obtained with the current method are in agreement with previous studies using other methods as well as theoretical ideas. Physical interpretation reflecting the contribution of influential parameters in the present flow is presented. It is hoped that present study serves as a stimulus for modeling further stretching flows especially in polymeric and paper production processes. PMID:25775032

  18. A large deviations principle for stochastic flows of viscous fluids

    NASA Astrophysics Data System (ADS)

    Cipriano, Fernanda; Costa, Tiago

    2018-04-01

    We study the well-posedness of a stochastic differential equation on the two dimensional torus T2, driven by an infinite dimensional Wiener process with drift in the Sobolev space L2 (0 , T ;H1 (T2)) . The solution corresponds to a stochastic Lagrangian flow in the sense of DiPerna Lions. By taking into account that the motion of a viscous incompressible fluid on the torus can be described through a suitable stochastic differential equation of the previous type, we study the inviscid limit. By establishing a large deviations principle, we show that, as the viscosity goes to zero, the Lagrangian stochastic Navier-Stokes flow approaches the Euler deterministic Lagrangian flow with an exponential rate function.

  19. On the computation of the turbulent flow near rough surface

    NASA Astrophysics Data System (ADS)

    Matveev, S. K.; Jaychibekov, N. Zh.; Shalabayeva, B. S.

    2018-05-01

    One of the problems in constructing mathematical models of turbulence is a description of the flows near a rough surface. An experimental study of such flows is also difficult because of the impossibility of measuring "inside" the roughness. The theoretical calculation is difficult because of the lack of equations describing the flow in this zone. In this paper, a new turbulence model based on the differential equation of turbulent viscosity balance was used to describe a turbulent flow near a rough surface. The difference between the new turbulence model and the previously known consists in the choice of constants and functions that determine the generation, dissipation and diffusion of viscosity.

  20. Microvascular flow estimation by contrast-assisted ultrasound B-scan and statistical parametric images.

    PubMed

    Tsui, Po-Hsiang; Yeh, Chih-Kuang; Chang, Chien-Cheng

    2009-05-01

    The microbubbles destruction/replenishment technique has been previously applied to estimating blood flow in the microcirculation. The rate of increase of the time-intensity curve (TIC) due to microbubbles flowing into the region of interest (ROI), as measured from B-mode images, closely reflects the flow velocity. In previous studies, we proposed a new approach called the time-Nakagami-parameter curve (TNC) obtained from Nakagami images to monitor microbubble replenishment for quantifying the microvascular flow velocity. This study aimed to further explore some effects that may affect the TNC to estimate the microflow, including microbubble concentration, ultrasound transmitting energy, attenuation, intrinsic noise, and tissue clutter. In order to well control each effect production, we applied a typical simulation method to investigate the TIC and TNC. The rates of increase of the TIC and TNC were expressed by the rate constants beta(I) and beta(N), respectively, of a monoexponential model. The results show that beta(N) quantifies the microvascular flow velocity similarly to the conventional beta(I) . Moreover, the measures of beta(I) and beta(N) are not influenced by microbubble concentration, transducer excitation energy, and attenuation effect. Although the effect of intrinsic signals contributed by noise and blood would influence the TNC behavior, the TNC method has a better tolerance of tissue clutter than the TIC does, allowing the presence of some clutter components in the ROI. The results suggest that the TNC method can be used as a complementary tool for the conventional TIC to reduce the wall filter requirements for blood flow measurement in the microcirculation.

  1. Influence of vortical flow structures on the glottal jet location in the supraglottal region.

    PubMed

    Kniesburges, Stefan; Hesselmann, Christina; Becker, Stefan; Schlücker, Eberhard; Döllinger, Michael

    2013-09-01

    Within the fully coupled multiphysics phonation process, the fluid flow plays an important role for sound production. This study addresses phenomena in the flow downstream of synthetic self-oscillating vocal folds. An experimental setup consisting of devices for producing and conditioning the flow including the main test channel was applied. The supraglottal channel was designed to prevent an acoustic coupling to the vocal folds. Hence, the oscillations were aerodynamically driven. The cross-section of the supraglottal channel was systematically varied by increasing the distance between the lateral channel walls. The vocal folds consisted of silicone rubber of homogenous material distribution generating self-sustained oscillations. The airflow was visualized in the immediate supraglottal region using a laser-sheet technique and a digital high-speed camera. Furthermore, the flow was studied by measuring the static pressure distributions on both lateral supraglottal channel walls. The results clearly showed different flow characteristics depending on the supraglottal configuration. In all cases with supraglottal channel, the jet was located asymmetrical and bent in medial-lateral direction. Furthermore, the side to which the jet was deflected changed in between the consecutive cycles showing a bifurcational behavior. Previously, this phenomenon was explained by the Coanda effect. However, the present data suggest that the deflection of the jet was mainly caused by large air vortices in the supraglottal channel produced by the flow field of previous oscillations. In contrast, for the case without supraglottal channel, the air jet was found totally symmetrical stabilized by the constant pressure in the ambient region. The emitted sound signal showed additional subharmonic tonal peaks for the asymmetric flow cases, which are characteristics for diplophonia. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  2. Ultrasound SIV measurement of helical valvular flow behind the great saphenous vein

    NASA Astrophysics Data System (ADS)

    Park, Jun Hong; Kim, Jeong Ju; Lee, Sang Joon; Yeom, Eunseop; Experimental Fluid Mechanics Laboratory Team; LaboratoryMicrothermal; Microfluidic Measurements Collaboration

    2017-11-01

    Dysfunction of venous valve and induced secondary abnormal flow are closely associated with venous diseases. Thus, detailed analysis of venous valvular flow is invaluable from biological and medical perspectives. However, most previous studies on venous perivalvular flows were based on qualitative analyses. On the contrary, quantitative analysis on the perivalvular flows has not been fully understood yet. In this study, 3D valvular flows under in vitro and in vivo conditions were experimentally investigated using ultrasound speckle image velocimetry (SIV) for analyzing their flow characteristics. The results for in vitro model obtained by the SIV technique were compared with those derived by numerical simulation and color Doppler method to validate its measurement accuracy. Then blood flow in the human great saphenous vein was measured using the SIV with respect to the dimensionless index, helical intensity. The results obtained by the SIV method are well matched well with those obtained by the numerical simulation and color Doppler method. The hemodynamic characteristics of 3D valvular flows measured by the validated SIV method would be helpful in diagnosis of valve-related venous diseases. None.

  3. An analytical solution for Dean flow in curved ducts with rectangular cross section

    NASA Astrophysics Data System (ADS)

    Norouzi, M.; Biglari, N.

    2013-05-01

    In this paper, a full analytical solution for incompressible flow inside the curved ducts with rectangular cross-section is presented for the first time. The perturbation method is applied to solve the governing equations and curvature ratio is considered as the perturbation parameter. The previous perturbation solutions are usually restricted to the flow in curved circular or annular pipes related to the overly complex form of solutions or singularity situation for flow in curved ducts with non-circular shapes of cross section. This issue specifies the importance of analytical studies in the field of Dean flow inside the non-circular ducts. In this study, the main flow velocity, stream function of lateral velocities (secondary flows), and flow resistance ratio in rectangular curved ducts are obtained analytically. The effect of duct curvature and aspect ratio on flow field is investigated as well. Moreover, it is important to mention that the current analytical solution is able to simulate the Taylor-Görtler and Dean vortices (vortices in stable and unstable situations) in curved channels.

  4. Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ba, Yan; Liu, Haihu; Li, Qing

    2016-08-15

    In this paper, we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with high density ratio and high Reynolds number. The model applies a multi-relaxation-time (MRT) collision operator to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a new form of the equilibrium density distribution function is used to simplify the source term. To validate the proposed model, steady flows of a static droplet and the layered channel flow are first simulatedmore » with density ratios up to 1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike/bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and Reynolds number up to 500.« less

  5. Identification of vortex structures in a cohort of 204 intracranial aneurysms

    PubMed Central

    Trylesinski, Gabriel; Xiang, Jianping; Snyder, Kenneth; Meng, Hui

    2017-01-01

    An intracranial aneurysm (IA) is a cerebrovascular pathology that can lead to death or disability if ruptured. Abnormal wall shear stress (WSS) has been associated with IA growth and rupture, but little is known about the underlying flow physics related to rupture-prone IAs. Previous studies, based on analysis of a few aneurysms or partial views of three-dimensional vortex structures, suggest that rupture is associated with complex vortical flow inside IAs. To further elucidate the relevance of vortical flow in aneurysm pathophysiology, we studied 204 patient IAs (56 ruptured and 148 unruptured). Using objective quantities to identify three-dimensional vortex structures, we investigated the characteristics associated with aneurysm rupture and if these features correlate with previously proposed WSS and morphological characteristics indicative of IA rupture. Based on the Q-criterion definition of a vortex, we quantified the degree of the aneurysmal region occupied by vortex structures using the volume vortex fraction (vVF) and the surface vortex fraction (sVF). Computational fluid dynamics simulations showed that the sVF, but not the vVF, discriminated ruptured from unruptured aneurysms. Furthermore, we found that the near-wall vortex structures co-localized with regions of inflow jet breakdown, and significantly correlated to previously proposed haemodynamic and morphologic characteristics of ruptured IAs. PMID:28539480

  6. Identification of vortex structures in a cohort of 204 intracranial aneurysms.

    PubMed

    Varble, Nicole; Trylesinski, Gabriel; Xiang, Jianping; Snyder, Kenneth; Meng, Hui

    2017-05-01

    An intracranial aneurysm (IA) is a cerebrovascular pathology that can lead to death or disability if ruptured. Abnormal wall shear stress (WSS) has been associated with IA growth and rupture, but little is known about the underlying flow physics related to rupture-prone IAs. Previous studies, based on analysis of a few aneurysms or partial views of three-dimensional vortex structures, suggest that rupture is associated with complex vortical flow inside IAs. To further elucidate the relevance of vortical flow in aneurysm pathophysiology, we studied 204 patient IAs (56 ruptured and 148 unruptured). Using objective quantities to identify three-dimensional vortex structures, we investigated the characteristics associated with aneurysm rupture and if these features correlate with previously proposed WSS and morphological characteristics indicative of IA rupture. Based on the Q -criterion definition of a vortex, we quantified the degree of the aneurysmal region occupied by vortex structures using the volume vortex fraction ( vVF ) and the surface vortex fraction ( sVF ). Computational fluid dynamics simulations showed that the sVF , but not the vVF , discriminated ruptured from unruptured aneurysms. Furthermore, we found that the near-wall vortex structures co-localized with regions of inflow jet breakdown, and significantly correlated to previously proposed haemodynamic and morphologic characteristics of ruptured IAs. © 2017 The Author(s).

  7. Flow Diverters for Intracranial Aneurysms

    PubMed Central

    Alderazi, Yazan J.; Kass-Hout, Tareq; Prestigiacomo, Charles J.; Gandhi, Chirag D.

    2014-01-01

    Flow diverters (pipeline embolization device, Silk flow diverter, and Surpass flow diverter) have been developed to treat intracranial aneurysms. These endovascular devices are placed within the parent artery rather than the aneurysm sac. They take advantage of altering hemodynamics at the aneurysm/parent vessel interface, resulting in gradual thrombosis of the aneurysm occurring over time. Subsequent inflammatory response, healing, and endothelial growth shrink the aneurysm and reconstruct the parent artery lumen while preserving perforators and side branches in most cases. Flow diverters have already allowed treatment of previously untreatable wide neck and giant aneurysms. There are risks with flow diverters including in-stent thrombosis, perianeurysmal edema, distant and delayed hemorrhages, and perforator occlusions. Comparative efficacy and safety against other therapies are being studied in ongoing trials. Antiplatelet therapy is mandatory with flow diverters, which has highlighted the need for better evidence for monitoring and tailoring antiplatelet therapy. In this paper we review the devices, their uses, associated complications, evidence base, and ongoing studies. PMID:24967131

  8. A Quantitative Study of the Summer Slide in Science of Elementary School Students

    ERIC Educational Resources Information Center

    Donovan, Giovanna Guadagno

    2009-01-01

    Concerned parents and educators agree children learn best when the rhythm of instruction is continuous with practice and application of skills. Long summer breaks may interrupt the flow of formal school learning leading some students to forget previous instruction. A review of the previous school work is generally required in the fall upon return…

  9. Lagrangian chaos in three- dimensional steady buoyancy-driven flows

    NASA Astrophysics Data System (ADS)

    Contreras, Sebastian; Speetjens, Michel; Clercx, Herman

    2016-11-01

    Natural convection plays a key role in fluid dynamics owing to its ubiquitous presence in nature and industry. Buoyancy-driven flows are prototypical systems in the study of thermal instabilities and pattern formation. The differentially heated cavity problem has been widely studied for the investigation of buoyancy-induced oscillatory flow. However, far less attention has been devoted to the three-dimensional Lagrangian transport properties in such flows. This study seeks to address this by investigating Lagrangian transport in the steady flow inside a cubic cavity differentially-heated from the side. The theoretical and numerical analysis expands on previously reported similarities between the current flow and lid-driven flows. The Lagrangian dynamics are controlled by the Péclet number (Pe) and the Prandtl number (Pr). Pe controls the behaviour qualitatively in that growing Pe progressively perturbs the integable state (Pe =0), thus paving the way to chaotic dynamics. Pr plays an entirely quantitative role in that Pr<1 and Pr>1 amplifies and diminishes, respectively, the perturbative effect of non-zero Pe. S.C. acknowledges financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT).

  10. Handpiece coolant flow rates and dental cutting.

    PubMed

    von Fraunhofer, J A; Siegel, S C; Feldman, S

    2000-01-01

    High-speed handpieces incorporate water coolant sprays to remove cutting debris and minimize thermal insult to the pulp. Little data exists on optimal coolant flow rates during clinical procedures. This study compared the effect of different coolant flow rates on diamond stone cutting efficiency. Cutting studies were performed on Macor machinable ceramic using a previously developed test regimen--a KaVo high-speed handpiece at a cutting force of 91.5 g (0.9 N). Cutting was performed with round end tapered medium grit diamond stones under cooling water flow rates of 15, 20, 25, 30 and 44 ml/min, with cutting rates determined as the time to transect the 13 mm square cross-section of the Macor bar. Each bur was used for five cuts, with six burs used for each flow rate, for a total of 150 measurements. The data were analyzed by one-way ANOVA with a post hoc Scheffé test. The cutting studies indicated that diamond stone cutting rates increased with higher coolant flow rates over the range of 15-44 ml/min. The data suggest that higher coolant flow rates promote cutting efficiency.

  11. Effect of a rotating propeller on the separation angle of attack

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Iek, C.; Hwang, D. P.; Larkin, M.; Schweiger, P.

    1993-01-01

    The present study represents an extension of an earlier wind tunnel experiment performed with the P&W 17-in. Advanced Ducted Propeller (ADP) Simulator operating at Mach 0.2. In order to study the effects of a rotating propeller on the inlet flow, data were obtained in the UTRC 10- by 15-Foot Large Subsonic Wind Tunnel with the same hardware and instrumentation, but with the propellar removed. These new tests were performed over a range of flow rates which duplicated flow rates in the powered simulator program. The flow through the inlet was provided by a remotely located vacuum source. A comparison of the results of this flow-through study with the previous data from the powered simulator indicated that in the conventional inlet the propeller produced an increase in the separation angle of attack between 4.0 deg at a specific flow of 22.4 lb/sec-sq ft to 2.7 deg at a higher specific flow of 33.8 lb/sec-sq ft. A similar effect on separation angle of attack was obtained by using stationary blockage rather than a propeller.

  12. Neural signatures of experimentally induced flow experiences identified in a typical fMRI block design with BOLD imaging

    PubMed Central

    Keller, Johannes; Grön, Georg

    2016-01-01

    Previously, experimentally induced flow experiences have been demonstrated with perfusion imaging during activation blocks of 3 min length to accommodate with the putatively slowly evolving “mood” characteristics of flow. Here, we used functional magnetic resonance imaging (fMRI) in a sample of 23 healthy, male participants to investigate flow in the context of a typical fMRI block design with block lengths as short as 30 s. To induce flow, demands of arithmetic tasks were automatically and continuously adjusted to the individual skill level. Compared against conditions of boredom and overload, experience of flow was evident from individuals’ reported subjective experiences and changes in electrodermal activity. Neural activation was relatively increased during flow, particularly in the anterior insula, inferior frontal gyri, basal ganglia and midbrain. Relative activation decreases during flow were observed in medial prefrontal and posterior cingulate cortex, and in the medial temporal lobe including the amygdala. Present findings suggest that even in the context of comparably short activation blocks flow can be reliably experienced and is associated with changes in neural activation of brain regions previously described. Possible mechanisms of interacting brain regions are outlined, awaiting further investigation which should now be possible given the greater temporal resolution compared with previous perfusion imaging. PMID:26508774

  13. GPU accelerated simulations of three-dimensional flow of power-law fluids in a driven cube

    NASA Astrophysics Data System (ADS)

    Jin, K.; Vanka, S. P.; Agarwal, R. K.; Thomas, B. G.

    2017-01-01

    Newtonian fluid flow in two- and three-dimensional cavities with a moving wall has been studied extensively in a number of previous works. However, relatively a fewer number of studies have considered the motion of non-Newtonian fluids such as shear thinning and shear thickening power law fluids. In this paper, we have simulated the three-dimensional, non-Newtonian flow of a power law fluid in a cubic cavity driven by shear from the top wall. We have used an in-house developed fractional step code, implemented on a Graphics Processor Unit. Three Reynolds numbers have been studied with power law index set to 0.5, 1.0 and 1.5. The flow patterns, viscosity distributions and velocity profiles are presented for Reynolds numbers of 100, 400 and 1000. All three Reynolds numbers are found to yield steady state flows. Tabulated values of velocity are given for the nine cases studied, including the Newtonian cases.

  14. A field study of the confluence between Negro and Solimões Rivers. Part 1: Hydrodynamics and sediment transport

    NASA Astrophysics Data System (ADS)

    Gualtieri, Carlo; Filizola, Naziano; de Oliveira, Marco; Santos, Andrè Martinelli; Ianniruberto, Marco

    2018-01-01

    Confluences are a common feature of riverine systems, where are located converging flow streamlines and potential mixing of separate flows. The confluence of the Negro and Solimões Rivers ranks among the largest on Earth and its study may provide some general insights into large confluence dynamics and processes. An investigation was recently conducted about that confluence in both low and high-flow conditions using acoustic Doppler velocity profiling (ADCP), water quality sampling and high-resolution seismic data. First, the study gained insights into the characterization of the basic hydrodynamics parameters about the confluence as well as of those affecting sediments transport. Second, the analysis of the results showed that common hydrodynamic features noted in previous confluence studies were herein observed. Finally, some differences between low-flow and relatively high-flow conditions about the transfer of momentum from the Solimões to the Negro side of the Amazon Channel were identified.

  15. Method of Simulating Flow-Through Area of a Pressure Regulator

    NASA Technical Reports Server (NTRS)

    Hass, Neal E. (Inventor); Schallhorn, Paul A. (Inventor)

    2011-01-01

    The flow-through area of a pressure regulator positioned in a branch of a simulated fluid flow network is generated. A target pressure is defined downstream of the pressure regulator. A projected flow-through area is generated as a non-linear function of (i) target pressure, (ii) flow-through area of the pressure regulator for a current time step and a previous time step, and (iii) pressure at the downstream location for the current time step and previous time step. A simulated flow-through area for the next time step is generated as a sum of (i) flow-through area for the current time step, and (ii) a difference between the projected flow-through area and the flow-through area for the current time step multiplied by a user-defined rate control parameter. These steps are repeated for a sequence of time steps until the pressure at the downstream location is approximately equal to the target pressure.

  16. Investigation of micromixing by acoustically oscillated sharp-edges

    PubMed Central

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2016-01-01

    Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel. PMID:27158292

  17. Investigation of micromixing by acoustically oscillated sharp-edges.

    PubMed

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2016-03-01

    Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel.

  18. Peak-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.

  19. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    D'Agnese, Frank A.; O'Brien, G. M.; Faunt, C.C.; Belcher, W.R.; San Juan, C.

    2002-01-01

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this 'second-generation' regional model was to enhance the knowledge an understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-state representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration. The Death Valley regional ground-water flow system is situated within the southern Great Basin, a subprovince of the Basin and Range physiographic province, bounded by latitudes 35 degrees north and 38 degrees 15 minutes north and by longitudes 115 and 118 degrees west. Hydrology in the region is a result of both the arid climatic conditions and the complex geology. Ground-water flow generally can be described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the flow system, ground water flows through zones of high transmissivity that have resulted from regional faulting and fracturing. The conceptual model of the Death Valley regional ground-water flow system used for this study is adapted from the two previous ground-water modeling studies. The three-dimensional digital hydrogeologic framework model developed for the region also contains elements of both of the hydrogeologic framework models used in the previous investigations. As dictated by project scope, very little reinterpretation and refinement were made where these two framework models disagree; therefore, limitations in the hydrogeologic representation of the flow system exist. Despite limitations, the framework model provides the best representation to date of the hydrogeologic units and structures that control regional ground-water flow and serves as an important information source used to construct and calibrate the predevelopment, steady-state flow model. In addition to the hydrogeologic framework, a complex array of mechanisms accounts for flow into, through, and out of the regional ground-water flow system. Natural discharges from the regional ground-water flow system occur by evapotranspiration, springs, and subsurface outflow. In this study, evapotranspiration rates were adapted from a related investigation that developed maps of evapotranspiration areas and computed rates from micrometeorological data collected within the local area over a multiyear period. In some cases, historical spring flow records were used to derive ground-water discharge rates for isolated regional springs. For this investigation, a process-based, numerical model was developed to estimat

  20. The effect of passive mixing on pressure drop and oxygen mass fraction using opposing channel flow field design in a Proton Exchange Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Singh, Anant Bir

    This study investigates a flow field with opposing channel design. Previous studies on flow field designs have been focused on improving fuel utilization which often leads to increased pressure drop. This increased pressure drop is typical because standard designs employ either a single flow channel to clear blockages or dead end condition to force the flow through the gas diffusion layer. The disadvantage with these designs is the increased resistance to the flow which requires higher pressure, which becomes a parasitic loss that lowers the system efficiency. For this study the focus was to reduce the pressure drop by providing a less resistive path to the flow. To achieve a less resistive path, the inlet channel was split into two opposing channels. These channels are then recombined only to be split again for the next leg. Therefore, the split channel design should reduce the pressure drop which reduces the parasitic load and ultimately contributes to higher system efficiency. In addition the recombining of the streams at each leg should induce mixing. Having opposing channels should also increase cross flow under the lands to reduce mass transfer loses. The cathode side of the fuel cell is especially sensitive to the mass transport losses since air (oxygen mixed with nitrogen) is used for supplying oxygen unlike the anode side which uses pure hydrogen. To test the hypothesis of having benefits from an opposing channel design, both an experimental and analytical approach was taken. For the experiment, a serpentine flow field and opposing channel flow field plates were compared over several flow rates with compressed air. To test the hypothesis of increased mass transfer, the two flow fields were modeled using a CFD software package, COMSOL. It was found that the opposing channel configuration for high flow rate with multiple entry and exit conditions exhibited significant improvement over the single serpentine channel. Pressure drop was ⅓ less than the serpentine channel with similar conditions. Simulations for mass transfer show that recombining of the flow streams generate more uniform current density unlike the serpentine configuration where the current density was concentrated at the entrance of the flow stream. The background section provides a brief overview of the governing equations, the theory of flow field operation and previous bodies of work on flow field design. Recommendations are made for further verification of the design using a real working cell based on the results.

  1. Disruption of intracardiac flow patterns in the newborn infant.

    PubMed

    Groves, Alan M; Durighel, Giuliana; Finnemore, Anna; Tusor, Nora; Merchant, Nazakat; Razavi, Reza; Hajnal, Jo V; Edwards, A David

    2012-04-01

    Consistent patterns of rotational intracardiac flow have been demonstrated in the healthy adult human heart. Intracardiac rotational flow patterns are hypothesized to assist in the maintenance of kinetic energy of inflowing blood, augmenting cardiac function. Newborn cardiac function is known to be suboptimal secondary to decreased receptor number and sympathetic innervation, increased afterload, and increased reliance on atrial contraction to support ventricular filling. Patterns of intracardiac flow in the newborn have not previously been examined. Whereas 5 of the 13 infants studied showed significant evidence of rotational flow within the right atrium, 8 infants showed little or no rotational flow. Presence or absence of rotational flow was not related to gestational age, birth weight, postnatal age, atrial size, or image quality. Despite absence of intra-atrial rotational flow, atrioventricular valve flow into the left and right ventricles later in the cardiac cycle could be seen, suggesting that visualization techniques were adequate. While further study is required to assess its exact consequences on cardiac mechanics and energetics, disruption to intracardiac flow patterns could be another contributor to the multifactorial sequence that produces newborn circulatory failure. We studied 13 newborn infants, using three-dimensional (3D) cardiac magnetic resonance phase-contrast imaging (spatial resolution 0.84 mm, temporal resolution 22.6 ms) performed without sedation/anesthesia.

  2. Investigation of the asymptotic state of rotating turbulence using large-eddy simulation

    NASA Technical Reports Server (NTRS)

    Squires, Kyle D.; Chasnov, Jeffrey R.; Mansour, Nagi N.; Cambon, Claude

    1993-01-01

    Study of turbulent flows in rotating reference frames has long been an area of considerable scientific and engineering interest. Because of its importance, the subject of turbulence in rotating reference frames has motivated over the years a large number of theoretical, experimental, and computational studies. The bulk of these previous works has served to demonstrate that the effect of system rotation on turbulence is subtle and remains exceedingly difficult to predict. A rotating flow of particular interest in many studies, including the present work, is examination of the effect of solid-body rotation on an initially isotropic turbulent flow. One of the principal reasons for the interest in this flow is that it represents the most basic turbulent flow whose structure is altered by system rotation but without the complicating effects introduced by mean strains or flow inhomogeneities. The assumption of statistical homogeneity considerably simplifies analysis and computation. The principal objective of the present study has been to examine the asymptotic state of solid-body rotation applied to an initially isotropic, high Reynolds number turbulent flow. Of particular interest has been to determine the degree of two-dimensionalization and the existence of asymptotic self-similar states in homogeneous rotating turbulence.

  3. Respiratory flow-sound relationship during both wakefulness and sleep and its variation in relation to sleep apnea.

    PubMed

    Yadollahi, Azadeh; Montazeri, Aman; Azarbarzin, Ali; Moussavi, Zahra

    2013-03-01

    Tracheal respiratory sound analysis is a simple and non-invasive way to study the pathophysiology of the upper airway and has recently been used for acoustic estimation of respiratory flow and sleep apnea diagnosis. However in none of the previous studies was the respiratory flow-sound relationship studied in people with obstructive sleep apnea (OSA), nor during sleep. In this study, we recorded tracheal sound, respiratory flow, and head position from eight non-OSA and 10 OSA individuals during sleep and wakefulness. We compared the flow-sound relationship and variations in model parameters from wakefulness to sleep within and between the two groups. The results show that during both wakefulness and sleep, flow-sound relationship follows a power law but with different parameters. Furthermore, the variations in model parameters may be representative of the OSA pathology. The other objective of this study was to examine the accuracy of respiratory flow estimation algorithms during sleep: we investigated two approaches for calibrating the model parameters using the known data recorded during either wakefulness or sleep. The results show that the acoustical respiratory flow estimation parameters change from wakefulness to sleep. Therefore, if the model is calibrated using wakefulness data, although the estimated respiratory flow follows the relative variations of the real flow, the quantitative flow estimation error would be high during sleep. On the other hand, when the calibration parameters are extracted from tracheal sound and respiratory flow recordings during sleep, the respiratory flow estimation error is less than 10%.

  4. Fracture control of ground water flow and water chemistry in a rock aquitard.

    PubMed

    Eaton, Timothy T; Anderson, Mary P; Bradbury, Kenneth R

    2007-01-01

    There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/S(s)) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies.

  5. Fracture control of ground water flow and water chemistry in a rock aquitard

    USGS Publications Warehouse

    Eaton, T.T.; Anderson, M.P.; Bradbury, K.R.

    2007-01-01

    There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/Ss) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies. ?? 2007 National Ground Water Association.

  6. The Study on Flow Velocity Measurement of Antarctic Krill Trawl Model Experiment in North Bay of South China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Shuai; Wang, Lumin; Huang, Hongliang; Zhang, Xun

    2017-10-01

    From August 25 to 29, 2014, the project team carried out the experiment of Antarctic krill trawl in the Beihai Bay of the South China Sea. In order to understand the flow field of the network model in the course of the experiment, it is necessary to record the speed of the ship and to grasp the flow field of the ocean. Therefore, the ocean velocity is measured during the experiment. The flow rate in this experiment was measured using an acoustic Doppler flow meter (Vectoring Plus, Nortek, Norway). In order to compensate for the flow rate error caused by ship drift, the drift condition of the ship was also measured by the positioning device (Snapdragon MSM8274AB, Qualcomm, USA) used in the flow rate measurement. The results show that the actual velocity of the target sea area is in the range of 0.06-0.49 m / s and the direction is 216.17-351.70. And compared with the previous research, the influencing factors were analysed. This study proves that it is feasible to use point Doppler flow meter for velocity study in trawl model experiment.

  7. Generation of net sediment transport by velocity skewness in oscillatory sheet flow

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Li, Yong; Chen, Genfa; Wang, Fujun; Tang, Xuelin

    2018-01-01

    This study utilizes a qualitative approach and a two-phase numerical model to investigate net sediment transport caused by velocity skewness beneath oscillatory sheet flow and current. The qualitative approach is derived based on the pseudo-laminar approximation of boundary layer velocity and exponential approximation of concentration. The two-phase model can obtain well the instantaneous erosion depth, sediment flux, boundary layer thickness, and sediment transport rate. It can especially illustrate the difference between positive and negative flow stages caused by velocity skewness, which is considerably important in determining the net boundary layer flow and sediment transport direction. The two-phase model also explains the effect of sediment diameter and phase-lag to sediment transport by comparing the instantaneous-type formulas to better illustrate velocity skewness effect. In previous studies about sheet flow transport in pure velocity-skewed flows, net sediment transport is only attributed to the phase-lag effect. In the present study with the qualitative approach and two-phase model, phase-lag effect is shown important but not sufficient for the net sediment transport beneath pure velocity-skewed flow and current, while the asymmetric wave boundary layer development between positive and negative flow stages also contributes to the sediment transport.

  8. Bypass flow computations on the LOFA transient in a VHTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tung, Yu-Hsin; Johnson, Richard W.; Ferng, Yuh-Ming

    2014-01-01

    Bypass flow in the prismatic gas-cooled very high temperature reactor (VHTR) is not intentionally designed to occur, but is present in the gaps between graphite blocks. Previous studies of the bypass flow in the core indicated that the cooling provided by flow in the bypass gaps had a significant effect on temperature and flow distributions for normal operating conditions. However, the flow and heat transports in the core are changed significantly after a Loss of Flow Accident (LOFA). This study aims to study the effect and role of the bypass flow after a LOFA in terms of the temperature andmore » flow distributions and for the heat transport out of the core by natural convection of the coolant for a 1/12 symmetric section of the active core which is composed of images and mirror images of two sub-region models. The two sub-region models, 9 x 1/12 and 15 x 1/12 symmetric sectors of the active core, are employed as the CFD flow models using computational grid systems of 70.2 million and 117 million nodes, respectively. It is concluded that the effect of bypass flow is significant for the initial conditions and the beginning of LOFA, but the bypass flow has little effect after a long period of time in the transient computation of natural circulation.« less

  9. Detection of endogenous alkaline phosphatase activity in intact cells by flow cytometry using the fluorogenic ELF-97 phosphatase substrate

    NASA Technical Reports Server (NTRS)

    Telford, W. G.; Cox, W. G.; Stiner, D.; Singer, V. L.; Doty, S. B.

    1999-01-01

    BACKGROUND: The alkaline phosphatase (AP) substrate 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazolinone (ELF((R))-97 for enzyme-labeled fluorescence) has been found useful for the histochemical detection of endogenous AP activity and AP-tagged proteins and oligonucleotide probes. In this study, we evaluated its effectiveness at detecting endogenous AP activity by flow cytometry. METHODS: The ELF-97 phosphatase substrate was used to detect endogenous AP activity in UMR-106 rat osteosarcoma cells and primary cultures of chick chondrocytes. Cells were labeled with the ELF-97 reagent and analyzed by flow cytometry using an argon ultraviolet (UV) laser. For comparison purposes, cells were also assayed for AP using a Fast Red Violet LB azo dye assay previously described for use in detecting AP activity by flow cytometry. RESULTS: The ELF-97 phosphatase substrate effectively detected endogenous AP activity in UMR-106 cells, with over 95% of the resulting fluorescent signal resulting from AP-specific activity (as determined by levamisole inhibition of AP activity). In contrast, less than 70% of the fluorescent signal from the Fast Red Violet LB (FRV) assay was AP-dependent, reflecting the high intrinsic fluorescence of the unreacted components. The ELF-97 phosphatase assay was also able to detect very low AP activity in chick chondrocytes that was undetectable by the azo dye method. CONCLUSIONS: The ELF-97 phosphatase assay was able to detect endogenous AP activity in fixed mammalian and avian cells by flow cytometry with superior sensitivity to previously described assays. This work also shows the applicability of ELF-97 to flow cytometry, supplementing its previously demonstrated histochemical applications. Copyright 1999 Wiley-Liss, Inc.

  10. Active Fail-Safe Micro-Array Flow Control for Advanced Embedded Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Mace, James L.; Mani, Mori

    2009-01-01

    The primary objective of this research effort was to develop and analytically demonstrate enhanced first generation active "fail-safe" hybrid flow-control techniques to simultaneously manage the boundary layer on the vehicle fore-body and to control the secondary flow generated within modern serpentine or embedded inlet S-duct configurations. The enhanced first-generation technique focused on both micro-vanes and micro-ramps highly-integrated with micro -jets to provide nonlinear augmentation for the "strength' or effectiveness of highly-integrated flow control systems. The study focused on the micro -jet mass flow ratio (Wjet/Waip) range from 0.10 to 0.30 percent and jet total pressure ratios (Pjet/Po) from 1.0 to 3.0. The engine bleed airflow range under study represents about a 10 fold decrease in micro -jet airflow than previously required. Therefore, by pre-conditioning, or injecting a very small amount of high-pressure jet flow into the vortex generated by the micro-vane and/or micro-ramp, active flow control is achieved and substantial augmentation of the controlling flow is realized.

  11. Cilia induced cerebrospinal fluid flow in the third ventricle of brain

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Westendorf, Christian; Faubel, Regina; Eichele, Gregor; Bodenschatz, Eberhard

    2016-11-01

    Cerebrospinal fluid (CSF) conveys many physiologically important signaling factors through the ventricles of the mammalian brain. The walls of the ventricles are covered with motile cilia that were thought to generate a laminar flow purely following the curvature of walls. However, we recently discovered that cilia of the ventral third ventricle (v3V) generate a complex flow network along the wall, leading to subdivision of the v3V. The contribution of such cilia induced flow to the overall three dimensional volume flow remains to be investigated by using numerical simulation, arguably the best approach for such investigations. The lattice Boltzmann method is used to study the CFS flow in a reconstructed geometry of the v3V. Simulation of CSF flow neglecting cilia in this geometry confirmed that the previous idea about pure confined flow does not reflect the reality observed in experiment. The experimentally recorded ciliary flow network along the wall was refined with the smoothed particle hydrodynamics and then adapted as boundary condition in simulation. We study the contribution of the ciliary network to overall CSF flow and identify site-specific delivery of CSF constituents with respect to the temporal changes.

  12. Effects of subduction and slab gaps on mantle flow beneath the Lesser Antilles based on observations of seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Schlaphorst, David; Kendall, J.-Michael; Baptie, Brian; Latchman, Joan L.; Bouin, Marie-Paule

    2016-04-01

    Subduction is a key process in the formation of continental crust. However, the interaction of the mantle with the subducting slab is not fully understood and varies between subduction zones. The flow geometry and stress patterns influence seismic anisotropy; since anisotropic layers lead to variations in the speed of seismic waves as a function of the direction of wave propagation, mantle flow can be constrained by investigating the structure of these anisotropic layers. In this study we investigate seismic anisotropy in the eastern Greater and the Lesser Antilles along a subduction environment, including the crust and the upper mantle as regions of interest. We use a combination of teleseismic and local events recorded at three-component broadband seismic stations on every major island in the area to observe and distinguish between anisotropy in the crust, the mantle wedge and the sub-slab mantle. Local event delay times (0.21±0.12s) do not increase with depth, indicating a crustal origin and an isotropic mantle wedge. Teleseismic delay times are larger (1.34±0.47s), indicating sub-slab anisotropy. The results suggest trench-parallel mantle flow, with the exception of trench-perpendicular alignment in narrow regions east of Puerto Rico and south of Martinique, suggesting mantle flow through gaps in the slab. This agrees with the continuous northward mantle flow that is caused by the subducting slab proposed by previous studies of that region. We were able to identify a pattern previously unseen by other studies; on St. Lucia a trench-perpendicular trend also indicated by the stations around can be observed. This pattern can be explained by a mantle flow through a gap induced by the subduction of the boundary zone between the North and South American plates. This feature has been proposed for that area using tomographic modelling (van Benthem et al., 2013). It is based on previous results by Wadge & Shepherd (1984), who observed a vertical gap in the Wadati-Benioff zone at that location using a seismicity catalogue from local seismic networks. This work strengthens the argument for that location to be the plate boundary between the North and South American plates.

  13. Investigating seismic anisotropy beneath the Reykjanes Ridge using models of mantle flow, crystallographic evolution, and surface wave propagation

    NASA Astrophysics Data System (ADS)

    Gallego, A.; Ito, G.; Dunn, R. A.

    2013-08-01

    Surface wave studies of the Reykjanes Ridge (RR) and the Iceland hotspot have imaged an unusual and enigmatic pattern of two zones of negative radial anisotropy on each side of the RR. We test previously posed and new hypotheses for the origin of this anisotropy, by considering lattice preferred orientation (LPO) of olivine A-type fabric in simple models with 1-D, layered structures, as well as in 2-D and 3-D geodynamic models with mantle flow and LPO evolution. Synthetic phase velocities of Love and Rayleigh waves traveling parallel to the ridge axis are produced and then inverted to mimic the previous seismic studies. Results of 1-D models show that strong negative radial anisotropy can be produced when olivine a axes are preferentially aligned not only vertically but also subhorizontally in the plane of wave propagation. Geodynamic models show that negative anisotropy on the sides of the RR can occur when plate spreading impels a corner flow, and in turn a subvertical alignment of olivine a axes, on the sides of the ridge axis. Mantle dehydration must be invoked to form a viscous upper layer that minimizes the disturbance of the corner flow by the Iceland mantle plume. While the results are promising, important discrepancies still exist between the observed seismic structure and the predictions of this model, as well as models of a variety of types of mantle flow associated with plume-ridge interaction. Thus, other factors that influence seismic anisotropy, but not considered in this study, such as power-law rheology, water, melt, or time-dependent mantle flow, are probably important beneath the Reykjanes Ridge.

  14. Calculations of unsteady turbulent boundary layers with flow reversal

    NASA Technical Reports Server (NTRS)

    Nash, J. F.; Patel, V. C.

    1975-01-01

    The results are presented of a series of computational experiments aimed at studying the characteristics of time-dependent turbulent boundary layers with embedded reversed-flow regions. A calculation method developed earlier was extended to boundary layers with reversed flows for this purpose. The calculations were performed for an idealized family of external velocity distributions, and covered a range of degrees of unsteadiness. The results confirmed those of previous studies in demonstrating that the point of flow reversal is nonsingular in a time-dependent boundary layer. A singularity was observed to develop downstream of reversal, under certain conditions, accompanied by the breakdown of the boundary-layer approximations. A tentative hypothesis was advanced in an attempt to predict the appearance of the singularity, and is shown to be consistent with the calculated results.

  15. Oscillations and Multiple Equilibria in Microvascular Blood Flow.

    PubMed

    Karst, Nathaniel J; Storey, Brian D; Geddes, John B

    2015-07-01

    We investigate the existence of oscillatory dynamics and multiple steady-state flow rates in a network with a simple topology and in vivo microvascular blood flow constitutive laws. Unlike many previous analytic studies, we employ the most biologically relevant models of the physical properties of whole blood. Through a combination of analytic and numeric techniques, we predict in a series of two-parameter bifurcation diagrams a range of dynamical behaviors, including multiple equilibria flow configurations, simple oscillations in volumetric flow rate, and multiple coexistent limit cycles at physically realizable parameters. We show that complexity in network topology is not necessary for complex behaviors to arise and that nonlinear rheology, in particular the plasma skimming effect, is sufficient to support oscillatory dynamics similar to those observed in vivo.

  16. A Case Study to Improve Emergency Room Patient Flow at Womack Army Medical Center

    DTIC Science & Technology

    2009-06-01

    use just the previous month, moving average 2-month period ( MA2 ) uses the average from the previous two months, moving average 3-month period (MA3...ED prior to discharge by provider) MA2 /MA3/MA4 - moving averages of 2-4 months in length MAD - mean absolute deviation (measure of accuracy for

  17. Geochemistry of manganese, iron, uranium, lead-210 and major ions in the Susquehanna River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, D.M.

    1976-01-01

    The change in water composition accompanying a change in discharge of large streams and the Susquehanna River results from the change in the proportions of the total flow composed of type waters of constant composition. This change in the flow proportions is due to the different hydrologic responses to precipitation inputs of basins underlain by different single rock types. The in-river precipitation of mine-drainage-injected Mn and Fe was studied at a pH of approximately 7. For Mn the removal from solution appears to be first order. The rate constant is 10/sup 3/ times greater than the extrapolated autocatalytic rate constantmore » of previous laboratory experiments. The study of the removal of Fe from solution yields a first order rate constant consistent with previous laboratory experiments. Lead-210 was used as a natural tracer to study the fate of trace metals.« less

  18. Sensitivity of intermittent streams to climate variations in the United States

    NASA Astrophysics Data System (ADS)

    Eng, K.

    2015-12-01

    There is growing interest in the effects of climate change on streamflows because of the potential negative effects on aquatic biota and water supplies. Previous studies of climate controls on flows have primarily focused on perennial streams, and few studies have examined the effect of climate variability on intermittent streams. Our objectives in this study were to (1) identify regions showing similar patterns of intermittency, and (2) evaluate the sensitivity of intermittent streams to historical variability in climate in the United States. This study was carried out at 265 intermittent streams by evaluating: (1) correlations among time series of flow metrics (number of zero-flow events, the average of the central 50% and largest 10% of flows) with precipitation (magnitudes, durations and intensity) and temperature, and (2) decadal changes in the seasonality and long-term trends of these flow metrics. Results identified five distinct seasonal patterns of flow intermittency: fall, fall-to-winter, non-seasonal, summer, and summer-to-winter intermittent streams. In addition, strong associations between the low-flow metrics and historical climate variability were found. However, the lack of trends in historical variations in precipitation results in no significant seasonal shifts or decade-to-decade trends in the low-flow metrics over the period of record (1950 to 2013).

  19. Sensitivity of intermittent streams to climate variations in the USA

    USGS Publications Warehouse

    Eng, Kenny; Wolock, David M.; Dettinger, Mike

    2015-01-01

    There is a great deal of interest in the literature on streamflow changes caused by climate change because of the potential negative effects on aquatic biota and water supplies. Most previous studies have primarily focused on perennial streams, and there have been only a few studies examining the effect of climate variability on intermittent streams. Our objectives in this study were to (1) identify regions of similar zero-flow behavior, and (2) evaluate the sensitivity of intermittent streams to historical variability in climate in the United States. This study was carried out at 265 intermittent streams by evaluating: (1) correlations among time series of flow metrics (number of zero-flow events, the average of the central 50% and largest 10% of flows) with climate (magnitudes, durations and intensity), and (2) decadal changes in the seasonality and long-term trends of these flow metrics. Results identified five distinct seasonality patterns in the zero-flow events. In addition, strong associations between the low-flow metrics and historical changes in climate were found. The decadal analysis suggested no significant seasonal shifts or decade-to-decade trends in the low-flow metrics. The lack of trends or changes in seasonality is likely due to unchanged long-term patterns in precipitation over the time period examined.

  20. Characteristics Of Turbulent Nonpremixed Jet-Flames And Jet-Flames In Crossflow In Normal- And Low-Gravity

    NASA Technical Reports Server (NTRS)

    Clemens, N. T.; Boxx, I. G.; Idicheria, C. A.

    2003-01-01

    It is well known that buoyancy has a major influence on the flow structure of turbulent nonpremixed jet flames. For example, previous studies have shown that transitional and turbulent jet flames exhibit flame lengths that are as much as a factor of two longer in microgravity than in normal gravity. The objective of this study is to extend these previous studies by investigating both mean and fluctuating characteristics of turbulent nonpremixed jet flames under three different gravity levels (1 g, 20 mg and 100 micrograms). This work is described in more detail elsewhere. In addition, we have recently initiated a new study into the effects of buoyancy on turbulent nonpremixed jet flames in cross-flow (JFICF). Buoyancy has been observed to play a key role in determining the centerline trajectories of such flames.6 The objective of this study is to use the low gravity environment to study the effects of buoyancy on the turbulent characteristics of JFICF.

  1. Study flow diagrams in Cochrane systematic review updates: an adapted PRISMA flow diagram

    PubMed Central

    2014-01-01

    Cochrane systematic reviews are conducted and reported according to rigorous standards. A study flow diagram must be included in a new review, and there is clear guidance from the PRISMA statement on how to do this. However, for a review update, there is currently no guidance on how study flow diagrams should be presented. To address this, a working group was formed to find a solution and produce guidance on how to use these diagrams in review updates. A number of different options were devised for how these flow diagrams could be used in review updates, and also in cases where multiple searches for a review or review update have been conducted. These options were circulated to the Cochrane information specialist community for consultation and feedback. Following the consultation period, the working group refined the guidance and made the recommendation that for review updates an adapted PRISMA flow diagram should be used, which includes an additional box with the number of previously included studies feeding into the total. Where multiple searches have been conducted, the results should be added together and treated as one set of results. There is no existing guidance for using study flow diagrams in review updates. Our adapted diagram is a simple and pragmatic solution for showing the flow of studies in review updates. PMID:24886533

  2. Automated delineation and characterization of drumlins using a localized contour tree approach

    NASA Astrophysics Data System (ADS)

    Wang, Shujie; Wu, Qiusheng; Ward, Dylan

    2017-10-01

    Drumlins are ubiquitous landforms in previously glaciated regions, formed through a series of complex subglacial processes operating underneath the paleo-ice sheets. Accurate delineation and characterization of drumlins are essential for understanding the formation mechanism of drumlins as well as the flow behaviors and basal conditions of paleo-ice sheets. Automated mapping of drumlins is particularly important for examining the distribution patterns of drumlins across large spatial scales. This paper presents an automated vector-based approach to mapping drumlins from high-resolution light detection and ranging (LiDAR) data. The rationale is to extract a set of concentric contours by building localized contour trees and establishing topological relationships. This automated method can overcome the shortcomings of previously manual and automated methods for mapping drumlins, for instance, the azimuthal biases during the generation of shaded relief images. A case study was carried out over a portion of the New York Drumlin Field. Overall 1181 drumlins were identified from the LiDAR-derived DEM across the study region, which had been underestimated in previous literature. The delineation results were visually and statistically compared to the manual digitization results. The morphology of drumlins was characterized by quantifying the length, width, elongation ratio, height, area, and volume. Statistical and spatial analyses were conducted to examine the distribution pattern and spatial variability of drumlin size and form. The drumlins and the morphologic characteristics exhibit significant spatial clustering rather than randomly distributed patterns. The form of drumlins varies from ovoid to spindle shapes towards the downstream direction of paleo ice flows, along with the decrease in width, area, and volume. This observation is in line with previous studies, which may be explained by the variations in sediment thickness and/or the velocity increases of ice flows towards ice front.

  3. Optimal Growth in Hypersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of the parabolized linear stability equations is used in a variational approach to extend the previous body of results for the optimal, nonmodal disturbance growth in boundary-layer flows. This paper investigates the optimal growth characteristics in the hypersonic Mach number regime without any high-enthalpy effects. The influence of wall cooling is studied, with particular emphasis on the role of the initial disturbance location and the value of the spanwise wave number that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary-layer equations, mean flow solutions based on the full Navier-Stokes equations are used in select cases to help account for the viscous- inviscid interaction near the leading edge of the plate and for the weak shock wave emanating from that region. Using the full Navier-Stokes mean flow is shown to result in further reduction with Mach number in the magnitude of optimal growth relative to the predictions based on the self-similar approximation to the base flow.

  4. Low-flow frequency and flow duration of selected South Carolina streams in the Saluda, Congaree, and Edisto River basins through March 2009

    USGS Publications Warehouse

    Feaster, Toby D.; Guimaraes, Wladmir B.

    2012-01-01

    Part of the mission of the South Carolina Department of Health and Environmental Control and the South Carolina Department of Natural Resources is to protect and preserve South Carolina's water resources. Doing so requires an ongoing understanding of streamflow characteristics of the rivers and streams in South Carolina. A particular need is information concerning the low-flow characteristics of streams, which is especially important for effectively managing the State's water resources during critical flow periods, such as during periods of severe drought like South Carolina has experienced in the last decade or so. The U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control, initiated a study in 2008 to update low-flow statistics at continuous-record streamgaging stations operated by the U.S. Geological Survey in South Carolina. This report presents the low-flow statistics for 25 selected streamgaging stations in the Saluda, Congaree, and Edisto River basins in South Carolina, and includes flow durations for the 5-, 10-, 25-, 50-,75-, 90-, and 95-percent exceedances and the annual minimum 1-, 3-, 7-, 14-, 30-, 60-, and 90-day average flows with recurrence intervals of 2, 5, 10, 20, 30, and 50 years, depending on the length of record available at the streamgaging station. The low-flow statistics were computed from records available through March 31, 2009. Of the 25 streamgaging stations for which recurrence interval computations were made, 20 were compared to low-flow statistics that were published in previous U.S. Geological Survey reports. A comparison of the low-flow statistics for the annual minimum 7-day average streamflow with a 10-year recurrence interval (7Q10) from this study with the most recently published values indicates that 18 of the 20 streamgaging stations have values lower than the previous published values. The low-flow statistics are influenced by length of record, hydrologic regime under which the record was collected, analytical techniques used, and other changes, such as urbanization, diversions, droughts, and so on, that may have occurred in the basin.

  5. Zonal Rate Model for Axial and Radial Flow Membrane Chromatography. Part I: Knowledge Transfer Across Operating Conditions and Scales

    PubMed Central

    Ghosh, Pranay; Vahedipour, Kaveh; Lin, Min; Vogel, Jens H; Haynes, Charles A; von Lieres, Eric

    2013-01-01

    The zonal rate model (ZRM) has previously been applied for analyzing the performance of axial flow membrane chromatography capsules by independently determining the impacts of flow and binding related non-idealities on measured breakthrough curves. In the present study, the ZRM is extended to radial flow configurations, which are commonly used at larger scales. The axial flow XT5 capsule and the radial flow XT140 capsule from Pall are rigorously analyzed under binding and non-binding conditions with bovine serum albumin (BSA) as test molecule. The binding data of this molecule is much better reproduced by the spreading model, which hypothesizes different binding orientations, than by the well-known Langmuir model. Moreover, a revised cleaning protocol with NaCl instead of NaOH and minimizing the storage time has been identified as most critical for quantitatively reproducing the measured breakthrough curves. The internal geometry of both capsules is visualized by magnetic resonance imaging (MRI). The flow in the external hold-up volumes of the XT140 capsule was found to be more homogeneous as in the previously studied XT5 capsule. An attempt for model-based scale-up was apparently impeded by irregular pleat structures in the used XT140 capsule, which might lead to local variations in the linear velocity through the membrane stack. However, the presented approach is universal and can be applied to different capsules. The ZRM is shown to potentially help save valuable material and time, as the experiments required for model calibration are much cheaper than the predicted large-scale experiment at binding conditions. Biotechnol. Bioeng. 2013; 110: 1129–1141. © 2012 Wiley Periodicals, Inc. PMID:23097218

  6. Nonlocal rheological properties of granular flows near a jamming limit.

    PubMed

    Aranson, Igor S; Tsimring, Lev S; Malloggi, Florent; Clément, Eric

    2008-09-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.

  7. High-resolution CFD detects high-frequency velocity fluctuations in bifurcation, but not sidewall, aneurysms.

    PubMed

    Valen-Sendstad, Kristian; Mardal, Kent-André; Steinman, David A

    2013-01-18

    High-frequency flow fluctuations in intracranial aneurysms have previously been reported in vitro and in vivo. On the other hand, the vast majority of image-based computational fluid dynamics (CFD) studies of cerebral aneurysms report periodic, laminar flow. We have previously demonstrated that transitional flow, consistent with in vivo reports, can occur in a middle cerebral artery (MCA) bifurcation aneurysm when ultra-high-resolution direct numerical simulation methods are applied. The object of the present study was to investigate if such high-frequency flow fluctuations might be more widespread in adequately-resolved CFD models. A sample of N=12 anatomically realistic MCA aneurysms (five unruptured, seven ruptured), was digitally segmented from CT angiograms. Four were classified as sidewall aneurysms, the other eight as bifurcation aneurysms. Transient CFD simulations were carried out assuming a steady inflow velocity of 0.5m/s, corresponding to typical peak systolic conditions at the MCA. To allow for detection of clinically-reported high-frequency flow fluctuations and resulting flow structures, temporal and spatial resolutions of the CFD simulations were in the order of 0.1 ms and 0.1 mm, respectively. A transient flow response to the stationary inflow conditions was found in five of the 12 aneurysms, with energetic fluctuations up to 100 Hz, and in one case up to 900 Hz. Incidentally, all five were ruptured bifurcation aneurysms, whereas all four sidewall aneurysms, including one ruptured case, quickly reached a stable, steady state solution. Energetic, rapid fluctuations may be overlooked in CFD models of bifurcation aneurysms unless adequate temporal and spatial resolutions are used. Such fluctuations may be relevant to the mechanobiology of aneurysm rupture, and to a recently reported dichotomy between predictors of rupture likelihood for bifurcation vs. sidewall aneurysms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Non-local rheological properties of granular flows near a jamming limit.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aranson, I. S.; Tsimring, L. S.; Malloggi, F.

    2008-01-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology.more » The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.« less

  9. In vivo quantification of intraventricular flow during left ventricular assist device support

    NASA Astrophysics Data System (ADS)

    Vu, Vi; Wong, Kin; Del Alamo, Juan; Aguilo, Pablo M. L.; May-Newman, Karen; Department of Bioengineering, San Diego State University Collaboration; Department of Mechanical; Aerospace Engineering, University of California San Diego Collaboration; Mechanical Assist Device Program, Sharp Memorial Hospital Collaboration

    2014-11-01

    Left ventricular assist devices (LVADs) are mechanical pumps that are surgically connected to the left ventricle (LV) and aorta to increase aortic flow and end-organ perfusion. Clinical studies have demonstrated that LVADs improve patient health and quality of life and significantly reduce the mortality of cardiac failure. However, In the presence of left ventricular assisted devices (LVAD), abnormal flow patterns and stagnation regions are often linked to thrombosis. The aim of our study is to evaluate the flow patterns in the left ventricle of the LVAD-assisted heart, with a focus on alterations in vortex development and blood stasis. To this aim, we applied color Doppler echocardiography to measure 2D, time resolved velocity fields in patients before and after implantation of LVADs. In agreement with our previous in vitro studies (Wong et al., Journal of Biomechanics 47, 2014), LVAD implantation resulted in decreased flow velocities and increased blood residence time near the outflow tract. The variation of residence time changes with LVAD operational speed was characterized for each patient.

  10. Method for transition prediction in high-speed boundary layers, phase 2

    NASA Astrophysics Data System (ADS)

    Herbert, T.; Stuckert, G. K.; Lin, N.

    1993-09-01

    The parabolized stability equations (PSE) are a new and more reliable approach to analyzing the stability of streamwise varying flows such as boundary layers. This approach has been previously validated for idealized incompressible flows. Here, the PSE are formulated for highly compressible flows in general curvilinear coordinates to permit the analysis of high-speed boundary-layer flows over fairly general bodies. Vigorous numerical studies are carried out to study convergence and accuracy of the linear-stability code LSH and the linear/nonlinear PSE code PSH. Physical interfaces are set up to analyze the M = 8 boundary layer over a blunt cone calculated by using a thin-layer Navier Stokes (TNLS) code and the flow over a sharp cone at angle of attack calculated using the AFWAL parabolized Navier-Stokes (PNS) code. While stability and transition studies at high speeds are far from routine, the method developed here is the best tool available to research the physical processes in high-speed boundary layers.

  11. Study on internal flow and surface deformation of large droplet levitated by ultrasonic wave.

    PubMed

    Abe, Yutaka; Hyuga, Daisuke; Yamada, Shogo; Aoki, Kazuyoshi

    2006-09-01

    It is expected that new materials will be manufactured with containerless processing under the microgravity environment in space. Under the microgravity environment, handling technology of molten metal is important for such processes. There are a lot of previous studies about droplet levitation technologies, including the use of acoustic waves, as the holding technology. However, experimental and analytical information about the relationship between surface deformation and internal flow of a large levitated droplet is still unknown. The purpose of this study is to experimentally investigate the large droplet behavior levitated by the acoustic wave field and its internal flow. To achieve this, first, numerical simulation is conducted to clarify the characteristics of acoustic wave field. Second, the levitation characteristic and the internal flow of the levitated droplet are investigated by the ultrasonic standing wave under normal gravity environment. Finally, the levitation characteristic and internal flow of levitated droplet are observed under microgravity in an aircraft to compare results with the experiment performed under the normal gravity environment.

  12. Assessing the Effects of Water Right Purchases on Stream Temperatures and Fish Habitat

    NASA Astrophysics Data System (ADS)

    Elmore, L.; Null, S. E.

    2012-12-01

    Warm stream temperature and low flow conditions are limiting factors for native trout species in Nevada's Walker River. Water rights purchases are being considered to increase instream flow and improve habitat conditions. However, the effect of water rights purchases on stream temperatures and fish habitat have yet to be assessed. Manipulating flow conditions affect stream temperatures by altering water depth, velocity, and thermal mass. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate flows and stream temperatures in the Walker River. The model is developed for two wet years (2010-2011). Study results highlight reaches with cold-water habitat that is suitable for native trout species. Previous research on the Walker River has evaluated instream flow changes with water rights purchases. This study incorporates stream temperatures as a proxy for trout habitat, and thus explicitly incorporates water quality and fish habitat into decision-making regarding water rights purchases. Walker River

  13. Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2004-01-01

    In friction stir welding, a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld such as aluminum alloys. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and thus tracks the aluminum deformation flow paths in a unique 3-dimensional manner. CT scanning is a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  14. Drag reduction using slippery liquid infused surfaces

    NASA Astrophysics Data System (ADS)

    Hultmark, Marcus; Stone, Howard; Smits, Alexander; Jacobi, Ian; Samaha, Mohamed; Wexler, Jason; Shang, Jessica; Rosenberg, Brian; Hellström, Leo; Fan, Yuyang

    2013-11-01

    A new method for passive drag reduction is introduced. A surface treatment inspired by the Nepenthes pitcher plant, previously developed by Wong et al. (2011), is utilized and its design parameters are studied for increased drag reduction and durability. Nano- and micro-structured surfaces infused with a lubricant allow for mobility within the lubricant itself when the surface is exposed to flow. The mobility causes slip at the fluid-fluid interface, which drastically reduces the viscous friction. These new surfaces are fundamentally different from the more conventional superhydrophobic surfaces previously used in drag reduction studies, which rely on a gas-liquid interface. The main advantage of the liquid infused surfaces over the conventional surfaces is that the lubricant adheres more strongly to the surface, decreasing the risk of failure when exposed to turbulence and other high-shear flows. We have shown that these surfaces can reduce viscous drag up to 20% in both Taylor-Couette flow and in a parallel plate rheometer. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).

  15. Diffusion thermo effects on unsteady MHD free convection flow of a Kuvshinski fluid past a vertical porous plate in slip flow regime

    NASA Astrophysics Data System (ADS)

    Narsu, Sivakumar; Rushi Kumar, B.

    2017-11-01

    The main purpose of this work is to investigate the diffusion-thermo effects on unsteady combined convection magneto-hydromagnetic boundary layer flow of viscous electrically conducting and chemically reacting fluid over a vertical permeable radiated plate embedded in a highly porous medium. The slip flow regime is applied at the porous interface a uniform magnetic field is applied normal to the fluid flow direction which absorbs the fluid with suction that varies with time. The dimensionless governing equations are solved analytically using two terms harmonic and non-harmonic functions. The expressions for the fields of velocity, temperature and concentration are obtained. For engineering interest we also calculated the physical quantities the skin friction coefficient, Nusselt and Sherwood number are derived. The effects of various physical parameters on the flow quantities are studied through graphs and tables. For the validity, we have checked our results with previously published work and found good agreement with already existing studies.

  16. Blood Flow Characterization According to Linear Wall Models of the Carotid Bifurcation

    NASA Astrophysics Data System (ADS)

    Williamson, Shobha; Rayz, Vitaliy; Berger, Stanley; Saloner, David

    2004-11-01

    Previous studies of the arterial wall include linearly isotropic, isotropic with residual stresses, and anisotropic models. This poses the question of how the results of each method differ when coupled with flow. Hence, the purpose of this study was to compare flow for these material models and subsequently determine if variations exist. Results show that displacement at the bifurcation and internal carotid bulb was noticeably larger in the orthotropic versus the isotropic model with subtle differences toward the inlet and outlets, which are fixed in space. In general, the orthotropic wall is further distended than the isotropic wall for the entire cycle. This apparent distention of the orthotropic wall clearly affects the flow. In diastole, the combination of slower flow and larger wall distention due to lumen pressure creates a sinuous velocity profile, particularly in the orthotropic model where the recirculation zone created displaces the core flow to a smaller area thereby increasing the velocity magnitudes nearly 60

  17. Liquid-Gas-Like Phase Transition in Sand Flow Under Microgravity

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Zhu, Chongqiang; Xiang, Xiang; Mao, Wuwei

    2015-06-01

    In previous studies of granular flow, it has been found that gravity plays a compacting role, causing convection and stratification by density. However, there is a lack of research and analysis of the characteristics of different particles' motion under normal gravity contrary to microgravity. In this paper, we conduct model experiments on sand flow using a model test system based on a drop tower under microgravity, within which the characteristics and development processes of granular flow under microgravity are captured by high-speed cameras. The configurations of granular flow are simulated using a modified MPS (moving particle simulation), which is a mesh-free, pure Lagrangian method. Moreover, liquid-gas-like phase transitions in the sand flow under microgravity, including the transitions to "escaped", "jumping", and "scattered" particles are highlighted, and their effects on the weakening of shear resistance, enhancement of fluidization, and changes in particle-wall and particle-particle contact mode are analyzed. This study could help explain the surface geology evolution of small solar bodies and elucidate the nature of granular interaction.

  18. Method and apparatus for duct sealing using a clog-resistant insertable injector

    DOEpatents

    Wang, Duo; Modera, Mark P.

    2010-12-14

    A method for forming a duct access region through one side of a previously installed air duct, wherein the air duct has an air flow with an air flow direction by inserting an aerosol injector into a previously installed air duct through the access region. The aerosol injector includes a liquid tube having a liquid tube orifice for ejecting a liquid to be atomized; and a propellant cap. The method is accomplished by aligning the aerosol injector with the direction of air flow in the duct; activating an air flow within the duct; and spraying a sealant through the aerosol injector to seal the duct in the direction of the air flow.

  19. Usefulness of automatic measurement of contrast flow intensity: an innovative tool in contrast-enhanced ultrasound imaging of atherosclerotic carotid plaque neovascularization. A pilot study.

    PubMed

    Lisowska, A; Knapp, M; Tycinska, A; Sawicki, R; Kralisz, P; Lisowski, P; Sobkowicz, B; Musial, W I

    2014-02-01

    Contrast-enhanced ultrasound imaging of the carotid arteries (CECU) permits direct, real-time visualization of neovascularization in atherosclerotic plaques and is a confirmed predictor of unstable atheromatous lesions. The aim of the study was the assessment of a new, automatically measured index of intensity in quantitative estimation of the contrast flow through the carotid plaque (till now assessed only visually). Forty-four patients (mean age 70.4±11.4) with ultrasound diagnosed significant stenosis of internal carotid artery (ICA), after cerebrovascular or cardiovascular events, qualified for carotid artery stenting (CAS) were examined. The carotid ultrasound examinations with contrast agent Sonovue were performed. Visually in 22 patients (50%) contrast flow through the atherosclerotic plaques was found. In 17 patients (38.6%) massive, calcified atherosclerotic plaques were present. Patients with preserved contrast flow through the plaque more frequently had a history of cerebral stroke (P=0.04). Massive calcifications of atherosclerotic plaques correlated with a previous MI (P=0.03) and the degree of advancement of coronary artery disease (P=0.04), but not with a previous cerebral stroke. Contrast flow through the atherosclerotic plaque positively correlated with values of the index of intensity (r=0.69, P<0.00001). In patients with preserved contrast flow the mean value of the index of intensity was 22.24±3.55 dB as compared with 12.37±7.67 dB - a value present in patients without preserved contrast flow. No significant relation for the degree of calcifications and the value of the index of intensity was found. The assessment of the index of intensity is a novel, simple and automatic method to estimate the degree of contrast flow through the carotid plaque. The values of the index of intensity correlate with the contrast flow through the atherosclerotic plaque, but not with its calcification.

  20. Numerical optimization of conical flow waveriders including detailed viscous effects

    NASA Technical Reports Server (NTRS)

    Bowcutt, Kevin G.; Anderson, John D., Jr.; Capriotti, Diego

    1987-01-01

    A family of optimized hypersonic waveriders is generated and studied wherein detailed viscous effects are included within the optimization process itself. This is in contrast to previous optimized waverider work, wherein purely inviscid flow is used to obtain the waverider shapes. For the present waveriders, the undersurface is a streamsurface of an inviscid conical flowfield, the upper surface is a streamsurface of the inviscid flow over a tapered cylinder (calculated by the axisymmetric method of characteristics), and the viscous effects are treated by integral solutions of the boundary layer equations. Transition from laminar to turbulent flow is included within the viscous calculations. The optimization is carried out using a nonlinear simplex method. The resulting family of viscous hypersonic waveriders yields predicted high values of lift/drag, high enough to break the L/D barrier based on experience with other hypersonic configurations. Moreover, the numerical optimization process for the viscous waveriders results in distinctly different shapes compared to previous work with inviscid-designed waveriders. Also, the fine details of the viscous solution, such as how the shear stress is distributed over the surface, and the location of transition, are crucial to the details of the resulting waverider geometry. Finally, the moment coefficient variations and heat transfer distributions associated with the viscous optimized waveriders are studied.

  1. Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Perkins, William A.; Scheibe, Timothy D.

    2013-12-01

    Dispersion in porous media flows has been the subject of much experimental, theoretical and numerical study. Here we consider a wavy-walled tube (a three-dimensional tube with sinusoidally-varying diameter) as a simplified conceptualization of flow in porous media, where constrictions represent pore throats and expansions pore bodies. A theoretical model for effective (macroscopic) longitudinal dispersion in this system has been developed by volume averaging the microscale velocity field. Direct numerical simulation using computational fluid dynamics (CFD) methods was used to compute velocity fields by solving the Navier-Stokes equations, and also to numerically solve the volume averaging closure problem, for a rangemore » of Reynolds numbers (Re) spanning the low-Re to inertial flow regimes, including one simulation at Re = 449 for which unsteady flow was observed. Dispersion values were computed using both the volume averaging solution and a random walk particle tracking method, and results of the two methods were shown to be consistent. Our results are compared to experimental measurements of dispersion in porous media and to previous theoretical results for the low-Re, Stokes flow regime. In the steady inertial regime we observe an power-law increase in effective longitudinal dispersion (DL) with Re, consistent with previous results. This rapid rate of increase is caused by trapping of solute in expansions due to flow separation (eddies). For the unsteady case (Re = 449), the rate of increase of DL with Re was smaller than that observed at lower Re. Velocity fluctuations in this regime lead to increased rates of solute mass transfer between the core flow and separated flow regions, thus diminishing the amount of tailing caused by solute trapping in eddies and thereby reducing longitudinal dispersion.« less

  2. Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less

  3. Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2017-08-07

    This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less

  4. UEDGE Simulations for Power and Particle Flow Analysis of FRC Rocket

    NASA Astrophysics Data System (ADS)

    Zheng, Fred; Evans, Eugene S.; McGreivy, Nick; Kaptanoglu, Alan; Izacard, Olivier; Cohen, Samuel A.

    2017-10-01

    The field-reversed configuration (FRC) is under consideration for use in a direct fusion drive (DFD) rocket propulsion system for future space missions. To achieve a rocket configuration, the FRC is embedded within an asymmetric magnetic mirror, in which one end is closed and contains a gas box, and the other end is open and incorporates a magnetic nozzle. Neutral deuterium is injected into the gas box, and flows through the scrape-off layer (SOL) around the core plasma and out the magnetic nozzle, both cooling the core and serving as propellant. Previous studies have examined a range of operating conditions for the SOL of a DFD using UEDGE, a 2D fluid code; discrepancies on the order of 5% were found during the analysis of overall power balance. This work extends the analysis of the previously-studied SOL geometry by updating boundary conditions and conducting a detailed study of power and particle flows within the simulation with the goals of modeling electrical power generation instead of thrust and achieving higher specific impulse. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466 and Princeton Environmental Institute.

  5. An experimental study of the flow field surrounding a subsonic jet in a cross flow. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dennis, Robert Foster

    1993-01-01

    An experimental investigation of the flow interaction of a 5.08 cm (2.00 in.) diameter round subsonic jet exhausting perpendicularly to a flat plate in a subsonic cross flow was conducted in the NASA Ames 7x1O ft. Wind Tunnel Number One. Flat plate surface pressures were measured at 400 locations in a 30.48 cm (12.0 in.) concentric circular array surrounding the jet exit. Results from these measurements are provided in tabular and graphical form for jet-to-crossflow velocity ratios ranging from 4 to 12, and for jet exit Mach numbers ranging from 0.50 to 0.93. Laser doppler velocimeter (LDV) three component velocity measurements were made in selected regions in the developed jet plume and near the flat plate surface, at a jet Mach number of 0.50 and jet-to-crossflow velocity ratios of 6 and 8. The results of both pressure and LDV measurements are compared with the results of previous experiments. In addition, pictures of the jet plume shape at jet velocity ratios ranging from 4 to 12 were obtained using schleiren photography. The LDV measurements are consistent with previous work, but more extensive measurements will be necessary to provide a detailed picture of the flow field. The surface pressure results compare closely with previous work and provide a useful characterization of jet induced surface pressures. The results demonstrate the primary influence of jet velocity ratio and the secondary influence of jet Mach number in determining such surface pressures.

  6. Misalignment of Lava Flows from Topographic Slope Directions Reveals Late Amazonian Deformation at Arsia Mons, Mars

    NASA Astrophysics Data System (ADS)

    Waring, B. A.; Chadwick, J.; McGovern, P. J., Jr.; Tucker, W.

    2017-12-01

    Arsia Mons is the southernmost of the three large Tharsis Montes near the equator of Mars and one of the largest volcanoes in the solar system. The main edifice of Arsia is about 440 km in diameter, the summit is over 9 km above the surrounding plains and has a pronounced 110 km caldera. Like the other Tharsis volcanoes, Arsia has a large, Late Amazonian glacial deposit on its NW flank. Previous crater retention studies for lava flows on Arsia have shown that the volcano experienced significant volcanic activity in the past 200 Ma. In this study, numerous long (>25 km), thin lava flows on the plains surrounding Arsia were mapped and used as indicators of the topographic slope direction at the time of their emplacement. The azimuthal orientation of each flow was compared with the present-day slope directions on the surrounding plains, derived from Mars Orbiter Laser Altimeter (MOLA) topographic data. The results reveal regions around Arsia where the flows no longer conform to the topography, indicating deformation in the time since the flows where emplaced. In a region of Daedalia Planum to the SE of Arsia, modern slope directions adjacent to 40 long lava flows are consistently misaligned from the paleo-slopes indicated by the lava flow orientations, with an angular offset that averages 7.2° in the clockwise direction. Crater size-frequency measurements for these tilted plains using CraterStats software indicate that the deformation responsible for the misaligned flows took place since 330 ± 10 Ma. Conversely, part of Daedalia Planum to the southwest of Arsia is younger, with a crater retention age of 160 ± 6 Ma, and this area shows no consistent flow-topography misalignments. These observations suggest that extensive regional deformation occurred between the two dates, consistent with other evidence for significant volcanism at Arsia in the Late Amazonian at about 200 Ma. Geophysical modelling using the finite element program COMSOL Multiphysics is planned to characterize the source and magnitude of the observed deformation. Similar methods were successfully used in a previous study to identify and measure subsidence of Olympus Mons. The goal of the study is to refine the timing of the contemporaneous Late Amazonian volcanic, tectonic, and glacial events on Arsia Mons and to understand their relationships.

  7. Experimental study of two separating turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Nagabushana, K. A.; Simpson, R. L.; Agarwal, N. K.

    1987-01-01

    A detailed study of two strong adverse pressure gradient flows, one with a free-stream velocity of 35 m/sec, at throat (producing a Re sub theta of 27000 at detachment) and another with free-stream velocity of 22 m/sec, at throat (producing a Re sub theta of 19000 at detachment) is presented. In these examples flows separate slowly and reattach very rapidly over a very short distance in a streamwise direction. In the backflow region, there appears to be a semi-logarithmically flat region in the streamwise fluctuating velocity component, u', which spreads over a definite range of y/delta. In power spectra, the flow variables phi sub upsilon upsilon (kappa sub 1 delta)/ -uv bar sub max vs. kappa sub 1 delta forms a unique set of scaling parameters for adverse pressure gradient flows. Experimental results show good agreement with previous studies.

  8. Generation of chemical movies: FT-IR spectroscopic imaging of segmented flows.

    PubMed

    Chan, K L Andrew; Niu, X; deMello, A J; Kazarian, S G

    2011-05-01

    We have previously demonstrated that FT-IR spectroscopic imaging can be used as a powerful, label-free detection method for studying laminar flows. However, to date, the speed of image acquisition has been too slow for the efficient detection of moving droplets within segmented flow systems. In this paper, we demonstrate the extraction of fast FT-IR images with acquisition times of 50 ms. This approach allows efficient interrogation of segmented flow systems where aqueous droplets move at a speed of 2.5 mm/s. Consecutive FT-IR images separated by 120 ms intervals allow the generation of chemical movies at eight frames per second. The technique has been applied to the study of microfluidic systems containing moving droplets of water in oil and droplets of protein solution in oil. The presented work demonstrates the feasibility of the use of FT-IR imaging to study dynamic systems with subsecond temporal resolution.

  9. Pressure and Flow Rate Changes During Contrast Injections in Cerebral Angiography: Correlation to Reflux Length.

    PubMed

    Kovarovic, Brandon; Woo, Henry H; Fiorella, David; Lieber, Baruch B; Sadasivan, Chander

    2018-03-01

    Cerebral angiography involves the antegrade injection of contrast media through a catheter into the vasculature to visualize the region of interest under X-ray imaging. Depending on the injection and blood flow parameters, the bolus of contrast can propagate in the upstream direction and proximal to the catheter tip, at which point contrast is said to have refluxed. In this in vitro study, we investigate the relationship of fundamental hemodynamic variables to this phenomenon. Contrast injections were carried out under steady and pulsatile flow using various vessel diameters, catheter sizes, working fluid flow rates, and injection rates. The distance from the catheter tip to the proximal edge of the contrast bolus, called reflux length, was measured on the angiograms; the relation of this reflux length to different hemodynamic parameters was evaluated. Results show that contrast reflux occurs when the pressure distal to the catheter tip increases to be greater than the pressure proximal to the catheter tip. The ratio of this pressure difference to the baseline flow rate, called reflux resistance here, was linearly correlated to the normalized reflux length (reflux length/vessel diameter). Further, the ratio of blood flow to contrast fluid momentums, called the Craya-Curtet number, was correlated to the normalized reflux length via a sigmoid function. A sigmoid function was also found to be representative of the relationship between the ratio of the Reynolds numbers of blood flow to contrast and the normalized reflux length. As described by previous reports, catheter based contrast injections cause substantial increases in local flow and pressure. Contrast reflux should generally be avoided during standard antegrade angiography. Our study shows two specific correlations between contrast reflux length and baseline and intra-injection parameters that have not been published previously. Further studies need to be conducted to fully characterize the phenomena and to extract reliable indicators of clinical utility. Parameters relevant to cerebral angiography are studied here, but the essential principles are applicable to all angiographic procedures involving antegrade catheter injections.

  10. Investigation of the required length for fully developed pipe flow with drag-reducing polymer solutions

    NASA Astrophysics Data System (ADS)

    Farsiani, Yasaman; Elbing, Brian

    2015-11-01

    Adding trace amounts of long chain polymers into a liquid flow is known to reduce skin friction drag by up to 80%. While polymer drag reduction (PDR) has been successfully implemented in internal flows, diffusion and degradation have limited its external flow applications. A weakness in many previous PDR studies is that there was no characterization of the polymer being injected into the turbulent boundary layer, which can be accomplished by testing a sample in a pressure-drop tube. An implicit assumption in polymer characterization is that the flow is fully developed at the differential pressure measurement. While available data in the literature shows that the entry length to achieve fully developed flow increases with polymeric solutions, it is unclear how long is required to achieve fully developed flow for non-Newtonian turbulent flows. In the present study, the pressure-drop is measured across a 1.05 meter length section of a 1.04 cm inner diameter pipe. Differential pressure is measured with a pressure transducer for different entry lengths, flow and polymer solution properties. This presentation will present preliminary data on the required entrance length as well as characterization of polymer solution an estimate of the mean molecular weight.

  11. Inlet flow distortion in turbomachinery. I - Comparison of theory and experiment in a transonic fan stage. II - A parameter study

    NASA Technical Reports Server (NTRS)

    Seidel, B. S.; Matwey, M. D.; Adamczyk, J. J.

    1980-01-01

    In the present paper, a semi-actuator-disk theory is reviewed that was developed previously for the distorted inflow to a single-stage axial-flow compressor. Flow distortion occurs far upstream; it may be a distortion in stagnation temperature, stagnation pressure, or both. Losses, quasi-steady deviation angles, and reference incidence correlations are included in the analysis, and both subsonic and transonic relative Mach numbers are considered. The theory is compared with measurements made in a transonic fan stage, and a parameter study is carried out to determine the influence of solidity on the attenuation of distortions in stagnation pressure and stagnation temperature.

  12. Using hydrogeologic data to evaluate geothermal potential in the eastern Great Basin

    USGS Publications Warehouse

    Masbruch, Melissa D.; Heilweil, Victor M.; Brooks, Lynette E.

    2012-01-01

    In support of a larger study to evaluate geothermal resource development of high-permeability stratigraphic units in sedimentary basins, this paper integrates groundwater and thermal data to evaluate heat and fluid flow within the eastern Great Basin. Previously published information from a hydrogeologic framework, a potentiometric-surface map, and groundwater budgets was compared to a surficial heat-flow map. Comparisons between regional groundwater flow patterns and surficial heat flow indicate a strong spatial relation between regional groundwater movement and surficial heat distribution. Combining aquifer geometry and heat-flow maps, a selected group of subareas within the eastern Great Basin are identified that have high surficial heat flow and are underlain by a sequence of thick basin-fill deposits and permeable carbonate aquifers. These regions may have potential for future geothermal resources development.

  13. Effect of a rotating propeller on the separation angle of attack and distortion in ducted propeller inlets

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Iek, C.; Hwang, D. P.; Larkin, M.; Schweiger, P.

    1993-01-01

    The present study represents an extension of an earlier wind tunnel experiment performed with the P&W 17-in. Advanced Ducted Propeller (ADP) Simulator operating at Mach 0.2. In order to study the effects of a rotating propeller on the inlet flow, data were obtained in the UTRC 10- by 15-Foot Large Subsonic Wind Tunnel with the same hardware and instrumentation, but with the propeller removed. These new tests were performed over a range of flow rates which duplicated flow rates in the powered simulator program. The flow through the inlet was provided by a remotely located vacuum source. A comparison of the results of this flow-through study with the previous data from the powered simulator indicated that in the conventional inlet the propeller produced an increase in the separation angle of attack between 4.0 deg at a specific flow of 22.4 lb/sec-sq ft to 2.7 deg at a higher specific flow of 33.8 lb/sec-sq ft. A similar effect on separation angle of attack was obtained by using stationary blockage rather than a propeller.

  14. Characterization of Unsteady Flow Structures Near Landing-Edge Slat. Part 2; 2D Computations

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi; Choudhari, Meelan M.; Jenkins, Luther N.

    2004-01-01

    In our previous computational studies of a generic high-lift configuration, quasi-laminar (as opposed to fully turbulent) treatment of the slat cove region proved to be an effective approach for capturing the unsteady dynamics of the cove flow field. Combined with acoustic propagation via Ffowes Williams and Hawkings formulation, the quasi-laminar simulations captured some important features of the slat cove noise measured with microphone array techniques. However. a direct assessment of the computed cove flow field was not feasible due to the unavailability of off-surface flow measurements. To remedy this shortcoming, we have undertaken a combined experiment and computational study aimed at characterizing the flow structures and fluid mechanical processes within the slat cove region. Part I of this paper outlines the experimental aspects of this investigation focused on the 30P30N high-lift configuration; the present paper describes the accompanying computational results including a comparison between computation and experiment at various angles of attack. Even through predictions of the time-averaged flow field agree well with the measured data, the study indicates the need for further refinement of the zonal turbulence approach in order to capture the full dynamics of the cove's fluctuating flow field.

  15. A protocol for characterizing the impact of collateral flow after distal middle cerebral artery occlusion

    PubMed Central

    DeFazio, R. Anthony; Levy, Sean; Morales, Carmen L.; Levy, Rebecca V.; Dave, Kunjan R.; Lin, Hung W.; Abaffy, Tatjana; Watson, Brant D.; Perez-Pinzon, Miguel A.; Ohanna, Victoria

    2010-01-01

    I. SUMMARY In humans and in animal models of stroke, collateral blood flow between territories of the major pial arteries has a profound impact on cortical infarct size. However, there is a gap in our understanding of the genetic determinants of collateral formation and flow, as well as the signaling pathways and neurovascular interactions regulating this flow. Previous studies have demonstrated that collateral flow between branches of the anterior cerebral artery (ACA) and the middle cerebral artery (MCA) can protect mouse cortex from infarction after middle cerebral artery occlusion. Because the number and diameter of collaterals varies among mouse strains and after transgenic manipulations, a combination of methods is required to control for these variations. Here, we report an inexpensive approach to characterizing the cerebrovascular anatomy, and in vivo monitoring of cerebral blood flow as well. Further, we introduce a new, minimally invasive method for the occlusion of distal MCA branches. These methods will permit a new generation of studies on the mechanisms regulating collateral remodeling and cortical blood flow after stroke. PMID:21593993

  16. Large eddy simulation study of spanwise spacing effects on secondary flows in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Aliakbarimiyanmahaleh, Mohammad; Anderson, William

    2015-11-01

    The structure of turbulent flow over a complex topography composed of streamwise-aligned rows of cones with varying spanwise spacing, s is studied with large-eddy simulation (LES). Similar to the experimental study of Vanderwel and Ganapathisubramani, 2015: J. Fluid Mech., we investigate the relationship between secondary flow and s, for 0 . 25 <= s / δ <= 5 . For cases with s / δ > 2 , domain-scale rollers freely exist. These had previously been called ``turbulent secondary flows'' (Willingham et al., 2014: Phys. Fluids; Barros and Christensen, 2014: J. Fluid Mech.; Anderson et al., 2015: J. Fluid Mech.), but closer inspection of the statistics indicates these are a turbulent tertiary flow: they only remain ``anchored'' to the conical roughness elements for s / δ > 2 . For s / δ < 2 , turbulent tertiary flows are prevented from occupying the domain by virtue of proximity to adjacent, counter-rotating tertiary flows. Turbulent secondary flows are associated with the conical roughness elements. These turbulent secondary flows emanate from individual conical topographic elements and set the roughness sublayer depth. The turbulent secondary flows remain intact for large and small spacing. For s / δ < 1 , a mean tertiary flow is not present. This work was supported by the Air Force Office of Sci. Research, Young Inv. Program (PM: Dr. R. Ponnoppan and Ms. E. Montomery) under Grant # FA9550-14-1-0394. Computational resources were provided by the Texas Adv. Comp. Center at the Univ. of Texas.

  17. Phase-contrast cerebrospinal fluid flow magnetic resonance imaging in qualitative evaluation of patency of CSF flow pathways prior to infusion of chemotherapeutic and other agents into the fourth ventricle.

    PubMed

    Patel, Rajan P; Sitton, Clark W; Ketonen, Leena M; Hou, Ping; Johnson, Jason M; Romo, Seferino; Fletcher, Stephen; Shah, Manish N; Kerr, Marcia; Zaky, Wafik; Rytting, Michael E; Khatua, Soumen; Sandberg, David I

    2018-03-01

    Nuclear medicine studies have previously been utilized to assess for blockage of cerebrospinal fluid (CSF) flow prior to intraventricular chemotherapy infusions. To assess CSF flow without nuclear medicine studies, we obtained cine phase-contrast MRI sequences that assess CSF flow from the fourth ventricle down to the sacrum. In three clinical trials, 18 patients with recurrent malignant posterior fossa tumors underwent implantation of a ventricular access device (VAD) into the fourth ventricle, either with or without simultaneous tumor resection. Prior to infusing therapeutic agents into the VAD, cine MRI phase-contrast CSF flow sequences of the brain and total spine were performed. Velocity encoding (VENC) of 5 and 10 cm/s was used to confirm CSF flow from the fourth ventricular outlets to the cervical, thoracic, and lumbar spine. Qualitative CSF flow was characterized by neuroradiologists as present or absent. All 18 patients demonstrated CSF flow from the outlets of the fourth ventricle down to the sacrum with no evidence of obstruction. One of these patients, after disease progression, subsequently showed obstruction of CSF flow. No patient required a nuclear medicine study to assess CSF flow prior to initiation of infusions. Fourteen patients have received infusions to date, and none has had neurological toxicity. CSF flow including the fourth ventricle and the total spine can be assessed noninvasively with phase-contrast MRI sequences. Advantages over nuclear medicine studies include avoiding both an invasive procedure and radiation exposure.

  18. Sensitivity of intermittent streams to climate variations in the western United States

    NASA Astrophysics Data System (ADS)

    Eng, K.; Wolock, D.; Dettinger, M. D.

    2014-12-01

    There is a great deal of interest in streamflow changes caused by climate change because of the potential negative effects on aquatic biota and water supplies. Most previous studies have focused on perennial streams, and only a few studies have examined the effect of climate variability on intermittent streams. Our objective in this study was to evaluate the sensitivity of intermittent streams to historical variability in climate in the semi-arid regions of the western United States. This study was carried out at 45 intermittent streams that had a minimum of 45 years of daily-streamgage record by evaluating: (1) correlations among time series of flow metrics (number of zero-flow events, the average of the central 50% and largest 10% of flows) with climate, and (2) decadal changes in the seasonality and long-term trends of these flow metrics. Results showed strong associations between the low-flow metrics and historical changes in climate. The decadal analysis, in contrast, suggested no significant seasonal shifts or decade-to-decade trends in the low-flow metrics. The lack of trends or changes in seasonality is likely due to unchanged long-term patterns in precipitation over the time period examined.

  19. Numerical study on tilting salt finger in a laminar shear flow

    NASA Astrophysics Data System (ADS)

    Zhang, Xianfei; Wang, Ling-ling; Lin, Cheng; Zhu, Hai; Zeng, Cheng

    2018-02-01

    Salt fingers as a mixing mechanism in the ocean have been investigated for several decades, together with a key issue being focused on their convective evolution and flux ratio variation. However, related studies on tilting fingers in the ocean produced by shear flow have been ignored by previous researchers. In this paper, a 2-D numerical model is presented to study the evolution of the double-diffusion salt finger in a two-layer thermohaline system with laminar shear flow. The model is divided into a steady-state solver and double-diffusion convection system, aimed to reveal the effect of shear flow on salt fingers and analyze the mechanism behind the shear and fingers. Several cases are conducted for Re = 0 ˜ 900 to study the evolution of salt fingers in a laminar shear flow and the variation of salt flux with Re. The results show that salt fingers exist and tilt in the presence of laminar shear flow. The mass transport in the vertical direction is weakened as the Reynolds number increases. An asymmetric structure of the salt finger is discovered and accounts for the morphological tilt and salt flux reduction.

  20. Effusive silicic volcanism in the Paraná Magmatic Province, South Brazil: Evidence for locally-fed lava flows and domes from detailed field work

    NASA Astrophysics Data System (ADS)

    Polo, L. A.; Janasi, V. A.; Giordano, D.; Lima, E. F.; Cañon-Tapia, E.; Roverato, M.

    2018-04-01

    Lava flows and dome complexes of silicic composition were identified in the Lower Cretaceous Paraná Magmatic Province (PMP) at Rio Grande do Sul state, southern Brazil. Detailed mapping and image analysis reveals significant volumes of effusive deposits aligned according to main lineaments, likely representing the fissural systems that fed the three Palmas-type silicic units. Different structures indicative of effusive emplacement (lava domes, lobated flows, sheet flows and autobreccias) are very common in the study area, and are probably also more abundant than previously thought in whole PMP silicic magmatism. In fact, effusive deposits seem predominant in the three distinct silicic units identified in the area, since no remnants of pyroclastic components have been identified. The vitreous dacites that make up the upper flows of the basaltic andesite to dacite Barros Cassal sequence are clearly effusive, as indicated by their occurrence as thin sheet flows. The much thicker early Caxias do Sul dacites occur mostly as lava flow lobes and pancake-like, of low to moderate viscosity, and lava domes. The younger, high SiO2 Santa Maria rhyolite unit shows unequivocal examples of effusive deposits at its lower portion, as lobated flows formed by vesicle-rich obsidian. In spite of higher viscosities relative to the previous units ( 106 Pa·s), it is probable that the very low H2O contents 1 wt% of these rhyolite melts, associated with high discharge rates, resulted in an effusive nature in most to this unit.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, R.T.; Moore, J.G.; Lipman, P.W.

    The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminousmore » eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.« less

  2. Soap-film flow induced by electric fields in asymmetric frames

    NASA Astrophysics Data System (ADS)

    Mollaei, S.; Nasiri, M.; Soltanmohammadi, N.; Shirsavar, R.; Ramos, A.; Amjadi, A.

    2018-04-01

    Net fluid flow of soap films induced by (ac or dc) electric fields in asymmetric frames is presented. Previous experiments of controllable soap film flow required the simultaneous use of an electrical current passing through the film and an external electric field or the use of nonuniform ac electric fields. Here a single voltage difference generates both the electrical current going through the film and the electric field that actuates on the charge induced on the film. The film is set into global motion due to the broken symmetry that appears by the use of asymmetric frames. If symmetric frames are used, the film flow is not steady but time dependent and irregular. Finally, we study numerically these film flows by employing the model of charge induction in ohmic liquids.

  3. Soap-film flow induced by electric fields in asymmetric frames.

    PubMed

    Mollaei, S; Nasiri, M; Soltanmohammadi, N; Shirsavar, R; Ramos, A; Amjadi, A

    2018-04-01

    Net fluid flow of soap films induced by (ac or dc) electric fields in asymmetric frames is presented. Previous experiments of controllable soap film flow required the simultaneous use of an electrical current passing through the film and an external electric field or the use of nonuniform ac electric fields. Here a single voltage difference generates both the electrical current going through the film and the electric field that actuates on the charge induced on the film. The film is set into global motion due to the broken symmetry that appears by the use of asymmetric frames. If symmetric frames are used, the film flow is not steady but time dependent and irregular. Finally, we study numerically these film flows by employing the model of charge induction in ohmic liquids.

  4. Lattice hydrodynamic model based traffic control: A transportation cyber-physical system approach

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Sun, Dihua; Liu, Weining

    2016-11-01

    Lattice hydrodynamic model is a typical continuum traffic flow model, which describes the jamming transition of traffic flow properly. Previous studies in lattice hydrodynamic model have shown that the use of control method has the potential to improve traffic conditions. In this paper, a new control method is applied in lattice hydrodynamic model from a transportation cyber-physical system approach, in which only one lattice site needs to be controlled in this control scheme. The simulation verifies the feasibility and validity of this method, which can ensure the efficient and smooth operation of the traffic flow.

  5. Large-scale structures in turbulent Couette flow

    NASA Astrophysics Data System (ADS)

    Kim, Jung Hoon; Lee, Jae Hwa

    2016-11-01

    Direct numerical simulation of fully developed turbulent Couette flow is performed with a large computational domain in the streamwise and spanwise directions (40 πh and 6 πh) to investigate streamwise-scale growth mechanism of the streamwise velocity fluctuating structures in the core region, where h is the channel half height. It is shown that long streamwise-scale structures (> 3 h) are highly energetic and they contribute to more than 80% of the turbulent kinetic energy and Reynolds shear stress, compared to previous studies in canonical Poiseuille flows. Instantaneous and statistical analysis show that negative-u' structures on the bottom wall in the Couette flow continuously grow in the streamwise direction due to mean shear, and they penetrate to the opposite moving wall. The geometric center of the log layer is observed in the centerline with a dominant outer peak in streamwise spectrum, and the maximum streamwise extent for structure is found in the centerline, similar to previous observation in turbulent Poiseuille flows at high Reynolds number. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure in the centerline. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).

  6. An Experimental and Computational Analysis of Primary Cilia Deflection Under Fluid Flow

    PubMed Central

    Downs, Matthew E.; Nguyen, An M.; Herzog, Florian A.; Hoey, David A.; Jacobs, Christopher R.

    2013-01-01

    In this work we have developed a novel model of the deflection of primary cilia experiencing fluid flow accounting for phenomena not previously considered. Specifically, we developed a large rotation formulation that accounts for rotation at the base of the cilium, the initial shape of the cilium and fluid drag at high deflection angles. We utilized this model to analyze full three dimensional datasets of primary cilia deflecting under fluid flow acquired with high-speed confocal microscopy. We found a wide variety of previously unreported bending shapes and behaviors. We also analyzed post-flow relaxation patterns. Results from our combined experimental and theoretical approach suggest that the average flexural rigidity of primary cilia might be higher than previously reported (Schwartz et al. 1997). In addition our findings indicate the mechanics of primary cilia are richly varied and mechanisms may exist to alter their mechanical behavior. PMID:22452422

  7. An Open-Access Modeled Passenger Flow Matrix for the Global Air Network in 2010

    PubMed Central

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J.; Fik, Timothy J.; Tatem, Andrew J.

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194

  8. An open-access modeled passenger flow matrix for the global air network in 2010.

    PubMed

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J; Fik, Timothy J; Tatem, Andrew J

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data.

  9. Use of flow-diverting stents as salvage treatment following failed stent-assisted embolization of intracranial aneurysms.

    PubMed

    Heiferman, Daniel M; Billingsley, Joshua T; Kasliwal, Manish K; Johnson, Andrew K; Keigher, Kiffon M; Frudit, Michel E; Moftakhar, Roham; Lopes, Demetrius K

    2016-07-01

    Flow-diverting stents, including the Pipeline embolization device (PED) and Silk, have been beneficial in the treatment of aneurysms previously unable to be approached via endovascular techniques. Recurrent aneurysms for which stent-assisted embolization has failed are a therapeutic challenge, given the existing intraluminal construct with continued blood flow into the aneurysm. We report our experience using flow-diverting stents in the repair of 25 aneurysms for which stent-assisted embolization had failed. Nineteen (76%) of these aneurysms at the 12-month follow-up showed improved Raymond class occlusion, with 38% being completely occluded, and all aneurysms demonstrated decreased filling. One patient developed a moderate permanent neurologic deficit. Appropriate stent sizing, proximal and distal construct coverage, and preventing flow diverter deployment between the previously deployed stent struts are important considerations to ensure wall apposition and prevention of endoleak. Flow diverters are shown to be a reasonable option for treating previously stented recurrent cerebral aneurysms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Turbulent flow in a partially filled pipe

    NASA Astrophysics Data System (ADS)

    Ng, Henry; Cregan, Hope; Dodds, Jonathan; Poole, Robert; Dennis, David

    2017-11-01

    Turbulent flow in a pressure driven pipe running partially full has been investigated using high-speed 2D-3C Stereoscopic Particle Imaging Velocimetry. With the field-of-view spanning the entire pipe cross section we are able to reconstruct the full three dimensional quasi-instantaneous flow field by invoking Taylor's hypothesis. The measurements were carried out over a range of flow depths at a constant Reynolds number based on hydraulic diameter and bulk velocity of Re = 32 , 000 . In agreement with previous studies, the ``velocity dip'' phenomenon, whereby the location of the maximum streamwise velocity occurs below the free surface was observed. A mean flow secondary current is observed near the free surface with each of the counter-rotating rollers filling the half-width of the pipe. Unlike fully turbulent flow in a rectangular open channel or pressurized square duct flow where the secondary flow cells appear in pairs about a corner bisector, the mean secondary motion observed here manifests only as a single pair of vortices mirrored about the pipe vertical centreline.

  11. Mixing and Flow-field Characteristics of Strongly-forced Transitional / Turbulent Jets and Jet Flames

    NASA Astrophysics Data System (ADS)

    Lakshminarasimhan, Krishna

    2005-11-01

    Strong pulsations of the fuel flow rate have previously been shown to dramatically alter the flame length and luminosity of nonpremixed jet flames. The mechanisms responsible for such changes are explored experimentally in nonreacting and reacting strongly pulsed jets by using cinematographic PIV and acetone PLIF. The large amplitude forcing was obtained by pulsing the flow using a solenoid valve at the organ-pipe resonance frequency of the fuel delivery tube. The velocity fluctuations in the flow produced by the resonant pulsing of the jet can reach to about 8 times that of the mean flow. The jet characteristics were studied for Reynolds numbers based on mean flow velocity ranging between 800 and 2400. The PIV shows that with strong pulsations the jet exhibits significant reverse flow into the fuel delivery tube and an increase in turbulence in the near-field region. The acetone PLIF imaging was performed inside and outside the fuel tube in order to study the effects of pulsations on the mixing. These measurements showed significant in-tube partial premixing due to the reverse flow near the nozzle exit as well as enhanced mixing due to coherent vortical structures and increased turbulence.

  12. The development of an experimental facility and investigation of rapidly maneuvering Micro-Air-Vehicle wings

    NASA Astrophysics Data System (ADS)

    Wilson, Lee Alexander

    Vertical Takeoff-and-Landing (VTOL) Micro Air Vehicles (MAVs) provide a versatile operational platform which combines the capabilities of fixed wing and rotary wing MAVs. In order to improve performance of these vehicles, a better understanding of the rapid transition between horizontal and vertical flight is required. This study examines the flow structures around the Mini-Vertigo VTOL MAV using flow visualization techniques. This will gives an understanding of the flow structures which dominate the flight dynamics of rapid pitching maneuvers. This study consists of three objectives: develop an experimental facility, use flow visualization to investigate the flow around the experimental subject during pitching, and analyze the results. The flow around the Mini-Vertigo VTOL MAV is dominated by the slipstream from its propellers. The slipstream delays LE separation and causes drastic deflection in the flow. While the frequency of the vortices shed from the LE and TE varies with flow speed, the non-dimensional frequency does not. It does, however, vary slightly with the pitching rate. These results are applicable across a wide range of flight conditions. The results correlate to previous research done to examine the aerodynamic forces on the MAV.

  13. USM3D Predictions of Supersonic Nozzle Flow

    NASA Technical Reports Server (NTRS)

    Carter, Melissa B.; Elmiligui, Alaa A.; Campbell, Richard L.; Nayani, Sudheer N.

    2014-01-01

    This study focused on the NASA Tetrahedral Unstructured Software System CFD code (USM3D) capability to predict supersonic plume flow. Previous studies, published in 2004 and 2009, investigated USM3D's results versus historical experimental data. This current study continued that comparison however focusing on the use of the volume souring to capture the shear layers and internal shock structure of the plume. This study was conducted using two benchmark axisymmetric supersonic jet experimental data sets. The study showed that with the use of volume sourcing, USM3D was able to capture and model a jet plume's shear layer and internal shock structure.

  14. Estimates of tracer-based piston-flow ages of groundwater from selected sites-National Water-Quality Assessment Program, 1992-2005

    USGS Publications Warehouse

    Hinkle, Stephen R.; Shapiro, Stephanie D.; Plummer, Niel; Busenberg, Eurybiades; Widman, Peggy K.; Casile, Gerolamo C.; Wayland, Julian E.

    2011-01-01

    This report documents selected age data interpreted from measured concentrations of environmental tracers in groundwater from 1,399 National Water-Quality Assessment (NAWQA) Program groundwater sites across the United States. The tracers of interest were chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), and tritium/helium-3 (3H/3He). Tracer data compiled for this analysis primarily were from wells representing two types of NAWQA groundwater studies - Land-Use Studies (shallow wells, usually monitoring wells, in recharge areas under dominant land-use settings) and Major-Aquifer Studies (wells, usually domestic supply wells, in principal aquifers and representing the shallow, used resource). Reference wells (wells representing groundwater minimally impacted by anthropogenic activities) associated with Land-Use Studies also were included. Tracer samples were collected between 1992 and 2005, although two networks sampled from 2006 to 2007 were included because of network-specific needs. Tracer data from other NAWQA Program components (Flow System Studies, which are assessments of processes and trends along groundwater flow paths, and various topical studies) were not compiled herein. Tracer data from NAWQA Land-Use Studies and Major-Aquifer Studies that previously had been interpreted and published are compiled herein (as piston-flow ages), but have not been reinterpreted. Tracer data that previously had not been interpreted and published are evaluated using documented methods and compiled with aqueous concentrations, equivalent atmospheric concentrations (for CFCs and SF6), estimates of tracer-based piston-flow ages, and selected ancillary data, such as redox indicators, well construction, and major dissolved gases (N2, O2, Ar, CH4, and CO2). Tracer-based piston-flow ages documented in this report are simplistic representations of the tracer data. Tracer-based piston-flow ages are a convenient means of conceptualizing groundwater age. However, the piston-flow model is based on the potentially limiting assumptions that tracer transport is advective and that no mixing occurs. Additional uncertainties can arise from tracer degradation, sorption, contamination, or fractionation; terrigenic (natural) sources of tracers; spatially variable atmospheric tracer concentrations; and incomplete understanding of mechanisms of recharge or of the conditions under which atmospheric tracers were partitioned to recharge. The effects of some of these uncertainties are considered herein. For example, degradation, contamination, or fractionation often can be identified or inferred. However, detailed analysis of the effects of such uncertainties on the tracer-based piston-flow ages is constrained by sparse data and an absence of complementary lines of evidence, such as detailed solute transport simulations. Thus, the tracer-based piston-flow ages compiled in this report represent only an initial interpretation of the tracer data.

  15. An Experimental Study of Vortex Flow Formation and Dynamics in Confined Microcavities

    NASA Astrophysics Data System (ADS)

    Khojah, Reem; di Carlo, Dino

    2017-11-01

    New engineering solutions for bioparticle separation invites revisiting classic fluid dynamics problems. Previous studies investigated cavity vortical flow that occurs in 2D with the formation of a material flux boundary or separatrix between the main flow and cavity flow. We demonstrate the concept of separatrix breakdown, in which the cavity flow becomes connected to the main flow, occurs as the cavity is confined in 3D, and is implicated in particle capture and rapid mass exchange in cavities. Understanding the convective flux between the channel and a side cavity provides insight into size-dependent particle capture and release from the cavity flow. The process of vortex formation and separatrix breakdown between the main channel to the side cavity is Reynolds number dependent and can be described by dissecting the flow streamlines from the main channel that enter and spiral out of the cavity. Laminar streamlines from incremented initial locations in the main flow are observed inside the cavity under different flow conditions. Experimentally, we provide the Reynolds number threshold to generate certain flow geometry. We found the optimal flow conditions that enable rapid convective transfer through the cavity flow and exposure and interaction between soluble factors with captured cells. By tuning which fraction of the main flow has solute, we can create a dynamic gate between the cavity and channel flow that potentially serves as a time-dependent fluid exchange approach for objects within the cavity.

  16. Color and Morphology of Lava Flows on Io

    NASA Astrophysics Data System (ADS)

    Piatek, Jennifer L.; McElfresh, Sarah B. Z.; Byrnes, Jeffrey M.; Hale, Amy Snyder; Crown, David A.

    2000-12-01

    Analyses of color and morphologic changes in Voyager images of lava flows on Io were conducted to extend previous flow studies to additional volcanoes in preparation for comparison to Galileo data. Blue and orange filter images of Atar, Daedalus, and Ra Paterae were examined to identify systematic downflow decreases in blue/orange reflectivity suggested in earlier studies as diagnostic of color changes in cooled sulfur flows. Analyses of the color and morphology of 21 lava flows were conducted at these volcanoes, with additional morphologic analysis of lava flows at Agni, Masaaw, Mbali, Shoshu, and Talos Paterae. A total of 66 lava flows of up to 245 km in length were mapped to identify morphologic changes consistent with the rheologic changes expected to occur in sulfur flows. Although downflow color changes are observed, the trends are not consistent, even at the same edifice. Individual flows exhibit a statistically significant increase in blue/orange ratio, decrease in blue/orange ratio, or a lack of progressive downflow color variation. Color changes have similar magnitudes downflow and across flow, and the color ranges observed are similar from volcano to volcano, suggesting that similar processes are controlling color ratios at these edifices. In addition, using flow widening and branching as an indicator of the low viscosity exhibited by sulfur cooling from high temperatures, these flows do not exhibit morphologic changes consistent with the systematic behavior expected from the simple progressive cooling of sulfur.

  17. Distributed and Centralized Conflict Management Under Traffic Flow Management Constraints

    NASA Technical Reports Server (NTRS)

    Feron, Eric; Bilimoria, Karl (Technical Monitor)

    2001-01-01

    The past year's activity has concentrated on the following two activities: (1) Refining and completing our study on the stability of interacting flows of aircraft when they have to resolve conflicts in a decentralized and sequential manner. More specifically, it was felt that some of the modeling assumptions made during previous research (such offset maneuvering models) could be improved to include more realistic models such as heading changes when analyzing interacting flow stability problems. We extended our analysis to achieve this goal. The results of this study have been submitted for presentation at the 2002 American Control Conference; (2) Examining the issues associated with delay propagation across multiple enroute sectors. This study was initiated at NASA in cooperation with Dr. Karl Bilimoria. Considering a set of adjacent sectors, this ongoing study concentrates on the effect of various traffic flow management strategies on the propagation of delays and congestion across sectors. The problem description and findings so far are reported in the attached working paper "Enroute sector buffering capacity."

  18. Large Eddy Simulations of Electromagnetic Braking Effects on Argon Bubble Transport and Capture in a Steel Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Jin, Kai; Vanka, Surya P.; Thomas, Brian G.

    2018-02-01

    In continuous casting of steel, argon gas is often injected to prevent clogging of the nozzle, but the bubbles affect the flow pattern, and may become entrapped to form defects in the final product. Further, an electromagnetic field is frequently applied to induce a braking effect on the flow field and modify the inclusion transport. In this study, a previously validated GPU-based in-house code CUFLOW is used to investigate the effect of electromagnetic braking on turbulent flow, bubble transport, and capture. Well-resolved large eddy simulations are combined with two-way coupled Lagrangian computations of the bubbles. The drag coefficient on the bubbles is modified to account for the effects of the magnetic field. The distribution of the argon bubbles, capture, and escape rates, are presented and compared with and without the magnetic field. The bubble capture patterns are also compared with results of a previous RANS model as well as with plant measurements.

  19. Large Eddy Simulations of Electromagnetic Braking Effects on Argon Bubble Transport and Capture in a Steel Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Jin, Kai; Vanka, Surya P.; Thomas, Brian G.

    2018-06-01

    In continuous casting of steel, argon gas is often injected to prevent clogging of the nozzle, but the bubbles affect the flow pattern, and may become entrapped to form defects in the final product. Further, an electromagnetic field is frequently applied to induce a braking effect on the flow field and modify the inclusion transport. In this study, a previously validated GPU-based in-house code CUFLOW is used to investigate the effect of electromagnetic braking on turbulent flow, bubble transport, and capture. Well-resolved large eddy simulations are combined with two-way coupled Lagrangian computations of the bubbles. The drag coefficient on the bubbles is modified to account for the effects of the magnetic field. The distribution of the argon bubbles, capture, and escape rates, are presented and compared with and without the magnetic field. The bubble capture patterns are also compared with results of a previous RANS model as well as with plant measurements.

  20. Hospital level analysis to improve patient flow.

    PubMed

    Khanna, Sankalp; Boyle, Justin; Good, Norm; Bugden, Simon; Scott, Mark

    2013-01-01

    The complexity of hospital operations ensures that one-size-fits-all solutions seldom work. As hospitals turn to evidence based strategies to redesign flow, it is critical that they tailor the strategies to suit their individual service. This paper analyses the effect of hospital occupancy on inpatient and emergency department patient flow parameters at the Caboolture hospital in Queensland, Australia, and identifies critical levels, or choke points, that result in performance decline. The effect of weekdays and weekends on patient flow is also investigated. We compare these findings to a previous study that has analysed patient flow across Queensland hospitals grouped by size, and discover several differences in the interaction between rising occupancy and patient flow parameters including rates of patient flow, length of stay, and access block. We also identify significantly higher choke points for Caboolture hospital as compared to other similarly sized Queensland hospitals, which suggest that patient flow here can be redesigned to operate at higher levels of occupancy without degrading flow performance. The findings support arguments for hospitals to analyse patient flow at a service level to deliver optimum service improvement.

  1. Toward an optimal design principle in symmetric and asymmetric tree flow networks.

    PubMed

    Miguel, Antonio F

    2016-01-21

    Fluid flow in tree-shaped networks plays an important role in both natural and engineered systems. This paper focuses on laminar flows of Newtonian and non-Newtonian power law fluids in symmetric and asymmetric bifurcating trees. Based on the constructal law, we predict the tree-shaped architecture that provides greater access to the flow subjected to the total network volume constraint. The relationships between the sizes of parent and daughter tubes are presented both for symmetric and asymmetric branching tubes. We also approach the wall-shear stresses and the flow resistance in terms of first tube size, degree of asymmetry between daughter branches, and rheological behavior of the fluid. The influence of tubes obstructing the fluid flow is also accounted for. The predictions obtained by our theory-driven approach find clear support in the findings of previous experimental studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Computational fluid mechanics

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.

    1993-01-01

    Two papers are included in this progress report. In the first, the compressible Navier-Stokes equations have been used to compute leading edge receptivity of boundary layers over parabolic cylinders. Natural receptivity at the leading edge was simulated and Tollmien-Schlichting waves were observed to develop in response to an acoustic disturbance, applied through the farfield boundary conditions. To facilitate comparison with previous work, all computations were carried out at a free stream Mach number of 0.3. The spatial and temporal behavior of the flowfields are calculated through the use of finite volume algorithms and Runge-Kutta integration. The results are dominated by strong decay of the Tollmien-Schlichting wave due to the presence of the mean flow favorable pressure gradient. The effects of numerical dissipation, forcing frequency, and nose radius are studied. The Strouhal number is shown to have the greatest effect on the unsteady results. In the second paper, a transition model for low-speed flows, previously developed by Young et al., which incorporates first-mode (Tollmien-Schlichting) disturbance information from linear stability theory has been extended to high-speed flow by incorporating the effects of second mode disturbances. The transition model is incorporated into a Reynolds-averaged Navier-Stokes solver with a one-equation turbulence model. Results using a variable turbulent Prandtl number approach demonstrate that the current model accurately reproduces available experimental data for first and second-mode dominated transitional flows. The performance of the present model shows significant improvement over previous transition modeling attempts.

  3. The effects of autonomy-supportive and controlling teaching behaviour in biology lessons with primary and secondary experiences on students' intrinsic motivation and flow-experience

    NASA Astrophysics Data System (ADS)

    Hofferber, Natalia; Basten, Melanie; Großmann, Nadine; Wilde, Matthias

    2016-09-01

    Self-Determination Theory and Flow Theory propose that perceived autonomy fosters the positive qualities of motivation and flow-experience. Autonomy-support can help to maintain students' motivation in very interesting learning activities and may lead to an increase in the positive qualities of motivation in less interesting learning activities. This paper investigates whether autonomy-supportive or controlling teaching behaviour influence students' motivation and flow-experience in biology class. In study 1, 158 students of grade six worked on the adaptations of Harvest Mice (Micromys minutus) with living animals. The 153 sixth graders of study 2 dealt with the same content but instead worked with short films on laptops. Previous studies have shown that students perceive film sequences as less interesting than working with living animals. Students' intrinsic motivation and flow-experience were measured at the end of the first and the third lesson. In study 1, autonomy-supportive teaching behaviour led to significant differences in students' intrinsic motivation and flow-experience when compared to controlling teaching behaviour. In study 2, motivation and flow-experience were not always in line with theory. The positive effects of autonomy-supportive and the non-beneficial effects of the controlling teaching behaviour seem to be dependent on the interestingness of the teaching material.

  4. A numerical approach for assessing effects of shear on equivalent permeability and nonlinear flow characteristics of 2-D fracture networks

    NASA Astrophysics Data System (ADS)

    Liu, Richeng; Li, Bo; Jiang, Yujing; Yu, Liyuan

    2018-01-01

    Hydro-mechanical properties of rock fractures are core issues for many geoscience and geo-engineering practices. Previous experimental and numerical studies have revealed that shear processes could greatly enhance the permeability of single rock fractures, yet the shear effects on hydraulic properties of fractured rock masses have received little attention. In most previous fracture network models, single fractures are typically presumed to be formed by parallel plates and flow is presumed to obey the cubic law. However, related studies have suggested that the parallel plate model cannot realistically represent the surface characters of natural rock fractures, and the relationship between flow rate and pressure drop will no longer be linear at sufficiently large Reynolds numbers. In the present study, a numerical approach was established to assess the effects of shear on the hydraulic properties of 2-D discrete fracture networks (DFNs) in both linear and nonlinear regimes. DFNs considering fracture surface roughness and variation of aperture in space were generated using an originally developed code DFNGEN. Numerical simulations by solving Navier-Stokes equations were performed to simulate the fluid flow through these DFNs. A fracture that cuts through each model was sheared and by varying the shear and normal displacements, effects of shear on equivalent permeability and nonlinear flow characteristics of DFNs were estimated. The results show that the critical condition of quantifying the transition from a linear flow regime to a nonlinear flow regime is: 10-4 〈 J < 10-3, where J is the hydraulic gradient. When the fluid flow is in a linear regime (i.e., J < 10-4), the relative deviation of equivalent permeability induced by shear, δ2, is linearly correlated with J with small variations, while for fluid flow in the nonlinear regime (J 〉 10-3), δ2 is nonlinearly correlated with J. A shear process would reduce the equivalent permeability significantly in the orientation perpendicular to the sheared fracture as much as 53.86% when J = 1, shear displacement Ds = 7 mm, and normal displacement Dn = 1 mm. By fitting the calculated results, the mathematical expression for δ2 is established to help choose proper governing equations when solving fluid flow problems in fracture networks.

  5. Accurate and efficient calculation of response times for groundwater flow

    NASA Astrophysics Data System (ADS)

    Carr, Elliot J.; Simpson, Matthew J.

    2018-03-01

    We study measures of the amount of time required for transient flow in heterogeneous porous media to effectively reach steady state, also known as the response time. Here, we develop a new approach that extends the concept of mean action time. Previous applications of the theory of mean action time to estimate the response time use the first two central moments of the probability density function associated with the transition from the initial condition, at t = 0, to the steady state condition that arises in the long time limit, as t → ∞ . This previous approach leads to a computationally convenient estimation of the response time, but the accuracy can be poor. Here, we outline a powerful extension using the first k raw moments, showing how to produce an extremely accurate estimate by making use of asymptotic properties of the cumulative distribution function. Results are validated using an existing laboratory-scale data set describing flow in a homogeneous porous medium. In addition, we demonstrate how the results also apply to flow in heterogeneous porous media. Overall, the new method is: (i) extremely accurate; and (ii) computationally inexpensive. In fact, the computational cost of the new method is orders of magnitude less than the computational effort required to study the response time by solving the transient flow equation. Furthermore, the approach provides a rigorous mathematical connection with the heuristic argument that the response time for flow in a homogeneous porous medium is proportional to L2 / D , where L is a relevant length scale, and D is the aquifer diffusivity. Here, we extend such heuristic arguments by providing a clear mathematical definition of the proportionality constant.

  6. Identification of Location Specific Feature Points in a Cardiac Cycle Using a Novel Seismocardiogram Spectrum System.

    PubMed

    Lin, Wen-Yen; Chou, Wen-Cheng; Chang, Po-Cheng; Chou, Chung-Chuan; Wen, Ming-Shien; Ho, Ming-Yun; Lee, Wen-Chen; Hsieh, Ming-Jer; Lin, Chung-Chih; Tsai, Tsai-Hsuan; Lee, Ming-Yih

    2018-03-01

    Seismocardiogram (SCG) or mechanocardiography is a noninvasive cardiac diagnostic method; however, previous studies used only a single sensor to detect cardiac mechanical activities that will not be able to identify location-specific feature points in a cardiac cycle corresponding to the four valvular auscultation locations. In this study, a multichannel SCG spectrum measurement system was proposed and examined for cardiac activity monitoring to overcome problems like, position dependency, time delay, and signal attenuation, occurring in traditional single-channel SCG systems. ECG and multichannel SCG signals were simultaneously recorded in 25 healthy subjects. Cardiac echocardiography was conducted at the same time. SCG traces were analyzed and compared with echocardiographic images for feature point identification. Fifteen feature points were identified in the corresponding SCG traces. Among them, six feature points, including left ventricular lateral wall contraction peak velocity, septal wall contraction peak velocity, transaortic peak flow, transpulmonary peak flow, transmitral ventricular relaxation flow, and transmitral atrial contraction flow were identified. These new feature points were not observed in previous studies because the single-channel SCG could not detect the location-specific signals from other locations due to time delay and signal attenuation. As the results, the multichannel SCG spectrum measurement system can record the corresponding cardiac mechanical activities with location-specific SCG signals and six new feature points were identified with the system. This new modality may help clinical diagnoses of valvular heart diseases and heart failure in the future.

  7. Suspension concentration distribution in turbulent flows: An analytical study using fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Kundu, Snehasis

    2018-09-01

    In this study vertical distribution of sediment particles in steady uniform turbulent open channel flow over erodible bed is investigated using fractional advection-diffusion equation (fADE). Unlike previous investigations on fADE to investigate the suspension distribution, in this study the modified Atangana-Baleanu-Caputo fractional derivative with a non-singular and non-local kernel is employed. The proposed fADE is solved and an analytical model for finding vertical suspension distribution is obtained. The model is validated against experimental as well as field measurements of Missouri River, Mississippi River and Rio Grande conveyance channel and is compared with the Rouse equation and other fractional model found in literature. A quantitative error analysis shows that the proposed model is able to predict the vertical distribution of particles more appropriately than previous models. The validation results shows that the fractional model can be equally applied to all size of particles with an appropriate choice of the order of the fractional derivative α. It is also found that besides particle diameter, parameter α depends on the mass density of particle and shear velocity of the flow. To predict this parameter, a multivariate regression is carried out and a relation is proposed for easy application of the model. From the results for sand and plastic particles, it is found that the parameter α is more sensitive to mass density than the particle diameter. The rationality of the dependence of α on particle and flow characteristics has been justified physically.

  8. Blood flow characteristics in a terminal basilar tip aneurysm prior to its fatal rupture

    PubMed Central

    Sforza, D.M.; Putman, C.M.; Scrivano, E.; Lylyk, P.; Cebral, J.R.

    2010-01-01

    Background and Purpose The development and validation of methods to stratify the risk of rupture of cerebral aneurysms is highly desired since current treatment risks can exceed the natural risk of rupture. Because unruptured aneurysms are typically treated before they rupture, it is very difficult to connect the proposed risk indices to the rupture of an individual aneurysm. The purpose of this case study was to analyze the hemodynamic environment of a saccular aneurysm of the terminal morphology sub-type that was imaged just prior to its rupture and to test whether the hemodynamic characteristics would designate this particular aneurysm as at high risk. Methods A patient-specific computational fluid dynamics model was constructed from 3D rotational angiography images acquired just hours before the aneurysm ruptured. A pulsatile flow calculation was performed and hemodynamic characteristics previously connected to rupture were analyzed. Results It was found that the aneurysm had a concentrated inflow stream, small impingement region, complex intra-aneurysmal flow structure, asymmetric flow split from the parent vessel to the aneurysm and daughter branches, and high levels of aneurysmal wall shear stress near the impaction zone. Conclusions The hemodynamics characteristics observed in this aneurysm right before its rupture are consistent with previous studies correlating aneurysm rupture and hemodynamic patterns in saccular and terminal aneurysms. This study supports the notion that hemodynamic information may be used to help stratify the rupture risk of cerebral aneurysms. PMID:20150312

  9. Arc Jet Facility Test Condition Predictions Using the ADSI Code

    NASA Technical Reports Server (NTRS)

    Palmer, Grant; Prabhu, Dinesh; Terrazas-Salinas, Imelda

    2015-01-01

    The Aerothermal Design Space Interpolation (ADSI) tool is used to interpolate databases of previously computed computational fluid dynamic solutions for test articles in a NASA Ames arc jet facility. The arc jet databases are generated using an Navier-Stokes flow solver using previously determined best practices. The arc jet mass flow rates and arc currents used to discretize the database are chosen to span the operating conditions possible in the arc jet, and are based on previous arc jet experimental conditions where possible. The ADSI code is a database interpolation, manipulation, and examination tool that can be used to estimate the stagnation point pressure and heating rate for user-specified values of arc jet mass flow rate and arc current. The interpolation is performed in the other direction (predicting mass flow and current to achieve a desired stagnation point pressure and heating rate). ADSI is also used to generate 2-D response surfaces of stagnation point pressure and heating rate as a function of mass flow rate and arc current (or vice versa). Arc jet test data is used to assess the predictive capability of the ADSI code.

  10. Analytical solutions for solute transport in groundwater and riverine flow using Green's Function Method and pertinent coordinate transformation method

    NASA Astrophysics Data System (ADS)

    Sanskrityayn, Abhishek; Suk, Heejun; Kumar, Naveen

    2017-04-01

    In this study, analytical solutions of one-dimensional pollutant transport originating from instantaneous and continuous point sources were developed in groundwater and riverine flow using both Green's Function Method (GFM) and pertinent coordinate transformation method. Dispersion coefficient and flow velocity are considered spatially and temporally dependent. The spatial dependence of the velocity is linear, non-homogeneous and that of dispersion coefficient is square of that of velocity, while the temporal dependence is considered linear, exponentially and asymptotically decelerating and accelerating. Our proposed analytical solutions are derived for three different situations depending on variations of dispersion coefficient and velocity, respectively which can represent real physical processes occurring in groundwater and riverine systems. First case refers to steady solute transport situation in steady flow in which dispersion coefficient and velocity are only spatially dependent. The second case represents transient solute transport in steady flow in which dispersion coefficient is spatially and temporally dependent while the velocity is spatially dependent. Finally, the third case indicates transient solute transport in unsteady flow in which both dispersion coefficient and velocity are spatially and temporally dependent. The present paper demonstrates the concentration distribution behavior from a point source in realistically occurring flow domains of hydrological systems including groundwater and riverine water in which the dispersivity of pollutant's mass is affected by heterogeneity of the medium as well as by other factors like velocity fluctuations, while velocity is influenced by water table slope and recharge rate. Such capabilities give the proposed method's superiority about application of various hydrological problems to be solved over other previously existing analytical solutions. Especially, to author's knowledge, any other solution doesn't exist for both spatially and temporally variations of dispersion coefficient and velocity. In this study, the existing analytical solutions from previous widely known studies are used for comparison as validation tools to verify the proposed analytical solution as well as the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) code and the developed 1D finite difference code (FDM). All such solutions show perfect match with the respective proposed solutions.

  11. Numerical studies of singularity formation at free surfaces and fluid interfaces in two-dimensional Stokes flow

    NASA Astrophysics Data System (ADS)

    Pozrikidis, C.

    1997-01-01

    We consider the analytic structure of interfaces in several families of steady and unsteady two-dimensional Stokes flows, focusing on the formation of corners and cusps. Previous experimental and theoretical studies have suggested that, without surface tension, the interfaces spontaneously develop such singular points. We investigate whether and how corners and cusps actually develop in a time-dependent flow, and assess the stability of stationary cusped shapes predicted by previous authors. The motion of the interfaces is computed with high resolution using a boundary integral method for three families of flows. In the case of a bubble that is subjected to the family of straining flows devised by Antanovskii, we find that a stationary cusped shape is not likely to occur as the asymptotic limit of a transient deformation. Instead, the pointed ends of the bubble disintegrate in a process that is reminiscent of tip streaming. In the case of the flow due to an array of point-source dipoles immersed beneath a free surface, which is the periodic version of a flow proposed by Jeong & Moffatt, we find evidence that a cusped shape indeed arises as the result of a transient deformation. In the third part of the numerical study, we show that, under certain conditions, the free surface of a liquid film that is levelling under the action of gravity on a horizontal or slightly inclined surface develops an evolving corner or cusp. In certain cases, the film engulfs a small air bubble of ambient fluid to obtain a composite shape. The structure of a corner or a cusp in an unsteady flow does not have a unique shape, as it does at steady state. In all cases, a small amount of surface tension is able to prevent the formation of a singularity, but replacing the inviscid gas with a viscous liquid does not have a smoothing effect. The ability of the thin-film lubrication equation to produce mathematical singularities at the free surface of a levelling film is also discussed.

  12. Nuclear magnetic resonance characterization of the stationary dynamics of partially saturated media during steady-state infiltration flow

    NASA Astrophysics Data System (ADS)

    Rassi, Erik M.; Codd, Sarah L.; Seymour, Joseph D.

    2011-01-01

    Flow in porous media and the resultant hydrodynamics are important in fields including but not limited to the hydrology, chemical, medical and petroleum industries. The observation and understanding of the hydrodynamics in porous media are critical to the design and optimal utilization of porous media, such as those seen in trickle-bed reactors, medical filters, subsurface flows and carbon sequestration. Magnetic resonance (MR) provides for a non-invasive technique that can probe the hydrodynamics on pore and bulk scale lengths; many previous works have characterized fully saturated porous media, while rapid MR imaging (MRI) methods in particular have previously been applied to partially saturated flows. We present time- and ensemble-averaged MR measurements to observe the effects on a bead pack partially saturated with air under flowing water conditions. The 10 mm internal diameter bead pack was filled with 100 μm borosilicate glass beads. Air was injected into the bead pack as water flowed simultaneously through the sample at 25 ml h-1. The initial partially saturated state was characterized with MRI density maps, free induction decay (FID) experiments, propagators and velocity maps before the water flow rate was increased incrementally from 25 to 500 ml h-1. After the maximum flow rate of 500 ml h-1, the MRI density maps, FID experiments, propagators and velocity maps were repeated and compared to the data taken before the maximum flow rate. This work shows that a partially saturated single-phase flow has global flow dynamics that return to characteristic flow statistics once a steady-state high flow rate has been reached. This high flow rate pushed out a significant amount of the air in the bead pack and caused the return of a preferential flow pattern. Velocity maps indicated that local flow statistics were not the same for the before and after blow out conditions. It has been suggested and shown previously that a flow pattern can return to similar statistics if the preceding flow history is similar.

  13. Thermal diffusion effect on MHD mixed convective flow along a vertically inclined plate: A casson fluid flow

    NASA Astrophysics Data System (ADS)

    Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa

    2018-05-01

    The nature of Casson fluid on MHD free convective flow of over an impulsively started infinite vertically inclined plate in presence of thermal diffusion (Soret), thermal radiation, heat and mass transfer effects is studied. The basic governing nonlinear coupled partial differential equations are solved numerically using finite element method. The relevant physical parameters appearing in velocity, temperature and concentration profiles are analyzed and discussed through graphs. Finally, the results for velocity profiles and the reduced Nusselt and Sherwood numbers are obtained and compared with previous results in the literature and are found to be in excellent agreement. Applications of the present study would be useful in magnetic material processing and chemical engineering systems.

  14. Design of combination biofilter and subsurface constructed wetland-multilayer filtration with vertical flow type using Vetiveria zizanioides (akar wangi)

    NASA Astrophysics Data System (ADS)

    Astuti, A. D.; Lindu, M.; Yanidar, R.; Faruq, M.

    2018-01-01

    As environmental regulation has become stricter in recent years, there is an increasing concern about the issue of wastewater treatment in urban areas. Senior High School as center of student activity has a potential source to generated domestic wastewater from toilet, bathroom and canteen. Canteen wastewater contains high-organic content that to be treated before discharged. Based on previous research the subsurface constructed wetland-multilayer filtration with vertical flow is an attractive alternative to provide efficient treatment of canteen wastewater. The effluent concentration complied with regulation according to [9]. Due to limited land, addition of preliminary treatment such as the presence of biofilter was found to improve the performance. The aim of this study was to design combination biofilter and subsurface constructed wetland-multilayer filtration with vertical flow type using vetiveria zizanioides (akar wangi) treating canteen wastewater. Vetiveria zizanioides (akar wangi) is used because from previous research, subsurface constructed wetland-multilayer filtration (SCW-MLF) with vertical flow type using vetiveria zizanioides (akar wangi) can be an alternative canteen wastewater treatment that is uncomplicated in technology, low cost in operational and have a beautiful landscape view, besides no odors or insects were presented during the operation.

  15. Periodic flow hydrodynamic resistance parameters for woven screen matrices at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Perrella, M. D.; Ghiaasiaan, S. M.

    2017-12-01

    The regenerator is a critical component in all Stirling and Pulse Tube cryocoolers. It generally consists of a microporous metallic or rare-earth filler material contained within a cylindrical shell. Accurate modelling of the hydrodynamic and thermal behaviour of different regenerator materials is crucial to the successful design of cryogenic systems. Previous investigations have used experimental measurements at steady and periodic flow conditions in conjunction with pore-level CFD analysis to determine the pertinent hydrodynamic parameters, namely the Darcy permeability and Forchheimer coefficients. Due to the difficulty associated with experimental measurement at cryogenic temperatures, past investigations were mostly performed at ambient conditions and their results are assumed to be appropriate for cryogenic temperatures. In this study, a regenerator filled with woven screen matrices such as 400 mesh T316 stainless steel were assembled and experimentally tested under periodic helium flow at cryogenic temperatures. The mass flow and pressure drop data were analysed using CFD to determine the dimensionless friction factor, Darcy Permeability and Forchheimer coefficients. These results are compared to previous investigations at ambient temperature conditions, and the relevance of room-temperature models and correlations to cryogenic temperatures is critically assessed.

  16. Study of flow over object problems by a nodal discontinuous Galerkin-lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Shen, Meng; Liu, Chen

    2018-04-01

    The flow over object problems are studied by a nodal discontinuous Galerkin-lattice Boltzmann method (NDG-LBM) in this work. Different from the standard lattice Boltzmann method, the current method applies the nodal discontinuous Galerkin method into the streaming process in LBM to solve the resultant pure convection equation, in which the spatial discretization is completed on unstructured grids and the low-storage explicit Runge-Kutta scheme is used for time marching. The present method then overcomes the disadvantage of standard LBM for depending on the uniform meshes. Moreover, the collision process in the LBM is completed by using the multiple-relaxation-time scheme. After the validation of the NDG-LBM by simulating the lid-driven cavity flow, the simulations of flows over a fixed circular cylinder, a stationary airfoil and rotating-stationary cylinders are performed. Good agreement of present results with previous results is achieved, which indicates that the current NDG-LBM is accurate and effective for flow over object problems.

  17. Effects of hyper +Gz acceleration on cardiovascular function, visual evoked potentials and cerebral blood flow in anesthetized rats.

    PubMed

    Matsunami, K; Satake, H; Konishi, T

    1998-07-01

    Sustained hyper-gravity acceleration, particularly along the long axis of the body of animals or man (Gz), produces significant mal-effects on subjects, and hence it has been well studied, The most common syndromes of Gz application were cardio-vascular de-conditioning, and black-out, red-out, and loss of consciousness, which finally lead subjects into death. However, in most previous studies, the duration of applied Gz was rather short. In the present experiments, we can use longer duration of 1000 seconds. In addition, recent technological innovation make it possible to record directly local cerebral blood flow at a target cortical area with a Laser Doppler flow meter. We used this innovated method to measure local cerebral blood flow of rats in relation to visual evoked potentials (VEPs) under hyper-Gz acceleration. Also we recorded cardio-vascular parameters like heart rate from ECG, systolic and diastolic blood pressure and correlated them with cerebral blood flow and VEPs.

  18. A regional test of global models for flow, rheology, and seismic anisotropy at the base of the mantle

    NASA Astrophysics Data System (ADS)

    Ford, Heather A.; Long, Maureen D.

    2015-08-01

    The study of flow patterns and seismic anisotropy in the lowermost mantle is fraught with uncertainties, given the limitations in our understanding of the physical properties of the lowermost mantle and the relationships between deformation and anisotropy. Here we use a set of SKS, SKKS, and ScS splitting measurements that sample the eastern edge of the African Large Low Shear Velocity Province to test predictions of seismic anisotropy derived from previously published 3D global mantle flow models and anisotropy modeling (Walker et al., 2011). The observations can be fit by a model that invokes flow directed to the southwest with a component of downwelling in our study region, and slip that occurs along the (0 1 0) plane of post-perovskite. Most importantly, we demonstrate the ability of a regional shear wave splitting data set to test the robustness of models for flow and deformation in the lowermost mantle.

  19. Wettability and Flow Rate Impacts on Immiscible Displacement: A Theoretical Model

    NASA Astrophysics Data System (ADS)

    Hu, Ran; Wan, Jiamin; Yang, Zhibing; Chen, Yi-Feng; Tokunaga, Tetsu

    2018-04-01

    When a more viscous fluid displaces a less viscous one in porous media, viscous pressure drop stabilizes the displacement front against capillary pressure fluctuation. For this favorable viscous ratio conditions, previous studies focused on the front instability under slow flow conditions but did not address competing effects of wettability and flow rate. Here we study how this competition controls displacement patterns. We propose a theoretical model that describes the crossover from fingering to stable flow as a function of invading fluid contact angle θ and capillary number Ca. The phase diagram predicted by the model shows that decreasing θ stabilizes the displacement for θ≥45° and the critical contact angle θc increases with Ca. The boundary between corner flow and cooperative filling for θ < 45° is also described. This work extends the classic phase diagram and has potential applications in predicting CO2 capillary trapping and manipulating wettability to enhance gas/oil displacement efficiency.

  20. Outer region scaling using the freestream velocity for nonuniform open channel flow over gravel

    NASA Astrophysics Data System (ADS)

    Stewart, Robert L.; Fox, James F.

    2017-06-01

    The theoretical basis for outer region scaling using the freestream velocity for nonuniform open channel flows over gravel is derived and tested for the first time. Owing to the gradual expansion of the flow within the nonuniform case presented, it is hypothesized that the flow can be defined as an equilibrium turbulent boundary layer using the asymptotic invariance principle. The hypothesis is supported using similarity analysis to derive a solution, followed by further testing with experimental datasets. For the latter, 38 newly collected experimental velocity profiles across three nonuniform flows over gravel in a hydraulic flume are tested as are 43 velocity profiles previously published in seven peer-reviewed journal papers that focused on fluid mechanics of nonuniform open channel over gravel. The findings support the nonuniform flows as equilibrium defined by the asymptotic invariance principle, which is reflective of the consistency of the turbulent structure's form and function within the expanding flow. However, roughness impacts the flow structure when comparing across the published experimental datasets. As a secondary objective, we show how previously published mixed scales can be used to assist with freestream velocity scaling of the velocity deficit and thus empirically account for the roughness effects that extend into the outer region of the flow. One broader finding of this study is providing the theoretical context to relax the use of the elusive friction velocity when scaling nonuniform flows in gravel bed rivers; and instead to apply the freestream velocity. A second broader finding highlighted by our results is that scaling of nonuniform flow in gravel bed rivers is still not fully resolved theoretically since mixed scaling relies to some degree on empiricism. As researchers resolve the form and function of macroturbulence in the outer region, we hope to see the closing of this research gap.

  1. New techniques for positron emission tomography in the study of human neurological disorders: Progress report, 15 June 1992--31 October 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    During the past six months, we have continued work on the fronts of kinetic modeling of radioligands for studying neurotransmitter/receptor systems, iterative reconstruction techniques, and methodology for PET cerebral blood flow activation studies. Initial human PET studies have been performed and analyzed with many different kinetic model formulations to determine the quantitative potential of the neuronwsmitter/receptor ligand, ({sup 11}C)N-methyl piperidyl benzilate (NMPB), a muscarinic cholinergic antagonist. In addition, initial human studies using ({sup 11}C)tetrabenazine (TBZ), a marker for monoantine nerve terminal density. Results of the NWB studies have indicated that this new agent yields better estimates of receptor density thanmore » previous muscarinic ligands developed at our facility, ({sup 11}C)-TRB and ({sup 11}C)scopolamine. TRB and scopolamine have previously been shown to be only partially successful ligands due to sub-optimal values of the individual rate constants, causing varying degrees of flow limitation. This is found to be much less of a problem for NMPB due to the 2.0--2.5 fold increase in ligand transport observed in the human studies ({approximately}60% first pass extraction). A 2-parameter 2-compartment simplification had previously been implemented for the benzodiazepine ligand, (C-11)FMZ, and a similar model appears to be suitable for TBZ based on the preliminary human data.« less

  2. New techniques for positron emission tomography in the study of human neurological disorders: Progress report, 15 June 1992--31 October 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-10-01

    During the past six months, we have continued work on the fronts of kinetic modeling of radioligands for studying neurotransmitter/receptor systems, iterative reconstruction techniques, and methodology for PET cerebral blood flow activation studies. Initial human PET studies have been performed and analyzed with many different kinetic model formulations to determine the quantitative potential of the neuronwsmitter/receptor ligand, [{sup 11}C]N-methyl piperidyl benzilate (NMPB), a muscarinic cholinergic antagonist. In addition, initial human studies using [{sup 11}C]tetrabenazine (TBZ), a marker for monoantine nerve terminal density. Results of the NWB studies have indicated that this new agent yields better estimates of receptor density thanmore » previous muscarinic ligands developed at our facility, [{sup 11}C]-TRB and [{sup 11}C]scopolamine. TRB and scopolamine have previously been shown to be only partially successful ligands due to sub-optimal values of the individual rate constants, causing varying degrees of flow limitation. This is found to be much less of a problem for NMPB due to the 2.0--2.5 fold increase in ligand transport observed in the human studies ({approximately}60% first pass extraction). A 2-parameter 2-compartment simplification had previously been implemented for the benzodiazepine ligand, [C-11]FMZ, and a similar model appears to be suitable for TBZ based on the preliminary human data.« less

  3. Three-dimensional high-definition flow in the diagnosis of placental lakes.

    PubMed

    Inubashiri, Eisuke; Deguchi, Keizou; Abe, Kiyotaka; Saitou, Atushi; Watanabe, Yukio; Akutagawa, Noriyuki; Kuroki, Katumaru; Sugawara, Masaki; Maeda, Nobuhiko

    2014-10-01

    Placental lakes are sonolucent areas often found in the normal placenta. Most of them are asymptomatic. They are sometimes related to placenta accreta or intrauterine fetal growth restriction, among other conditions. Although Doppler sonography is useful for evaluating noxious placental lakes, it is not easy to adapt Doppler studies to conventional two-dimensional color Doppler sonography because of the low-velocity blood flow and high vascularity in the placenta. Here, we demonstrate how three-dimensional high-definition imaging of flow provides a novel visual depiction of placental lakes, which helps substantially with the differential diagnosis. As far as we know, there have been no previous reports of observation of placental lakes using three-dimensional high-definition imaging of flow.

  4. SPOT satellite mapping of Ice Stream B

    NASA Technical Reports Server (NTRS)

    Merry, Carolyn J.

    1993-01-01

    Numerous features of glaciological significance appear on two adjoining SPOT High Resolution Visible (HRV) images that cover the onset region of ice stream B. Many small-scale features, such as crevasses and drift plumes, have been previously observed in aerial photography. Subtle features, such as long flow traces that have not been mapped previously, are also clear in the satellite imagery. Newly discovered features include ladder-like runners and rungs within certain shear margins, flow traces that are parallel to ice flow, unusual crevasse patterns, and flow traces originating within shear margins. An objective of our work is to contribute to an understanding of the genesis of the features observed in satellite imagery. The genetic possibilities for flow traces, other lineations, bands of transverse crevasses, shear margins, mottles, and lumps and warps are described.

  5. Solid State Research

    DTIC Science & Technology

    1989-02-15

    decreased growth rate along the flow direction. We have used sus- ceptor rotation to time-average these nonuniform growth rates and have achieved...example, at an H2 flow of 14 slpm the nonuniformity is reduced to < 2 percent across a 4-cm diameter. S.C. Palmateer A. Napoleone S.H. Groves D.L...infrared ( LWIR ) spectral band from 8 to 14 /urn. Previous studies5 have shown that IrSi detectors can have values of A.c exceeding 6 /um

  6. Microgravity

    NASA Image and Video Library

    1997-01-01

    The Forced Flow Flame-Spreading Test was designed to study flame spreading over solid fuels when air is flowing at a low speed in the same direction as the flame spread. Previous research has shown that in low-speed concurrent airflows, some materials are more flammable in microgravity than earth. This image shows a 10-cm flame in microgravity that burns almost entirely blue on both sides of a thin sheet of paper. The glowing thermocouple in the lower half of the flame provides temperature measurements.

  7. A conceptual hydrogeologic model for the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    USGS Publications Warehouse

    Thomas, Jonathan V.; Stanton, Gregory P.; Bumgarner, Johnathan R.; Pearson, Daniel K.; Teeple, Andrew; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn

    2013-01-01

    Several previous studies have been done to compile or collect physical and chemical data, describe the hydrogeologic processes, and develop conceptual and numerical groundwater-flow models of the Edwards-Trinity aquifer in the Trans-Pecos region. Documented methods were used to compile and collect groundwater, surface-water, geochemical, geophysical, and geologic information that subsequently were used to develop this conceptual model.

  8. NMR studies of multiphase flows II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altobelli, S.A.; Caprihan, A.; Fukushima, E.

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  9. Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing.

    PubMed

    Lu, Yuan; Shen, Gong Xin

    2008-04-01

    Following the identification and confirmation of the substructures of the leading-edge vortex (LEV) system on flapping wings, it is apparent that the actual LEV structures could be more complex than had been estimated in previous investigations. In this experimental study, we reveal for the first time the detailed three-dimensional (3-D) flow structures and evolution of the LEVs on a flapping wing in the hovering condition at high Reynolds number (Re=1624). This was accomplished by utilizing an electromechanical model dragonfly wing flapping in a water tank (mid-stroke angle of attack=60 degrees) and applying phase-lock based multi-slice digital stereoscopic particle image velocimetry (DSPIV) to measure the target flow fields at three typical stroke phases: at 0.125 T (T=stroke period), when the wing was accelerating; at 0.25 T, when the wing had maximum speed; and at 0.375 T, when the wing was decelerating. The result shows that the LEV system is a collection of four vortical elements: one primary vortex and three minor vortices, instead of a single conical or tube-like vortex as reported or hypothesized in previous studies. These vortical elements are highly time-dependent in structure and show distinct ;stay properties' at different spanwise sections. The spanwise flows are also time-dependent, not only in the velocity magnitude but also in direction.

  10. Experimental Study of Buoyant-Thermocapillary Convection in a Rectangular Cavity

    NASA Technical Reports Server (NTRS)

    Braunsfurth, Manfred G.; Homsy, George M.

    1996-01-01

    The problem of buoyant-thermocapillary convection in cavities is governed by a relatively large number of nondimensional parameters, and there is consequently a large number of different types of flow that can be found in this system. Previous results give disjoint glimpses of a wide variety of qualitatively and quantitatively different results in widely different parts of parameter space. In this study, we report experiments on the primary and secondary instabilities in a geometry with equal aspect ratios in the range from 1 to 8 in both the direction along and perpendicular to the applied temperature gradient. We thus complement previous work which mostly involved either fluid layers of large extent in both directions, or consisted of investigations of strictly two-dimensional disturbances. We observe the primary transition from an essentially two-dimensional flow to steady three-dimensional longitudinal rolls. The critical Marangoni number is found to depend on the aspect ratios of the system, and varies from 4.6 x 10(exp 5) at aspect ratio 2.0 to 5.5 x 10(exp 4) at aspect ratio 3.5. Further, we have investigated the stability of the three-dimensional flow at larger Marangoni numbers, and find a novel oscillatory flow at critical Marangoni numbers of the order of 6 x 10(exp 5). We suggest possible mechanisms which give rise to the oscillation, and find that it is expected to be a relaxation type oscillation.

  11. Influence of exercise induced hyperlactatemia on retinal blood flow during normo- and hyperglycemia.

    PubMed

    Garhöfer, Gerhard; Kopf, Andreas; Polska, Elzbieta; Malec, Magdalena; Dorner, Guido T; Wolzt, Michael; Schmetterer, Leopold

    2004-05-01

    Short term hyperglycemia has previously been shown to induce a blood flow increase in the retina. The mechanism behind this effect is poorly understood. We set out to investigate whether exercise-induced hyperlactatemia may alter the response of retinal blood flow to hyperglycemia. We performed a randomized, controlled two-way cross over study comprising 12 healthy subjects, performed a 6-minutes period of dynamic exercise during an euglcaemic or hyperglycaemic insulin clamp. Retinal blood flow was assessed by combined vessel size measurement with the Zeiss retinal vessel analyzer and measurement of red blood cell velocities using bi-directional laser Doppler velocimetry. Retinal and systemic hemodynamic parameters were measured before, immediately after and 10 and 20 minutes after isometric exercise. On the euglycemic study day retinal blood flow increased after dynamic exercise. The maximum increase in retinal blood flow was observed 10 minutes after the end of exercise when lactate plasma concentration peaked. Hyperglycemia increased retinal blood flow under basal conditions, but had no incremental effect during exercise induced hyperlactatemia. Our results indicate that both lactate and glucose induce an increase in retinal blood flow in healthy humans. This may indicate a common pathway between glucose and lactate induced blood flow changes in the human retina.

  12. Large Eddy Simulation of "turbulent-like" flow in intracranial aneurysms

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Owais; Chnafa, Christophe; Steinman, David A.; Mendez, Simon; Nicoud, Franck

    2016-11-01

    Hemodynamic forces are thought to contribute to pathogenesis and rupture of intracranial aneurysms (IA). Recent high-resolution patient-specific computational fluid dynamics (CFD) simulations have highlighted the presence of "turbulent-like" flow features, characterized by transient high-frequency flow instabilities. In-vitro studies have shown that such "turbulent-like" flows can lead to lack of endothelial cell orientation and cell depletion, and thus, may also have relevance to IA rupture risk assessment. From a modelling perspective, previous studies have relied on DNS to resolve the small-scale structures in these flows. While accurate, DNS is clinically infeasible due to high computational cost and long simulation times. In this study, we present the applicability of LES for IAs using a LES/blood flow dedicated solver (YALES2BIO) and compare against respective DNS. As a qualitative analysis, we compute time-averaged WSS and OSI maps, as well as, novel frequency-based WSS indices. As a quantitative analysis, we show the differences in POD eigenspectra for LES vs. DNS and wavelet analysis of intra-saccular velocity traces. Differences in two SGS models (i.e. Dynamic Smagorinsky vs. Sigma) are also compared against DNS, and computational gains of LES are discussed.

  13. Thermomagnetic convective flows in a vertical layer of ferrocolloid: perturbation energy analysis and experimental study.

    PubMed

    Suslov, Sergey A; Bozhko, Alexandra A; Sidorov, Alexander S; Putin, Gennady F

    2012-07-01

    Flow patterns arising in a vertical differentially heated layer of nonconducting ferromagnetic fluid placed in an external uniform transverse magnetic field are studied experimentally and discussed from the point of view of the perturbation energy balance. A quantitative criterion for detecting the parametric point where the dominant role in generating a flow instability is transferred between the thermogravitational and thermomagnetic mechanisms is suggested, based on the disturbance energy balance analysis. A comprehensive experimental study of various flow patterns is undertaken, and the existence is demonstrated of oblique thermomagnetic waves theoretically predicted by Suslov [Phys. Fluids 20, 084101 (2008)] and superposed onto the stationary magnetoconvective pattern known previously. It is found that the wave number of the detected convection patterns depends sensitively on the temperature difference across the layer and on the applied magnetic field. In unsteady regimes its value varies periodically by a factor of almost 2, indicating the appearance of two different competing wave modes. The wave numbers and spatial orientation of the observed dominant flow patterns are found to be in good agreement with theoretical predictions.

  14. Effect of Oscillating Tabs on a Jet-in-Cross-Flow

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2003-01-01

    A novel technique for active control of a jet-in-cross-flow is explored in this study. Two triangular tabs are placed at the 90 degree and 270 degree edges of the jet orifice, relative to the direction of the cross-flow. A slight asymmetry in the placement of the two tabs is reversed periodically. This causes a profound oscillation of the flow field that persists as far downstream as the measurements were permitted by the facility (100 orifice diameters). Parametric dependence of the unsteadiness and its impact on the flowfield has been investigated preliminarily. It is found that the effect becomes increasingly pronounced with increasing value of the momentum flux ratio (J). However, there is little or no effect at low values of J in the range, J less than 15. The effective frequencies of oscillation are low - more than an order of magnitude lower than that found with oscillatory blowing technique in previous studies. The flow mechanism apparently involves a direct perturbation of the counter-rotating streamwise vortex pair of the flow.

  15. Helium retention and Hydrogen absorption in FLiRE

    NASA Astrophysics Data System (ADS)

    Schultz, Benjamin

    2005-10-01

    The FLiRE (Flowing Lithium Retention Experiment) facility consists of a flow loop which contains a two sections to observe flow along ramps in an upper chamber. As the Li exits the upper chamber it makes a vacuum seal isolation of the upper chamber from a lower one where thermal desporption spectroscopy can take place. By applying an ion beam or a plasma pulse to the open-channel Li flow on the ramp, studies can be made of He and H retention by measuring the partial pressure of He in the lower TDS chamber. Previous studies have shown about a 1% to 2% retention of He over a time scale sufficient to exit a potential flowing Li-walled reactor. The significance of such a result is very high and needs to be verified. It is possible that He implanted in the ramp before flow was initiated was absorbed leading to the observed increase. The experiment has been altered to address this and other concerns. Research on hydrogen absorption in liquid lithium exposed to hydrogen plasma has also been conducted. Overall results and their implications towards large scale fusion reactors are given.

  16. Experimental study of moving throat plug in a shock tunnel

    NASA Astrophysics Data System (ADS)

    Lee, J. K.; Park, C.; Kwon, O. J.

    2015-07-01

    An experimental study has been carried out to investigate the flow in the KAIST shock tunnel with two moving throat plugs at a primary shock velocity of 1.19 km/s. The nozzle reservoir pressure and the Pitot pressure at the exit of the nozzle were measured to examine the influence of the moving throat plugs on the shock tunnel flow. To assess the present experimental results, comparisons with previous work using a stationary throat plug were made. The mechanism for closing the moving throat plug was developed and verified. The source of the force to move the plug was the pressure generated when the primary shock was reflected at the bottom of the plug. It was observed that the two plugs terminated the shock tunnel flow after the steady flow. .The time for the plugs to terminate the flow showed good agreement with the calculation of the proposed simple analytic solution. There was a negligible difference in flow values such as the reflected pressure and the Pitot pressure between the moving and the stationary plugs.

  17. A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qiang; Fan, Liang-Shih, E-mail: fan.1@osu.edu

    A new immersed boundary-lattice Boltzmann method (IB-LBM) is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The immersed boundary method (IBM) recently developed by Breugem (2012) [19] is adopted in the present method, development including the retraction technique, the multi-direct forcing method and the direct account of the inertia of the fluid contained within the particles. The present IB-LBM is, however, formulated with further improvement with the implementation of the high-order Runge–Kutta schemes in the coupled fluid–particle interaction. The major challenge to implement high-order Runge–Kutta schemes in the LBM is that the flow information suchmore » as density and velocity cannot be directly obtained at a fractional time step from the LBM since the LBM only provides the flow information at an integer time step. This challenge can be, however, overcome as given in the present IB-LBM by extrapolating the flow field around particles from the known flow field at the previous integer time step. The newly calculated fluid–particle interactions from the previous fractional time steps of the current integer time step are also accounted for in the extrapolation. The IB-LBM with high-order Runge–Kutta schemes developed in this study is validated by several benchmark applications. It is demonstrated, for the first time, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy. The optimal retraction distances for spheres and tubes that help the method achieve the second-order accuracy are found to be around 0.30 and −0.47 times of the lattice spacing, respectively. Simulations of the Stokes flow through a simple cubic lattice of rotational spheres indicate that the lift force produced by the Magnus effect can be very significant in view of the magnitude of the drag force when the practical rotating speed of the spheres is encountered. This finding may lead to more comprehensive studies of the effect of the particle rotation on fluid–solid drag laws. It is also demonstrated that, when the third-order or the fourth-order Runge–Kutta scheme is used, the numerical stability of the present IB-LBM is better than that of all methods in the literature, including the previous IB-LBMs and also the methods with the combination of the IBM and the traditional incompressible Navier–Stokes solver. - Highlights: • The IBM is embedded in the LBM using Runge–Kutta time schemes. • The effectiveness of the present IB-LBM is validated by benchmark applications. • For the first time, the IB-LBM achieves the second-order accuracy. • The numerical stability of the present IB-LBM is better than previous methods.« less

  18. Analysis of Electrically Induced Swirling Flow of Isotonic Saline in a Mixing Microchannel

    NASA Astrophysics Data System (ADS)

    Hirahara, Shuzo; Tsuruta, Tomoyuki; Matsumoto, Yoshinori; Minamitani, Haruyuki

    We have designed a prototype microfluidic device to mix suspended particles with isotonic saline by use of electrically induced swirling flow in the microchannel. However, the principles underlying microfluidic rotation induced by AC electrodes are not well understood, and the characteristics of the rotation velocity are unpredictable. Furthermore, these properties have not been studied using a highly conductive liquid like isotonic saline, which is an important fluid in the medical and biological fields. The lack of such studies causes uncertainty in the design required for high-performance microfluidic devices. We have examined the electrical rotational properties of the microfluid at an isotonic concentration of saline using computer simulation, and here we show that buoyant flow, which has previously been largely ignored, has a significant effect in channels of 100-μm depth or deeper, and that AC electroosmotic flow is not induced at isotonic saline concentrations.

  19. Turbulence transition and the edge of chaos in pipe flow.

    PubMed

    Schneider, Tobias M; Eckhardt, Bruno; Yorke, James A

    2007-07-20

    The linear stability of pipe flow implies that only perturbations of sufficient strength will trigger the transition to turbulence. In order to determine this threshold in perturbation amplitude we study the edge of chaos which separates perturbations that decay towards the laminar profile and perturbations that trigger turbulence. Using the lifetime as an indicator and methods developed in Skufca et al., Phys. Rev. Lett. 96, 174101 (2006), we show that superimposed on an overall 1/Re scaling predicted and studied previously there are small, nonmonotonic variations reflecting folds in the edge of chaos. By tracing the motion in the edge we find that it is formed by the stable manifold of a unique flow field that is dominated by a pair of downstream vortices, asymmetrically placed towards the wall. The flow field that generates the edge of chaos shows intrinsic chaotic dynamics.

  20. Dynamic stability analysis for capillary channel flow: One-dimensional and three-dimensional computations and the equivalent steady state technique

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Dreyer, Michael E.

    2010-01-01

    Spacecraft technology provides a series of applications for capillary channel flow. It can serve as a reliable means for positioning and transport of liquids under low gravity conditions. Basically, capillary channels provide liquid paths with one or more free surfaces. A problem may be flow instabilities leading to a collapse of the liquid surfaces. A result is undesired gas ingestion and a two phase flow which can in consequence cause several technical problems. The presented capillary channel consists of parallel plates with two free liquid surfaces. The flow rate is established by a pump at the channel outlet, creating a lower pressure within the channel. Owing to the pressure difference between the liquid phase and the ambient gas phase the free surfaces bend inwards and remain stable as long as they are able to resist the steady and unsteady pressure effects. For the numerical prediction of the flow stability two very different models are used. The one-dimensional unsteady model is mainly based on the Bernoulli equation, the continuity equation, and the Gauss-Laplace equation. For three-dimensional evaluations an open source computational fluid dynamics (CFD) tool is applied. For verifications the numerical results are compared with quasisteady and unsteady data of a sounding rocket experiment. Contrary to previous experiments this one results in a significantly longer observation sequence. Furthermore, the critical point of the steady flow instability could be approached by a quasisteady technique. As in previous experiments the comparison to the numerical model evaluation shows a very good agreement for the movement of the liquid surfaces and for the predicted flow instability. The theoretical prediction of the flow instability is related to the speed index, based on characteristic velocities of the capillary channel flow. Stable flow regimes are defined by stability criteria for steady and unsteady flow. The one-dimensional computation of the speed index is based on the technique of the equivalent steady system, which is published for the first time in the present paper. This approach assumes that for every unsteady state an equivalent steady state with a special boundary condition can be formulated. The equivalent steady state technique enables a reformulation of the equation system and an efficient and reliable speed index computation. Furthermore, the existence of the numerical singularity at the critical point of the steady flow instability, postulated in previous publication, is demonstrated in detail. The numerical singularity is related to the stability criterion for steady flow and represents the numerical consequence of the liquid surface collapse. The evaluation and generation of the pressure diagram is demonstrated in detail with a series of numerical dynamic flow studies. The stability diagram, based on one-dimensional computation, gives a detailed overview of the stable and instable flow regimes. This prediction is in good agreement with the experimentally observed critical flow conditions and results of three-dimensional CFD computations.

  1. Controlled vortical flow on delta wings through unsteady leading edge blowing

    NASA Technical Reports Server (NTRS)

    Lee, K. T.; Roberts, Leonard

    1990-01-01

    The vortical flow over a delta wing contributes an important part of the lift - the so called nonlinear lift. Controlling this vortical flow with its favorable influence would enhance aircraft maneuverability at high angle of attack. Several previous studies have shown that control of the vortical flow field is possible through the use of blowing jets. The present experimental research studies vortical flow control by applying a new blowing scheme to the rounded leading edge of a delta wing; this blowing scheme is called Tangential Leading Edge Blowing (TLEB). Vortical flow response both to steady blowing and to unsteady blowing is investigated. It is found that TLEB can redevelop stable, strong vortices even in the post-stall angle of attack regime. Analysis of the steady data shows that the effect of leading edge blowing can be interpreted as an effective change in angle of attack. The examination of the fundamental time scales for vortical flow re-organization after the application of blowing for different initial states of the flow field is studied. Different time scales for flow re-organization are shown to depend upon the effective angle of attack. A faster response time can be achieved at angles of attack beyond stall by a suitable choice of the initial blowing momentum strength. Consequently, TLEB shows the potential of controlling the vortical flow over a wide range of angles of attack; i.e., in both for pre-stall and post-stall conditions.

  2. Intra-flow morphology variations within a single submarine flow: the 2005-2006 East Pacific Rise eruption

    NASA Astrophysics Data System (ADS)

    Fundis, A. T.; Soule, S.; Fornari, D. J.; Perfit, M. R.

    2009-12-01

    The 2005-2006 eruption near 9°50‧N marked the first observed repeat eruption at a mid-ocean ridge and provided a unique opportunity to deduce the emplacement dynamics of a single eruptive event. Since this new flow was documented in April 2006, a total of 41 deep-towed imaging surveys have been conducted with the Woods Hole Oceanographic Institution’s (WHOI) TowCam system. These surveys collected more than 60,000 digital color images and high-resolution (+ 10 cm) bathymetric profiles. We have analyzed the surface morphology of the flow using this data at a level of detail that has never before been possible. Pre-existing slope has been determined using bathymetric data previously collected with WHOI’s Autonomous Benthic Explorer and 30 kHz Simrad EM300 multibeam system. Our analyses quantify the spatial distributions of lava flow surface morphologies and allow us to investigate how these various morphologies relate to the physical characteristics of the ridge and dynamics of flow emplacement. Images of the 2005-2006 flow from each of the TowCam surveys were analyzed for lava flow morphology, the orientation of flow direction indicators, and for the presence of kipukas, collapse, faults and fissures. Our results support previous studies (Fornari et al., 1998, 2004; Soule et al., 2005) that suggest most of the 2005-2006 flows originated from nearly continuous fissures as discrete flow units and subsequently followed pre-existing bathymetric lows and flow channels away from the AST. These flow channels, found predominantly on the eastern flank of the ridge axis at ~9°50‧N, are primarily composed of transitions between sheet and hackly flows. The flows north of 9°53‧ and south of 9°49‧ are predominantly lobate flows with a high abundance of kipukas (<1 - 5 m diameter). The centers of lava channels that served as distribution pathways during the eruption tend to be characterized by sheet flows, while hackly flows that transition into lobate define the edges of the channels. Pillows, that are relatively rare, are concentrated at the termini of the flow lobes. The data indicate that the pre-existing slope did not influence the development of various morphologies of the 2005-2006 eruption.

  3. Further shock tunnel studies of scramjet phenomena

    NASA Technical Reports Server (NTRS)

    Morgan, R. G.; Paull, A.; Morris, N. A.; Stalker, R. J.

    1986-01-01

    Scramjet phenomena were studied using the shock tunnel T3 at the Australian National University. Simple two dimensional models were used with a combination of wall and central injectors. Silane as an additive to hydrogen fuel was studied over a range of temperatures and pressures to evaluate its effect as an ignition aid. The film cooling effect of surface injected hydrogen was measured over a wide range of equivalence. Heat transfer measurements without injection were repeated to confirm previous indications of heating rates lower than simple flat plate predictions for laminar boundary layers in equilibrium flow. The previous results were reproduced and the discrepancies are discussed in terms of the model geometry and departures of the flow from equilibrium. In the thrust producing mode, attempts were made to increase specific impulse with wall injection. Some preliminary tests were also performed on shock induced ignition, to investigate the possibility in flight of injecting fuel upstream of the combustion chamber, where it could mix but not burn.

  4. Vascular dysfunction in women with a history of preeclampsia and intrauterine growth restriction: insights into future vascular risk.

    PubMed

    Yinon, Yoav; Kingdom, John C P; Odutayo, Ayodele; Moineddin, Rahim; Drewlo, Sascha; Lai, Vesta; Cherney, David Z I; Hladunewich, Michelle A

    2010-11-02

    Women with a history of placental disease are at increased risk for the future development of vascular disease. It is unknown whether preexisting endothelial dysfunction underlies both the predisposition to placental disease and the later development of vascular disease. The aim of this study was to assess vascular function in postpartum women and to determine whether differences emerged depending on the presentation of placental disease. Women with a history of early-onset preeclampsia (n=15), late-onset preeclampsia (n=9), intrauterine growth restriction without preeclampsia (n=9), and prior normal pregnancy (n=16) were studied 6 to 24 months postpartum. Flow-mediated vasodilatation and flow-independent (glyceryl trinitrate-induced) vasodilatation were studied through the use of high-resolution vascular ultrasound examination of the brachial artery. Arterial stiffness was assessed by pulse-wave analysis (augmentation index). Laboratory assessment included circulating angiogenic factors (vascular endothelial growth factor, soluble fms-like tyrosine kinase 1, placental growth factor, and soluble endoglin). Flow-mediated vasodilatation was significantly reduced in women with previous early-onset preeclampsia and intrauterine growth restriction compared with women with previous late-onset preeclampsia and control subjects (3.2±2.7% and 2.1±1.2% versus 7.9±3.8% and 9.1±3.5%, respectively; P<0.0001). Flow-independent vasodilatation was similar among all groups. Similarly, the radial augmentation index was significantly increased among women with previous early-onset preeclampsia and intrauterine growth restriction, but not among late preeclamptic women and control subjects (P=0.0105). Circulating angiogenic factors were similar in all groups. Only women with a history of early-onset preeclampsia or intrauterine growth restriction without preeclampsia exhibit impaired vascular function, which might explain their predisposition to placental disease and their higher risk of future vascular disease.

  5. Fluid mechanics of the human eye: aqueous humour flow in the anterior chamber.

    PubMed

    Fitt, A D; Gonzalez, G

    2006-01-01

    We consider and compare the various different kinds of flow that may take place in the anterior chamber of a human eye. The physical mechanisms responsible for causing such flows may be classified as follows: (i) buoyancy-driven flow arising from the temperature difference between the anterior surface of the cornea and the iris, (ii) flow generated by the aqueous production of the ciliary body, (iii) flow generated by the interaction between buoyancy and gravity while sleeping while sleeping in a face-up position, (iv) flow generated by phakodenesis (lens tremor), (v) flow generated by Rapid Eye Movement (REM) during sleep. Each flow is studied using a traditional fluid mechanics/asymptotic analysis approach. We also assess the veracity of a hypothesis that was recently advanced [see Maurice, D.M., 1998. The Von Sallman Lecture 1996: An ophthalmological explanation of REM sleep. Exp. Eye. Res. 66, 139-145, for details] to suggest that, contrary to previous opinion, the purpose of REM during sleep is to ensure corneal respiration in the absence of the buoyant mixing that routinely takes place due to (i) above during waking conditions.

  6. Flow Velocity Profiles in Actively-Driven 2D Nozzle Experiments using Freely-Suspended Smectic Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Dutch, Evan; Briggs, Corrina; Ferguson, Kyle; Green, Adam; Park, Cheol; Glaser, Matt; Maclennan, Joe; Clark, Noel

    Freely-suspended smectic A liquid crystal films have been used to explore a large range of interesting flow phenomena. Passive microrheology experiments have confirmed previously that such films are ideal systems with which to investigate two-dimensional (2D) hydrodynamics. Here we describe an experiment that uses smectic films to study actively-driven 2D flows. Flow excited by blowing air over a film of smectic liquid crystal material containing small inclusions is captured using digital video microscopy. The flow fields are extracted using particle imaging velocimetry. We have measured the velocity field generated by flow through a thin nozzle into a large rectangular reservoir and compared this to a theoretical model based on 2D complex potential flows. The observations confirm that there is parabolic flow in straight channels, and that the theory accurately models the film velocity flow field in the reservoir. This work was supported by NASA Grant No. NNX-13AQ81G, and NSF MRSEC Grants No. DMR-0820579 and DMR-1420736.

  7. Low-flow frequency and flow duration of selected South Carolina streams in the Catawba-Wateree and Santee River Basins through March 2012

    USGS Publications Warehouse

    Feaster, Toby D.; Guimaraes, Wladmir B.

    2014-01-01

    Part of the mission of both the South Carolina Department of Health and Environmental Control and the South Carolina Department of Natural Resources is to protect and preserve South Carolina’s water resources. Doing so requires an ongoing understanding of streamflow characteristics of the rivers and streams in South Carolina. A particular need is information concerning the low-flow characteristics of streams, which is especially important for effectively managing the State’s water resources during critical flow periods, such as during the historic droughts that South Carolina has experienced in the past few decades. In 2008, the U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control, initiated a study to update low-flow statistics at continuous-record streamgaging stations operated by the U.S. Geological Survey in South Carolina. This report presents the low-flow statistics for 11 selected streamgaging stations in the Catawba-Wateree and Santee River Basins in South Carolina and 2 in North Carolina. For five of the streamgaging stations, low-flow statistics include daily mean flow durations or the 5-, 10-, 25-, 50-, 75-, 90-, and 95-percent probability of exceedance and the annual minimum 1-, 3-, 7-, 14-, 30-, 60-, and 90-day mean flows with recurrence intervals of 2, 5, 10, 20, 30, and 50 years, depending on the length of record available at the streamgaging station. For the other eight streamgaging stations, only daily mean flow durations and (or) exceedance percentiles of annual minimum 7-day average flows are provided due to regulation. In either case, the low-flow statistics were computed from records available through March 31, 2012. Of the five streamgaging stations for which recurrence interval computations were made, three streamgaging stations in South Carolina were compared to low-flow statistics that were published in previous U.S. Geological Survey reports. A comparison of the low-flow statistics for the annual minimum 7-day average streamflow with a 10-year recurrence interval (7Q10) from this study with the most recently published values indicated that two of the streamgaging stations had values lower than the previous values and the 7Q10 for the third station remained unchanged at zero. Low-flow statistics are influenced by length of record, hydrologic regime under which the data were collected, analytical techniques used, and other factors, such as urbanization, diversions, and droughts that may have occurred in the basin.

  8. Coupling between premixed flame propagation and swirl flow during boundary layer flashback

    NASA Astrophysics Data System (ADS)

    Ebi, Dominik; Ranjan, Rakesh; Clemens, Noel T.

    2018-07-01

    Flashback of premixed methane-air flames in the turbulent boundary layer of swirling flows is investigated experimentally. The premix section of the atmospheric model swirl combustor features an axial swirler with an attached center-body. Our previous work with this same configuration investigated the flame propagation during flashback using particle image velocimetry (PIV) with liquid droplets as seed particles that precluded making measurements in the burnt gases. The present study investigates the transient velocity field in the unburnt and burnt gas region by means of solid-particle seeding and high-speed stereoscopic PIV. The global axial and circumferential lab-frame flame propagation speed is obtained simultaneously based on high-speed chemiluminescence movies. By combining the PIV data with the global flame propagation speed, the quasi-instantaneous swirling motion of the velocity field is constructed on annular shells, which provides a more intuitive view on the complex three-dimensional flow-flame interaction. Previous works showed that flashback is led by flame tongues. We find that the important flow-flame interaction occurs on the far side of these flame tongues relative to the approach flow, which we henceforth refer to as the leading side. The leading side is found to propagate as a classical premixed flame front relative to the strongly modified approach flow field. The blockage imposed by flame tongues is not limited to the immediate vicinity of the flame base, but occurs along the entire leading side.

  9. Computational and Experimental Flow Field Analyses of Separate Flow Chevron Nozzles and Pylon Interaction

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Thomas, Russell H.; AbdolHamid, Khaled S.; Elmiligui, Alaa A.

    2003-01-01

    A computational and experimental flow field analyses of separate flow chevron nozzles is presented. The goal of this study is to identify important flow physics and modeling issues required to provide highly accurate flow field data which will later serve as input to the Jet3D acoustic prediction code. Four configurations are considered: a baseline round nozzle with and without a pylon, and a chevron core nozzle with and without a pylon. The flow is simulated by solving the asymptotically steady, compressible, Reynolds-averaged Navier-Stokes equations using an implicit, up-wind, flux-difference splitting finite volume scheme and standard two-equation kappa-epsilon turbulence model with a linear stress representation and the addition of a eddy viscosity dependence on total temperature gradient normalized by local turbulence length scale. The current CFD results are seen to be in excellent agreement with Jet Noise Lab data and show great improvement over previous computations which did not compensate for enhanced mixing due to high temperature gradients.

  10. A study of methods to estimate debris flow velocity

    USGS Publications Warehouse

    Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.

    2008-01-01

    Debris flow velocities are commonly back-calculated from superelevation events which require subjective estimates of radii of curvature of bends in the debris flow channel or predicted using flow equations that require the selection of appropriate rheological models and material property inputs. This research investigated difficulties associated with the use of these conventional velocity estimation methods. Radii of curvature estimates were found to vary with the extent of the channel investigated and with the scale of the media used, and back-calculated velocities varied among different investigated locations along a channel. Distinct populations of Bingham properties were found to exist between those measured by laboratory tests and those back-calculated from field data; thus, laboratory-obtained values would not be representative of field-scale debris flow behavior. To avoid these difficulties with conventional methods, a new preliminary velocity estimation method is presented that statistically relates flow velocity to the channel slope and the flow depth. This method presents ranges of reasonable velocity predictions based on 30 previously measured velocities. ?? 2008 Springer-Verlag.

  11. Demographic history and gene flow during silkworm domestication

    PubMed Central

    2014-01-01

    Background Gene flow plays an important role in domestication history of domesticated species. However, little is known about the demographic history of domesticated silkworm involving gene flow with its wild relative. Results In this study, four model-based evolutionary scenarios to describe the demographic history of B. mori were hypothesized. Using Approximate Bayesian Computation method and DNA sequence data from 29 nuclear loci, we found that the gene flow at bottleneck model is the most likely scenario for silkworm domestication. The starting time of silkworm domestication was estimated to be approximate 7,500 years ago; the time of domestication termination was 3,984 years ago. Using coalescent simulation analysis, we also found that bi-directional gene flow occurred during silkworm domestication. Conclusions Estimates of silkworm domestication time are nearly consistent with the archeological evidence and our previous results. Importantly, we found that the bi-directional gene flow might occur during silkworm domestication. Our findings add a dimension to highlight the important role of gene flow in domestication of crops and animals. PMID:25123546

  12. Bathymetric and velocimetric surveys at highway bridges crossing the Missouri and Mississippi Rivers near St. Louis, Missouri, May 23–27, 2016

    USGS Publications Warehouse

    Huizinga, Richard J.

    2017-09-26

    Bathymetric and velocimetric data were collected by the U.S. Geological Survey, in cooperation with the Missouri Department of Transportation, near 13 bridges at 8 highway crossings of the Missouri and Mississippi Rivers in the greater St. Louis, Missouri, area from May 23 to 27, 2016. A multibeam echosounder mapping system was used to obtain channel-bed elevations for river reaches ranging from 1,640 to 1,970 feet longitudinally and extending laterally across the active channel from bank to bank during low to moderate flood flow conditions. These bathymetric surveys indicate the channel conditions at the time of the surveys and provide characteristics of scour holes that may be useful in the development of predictive guidelines or equations for scour holes. These data also may be useful to the Missouri Department of Transportation as a low to moderate flood flow comparison to help assess the bridges for stability and integrity issues with respect to bridge scour during floods.Bathymetric data were collected around every pier that was in water, except those at the edge of water, and scour holes were observed at most surveyed piers. The observed scour holes at the surveyed bridges were examined with respect to shape and depth.The frontal slope values determined for scour holes observed in the current (2016) study generally are similar to recommended values in the literature and to values determined for scour holes in previous bathymetric surveys. Several of the structures had piers that were skewed to primary approach flow, as indicated by the scour hole being longer on the side of the pier with impinging flow, and some amount of deposition on the leeward side, as typically has been observed at piers skewed to approach flow; however, at most skewed piers in the current (2016) study, the scour hole was deeper on the leeward side of the pier. At most of these piers, the angled approach flow was the result of a deflection or contraction of flow caused by a spur dike near the pier, which may affect flow differently than for a simple skew. At structure A6500 (site 33), the wide face of the pier footing and seal course would behave as a complex foundation, for which scour is computed differently.Previous bathymetric surveys exist for all the sites examined in this study. A previous survey in October 2010 at most of the sites had similar flow conditions and similar results to the 2016 surveys. A survey during flood conditions in August 2011 at the sites on the Missouri River and in May 2009 at structures A4936 and A1850 (site 35) on the Mississippi River did not always indicate more substantial scour during flood conditions. At structure A6500 (site 33) on the Mississippi River, a previous survey in 2009 was part of a habitat assessment before construction of the bridge and provides unique insight into the effects of the construction of that bridge on the channel in this reach. Substantial scour was observed near the right pier, and the riprap blanket surrounding the left pier seems to limit scour near that pier. Multiple additional surveys have been completed at structures A4936 and A1850 (site 35) on the Mississippi River, and the results of these surveys also are presented.

  13. Multiple regression and inverse moments improve the characterization of the spatial scaling behavior of daily streamflows in the Southeast United States

    USGS Publications Warehouse

    Farmer, William H.; Over, Thomas M.; Vogel, Richard M.

    2015-01-01

    Understanding the spatial structure of daily streamflow is essential for managing freshwater resources, especially in poorly-gaged regions. Spatial scaling assumptions are common in flood frequency prediction (e.g., index-flood method) and the prediction of continuous streamflow at ungaged sites (e.g. drainage-area ratio), with simple scaling by drainage area being the most common assumption. In this study, scaling analyses of daily streamflow from 173 streamgages in the southeastern US resulted in three important findings. First, the use of only positive integer moment orders, as has been done in most previous studies, captures only the probabilistic and spatial scaling behavior of flows above an exceedance probability near the median; negative moment orders (inverse moments) are needed for lower streamflows. Second, assessing scaling by using drainage area alone is shown to result in a high degree of omitted-variable bias, masking the true spatial scaling behavior. Multiple regression is shown to mitigate this bias, controlling for regional heterogeneity of basin attributes, especially those correlated with drainage area. Previous univariate scaling analyses have neglected the scaling of low-flow events and may have produced biased estimates of the spatial scaling exponent. Third, the multiple regression results show that mean flows scale with an exponent of one, low flows scale with spatial scaling exponents greater than one, and high flows scale with exponents less than one. The relationship between scaling exponents and exceedance probabilities may be a fundamental signature of regional streamflow. This signature may improve our understanding of the physical processes generating streamflow at different exceedance probabilities. 

  14. Two-phase flow pressure drop and heat transfer during condensation in microchannels with uniform and converging cross-sections

    NASA Astrophysics Data System (ADS)

    Kuo, Ching Yi; Pan, Chin

    2010-09-01

    This study experimentally investigates steam condensation in rectangular microchannels with uniform and converging cross-sections and a mean hydraulic diameter of 135 µm. The steam flow in the microchannels was cooled by water cross-flowing along its bottom surface, which is different from other methods reported in the literature. The flow patterns, two-phase flow pressure drop and condensation heat transfer coefficient are determined. The microchannels with the uniform cross-section design have a higher heat transfer coefficient than those with the converging cross-section under condensation in the mist/annular flow regimes, although the latter work best for draining two-phase fluids composed of uncondensed steam and liquid water, which is consistent with the result of our previous study. From the experimental results, dimensionless correlations of condensation heat transfer for the mist and annular flow regions and a two-phase frictional multiplier are developed for the microchannels with both types of cross-section designs. The experimental data agree well with the obtained correlations, with the maximum mean absolute errors of 6.4% for the two-phase frictional multiplier and 6.0% for the condensation heat transfer.

  15. The effects of gender, flow and video game experience on combat identification training.

    PubMed

    Plummer, John Paul; Schuster, David; Keebler, Joseph R

    2017-08-01

    The present study examined the effects of gender, video game experience (VGE), and flow state on multiple indices of combat identification (CID) performance. Individuals were trained on six combat vehicles in a simulation, presented through either a stereoscopic or non-stereoscopic display. Participants then reported flow state, VGE and were tested on their ability to discriminate friend vs. foe and identify both pictures and videos of the trained vehicles. The effect of stereoscopy was not significant. There was an effect of gender across three dependent measures. For the two picture-based measures, the effect of gender was mediated by VGE. Additionally, the effect of gender was moderated by flow state on the identification measures. Overall, the study suggests that gender differences may be overcome by VGE and by achieving flow state. Selection based on these individual differences may be useful for future military simulation. Practitioner Summary: This work investigates the effect of gender, VGE and flow state on CID performance. For three measures of performance, there was a main effect of gender. Gender was mediated by previous VGE on two measures, and gender was moderated by flow state on two measures.

  16. Nonperturbative β function of eight-flavor SU(3) gauge theory

    NASA Astrophysics Data System (ADS)

    Hasenfratz, Anna; Schaich, David; Veernala, Aarti

    2015-06-01

    We present a new lattice study of the discrete β function for SU(3) gauge theory with N f = 8 massless flavors of fermions in the fundamental representation. Using the gradient flow running coupling, and comparing two different nHYP-smeared staggered lattice actions, we calculate the 8-flavor step-scaling function at significantly stronger couplings than were previously accessible. Our continuum-extrapolated results for the discrete β function show no sign of an IR fixed point up to couplings of g 2 ≈ 14. At the same time, we find that the gradient flow coupling runs much more slowly than predicted by two-loop perturbation theory, reinforcing previous indications that the 8-flavor system possesses nontrivial strongly coupled IR dynamics with relevance to BSM phenomenology.

  17. Width effects in transonic flow over a rectangular cavity

    DOE PAGES

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; ...

    2015-07-24

    A previous experiment by the present authors studied the flow over a finite-width rectangular cavity at freestream Mach numbers 1.5–2.5. In addition, this investigation considered the influence of three-dimensional geometry that is not replicated by simplified cavities that extend across the entire wind-tunnel test section. The latter configurations have the attraction of easy optical access into the depths of the cavity, but they do not reproduce effects upon the turbulent structures and acoustic modes due to the length-to-width ratio, which is becoming recognized as an important parameter describing the nature of the flow within narrower cavities.

  18. A shallow water table fluctuation model in response to precipitation with consideration of unsaturated gravitational flow

    NASA Astrophysics Data System (ADS)

    Park, E.; Jeong, J.

    2017-12-01

    A precise estimation of groundwater fluctuation is studied by considering delayed recharge flux (DRF) and unsaturated zone drainage (UZD). Both DRF and UZD are due to gravitational flow impeded in the unsaturated zone, which may nonnegligibly affect groundwater level changes. In the validation, a previous model without the consideration of unsaturated flow is benchmarked where the actual groundwater level and precipitation data are divided into three periods based on the climatic condition. The estimation capability of the new model is superior to the benchmarked model as indicated by the significantly improved representation of groundwater level with physically interpretable model parameters.

  19. Dynamic probabilistic material flow analysis of nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in seven European regions.

    PubMed

    Wang, Yan; Nowack, Bernd

    2018-04-01

    Static environmental exposure assessment models based on material flow analysis (MFA) have previously been used to estimate flows of engineered nanomaterials (ENMs) to the environment. However, such models do not account for changes in the system behavior over time. Dynamic MFA used in this study includes the time-dependent development of the modelling system by considering accumulation of ENMs in stocks and the environment, and the dynamic release of ENMs from nano-products. In addition, this study also included regional variations in population, waste management systems, and environmental compartments, which subsequently influence the environmental release and concentrations of ENMs. We have estimated the flows and release concentrations of nano-SiO 2 , nano-iron oxides, nano-CeO 2 , nano-Al 2 O 3 , and quantum dots in the EU and six geographical sub-regions in Europe (Central Europe, Northern Europe, Southern Europe, Eastern Europe, South-eastern Europe, and Switzerland). The model predicts that a large amount of ENMs are accumulated in stocks (not considering further transformation). For example, in the EU 2040 Mt of nano-SiO 2 are stored in the in-use stock, 80,400 tonnes have been accumulated in sediments and 65,600 tonnes in natural and urban soil from 1990 to 2014. The magnitude of flows in waste management processes in different regions varies because of differences in waste handling. For example, concentrations in landfilled waste are lowest in South-eastern Europe due to dilution by the high amount of landfilled waste in the region. The flows predicted in this work can serve as improved input data for mechanistic environmental fate models and risk assessment studies compared to previous estimates using static models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Complexity of the laminar-turbulent boundary in pipe flow

    NASA Astrophysics Data System (ADS)

    Budanur, Nazmi Burak; Hof, Björn

    2018-05-01

    Over the past decade, the edge of chaos has proven to be a fruitful starting point for investigations of shear flows when the laminar base flow is linearly stable. Numerous computational studies of shear flows demonstrated the existence of states that separate laminar and turbulent regions of the state space. In addition, some studies determined invariant solutions that reside on this edge. In this paper, we study the unstable manifold of one such solution with the aid of continuous symmetry reduction, which we formulate here for the simultaneous quotiening of axial and azimuthal symmetries. Upon our investigation of the unstable manifold, we discover a previously unknown traveling-wave solution on the laminar-turbulent boundary with a relatively complex structure. By means of low-dimensional projections, we visualize different dynamical paths that connect these solutions to the turbulence. Our numerical experiments demonstrate that the laminar-turbulent boundary exhibits qualitatively different regions whose properties are influenced by the nearby invariant solutions.

  1. Major salivary gland flow rates in young and old, generally healthy African Americans and whites.

    PubMed Central

    Jones, R. E.; Ship, J. A.

    1995-01-01

    Saliva is essential to maintain and preserve oral health. Previous studies of primarily white populations demonstrated that salivary gland flow rates are age-stable in healthy adults, but there are little data on African Americans of different ages. The purpose of this study was to determine if there is a relationship between age, gender, and race in unstimulated and stimulated parotid and submandibular salivary gland flow rates and to evaluate subjective responses to questions regarding salivary dysfunction. Sixty generally healthy, middle socioeconomic class African Americans and whites between the ages of 20 to 40 and 60 to 80 years were evaluated. The results indicate, in general, that objective and subjective measurements of major salivary gland flow rates are independent of age, gender, and race. Further studies are required using larger populations. These results suggest that signs and symptoms of dry mouth in the elderly regardless of race or gender should not be considered a normal sequela of aging. PMID:7897685

  2. Model study of St. Stephen powerhouse fish passage facilities, Cooper River rediversion project, South Carolina. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hite, J.E.; Murphy, T.E.

    1998-09-01

    This report documents a model study of the St. Stephen Power Plant, located in Berkely County, South Carolina. A previous model study revealed that the fish lift at the powerhouse could be improved by providing auxiliary attraction flows to the fish entrances. An auxiliary attraction flow (AAF) system was proposed that uses a siphon to obtain the auxiliary attraction water from the reservoir. The model investigations reported herein address the flow conditions at the discharge end of the siphon; the hydraulic aspects of the siphon are not addressed. Three different models were used to evaluate flow conditions at the dischargemore » end of the AAF system. A 1:25-scale model of the St. Stephen powerhouse was used to improve the fish entrance conditions and to evaluate the outlet conditions for the initial AAF system. As the investigations progressed, the design of the siphon discharge system was modified to include downstream fish migration and debris passage.« less

  3. Impact of the surface wind flow on precipitation characteristics over the southern Himalayas: GPM observations

    NASA Astrophysics Data System (ADS)

    Zhang, Aoqi; Fu, Yunfei; Chen, Yilun; Liu, Guosheng; Zhang, Xiangdong

    2018-04-01

    The distribution and influence of precipitation over the southern Himalayas have been investigated on regional and global scales. However, previous studies have been limited by the insufficient emphasis on the precipitation triggers or the lack of droplet size distribution (DSD) data. Here, precipitating systems were identified using Global Precipitation Mission dual-frequency radar data, and then categorized into five classes according to surface flow from the European Centre for Medium-Range Weather Forecast Interim data. The surface flow is introduced to indicate the precipitation triggers, which is validated in this study. Using case and statistical analysis, we show that the precipitating systems with different surface flow had different precipitation characteristics, including spatio-temporal features, reflectivity profile, DSD, and rainfall intensity. Furthermore, the results show that the source of the surface flow influences the intensity and DSD of precipitation. The terrain exerts different impacts on the precipitating systems of five categories, leading to various distributions of precipitation characteristics over the southern Himalayas. Our results suggest that the introduction of surface flow and DSD for precipitating systems provides insight into the complex precipitation of the southern Himalayas. The different characteristics of precipitating systems may be caused by the surface flow. Therefore, future study on the orographic precipitations should take account the impact of the surface flow and its relevant dynamic mechanism.

  4. Rheology of dense granular flows in two dimensions: Comparison of fully two-dimensional flows to unidirectional shear flow

    NASA Astrophysics Data System (ADS)

    Bhateja, Ashish; Khakhar, Devang V.

    2018-06-01

    We consider the rheology of steady two-dimensional granular flows, in different geometries, using discrete element method-based simulations of soft spheres. The flow classification parameter (ψ ), which defines the local flow type (ranging from pure rotation to simple shear to pure extension), varies spatially, to a significant extent, in the flows. We find that the material behaves as a generalized Newtonian fluid. The μ -I scaling proposed by Jop et al. [Nature (London) 441, 727 (2006), 10.1038/nature04801] is found to be valid in both two-dimensional and unidirectional flows, as observed in previous studies; however, the data for each flow geometry fall on a different curve. The results for the two-dimensional silo flow indicate that the viscosity does not depend directly on the flow type parameter, ψ . We find that the scaling based on "granular fluidity" [Zhang and Kamrin, Phys. Rev. Lett. 118, 058001 (2017), 10.1103/PhysRevLett.118.058001] gives good collapse of the data to a single curve for all the geometries. The data for the variation of the solid faction with inertial number show a reasonable collapse for the different geometries.

  5. Accuracy and Tuning of Flow Parsing for Visual Perception of Object Motion During Self-Motion

    PubMed Central

    Niehorster, Diederick C.

    2017-01-01

    How do we perceive object motion during self-motion using visual information alone? Previous studies have reported that the visual system can use optic flow to identify and globally subtract the retinal motion component resulting from self-motion to recover scene-relative object motion, a process called flow parsing. In this article, we developed a retinal motion nulling method to directly measure and quantify the magnitude of flow parsing (i.e., flow parsing gain) in various scenarios to examine the accuracy and tuning of flow parsing for the visual perception of object motion during self-motion. We found that flow parsing gains were below unity for all displays in all experiments; and that increasing self-motion and object motion speed did not alter flow parsing gain. We conclude that visual information alone is not sufficient for the accurate perception of scene-relative motion during self-motion. Although flow parsing performs global subtraction, its accuracy also depends on local motion information in the retinal vicinity of the moving object. Furthermore, the flow parsing gain was constant across common self-motion or object motion speeds. These results can be used to inform and validate computational models of flow parsing. PMID:28567272

  6. A multi-tracer study in the Hutton Sandstone aquifer, Australia: How "wrong ages" give us deeper insights into aquifer structure and effective deep recharge to a double porosity system

    NASA Astrophysics Data System (ADS)

    Suckow, Axel; Taylor, Andrew; Davies, Phil; Leaney, Fred

    2017-04-01

    Depressurisation of coal seams in the Walloon Coal Measures in Queensland, Australia, may influence aquifers both over- and underlying the formation. The Gubberamunda Sandstone aquifer, which overlies the Walloon Coal Measures, is the starting point of the Great Artesian Basin (GAB) flow system and has been the focus of numerous recharge studies. In comparison, the Hutton Sandstone aquifer, which underlies the Walloon Coal Measures, has received much less attention. This aquifer however, is the main supply of stock water for the beef industry in the area. A multi-environmental tracer study of the Hutton Sandstone aquifer was undertaken at the Mimosa Syncline and was complemented by a few samples taken from the underlying Precipice Sandstone aquifer. This multi-tracer study (comprising 18O, 2H, 3H, CFCs, SF6, 14C, 36Cl, and 4He) demonstrated that the Hutton Sandstone aquifer behaves as a double porosity system. At the regional scale, the system features a relatively small fraction of conductive rock within a fairly large fraction of low permeability rock. Tracer migration therefore occurs mainly by advection in the conductive fraction and mainly by diffusion in the low-permeability fraction of the aquifer. Groundwater flow velocities, derived from exponential decrease of 14C and 36Cl concentrations with distance, differ by a factor of ten and therefore do not indicate the real groundwater flow velocity. However, accounting for a double porosity interpretation of the tracer data leads to a single groundwater flow velocity that is consistent with all observed data. Advective velocity in this double porosity model differs from face value flow velocities derived from 14C and 36Cl by a factor of 4 and 40 respectively. As a consequence of this interpretation, the deeper groundwater flow system of the Hutton Sandstone aquifer is estimated to receive only 3% of the recharge previously estimated using the Chloride Mass Balance approach at the intake beds. The other 97% is assumed to be rejected recharge which discharges through spring complexes in the Surat Basin and contributes to base flow of the Dawson River. This interpretation also suggests: 1) that the Hutton Sandstone aquifer is potentially more vulnerable to impacts from groundwater abstraction, including from stock and domestic water supply and coal seam gas production, than previously anticipated; 2) that other "groundwater age records" around the world likely observe similar double porosity effects and their apparent ages may be similarly distorted; and 3) that the multi-tracer approach used here is a suitable method for identifying other previously unknown double porosity aquifer systems and can potentially quantify deep effective recharge where important water resources are subject of economic development.

  7. Bed topography and sand transport responses to a step change in discharge and water depth

    USDA-ARS?s Scientific Manuscript database

    Ephemeral streams with sand and gravel beds may inherit bed topography caused by previous flow events, resulting in bed topography that is not in equilibrium with flow conditions, complicating the modeling of flow and sediment transport. Major flow events, resulting from rainfall with high intensity...

  8. Slug Flow Analysis in Vertical Large Diameter Pipes

    NASA Astrophysics Data System (ADS)

    Roullier, David

    The existence of slug flow in vertical co-current two-phase flow is studied experimentally and theoretically. The existence of slug flow in vertical direction implies the presence of Taylor bubbles separated by hydraulically sealed liquid slugs. Previous experimental studies such as Ombere-Ayari and Azzopardi (2007) showed the evidence of the non-existence of Taylor bubbles for extensive experimental conditions. Models developed to predict experimental behavior [Kocamustafaogullari et al. (1984), Jayanti and Hewitt. (1990) and Kjoolas et al. (2017)] suggest that Taylor bubbles may disappear at large diameters and high velocities. A 73-ft tall and 101.6-mm internal diameter test facility was used to conduct the experiments allowing holdup and pressure drop measurements at large L/D. Superficial liquid and gas velocities varied from 0.05-m/s to 0.2 m/s and 0.07 m/s to 7.5 m/s, respectively. Test section pressure varied from 38 psia to 84 psia. Gas compressibility effect was greatly reduced at 84 psia. The experimental program allowed to observe the flow patterns for flowing conditions near critical conditions predicted by previous models (air-water, 1016 mm ID, low mixture velocities). Flow patterns were observed in detail using wire-mesh sensor measurements. Slug-flow was observed for a narrow range of experimental conditions at low velocities. Churn-slug and churn-annular flows were observed for most of the experimental data-points. Cap-bubble flow was observed instead of bubbly flow at low vSg. Wire-mesh measurements showed that the liquid has a tendency to remain near to the walls. The standard deviation of radial holdup profile correlates to the flow pattern observed. For churn-slug flow, the profile is convex with a single maximum near the pipe center while it exhibits a concave shape with two symmetric maxima close to the wall for churn-annular flow. The translational velocity was measured by two consecutive wire-mesh sensor crosscorrelation. The results show linear trends at low mixture velocities and non-linear behaviors at high mixture velocities. The translational velocity trends seem to be related to the flow-pattern observed, namely to the ability of the gas to flow through the liquid structures. A simplified Taylor bubble stability model is proposed. The model allows to estimate under which conditions Taylor bubbles disappear, properly accounting for the diameter effect and velocity effect observed experimentally. In addition, annular flow distribution coefficient relating true holdup to centerline holdup in vertical flow is proposed. The proposed coefficient defines the tendency of the liquid to remain near the walls. This coefficient increases linearly with the void fraction.

  9. Long Penetration Mode Counterflowing Jets for Supersonic Slender Configurations - A Numerical Study

    NASA Technical Reports Server (NTRS)

    Venkatachari, Balaji Shankar; Cheng, Gary; Chang, Chau-Layn; Zichettello, Benjamin; Bilyeu, David L.

    2013-01-01

    A novel approach of using counterflowing jets positioned strategically on the aircraft and exploiting its long penetration mode (LPM) of interaction towards sonic-boom mitigation forms the motivation for this study. Given that most previous studies on the counterflowing LPM jet have all been on blunt bodies and at high supersonic or hypersonic flow conditions, exploring the feasibility to obtain a LPM jet issuing from a slender body against low supersonic freestream conditions is the main focus of this study. Computational fluid dynamics computations of axisymmetric models (cone-cylinder and quartic geometry), of relevance to NASA's High Speed project, are carried out using the space-time conservation element solution element viscous flow solver with unstructured meshes. A systematic parametric study is conducted to determine the optimum combination of counterflowing jet size, mass flow rate, and nozzle geometry for obtaining LPM jets. Details from these computations will be used to assess the potential of the LPM counterflowing supersonic jet as a means of active flow control for enabling supersonic flight over land and to establish the knowledge base for possible future implementation of such technologies.

  10. Characteristics of strongly-forced turbulent jets and non-premixed jet flames

    NASA Astrophysics Data System (ADS)

    Lakshminarasimhan, K.; Clemens, N. T.; Ezekoye, O. A.

    2006-10-01

    Previous researchers have demonstrated that strong pulsations of the fuel flow rate can significantly reduce the flame length and luminosity of laminar/transitional non-premixed jet flames. The physical mechanisms responsible for these changes are investigated experimentally in acoustically-forced jet flows where the peak velocity fluctuations are up to eight times the mean flow velocity. Both reacting and non-reacting flows were studied and Reynolds numbers, based on the mean flow properties, ranged from 800 to 10,000 (corresponding to peak Reynolds numbers of 1,450-23,000), and forcing frequencies ranged from 290 to 1,140 Hz. Both the first and second organ-pipe resonance modes of the fuel delivery tube were excited to obtain these frequencies. An analysis of the acoustic forcing characteristics within the resonance tube is provided in order to understand the source of the high amplitude forcing. Flow visualization of jets with first resonant forcing confirms the presence of large-scale coherent vortices and strong reverse flow near the exit of the fuel tube. With second-resonant forcing, however, vortices are not emitted from the tube as they are drawn back into the fuel tube before they can fully form. Increased fine-scale turbulence is associated with both resonant cases, but particularly at second resonance. The power spectra of the velocity fluctuations for a resonantly pulsed jet show the presence of an inertial subrange indicating that the flow becomes fully turbulent even for mean-Reynolds-number jets that are nominally laminar. It is shown that these pulsed jet flows exhibit strong similarities to synthetic jets and that the Strouhal number, based on the maximum velocity at the fuel tube exit, is the dominant parameter for scaling these flows. The Strouhal number determines the downstream location where the coherent vortices breakdown, and is found to provide better collapse of flame length data (both current and previous) than other parameters that have been used in the literature.

  11. Squirt flow due to interfacial water films in hydrate bearing sediments

    NASA Astrophysics Data System (ADS)

    Sell, Kathleen; Quintal, Beatriz; Kersten, Michael; Saenger, Erik H.

    2018-05-01

    Sediments containing gas hydrate dispersed in the pore space are known to show a characteristic seismic anomaly which is a high attenuation along with increasing seismic velocities. Currently, this observation cannot be fully explained albeit squirt-flow type mechanisms on the microscale have been speculated to be the cause. Recent major findings from in situ experiments, using the gas in excess and water in excess formation method, and coupled with high-resolution synchrotron-based X-ray micro-tomography, have revealed the systematic presence of thin water films between the quartz grains and the encrusting hydrate. The data obtained from these experiments underwent an image processing procedure to quantify the thicknesses and geometries of the aforementioned interfacial water films. Overall, the water films vary from sub-micrometer to a few micrometers in thickness. In addition, some of the water films interconnect through water bridges. This geometrical analysis is used to propose a new conceptual squirt flow model for hydrate bearing sediments. A series of numerical simulations is performed considering variations of the proposed model to study seismic attenuation caused by such thin water films. Our results support previous speculation that squirt flow can explain high attenuation at seismic frequencies in hydrate bearing sediments, but based on a conceptual squirt flow model which is geometrically different than those previously considered.

  12. Hydraulic-property estimates for use with a transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Elliott, Peggy E.; Geldon, Arthur L.

    2001-01-01

    The Death Valley regional ground-water flow system encompasses an area of about 43,500 square kilometers in southeastern California and southern Nevada, between latitudes 35? and 38?15' north and longitudes 115? and 117?45' west. The study area is underlain by Quaternary to Tertiary basin-fill sediments and mafic-lava flows; Tertiary volcanic, volcaniclastic, and sedimentary rocks; Tertiary to Jurassic granitic rocks; Triassic to Middle Proterozoic carbonate and clastic sedimentary rocks; and Early Proterozoic igneous and metamorphic rocks. The rock assemblage in the Death Valley region is extensively faulted as a result of several episodes of tectonic activity. This study is comprised of published and unpublished estimates of transmissivity, hydraulic conductivity, storage coefficient, and anisotropy ratios for hydrogeologic units within the Death Valley region study area. Hydrogeologic units previously proposed for the Death Valley regional transient ground-water flow model were recognized for the purpose of studying the distribution of hydraulic properties. Analyses of regression and covariance were used to assess if a relation existed between hydraulic conductivity and depth for most hydrogeologic units. Those analyses showed a weak, quantitatively indeterminate, relation between hydraulic conductivity and depth.

  13. Habitat Association and Seasonality in a Mosaic and Bimodal Hybrid Zone between Chorthippus brunneus and C. jacobsi (Orthoptera: Acrididae)

    PubMed Central

    Tatsuta, Haruki; Butlin, Roger K.

    2012-01-01

    Understanding why some hybrid zones are bimodal and others unimodal can aid in identifying barriers to gene exchange following secondary contact. The hybrid zone between the grasshoppers Chorthippus brunneus and C. jacobsi contains a mix of allopatric parental populations and inter-mingled bimodal and unimodal sympatric populations, and provides an ideal system to examine the roles of local selection and gene flow between populations in maintaining bimodality. However, it is first necessary to confirm, over a larger spatial scale, previously identified associations between population composition and season and habitat. Here we use cline-fitting of one morphological and one song trait along two valley transects, and intervening mountains, to confirm previously identified habitat associations (mountain versus valley) and seasonal changes in population composition. As expected from previous findings of studies on a smaller spatial scale, C. jacobsi dominated mountain habitats and mixed populations dominated valleys, and C. brunneus became more prevalent in August. Controlling for habitat and incorporating into the analysis seasonal changes in cline parameters and the standard errors of parental trait values revealed wider clines than previous studies (best estimates of 6.4 to 24.5 km in our study versus 2.8 to 4.7 km in previous studies) and increased percentage of trait variance explained (52.7% and 61.5% for transects 1 and 2 respectively, versus 17.6%). Revealing such strong and consistent patterns within a complex hybrid zone will allow more focused examination of the causes of variation in bimodality in mixed populations, in particular the roles of local selection versus habitat heterogeneity and gene flow between differentiated populations. PMID:22675485

  14. Toward Understanding Tip Leakage Flows in Small Compressor Cores Including Stator Leakage Flow

    NASA Technical Reports Server (NTRS)

    Berdanier, Reid A.; Key, Nicole L.

    2017-01-01

    The focus of this work was to provide additional data to supplement the work reported in NASA/CR-2015-218868 (Berdanier and Key, 2015b). The aim of that project was to characterize the fundamental flow physics and the overall performance effects due to increased rotor tip clearance heights in axial compressors. Data have been collected in the three-stage axial research compressor at Purdue University with a specific focus on analyzing the multistage effects resulting from the tip leakage flow. Three separate rotor tip clearances were studied with nominal tip clearance gaps of 1.5 percent, 3.0 percent, and 4.0 percent based on a constant annulus height. Overall compressor performance was previously investigated at four corrected speedlines (100 percent, 90 percent, 80 percent, and 68 percent) for each of the three tip clearance configurations. This study extends the previously published results to include detailed steady and time-resolved pressure data at two loading conditions, nominal loading (NL) and high loading (HL), on the 100 percent corrected speedline for the intermediate clearance level (3.0 percent). Steady detailed radial traverses of total pressure at the exit of each stator row are supported by flow visualization techniques to identify regions of flow recirculation and separation. Furthermore, detailed radial traverses of time-resolved total pressures at the exit of each rotor row have been measured with a fast-response pressure probe. These data were combined with existing three-component velocity measurements to identify a novel technique for calculating blockage in a multistage compressor. Time-resolved static pressure measurements have been collected over the rotor tips for all rotors with each of the three tip clearance configurations for up to five loading conditions along the 100 percent corrected speedline using fast-response piezoresistive pressure sensors. These time-resolved static pressure measurements reveal new knowledge about the trajectory of the tip leakage flow through the rotor passage. Further, these data extend previous measurements identifying a modulation of the tip leakage flow due to upstream stator wake propagation. Finally, a novel instrumentation technique has been implemented to measure pressures in the shrouded stator cavities. These data provide boundary conditions relating to the flow across the shrouded stator knife seal teeth. Moreover, the utilization of fast-response pressure sensors provides a new look at the time-resolved pressure field, leading to instantaneous differential pressures across the seal teeth. Ultimately, the data collected for this project represent a unique data set which contributes to build a better understanding of the tip leakage flow field and its associated loss mechanisms. These data will facilitate future engine design goals leading to small blade heights in the rear stages of high pressure compressors and aid in the development of new blade designs which are desensitized to the performance penalties attributed to rotor tip leakage flows.

  15. Equatorial Paleointensities from Kenya and the Well-behaved Geocentric Axial Dipole

    NASA Astrophysics Data System (ADS)

    Wang, H.; Kent, D. V.

    2017-12-01

    A previous study of Plio-Pleistocene lavas from the equatorial Galapagos Islands (latitude 1ºS) that used an adjustment for multidomain (MD) effects [Wang and Kent, 2013 G-cubed] obtained a mean paleointensity of 21.6 ± 11.0 µT (1σ, same in the following) from 27 lava flows [Wang et al., 2015 PNAS]. This is about half of the present-day value. Here, in a pilot study to check this result, we utilized previously thermally demagnetized specimens of Plio-Pleistocene lavas from the Mt. Kenya region (latitude 0º) and fresh specimens from the Loiyangalani region (latitude 3ºN) of Kenya that were previously studied for paleosecular variation [Opdyke et al., 2010 G-cubed] for paleointensity studies. We selected 2-3 specimens from each of 30 lava sites from Mt. Kenya region and 31 lava sites from Loiyangalani region with coherent directions and not exhibiting any indications of having been struck by severe lightning. Rock magnetic data show that the main magnetization carriers are fine-grained pseudo-single-domain magnetite with saturation remanence to saturation magnetization ratios (Mr/Ms) ranging from 0.05 to 0.60 [Opdyke et al., 2010, G-cubed]. Our preliminary MD-adjusted paleointensity results (Loiyangalani specimens with tTRM thermal alteration check [Wang and Kent, 2013 G-cubed]; Mt. Kenya specimens with an alternate thermal alteration check) show that the overall mean values are 15.3 ± 5.7 µT for the Mt. Kenya region (from 7 lava flows) and 16.4 ± 5.2 µT for the Loiyangalani region (from 8 lava flows). Along with paleointensities from Antarctica (latitude 78ºS, 33.4 ± 13.9 µT from 38 lava flows) [Lawrence et al., 2009 G-cubed], Iceland (latitude 64ºN, 37.7 ± 14.2 µT from 10 lava flows) [Cromwell et al., 2015 JGR] and Galapagos [Wang et al., 2015 PNAS], our preliminary Kenya lava results support a geocentric axial dipole (GAD) model of the time-averaged field in both direction (tan[inclination] = 2×tan[latitude]) and paleointensity (equatorial:polar = 1:2) but which is only half of the present-day field strength. Along with Galapagos data, our Kenya paleointensity results also suggest that there is little longitudinal asymmetry in the GAD for the past few million years.

  16. Color surface-flow visualization of fin-generated shock wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Lu, F. K.; Settles, G. S.

    1990-01-01

    Kerosene-lampblack mixtures with addition of a ground colored chalk were used in an experiment on visualizing surface flows of swept shock boundary-layer interactions. The results show that contrasting colors intensify the visualization of different regions of the interaction surface, and help the eye in following the fine streaks to locate the upstream influence. The study confirms observations of the separation occurring at shock strength below accepted values. The superiority of the reported technique over the previous monochrome technique is demonstrated.

  17. Blood flow problem in the presence of magnetic particles through a circular cylinder using Caputo-Fabrizio fractional derivative

    NASA Astrophysics Data System (ADS)

    Uddin, Salah; Mohamad, Mahathir; Khalid, Kamil; Abdulhammed, Mohammed; Saifullah Rusiman, Mohd; Che – Him, Norziha; Roslan, Rozaini

    2018-04-01

    In this paper, the flow of blood mixed with magnetic particles subjected to uniform transverse magnetic field and pressure gradient in an axisymmetric circular cylinder is studied by using a new trend of fractional derivative without singular kernel. The governing equations are fractional partial differential equations derived based on the Caputo-Fabrizio time-fractional derivatives NFDt. The current result agrees considerably well with that of the previous Caputo fractional derivatives UFDt.

  18. Color surface-flow visualization of fin-generated shock wave boundary-layer interactions

    NASA Astrophysics Data System (ADS)

    Lu, F. K.; Settles, G. S.

    1990-03-01

    Kerosene-lampblack mixtures with addition of a ground colored chalk were used in an experiment on visualizing surface flows of swept shock boundary-layer interactions. The results show that contrasting colors intensify the visualization of different regions of the interaction surface, and help the eye in following the fine streaks to locate the upstream influence. The study confirms observations of the separation occurring at shock strength below accepted values. The superiority of the reported technique over the previous monochrome technique is demonstrated.

  19. The morphological heterogeneity of cricket flow-sensing hairs conveys the complex flow signature of predator attacks.

    PubMed

    Steinmann, Thomas; Casas, Jérôme

    2017-06-01

    Arthropod flow-sensing hair length ranges over more than an order of magnitude, from 0.1 to 5 mm. Previous studies repeatedly identified the longest hairs as the most sensitive, but recent studies identified the shortest hairs as the most responsive. We resolved this apparent conflict by proposing a new model, taking into account both the initial and long-term aspects of the flow pattern produced by a lunging predator. After the estimation of the mechanical parameters of hairs, we measured the flow produced by predator mimics and compared the predicted and observed values of hair displacements in this flow. Short and long hairs respond over different time scales during the course of an attack. By harbouring a canopy of hairs of different lengths, forming a continuum, the insect can fractionize these moments. Short hairs are more agile, but are less able to harvest energy from the air. This may result in longer hairs firing their neurons earlier, despite their slower deflection. The complex interplay between hair agility and sensitivity is also modulated by the predator distance and the attack speed, characteristics defining flow properties. We conclude that the morphological heterogeneity of the hair canopy mirrors the flow complexity of an entire attack, from launch to grasp. © 2017 The Author(s).

  20. Sodium nitroprusside increases human skeletal muscle blood flow, but does not change flow distribution or glucose uptake.

    PubMed

    Pitkanen, O P; Laine, H; Kemppainen, J; Eronen, E; Alanen, A; Raitakari, M; Kirvela, O; Ruotsalainen, U; Knuuti, J; Koivisto, V A; Nuutila, P

    1999-12-15

    1. The role of blood flow as a determinant of skeletal muscle glucose uptake is at present controversial and results of previous studies are confounded by possible direct effects of vasoactive agents on glucose uptake. Since increase in muscle blood flow can be due to increased flow velocity or recruitment of new capillaries, or both, it would be ideal to determine whether the vasoactive agent affects flow distribution or only increases the mean flow. 2. In the present study blood flow, flow distribution and glucose uptake were measured simultaneously in both legs of 10 healthy men (aged 29 +/- 1 years, body mass index 24 +/- 1 kg m-2) using positron emission tomography (PET) combined with [15O]H2O and [18F]fluoro-2-deoxy-D-glucose (FDG). The role of blood flow in muscle glucose uptake was studied by increasing blood flow in one leg with sodium nitroprusside (SNP) and measuring glucose uptake simultaneously in both legs during euglycaemic hyperinsulinaemia (insulin infusion 6 pmol kg-1 min-1). 3. SNP infusion increased skeletal muscle blood flow by 86 % (P < 0.01), but skeletal muscle flow distribution and insulin-stimulated glucose uptake (61.4 +/- 7. 5 vs. 67.0 +/- 7.5 micromol kg-1 min-1, control vs. SNP infused leg, not significant), as well as flow distribution between different tissues of the femoral region, remained unchanged. The effect of SNP infusion on blood flow and distribution were unchanged during infusion of physiological levels of insulin (duration, 150 min). 4. Despite a significant increase in mean blood flow induced by an intra-arterial infusion of SNP, glucose uptake and flow distribution remained unchanged in resting muscles of healthy subjects. These findings suggest that SNP, an endothelium-independent vasodilator, increases non-nutritive, but not nutritive flow or capillary recruitment.

  1. Blood Flow through an Open-Celled Foam

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  2. An Investigation of Factors Determining the Study Abroad Destination Choice: A Case Study of Taiwan

    ERIC Educational Resources Information Center

    Lee, Cheng-Fei

    2014-01-01

    Previous studies on the field of education abroad have mainly focused on the factors influencing the mobility of international students from developing to developed countries and very few have been conducted to investigate the factors influencing the flow of international students to the Asia Pacific region. As a piece of country-specific…

  3. Rheology and Ages of Lava Flows on Arsia and Pavonis Mons, Mars

    NASA Astrophysics Data System (ADS)

    Hiesinger, Harald; Bartel, Nicole; Boas, Theresa; Reiss, Dennis; Pasckert, Jan H.; van der Bogert, Carolyn H.

    2015-04-01

    We performed a new study of young lava flows on Arsia and Pavonis Mons. Compared to our previous study of Arsia and Pavonis flows [1], we not only expanded on the number of flows (13 additional new flows at Arsia; six new flows at Pavonis), but we also derived absolute model ages (AMAs) based on crater size-frequency distribution (CSFD) measurements. On the basis of the current study, we find that the yield strengths of the studied lava flows on Arsia Mons vary between ~2.54 x 102 Pa and ~9.63 x 103 Pa. The effusion rates are on average ~563 m3s-1. The calculated eruption durations range from three days to ~142 days with an average of ~32 days. The viscosities of the lava flows on Arsia Mons are on average ~2.54 x 106 Pa-s and vary between ~1.32 x 104 and ~2.88 x 107 Pa-s. The study also revealed an average yield strength of the Pavonis flows of ~3.56 x 103 Pa, ranging from ~2.5 x 102 to ~8.6 x 103 Pa. The effusion rates range from ~ 60 m3s-1 to ~309 m3s-1, with an average value of ~197 m3s-1. The investigated flows are characterized by an eruption duration in the range of ~3 to ~41 days, averaging about 15 days. The viscosities vary between ~2.8 x 104 Pa-s and ~7.6 x 106 Pa-s, with an average value of ~1.77 x 106 Pa-s. The new CSFD measurements for the Arsia flows yielded AMAs between ~36 and ~857 Ma. One unit shows an underlying older age of ~2.50 Ga and evidence for a resurfacing event at ~857 Ma. These ages are similar to those presented by [2-4] for the caldera of Arsia Mons, i.e., ~100-200 Ma. In addition, [4] argued that their ages represent the latest stages of summit and flank eruptions and that earlier episodes stopped at about 500 Ma, 800 Ma, and 2 Ga ago. Previously, we performed the first study that correlated rheologic properties and AMAs of lava flows on Elysium Mons [5]. We reported that the yield strengths of 32 investigated Elysium flows are on the order of ~3.0 x 103 Pa, ranging from ~3.8 x 102 to ~1.5 x 104 Pa. The effusion rates of the flows range from ~99 to ~4450 m3s-1, averaging at ~747 m3s-1. The lava flows were emplaced in less than a week (very small flows) to up to half a year (~6-183 days). Viscosities were calculated to be on average ~4.1 x 102 Pa-s, with a range of ~1.2 x 105 to ~3.1 x 107 Pa-s. The AMAs of the Elysium flows range from ~632 to ~3460 Ma [5]. Lava flows on both Arsia and Elysium Mons do not show any systematic correlations between the rheologic properties and model ages. In particular, neither yield strength and effusion rate, nor viscosity seems to be correlated with the AMA. Thus, the rheology of the studied flows did not change over several hundreds of million years. Preliminary results for Pavonis flows also do not show systematic changes of the rheology with time. [1] Hiesinger et al. (2008) LPSC 39, 1277. [2] Neukum et al. (2004) Nature 432, 971-979. [3] Robbins et al. (2011) Icarus 211, 1179-1203. [4] Werner (2009) Icarus 201, 44-68. [5] Pasckert et al. (2012) Icarus 219, 443-457.

  4. Renal hemodynamics: the influence of the renal artery ostium flow diverter

    NASA Astrophysics Data System (ADS)

    Rossmann, Jenn Stroud; Albert, Scott; Balaban, Robert

    2013-11-01

    The recently identified renal artery ostium flow diverter may preferentially direct blood flow to the renal arteries, and may also influence flow patterns and recirculation known to be involved in atherogenesis. Three-dimensional computational fluid dynamics (CFD) simulations of steady and pulsatile blood flow are performed to investigate the influence of diverter size and position, and vascular geometry, on the flow patterns and fluid mechanical forces in the neighborhood of the diverter. CFD results show that the flow diverter does affect the blood distribution: depending on the diverter's position, the flow to the renal arteries may be increased or reduced. The results of simulations also show the diverter's effect on the Wall Shear Stress (WSS) distribution, and suggest that the diverter contributes to an atherogenic environment in the abdominal aorta, while being atheroprotective in the renal arteries themselves. These results support previous clinical findings, and suggest directions for further clinical study. The results of this work have direct implications in understanding the physiological significance of the diverter, and its potential role in the pathophysiological development of atherosclerosis.

  5. Partial slip effect in the flow of MHD micropolar nanofluid flow due to a rotating disk - A numerical approach

    NASA Astrophysics Data System (ADS)

    Ramzan, Muhammad; Chung, Jae Dong; Ullah, Naeem

    The aim of present exploration is to study the flow of micropolar nanofluid due to a rotating disk in the presence of magnetic field and partial slip condition. The governing coupled partial differential equations are reduced to nonlinear ordinary differential equations using appropriate transformations. The differential equations are solved numerically by using Maple dsolve command with option numeric which utilize Runge-Kutta fourth-fifth order Fehlberg technique. A comparison to previous study is also added to validate the present results. Moreover, behavior of different parameters on velocity, microrotation, temperature and concentration of nanofluid are presented via graphs and tables. It is noted that the slip effect and magnetic field decay the velocity and microrotation or spin component.

  6. Response of Metal Core Piezoelectric Fibers to Unsteady Airflows

    NASA Astrophysics Data System (ADS)

    Qiu, J. H.; Ji, H. L.; Zhu, K. J.; Park, M. J.

    In the previous study, possible applications of metal core piezoelectric fibers with a diameter of 200 to 250 µm as bionic airflow sensors mimicking the flow sensitive receptor hairs of crickets have been proposed. This study aims to investigate the dynamic responses of the metal core piezoelectric fibers to unsteady airflow. The metal core piezoelectric fiber is half coated on the outer surface and is used in the bending mode. Wind tunnel tests were carried out and the output voltage of the fiber under the excitation of the unsteady aerodynamic force during flow acceleration and deceleration was measured when the wind tunnel was suddenly closed or opened by a shutter. The relationship between the maximum voltage and the steady-state velocity and that between the voltage and the acceleration of flow were also obtained.

  7. Long-term temperature monitoring at the biological community site on the Nankai accretionary prism off Kii Peninsula

    NASA Astrophysics Data System (ADS)

    Goto, S.; Hamamoto, H.; Yamano, M.; Kinoshita, M.; Ashi, J.

    2008-12-01

    Nankai subduction zone off Kii Peninsula is one of the most intensively surveyed areas for studies on the seismogenic zone. Multichannel seismic reflection surveys carried out in this area revealed the existence of splay faults that branched from the subduction zone plate boundary [Park et al., 2002]. Along the splay faults, reversal of reflection polarity was observed, indicating elevated pore fluid pressure along the faults. Cold seepages with biological communities were discovered along a seafloor outcrop of one of the splay faults through submersible observations. Long-term temperature monitoring at a biological community site along the outcrop revealed high heat flow carried by upward fluid flow (>180 mW/m2) [Goto et al., 2003]. Toki et al. [2004] estimated upward fluid flow rates of 40-200 cm/yr from chloride distribution of interstitial water extracted from sediments in and around biological community sites along the outcrop. These observation results suggest upward fluid flow along the splay fault. In order to investigate hydrological nature of the splay fault, we conducted long-term temperature monitoring again in the same cold seepage site where Goto et al. [2003] carried out long-term temperature monitoring. In this presentation, we present results of the temperature monitoring and estimate heat flow carried by upward fluid flow from the temperature records. In this long-term temperature monitoring, we used stand-alone heat flow meter (SAHF), a probe-type sediment temperature recorder. Two SAHFs (SAHF-3 and SAHF-4) were used in this study. SAHF-4 was inserted into a bacterial mat, within several meters of which the previous long-term temperature monitoring was conducted. SAHF-3 was penetrated into ordinary sediment near the bacterial mat. The sub-bottom temperature records were obtained for 8 months. The subsurface temperatures oscillated reflecting bottom- water temperature variation (BTV). For sub-bottom temperatures measured with SAHF-3 (outside of the bacterial mat), we found that the effects of the BTV propagated into sediment by conduction only. By correcting the effect of the BTV, conductive heat flow estimated is higher than 100 mW/m2. Sub-bottom temperatures measured within bacterial mat (SAHF-4) except for the topmost sensor could be explained by a conduction model. The heat flow estimated based on the conduction model is similar to that measured with SAHF-3. The temperature of the topmost sensor is slightly higher than that expected from the conduction model. To explain the high temperature, upward fluid flow at a rate of 10-7 m/s order is needed. Heat flow carried by the upward fluid flow is higher than that estimated by Goto et al. [2003]. Heat flow value expected from the distribution of heat flow around this area is 70-80 mW/m2. The high heat flow values inside and outside the bacterial mat estimated in the present and previous studies may reflect upward fluid flow along the splay fault.

  8. Cubic law with aperture-length correlation: implications for network scale fluid flow

    NASA Astrophysics Data System (ADS)

    Klimczak, Christian; Schultz, Richard A.; Parashar, Rishi; Reeves, Donald M.

    2010-06-01

    Previous studies have computed and modeled fluid flow through fractured rock with the parallel plate approach where the volumetric flow per unit width normal to the direction of flow is proportional to the cubed aperture between the plates, referred to as the traditional cubic law. When combined with the square root relationship of displacement to length scaling of opening-mode fractures, total flow rates through natural opening-mode fractures are found to be proportional to apertures to the fifth power. This new relationship was explored by examining a suite of flow simulations through fracture networks using the discrete fracture network model (DFN). Flow was modeled through fracture networks with the same spatial distribution of fractures for both correlated and uncorrelated fracture length-to-aperture relationships. Results indicate that flow rates are significantly higher for correlated DFNs. Furthermore, the length-to-aperture relations lead to power-law distributions of network hydraulic conductivity which greatly influence equivalent permeability tensor values. These results confirm the importance of the correlated square root relationship of displacement to length scaling for total flow through natural opening-mode fractures and, hence, emphasize the role of these correlations for flow modeling.

  9. Computer Simulations of Coronary Blood Flow Through a Constriction

    DTIC Science & Technology

    2014-03-01

    interventional procedures (e.g., stent deployment). Building off previous models that have been partially validated with experimental data, this thesis... stent deployment). Building off previous models that have been partially validated with experimental data, this thesis continues to develop the...the artery and increase blood flow. Generally a stent , or a mesh wire tube, is permanently inserted in order to scaffold open the artery wall

  10. Clocking of stators in one and half stage of axial steam turbine

    NASA Astrophysics Data System (ADS)

    Němec, Martin; Jelínek, Tomáš; Milčák, Petr

    2018-06-01

    An investigation of one and half axial turbine stage configuration was carried out in a closed-loop wind tunnel. The investigation was addressed to that impact how the previous stage outlet flow field influences the flow structures in the next stator in steam multistage turbines. The stage - stator interaction has been studied in this work. The detailed measurement with a pneumatic probes and fast response pressure probes behind the rotor and the second stator were performed to gain the useful data to analyze the impact. The detailed flow field measurement was carried out in the nominal stage regime (given by the stage isentropic Mach number 0.3 and velocity ratio u/c 0.68). The clocking effect of the stators is discussed and detailed unsteady flow analysis is shown.

  11. Computational open-channel hydraulics for movable-bed problems

    USGS Publications Warehouse

    Lai, Chintu; ,

    1990-01-01

    As a major branch of computational hydraulics, notable advances have been made in numerical modeling of unsteady open-channel flow since the beginning of the computer age. According to the broader definition and scope of 'computational hydraulics,' the basic concepts and technology of modeling unsteady open-channel flow have been systematically studied previously. As a natural extension, computational open-channel hydraulics for movable-bed problems are addressed in this paper. The introduction of the multimode method of characteristics (MMOC) has made the modeling of this class of unsteady flows both practical and effective. New modeling techniques are developed, thereby shedding light on several aspects of computational hydraulics. Some special features of movable-bed channel-flow simulation are discussed here in the same order as given by the author in the fixed-bed case.

  12. Dilution jet configurations in a reverse flow combustor. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Zizelman, J.

    1985-01-01

    Results of measurements of both temperature and velocity fields within a reverse flow combustor are presented. Flow within the combustor is acted upon by perpendicularly injected cooling jets introduced at three different locations along the inner and outer walls of the combustor. Each experiment is typified by a group of parameters: density ratio, momentum ratio, spacing ratio, and confinement parameter. Measurements of both temperature and velocity are presented in terms of normalized profiles at azimuthal positions through the turn section of the combustion chamber. Jet trajectories defined by minimum temperature and maximum velocity give a qualitative indication of the location of the jet within the cross flow. Results of a model from a previous temperature study are presented in some of the plots of data from this work.

  13. Fourier Collocation Approach With Mesh Refinement Method for Simulating Transit-Time Ultrasonic Flowmeters Under Multiphase Flow Conditions.

    PubMed

    Simurda, Matej; Duggen, Lars; Basse, Nils T; Lassen, Benny

    2018-02-01

    A numerical model for transit-time ultrasonic flowmeters operating under multiphase flow conditions previously presented by us is extended by mesh refinement and grid point redistribution. The method solves modified first-order stress-velocity equations of elastodynamics with additional terms to account for the effect of the background flow. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the fast Fourier transform, while the time integration is realized by the explicit third-order Runge-Kutta finite-difference scheme. The method is compared against analytical solutions and experimental measurements to verify the benefit of using mapped grids. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating under multiphase flow conditions is carried out.

  14. Experimental studies of transonic flow field near a longitudinally slotted wind tunnel wall. Ph.D. Thesis - George Washington Univ., 1988

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Bobbitt, Percy J.

    1994-01-01

    The results of detailed parametric experiments are presented for the near-wall flow field of a longitudinally slotted transonic wind tunnel. Existing data are reevaluated and new data obtained in the Langley 6- by 19-inch Transonic Wind Tunnel are presented and analyzed. In the experiments, researchers systematically investigate many pertinent wall-geometry variables such as the wall openness and the number of slots along with the free stream Mach number and model angle of attack. Flow field surveys on the plane passing through the centerline of the slot were conducted and are presented. The effects of viscosity on the slot flow are considered in the analysis. The present experiments, combined with those of previous investigations, give a more complete physical characterization of the flow near and through the slotted wall of a transonic wind tunnel.

  15. Mantle flow through a tear in the Nazca slab inferred from shear wave splitting

    NASA Astrophysics Data System (ADS)

    Lynner, Colton; Anderson, Megan L.; Portner, Daniel E.; Beck, Susan L.; Gilbert, Hersh

    2017-07-01

    A tear in the subducting Nazca slab is located between the end of the Pampean flat slab and normally subducting oceanic lithosphere. Tomographic studies suggest mantle material flows through this opening. The best way to probe this hypothesis is through observations of seismic anisotropy, such as shear wave splitting. We examine patterns of shear wave splitting using data from two seismic deployments in Argentina that lay updip of the slab tear. We observe a simple pattern of plate-motion-parallel fast splitting directions, indicative of plate-motion-parallel mantle flow, beneath the majority of the stations. Our observed splitting contrasts previous observations to the north and south of the flat slab region. Since plate-motion-parallel splitting occurs only coincidentally with the slab tear, we propose mantle material flows through the opening resulting in Nazca plate-motion-parallel flow in both the subslab mantle and mantle wedge.

  16. Material point method of modelling and simulation of reacting flow of oxygen

    NASA Astrophysics Data System (ADS)

    Mason, Matthew; Chen, Kuan; Hu, Patrick G.

    2014-07-01

    Aerospace vehicles are continually being designed to sustain flight at higher speeds and higher altitudes than previously attainable. At hypersonic speeds, gases within a flow begin to chemically react and the fluid's physical properties are modified. It is desirable to model these effects within the Material Point Method (MPM). The MPM is a combined Eulerian-Lagrangian particle-based solver that calculates the physical properties of individual particles and uses a background grid for information storage and exchange. This study introduces chemically reacting flow modelling within the MPM numerical algorithm and illustrates a simple application using the AeroElastic Material Point Method (AEMPM) code. The governing equations of reacting flows are introduced and their direct application within an MPM code is discussed. A flow of 100% oxygen is illustrated and the results are compared with independently developed computational non-equilibrium algorithms. Observed trends agree well with results from an independently developed source.

  17. The use of TIMS for mapping different pahoehoe surfaces: Mauna Iki, Kilauea

    NASA Technical Reports Server (NTRS)

    Rowland, Scott K.

    1992-01-01

    S-type and p-type pahoehoe record different mechanisms and vigors of activity within an active flow field. There is some controversy about what these mechanisms are exactly, and this study was undertaken with the idea that an accurate map of the two surfaces within a pahoehoe flow field could be helpful in solving the problem. Thermal Infrared Multispectral Scanner (TIMS) allows discrimination between s-type and p-type pahoehoe, and this ability was used to map the two surface types on the Mauna Iki satellite shield (southwest rift zone, Kilauea Volcano). TIMS was previously used to discriminate a'a from pahoehoe as well as to determine relative age relationships of different flows. Although inter-flow variation was minor in the data published by these authors, a second goal presented is to understand such variations to better constrain intra-flow differences used for age dating.

  18. Heat flow pattern in the gas hydrate drilling areas of northern south china sea and the implication for further study

    NASA Astrophysics Data System (ADS)

    Wang, Lifeng; Sha, Zhibin

    2015-04-01

    Numerous seismic reflection profiles have been acquired by China Geological Survey (CGS) in the Northern Slope of South China Sea (SCS), clearly indicating widespread occurrence of free gases and/or gas hydrates in the sediments. In the year 2007 and 2013 respectively the gas hydrate samples are successfully recovered during two offshore drilling exploratory programs. Results of geothermal data during previous field studies along the north continental margin, however, show that the gas hydrate sites are associated with high geothermal background in contrast to the other offshore ones where the gas hydrates are more likely to be found in the low geothermal regional backgrounds. There is a common interesting heat flow pattern during the two drilling expeditions that the gas hydrate occurrences coincide with the presences of comparatively low geothermal anomalies against the high thermal background which is mainly caused by concentrated fluid upward movements into the stability zone (GHSZ) detected by the surface heat flow measurements over the studied fields. The key point for understanding the coupling between the presences of the gas hydrates and heat flow pattern at regional scale is to know the cause of high heat flows and the origin of forming gases at depth. We propose that these high heat flows are attributed to elevated shallow fault-fissure system due to the tectonic activities. A remarkable series of vertical faults and fissures are common on the upper continental slope and the forming gases are thought to have migrated with hot advective fluid flows towards seafloor mainly via fault-fissure system from underlying source rocks which are deeper levels than those of the GHSZ. The present study is based on an extensive dataset on hydrate distribution and associated temperature field measurements collected in the vicinity of studied areas during a series of field expeditions organized within the framework of national widely collaborative projects. Those observations bring new insights to our growing understanding of the stability of this dynamic hydrate reservoir in the continental margin shallow subsurface, and alert us that occurrence patterns may be more complex than previously thought. So the future aim of this program is to better understand the factors constraining the distribution of hydrate deposits, and the processes involved in gas hydrate formation.

  19. Effect of Very-High-Flow Nasal Therapy on Airway Pressure and End-Expiratory Lung Impedance in Healthy Volunteers.

    PubMed

    Parke, Rachael L; Bloch, Andreas; McGuinness, Shay P

    2015-10-01

    Previous research has demonstrated a positive linear correlation between flow delivered and airway pressure generated by high-flow nasal therapy. Current practice is to use flows over a range of 30-60 L/min; however, it is technically possible to apply higher flows. In this study, airway pressure measurements and electrical impedance tomography were used to assess the relationship between flows of up to 100 L/min and changes in lung physiology. Fifteen healthy volunteers were enrolled into this study. A high-flow nasal system capable of delivering a flow of 100 L/min was purpose-built using 2 Optiflow systems. Airway pressure was measured via the nasopharynx, and cumulative changes in end-expiratory lung impedance were recorded using the PulmoVista 500 system at gas flows of 30-100 L/min in increments of 10 L/min. The mean age of study participants was 31 (range 22-44) y, the mean ± SD height was 171.8 ± 7.5 cm, the mean ± SD weight was 69.7 ± 10 kg, and 47% were males. Flows ranged from 30 to 100 L/min with resulting mean ± SD airway pressures of 2.7 ± 0.7 to 11.9 ± 2.7 cm H2O. A cumulative and linear increase in end-expiratory lung impedance was observed with increasing flows, as well as a decrease in breathing frequency. Measured airway pressure and lung impedance increased linearly with increased gas flow. Observed airway pressures were in the range used clinically with face-mask noninvasive ventilation. Developments in delivery systems may result in this therapy being an acceptable alternative to face-mask noninvasive ventilation. Copyright © 2015 by Daedalus Enterprises.

  20. Study of grid independence of finite element method on MHD free convective casson fluid flow with slip effect

    NASA Astrophysics Data System (ADS)

    Raju, R. Srinivasa; Ramesh, K.

    2018-05-01

    The purpose of this work is to study the grid independence of finite element method on MHD Casson fluid flow past a vertically inclined plate filled in a porous medium in presence of chemical reaction, heat absorption, an external magnetic field and slip effect has been investigated. For this study of grid independence, a mathematical model is developed and analyzed by using appropriate mathematical technique, called finite element method. Grid study discussed with the help of numerical values of velocity, temperature and concentration profiles in tabular form. avourable comparisons with previously published work on various special cases of the problem are obtained.

  1. Real-time display of flow-pressure-volume loops.

    PubMed

    Morozoff, P E; Evans, R W

    1992-01-01

    Graphic display of respiratory waveforms can be valuable for monitoring the progress of ventilated patients. A system has been developed that can display flow-pressure-volume loops as derived from a patient's respiratory circuit in real time. It can also display, store, print, and retrieve ventilatory waveforms. Five loops can be displayed at once: current, previous, reference, "ideal," and previously saved. Two components, the data-display device (DDD) and the data-collection device (DCD), comprise the system. An IBM 286/386 computer with a graphics card (VGA) and bidirectional parallel port is used for the DDD; an eight-bit microprocessor card and an A/D convertor card make up the DCD. A real-time multitasking operating system was written to control the DDD, while the DCD operates from in-line assembly code. The DCD samples the pressure and flow sensors at 100 Hz and looks for a complete flow waveform pattern based on flow slope. These waveforms are then passed to the DDD via the mutual parallel port. Within the DDD a process integrates the flow to create a volume signal and performs a multilinear regression on the pressure, flow, and volume data to calculate the elastance, resistance, pressure offset, and coefficient of determination. Elastance, resistance, and offset are used to calculate Pr and Pc where: Pr[k] = P[k]-offset-(elastance.V[k]) and Pc[k] = P[k]-offset-(resistance.F[k]). Volume vs. Pc and flow vs. Pr can be displayed in real time. Patient data from previous clinical tests were loaded into the device to verify the software calculations. An analog waveform generator was used to simulate flow and pressure waveforms that validated the system.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Weakening of the relationship between the Indian Ocean Dipole and the ENSO in recent decades

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Young; Ham, Yoo-Geun; Kug, Jong-Seong

    2016-04-01

    This study reports, on the 20th century the relationship between the El Nino Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) was weaker then late 1990s. We shows that 15-yr moving correlation between the Nino3.4 index during the December to February (DJF) and IOD index during the September to November (SON) season. At this results we divided previous decades (1979 to 1998) and late decades (1999 to 2014). The correlation coefficient was 0.64 in the previous decades and 0.21 in the late decades. Late decades was suddenly weaker then previous decades. Because, there is a big difference between previous decades and late decades in the ENSO regressed precipitation anomaly spatial distribution during the El Nino developing the MAM season. There was existed positive precipitation anomalies over the off-equatorial western Pacific. It was induced the cross-equatorial southerly flow over the eastern Indian Ocean and maritime continent. It means cross-equatorial southerly flow was key point to understanding ENSO-IOD coupling system. In addition, using the climate models participated in Coupled Model Intercomparison Project phase 5 (CMIP5) supports the observational results.

  3. Vibroconvective mixing applied to vertical Bridgman growth

    NASA Astrophysics Data System (ADS)

    Zawilski, Kevin T.; Claudia, M.; Custodio, C.; DeMattei, Robert C.; Feigelson, Robert S.

    2003-10-01

    A promising method for stirring melts during vertical Bridgman growth is the coupled vibrational stirring (CVS) method. It involves the application of low frequency vibrations to the outside of the growth ampoule and produces strong flows emanating from the fluid surface. Although the technique was pioneered a number of years ago, previous studies have not provided sufficient information to explain how to control CVS generated flows in a particular system. This paper examines both the fluid flow produced by CVS and the effect of these flows on a model oxide growth system. CVS generated flows were studied using tracer particles in a water/glycerin system. The particle velocities were measured as a function of distance from the fluid surface. A large velocity gradient, decreasing from the surface, was found to be present. The velocity profile produced was dependent on the vibrational amplitude and frequency, the crucible diameter, and the fluid viscosity. The effects of CVS flows on the crystal growth interface were studied using NaNO 3 as a model oxide. Under non-growth conditions (i.e. no furnace or crucible translation), the solid-liquid interface position was found to be a strong function of vibrational frequency once CVS generated flows approached the interface. During crystal growth, undesirable growth rate fluctuations were found as the growth interface moved into regions of increasing fluid flow. This data suggests that a control system in which CVS flows are continuously decreased during growth to maintain a constant flow rate in the vicinity of the growth interface is necessary in order to prevent or reduce growth rate fluctuations.

  4. Oscillatory/Chaotic Thermocapillary Flow Induced by Radiant Heating

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth J.

    1998-01-01

    There is a continuing need to understand the fluid physics occurring under low gravity conditions in processes such as crystal growth, materials processing, and the movement of bubbles or droplets. The fluid flow in such situations is often caused by a gradient in interfacial tension. If a temperature gradient is created due to a heat source, the resulting flow is called thermocapillary flow, a special case of Marangoni Convection. In this study, an experimental investigation was conducted using silicone oil in cylindrical containers with a laser heat source at the free surface. It was desired to determine the conditions under which steady, axisymmetrical thermocapillary flow becomes unstable and oscillatory three-dimensional flow states develop. The critical Marangoni number for each observed oscillatory state was measured as a function of the container aspect ratio and the dynamic Bond number, a measure of buoyant force versus ii thermocapillary force. Various oscillatory modes were observed during three- dimensional convection, and chaotic flow was reached in one test condition. The critical Marangoni numbers are compared with those measured in previous studies, and the power spectra and phase trajectories of the instantaneous surface temperature distributions are used to characterize the routes of transitions to the chaotic flow state. Results show that only superharmonic modes appear in the routes to chaos while infinite number of subharmonic modes occur in flow transitions for pure Rayleigh convection.

  5. Balancing practicality and hydrologic realism: a parsimonious approach for simulating rapid groundwater recharge via unsaturated-zone preferential flow

    USGS Publications Warehouse

    Mirus, Benjamin B.; Nimmo, J.R.

    2013-01-01

    The impact of preferential flow on recharge and contaminant transport poses a considerable challenge to water-resources management. Typical hydrologic models require extensive site characterization, but can underestimate fluxes when preferential flow is significant. A recently developed source-responsive model incorporates film-flow theory with conservation of mass to estimate unsaturated-zone preferential fluxes with readily available data. The term source-responsive describes the sensitivity of preferential flow in response to water availability at the source of input. We present the first rigorous tests of a parsimonious formulation for simulating water table fluctuations using two case studies, both in arid regions with thick unsaturated zones of fractured volcanic rock. Diffuse flow theory cannot adequately capture the observed water table responses at both sites; the source-responsive model is a viable alternative. We treat the active area fraction of preferential flow paths as a scaled function of water inputs at the land surface then calibrate the macropore density to fit observed water table rises. Unlike previous applications, we allow the characteristic film-flow velocity to vary, reflecting the lag time between source and deep water table responses. Analysis of model performance and parameter sensitivity for the two case studies underscores the importance of identifying thresholds for initiation of film flow in unsaturated rocks, and suggests that this parsimonious approach is potentially of great practical value.

  6. Processes and rates of sediment and wood accumulation in headwater streams of the Oregon Coast Range, USA

    USGS Publications Warehouse

    May, Christine L.; Gresswell, Robert E.

    2003-01-01

    Channels that have been scoured to bedrock by debris flows provide unique opportunities to calculate the rate of sediment and wood accumulation in low-order streams, to understand the temporal succession of channel morphology following disturbance, and to make inferences about processes associated with input and transport of sediment. Dendrochronology was used to estimate the time since the previous debris flow and the time since the last stand-replacement fire in unlogged basins in the central Coast Range of Oregon. Debris flow activity increased 42 per cent above the background rate in the decades immediately following the last wildfire. Changes in wood and sediment storage were quantified for 13 streams that ranged from 4 to 144 years since the previous debris flow. The volume of wood and sediment in the channel, and the length of channel with exposed bedrock, were strongly correlated with the time since the previous debris flow. Wood increased the storage capacity of the channel and trapped the majority of the sediment in these steep headwater streams. In the absence of wood, channels that have been scoured to bedrock by a debris flow may lack the capacity to store sediment and could persist in a bedrock state for an extended period of time. With an adequate supply of wood, low-order channels have the potential of storing large volumes of sediment in the interval between debris flows and can function as one of the dominant storage reservoirs for sediment in mountainous terrain.

  7. Improved prediction of disturbed flow via hemodynamically-inspired geometric variables.

    PubMed

    Bijari, Payam B; Antiga, Luca; Gallo, Diego; Wasserman, Bruce A; Steinman, David A

    2012-06-01

    Arterial geometry has long been considered as a pragmatic alternative for inferring arterial flow disturbances, and their impact on the natural history and treatment of vascular diseases. Traditionally, definition of geometric variables is based on convenient shape descriptors, with only superficial consideration of their influence on flow and wall shear stress patterns. In the present study we demonstrate that a more studied consideration of the actual (cf. nominal) local hemodynamics can lead to substantial improvements in the prediction of disturbed flow by geometry. Starting from a well-characterized computational fluid dynamics (CFD) dataset of 50 normal carotid bifurcations, we observed that disturbed flow tended to be confined proximal to the flow divider, whereas geometric variables previously shown to be significant predictors of disturbed flow included features distal to the flow divider in their definitions. Flaring of the bifurcation leading to flow separation was redefined as the maximum relative expansion of the common carotid artery (CCA), proximal to the flow divider. The beneficial effect of primary curvature on flow inertia, via suppression of flow separation, was characterized by the in-plane tortuosity of CCA as it enters the flare region. Multiple linear regressions of these redefined geometric variables against various metrics of disturbed flow revealed R(2) values approaching 0.6, better than the roughly 0.3 achieved using the conventional shape-based variables, while maintaining their demonstrated real-world reproducibility. Such a hemodynamically-inspired approach to the definition of geometric variables may reap benefits for other applications where geometry is used as a surrogate marker of local hemodynamics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Nightside Quiet-Time Mid-Latitude Ionospheric Convection and Its Connection to Penetration Electric Fields

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J. M.; Maimaiti, M.; Baker, J. B.; Ribeiro, A. J.

    2017-12-01

    Previous studies have shown that during quiet geomagnetic conditions F-region subauroral ionospheric plasma exhibits drifts of a few tens of m/s, predominantly in the westward direction. However, the exact driving mechanisms for this plasma motion are still not well understood. Recent expansion of SuperDARN radars into the mid-latitude region has provided new opportunities to study subauroral ionospheric convection over large areas and with greater spatial resolution and statistical significance than previously possible. Mid-latitude SuperDARN radars tend to observe subauroral ionospheric backscatter with low Doppler velocities on most geomagnetically quiet nights. In this study, we have used two years of data obtained from the six mid-latitude SuperDARN radars in the North American sector to derive a statistical model of quiet-time nightside mid-latitude plasma convection between 52°- 58° magnetic latitude. The model is organized in MLAT-MLT coordinates and has a spatial resolution of 1°x 7 min with each grid cell typically counting thousands of velocity measurements. Our results show that the flow is predominantly westward (20 - 60 m/s) and weakly northward (0 -20 m/s) near midnight but with a strong seasonal dependence such that the flows tend to be strongest and most spatially variable in winter. These statistical results are in good agreement with previously reported observations from ISR measurements but also show some interesting new features, one being a significant latitudinal variation of zonal flow velocity near midnight in winter. In this presentation, we describe the derivation of the nightside quite-time subauroral convection model, analyze its most prominent features, and discuss the results in terms of the Ionosphere-Thermosphere coupling and penetration electric fields.

  9. Development of quiet-flow supersonic wind tunnels for laminar-turbulent transition research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1994-01-01

    This grant supported research into quiet-flow supersonic wind-tunnels, between May 1990 and December 1994. Quiet-flow nozzles operate with laminar nozzle-wall boundary layers, in order to provide low-disturbance flow for studies of laminar-turbulent transition under conditions comparable to flight. Major accomplishments include: (1) the design, fabrication, and performance-evaluation of a new kind of quiet tunnel, a quiet-flow Ludweig tube; (2) the integration of preexisting codes for nozzle design, 2D boundary-layer computation, and transition-estimation into a single user-friendly package for quiet-nozzle design; and (3) the design and preliminary evaluation of supersonic nozzles with square cross-section, as an alternative to conventional quiet-flow nozzles. After a brief summary of (1), a description of (2) is presented. Published work describing (3) is then summarized. The report concludes with a description of recent results for the Tollmien-Schlichting and Gortler instability in one of the square nozzles previously analyzed.

  10. Quantifying the flow efficiency in constant-current capacitive deionization.

    PubMed

    Hawks, Steven A; Knipe, Jennifer M; Campbell, Patrick G; Loeb, Colin K; Hubert, McKenzie A; Santiago, Juan G; Stadermann, Michael

    2018-02-01

    Here we detail a previously unappreciated loss mechanism inherent to capacitive deionization (CDI) cycling operation that has a substantial role determining performance. This mechanism reflects the fact that desalinated water inside a cell is partially lost to re-salination if desorption is carried out immediately after adsorption. We describe such effects by a parameter called the flow efficiency, and show that this efficiency is distinct from and yet multiplicative with other highly-studied adsorption efficiencies. Flow losses can be minimized by flowing more feed solution through the cell during desalination; however, this also results in less effluent concentration reduction. While the rationale outlined here is applicable to all CDI cell architectures that rely on cycling, we validate our model with a flow-through electrode CDI device operated in constant-current mode. We find excellent agreement between flow efficiency model predictions and experimental results, thus giving researchers simple equations by which they can estimate this distinct loss process for their operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. In Vivo Validation of Volume Flow Measurements of Pulsatile Flow Using a Clinical Ultrasound System and Matrix Array Transducer.

    PubMed

    Hudson, John M; Williams, Ross; Milot, Laurent; Wei, Qifeng; Jago, James; Burns, Peter N

    2017-03-01

    The goal of this study was to evaluate the accuracy of a non-invasive C-plane Doppler estimation of pulsatile blood flow in the lower abdominal vessels of a porcine model. Doppler ultrasound measurements from a matrix array transducer system were compared with invasive volume flow measurements made on the same vessels with a surgically implanted ultrasonic transit-time flow probe. For volume flow rates ranging from 60 to 750 mL/min, agreement was very good, with a Pearson correlation coefficient of 0.97 (p < 0.0001) and a mean bias of -4.2%. The combination of 2-D matrix array technology and fast processing gives this Doppler method clinical potential, as many of the user- and system-dependent parameters of previous methods, including explicit vessel angle and diameter measurements, are eliminated. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Design of synthetic jet actuator based on FSMA composite

    NASA Astrophysics Data System (ADS)

    Liang, Yuanchang; Kuga, Yasuo; Taya, Minoru

    2005-05-01

    An improved version of the membrane actuator has been designed and constructed based on our previous diaphragm actuator. It consists of ferromagnetic shape memory alloy composite (FSMA) diaphragm and an electromagnet system. The actuation mechanism of the membrane actuator is the hybrid mechanism that we proposed previously. The high momentum airflow will be produced by the oscillation of the circular FSMA composite diaphragm driven by electromagnets close to its resonance frequency. This membrane actuator is designed for the active flow control technology on airplane wings. The active flow control (AFC) technology has been studied and shown that it can help aircraft improve aerodynamic performance and jet noise reduction. AFC can be achieved by a synthetic jet actuator injecting high momentum air into the airflow at the appropriate locations on aircraft wings. Due to large force and martensitic transformation on the FSMA composite diaphragm, the membrane actuator can produce 190 m/s synthetic jets at 220 Hz. A series connection of several membrane actuators is proposed to construct a synthetic jet actuator package for distributing synthetic jet flow along the wing span.

  13. Florida Red Tides, Manatee Brevetoxicosis, and Lung Models

    PubMed Central

    Kirkpatrick, Barbara; Colbert, Debborah E.; Dalpra, Dana; Newton, Elizabeth A. C.; Gaspard, Joseph; Littlefield, Brandi; Manire, Charles

    2010-01-01

    In 1996, 149 Florida manatees, Trichechus manatus latirostris, died along the southwest coast of Florida. Necropsy pathology results of these animals indicated that brevetoxin from the Florida red tide, Karenia brevis, caused their death. A red tide bloom had been previously documented in the area where these animals stranded. The necropsy data suggested the mortality occurred from chronic inhalation and/or ingestion. Inhalation theories include high doses of brevetoxin deposited/stored in the manatee lung or significant manatee sensitivity to the brevetoxin. Laboratory models of the manatee lungs can be constructed from casts of necropsied animals for further studies; however, it is necessary to define the breathing pattern in the manatee, specifically the volumes and flow rates per breath to estimate toxin deposition in the lung. To obtain this information, two captive-born Florida manatees, previously trained for husbandry and research behaviors, were trained to breathe into a plastic mask placed over their nares. The mask was connected to a spirometer that measured volumes and flows in situ. Results reveal high volumes, short inspiratory and expiratory times and high flow rates, all consistent with observed breathing patterns. PMID:26448968

  14. Wood anatomical analysis of Alnus incana and Betula pendula injured by a debris-flow event.

    PubMed

    Arbellay, Estelle; Stoffel, Markus; Bollschweiler, Michelle

    2010-10-01

    Vessel chronologies in ring-porous species have been successfully employed in the past to extract the climate signal from tree rings. Environmental signals recorded in vessels of ring-porous species have also been used in previous studies to reconstruct discrete events of drought, flooding and insect defoliation. However, very little is known about the ability of diffuse-porous species to record environmental signals in their xylem cells. Moreover, time series of wood anatomical features have only rarely been used to reconstruct former geomorphic events. This study was therefore undertaken to characterize the wood anatomical response of diffuse-porous Alnus incana (L.) Moench and Betula pendula Roth to debris-flow-induced wounding. Tree microscopic response to wounding was assessed through the analysis of wood anatomical differences between injured rings formed in the debris-flow event year and uninjured rings formed in the previous year. The two ring types were examined close and opposite to the injury in order to determine whether wound effects on xylem cells decrease with increasing tangential distance from the injury. Image analysis was used to measure vessel parameters as well as fiber and parenchyma cell (FPC) parameters. The results of this study indicate that injured rings are characterized by smaller vessels as compared with uninjured rings. By contrast, FPC parameters were not found to significantly differ between injured and uninjured rings. Vessel and FPC parameters mainly remained constant with increasing tangential distance from the injury, except for a higher proportion of vessel lumen area opposite to the injury within A. incana. This study highlights the existence of anatomical tree-ring signatures-in the form of smaller vessels-related to past debris-flow activity and addresses a new methodological approach to date injuries inflicted on trees by geomorphic processes.

  15. Comparison of in vitro flows past a mechanical heart valve in anatomical and axisymmetric aorta models

    NASA Astrophysics Data System (ADS)

    Haya, Laura; Tavoularis, Stavros

    2017-06-01

    Flow characteristics past a bileaflet mechanical heart valve were measured under physiological flow conditions in a straight tube with an axisymmetric expansion, similar to vessels used in previous studies, and in an anatomical model of the aorta. We found that anatomical features, including the three-lobed sinus and the aorta's curvature affected significantly the flow characteristics. The turbulent and viscous stresses were presented and discussed as indicators for potential blood damage and thrombosis. Both types of stresses, averaged over the two axial measurement planes, were significantly lower in the anatomical model than in the axisymmetric one. This difference was attributed to the lower height-to-width ratio and more gradual contraction of the anatomical aortic sinus. The curvature of the aorta caused asymmetries in the velocity and stress distributions during forward flow. Secondary flows resulting from the aorta's curvature are thought to have redistributed the fluid stresses transversely, resulting in a more homogeneous stress distribution in the anatomical aortic root than in the axisymmetric root. The results of this study demonstrate the importance of modelling accurately the aortic geometry in experimental and computational studies of prosthetic devices. Moreover, our findings suggest that grafts used for aortic root replacement should approximate as closely as possible the shape of the natural sinuses.

  16. Slat Cove Unsteadiness Effect of 3D Flow Structures

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Khorrami, Mehdi R.

    2006-01-01

    Previous studies have indicated that 2D, time accurate computations based on a pseudo-laminar zonal model of the slat cove region (within the framework of the Reynolds-Averaged Navier-Stokes equations) are inadequate for predicting the full unsteady dynamics of the slat cove flow field. Even though such computations could capture the large-scale, unsteady vorticity structures in the slat cove region without requiring any external forcing, the simulated vortices were excessively strong and the recirculation zone was unduly energetic in comparison with the PIV measurements for a generic high-lift configuration. To resolve this discrepancy and to help enable physics based predictions of slat aeroacoustics, the present paper is focused on 3D simulations of the slat cove flow over a computational domain of limited spanwise extent. Maintaining the pseudo-laminar approach, current results indicate that accounting for the three-dimensionality of flow fluctuations leads to considerable improvement in the accuracy of the unsteady, nearfield solution. Analysis of simulation data points to the likely significance of turbulent fluctuations near the reattachment region toward the generation of broadband slat noise. The computed acoustic characteristics (in terms of the frequency spectrum and spatial distribution) within short distances from the slat resemble the previously reported, subscale measurements of slat noise.

  17. Magnetosheath quasi-trapped distributions and ion flows associated with reconnection

    NASA Technical Reports Server (NTRS)

    Neff, J. E.; Speiser, T. W.; Williams, D. J.

    1987-01-01

    Using a sample of ISEE 1 and 2 magnetopause crossings previously identified as times of quasi-steady reconnection, flows of medium energy ions in the magnetosheath are identified. The paper then investigates the particle pitch angle distribution immediately before and after each of these events for the signature of quasi-trapped distributions of energetic ions. Several of the ion flows identified were observed simultaneously with previously identified flux transfer events (FTEs). While FTEs identified from the magnetometer tracings typically show evidence of ion flows, the converse is not necessarily true. However, all properties of the magnetosheath ion flows are the same regardless of whether an FTE can be identified from the magnetometer data. Evidence is found for small-scale reconnection processes (FTEs, ion flows) embedded within a larger region of interconnected field, which is traced out by the quasi-trapped particles. Quasi-trapped distributions of medium-energy ions are seen to sandwich reconnection-associated ion flows in the magnetosheath. The results of this survey have been used to suggest a morphology for reconnection events that incorporates both large- and small-scale features.

  18. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water, which occurred preferentially at the pipe centre. For upward inclined multiphase flows RT#1 was found to give rise to water velocity profiles which are more consistent with results in the previous literature than was the case for RT#2—which leads to the tentative conclusion that the upward inclined multiphase flows investigated in the present study did not contain significant axisymmetric velocity components.

  19. Discharge-nitrate data clustering for characterizing surface-subsurface flow interaction and calibration of a hydrologic model

    NASA Astrophysics Data System (ADS)

    Shrestha, R. R.; Rode, M.

    2008-12-01

    Concentration of reactive chemicals has different chemical signatures in baseflow and surface runoff. Previous studies on nitrate export from a catchment indicate that the transport processes are driven by subsurface flow. Therefore nitrate signature can be used for understanding the event and pre-event contributions to streamflow and surface-subsurface flow interactions. The study uses flow and nitrate concentration time series data for understanding the relationship between these two variables. Unsupervised artificial neural network based learning method called self organizing map is used for the identification of clusters in the datasets. Based on the cluster results, five different pattern in the datasets are identified which correspond to (i) baseflow, (ii) subsurface flow increase, (iii) surface runoff increase, (iv) surface runoff recession, and (v) subsurface flow decrease regions. The cluster results in combination with a hydrologic model are used for discharge separation. For this purpose, a multi-objective optimization tool NSGA-II is used, where violation of cluster results is used as one of the objective functions. The results show that the use of cluster results as supplementary information for the calibration of a hydrologic model gives a plausible simulation of subsurface flow as well total runoff at the catchment outlet. The study is undertaken using data from the Weida catchment in the North-Eastern Germany, which is a sub-catchment of the Weisse Elster river in the Elbe river basin.

  20. Viscoelastic behavior of lung and chest wall in dogs determined by flow interruption.

    PubMed

    Similowski, T; Levy, P; Corbeil, C; Albala, M; Pariente, R; Derenne, J P; Bates, J H; Jonson, B; Milic-Emili, J

    1989-12-01

    Pulmonary and chest wall mechanics were studied in six anesthetized paralyzed dogs, by use of the technique of rapid airway occlusion during constant flow inflation. Analysis of the pressure changes after flow interruption allowed us to partition the overall resistance of the lung (Rl) and chest wall (Rw) and total respiratory system (Rrs) into two components, one (Rinit) reflecting in the lung airway resistance (Raw), the other (delta R) reflecting primarily the viscoelastic properties of the pulmonary and chest wall tissues. The effects of varying inspiratory flow and inflation volume were interpreted in terms of frequency dependence of resistance, by using a spring-and-dashpot model previously proposed and substantiated by Bates et al. (Proc. 9th Annu. Conf. IEEE Med. Biol. Soc., 1987, vol. 3, p. 1802-1803). We observed that 1) Raw and Rw,init were nearly equal and small relative to Rl and Rw (both were unaffected by flow); 2) Rrs,init decreased slightly with increasing volume; 3) both delta Rl and delta Rw decreased with increasing flow and increased with increasing lung volume. These changes were manifestations of frequency dependence of delta R, as it is predicted by the model; 4) Rrs, Rl, and Rw followed the same trends as delta R. These results corroborate data previously reported in the literature with the use of different techniques to measure airways and pulmonary tissue resistances and confirm that the use of Rl to assess bronchial reactivity is problematic. The interrupter techniques provides a convenient way to obtain Raw values, as well as analogs of lung and chest wall tissue resistances in intact dogs.

  1. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network

    PubMed Central

    Soltani, M.; Chen, P.

    2013-01-01

    Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor’s surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy’s law for tissue, and simplified Navier–Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model. PMID:23840579

  2. Calculation of sheath and wake structure about a pillbox-shaped spacecraft in a flowing plasma

    NASA Technical Reports Server (NTRS)

    Parker, L. W.

    1977-01-01

    A computer program was used for studies of the disturbed zones around bodies in flowing plasmas, particularly spacecraft and their associated sheaths and wakes. The program solved a coupled Poisson-Vlasov system of nonlinear partial differential integral equations to obtain distributions of electric potential and ion and electron density about a finite length cylinder in a plasma flow at arbitrary ion Mach numbers. The approach was applicable to a larger range of parameters than other available approaches. In sample calculations, bodies up to 100 Debye lengths in radius were treated, that is, larger than any previously treated realistically. Applications were made to in-situ satellite experiments.

  3. The selective use of functional optical variables in the control of forward speed

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Awe, Cynthia A.

    1994-01-01

    Previous work on the perception and control of simulated vehicle speed has examined the contributions of optical flow rate (angular visual speed) and texture, or edge rate (frequency of passing terrain objects or markings) on the perception and control of forward speed. However, these studies have not examined the ability to selectively use edge rate or flow rate. The two studies presented here show that this ability is far greater for pilots than non-pilots, as would be expected since pilots must control vehicular speed over a variety of altitudes where flow rates change independently of forward speed. These studies also show that this ability to selectively use these variables is linked to the visual contextual information about the relative validity (linkage with speed) of the two variables. Subjective judgment data also indicated that awareness of altitude and ground texture density did not mediate ground speed awareness.

  4. Numerical study of unsteady MHD oblique stagnation point flow and heat transfer due to an oscillating stream

    NASA Astrophysics Data System (ADS)

    Javed, T.; Ghaffari, A.; Ahmad, H.

    2016-05-01

    The unsteady stagnation point flow impinging obliquely on a flat plate in presence of a uniform applied magnetic field due to an oscillating stream has been studied. The governing partial differential equations are transformed into dimensionless form and the stream function is expressed in terms of Hiemenz and tangential components. The dimensionless partial differential equations are solved numerically by using well-known implicit finite difference scheme named as Keller-box method. The obtained results are compared with those available in the literature. It is observed that the results are in excellent agreement with the previous studies. The effects of pertinent parameters involved in the problem namely magnetic parameter, Prandtl number and impinging angle on flow and heat transfer characteristics are illustrated through graphs. It is observed that the influence of magnetic field strength increases the fluid velocity and by the increase of obliqueness parameter, the skin friction increases.

  5. Extensional channel flow revisited: a dynamical systems perspective

    PubMed Central

    Meseguer, Alvaro; Mellibovsky, Fernando; Weidman, Patrick D.

    2017-01-01

    Extensional self-similar flows in a channel are explored numerically for arbitrary stretching–shrinking rates of the confining parallel walls. The present analysis embraces time integrations, and continuations of steady and periodic solutions unfolded in the parameter space. Previous studies focused on the analysis of branches of steady solutions for particular stretching–shrinking rates, although recent studies focused also on the dynamical aspects of the problems. We have adopted a dynamical systems perspective, analysing the instabilities and bifurcations the base state undergoes when increasing the Reynolds number. It has been found that the base state becomes unstable for small Reynolds numbers, and a transitional region including complex dynamics takes place at intermediate Reynolds numbers, depending on the wall acceleration values. The base flow instabilities are constitutive parts of different codimension-two bifurcations that control the dynamics in parameter space. For large Reynolds numbers, the restriction to self-similarity results in simple flows with no realistic behaviour, but the flows obtained in the transition region can be a valuable tool for the understanding of the dynamics of realistic Navier–Stokes solutions. PMID:28690413

  6. Flow establishment behind blunt bodies at hypersonic speeds in a shock tunnel

    NASA Astrophysics Data System (ADS)

    Park, G.; Hruschka, R.; Gai, S. L.; Neely, A. J.

    2008-11-01

    An investigation of flow establishment behind two blunt bodies, a circular cylinder and a 45° half-angle blunted-cone was conducted. Unlike previous studies which relied solely on surface measurements, the present study combines these with unique high-speed visualisation to image the establishment of the flow structure in the base region. Test flows were generated using a free-piston shock tunnel at a nominal Mach number of 10. The freestream unit Reynolds numbers considered were 3.02x105/m and 1.17x106/m at total enthalpies of 13.35MJ/kg and 3.94MJ/kg, respectively. In general, the experiments showed that it takes longer to establish steady heat flux than pressure. The circular cylinder data showed that the near wake had a slight Reynolds number effect, where the size of the near wake was smaller for the high enthalpy flow condition. The blunted-cone data showed that the heat flux and pressures reached steady states in the near wake at similar times for both high and low enthalpy conditions.

  7. Patient-Specific Computational Modeling of Human Phonation

    NASA Astrophysics Data System (ADS)

    Xue, Qian; Zheng, Xudong; University of Maine Team

    2013-11-01

    Phonation is a common biological process resulted from the complex nonlinear coupling between glottal aerodynamics and vocal fold vibrations. In the past, the simplified symmetric straight geometric models were commonly employed for experimental and computational studies. The shape of larynx lumen and vocal folds are highly three-dimensional indeed and the complex realistic geometry produces profound impacts on both glottal flow and vocal fold vibrations. To elucidate the effect of geometric complexity on voice production and improve the fundamental understanding of human phonation, a full flow-structure interaction simulation is carried out on a patient-specific larynx model. To the best of our knowledge, this is the first patient-specific flow-structure interaction study of human phonation. The simulation results are well compared to the established human data. The effects of realistic geometry on glottal flow and vocal fold dynamics are investigated. It is found that both glottal flow and vocal fold dynamics present a high level of difference from the previous simplified model. This study also paved the important step toward the development of computer model for voice disease diagnosis and surgical planning. The project described was supported by Grant Number ROlDC007125 from the National Institute on Deafness and Other Communication Disorders (NIDCD).

  8. Hydrodynamic flow in the vicinity of a nanopore induced by an applied voltage

    PubMed Central

    Mao, Mao; Ghosal, Sandip; Hu, Guohui

    2013-01-01

    Continuum simulation is employed to study ion transport and fluid flow through a nanopore in a solid-state membrane under an applied potential drop. Results show the existence of concentration polarization layers on the surfaces of the membrane. The nonuniformity of the ionic distribution gives rise to an electric pressure that drives vortical motion in the fluid. There is also a net hydrodynamic flow through the nanopore due to an asymmetry induced by the membrane surface charge. The qualitative behavior is similar to that observed in a previous study using molecular dynamic simulations. The current–voltage characteristics show some nonlinear features but are not greatly affected by the hydrodynamic flow in the parameter regime studied. In the limit of thin Debye layers, the electric resistance of the system can be characterized using an equivalent circuit with lumped parameters. Generation of vorticity can be understood qualitatively from elementary considerations of the Maxwell stresses. However, the flow strength is a strongly nonlinear function of the applied field. Combination of electrophoretic and hydrodynamic effects can lead to ion selectivity in terms of valences and this could have some practical applications in separations. PMID:23689946

  9. Effect of hindlimb unweighting on tissue blood flow in the rat

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. S.; Delp, M. D.; Fitts, R. H.

    1992-01-01

    This study characterized distribution of blood flow in the rat during hindlimb unweighting (HU), and post-HU standing and exercise. The relationship between reduced hindlimb blood flow and the previously observed elevation in anaerobic metabolism observed with contractile activity in the atrophied soleus muscle was examined (Witzmann et al., 1992). Blood flow was measured during unweighting, normal standing, and running on a treadmill (15 m/min), after 15 days of HU or cage control. For another group blood flow was measured during preexercise treadmill standing and treadmill running. During unweighting, PE standing, and running no difference in soleus blood flow was observed between groups. Muscles composed mainly of fast twitch glycolytic fibers received greater blood flow during chronic unweighting. With exercise blood flow to visceral organs was reduced in control animals, a similar change was not seen in 15 day HU rats. These changes suggest a reduction in the ability of the sympathetic nervous system to distribute cardiac output after chronic HU. A reduction in blood flow to the soleus during exercise was not observed after HU and so does not explain the increased dependence of the atrophied soleus on anerobic energy production during contractile activity.

  10. The Himalayas: barrier and conduit for gene flow.

    PubMed

    Gayden, Tenzin; Perez, Annabel; Persad, Patrice J; Bukhari, Areej; Chennakrishnaiah, Shilpa; Simms, Tanya; Maloney, Trisha; Rodriguez, Kristina; Herrera, Rene J

    2013-06-01

    The Himalayan mountain range is strategically located at the crossroads of the major cultural centers in Asia, the Middle East and Europe. Although previous Y-chromosome studies indicate that the Himalayas served as a natural barrier for gene flow from the south to the Tibetan plateau, this region is believed to have played an important role as a corridor for human migrations between East and West Eurasia along the ancient Silk Road. To evaluate the effects of the Himalayan mountain range in shaping the maternal lineages of populations residing on either side of the cordillera, we analyzed mitochondrial DNA variation in 344 samples from three Nepalese collections (Newar, Kathmandu and Tamang) and a general population of Tibet. Our results revealed a predominantly East Asian-specific component in Tibet and Tamang, whereas Newar and Kathmandu are both characterized by a combination of East and South Central Asian lineages. Interestingly, Newar and Kathmandu harbor several deep-rooted Indian lineages, including M2, R5, and U2, whose coalescent times from this study (U2, >40 kya) and previous reports (M2 and R5, >50 kya) suggest that Nepal was inhabited during the initial peopling of South Central Asia. Comparisons with our previous Y-chromosome data indicate sex-biased migrations in Tamang and a founder effect and/or genetic drift in Tamang and Newar. Altogether, our results confirm that while the Himalayas acted as a geographic barrier for human movement from the Indian subcontinent to the Tibetan highland, it also served as a conduit for gene flow between Central and East Asia. Copyright © 2013 Wiley Periodicals, Inc.

  11. Recovery after high-intensity intermittent exercise in elite soccer players using VEINOPLUS sport technology for blood-flow stimulation.

    PubMed

    Bieuzen, François; Pournot, Hervé; Roulland, Rémy; Hausswirth, Christophe

    2012-01-01

    Electric muscle stimulation has been suggested to enhance recovery after exhaustive exercise by inducing an increase in blood flow to the stimulated area. Previous studies have failed to support this hypothesis. We hypothesized that the lack of effect shown in previous studies could be attributed to the technique or device used. To investigate the effectiveness of a recovery intervention using an electric blood-flow stimulator on anaerobic performance and muscle damage in professional soccer players after intermittent, exhaustive exercise. Randomized controlled clinical trial. National Institute of Sport, Expertise, and Performance (INSEP). Twenty-six healthy professional male soccer players. The athletes performed an intermittent fatiguing exercise followed by a 1-hour recovery period, either passive or using an electric blood-flow stimulator (VEINOPLUS). Participants were randomly assigned to a group before the experiment started. Performances during a 30-second all-out exercise test, maximal vertical countermovement jump, and maximal voluntary contraction of the knee extensor muscles were measured at rest, immediately after the exercise, and 1 hour and 24 hours later. Muscle enzymes indicating muscle damage (creatine kinase, lactate dehydrogenase) and hematologic profiles were analyzed before and 1 hour and 24 hours after the intermittent fatigue exercise. The electric-stimulation group had better 30-second all-out performances at 1 hour after exercise (P = .03) in comparison with the passive-recovery group. However, no differences were observed in muscle damage markers, maximal vertical countermovement jump, or maximal voluntary contraction between groups (P > .05). Compared with passive recovery, electric stimulation using this blood-flow stimulator improved anaerobic performance at 1 hour postintervention. No changes in muscle damage markers or maximal voluntary contraction were detected. These responses may be considered beneficial for athletes engaged in sports with successive rounds interspersed with short, passive recovery periods.

  12. Experimental Study on Flow Boiling of Deionized Water in a Horizontal Long Small Channel

    NASA Astrophysics Data System (ADS)

    Huang, Qian; Jia, Li; Dang, Chao; Yang, Lixin

    2018-04-01

    In this paper, an experimental investigation on the flow boiling heat transfer in a horizontal long mini-channel was carried out. The mini-channel was with 2 mm wide and 1 mm deep and 900 mm long. The material of the mini-channel was stainless. The working fluid was deionized water. The experiments were conducted with the conditions of inlet pressure in the range of 0.2 0.5 MPa, mass flux in the range of 196.57-548.96 kg/m2s, and the outlet vapor quality in the range of 0.2 to 1. The heat flux was in the range of 292.86 kW/m2 to 788.48 kW/m2, respectively. The influences of mass flux and heat flux were studied. At a certain mass flow rate, the local heat transfer coefficient increased with the increase of the heat flux. If dry-out occurred in the mini-channel, the heat transfer coefficient decreased. At the same heat flux, the local heat transfer coefficient would depend on the mass flux. It would increase with the mass flux in a certain range, and then decrease if the mass flux was beyond this range. Experimental data were compared with the results of previous studies. Flow visualization and measurements were conducted to identify flow regime transitions. Results showed that there were eight different kinds of flow patterns occurring during the flow boiling. It was found that flow pattern had a significant effect on heat transfer.

  13. A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Fan, Liang-Shih

    2014-07-01

    A new immersed boundary-lattice Boltzmann method (IB-LBM) is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The immersed boundary method (IBM) recently developed by Breugem (2012) [19] is adopted in the present method, development including the retraction technique, the multi-direct forcing method and the direct account of the inertia of the fluid contained within the particles. The present IB-LBM is, however, formulated with further improvement with the implementation of the high-order Runge-Kutta schemes in the coupled fluid-particle interaction. The major challenge to implement high-order Runge-Kutta schemes in the LBM is that the flow information such as density and velocity cannot be directly obtained at a fractional time step from the LBM since the LBM only provides the flow information at an integer time step. This challenge can be, however, overcome as given in the present IB-LBM by extrapolating the flow field around particles from the known flow field at the previous integer time step. The newly calculated fluid-particle interactions from the previous fractional time steps of the current integer time step are also accounted for in the extrapolation. The IB-LBM with high-order Runge-Kutta schemes developed in this study is validated by several benchmark applications. It is demonstrated, for the first time, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy. The optimal retraction distances for spheres and tubes that help the method achieve the second-order accuracy are found to be around 0.30 and -0.47 times of the lattice spacing, respectively. Simulations of the Stokes flow through a simple cubic lattice of rotational spheres indicate that the lift force produced by the Magnus effect can be very significant in view of the magnitude of the drag force when the practical rotating speed of the spheres is encountered. This finding may lead to more comprehensive studies of the effect of the particle rotation on fluid-solid drag laws. It is also demonstrated that, when the third-order or the fourth-order Runge-Kutta scheme is used, the numerical stability of the present IB-LBM is better than that of all methods in the literature, including the previous IB-LBMs and also the methods with the combination of the IBM and the traditional incompressible Navier-Stokes solver.

  14. Orifice-induced pressure error studies in Langley 7- by 10-foot high-speed tunnel

    NASA Technical Reports Server (NTRS)

    Plentovich, E. B.; Gloss, B. B.

    1986-01-01

    For some time it has been known that the presence of a static pressure measuring hole will disturb the local flow field in such a way that the sensed static pressure will be in error. The results of previous studies aimed at studying the error induced by the pressure orifice were for relatively low Reynolds number flows. Because of the advent of high Reynolds number transonic wind tunnels, a study was undertaken to assess the magnitude of this error at high Reynolds numbers than previously published and to study a possible method of eliminating this pressure error. This study was conducted in the Langley 7- by 10-Foot High-Speed Tunnel on a flat plate. The model was tested at Mach numbers from 0.40 to 0.72 and at Reynolds numbers from 7.7 x 1,000,000 to 11 x 1,000,000 per meter (2.3 x 1,000,000 to 3.4 x 1,000,000 per foot), respectively. The results indicated that as orifice size increased, the pressure error also increased but that a porous metal (sintered metal) plug inserted in an orifice could greatly reduce the pressure error induced by the orifice.

  15. Aeroacoustical Study of the Tgv Pantograph Recess

    NASA Astrophysics Data System (ADS)

    NOGER, C.; PATRAT, J. C.; PEUBE, J.; PEUBE, J. L.

    2000-03-01

    The general focus of this aerodynamic noise research, induced by turbulent incompressible flow, is to improve our knowledge of acoustic production mechanisms in the TGV pantograph recess in order to be able to reduce the radiated noise. This work is performed under contract with SNCF as a part of the German-French Cooperation DEUFRAKO K2, and is supported by French Ministries for Transport and Research. Previous studies on TGV noise source locations (DEUFRAKO K) have identified the pantograph recess as one of the important aerodynamic noise sources, for speeds higher than 300 km/h, due to flow separation. The pantograph recess is a very complex rectangular cavity, located both on the power car and the first coach roofs of the TGV, and has not been studied before due to the complex shapes. Its aeroacoustic features are investigated experimentally in a low-subsonic wind tunnel, on a realistic 1/7th scale mock-up both with and without pantographs. Flow velocities, estimated with hot-wire anemometry, and parietal visualizations show the flow to reattach on the recess bottom wall and to separate again at the downstream face. Wall pressure fluctuations and “acoustic” measurements using 14 and 12 in microphones respectively are also measured to qualify the flow: no aerodynamic or acoustic oscillations are observed. The study indicates that the pantograph recess has a different behaviour compared to the usual cavity grazing flows.

  16. An immersed boundary method for simulating vesicle dynamics in three dimensions

    NASA Astrophysics Data System (ADS)

    Seol, Yunchang; Hu, Wei-Fan; Kim, Yongsam; Lai, Ming-Chih

    2016-10-01

    We extend our previous immersed boundary (IB) method for 3D axisymmetric inextensible vesicle in Navier-Stokes flows (Hu et al., 2014 [17]) to general three dimensions. Despite a similar spirit in numerical algorithms to the axisymmetric case, the fully 3D numerical implementation is much more complicated and is far from straightforward. A vesicle membrane surface is known to be incompressible and exhibits bending resistance. As in 3D axisymmetric case, instead of keeping the vesicle locally incompressible, we adopt a modified elastic tension energy to make the vesicle surface patch nearly incompressible so that solving the unknown tension (Lagrange multiplier for the incompressible constraint) can be avoided. Nevertheless, the new elastic force derived from the modified tension energy has exactly the same mathematical form as the original one except the different definitions of tension. The vesicle surface is discretized on a triangular mesh where the elastic tension and bending force are calculated on each vertex (Lagrangian marker in the IB method) of the triangulation. A series of numerical tests on the present scheme are conducted to illustrate the robustness and applicability of the method. We perform the convergence study for the immersed boundary forces and the fluid velocity field. We then study the vesicle dynamics in various flows such as quiescent, simple shear, and gravitational flows. Our numerical results show good agreements with those obtained in previous theoretical, experimental and numerical studies.

  17. Global population genetic structure and male-mediated gene flow in the green sea turtle (Chelonia mydas): analysis of microsatellite loci.

    PubMed Central

    Roberts, Mark A; Schwartz, Tonia S; Karl, Stephen A

    2004-01-01

    We assessed the degree of population subdivision among global populations of green sea turtles, Chelonia mydas, using four microsatellite loci. Previously, a single-copy nuclear DNA study indicated significant male-mediated gene flow among populations alternately fixed for different mitochondrial DNA haplotypes and that genetic divergence between populations in the Atlantic and Pacific Oceans was more common than subdivisions among populations within ocean basins. Even so, overall levels of variation at single-copy loci were low and inferences were limited. Here, the markedly more variable microsatellite loci confirm the presence of male-mediated gene flow among populations within ocean basins. This analysis generally confirms the genetic divergence between the Atlantic and Pacific. As with the previous study, phylogenetic analyses of genetic distances based on the microsatellite loci indicate a close genetic relationship among eastern Atlantic and Indian Ocean populations. Unlike the single-copy study, however, the results here cannot be attributed to an artifact of general low variability and likely represent recent or ongoing migration between ocean basins. Sequence analyses of regions flanking the microsatellite repeat reveal considerable amounts of cryptic variation and homoplasy and significantly aid in our understanding of population connectivity. Assessment of the allele frequency distributions indicates that at least some of the loci may not be evolving by the stepwise mutation model. PMID:15126404

  18. Characterization of Passive Flow-Actuated Microflaps Inspired by Shark Skin for Separation Control

    NASA Astrophysics Data System (ADS)

    Morris, Jackson; Devey, Sean; Lang, Amy; Hubner, Paul

    2017-11-01

    Thanks to millions of years of natural selection, sharks have evolved into quick apex predators. Previous research has proven shark skin to reduce flow separation, which would result in lower pressure drag. Mako shark skin is made up of microscopic scales on the order of 0.2 mm in size. These scales are hypothesized to be a flow control mechanism, capable of being passively actuated by reversed flow. We believe shark scales are strategically sized to interact with the lower 5 percent of the boundary layer, where reversed flow occurs near the wall. Previous wind tunnel research has shown that it is possible to passively actuate 2D flaps in the lower regions of the boundary layer. This research aims to identify reverse flow conditions that will cause small 3D flaps to actuate. Several sets of microflaps (about 4 mm in length) geometrically similar to shark scales were 3D printed. These microflaps were tested in a low-speed wind tunnel in various reverse flow conditions. Microflaps were observed to be actuated by the reversing flow and flow conditions were characterized using a hot-wire probe. These microflaps have the potential to mimic the mako shark type of flow control in air, passively actuated by reverse flow conditions. This research was supported by Boeing, the US Army, and the National Science Foundation REU program.

  19. Wall effects in Stokes experiment with a liquid foam

    NASA Astrophysics Data System (ADS)

    Gao, Haijing; Subramani, Hariprasad; Harris, Michael; Basaran, Osman

    2011-11-01

    Liquid foams are widely used in numerous applications ranging from the oil and gas industry to beauty, healthcare, and household products industries. A fundamental understanding of the relationships between the properties of liquid foams and their flow responses is, however, still in its infancy compared to that involving the fluid dynamics of simple fluids. In this talk, the flow of a dry liquid foam around a spherical bead, i.e. the Stokes problem for liquid foams, is studied experimentally. In contrast to previous work (cf. Cantat 2006), the focus of the present research is to probe the effect of a solid wall that is located a few bubble radii from the bead. The new experimental results show that the elastic modulus of dry liquid foams is directly proportional to the surface tension of the foaming agents and inversely proportional to the average bubble size in the foams, in agreement with previous theoretical and experimental studies. The experiments further show that the close proximity of the solid wall causes profound structural changes to the gas bubbles as the foam flows past the bead. A good understanding of these structural changes and how they can affect the elastic modulus of foams can be indispensable in formulating improved models for accurately describing the dynamical response of foams within the realm of continuum mechanics.

  20. Performance evaluation of the active-flow personal DataRAM PM 2.5 mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure measurements

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Bhabesh; Fine, Philip M.; Delfino, Ralph; Sioutas, Constantinos

    The need for continuous personal monitoring for exposure to particulate matter has been demonstrated by recent health studies showing effects of PM exposure on time scales of less than a few hours. Filter-based methods cannot measure this short-term variation of PM levels, which can be quite significant considering human activity patterns. The goal of this study was to evaluate the active-flow personal DataRAM for PM 2.5 (MIE pDR-1200; Thermo Electron Corp., Franklin, MA) designed as a wearable monitor to continuously measure particle exposure. The instrument precision was found to be good (2.1%) and significantly higher than the passive pDR configuration tested previously. A comparison to other proven continuous monitors resulted in good agreement at low relative humidities. Results at higher humidity followed predictable trends and provided a correction scheme that improved the accuracy of pDR readings. The pDR response to particle size also corresponded to previously observed and theoretical errors. The active flow feature of the pDR allows collection of the sampled particles on a back-up filter. The 24-h mass measured on this filter was found to compare very well with a Federal Reference Method for PM 2.5 mass.

  1. A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction.

    PubMed

    Korakianitis, Theodosios; Shi, Yubing

    2006-09-01

    Numerical modeling of the human cardiovascular system has always been an active research direction since the 19th century. In the past, various simulation models of different complexities were proposed for different research purposes. In this paper, an improved numerical model to study the dynamic function of the human circulation system is proposed. In the development of the mathematical model, the heart chambers are described with a variable elastance model. The systemic and pulmonary loops are described based on the resistance-compliance-inertia concept by considering local effects of flow friction, elasticity of blood vessels and inertia of blood in different segments of the blood vessels. As an advancement from previous models, heart valve dynamics and atrioventricular interaction, including atrial contraction and motion of the annulus fibrosus, are specifically modeled. With these improvements the developed model can predict several important features that were missing in previous numerical models, including regurgitant flow on heart valve closure, the value of E/A velocity ratio in mitral flow, the motion of the annulus fibrosus (called the KG diaphragm pumping action), etc. These features have important clinical meaning and their changes are often related to cardiovascular diseases. Successful simulation of these features enhances the accuracy of simulations of cardiovascular dynamics, and helps in clinical studies of cardiac function.

  2. Off-surface infrared flow visualization

    NASA Technical Reports Server (NTRS)

    Manuel, Gregory S. (Inventor); Obara, Clifford J. (Inventor); Daryabeigi, Kamran (Inventor); Alderfer, David W. (Inventor)

    1993-01-01

    A method for visualizing off-surface flows is provided. The method consists of releasing a gas with infrared absorbing and emitting characteristics into a fluid flow and imaging the flow with an infrared imaging system. This method allows for visualization of off-surface fluid flow in-flight. The novelty of this method is found in providing an apparatus for flow visualization which is contained within the aircraft so as not to disrupt the airflow around the aircraft, is effective at various speeds and altitudes, and is longer-lasting than previous methods of flow visualization.

  3. Perceptual analysis of vibrotactile flows on a mobile device.

    PubMed

    Seo, Jongman; Choi, Seungmoon

    2013-01-01

    "Vibrotactile flow" refers to a continuously moving sensation of vibrotactile stimulation applied by a few actuators directly onto the skin or through a rigid medium. Research demonstrated the effectiveness of vibrotactile flow for conveying intuitive directional information on a mobile device. In this paper, we extend previous research by investigating the perceptual characteristics of vibrotactile flows rendered on a mobile device and proposing a synthesis framework for vibrotactile flows with desired perceptual properties.

  4. Simulator test to study hot-flow problems related to a gas cooled reactor

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Freeman, M. P.; Doak, K. W.; Thorpe, M. L.

    1973-01-01

    An advance study of materials, fuel injection, and hot flow problems related to the gas core nuclear rocket is reported. The first task was to test a previously constructed induction heated plasma GCNR simulator above 300 kW. A number of tests are reported operating in the range of 300 kW at 10,000 cps. A second simulator was designed but not constructed for cold-hot visualization studies using louvered walls. A third task was a paper investigation of practical uranium feed systems, including a detailed discussion of related problems. The last assignment resulted in two designs for plasma nozzle test devices that could be operated at 200 atm on hydrogen.

  5. A numerical study of the axisymmetric Couette-Taylor problem using a fast high-resolution second-order central scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupferman, R.

    The author presents a numerical study of the axisymmetric Couette-Taylor problem using a finite difference scheme. The scheme is based on a staggered version of a second-order central-differencing method combined with a discrete Hodge projection. The use of central-differencing operators obviates the need to trace the characteristic flow associated with the hyperbolic terms. The result is a simple and efficient scheme which is readily adaptable to other geometries and to more complicated flows. The scheme exhibits competitive performance in terms of accuracy, resolution, and robustness. The numerical results agree accurately with linear stability theory and with previous numerical studies.

  6. Theoretical study of the transonic lift of a double-wedge profile with detached bow wave

    NASA Technical Reports Server (NTRS)

    Vincenti, Walter G; Wagoner, Cleo B

    1954-01-01

    A theoretical study is described of the aerodynamic characteristics at small angle of attack of a thin, double-wedge profile in the range of supersonic flight speed in which the bow wave is detached. The analysis is carried out within the framework of the transonic (nonlinear) small-disturbance theory, and the effects of angle of attack are regarded as a small perturbation on the flow previously calculated at zero angle. The mixed flow about the front half of the profile is calculated by relaxation solution of a suitably defined boundary-value problem for transonic small-disturbance equation in the hodograph plane (i.e., the Tricomi equation). The purely supersonic flow about the rear half is found by an extension of the usual numerical method of characteristics. Analytical results are also obtained, within the framework of the same theory, for the range of speed in which the bow wave is attached and the flow is completely supersonic.

  7. Study of unsteady flow field over a forward-looking endoatmospheric hit-to-kill interceptor

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Antonison, Mark

    1993-01-01

    Forward-looking recessed aperture interceptor has significant aero-optical and aero-thermal advantages. Previous experimental studies have shown that the flow field in front of a forward-looking cavity is unsteady and the bow shock oscillates at the cavity fundamental resonant frequency. In this study, an advanced CFD code is applied to study the above unsteady phenomena. The code is first validated against the experiments and good comparisons are found. The numerical parametric study shows that the existence of oscillatory bow shock is very sensitive to the cavity geometry. At a FOV of 60 deg, the initial transient quickly dampens out to a steady state. With a decrease of FOV, an unsteady oscillatory flow field is sustained after initial transient and the amplitude of oscillation is a function of FOV. For FOV of 20 deg, the amplitude of pressure oscillation is 25 percent of the mean value in the cavity. For a FOV of 10 deg, it can be as high as 50 percent.

  8. Vascular structure determines pulmonary blood flow distribution

    NASA Technical Reports Server (NTRS)

    Hlastala, M. P.; Glenny, R. W.

    1999-01-01

    Scientific knowledge develops through the evolution of new concepts. This process is usually driven by new methodologies that provide observations not previously available. Understanding of pulmonary blood flow determinants advanced significantly in the 1960s and is now changing rapidly again, because of increased spatial resolution of regional pulmonary blood flow measurements.

  9. A Cross-Sectional Survey Study About the Most Common Solitary and Social Flow Activities to Extend the Concept of Optimal Experience

    PubMed Central

    Magyaródi, Tímea; Oláh, Attila

    2015-01-01

    Previous assumptions note that the most powerful experiences of engagement are shared with others. Therefore, in the framework of positive psychology, to expand the dynamic interactionism-related flow theory, we have attempted to conduct an exploratory study about flow to reveal the most common activities that can trigger this experience during solitary or social situations. The study involved 1,709 adult participants from Hungary (Age: M = 26.95, SD = 11.23). They read descriptions about optimal experience in solitary and social situations and were asked to identify the activity from their life that is most typically followed by the described experiences. The social context was supplemented by other flow-related questions for a deeper understanding and to contribute to the research. According to the results the most typical solitary flow activities are found to be work, sports, creative activities and reading. The most common flow-inducing social activities are work and sports. The choice of the most frequent flow-inducing activities in both solitary and interpersonal situations is dependent on the gender of the respondent, and various demographical factors can influence the frequency of flow experiences in different contexts. Analysis reveal that optimal experience during a social interaction is determined by the perceived level of challenges, the perceived level of cooperation, the immediateness and clarity of the feedback, and the level of the skill. Our study may contribute to the broadening purpose of positive psychology as it focuses on the interpersonal level in relation to flow experience, which, in turn, may also support a higher level of well-being. PMID:27247682

  10. Estimating peak-flow frequency statistics for selected gaged and ungaged sites in naturally flowing streams and rivers in Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Skinner, Kenneth D.; Veilleux, Andrea G.

    2016-06-27

    The U.S. Geological Survey, in cooperation with the Idaho Transportation Department, updated regional regression equations to estimate peak-flow statistics at ungaged sites on Idaho streams using recent streamflow (flow) data and new statistical techniques. Peak-flow statistics with 80-, 67-, 50-, 43-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (1.25-, 1.50-, 2.00-, 2.33-, 5.00-, 10.0-, 25.0-, 50.0-, 100-, 200-, and 500-year recurrence intervals, respectively) were estimated for 192 streamgages in Idaho and bordering States with at least 10 years of annual peak-flow record through water year 2013. The streamgages were selected from drainage basins with little or no flow diversion or regulation. The peak-flow statistics were estimated by fitting a log-Pearson type III distribution to records of annual peak flows and applying two additional statistical methods: (1) the Expected Moments Algorithm to help describe uncertainty in annual peak flows and to better represent missing and historical record; and (2) the generalized Multiple Grubbs Beck Test to screen out potentially influential low outliers and to better fit the upper end of the peak-flow distribution. Additionally, a new regional skew was estimated for the Pacific Northwest and used to weight at-station skew at most streamgages. The streamgages were grouped into six regions (numbered 1_2, 3, 4, 5, 6_8, and 7, to maintain consistency in region numbering with a previous study), and the estimated peak-flow statistics were related to basin and climatic characteristics to develop regional regression equations using a generalized least squares procedure. Four out of 24 evaluated basin and climatic characteristics were selected for use in the final regional peak-flow regression equations.Overall, the standard error of prediction for the regional peak-flow regression equations ranged from 22 to 132 percent. Among all regions, regression model fit was best for region 4 in west-central Idaho (average standard error of prediction=46.4 percent; pseudo-R2>92 percent) and region 5 in central Idaho (average standard error of prediction=30.3 percent; pseudo-R2>95 percent). Regression model fit was poor for region 7 in southern Idaho (average standard error of prediction=103 percent; pseudo-R2<78 percent) compared to other regions because few streamgages in region 7 met the criteria for inclusion in the study, and the region’s semi-arid climate and associated variability in precipitation patterns causes substantial variability in peak flows.A drainage area ratio-adjustment method, using ratio exponents estimated using generalized least-squares regression, was presented as an alternative to the regional regression equations if peak-flow estimates are desired at an ungaged site that is close to a streamgage selected for inclusion in this study. The alternative drainage area ratio-adjustment method is appropriate for use when the drainage area ratio between the ungaged and gaged sites is between 0.5 and 1.5.The updated regional peak-flow regression equations had lower total error (standard error of prediction) than all regression equations presented in a 1982 study and in four of six regions presented in 2002 and 2003 studies in Idaho. A more extensive streamgage screening process used in the current study resulted in fewer streamgages used in the current study than in the 1982, 2002, and 2003 studies. Fewer streamgages used and the selection of different explanatory variables were likely causes of increased error in some regions compared to previous studies, but overall, regional peak‑flow regression model fit was generally improved for Idaho. The revised statistical procedures and increased streamgage screening applied in the current study most likely resulted in a more accurate representation of natural peak-flow conditions.The updated, regional peak-flow regression equations will be integrated in the U.S. Geological Survey StreamStats program to allow users to estimate basin and climatic characteristics and peak-flow statistics at ungaged locations of interest. StreamStats estimates peak-flow statistics with quantifiable certainty only when used at sites with basin and climatic characteristics within the range of input variables used to develop the regional regression equations. Both the regional regression equations and StreamStats should be used to estimate peak-flow statistics only in naturally flowing, relatively unregulated streams without substantial local influences to flow, such as large seeps, springs, or other groundwater-surface water interactions that are not widespread or characteristic of the respective region.

  11. Monte Carlo Uncertainty Quantification for an Unattended Enrichment Monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarman, Kenneth D.; Smith, Leon E.; Wittman, Richard S.

    As a case study for uncertainty analysis, we consider a model flow monitor for measuring enrichment in gas centrifuge enrichment plants (GCEPs) that could provide continuous monitoring of all declared gas flow and provide high-accuracy gas enrichment estimates as a function of time. The monitor system could include NaI(Tl) gamma-ray spectrometers, a pressure signal-sharing device to be installed on an operator\\rq{}s pressure gauge or a dedicated inspector pressure sensor, and temperature sensors attached to the outside of the header pipe, to provide pressure, temperature, and gamma-ray spectra measurements of UFmore » $$_6$$ gas flow through unit header pipes. Our study builds on previous modeling and analysis methods development for enrichment monitor concepts and a software tool that was developed at Oak Ridge National Laboratory to generate and analyze synthetic data.« less

  12. Modelling maximum river flow by using Bayesian Markov Chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Cheong, R. Y.; Gabda, D.

    2017-09-01

    Analysis of flood trends is vital since flooding threatens human living in terms of financial, environment and security. The data of annual maximum river flows in Sabah were fitted into generalized extreme value (GEV) distribution. Maximum likelihood estimator (MLE) raised naturally when working with GEV distribution. However, previous researches showed that MLE provide unstable results especially in small sample size. In this study, we used different Bayesian Markov Chain Monte Carlo (MCMC) based on Metropolis-Hastings algorithm to estimate GEV parameters. Bayesian MCMC method is a statistical inference which studies the parameter estimation by using posterior distribution based on Bayes’ theorem. Metropolis-Hastings algorithm is used to overcome the high dimensional state space faced in Monte Carlo method. This approach also considers more uncertainty in parameter estimation which then presents a better prediction on maximum river flow in Sabah.

  13. Assessment of inlet efficiency through a 3D simulation: numerical and experimental comparison.

    PubMed

    Gómez, Manuel; Recasens, Joan; Russo, Beniamino; Martínez-Gomariz, Eduardo

    2016-10-01

    Inlet efficiency is a requirement for characterizing the flow transfers between surface and sewer flow during rain events. The dual drainage approach is based on the joint analysis of both upper and lower drainage levels, and the flow transfer is one of the relevant elements to define properly this joint behaviour. This paper presents the results of an experimental and numerical investigation about the inlet efficiency definition. A full scale (1:1) test platform located in the Technical University of Catalonia (UPC) reproduces both the runoff process in streets and the water entering the inlet. Data from tests performed on this platform allow the inlet efficiency to be estimated as a function of significant hydraulic and geometrical parameters. A reproduction of these tests through a numerical three-dimensional code (Flow-3D) has been carried out simulating this type of flow by solving the RANS equations. The aim of the work was to reproduce the hydraulic performance of a previously tested grated inlet under several flow and geometric conditions using Flow-3D as a virtual laboratory. This will allow inlet efficiencies to be obtained without previous experimental tests. Moreover, the 3D model allows a better understanding of the hydraulics of the flow interception and the flow patterns approaching the inlet.

  14. A closed-form solution for steady-state coupled phloem/xylem flow using the Lambert-W function.

    PubMed

    Hall, A J; Minchin, P E H

    2013-12-01

    A closed-form solution for steady-state coupled phloem/xylem flow is presented. This incorporates the basic Münch flow model of phloem transport, the cohesion model of xylem flow, and local variation in the xylem water potential and lateral water flow along the transport pathway. Use of the Lambert-W function allows this solution to be obtained under much more general and realistic conditions than has previously been possible. Variation in phloem resistance (i.e. viscosity) with solute concentration, and deviations from the Van't Hoff expression for osmotic potential are included. It is shown that the model predictions match those of the equilibrium solution of a numerical time-dependent model based upon the same mechanistic assumptions. The effect of xylem flow upon phloem flow can readily be calculated, which has not been possible in any previous analytical model. It is also shown how this new analytical solution can handle multiple sources and sinks within a complex architecture, and can describe competition between sinks. The model provides new insights into Münch flow by explicitly including interactions with xylem flow and water potential in the closed-form solution, and is expected to be useful as a component part of larger numerical models of entire plants. © 2013 John Wiley & Sons Ltd.

  15. TRANSPORT BY MERIDIONAL CIRCULATIONS IN SOLAR-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, T. S.; Brummell, N. H., E-mail: tsw25@soe.ucsc.edu

    2012-08-20

    Transport by meridional flows has significant consequences for stellar evolution, but is difficult to capture in global-scale numerical simulations because of the wide range of timescales involved. Stellar evolution models therefore usually adopt parameterizations for such transport based on idealized laminar or mean-field models. Unfortunately, recent attempts to model this transport in global simulations have produced results that are not consistent with any of these idealized models. In an effort to explain the discrepancies between global simulations and idealized models, here we use three-dimensional local Cartesian simulations of compressible convection to study the efficiency of transport by meridional flows belowmore » a convection zone in several parameter regimes of relevance to the Sun and solar-type stars. In these local simulations we are able to establish the correct ordering of dynamical timescales, although the separation of the timescales remains unrealistic. We find that, even though the generation of internal waves by convective overshoot produces a high degree of time dependence in the meridional flow field, the mean flow has the qualitative behavior predicted by laminar, 'balanced' models. In particular, we observe a progressive deepening, or 'burrowing', of the mean circulation if the local Eddington-Sweet timescale is shorter than the viscous diffusion timescale. Such burrowing is a robust prediction of laminar models in this parameter regime, but has never been observed in any previous numerical simulation. We argue that previous simulations therefore underestimate the transport by meridional flows.« less

  16. Susceptibility to enhanced chemical migration from depression-focused preferential flow, High Plains aquifer

    USGS Publications Warehouse

    Gurdak, Jason J.; Walvoord, Michelle Ann; McMahon, Peter B.

    2008-01-01

    Aquifer susceptibility to contamination is controlled in part by the inherent hydrogeologic properties of the vadose zone, which includes preferential-flow pathways. The purpose of this study was to investigate the importance of seasonal ponding near leaky irrigation wells as a mechanism for depression-focused preferential flow and enhanced chemical migration through the vadose zone of the High Plains aquifer. Such a mechanism may help explain the widespread presence of agrichemicals in recently recharged groundwater despite estimates of advective chemical transit times through the vadose zone from diffuse recharge that exceed the historical period of agriculture. Using a combination of field observations, vadose zone flow and transport simulations, and probabilistic neural network modeling, we demonstrated that vadose zone transit times near irrigation wells range from 7 to 50 yr, which are one to two orders of magnitude faster than previous estimates based on diffuse recharge. These findings support the concept of fast and slow transport zones and help to explain the previous discordant findings of long vadose zone transit times and the presence of agrichemicals at the water table. Using predictions of aquifer susceptibility from probabilistic neural network models, we delineated approximately 20% of the areal extent of the aquifer to have conditions that may promote advective chemical transit times to the water table of <50 yr if seasonal ponding and depression-focused flow exist. This aquifer-susceptibility map may help managers prioritize areas for groundwater monitoring or implementation of best management practices.

  17. Measurements of the Flowfield Interaction Between Tandem Cylinders

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Jenkins, Luther N.; Choudhari, Meelan M.; Khorrami, Mehdi R.

    2009-01-01

    This paper presents the most recent measurements from an ongoing investigation of the unsteady wake interference between a pair of circular cylinders in tandem. The purpose of this investigation is to help build an in-depth experimental database for this canonical flow configuration that embodies the effects of component interaction in landing gear noise. This new set of measurements augments the previous database at the primary Reynolds number (based on tunnel speed and cylinder diameter) of 1.66 105 in four important respects. First, better circumferential resolution of surface pressure fluctuations is obtained via cylinder "clocking". Second, higher resolution particle image velocimetry measurements of the shear layer separating from the cylinders are achieved. Third, the effects of simultaneous boundary layer trips along both the front and rear cylinders, versus front cylinder alone in the previous measurements, are studied. Lastly, on-surface and off-surface characteristics of unsteady flow near the "critical" cylinder spacing, wherein the flow switches intermittently between two states that are characteristic of lower and higher spacings, are examined. This critical spacing occurs in the middle of a relatively sudden change in the drag of either cylinder and is characterized by a loud intermittent noise and a flow behavior that randomly transitions between shear layer attachment to the rear cylinder and constant shedding and rollup in front of it. Analysis of this bistable flow state reveals much larger spanwise correlation lengths of surface pressure fluctuations than those at larger and smaller values of the cylinder spacing.

  18. Numerical Simulation of Liquids Draining From a Tank Using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Sakri, Fadhilah Mohd; Sukri Mat Ali, Mohamed; Zaki Shaikh Salim, Sheikh Ahmad; Muhamad, Sallehuddin

    2017-08-01

    Accurate simulation of liquids draining is a challenging task. It involves two phases flow, i.e. liquid and air. In this study draining a liquid from a cylindrical tank is numerically simulated using OpenFOAM. OpenFOAM is an open source CFD package and it becomes increasingly popular among the academician and also industries. Comparisons with theoretical and results from previous published data confirmed that OpenFOAM is able to simulate the liquids draining very well. This is done using the gas-liquid interface solver available in the standard library of OpenFOAM. Additionally, this study was also able to explain the physics flow of the draining tank.

  19. Numerical Model Studies of the Martian Mesoscale Circulations

    NASA Technical Reports Server (NTRS)

    Segal, M.; Arritt, R. W.

    1996-01-01

    Studies concerning mesoscale topographical effects on Martian flows examined low-level jets in the near equatorial latitudes and the dynamical intensification of flow by steep terrain. Continuation of work from previous years included evaluating the dissipation of cold air mass outbreaks due to enhanced sensible heat flux, further sensitivity and scaling evaluations for generalization of the characteristics of Martian mesoscale circulation caused by horizontal sensible heat-flux gradients, and evaluations of the significance that non-uniform surface would have on enhancing the polar CO2 ice sublimation during the spring. The sensitivity of maximum and minimum atmospheric temperatures to changes in wind speed, surface albedo, and deep soil temperature was investigated.

  20. Computer simulation of airflow through a multi-generation tracheobronchial conducting airway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, B.; Cheng, Yung-Sung; Yeh, Hsu-Chi

    1995-12-01

    Knowledge of airflow patterns in the human lung is important for an analysis of lung diseases and drug delivery of aerosolized medicine for medical treatment. However, very little systematic information is available on the pattern of airflow in the lung and on how this pattern affects the deposition of toxicants in the lung, and the efficacy of aerosol drug therapy. Most previous studies have only considered the airflow through a single bifurcating airway. However, the flow in a network of more than one bifurcation is more complicated due to the effect of interrelated lung generations. Because of the variation ofmore » airway geometry and flow condition from generation to generation, a single bifurcating airway cannot be taken as a representative for the others in different generations. The flow in the network varies significantly with airway generations because of a redistribution of axial momentum by the secondary flow motions. The influence of the redistribution of flow is expected in every generation. Therefore, a systematic information of the airflow through a multi-generation tracheobronchial conducting airway is needed, and it becomes the purpose of this study. This study has provided information on airflow in a lung model which is necessary to the study of the deposition of toxicants and therapeutic aerosols.« less

  1. Systematic misestimation of cell subpopulations by flow cytometry: a mathematical analysis.

    PubMed

    Petrunkina, A M; Harrison, R A P

    2010-04-15

    Various sources of variability in flow cytometric determination of cell concentration have previously been investigated with respect to andrologic applications. Although common aspects related to the variation between samples, variation between operators, and accuracy have been extensively studied, specific sources of false-count estimation have found less attention. In particular, a major and well-recognized source of misestimation of cell counts (i.e., contamination of the sample by non-sperm particles) has not to date been characterized in detail. We show here by means of original mathematical research that not only the cell counts but also the percentages of cells expressing different fluorescence patterns are affected by the presence of alien particles often neglected in studies involving flow cytometric characterization. We demonstrate that there is a systematic overestimation in the proportion of unstained (viable) cells detected by flow cytometry in cases where the non-sperm particles are not excluded from analysis by additional identification other than light-scatter characteristics. Moreover, we provide an exact mathematical estimate for the magnitude of this overestimation, and we discuss the consequences for diagnostic applications and studies on sperm physiology, specifically for studies on sperm capacitation and evaluation of cryopreserved semen. Finally, equations are derived for the correction of the flow cytometric values for use in practical applications. Copyright 2010 Elsevier Inc. All rights reserved.

  2. River-induced flow dynamics in long-screen wells and impact on aqueous samples.

    PubMed

    Vermeul, Vince R; McKinley, James P; Newcomer, Darrell R; Mackley, Robert D; Zachara, J M

    2011-01-01

    Previously published field investigations and modeling studies have demonstrated the potential for sample bias associated with vertical wellbore flow in conventional monitoring wells constructed with long-screened intervals. This article builds on the existing body of literature by (1) demonstrating the utility of continuous (i.e., hourly measurements for ∼1 month) ambient wellbore flow monitoring and (2) presenting results from a field experiment where relatively large wellbore flows (up to 4 L/min) were induced by aquifer hydrodynamics associated with a fluctuating river boundary located approximately 250 m from the test well. The observed vertical wellbore flows were strongly correlated with fluctuations in river stage, alternating between upward and downward flow throughout the monitoring period in response to changes in river stage. Continuous monitoring of ambient wellbore flows using an electromagnetic borehole flowmeter allowed these effects to be evaluated in concert with continuously monitored river-stage elevations (hourly) and aqueous uranium concentrations (daily) in a long-screen well and an adjacent multilevel well cluster. This study demonstrates that when contaminant concentrations within the aquifer vary significantly over the depth interval interrogated, river-induced vertical wellbore flow can result in variations in measured concentration that nearly encompass the full range of variation in aquifer contaminant concentration with depth. Copyright © 2010 Battelle Memorial Institute. Journal compilation © 2010 National Ground Water Association.

  3. Connecting Ellipses to Rectangles in Passive Scalar Transport

    NASA Astrophysics Data System (ADS)

    Aminian, Manuchehr; Bernardi, Francesca; Camassa, Roberto; Harris, Daniel; McLaughlin, Richard

    2017-11-01

    We study how passive scalar transport in Poiseuille flow is affected by the shape of the pipe cross section. Our previous results have established nontrivial dependence of the skewness of the tracer distribution upon the pipe shape. Previously, we have studied the families of rectangles and ellipses, with the behavior past diffusive timescales primarily depending on aspect ratio, and the type of geometry being secondary. However, at timescales well before the diffusion timescale, the family of ellipses is distinct compared to rectangles. We investigate this phenomenon by studying a collection of exotic cross sections connecting the ellipses and rectangles, using a combination of theoretical and computational tools.

  4. A century of changing flows: Forest management changed flow magnitudes and warming advanced the timing of flow in a southwestern US river

    PubMed Central

    2017-01-01

    The continued provision of water from rivers in the southwestern United States to downstream cities, natural communities and species is at risk due to higher temperatures and drought conditions in recent decades. Snowpack and snowfall levels have declined, snowmelt and peak spring flows are arriving earlier, and summer flows have declined. Concurrent to climate change and variation, a century of fire suppression has resulted in dramatic changes to forest conditions, and yet, few studies have focused on determining the degree to which changing forests have altered flows. In this study, we evaluated changes in flow, climate, and forest conditions in the Salt River in central Arizona from 1914–2012 to compare and evaluate the effects of changing forest conditions and temperatures on flows. After using linear regression models to remove the influence of precipitation and temperature, we estimated that annual flows declined by 8–29% from 1914–1963, coincident with a 2-fold increase in basal area, a 2-3-fold increase in canopy cover, and at least a 10-fold increase in forest density within ponderosa pine forests. Streamflow volumes declined by 37–56% in summer and fall months during this period. Declines in climate-adjusted flows reversed at mid-century when spring and annual flows increased by 10–31% from 1964–2012, perhaps due to more winter rainfall. Additionally, peak spring flows occurred about 12 days earlier in this period than in the previous period, coincident with winter and spring temperatures that increased by 1–2°C. While uncertainties remain, this study adds to the knowledge gained in other regions that forest change has had effects on flow that were on par with climate variability and, in the case of mid-century declines, well before the influence of anthropogenic warming. Current large-scale forest restoration projects hold some promise of recovering seasonal flows. PMID:29176868

  5. Smooth information flow in temperature climate network reflects mass transport

    NASA Astrophysics Data System (ADS)

    Hlinka, Jaroslav; Jajcay, Nikola; Hartman, David; Paluš, Milan

    2017-03-01

    A directed climate network is constructed by Granger causality analysis of air temperature time series from a regular grid covering the whole Earth. Using winner-takes-all network thresholding approach, a structure of a smooth information flow is revealed, hidden to previous studies. The relevance of this observation is confirmed by comparison with the air mass transfer defined by the wind field. Their close relation illustrates that although the information transferred due to the causal influence is not a physical quantity, the information transfer is tied to the transfer of mass and energy.

  6. Response of a store with tunable natural frequencies in compressible cavity flow

    DOE PAGES

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; ...

    2015-01-07

    Fluid-structure interactions that occur during aircraft internal store carriage were experimentally explored at Mach 0.94 and 1.47 using a generic, aerodynamic store installed in a rectangular cavity having a length-to-depth ratio of 7. Similar to previous studies using a cylindrical store, the aerodynamic store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance. Moreover, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas the spanwise response was much more limited.

  7. Production version of the extended NASA-Langley Vortex Lattice FORTRAN computer program. Volume 1: User's guide

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.; Herbert, H. E.

    1982-01-01

    The latest production version, MARK IV, of the NASA-Langley vortex lattice computer program is summarized. All viable subcritical aerodynamic features of previous versions were retained. This version extends the previously documented program capabilities to four planforms, 400 panels, and enables the user to obtain vortex-flow aerodynamics on cambered planforms, flowfield properties off the configuration in attached flow, and planform longitudinal load distributions.

  8. Mach Probe Measurements in a Large-Scale Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Hatch, M. W.; Kelly, R. F.; Fisher, D. M.; Gilmore, M.; Dwyer, R. H.

    2017-10-01

    A new six-tipped Mach probe, that utilizes a fused-quartz insulator, has been developed and initially tested in the HelCat dual-source plasma device at the University of New Mexico. The new design allows for relatively long duration measurements of parallel and perpendicular flows that suffer less from thermal changes in conductivity and surface build-up seen in previous alumina-insulated designs. Mach probe measurement will be presented in comparison with ongoing laser induced fluorescence (LIF) measurements, previous Mach probe measurements, ExB flow estimates derived from Langmuir probes, and fast-frame CCD camera images, in an effort to better understand previous anomalous ion flow in HelCat. Additionally, Mach probe-LIF comparisons will provide an experimentally obtained Mach probe calibration constant, K, to validate sheath-derived estimates for the weakly magnetized case. Supported by U.S. National Science Foundation Award 1500423.

  9. Concentration and Velocity Measurements of Both Phases in Liquid-Solid Slurries

    NASA Astrophysics Data System (ADS)

    Altobelli, Stephen; Hill, Kimberly; Caprihan, Arvind

    2007-03-01

    Natural and industrial slurry flows abound. They are difficult to calculate and to measure. We demonstrate a simple technique for studying steady slurries. We previously used time-of-flight techniques to study pressure driven slurry flow in pipes. Only the continuous phase velocity and concentration fields were measured. The discrete phase concentration was inferred. In slurries composed of spherical, oil-filled pills and poly-methyl-siloxane oils, we were able to use inversion nulling to measure the concentration and velocity fields of both phases. Pills are available in 1-5mm diameter and silicone oils are available in a wide range of viscosities, so a range of flows can be studied. We demonstrated the technique in horizontal, rotating cylinder flows. We combined two tried and true methods to do these experiments. The first used the difference in T1 to select between phases. The second used gradient waveforms with controlled first moments to produce velocity dependent phase shifts. One novel processing method was developed that allows us to use static continuous phase measurements to reference both the continuous and discrete phase velocity images. ?

  10. Nile Delta vegetation response to Holocene climate variability

    USGS Publications Warehouse

    Bernhardt, Christopher E.; Horton, Benjamin P.; Stanley, Jean-Daniel

    2012-01-01

    A 7000 yr palynologic record from Burullus Lagoon, Nile Delta, Egypt, is assessed to investigate changes in terrestrial vegetation in response to Nile flow. Previous studies in this region have shown that sea-level rise in the early to mid-Holocene, and markedly increased human land use during the past several centuries, altered vegetation in and around the lagoon. The pollen record from this study documents changes in delta vegetation that likely reflect variations in Nile flow. We suggest that Cyperaceae pollen is a sensitive marker of precipitation over the Nile headwaters and the resultant Nile flow. Decreases in Cyperaceae pollen, interpreted as a marker for diminished Nile flow, as well as the increase in relative abundance of microscopic charcoal, occurred at ca. 6000–5500, ca. 5000, ca. 4200, and ca. 3000 cal. yr B.P. (calibrated years before present). These correspond to extreme regional and global aridity events associated with a more southerly mean position of the Intertropical Convergence Zone. These changes, also recorded by other proxy studies, indicate that several marked regional drought events affected the Nile Delta region and impacted ancient Egyptian and Middle Eastern civilizations.

  11. Design and Verification of a Shape Memory Polymer Peripheral Occlusion Device

    PubMed Central

    Landsman, Todd L.; Bush, Ruth L.; Glowczwski, Alan; Horn, John; Jessen, Staci L.; Ungchusri, Ethan; Diguette, Katelin; Smith, Harrison R.; Hasan, Sayyeda M.; Nash, Daniel; Clubb, Fred J.; Maitland, Duncan J.

    2017-01-01

    Shape memory polymer foams have been previously investigated for their safety and efficacy in treating a porcine aneurysm model. Their biocompatibility, rapid thrombus formation, and ability for endovascular catheter-based delivery to a variety of vascular beds makes these foams ideal candidates for use in numerous embolic applications, particularly within the peripheral vasculature. This study sought to investigate the material properties, safety, and efficacy of a shape memory polymer peripheral embolization device in vitro. The material characteristics of the device were analyzed to show tunability of the glass transition temperature (Tg) and the expansion rate of the polymer to ensure adequate time to deliver the device through a catheter prior to excessive foam expansion. Mechanical analysis and flow migration studies were performed to ensure minimal risk of vessel perforation and undesired thromboembolism upon device deployment. The efficacy of the device was verified by performing blood flow studies that established affinity for thrombus formation and blood penetration throughout the foam and by delivery of the device in an ultrasound phantom that demonstrated flow stagnation and diversion of flow to collateral pathways. PMID:27419615

  12. Drop coalescence and liquid flow in a single Plateau border

    NASA Astrophysics Data System (ADS)

    Cohen, Alexandre; Fraysse, Nathalie; Raufaste, Christophe

    2015-05-01

    We report a comprehensive study of the flow of liquid triggered by injecting a droplet into a liquid foam microchannel, also called a Plateau border. This drop-injected experiment reveals an intricate dynamics for the liquid redistribution, with two contrasting regimes observed, ruled either by inertia or viscosity. We devoted a previous study [A. Cohen et al., Phys. Rev. Lett. 112, 218303 (2014), 10.1103/PhysRevLett.112.218303] to the inertial imbibition regime, unexpected at such small length scales. Here we report other features of interest of the drop-injected experiment, related to the coalescence of the droplet with the liquid microchannel, to both the inertial and viscous regimes, and to the occurrence of liquid flow through the soap films as well as effects of the interfacial rheology. The transition between the two regimes is investigated and qualitatively accounted for. The relevance of our results to liquid foam drainage is tackled by considering the flow of liquid at the nodes of the network of interconnected microchannels. Extensions of our study to liquid foams are discussed.

  13. Design and verification of a shape memory polymer peripheral occlusion device.

    PubMed

    Landsman, Todd L; Bush, Ruth L; Glowczwski, Alan; Horn, John; Jessen, Staci L; Ungchusri, Ethan; Diguette, Katelin; Smith, Harrison R; Hasan, Sayyeda M; Nash, Daniel; Clubb, Fred J; Maitland, Duncan J

    2016-10-01

    Shape memory polymer foams have been previously investigated for their safety and efficacy in treating a porcine aneurysm model. Their biocompatibility, rapid thrombus formation, and ability for endovascular catheter-based delivery to a variety of vascular beds makes these foams ideal candidates for use in numerous embolic applications, particularly within the peripheral vasculature. This study sought to investigate the material properties, safety, and efficacy of a shape memory polymer peripheral embolization device in vitro. The material characteristics of the device were analyzed to show tunability of the glass transition temperature (Tg) and the expansion rate of the polymer to ensure adequate time to deliver the device through a catheter prior to excessive foam expansion. Mechanical analysis and flow migration studies were performed to ensure minimal risk of vessel perforation and undesired thromboembolism upon device deployment. The efficacy of the device was verified by performing blood flow studies that established affinity for thrombus formation and blood penetration throughout the foam and by delivery of the device in an ultrasound phantom that demonstrated flow stagnation and diversion of flow to collateral pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Robust estimation of simulated urinary volume from camera images under bathroom illumination.

    PubMed

    Honda, Chizuru; Bhuiyan, Md Shoaib; Kawanaka, Haruki; Watanabe, Eiichi; Oguri, Koji

    2016-08-01

    General uroflowmetry method involves the risk of nosocomial infections or time and effort of the recording. Medical institutions, therefore, need to measure voided volume simply and hygienically. Multiple cylindrical model that can estimate the fluid flow rate from the photographed image using camera has been proposed in an earlier study. This study implemented a flow rate estimation by using a general-purpose camera system (Raspberry Pi Camera Module) and the multiple cylindrical model. However, large amounts of noise in extracting liquid region are generated by the variation of the illumination when performing measurements in the bathroom. So the estimation error gets very large. In other words, the specifications of the previous study's camera setup regarding the shutter type and the frame rate was too strict. In this study, we relax the specifications to achieve a flow rate estimation using a general-purpose camera. In order to determine the appropriate approximate curve, we propose a binarizing method using background subtraction at each scanning row and a curve approximation method using RANSAC. Finally, by evaluating the estimation accuracy of our experiment and by comparing it with the earlier study's results, we show the effectiveness of our proposed method for flow rate estimation.

  15. Numerical Simulation of the Effect of 3D Needle Movement on Cavitation and Spray Formation in a Diesel Injector

    NASA Astrophysics Data System (ADS)

    Mandumpala Devassy, B.; Edelbauer, W.; Greif, D.

    2015-12-01

    Cavitation and its effect on spray formation and its dispersion play a crucial role in proper engine combustion and controlled emission. This study focuses on these effects in a typical common rail 6-hole diesel injector accounting for 3D needle movement and flow compressibility effects. Coupled numerical simulations using 1D and 3D CFD codes are used for this investigation. Previous studies in this direction have already presented a detailed structure of the adopted methodology. Compared to the previous analysis, the present study investigates the effect of 3D needle movement and cavitation on the spray formation for pilot and main injection events for a typical diesel engine operating point. The present setup performs a 3D compressible multiphase simulation coupled with a standalone 1D high pressure flow simulation. The simulation proceeds by the mutual communication between 1D and 3D solvers. In this work a typical common rail injector with a mini-sac nozzle is studied. The lateral and radial movement of the needle and its effect on the cavitation generation and the subsequent spray penetration are analyzed. The result indicates the effect of compressibility of the liquid on damping the needle forces, and also the difference in the spray penetration levels due to the asymmetrical flow field. Therefore, this work intends to provide an efficient and user-friendly engineering tool for simulating a complete fuel injector including spray propagation.

  16. Modelling information flow along the human connectome using maximum flow.

    PubMed

    Lyoo, Youngwook; Kim, Jieun E; Yoon, Sujung

    2018-01-01

    The human connectome is a complex network that transmits information between interlinked brain regions. Using graph theory, previously well-known network measures of integration between brain regions have been constructed under the key assumption that information flows strictly along the shortest paths possible between two nodes. However, it is now apparent that information does flow through non-shortest paths in many real-world networks such as cellular networks, social networks, and the internet. In the current hypothesis, we present a novel framework using the maximum flow to quantify information flow along all possible paths within the brain, so as to implement an analogy to network traffic. We hypothesize that the connection strengths of brain networks represent a limit on the amount of information that can flow through the connections per unit of time. This allows us to compute the maximum amount of information flow between two brain regions along all possible paths. Using this novel framework of maximum flow, previous network topological measures are expanded to account for information flow through non-shortest paths. The most important advantage of the current approach using maximum flow is that it can integrate the weighted connectivity data in a way that better reflects the real information flow of the brain network. The current framework and its concept regarding maximum flow provides insight on how network structure shapes information flow in contrast to graph theory, and suggests future applications such as investigating structural and functional connectomes at a neuronal level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Recurrent flow analysis in spatiotemporally chaotic 2-dimensional Kolmogorov flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, Dan, E-mail: dan.lucas@ucd.ie; Kerswell, Rich R., E-mail: r.r.kerswell@bris.ac.uk

    2015-04-15

    Motivated by recent success in the dynamical systems approach to transitional flow, we study the efficiency and effectiveness of extracting simple invariant sets (recurrent flows) directly from chaotic/turbulent flows and the potential of these sets for providing predictions of certain statistics of the flow. Two-dimensional Kolmogorov flow (the 2D Navier-Stokes equations with a sinusoidal body force) is studied both over a square [0, 2π]{sup 2} torus and a rectangular torus extended in the forcing direction. In the former case, an order of magnitude more recurrent flows are found than previously [G. J. Chandler and R. R. Kerswell, “Invariant recurrent solutionsmore » embedded in a turbulent two-dimensional Kolmogorov flow,” J. Fluid Mech. 722, 554–595 (2013)] and shown to give improved predictions for the dissipation and energy pdfs of the chaos via periodic orbit theory. Analysis of the recurrent flows shows that the energy is largely trapped in the smallest wavenumbers through a combination of the inverse cascade process and a feature of the advective nonlinearity in 2D. Over the extended torus at low forcing amplitudes, some extracted states mimic the statistics of the spatially localised chaos present surprisingly well recalling the findings of Kawahara and Kida [“Periodic motion embedded in plane Couette turbulence: Regeneration cycle and burst,” J. Fluid Mech. 449, 291 (2001)] in low-Reynolds-number plane Couette flow. At higher forcing amplitudes, however, success is limited highlighting the increased dimensionality of the chaos and the need for larger data sets. Algorithmic developments to improve the extraction procedure are discussed.« less

  18. Convection flow structure in the central polar cap

    NASA Astrophysics Data System (ADS)

    Bristow, W. A.

    2017-12-01

    A previous study of spatially averaged flow velocity in the central polar cap [Bristow et al., 2015] observed under steady IMF conditions found that it was extremely rare for the average to exceed 850 m/s (less than 0.2 % of the time). Anecdotally, however it is not uncommon to observe line-of-sight velocities in excess of 100 m/s in the McMurdo radar field of view directly over the magnetic pole. This discrepancy motivated this study, which examines the conditions under which high-velocity flows are observed at latitudes greater than 80° magnetic latitude. It was found that highly structured flows are common in the central polar cap, which leads to the flow within regions to have significant deviation from the average. In addition, the high-speed flow regions are usually directed away from the earth-sun line. No specific set of driving conditions was identified to be associated with high-speed flows. The study did conclude that 1)Polar cap velocities are generally highly structured. 2)Flow patterns typically illustrate narrow channels, vortical flow regions, and propagating features. 3) Persistent waves are a regular occurrence. 3)Features are observed to propagate from day side to night side, and from night side to day side.. 4)Convection often exhibits significant difference between the two hemispheres. And 5)About 10% of the time the velocity somewhere in the cap exceeds 1 Km/s The presentation will conclude with a discussion of the physical reasons for the flow structure. Bristow, W. A., E. Amata, J. Spaleta, and M. F. Marcucci (2015), Observations of the relationship between ionospheric central polar cap and dayside throat convection velocities, and solar wind/IMF driving, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021199.

  19. Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors.

    PubMed

    Croze, Ottavio A; Sardina, Gaetano; Ahmed, Mansoor; Bees, Martin A; Brandt, Luca

    2013-04-06

    Shear flow significantly affects the transport of swimming algae in suspension. For example, viscous and gravitational torques bias bottom-heavy cells to swim towards regions of downwelling fluid (gyrotaxis). It is necessary to understand how such biases affect algal dispersion in natural and industrial flows, especially in view of growing interest in algal photobioreactors. Motivated by this, we here study the dispersion of gyrotactic algae in laminar and turbulent channel flows using direct numerical simulation (DNS) and a previously published analytical swimming dispersion theory. Time-resolved dispersion measures are evaluated as functions of the Péclet and Reynolds numbers in upwelling and downwelling flows. For laminar flows, DNS results are compared with theory using competing descriptions of biased swimming cells in shear flow. Excellent agreement is found for predictions that employ generalized Taylor dispersion. The results highlight peculiarities of gyrotactic swimmer dispersion relative to passive tracers. In laminar downwelling flow the cell distribution drifts in excess of the mean flow, increasing in magnitude with Péclet number. The cell effective axial diffusivity increases and decreases with Péclet number (for tracers it merely increases). In turbulent flows, gyrotactic effects are weaker, but discernable and manifested as non-zero drift. These results should have a significant impact on photobioreactor design.

  20. Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors

    PubMed Central

    Croze, Ottavio A.; Sardina, Gaetano; Ahmed, Mansoor; Bees, Martin A.; Brandt, Luca

    2013-01-01

    Shear flow significantly affects the transport of swimming algae in suspension. For example, viscous and gravitational torques bias bottom-heavy cells to swim towards regions of downwelling fluid (gyrotaxis). It is necessary to understand how such biases affect algal dispersion in natural and industrial flows, especially in view of growing interest in algal photobioreactors. Motivated by this, we here study the dispersion of gyrotactic algae in laminar and turbulent channel flows using direct numerical simulation (DNS) and a previously published analytical swimming dispersion theory. Time-resolved dispersion measures are evaluated as functions of the Péclet and Reynolds numbers in upwelling and downwelling flows. For laminar flows, DNS results are compared with theory using competing descriptions of biased swimming cells in shear flow. Excellent agreement is found for predictions that employ generalized Taylor dispersion. The results highlight peculiarities of gyrotactic swimmer dispersion relative to passive tracers. In laminar downwelling flow the cell distribution drifts in excess of the mean flow, increasing in magnitude with Péclet number. The cell effective axial diffusivity increases and decreases with Péclet number (for tracers it merely increases). In turbulent flows, gyrotactic effects are weaker, but discernable and manifested as non-zero drift. These results should have a significant impact on photobioreactor design. PMID:23407572

  1. Flow and Jamming of Granular Materials in a Two-dimensional Hopper

    NASA Astrophysics Data System (ADS)

    Tang, Junyao

    Flow in a hopper is both a fertile testing ground for understanding fundamental granular flow rheology and industrially highly relevant. Despite increasing research efforts in this area, a comprehensive physical theory is still lacking for both jamming and flow of granular materials in a hopper. In this work, I have designed a two dimensional (2D) hopper experiment using photoelastic particles (particles' shape: disk or ellipse), with the goal to build a bridge between macroscopic phenomenon of hopper flow and microscopic particle-scale dynamics. Through synchronized data of particle tracking and stress distributions in particles, I have shown differences between my data of the time-averaged velocity/stress profile of 2D hopper flow with previous theoretical predictions. I have also demonstrated the importance of a mechanical stable arch near the opening on controlling hopper flow rheology and suggested a heuristic phase diagram for the hopper flow/jamming transition. Another part of this thesis work is focused on studying the impact of particle shape of particles on hopper flow. By comparing particle-tracking and photoelastic data for ellipses and disks at the appropriate length scale, I have demonstrated an important role for the rotational freedom of elliptical particles in controlling flow rheology through particle tracking and stress analysis. This work has been supported by International Fine Particle Research Institute (IFPRI) .

  2. Activation of G proteins mediates flow-induced prostaglandin E2 production in osteoblasts

    NASA Technical Reports Server (NTRS)

    Reich, K. M.; McAllister, T. N.; Gudi, S.; Frangos, J. A.

    1997-01-01

    Interstitial fluid flow may play a role in load-induced bone remodeling. Previously, we have shown that fluid flow stimulates osteoblast production of cAMP inositol trisphosphate (IP3), and PGE2. Flow-induced increases in cAMP and IP3 were shown to be a result of PG production. Thus, PGE2 production appears to be an important component in fluid flow induced signal transduction. In the present study, we investigated the mechanism of flow-induced PGE2 synthesis. Flow-induced a 20-fold increase in PGE2 production in osteoblasts. Increases were also observed with ALF4-(10mM) (98-fold), an activator of guanidine nucleotide-binding proteins (G proteins), and calcium ionophore A23187 (2 microM) (100-fold) in stationary cells. We then investigated whether flow stimulation is mediated by G proteins and increases in intracellular calcium. Flow-induced PGE2 production was inhibited by the G protein inhibitors GDP beta S (100 microM) and pertussis toxin (1 microgram/ml) by 83% and 72%, respectively. Chelation of extracellular calcium by EGTA (2 mM) and intracellular calcium by quin-2/AM (30 microM) blocked flow stimulation by 87% and 67%, respectively. These results suggest that G proteins and calcium play an important role in mediating mechanochemical signal transduction in osteoblasts.

  3. The transmission spectrum of sound through a phononic crystal subjected to liquid flow

    NASA Astrophysics Data System (ADS)

    Declercq, Nico F.; Chehami, Lynda; Moiseyenko, Rayisa P.

    2018-01-01

    The influence of liquid-flow up to 7 mm/s is examined on transmission spectra of phononic crystals, revealing a potential use for slow liquid-flow measurement techniques. It is known that transmission of ultrasound through a phononic crystal is determined by its periodicity and depends on the material characteristics of the crystal's constituents. Here, the crystal consists of metal rods with the space in between filled with water. Previous studies have assumed still water in the crystal, and here, we consider flowing liquid. First, the crystal bandgaps are investigated in still water, and the results of transmission experiments are compared with theoretical band structures obtained with the finite element method. Then, changes in transmission spectra are investigated for different speeds of liquid flow. Two situations are investigated: a crystal is placed with a principal symmetry axis in the flow direction ( ΓX) and then at an angle ( ΓM). The good stability of the bandgap structure of the transmission spectrum for both directions is observed, which may be of importance for the application of phononic crystals as acoustic filters in an environment of flowing liquid. Minor transmission amplitude changes on the other hand reveal a possibility for slow liquid flow measurements.

  4. Lattice Boltzmann simulations of heat transfer in fully developed periodic incompressible flows

    NASA Astrophysics Data System (ADS)

    Wang, Zimeng; Shang, Helen; Zhang, Junfeng

    2017-06-01

    Flow and heat transfer in periodic structures are of great interest for many applications. In this paper, we carefully examine the periodic features of fully developed periodic incompressible thermal flows, and incorporate them in the lattice Boltzmann method (LBM) for flow and heat transfer simulations. Two numerical approaches, the distribution modification (DM) approach and the source term (ST) approach, are proposed; and they can both be used for periodic thermal flows with constant wall temperature (CWT) and surface heat flux boundary conditions. However, the DM approach might be more efficient, especially for CWT systems since the ST approach requires calculations of the streamwise temperature gradient at all lattice nodes. Several example simulations are conducted, including flows through flat and wavy channels and flows through a square array with circular cylinders. Results are compared to analytical solutions, previous studies, and our own LBM calculations using different simulation techniques (i.e., the one-module simulation vs. the two-module simulation, and the DM approach vs. the ST approach) with good agreement. These simple, however, representative simulations demonstrate the accuracy and usefulness of our proposed LBM methods for future thermal periodic flow simulations.

  5. Laboratory Experiments of Sand Ripples with Bimodal Size Distributions Under Asymmetric Oscillatory Flows

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Landry, B. J.

    2010-12-01

    The dynamics of sand ripples are vital to understanding numerous coastal processes such as sediment transport, wave attenuation, boundary layer development, and seafloor acoustic properties. Though significant laboratory research has been conducted to elucidate oscillatory flow morphodynamics under various constant and transient forcing conditions, the majority of the previous experiments were conducted only for beds with unimodal size distributions of sediment. Recent oscillatory flow experiments as well as past laboratory observations in uniform flows suggest that the presence of heterogeneous size sand compositions may significantly impact ripple morphology, resulting in a variety of observable effects (e.g., sediment sorting, bed armoring, and altered transport rates). Experimental work was conducted in a small oscillatory flow tunnel at the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center. Three different monochromatic oscillatory forcings having velocity asymmetry were used to study sand ripple dynamics over five bimodal and two unimodal sediment beds. The seven different mixtures were composed using two unimodal sands of different colors (blue/white) and median grain diameters (d=0.31 mm / d=0.65 mm) combined into various mixtures by mass (i.e., 0/100; 10/90; 25/75; 50/50; 75/25; 90/10; and 100/0 which denotes mass percentage of blue/white sand, respectively, within each mixture). High-definition video of the sediment bed profile was acquired in conjunction with sediment trap measurements to resolve differences in ripple geometries, migration and evolution rates due to the different sediment mixtures and flow conditions. Observational findings clearly illustrate sediment stratification within ripple crests and the depth of the active mixing layer in addition to supporting sediment sorting in previous research on symmetric oscillatory flows in which the larger grains collect on top of ripple crests and smaller grains in the troughs. Preliminary quantitative results illuminate variations in equilibrium ripple geometry, ripple migration rates, and transition time scales between equilibrium states, all as functions of the sediment size mixture and flow forcing.

  6. Density-based global sensitivity analysis of sheet-flow travel time: Kinematic wave-based formulations

    NASA Astrophysics Data System (ADS)

    Hosseini, Seiyed Mossa; Ataie-Ashtiani, Behzad; Simmons, Craig T.

    2018-04-01

    Despite advancements in developing physics-based formulations to estimate the sheet-flow travel time (tSHF), the quantification of the relative impacts of influential parameters on tSHF has not previously been considered. In this study, a brief review of the physics-based formulations to estimate tSHF including kinematic wave (K-W) theory in combination with Manning's roughness (K-M) and with Darcy-Weisbach friction formula (K-D) over single and multiple planes is provided. Then, the relative significance of input parameters to the developed approaches is quantified by a density-based global sensitivity analysis (GSA). The performance of K-M considering zero-upstream and uniform flow depth (so-called K-M1 and K-M2), and K-D formulae to estimate the tSHF over single plane surface were assessed using several sets of experimental data collected from the previous studies. The compatibility of the developed models to estimate tSHF over multiple planes considering temporal rainfall distributions of Natural Resources Conservation Service, NRCS (I, Ia, II, and III) are scrutinized by several real-world examples. The results obtained demonstrated that the main controlling parameters of tSHF through K-D and K-M formulae are the length of surface plane (mean sensitivity index T̂i = 0.72) and flow resistance (mean T̂i = 0.52), respectively. Conversely, the flow temperature and initial abstraction ratio of rainfall have the lowest influence on tSHF (mean T̂i is 0.11 and 0.12, respectively). The significant role of the flow regime on the estimation of tSHF over a single and a cascade of planes are also demonstrated. Results reveal that the K-D formulation provides more precise tSHF over the single plane surface with an average percentage of error, APE equal to 9.23% (the APE for K-M1 and K-M2 formulae were 13.8%, and 36.33%, respectively). The superiority of Manning-jointed formulae in estimation of tSHF is due to the incorporation of effects from different flow regimes as flow moves downgradient that is affected by one or more factors including high excess rainfall intensities, low flow resistance, high degrees of imperviousness, long surfaces, steep slope, and domination of rainfall distribution as NRCS Type I, II, or III.

  7. The value of fractional and coronary flow reserve in predicting myocardial recovery in patients with previous myocardial infarction.

    PubMed

    Beleslin, Branko; Ostojic, Miodrag; Djordjevic-Dikic, Ana; Vukcevic, Vladan; Stojkovic, Sinisa; Nedeljkovic, Milan; Stankovic, Goran; Orlic, Dejan; Milic, Natasa; Stepanovic, Jelena; Giga, Vojislav; Saponjski, Jovica

    2008-11-01

    The aim of the study was to evaluate the relation between fractional flow reserve (FFR) and simultaneously evaluated coronary flow reserve by thermodilution (CFRthermo), with the improvement of left ventricular (LV) function in patients with previous myocardial infarction (MI) undergoing percutaneous coronary intervention (PCI). Study population consisted of 46 patients (mean age 53 +/- 7 years; 36 male) with previous MI and significant coronary stenosis undergoing PCI of infarct-related coronary artery. In all patients, we evaluated FFR and CFRthermo by single pressure/thermo wire during maximal hyperaemia before and immediately after PCI. We performed echocardiographic assessment of LV ejection fraction before and 6 months after PCI. Dobutamine stress echocardiography test was also performed before PCI. LV functional improvement was observed in 33/46 (72%) of patients. In patients with LV functional recovery in comparison with patients with no recovery, there was a significant difference in FFR before PCI (0.56 +/- 0.14 vs. 0.70 +/- 0.07, P < 0.001), improvement of FFR (0.35 +/- 0.14 vs. 0.21 +/- 0.07, P < 0.001), improvement of CFRthermo (1.3 +/- 0.6 vs. 0.5 +/- 0.3, P < 0.001), and CFRthermo after PCI (2.6 +/- 0.7 vs. 2.0 +/- 0.4, P < 0.001). When only parameters evaluated before PCI were taken into account, FFR before angioplasty (P = 0.001) and dobutamine-assessed viability (P = 0.006) were the most significant multivariate predictors of myocardial recovery. When all significant univariate parameters were evaluated, the most significant independent predictors for improvement in myocardial function were the improvement of CFRthermo during angioplasty (P < 0.001) and FFR before angioplasty (P = 0.002). Simultaneous evaluation of FFR and CFRthermo provide significant complementary data on the improvement in myocardial function in patients with previous MI. However, the evaluation of FFR before angioplasty identifies viable myocardium that may recover following revascularization and may be used as an alternative to non-invasive testing.

  8. A numerical investigation into the effects of Reynolds number on the flow mechanism induced by a tubercled leading edge

    NASA Astrophysics Data System (ADS)

    Rostamzadeh, Nikan; Kelso, Richard M.; Dally, Bassam

    2017-02-01

    Leading-edge modifications based on designs inspired by the protrusions on the pectoral flippers of the humpback whale (tubercles) have been the subject of research for the past decade primarily due to their flow control potential in ameliorating stall characteristics. Previous studies have demonstrated that, in the transitional flow regime, full-span wings with tubercled leading edges outperform unmodified wings at high attack angles. The flow mechanism associated with such enhanced loading traits is, however, still being investigated. Also, the performance of full-span tubercled wings in the turbulent regime is largely unexplored. The present study aims to investigate Reynolds number effects on the flow mechanism induced by a full-span tubercled wing with the NACA-0021 cross-sectional profile in the transitional and near-turbulent regimes using computational fluid dynamics. The analysis of the flow field suggests that, with the exception of a few different flow features, the same underlying flow mechanism, involving the presence of transverse and streamwise vorticity, is at play in both cases. With regard to lift-generation characteristics, the numerical simulation results indicate that in contrast to the transitional flow regime, where the unmodified NACA-0021 undergoes a sudden loss of lift, in the turbulent regime, the baseline foil experiences gradual stall and produces more lift than the tubercled foil. This observation highlights the importance of considerations regarding the Reynolds number effects and the stall characteristics of the baseline foil, in the industrial applications of tubercled lifting bodies.

  9. Laminar-to-turbulence and relaminarization zones detection by simulation of low Reynolds number turbulent blood flow in large stenosed arteries.

    PubMed

    Tabe, Reza; Ghalichi, Farzan; Hossainpour, Siamak; Ghasemzadeh, Kamran

    2016-08-12

    Laminar, turbulent, transitional, or combine areas of all three types of viscous flow can occur downstream of a stenosis depending upon the Reynolds number and constriction shape parameter. Neither laminar flow solver nor turbulent models for instance the k-ω (k-omega), k-ε (k-epsilon), RANS or LES are opportune for this type of flow. In the present study attention has been focused vigorously on the effect of the constriction in the flow field with a unique way. It means that the laminar solver was employed from entry up to the beginning of the turbulent shear flow. The turbulent model (k-ω SST Transitional Flows) was utilized from starting of turbulence to relaminarization zone while the laminar model was applied again with onset of the relaminarization district. Stenotic flows, with 50 and 75% cross-sectional area, were simulated at Reynolds numbers range from 500 to 2000 employing FLUENT (v6.3.17). The flow was considered to be steady, axisymmetric, and incompressible. Achieving results were reported as axial velocity, disturbance velocity, wall shear stress and the outcomes were compared with previously experimental and CFD computations. The analogy of axial velocity profiles shows that they are in acceptable compliance with the empirical data. As well as disturbance velocity and wall shear stresses anticipated by this new approach, part by part simulation, are reasonably valid with the acceptable experimental studies.

  10. An Improved Experimental Method for Simulating Erosion Processes by Concentrated Channel Flow

    PubMed Central

    Chen, Xiao-Yan; Zhao, Yu; Mo, Bin; Mi, Hong-Xing

    2014-01-01

    Rill erosion is an important process that occurs on hill slopes, including sloped farmland. Laboratory simulations have been vital to understanding rill erosion. Previous experiments obtained sediment yields using rills of various lengths to get the sedimentation process, which disrupted the continuity of the rill erosion process and was time-consuming. In this study, an improved experimental method was used to measure the rill erosion processes by concentrated channel flow. By using this method, a laboratory platform, 12 m long and 3 m wide, was used to construct rills of 0.1 m wide and 12 m long for experiments under five slope gradients (5, 10, 15, 20, and 25 degrees) and three flow rates (2, 4, and 8 L min−1). Sediment laden water was simultaneously sampled along the rill at locations 0.5 m, 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, 10 m, and 12 m from the water inlet to determine the sediment concentration distribution. The rill erosion process measured by the method used in this study and that by previous experimental methods are approximately the same. The experimental data indicated that sediment concentrations increase with slope gradient and flow rate, which highlights the hydraulic impact on rill erosion. Sediment concentration increased rapidly at the initial section of the rill, and the rate of increase in sediment concentration reduced with the rill length. Overall, both experimental methods are feasible and applicable. However, the method proposed in this study is more efficient and easier to operate. This improved method will be useful in related research. PMID:24949621

  11. Fatigue effect on phase transition of pedestrian movement: experiment and simulation study

    NASA Astrophysics Data System (ADS)

    Luo, Lin; Fu, Zhijian; Zhou, Xiaodong; Zhu, Kongjin; Yang, Hongtai; Yang, Lizhong

    2016-10-01

    How to model pedestrian movement is an intriguing problem in the area of statistical physics. As a common phenomenon of pedestrian movement, fatigue has a significant negative effect on pedestrian movement, especially when pedestrians move or run with heavy luggage, rescue the wounded in disaster, climb stairs and etc. According to the field observations and previous researches, fatigue coefficient is defined as the decrease of desired velocity in this study. However, previous researches lacked quantitative analysis of the effect of fatigue on pedestrian speed. It has been a great challenge to study the effect of fatigue on pedestrian flow, since pedestrians of heterogeneous walking abilities and the change of pedestrians’ moving properties need to be taken into consideration. Thus, at first, a series of pedestrian experiments, under three different conditions, were conducted to formulate the empirical relationship among fatigue, average free velocity, and walking distance. Then the empirical formulation of pedestrian fatigue was imported into the multi-velocity field floor cellular automata (FFCA) model for following pedestrian dynamics analysis. The velocity ratio was adjusted dynamically to adapt the change of pedestrians’ velocity due to fatigue. The fatigue, entrance flow rate and pedestrian’s initial desired velocity are found to have significant effects on the pedestrian flow. The space-time distributions of pedestrian density and velocity were explored in detail, with phase transition analyses from a free flow phase to a congestion phase. Additionally, the ‘density wave’ in the system can be observed if a certain ratio of burdened pedestrians lay in the high density region. The envelope of the ‘density wave’ reaches its maximum amplitude around the entrance position, and gradually diminishes away from the entrance.

  12. Polyploidy in the Olive Complex (Olea europaea): Evidence from Flow Cytometry and Nuclear Microsatellite Analyses

    PubMed Central

    Besnard, G.; Garcia-Verdugo, C.; Rubio De Casas, R.; Treier, U. A.; Galland, N.; Vargas, P.

    2008-01-01

    Background Phylogenetic and phylogeographic investigations have been previously performed to study the evolution of the olive tree complex (Olea europaea). A particularly high genomic diversity has been found in north-west Africa. However, to date no exhaustive study has been addressed to infer putative polyploidization events and their evolutionary significance in the diversification of the olive tree and its relatives. Methods Representatives of the six olive subspecies were investigated using (a) flow cytometry to estimate genome content, and (b) six highly variable nuclear microsatellites to assess the presence of multiple alleles at co-dominant loci. In addition, nine individuals from a controlled cross between two individuals of O. europaea subsp. maroccana were characterized with microsatellites to check for chromosome inheritance. Key Results Based on flow cytometry and genetic analyses, strong evidence for polyploidy was obtained in subspp. cerasiformis (tetraploid) and maroccana (hexaploid), whereas the other subspecies appeared to be diploids. Agreement between flow cytometry and genetic analyses gives an alternative approach to chromosome counting to determine ploidy level of trees. Lastly, abnormalities in chromosomes inheritance leading to aneuploid formation were revealed using microsatellite analyses in the offspring from the controlled cross in subsp. maroccana. Conclusions This study constitutes the first report for multiple polyploidy in olive tree relatives. Formation of tetraploids and hexaploids may have played a major role in the diversification of the olive complex in north-west Africa. The fact that polyploidy is found in narrow endemic subspecies from Madeira (subsp. cerasiformis) and the Agadir Mountains (subsp. maroccana) suggests that polyploidization has been favoured to overcome inbreeding depression. Lastly, based on previous phylogenetic analyses, we hypothesize that subsp. cerasiformis resulted from hybridization between ancestors of subspp. guanchica and europaea. PMID:18024415

  13. The influence of gravity on regional lung blood flow in humans: SPECT in the upright and head-down posture.

    PubMed

    Ax, M; Sanchez-Crespo, A; Lindahl, S G E; Mure, M; Petersson, J

    2017-06-01

    Previous studies in humans have shown that gravity has little influence on the distribution of lung blood flow while changing posture from supine to prone. This study aimed to evaluate the maximal influence of posture by comparison of regional lung blood flow in the upright and head-down posture in 8 healthy volunteers, using a tilt table. Regional lung blood flow was marked by intravenous injection of macroaggregates of human albumin labeled with 99m Tc or 113m In, in the upright and head-down posture, respectively, during tidal breathing. Both radiotracers remain fixed in the lung after administration. The distribution of radioactivity was mapped using quantitative single photon emission computed tomography (SPECT) corrected for attenuation and scatter. All images were obtained supine during tidal breathing. A shift from upright to the head-down posture caused a clear redistribution of blood flow from basal to apical regions. We conclude that posture plays a role for the distribution of lung blood flow in upright humans, and that the influence of posture, and thereby gravity, is much greater in the upright and head-down posture than in horizontal postures. However, the results of the study demonstrate that lung structure is the main determinant of regional blood flow and gravity is a secondary contributor to the distribution of lung blood flow in the upright and head-down positions. NEW & NOTEWORTHY Using a dual-isotope quantitative SPECT method, we demonstrated that although a shift in posture redistributes blood flow in the direction of gravity, the results are also consistent with lung structure being a greater determinant of regional blood flow than gravity. To our knowledge, this is the first study to use modern imaging methods to quantify the shift in regional lung blood flow in humans at a change between the upright and head-down postures. Copyright © 2017 the American Physiological Society.

  14. Complexity in Design-Driven Innovation: A Case Study of Knowledge Transfer Flow in Subsea Seismic Sensor Technology and Design Education

    ERIC Educational Resources Information Center

    Pavel, Nenad; Berg, Arild

    2015-01-01

    To the extent previously claimed, concept exploration is not the key to product innovation. However, companies that are design-focused are twice as innovative as those that are not. To study design-driven innovation and its occurrence in design education, two case studies are conducted. The first is an example of design practice which includes…

  15. Advanced Platform Systems Technology study. Volume 4: Technology advancement program plan

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An overview study of the major technology definition tasks and subtasks along with their interfaces and interrelationships is presented. Although not specifically indicated in the diagram, iterations were required at many steps to finalize the results. The development of the integrated technology advancement plan was initiated by using the results of the previous two tasks, i.e., the trade studies and the preliminary cost and schedule estimates for the selected technologies. Descriptions for the development of each viable technology advancement was drawn from the trade studies. Additionally, a logic flow diagram depicting the steps in developing each technology element was developed along with descriptions for each of the major elements. Next, major elements of the logic flow diagrams were time phased, and that allowed the definition of a technology development schedule that was consistent with the space station program schedule when possible. Schedules show the major milestone including tests required as described in the logic flow diagrams.

  16. Chemical reaction and radiation effects on MHD flow past an exponentially stretching sheet with heat sink

    NASA Astrophysics Data System (ADS)

    Nur Wahida Khalili, Noran; Aziz Samson, Abdul; Aziz, Ahmad Sukri Abdul; Ali, Zaileha Md

    2017-09-01

    In this study, the problem of MHD boundary layer flow past an exponentially stretching sheet with chemical reaction and radiation effects with heat sink is studied. The governing system of PDEs is transformed into a system of ODEs. Then, the system is solved numerically by using Runge-Kutta-Fehlberg fourth fifth order (RKF45) method available in MAPLE 15 software. The numerical results obtained are presented graphically for the velocity, temperature and concentration. The effects of various parameters are studied and analyzed. The numerical values for local Nusselt number, skin friction coefficient and local Sherwood number are tabulated and discussed. The study shows that various parameters give significant effect on the profiles of the fluid flow. It is observed that the reaction rate parameter affected the concentration profiles significantly and the concentration thickness of boundary layer decreases when reaction rate parameter increases. The analysis found is validated by comparing with the results previous work done and it is found to be in good agreement.

  17. Water Treatment Pilot Plant Design Manual: Low Flow Conventional/Direct Filtration Water Treatment Plant for Drinking Water Treatment Studies

    EPA Science Inventory

    This manual highlights the project constraints and concerns, and includes detailed design calculations and system schematics. The plant is based on engineering design principles and practices, previous pilot plant design experiences, and professional experiences and may serve as ...

  18. Quantifying attachment and antibiotic resistance of Escherichia coli from conventional and organic swine manure

    USDA-ARS?s Scientific Manuscript database

    Broad spectrum antibiotics, used to treat infections in livestock, are often administered at sub-therapeutic levels in feed rations to promote growth and for prophylaxis. Previous studies have shown that bacteria preferentially attach to sediments affecting their transport in overland flow; however...

  19. Using measures of information content and complexity of time series as hydrologic metrics

    USDA-ARS?s Scientific Manuscript database

    The information theory has been previously used to develop metrics that allowed to characterize temporal patterns in soil moisture dynamics, and to evaluate and to compare performance of soil water flow models. The objective of this study was to apply information and complexity measures to characte...

  20. Helicopter Fuselage Active Flow Control in the Presence of a Rotor

    NASA Technical Reports Server (NTRS)

    Martin, Preston B; Overmeyer, Austin D.; Tanner, Philip E.; Wilson, Jacob S.; Jenkins, Luther N.

    2014-01-01

    This work extends previous investigations of active flow control for helicopter fuselage drag and download reduction to include the effects of the rotor. The development of the new wind tunnel model equipped with fluidic oscillators is explained in terms of the previous test results. Large drag reductions greater than 20% in some cases were measured during powered testing without increasing, and in some cases decreasing download in forward flight. As confirmed by Particle Image Velocimetry (PIV), the optimum actuator configuration that provided a decrease in both drag and download appeared to create a virtual (fluidic) boat-tail fairing instead of attaching flow to the ramp surface. This idea of a fluidic fairing shifts the focus of 3D separation control behind bluff bodies from controlling/reattaching surface boundary layers to interacting with the wake flow.

  1. Concerning KAr dating of a basalt flow from the Tahoe-Tioga interglaciation, Sawmill Canyon, southeastern Sierra Nevada, California

    USGS Publications Warehouse

    Dalrymple, G.B.; Burke, R.M.; Birkeland, P.W.

    1982-01-01

    New KAr ages for a basalt flow interbedded with Tahoe and Tioga tills in Sawmill Canyon, southeastern Sierra Nevada, slightly refine previously published ages for the flow and provide an estimate of 53,000 ± 44,000 yr for the Tahoe-Tioga interglaciation.

  2. Thermal buoyancy on magneto hydrodynamic flow over a vertical saturated porous surface with viscous dissipation

    NASA Astrophysics Data System (ADS)

    Nirmala, P. H.; Saila Kumari, A.; Raju, C. S. K.

    2018-04-01

    In the present article, we studied the magnetohydro dynamic flow induced heat transfer from vertical surface embedded in a saturated porous medium in the presence of viscous dissipation. Appropriate similarity transformations are used to transmute the non-linear governing partial differential equations to non-linear ODE. To solve these ordinary differential equations (ODE) we used the well-known integral method of Von Karman type. A comparison has been done and originates to be in suitable agreement with the previous published results. The tabulated and graphical results are given to consider the physical nature of the problem. From this results we found that the magnetic field parameter depreciate the velocity profiles and improves the heat transfer rate of the flow.

  3. Development of a Nonequilibrium Radiative Heating Prediction Method for Coupled Flowfield Solutions

    NASA Technical Reports Server (NTRS)

    Hartung, Lin C.

    1991-01-01

    A method for predicting radiative heating and coupling effects in nonequilibrium flow-fields has been developed. The method resolves atomic lines with a minimum number of spectral points, and treats molecular radiation using the smeared band approximation. To further minimize computational time, the calculation is performed on an optimized spectrum, which is computed for each flow condition to enhance spectral resolution. Additional time savings are obtained by performing the radiation calculation on a subgrid optimally selected for accuracy. Representative results from the new method are compared to previous work to demonstrate that the speedup does not cause a loss of accuracy and is sufficient to make coupled solutions practical. The method is found to be a useful tool for studies of nonequilibrium flows.

  4. Turbulence and modeling in transonic flow

    NASA Technical Reports Server (NTRS)

    Rubesin, Morris W.; Viegas, John R.

    1989-01-01

    A review is made of the performance of a variety of turbulence models in the evaluation of a particular well documented transonic flow. This is done to supplement a previous attempt to calibrate and verify transonic airfoil codes by including many more turbulence models than used in the earlier work and applying the calculations to an experiment that did not suffer from uncertainties in angle of attack and was free of wind tunnel interference. It is found from this work, as well as in the earlier study, that the Johnson-King turbulence model is superior for transonic flows over simple aerodynamic surfaces, including moderate separation. It is also shown that some field equation models with wall function boundary conditions can be competitive with it.

  5. Changes in mesenteric, renal, and aortic flows with +Gx acceleration

    NASA Technical Reports Server (NTRS)

    Stone, H. L.; Erickson, H. H.; Sandler, H.

    1974-01-01

    Previous studies in man and dogs have indicated that the splanchnic bed might contribute to the maintenance of arterial pressure during +Gx acceleration. Eight mongrel dogs were chronically instrumented with Doppler flow probes around the superior mesenteric (SMA) and renal arteries (RA) as well as the terminal aorta (TA). A solid-state pressure transducer was placed in the aorta distal to the flow probe. Using alpha-chloralose anesthesia following a 2-4 week recovery period, the animals were subjected to 120 sec at levels of 5, 10 and 15 +Gx acceleration on a 7.6-m radius centrifuge. The results indicate that both an active component and a mechanical component contribute to the maintenance of arterial pressure during +Gx acceleration.

  6. Experimental investigation of two-phase heat transfer in a porous matrix.

    NASA Technical Reports Server (NTRS)

    Von Reth, R.; Frost, W.

    1972-01-01

    One-dimensional two-phase flow transpiration cooling through porous metal is studied experimentally. The experimental data is compared with a previous one-dimensional analysis. Good agreement with calculated temperature distribution is obtained as long as the basic assumptions of the analytical model are satisfied. Deviations from the basic assumptions are caused by nonhomogeneous and oscillating flow conditions. Preliminary derivation of nondimensional parameters which characterize the stable and unstable flow conditions is given. Superheated liquid droplets observed sputtering from the heated surface indicated incomplete evaporation at heat fluxes well in access of the latent energy transport. A parameter is developed to account for the nonequilibrium thermodynamic effects. Measured and calculated pressure drops show contradicting trends which are attributed to capillary forces.

  7. Leading-edge effects on boundary-layer receptivity

    NASA Technical Reports Server (NTRS)

    Gatski, Thomas B.; Kerschen, Edward J.

    1990-01-01

    Numerical calculations are presented for the incompressible flow over a parabolic cylinder. The computational domain extends from a region upstream of the body downstream to the region where the Blasius boundary-layer solution holds. A steady mean flow solution is computed and the results for the scaled surface vorticity, surface pressure and displacement thickness are compared to previous studies. The unsteady problem is then formulated as a perturbation solution starting with and evolving from the mean flow. The response to irrotational time harmonic pulsation of the free-stream is examined. Results for the initial development of the velocity profile and displacement thickness are presented. These calculations will be extended to later times to investigate the initiation of instability waves within the boundary-layer.

  8. Theoretical and Experimental Studies of the Transonic Flow Field and Associated Boundary Conditions near a Longitudinally-Slotted Wind-Tunnel Wall. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Everhart, Joel Lee

    1988-01-01

    A theoretical examination of the slotted-wall flow field is conducted to determine the appropriate wall pressure drop (or boundary condition) equation. This analysis improves the understanding of the fluid physics of these types of flow fields and helps in evaluating the uncertainties and limitations existing in previous mathematical developments. It is shown that the resulting slotted-wall boundary condition contains contributions from the airfoil-induced streamline curvature and the non-linear, quadratic, slot crossflow in addition to an often neglected linear term which results from viscous shearing in the slot. Existing and newly acquired experimental data are examined in the light of this formulation and theoretical developments.

  9. Reply to Comment by Roques et al. on "Base Flow Recession from Unsaturated-Saturated Porous Media considering Lateral Unsaturated Discharge and Aquifer Compressibility"

    NASA Astrophysics Data System (ADS)

    Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Schilling, Keith

    2018-04-01

    Roques et al. (https://doi.org/10.1002/2017WR022085) claims that they have proposed an exponential time step (ETS) method to improve the computing method of Liang et al. (https://doi.org/10.1002/2017WR020938) which used a constant time step (CTS) method on the derivative for dQ/dt in field data, where Q is the base flow discharge and t is the time since the start of base flow recession. This reply emphasizes that the main objective of Liang et al. (https://doi.org/10.1002/2017WR020938) was to develop an analytical model to investigate the effects of the unsaturated flow on base flow recession, not on the data interpretation methods. The analytical model indicates that the base flow recession hydrograph behaves as dQ/dt ˜aQb with the exponent b close to 1 at late times, which is consistent with previous theoretical models. The model of Liang et al. (https://doi.org/10.1002/2017WR020938) was applied to field data where the derivative of dQ/dt was computed using the CTS method, a method that has been widely adopted in previous studies. The ETS method proposed by Roques et al. (https://doi.org/10.1016/j.advwatres.2017.07.013) appears to be a good alternative but its accuracy needs further validation. Using slopes to fit field data as proposed by Roques et al. (https://doi.org/10.1002/2017WR022085) appears to match data satisfactorily at early times whereas it performs less satisfactorily at late times and leads to the exponent b being obviously larger than 1.

  10. The PELskin project: part II-investigating the physical coupling between flexible filaments in an oscillating flow.

    PubMed

    Revell, Alistair; O'Connor, Joseph; Sarkar, Abhishek; Li, Cuicui; Favier, Julien; Kamps, Laura; Brücker, Christoph

    2017-01-01

    The fluid-structure interaction mechanisms of a coating composed of flexible flaps immersed in a periodically oscillating channel flow is here studied by means of numerical simulation, employing the Euler-Bernoulli equations to account for the flexibility of the structures. A set of passively actuated flaps have previously been demonstrated to deliver favourable aerodynamic impact when attached to a bluff body undergoing periodic vortex shedding. As such, the present configuration is identified to provide a useful test-bed to better understand this mechanism, thought to be linked to experimentally observed travelling waves. Having previously validated and elucidated the flow mechanism in Paper 1 of this series, we hereby undertake a more detailed analysis of spectra obtained for different natural frequency of structures and different configurations, in order to better characterize the mechanisms involved in the organized motion of the structures. Herein, this wave-like behaviour, observed at the tips of flexible structures via interaction with the fluid flow, is characterized by examining the time history of the filaments motion and the corresponding effects on the fluid flow, in terms of dynamics and frequency of the fluid velocity. Results indicate that the wave motion behaviour is associated with the formation of vortices in the gaps between the flaps, which itself are a function of the structural resistance to the cross flow. In addition, formation of vortices upstream of the leading and downstream of the trailing flap is seen, which interact with the formation of the shear-layer on top of the row. This leads to a phase shift in the wave-type motion along the row that resembles the observation in the cylinder case.

  11. Impact of spacer thickness on biofouling in forward osmosis.

    PubMed

    Valladares Linares, R; Bucs, Sz S; Li, Z; AbuGhdeeb, M; Amy, G; Vrouwenvelder, J S

    2014-06-15

    Forward osmosis (FO) indirect desalination systems integrate wastewater recovery with seawater desalination. Niche applications for FO systems have been reported recently, due to the demonstrated advantages compared to conventional high-pressure membrane processes such as nanofiltration (NF) and reverse osmosis (RO). Among them, wastewater recovery has been identified to be particularly suitable for practical applications. However, biofouling in FO membranes has rarely been studied in applications involving wastewater effluents. Feed spacers separating the membrane sheets in cross-flow systems play an important role in biofilm formation. The objective of this study was to determine the influence of feed spacer thickness (28, 31 and 46 mil) on biofouling development and membrane performance in a FO system, using identical cross-flow cells in parallel studies. Flux development, biomass accumulation, fouling localization and composition were determined and analyzed. For all spacer thicknesses, operated at the same feed flow and the same run time, the same amount of biomass was found, while the flux reduction decreased with thicker spacers. These observations are in good agreement with biofouling studies for RO systems, considering the key differences between FO and RO. Our findings contradict previous cross-flow studies on particulate/colloidal fouling, where higher cross-flow velocities improved system performance. Thicker spacers reduced the impact of biofouling on FO membrane flux. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Numerical Investigation of the Interaction of Counterflowing Jets and Supersonic Capsule Flows

    NASA Technical Reports Server (NTRS)

    Venkatachari, Balaji Shankar; Ito, Yasushi; Cheng, Gary; Chang, Chau-Lyan

    2011-01-01

    Use of counterflowing jets ejected into supersonic freestreams as a flow control concept to modify the external flowfield has gained renewed interest with regards to potential retropropulsion applications pertinent to entry, descent, and landing investigations. This study describes numerical computations of such a concept for a scaled wind-tunnel capsule model by employing the space-time conservation element solution element viscous flow solver with unstructured meshes. Both steady-state and time-accurate computations are performed for several configurations with different counterflowing jet Mach numbers. Axisymmetric computations exploring the effect of the jet flow rate and jet Mach number on the flow stability, jet interaction with the bow shock and its subsequent impact on the aerodynamic and aerothermal loads on the capsule body are carried out. Similar to previous experimental findings, both long and short penetration modes exist at a windtunnel Mach number of 3.48. It was found that both modes exhibit non-stationary behavior and the former is much more unstable than the latter. It was also found that the unstable long penetration mode only exists in a relatively small range of the jet mass flow rate. Solution-based mesh refinement procedures are used to improve solution accuracy and provide guidelines for a more effective mesh generation procedure for parametric studies. Details of the computed flowfields also serve as a means to broaden the knowledge base for future retropropulsion design studies.

  13. Measurements of myocardial flow vs. extraction of rubidium under varying physiological conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budinger, T.F.; Yano, Y.; Moyer, B.R.

    1984-01-01

    The relationship between myocardial rubidium extraction (E) and flow (F) are well described by the single capillary model E = (1-exp(-PS/F)) with a permeability surface product PS = 0.87 cc/min/gm. Some effects of alkalosis and acidosis have been reported. Here the authors investigate the effects of dipyridamole, norepinephrine-atropine, exsanguination, pacing, ouabain and calcium on extraction using Rb-82 PET and Rb-86 acute studies with microspheres in dogs. Thoracotomies were performed for left atrial microsphere infusion. Anesthesia was by N/sub 2/O and methoxyflurane. The degree of exsanguination, drug levels administered and pacing rates were sufficient to produce flow modifications. Extraction was calculatedmore » by dividing FE from Rb observations by F from microsphere data. These results of extraction vs. flow do not show a significant dependence on the method used for flow modification. There was less than a 20% change in FE after an infusion of 0.04 mg/kg ouabain over 5 minutes in 3 replicate studies each on 4 dogs. An important finding not previously explained in flow vs. extraction studies is the occurrence of extraction values greater than 1.0 which is possible only if the distribution opportunities of small cations are greater than that of microspheres. This is equivalent to the well known hematocrit effect in small channels.« less

  14. A nonintrusive laser interferometer method for measurement of skin friction

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1983-01-01

    A method is described for monitoring the changing thickness of a thin oil film subject to an aerodynamic shear stress using two focused laser beams. The measurement is then simply analyzed in terms of the surface skin friction of the flow. The analysis includes the effects of arbitrarily large pressure and skin friction gradients, gravity, and time varying oil temperature. It may also be applied to three dimensional flows with unknown direction. Applications are presented for a variety of flows, including two dimensional flows, three dimensional swirling flows, separated flow, supersonic high Reynolds number flows, and delta wing vortical flows. Previously announced in STAR as N83-12393

  15. Detection of Site-Specific Blood Flow Variation in Humans during Running by a Wearable Laser Doppler Flowmeter.

    PubMed

    Iwasaki, Wataru; Nogami, Hirofumi; Takeuchi, Satoshi; Furue, Masutaka; Higurashi, Eiji; Sawada, Renshi

    2015-10-05

    Wearable wireless physiological sensors are helpful for monitoring and maintaining human health. Blood flow contains abundant physiological information but it is hard to measure blood flow during exercise using conventional blood flowmeters because of their size, weight, and use of optic fibers. To resolve these disadvantages, we previously developed a micro integrated laser Doppler blood flowmeter using microelectromechanical systems technology. This micro blood flowmeter is wearable and capable of stable measurement signals even during movement. Therefore, we attempted to measure skin blood flow at the forehead, fingertip, and earlobe of seven young men while running as a pilot experiment to extend the utility of the micro blood flowmeter. We measured blood flow in each subject at velocities of 6, 8, and 10 km/h. We succeeded in obtaining stable measurements of blood flow, with few motion artifacts, using the micro blood flowmeter, and the pulse wave signal and motion artifacts were clearly separated by conducting frequency analysis. Furthermore, the results showed that the extent of the changes in blood flow depended on the intensity of exercise as well as previous work with an ergometer. Thus, we demonstrated the capability of this wearable blood flow sensor for measurement during exercise.

  16. Evaluation of extracranial blood flow in Parkinson disease.

    PubMed

    Haktanir, Alpay; Yaman, Mehmet; Acar, Murat; Gecici, Omer; Demirel, Reha; Albayrak, Ramazan; Demirkirkan, Kemal

    2006-01-02

    Decreased cerebral flow velocities in Parkinsonian patients were reported previously. Because of the limited data on vascular changes in Parkinson disease (PD), which may have a vascular etiology, we aimed to disclose any possible cerebral hemodynamic alteration in Parkinsonian patients. We prospectively evaluated 28 non-demented, idiopathic parkinsonian patients and 19 age and sex matched controls with Doppler sonography. Flow volumes, peak systolic flow velocities, and cross-sectional areas of vertebral and internal carotid arteries (ICA) were measured and compared between patients and controls. Correlation of patient age and disease duration with Doppler parameters was observed; and each Doppler parameter of patients within each Hoehn-Yahr scale was compared. There was no significant difference of measured parameters between groups. No correlation was found between disease duration and age with flow volume, cross-sectional area or peak systolic velocity. Hoehn-Yahr scale was not found having significant relation with Doppler parameters. Values of vertebral, internal carotid and cerebral blood flow volumes (CBF), peak systolic velocities, and cross-sectional areas were not significantly different between Parkinsonian patients and age and sex matched controls. Although regional blood flow decreases may be seen as reported previously, Parkinson disease is not associated with a flow volume or velocity alteration of extracranial cerebral arteries.

  17. Linear instability of plane Couette and Poiseuille flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chefranov, S. G., E-mail: schefranov@mail.ru; Chefranov, A. G., E-mail: Alexander.chefranov@emu.edu.tr

    2016-05-15

    It is shown that linear instability of plane Couette flow can take place even at finite Reynolds numbers Re > Re{sub th} ≈ 139, which agrees with the experimental value of Re{sub th} ≈ 150 ± 5 [16, 17]. This new result of the linear theory of hydrodynamic stability is obtained by abandoning traditional assumption of the longitudinal periodicity of disturbances in the flow direction. It is established that previous notions about linear stability of this flow at arbitrarily large Reynolds numbers relied directly upon the assumed separation of spatial variables of the field of disturbances and their longitudinal periodicitymore » in the linear theory. By also abandoning these assumptions for plane Poiseuille flow, a new threshold Reynolds number Re{sub th} ≈ 1035 is obtained, which agrees to within 4% with experiment—in contrast to 500% discrepancy for the previous estimate of Re{sub th} ≈ 5772 obtained in the framework of the linear theory under assumption of the “normal” shape of disturbances [2].« less

  18. Radiocarbon dates for lava flows and pyroclastic deposits on Sao Miguel, Azores

    USGS Publications Warehouse

    Moore, R.B.; Rubin, M.

    1991-01-01

    We report 63 new radiocarbon analyses of samples from Sao Miguel, the largest island in the Azores archipelago. The samples are mainly carbonized tree roots and other plant material collected from beneath 20 mafic lava flows and spatter deposits and from within and beneath 42 trachytic pyroclastic flow, pyroclastic surge, mudflow, pumice-fall and lacustrine deposits and lava flows. One calcite date is reported. These dates establish ages for 48 previously undated lava flows and pyroclastic deposits, and revise three ages previously reported. These data are critical to deciphering the Holocene and late Pleistocene eruptive history of Sao Miguel and evaluating its potential volcanic hazards. Average dormant intervals during the past 3000 years are about 400 years for Sete Cidades volcano, 145 years for volcanic Zone 2, 1150 years for Agua de Pau volcano and 320 years for Furnas volcano. No known eruptions have occurred in volcanic Zone 4 during the past 3000 years. -from Authors

  19. Hydrology and numerical simulation of groundwater movement and heat transport in Snake Valley and surrounding areas, Juab, Miller, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada

    USGS Publications Warehouse

    Masbruch, Melissa D.; Gardner, Philip M.; Brooks, Lynette E.

    2014-01-01

    Snake Valley and surrounding areas, along the Utah-Nevada state border, are part of the Great Basin carbonate and alluvial aquifer system. The groundwater system in the study area consists of water in unconsolidated deposits in basins and water in consolidated rock underlying the basins and in the adjacent mountain blocks. Most recharge occurs from precipitation on the mountain blocks and most discharge occurs from the lower altitude basin-fill deposits mainly as evapotranspiration, springflow, and well withdrawals.The Snake Valley area regional groundwater system was simulated using a three-dimensional model incorporating both groundwater flow and heat transport. The model was constructed with MODFLOW-2000, a version of the U.S. Geological Survey’s groundwater flow model, and MT3DMS, a transport model that simulates advection, dispersion, and chemical reactions of solutes or heat in groundwater systems. Observations of groundwater discharge by evapotranspiration, springflow, mountain stream base flow, and well withdrawals; groundwater-level altitudes; and groundwater temperatures were used to calibrate the model. Parameter values estimated by regression analyses were reasonable and within the range of expected values.This study represents one of the first regional modeling efforts to include calibration to groundwater temperature data. The inclusion of temperature observations reduced parameter uncertainty, in some cases quite significantly, over using just water-level altitude and discharge observations. Of the 39 parameters used to simulate horizontal hydraulic conductivity, uncertainty on 11 of these parameters was reduced to one order of magnitude or less. Other significant reductions in parameter uncertainty occurred in parameters representing the vertical anisotropy ratio, drain and river conductance, recharge rates, and well withdrawal rates.The model provides a good representation of the groundwater system. Simulated water-level altitudes range over almost 2,000 meters (m); 98 percent of the simulated values of water-level altitudes in wells are within 30 m of observed water-level altitudes, and 58 percent of them are within 12 m. Nineteen of 20 simulated discharges are within 30 percent of observed discharge. Eighty-one percent of the simulated values of groundwater temperatures in wells are within 2 degrees Celsius (°C) of the observed values, and 55 percent of them are within 0.75 °C. The numerical model represents a more robust quantification of groundwater budget components than previous studies because the model integrates all components of the groundwater budget. The model also incorporates new data including (1) a detailed hydrogeologic framework, and (2) more observations, including several new water-level altitudes throughout the study area, several new measurements of spring discharge within Snake Valley which had not previously been monitored, and groundwater temperature data. Uncertainty in the estimates of subsurface flow are less than those of previous studies because the model balanced recharge and discharge across the entire simulated area, not just in each hydrographic area, and because of the large dataset of observations (water-level altitudes, discharge, and temperatures) used to calibrate the model and the resulting transmissivity distribution.Groundwater recharge from precipitation and unconsumed irrigation in Snake Valley is 160,000 acre-feet per year (acre-ft/yr), which is within the range of previous estimates. Subsurface inflow from southern Spring Valley to southern Snake Valley is 13,000 acre-ft/yr and is within the range of previous estimates; subsurface inflow from Spring Valley to Snake Valley north of the Snake Range, however, is only 2,200 acre-ft/yr, which is much less than has been previously estimated. Groundwater discharge from groundwater evapotranspiration and springs is 100,000 acre-ft/yr, and discharge to mountain streams is 3,300 acre-ft/yr; these are within the range of previous estimates. Current well withdrawals are 28,000 acre-ft/yr. Subsurface outflow from Snake Valley moves into Pine Valley (2,000 acre-ft/yr), Wah Wah Valley (23 acre-ft/yr), Tule Valley (33,000 acre-ft/yr), Fish Springs Flat (790 acre-ft/yr), and outside of the study area towards Great Salt Lake Desert (8,400 acre-ft/yr); these outflows, totaling about 44,000 acre-ft/yr, are within the range of previous estimates.The subsurface flow amounts indicate the degree of connectivity between hydrographic areas within the study area. The simulated transmissivity and locations of natural discharge, however, provide a better estimate of the effect of groundwater withdrawals on groundwater resources than does the amount and direction of subsurface flow between hydrographic areas. The distribution of simulated transmissivity throughout the study area includes many areas of high transmissivity within and between hydrographic areas. Increased well withdrawals within these high transmissivity areas will likely affect a large part of the study area, resulting in declining groundwater levels, as well as leading to a decrease in natural discharge to springs and evapotranspiration.

  20. Near-Earth Solar Wind Flows and Related Geomagnetic Activity During more than Four Solar Cycles (1963-2011)

    NASA Technical Reports Server (NTRS)

    Richardson, Ian G.; Cane, Hilary V.

    2012-01-01

    In past studies, we classified the near-Earth solar wind into three basic flow types based on inspection of solar wind plasma and magnetic field parameters in the OMNI database and additional data (e.g., geomagnetic indices, energetic particle, and cosmic ray observations). These flow types are: (1) High-speed streams associated with coronal holes at the Sun, (2) Slow, interstream solar wind, and (3) Transient flows originating with coronal mass ejections at the Sun, including interplanetary coronal mass ejections and the associated upstream shocks and post-shock regions. The solar wind classification in these previous studies commenced with observations in 1972. In the present study, as well as updating this classification to the end of 2011, we have extended the classification back to 1963, the beginning of near-Earth solar wind observations, thereby encompassing the complete solar cycles 20 to 23 and the ascending phase of cycle 24. We discuss the cycle-to-cycle variations in near-Earth solar wind structures and l1e related geomagnetic activity over more than four solar cycles, updating some of the results of our earlier studies.

  1. Effects of liquid layers and distribution patterns on three-phase saturation and relative permeability relationships: a micromodel study.

    PubMed

    Tsai, Jui-Pin; Chang, Liang-Cheng; Hsu, Shao-Yiu; Shan, Hsin-Yu

    2017-12-01

    In the current study, we used micromodel experiments to study three-phase fluid flow in porous media. In contrast to previous studies, we simultaneously observed and measured pore-scale fluid behavior and three-phase constitutive relationships with digital image acquisition/analysis, fluid pressure control, and permeability assays. Our results showed that the fluid layers significantly influenced pore-scale, three-phase fluid displacement as well as water relative permeability. At low water saturation, water relative permeability not only depended on water saturation but also on the distributions of air and diesel. The results also indicate that the relative permeability-saturation model proposed by Parker et al. (1987) could not completely describe the experimental data from our three-phase flow experiments because these models ignore the effects of phase distribution. A simple bundle-of-tubes model shows that the water relative permeability was proportional to the number of apparently continuous water paths before the critical stage in which no apparently continuous water flow path could be found. Our findings constitute additional information about the essential constitutive relationships involved in both the understanding and the modeling of three-phase flows in porous media.

  2. Ambient Temperature and Cerebrovascular Hemodynamics in the Elderly

    PubMed Central

    Pan, Wen-Chi; Eliot, Melissa N.; Koutrakis, Petros; Coull, Brent A.; Sorond, Farzaneh A.; Wellenius, Gregory A.

    2015-01-01

    Background and Purpose Some prior studies have linked ambient temperature with risk of cerebrovascular events. If causal, the pathophysiologic mechanisms underlying this putative association remain unknown. Temperature-related changes in cerebral vascular function may play a role, but this hypothesis has not been previously evaluated. Methods We evaluated the association between ambient temperature and cerebral vascular function among 432 participants ≥65 years old from the MOBILIZE Boston Study with data on cerebrovascular blood flow, cerebrovascular resistance, and cerebrovascular reactivity in the middle cerebral artery. We used linear regression models to assess the association of mean ambient temperature in the previous 1 to 28 days with cerebrovascular hemodynamics adjusting for potential confounding factors. Results A 10°C increase in the 21-day moving average of ambient temperature was associated with a 10.1% (95% confidence interval [CI], 2.2%, 17.3%) lower blood flow velocity, a 9.0% (95% CI, 0.7%, 18.0%) higher cerebrovascular resistance, and a 15.3% (95%CI, 2.7%, 26.4%) lower cerebral vasoreactivity. Further adjustment for ozone and fine particulate matter (PM2.5) did not materially alter the results. However, we found statistically significant interactions between ambient temperature and PM2.5 such that the association between temperature and blood flow velocity was attenuated at higher levels of PM2.5. Conclusions In this elderly population, we found that ambient temperature was negatively associated with cerebral blood flow velocity and cerebrovascular vasoreactivity and positively associated with cerebrovascular resistance. Changes in vascular function may partly underlie the observed associations between ambient temperature and risk of cerebrovascular events. PMID:26258469

  3. Ambient Temperature and Cerebrovascular Hemodynamics in the Elderly.

    PubMed

    Pan, Wen-Chi; Eliot, Melissa N; Koutrakis, Petros; Coull, Brent A; Sorond, Farzaneh A; Wellenius, Gregory A

    2015-01-01

    Some prior studies have linked ambient temperature with risk of cerebrovascular events. If causal, the pathophysiologic mechanisms underlying this putative association remain unknown. Temperature-related changes in cerebral vascular function may play a role, but this hypothesis has not been previously evaluated. We evaluated the association between ambient temperature and cerebral vascular function among 432 participants ≥65 years old from the MOBILIZE Boston Study with data on cerebrovascular blood flow, cerebrovascular resistance, and cerebrovascular reactivity in the middle cerebral artery. We used linear regression models to assess the association of mean ambient temperature in the previous 1 to 28 days with cerebrovascular hemodynamics adjusting for potential confounding factors. A 10°C increase in the 21-day moving average of ambient temperature was associated with a 10.1% (95% confidence interval [CI], 2.2%, 17.3%) lower blood flow velocity, a 9.0% (95% CI, 0.7%, 18.0%) higher cerebrovascular resistance, and a 15.3% (95%CI, 2.7%, 26.4%) lower cerebral vasoreactivity. Further adjustment for ozone and fine particulate matter (PM2.5) did not materially alter the results. However, we found statistically significant interactions between ambient temperature and PM2.5 such that the association between temperature and blood flow velocity was attenuated at higher levels of PM2.5. In this elderly population, we found that ambient temperature was negatively associated with cerebral blood flow velocity and cerebrovascular vasoreactivity and positively associated with cerebrovascular resistance. Changes in vascular function may partly underlie the observed associations between ambient temperature and risk of cerebrovascular events.

  4. Chronic reduction in cardiac output induces hypoxic signaling in larval zebrafish even at a time when convective oxygen transport is not required.

    PubMed

    Kopp, Renate; Schwerte, Thorsten; Egg, Margit; Sandbichler, Adolf Michael; Egger, Bernhard; Pelster, Bernd

    2010-09-01

    In the present study, the zebrafish breakdance mutant (bre) was used to assess the role of blood flow in development because it has been previously shown that bre larvae have a chronically reduced cardiac output as a result of ventricular contraction following only every second atrial contraction in addition to an atrial bradycardia. We confirmed a 50% reduction compared with control fish and further showed that blood flow in the caudal part of the dorsal aorta decreased by 80%. Associated with these reductions in blood flow were indications of developmental retardation in bre mutants, specifically delayed hatching, reduced cell proliferation, and a transiently decreased growth rate. Surprisingly, an increased red blood cell concentration and an earlier appearance of trunk vessels in bre larvae indicated some compensation to convective oxygen transport, although in previous studies it has been shown that zebrafish larvae at this stage obtain oxygen by bulk diffusion. In bre animals immunohistochemical analyses showed a significant increase in hypoxia inducible factor 1 (HIF)-α protein expression, comparable with wild-type larvae that were raised under hypoxic conditions. Accordingly, the expression of some hif downstream genes was affected. Furthermore, Affymetrix microarray analyses revealed a large number of genes that were differently expressed comparing control and bre larvae, and the number even increased with proceeding development. The results showed that a chronic reduction in blood flow generated hypoxic molecular signals despite partial compensation by increased oxygen carrying capacity and transiently slowed the overall development of zebrafish bre larvae.

  5. On the secondary instability of the most dangerous Goertler vortex

    NASA Technical Reports Server (NTRS)

    Otto, S. R.; Denier, James P.

    1993-01-01

    Recent studies have demonstrated the most unstable Goertler vortex mode is found in flows, both two and three-dimensional, with regions of (moderately) large body curvature and these modes reside within a thin layer situated at the base of the conventional boundary layer. Further work concerning the nonlinear development of the most dangerous mode demonstrates that the flow results in a self induced flow reversal. However, prior to the point at which flow reversal is encountered, the total streamwise velocity profile is found to be highly inflectional in nature. Previous work then suggests that the nonlinear vortex state will become unstable to secondary, inviscid, Rayleigh wave instabilities prior to the point of flow reversal. Our concern is with the secondary instability of the nonlinear vortex states, which result from the streamwise evolution of the most unstable Goertler vortex mode, with the aim of determining whether such modes can induce a transition to a fully turbulent state before separation is encountered.

  6. Critical transport issues for improving the performance of aqueous redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Zhao, T. S.; An, L.; Zeng, Y. K.; Wei, L.

    2017-01-01

    As the fraction of electricity generated from intermittent renewable sources (such as solar and wind) grows, developing reliable energy storage technologies to store electrical energy in large scale is of increasing importance. Redox flow batteries are now enjoying a renaissance and regarded as a leading technology in providing a well-balanced solution for current daunting challenges. In this article, state-of-the-art studies of the complex multicomponent transport phenomena in aqueous redox flow batteries, with a special emphasis on all-vanadium redox flow batteries, are reviewed and summarized. Rather than elaborating on the details of previous experimental and numerical investigations, this article highlights: i) the key transport issues in each battery's component that need to be tackled so that the rate capability and cycling stability of flow batteries can be significantly improved, ii) the basic mechanisms that control the active species/ion/electron transport behaviors in each battery's component, and iii) the key experimental and numerical findings regarding the correlations between the multicomponent transport processes and battery performance.

  7. An Analytical-Numerical Model for Two-Phase Slug Flow through a Sudden Area Change in Microchannels

    DOE PAGES

    Momen, A. Mehdizadeh; Sherif, S. A.; Lear, W. E.

    2016-01-01

    In this article, two new analytical models have been developed to calculate two-phase slug flow pressure drop in microchannels through a sudden contraction. Even though many studies have been reported on two-phase flow in microchannels, considerable discrepancies still exist, mainly due to the difficulties in experimental setup and measurements. Numerical simulations were performed to support the new analytical models and to explore in more detail the physics of the flow in microchannels with a sudden contraction. Both analytical and numerical results were compared to the available experimental data and other empirical correlations. Results show that models, which were developed basedmore » on the slug and semi-slug assumptions, agree well with experiments in microchannels. Moreover, in contrast to the previous empirical correlations which were tuned for a specific geometry, the new analytical models are capable of taking geometrical parameters as well as flow conditions into account.« less

  8. Effect of cevimeline on radiation-induced salivary gland dysfunction and AQP5 in submandibular gland in mice.

    PubMed

    Takakura, Katsuhiro; Takaki, Sachiko; Takeda, Ienaka; Hanaue, Nobuyuki; Kizu, Yasuhiro; Tonogi, Morio; Yamane, Gen-yuki

    2007-05-01

    The aim of this study was to clarify the effects of the muscarinic receptor agonist, cevimeline, on saliva flow and expression of aquaporin5 (AQP5) in submandibular gland after X-ray irradiation. Using a previously established radiation-induced xerostomia model mouse, saliva flow from at 7 days before irradiation to at 28 days after irradiation was investigated in mice that were treated with cevimeline before or after irradiation. Radiation caused a significant decrease in saliva flow compared with nonirradiated salivary glands. Cevimeline post-treatment also caused a significant decrease in saliva flow. In contrast, cevimeline pre-treatment did not significantly decrease saliva flow. Expression of AQP5 fluorescent intensity and mRNA were also analyzed. Irradiation significantly decreased expression of AQP5 in submandibular gland. However, pre-treatment with cevimeline prevented this decrease in AQP5 expression. These data suggest that pretreatment with cevimeline prevents radiation-induced xerostomia and radiation-induced decrease in expression of AQP5 in submandibular gland.

  9. Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows

    NASA Astrophysics Data System (ADS)

    Kim, Hyunseok; Park, Hyungmin

    2017-11-01

    In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.

  10. Velocity field measurements in oblique static divergent vocal fold models

    NASA Astrophysics Data System (ADS)

    Erath, Byron

    2005-11-01

    During normal phonation, the vocal fold cycle is characterized by the glottal opening transitioning from a convergent to a divergent passage and then closing before the cycle is repeated. Under ordinary phonatory conditions, both vocal folds, which form the glottal passage, move in phase with each other, creating a time-varying symmetric opening. However, abnormal pathological conditions, such as unilateral paralysis, and polyps, can result in geometrical asymmetries between the vocal folds throughout the phonatory cycle. This study investigates pulsatile flow fields through 7.5 times life-size vocal fold models with included divergence angles of 5 to 30 degrees, and obliquities between the vocal folds of up to 15 degrees. Flow conditions were scaled to match physiological parameters. Data were taken at the anterior posterior mid-plane using phase-averaged Particle Image Velocimetry (PIV). Viscous flow phenomena including the Coanda effect, flow separation points, and jet "flapping" were investigated. The results are compared to previously reported work of flow through symmetric divergent vocal fold models.

  11. Assessing Fan Flutter Stability in the Presence of Inlet Distortion Using One-way and Two-way Coupled Methods

    NASA Technical Reports Server (NTRS)

    Herrick, Gregory P.

    2014-01-01

    Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully)embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in clean-inlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. A three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is applied to analyze and corroborate fan performance with clean inlet flow. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a loosely-coupled approach, is modified to include a tightly-coupled aeroelastic simulation capability, and then loosely-coupled and tightly-coupled methods arecompared in their evaluation of flutter stability in distorted in-flows.

  12. Weak rotating flow disturbances in a centrifugal compressor with a vaneless diffuser

    NASA Technical Reports Server (NTRS)

    Moore, F. K.

    1988-01-01

    A theory is presented to predict the occurrence of weak rotating waves in a centrifugal compression system with a vaneless diffuser. As in a previous study of axial systems, an undisturbed performance characteristic is assumed known. Following an inviscid analysis of the diffuser flow, conditions for a neutral rotating disturbance are found. The solution is shown to have two branches; one with fast rotation, the other with very slow rotation. The slow branch includes a dense set of resonant solutions. The resonance is a feature of the diffuser flow, and therefore such disturbances must be expected at the various resonant flow coefficients regardless of the compressor characteristic. Slow solutions seem limited to flow coefficients less than about 0.3, where third and fourth harmonics appear. Fast waves seem limited to a first harmonic. These fast and slow waves are described, and effects of diffuser-wall convergence, backward blade angles, and partial recovery of exit velocity head are assessed.

  13. Factors Released from Endothelial Cells Exposed to Flow Impact Adhesion, Proliferation, and Fate Choice in the Adult Neural Stem Cell Lineage.

    PubMed

    Dumont, Courtney M; Piselli, Jennifer M; Kazi, Nadeem; Bowman, Evan; Li, Guoyun; Linhardt, Robert J; Temple, Sally; Dai, Guohao; Thompson, Deanna M

    2017-08-15

    The microvasculature within the neural stem cell (NSC) niche promotes self-renewal and regulates lineage progression. Previous work identified endothelial-produced soluble factors as key regulators of neural progenitor cell (NPC) fate and proliferation; however, endothelial cells (ECs) are sensitive to local hemodynamics, and the effect of this key physiological process has not been defined. In this study, we evaluated adult mouse NPC response to soluble factors isolated from static or dynamic (flow) EC cultures. Endothelial factors generated under dynamic conditions significantly increased neuronal differentiation, while those released under static conditions stimulated oligodendrocyte differentiation. Flow increases EC release of neurogenic factors and of heparin sulfate glycosaminoglycans that increase their bioactivity, likely underlying the enhanced neuronal differentiation. Additionally, endothelial factors, especially from static conditions, promoted adherent growth. Together, our data suggest that blood flow may impact proliferation, adhesion, and the neuron-glial fate choice of adult NPCs, with implications for diseases and aging that reduce flow.

  14. How Important Is Connectivity for Surface Water Fluxes? A Generalized Expression for Flow Through Heterogeneous Landscapes

    NASA Astrophysics Data System (ADS)

    Larsen, Laurel G.; Ma, Jie; Kaplan, David

    2017-10-01

    How important is hydrologic connectivity for surface water fluxes through heterogeneous floodplains, deltas, and wetlands? While significant for management, this question remains poorly addressed. Here we adopt spatial resistance averaging, based on channel and patch configuration metrics quantifiable from aerial imagery, to produce an upscaled rate law for discharge. Our model suggests that patch coverage largely controls discharge sensitivity, with smaller effects from channel connectivity and vegetation patch fractal dimension. However, connectivity and patch configuration become increasingly important near the percolation threshold and at low water levels. These effects can establish positive feedbacks responsible for substantial flow change in evolving landscapes (14-36%, in our Everglades case study). Connectivity also interacts with other drivers; flow through poorly connected hydroscapes is less resilient to perturbations in other drivers. Finally, we found that flow through heterogeneous patches is alone sufficient to produce non-Manning flow-depth relationships commonly observed in wetlands but previously attributed to depth-varying roughness.

  15. Attenuation of concentration fluctuations of water vapor and other trace gases in turbulent tube flow

    Treesearch

    W. J. Massman; A. Ibrom

    2008-01-01

    Recent studies with closed-path eddy covariance (EC) systems have indicated that the attenuation of fluctuations of water vapor concentration is dependent upon ambient relative humidity, presumably due to sorption/desorption of water molecules at the interior surface of the tube. Previous studies of EC-related tube attenuation effects have either not considered this...

  16. Experimental evidence of symmetry-breaking supercritical transition in pipe flow of shear-thinning fluids

    NASA Astrophysics Data System (ADS)

    Wen, Chaofan; Poole, Robert J.; Willis, Ashley P.; Dennis, David J. C.

    2017-03-01

    Experimental results reveal that the asymmetric flow of shear-thinning fluid through a cylindrical pipe, which was previously associated with the laminar-turbulent transition process, appears to have the characteristics of a nonhysteretic, supercritical instability of the laminar base state. Contrary to what was previously believed, classical transition is found to be responsible for returning symmetry to the flow. An absence of evidence of the instability in simulations (either linear or nonlinear) suggests that an element of physics is lacking in the commonly used rheological model for inelastic shear-thinning fluids. These unexpected discoveries raise new questions regarding the stability of these practically important fluids and how they can be successfully modeled.

  17. Optimal Experience and Personal Growth: Flow and the Consolidation of Place Identity.

    PubMed

    Bonaiuto, Marino; Mao, Yanhui; Roberts, Scott; Psalti, Anastasia; Ariccio, Silvia; Ganucci Cancellieri, Uberta; Csikszentmihalyi, Mihaly

    2016-01-01

    This study examined the relationship between flow experience and place identity, based on eudaimonistic identity theory (EIT) which prioritizes self-defining activities as important for an individual's identification of his/her goals, values, beliefs, and interests corresponding to one's own identity development or enhancement. This study focuses on place identity, the identity's features relating to a person's relation with her/his place. The study is also based on flow theory, according to which some salient features of an activity experience are important for happiness and well-being. Questionnaire surveys on Italian and Greek residents focused on their perceived flow and place identity in relation to their own specific local place experiences. The overall findings revealed that flow experience occurring in one's own preferred place is widely reported as resulting from a range of self-defining activities, irrespective of gender or age, and it is positively and significantly associated with one's own place identity. Such findings provide the first quantitative evidence about the link between flow experienced during meaningfully located self-defining activities and identity experienced at the place level, similarly to the corresponding personal and social levels that had been previously already empirically tested. Results are also discussed in terms of their implications for EIT's understanding and enrichment, especially by its generalization from the traditional, personal identity level up to that of place identity. More generally, this study has implications for maintaining or enhancing one's own place identity, and therefore people-place relations, by means of facilitating a person's flow experience within psychologically meaningful places.

  18. Optimal Experience and Personal Growth: Flow and the Consolidation of Place Identity

    PubMed Central

    Bonaiuto, Marino; Mao, Yanhui; Roberts, Scott; Psalti, Anastasia; Ariccio, Silvia; Ganucci Cancellieri, Uberta; Csikszentmihalyi, Mihaly

    2016-01-01

    This study examined the relationship between flow experience and place identity, based on eudaimonistic identity theory (EIT) which prioritizes self-defining activities as important for an individual’s identification of his/her goals, values, beliefs, and interests corresponding to one’s own identity development or enhancement. This study focuses on place identity, the identity’s features relating to a person’s relation with her/his place. The study is also based on flow theory, according to which some salient features of an activity experience are important for happiness and well-being. Questionnaire surveys on Italian and Greek residents focused on their perceived flow and place identity in relation to their own specific local place experiences. The overall findings revealed that flow experience occurring in one’s own preferred place is widely reported as resulting from a range of self-defining activities, irrespective of gender or age, and it is positively and significantly associated with one’s own place identity. Such findings provide the first quantitative evidence about the link between flow experienced during meaningfully located self-defining activities and identity experienced at the place level, similarly to the corresponding personal and social levels that had been previously already empirically tested. Results are also discussed in terms of their implications for EIT’s understanding and enrichment, especially by its generalization from the traditional, personal identity level up to that of place identity. More generally, this study has implications for maintaining or enhancing one’s own place identity, and therefore people–place relations, by means of facilitating a person’s flow experience within psychologically meaningful places. PMID:27872600

  19. Plasma actuators for bluff body flow control

    NASA Astrophysics Data System (ADS)

    Kozlov, Alexey V.

    The aerodynamic plasma actuators have shown to be efficient flow control devices in various applications. In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. This work is motivated by the need to reduce landing gear noise for commercial transport aircraft via an effective streamlining created by the actuators. The experiments are performed at Re D = 20,000...164,000. Circular cylinders in cross-flow are chosen for study since they represent a generic flow geometry that is similar in all essential aspects to a landing gear oleo or strut. The minimization of the unsteady flow separation from the models and associated large-scale wake vorticity by using actuators reduces the radiated aerodynamic noise. Using either steady or unsteady actuation at ReD = 25,000, Karman shedding is totally eliminated, turbulence levels in the wake decrease significantly and near-field sound pressure levels are reduced by 13.3 dB. Unsteady actuation at an excitation frequency of St D = 1 is found to be most effective. The unsteady actuation also has the advantage that total suppression of shedding is achieved for a duty cycle of only 25%. However, since unsteady actuation is associated with an unsteady body force and produces a tone at the actuation frequency, steady actuation is more suitable for noise control applications. Two actuation strategies are used at ReD = 82,000: spanwise and streamwise oriented actuators. Near field microphone measurements in an anechoic wind tunnel and detailed study of the near wake using LDA are presented in the study. Both spanwise and streamwise actuators give nearly the same noise reduction level of 11.2 dB and 14.2 dB, respectively, and similar changes in the wake velocity profiles. The contribution of the actuator induced noise is found to be small compared to the natural shedding noise. A tandem cylinder configuration with the plasma actuation on the upstream cylinder is investigated using surface dynamic pressure sensors. As a result of the plasma actuation, the surface pressure fluctuations on the downstream cylinder are reduced by about two times at the free-stream velocity of 40 m/s (ReD = 164,000). In addition, this study presents the results of a parametric experimental investigation aimed at optimizing the body force produced by single dielectric barrier discharge (SDBD) plasma actuators used for aerodynamic flow control. A primary goal of the study is the improvement of actuator authority for flow control applications at higher Reynolds number than previously possible. The study examines the effects of dielectric material and thickness, applied voltage amplitude and frequency, voltage waveform, exposed electrode geometry, covered electrode width and multiple actuator arrays. The metric used to evaluate the performance of the actuator in each case is the measured actuator-induced thrust which is proportional to the total body force. It is demonstrated that actuators constructed with thick dielectric material of low dielectric constant and operated at low frequency AC voltage produce a body force that is an order of magnitude larger than that obtained by the Kapton-based actuators used in many previous plasma flow control studies. These actuators allow operation at much higher applied voltages without the formation of discrete streamers which lead to body force saturation.

  20. Blood flow and vascular reactivity during attacks of classic migraine--limitations of the Xe-133 intraarterial technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skyhoj Olsen, T.; Lassen, N.A.

    1989-01-01

    The present study reports cerebral blood flow (CBF) measurements in 11 patients during attacks of classic migraine (CM)--migraine with aura. In 6 and 7 patients, respectively, cerebral vascular reactivity to increased blood pressure and to hypocapnia was also investigated during the CM attacks. The Xenon-133 intraarterial injection technique was used to measure CBF. In this study, based in part on previously published data, methodological limitations, in particular caused by scattered radiation (Compton scatter), are critically analysed. Based on this analysis and the results of the CBF studies it is concluded: During CM attacks CBF appears to decrease focally in themore » posterior part of the brain to a level around 20 ml/100 g/min which is consistent with a mild degree of ischemia. Changes of CBF in focal low flow areas are difficult to evaluate accurately with the Xe-133 technique. In most cases true CBF may change 50% or more in the low flow areas without giving rise to significantly measurable changes of CBF. This analysis suggests that the autoregulation response cannot be evaluated in the low flow areas with the technique used while the observations are compatible with the concept that a vasoconstrictive state, unresponsive to hypocapnia, prevails in the low flow areas during CM attacks. The gradual increase in size of the low flow area seen in several cases may be interpreted in two different ways. A spreading process may actually exist. However, due to Compton scatter, a gradual decrease of CBF in a territory that does not increase in size will also appear as a gradually spreading low flow area when studied with the Xe-133 intracarotid technique.« less

  1. High-cervical spinal cord electrical stimulation in brain low perfusion syndromes: experimental basis and preliminary clinical report.

    PubMed

    Broseta, J; García-March, G; Sánchez-Ledesma, M J; Gonçalves, J; Silva, I; Barcia, J A; Llácer, J L; Barcia-Salorio, J L

    1994-01-01

    Previous studies of our group showed that C1-C2 spinal cord stimulation increases carotid and brain blood flow in normal conditions in the goat and dog and it has a beneficial vasomotor effect in a model of vasospasm in the rat. For further clinical application it seemed rational to investigate the possible vascular changes mediated by this technique in experimental brain infarction. To this aim, 45 New Zealand rabbits were used. Brain infarction was produced by bilateral carotid ligation in 15, unilateral microcoagulation of the middle cerebral artery in 15 and by microcoagulation of the vertebral artery at the craniocervical junction in the other 15. One week later, following daily clinical scoring and cortical and posterior fossa blood flow readings by laser Doppler, a period of 120 min of right C1-C2 spinal cord electric stimulation was performed. A mean of 27% increase in previous blood flow recordings was obtained at the right hemisphere and a mean of 32% in the posterior fossa. This procedure was used in 10 patients presenting with various cerebral low perfusion syndromes. Though not constant, an increase in alertness, retention, speech, emotional lability and performance in skilled acts was achieved. No MR changes were observed, though SPECT readings showed an increase in blood flow in the penumbral perilesional area.

  2. GEOSIM: A numerical model for geophysical fluid flow simulation

    NASA Technical Reports Server (NTRS)

    Butler, Karen A.; Miller, Timothy L.; Lu, Huei-Iin

    1991-01-01

    A numerical model which simulates geophysical fluid flow in a wide range of problems is described in detail, and comparisons of some of the model's results are made with previous experimental and numerical studies. The model is based upon the Boussinesq Navier-Stokes equations in spherical coordinates, which can be reduced to a cylindrical system when latitudinal walls are used near the pole and the ratio of latitudinal length to the radius of the sphere is small. The equations are approximated by finite differences in the meridional plane and spectral decomposition in the azimuthal direction. The user can specify a variety of boundary and initial conditions, and there are five different spectral truncation options. The results of five validation cases are presented: (1) the transition between axisymmetric flow and baroclinic wave flow in the side heated annulus; (2) the steady baroclinic wave of the side heated annulus; (3) the wave amplitude vacillation of the side heated annulus; (4) transition to baroclinic wave flow in a bottom heated annulus; and (5) the Spacelab Geophysical Fluid Flow Cell (spherical) experiment.

  3. Fracture Mechanics Analysis of LH2 Feed Line Flow Liners

    NASA Technical Reports Server (NTRS)

    James, Mark A.; Dawicke, David S.; Brzowski, Matthew B.; Raju, Ivatury S.; Elliott, Kenny B.; Harris, Charles E.

    2006-01-01

    Inspections of the Space Shuttle Main Engine revealed fatigue cracks growing from slots in the flow liner of the liquid hydrogen (LH2) feed lines. During flight, the flow liners experience complex loading induced by flow of LH2 and the resonance characteristics of the structure. The flow liners are made of Inconel 718 and had previously not been considered a fracture critical component. However, fatigue failure of a flow liner could have catastrophic effect on the Shuttle engines. A fracture mechanics study was performed to determine if a damage tolerance approach to life management was possible and to determine the sensitivity to the load spectra, material properties, and crack size. The load spectra were derived separately from ground tests and material properties were obtained from coupon tests. The stress-intensity factors for the fatigue cracks were determined from a shell-dynamics approach that simulated the dominant resonant frequencies. Life predictions were obtained using the NASGRO life prediction code. The results indicated that adequate life could not be demonstrated for initial crack lengths of the size that could be detected by traditional NDE techniques.

  4. Cross-flow shearing effects on the trajectory of highly buoyant bent-over plumes

    NASA Astrophysics Data System (ADS)

    Tohidi, Ali; Kaye, Nigel Berkeley; Gollner, Michael J.

    2017-11-01

    The dynamics of highly buoyant plumes in cross-flow is ubiquitous throughout both industrial and environmental phenomena. The rise of smoke from a chimney, wastewater discharge into river currents, and dispersion of wildfire plumes are only a few instances. There have been many previous studies investigating the behavior of jets and highly buoyant plumes in cross-flow. So far, however, very little attention has been paid to the role of shearing effects in the boundary layer on the plume trajectory, particularly on the rise height. Numerical simulations and dimensional analysis are conducted to characterize the near- and far-field behavior of a highly buoyant plume in a boundary layer cross-flow. The results show that shear in the cross-flow leads to large differences in the rise height of the plume in relation to a uniform cross-flow, especially at far-field. This material is based upon work supported by the National Science Foundation under Grant No.1200560. Any opinions, findings, and conclusions or recommendations expressed in the material are of the authors and do not necessarily reflect the views of NSF.

  5. Evaluation of Reference Genes for Quantitative Real-Time PCR Analysis of the Gene Expression in Laticifers on the Basis of Latex Flow in Rubber Tree (Hevea brasiliensis Muell. Arg.)

    PubMed Central

    Chao, Jinquan; Yang, Shuguang; Chen, Yueyi; Tian, Wei-Min

    2016-01-01

    Latex exploitation-caused latex flow is effective in enhancing latex regeneration in laticifer cells of rubber tree. It should be suitable for screening appropriate reference gene for analysis of the expression of latex regeneration-related genes by quantitative real-time PCR (qRT-PCR). In the present study, the expression stability of 23 candidate reference genes was evaluated on the basis of latex flow by using geNorm and NormFinder algorithms. Ubiquitin-protein ligase 2a (UBC2a) and ubiquitin-protein ligase 2b (UBC2b) were the two most stable genes among the selected candidate references in rubber tree clones with differential duration of latex flow. The two genes were also high-ranked in previous reference gene screening across different tissues and experimental conditions. By contrast, the transcripts of latex regeneration-related genes fluctuated significantly during latex flow. The results suggest that screening reference gene during latex flow should be an efficient and effective clue for selection of reference genes in qRT-PCR. PMID:27524995

  6. Turbulence in the trachea and its effect on micro-particle deposition

    NASA Astrophysics Data System (ADS)

    Geisler, Taylor; Shaqfeh, Eric; Iaccarino, Gianluca

    2017-11-01

    The health effects of inhaled aerosols are often predicted by extrapolating experimental data taken using nonhuman primate animal studies to humans. While the existence of a laminar-to-turbulent flow transition in the human larynx is widely reported in the literature, it was previously unknown, to our knowledge, whether a similar flow behavior exists in the airways of rhesus monkeys. By using Large Eddy Simulation (LES) in the CT-based airway models of rhesus monkeys we demonstrate the existence of such a flow transition at elevated inspiratory flow rates. The geometries comprise the nasal cavity, larynx, and trachea. We observe turbulence intensity values that peak after the larynx and decay throughout the trachea similar to that of humans. Deposition of inhaled micro-particles is also computed and validated using experiments in 3D-printed model airways with excellent agreement. Deposition in the turbulent regions of the airway (larynx and trachea) is shown to be substantial at elevated flow rates and to depend on the flow unsteadiness. These results provide insight into the fate of inhaled particles in rhesus monkey animal experiments and their connection to human inhalation.

  7. Investigation of the falling water flow with evaporation for the passive containment cooling system and its scaling-down criteria

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Li, Junming; Li, Le

    2018-02-01

    Falling water evaporation cooling could efficiently suppress the containment operation pressure during the nuclear accident, by continually removing the core decay heat to the atmospheric environment. In order to identify the process of large-scale falling water evaporation cooling, the water flow characteristics of falling film, film rupture and falling rivulet were deduced, on the basis of previous correlation studies. The influences of the contact angle, water temperature and water flow rates on water converge along the flow direction were then numerically obtained and results were compared with the data for AP1000 and CAP1400 nuclear power plants. By comparisons, it is concluded that the water coverage fraction of falling water could be enhanced by either reducing the surface contact angle or increasing the water temperature. The falling water flow with evaporation for AP1000 containment was then calculated and the feature of its water coverage fraction was analyzed. Finally, based on the phenomena identification of falling water flow for AP1000 containment evaporation cooling, the scaling-down is performed and the dimensionless criteria were obtained.

  8. Optimal Experience and Optimal Identity: A Multinational Study of the Associations Between Flow and Social Identity.

    PubMed

    Mao, Yanhui; Roberts, Scott; Pagliaro, Stefano; Csikszentmihalyi, Mihaly; Bonaiuto, Marino

    2016-01-01

    Eudaimonistic identity theory posits a link between activity and identity, where a self-defining activity promotes the strength of a person's identity. An activity engaged in with high enjoyment, full involvement, and high concentration can facilitate the subjective experience of flow. In the present paper, we hypothesized in accordance with the theory of psychological selection that beyond the promotion of individual development and complexity at the personal level, the relationship between flow and identity at the social level is also positive through participation in self-defining activities. Three different samples (i.e., American, Chinese, and Spanish) filled in measures for flow and social identity, with reference to four previously self-reported activities, characterized by four different combinations of skills (low vs. high) and challenges (low vs. high). Findings indicated that flow was positively associated with social identity across each of the above samples, regardless of participants' gender and age. The results have implications for increasing social identity via participation in self-defining group activities that could facilitate flow.

  9. Navier-Stokes simulations of slender axisymmetric shapes in supersonic, turbulent flow

    NASA Astrophysics Data System (ADS)

    Moran, Kenneth J.; Beran, Philip S.

    1994-07-01

    Computational fluid dynamics is used to study flows about slender, axisymmetric bodies at very high speeds. Numerical experiments are conducted to simulate a broad range of flight conditions. Mach number is varied from 1.5 to 8 and Reynolds number is varied from 1 X 10(exp 6)/m to 10(exp 8)/m. The primary objective is to develop and validate a computational and methodology for the accurate simulation of a wide variety of flow structures. Accurate results are obtained for detached bow shocks, recompression shocks, corner-point expansions, base-flow recirculations, and turbulent boundary layers. Accuracy is assessed through comparison with theory and experimental data; computed surface pressure, shock structure, base-flow structure, and velocity profiles are within measurement accuracy throughout the range of conditions tested. The methodology is both practical and general: general in its applicability, and practicaal in its performance. To achieve high accuracy, modifications to previously reported techniques are implemented in the scheme. These modifications improve computed results in the vicinity of symmetry lines and in the base flow region, including the turbulent wake.

  10. Flow-induced gelation of microfiber suspensions.

    PubMed

    Perazzo, Antonio; Nunes, Janine K; Guido, Stefano; Stone, Howard A

    2017-10-10

    The flow behavior of fiber suspensions has been studied extensively, especially in the limit of dilute concentrations and rigid fibers; at the other extreme, however, where the suspensions are concentrated and the fibers are highly flexible, much less is understood about the flow properties. We use a microfluidic method to produce uniform concentrated suspensions of high aspect ratio, flexible microfibers, and we demonstrate the shear thickening and gelling behavior of such microfiber suspensions, which, to the best of our knowledge, has not been reported previously. By rheological means, we show that flowing the suspension triggers the irreversible formation of topological entanglements of the fibers resulting in an entangled water-filled network. This phenomenon suggests that flexible fiber suspensions can be exploited to produce a new family of flow-induced gelled materials, such as porous hydrogels. A significant consequence of these flow properties is that the microfiber suspension is injectable through a needle, from which it can be extruded directly as a hydrogel without any chemical reactions or further treatments. Additionally, we show that this fiber hydrogel is a soft, viscoelastic, yield-stress material.

  11. Optimal Experience and Optimal Identity: A Multinational Study of the Associations Between Flow and Social Identity

    PubMed Central

    Mao, Yanhui; Roberts, Scott; Pagliaro, Stefano; Csikszentmihalyi, Mihaly; Bonaiuto, Marino

    2016-01-01

    Eudaimonistic identity theory posits a link between activity and identity, where a self-defining activity promotes the strength of a person’s identity. An activity engaged in with high enjoyment, full involvement, and high concentration can facilitate the subjective experience of flow. In the present paper, we hypothesized in accordance with the theory of psychological selection that beyond the promotion of individual development and complexity at the personal level, the relationship between flow and identity at the social level is also positive through participation in self-defining activities. Three different samples (i.e., American, Chinese, and Spanish) filled in measures for flow and social identity, with reference to four previously self-reported activities, characterized by four different combinations of skills (low vs. high) and challenges (low vs. high). Findings indicated that flow was positively associated with social identity across each of the above samples, regardless of participants’ gender and age. The results have implications for increasing social identity via participation in self-defining group activities that could facilitate flow. PMID:26924995

  12. Modeling the Plasma Flow in the Inner Heliosheath with a Spatially Varying Compression Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolaou, G.; Livadiotis, G.

    2017-03-20

    We examine a semi-analytical non-magnetic model of the termination shock location previously developed by Exarhos and Moussas. In their study, the plasma flow beyond the shock is considered incompressible and irrotational, thus the flow potential is analytically derived from the Laplace equation. Here we examine the characteristics of the downstream flow in the heliosheath in order to resolve several inconsistencies existing in the Exarhos and Moussas model. In particular, the model is modified in order to be consistent with the Rankine–Hugoniot jump conditions and the geometry of the termination shock. It is shown that a shock compression ratio varying alongmore » the latitude can lead to physically correct results. We describe the new model and present several simplified examples for a nearly spherical, strong termination shock. Under those simplifications, the upstream plasma is nearly adiabatic for large (∼100 AU) heliosheath thickness.« less

  13. Experimental evidence of a helical, supercritical instability in pipe flow of shear thinning fluids

    NASA Astrophysics Data System (ADS)

    Picaut, L.; Ronsin, O.; Caroli, C.; Baumberger, T.

    2017-08-01

    We study experimentally the flow stability of entangled polymer solutions extruded through glass capillaries. We show that the pipe flow becomes linearly unstable beyond a critical value (Wic≃5 ) of the Weissenberg number, via a supercritical bifurcation which results in a helical distortion of the extrudate. We find that the amplitude of the undulation vanishes as the aspect ratio L /R of the capillary tends to zero, and saturates for large L /R , indicating that the instability affects the whole pipe flow, rather than the contraction or exit regions. These results, when compared to previous theoretical and experimental works, lead us to argue that the nature of the instability is controlled by the level of shear thinning of the fluids. In addition, we provide strong hints that the nonlinear development of the instabiilty is mitigated, in our system, by the gradual emergence of gross wall slip.

  14. Design of a large span-distributed load flying-wing cargo airplane with laminar flow control

    NASA Technical Reports Server (NTRS)

    Lovell, W. A.; Price, J. E.; Quartero, C. B.; Turriziani, R. V.; Washburn, G. F.

    1978-01-01

    A design study was conducted to add laminar flow control to a previously design span-distributed load airplane while maintaining constant range and payload. With laminar flow control applied to 100 percent of the wing and vertical tail chords, the empty weight increased by 4.2 percent, the drag decreased by 27.4 percent, the required engine thrust decreased by 14.8 percent, and the fuel consumption decreased by 21.8 percent. When laminar flow control was applied to a lesser extent of the chord (approximately 80 percent), the empty weight increased by 3.4 percent, the drag decreased by 20.0 percent, the required engine thrust decreased by 13.0 percent, and the fuel consumption decreased by 16.2 percent. In both cases the required take-off gross weight of the aircraft was less than the original turbulent aircraft.

  15. Pressure independence of granular flow through an aperture.

    PubMed

    Aguirre, M A; Grande, J G; Calvo, A; Pugnaloni, L A; Géminard, J-C

    2010-06-11

    We experimentally demonstrate that the flow rate of granular material through an aperture is controlled by the exit velocity imposed on the particles and not by the pressure at the base, contrary to what is often assumed in previous work. This result is achieved by studying the discharge process of a dense packing of monosized disks through an orifice. The flow is driven by a conveyor belt. This two-dimensional horizontal setup allows us to independently control the velocity at which the disks escape the horizontal silo and the pressure in the vicinity of the aperture. The flow rate is found to be proportional to the belt velocity, independent of the amount of disks in the container and, thus, independent of the pressure in the outlet region. In addition, this specific configuration makes it possible to get information on the system dynamics from a single image of the disks that rest on the conveyor belt after the discharge.

  16. Nonlinear MHD study on the influence of E×B flow in QH-mode plasma of DIII-D

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Huijsmans, Guido; Loarte, Alberto; Garofalo, Andrea; Solomon, Wayne; Nkonga, Boniface; Hoelzl, Matthias

    2017-10-01

    In QH-mode experiments with zero-net NBI torque show that there remains a finite E×B rotation in the pedestal region implying that a minimum E×B flow or flow shear is required for the plasma to develop the Edge Harmonic Oscillation (EHO), which is a saturated KPM (kink-peeling mode) characteristic of the QH-mode. To understand the roles of E×B flow and its shear in the saturation of KPMs, non-linear MHD simulations of DIII-D QH-mode plasmas including toroidal mode numbers n = 0 to 10 with different E×B rotation speed have been performed. These simulation show that ExB rotation strongly stabilizes high-n modes but destabilizes low-n modes (particularly the n =2 mode) in the linear growth phase, which is consistent experimental observations and previous linear MHD modelling. US DOE under DE-FC02-04ER54698.

  17. Implicit motives and basic need satisfaction in extreme endurance sports.

    PubMed

    Schüler, Julia; Wegner, Mirko; Knechtle, Beat

    2014-06-01

    Previous research has shown that the effects of basic psychological needs on the flow experience in sports are moderated by implicit motives. However, so far, only leisure and health-oriented sports have been analyzed. In a pilot study and a main study (N = 29, 93), we tested whether the implicit achievement and affiliation motives interact with the need for competence and the need for social relatedness satisfaction, respectively, to predict flow experience and well-being in extreme endurance athletes. Results showed that highly achievement-motivated individuals benefited more from the need for competence satisfaction in terms of flow than individuals with a low achievement motive did. In addition, highly affiliation-motivated individuals whose need for social relatedness is satisfied reported higher positive affect and lower exercise addiction scores than athletes with a low motive. We discuss the differential effects of the interplay between the achievement and affiliation motives and basic needs on different outcome variables.

  18. Numerical modelling of wind effects on breaking waves in the surf zone

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua

    2017-10-01

    Wind effects on periodic breaking waves in the surf zone have been investigated in this study using a two-phase flow model. The model solves the Reynolds-averaged Navier-Stokes equations with the k - 𝜖 turbulence model simultaneously for the flows both in the air and water. Both spilling and plunging breakers over a 1:35 sloping beach have been studied under the influence of wind, with a focus during wave breaking. Detailed information of the distribution of wave amplitudes and mean water level, wave-height-to-water-depth ratio, the water surface profiles, velocity, vorticity, and turbulence fields have been presented and discussed. The inclusion of wind alters the air flow structure above water waves, increases the generation of vorticity, and affects the wave shoaling, breaking, overturning, and splash-up processes. Wind increases the water particle velocities and causes water waves to break earlier and seaward, which agrees with the previous experiment.

  19. The memory remains: Understanding collective memory in the digital age

    PubMed Central

    García-Gavilanes, Ruth; Mollgaard, Anders; Tsvetkova, Milena; Yasseri, Taha

    2017-01-01

    Recently developed information communication technologies, particularly the Internet, have affected how we, both as individuals and as a society, create, store, and recall information. The Internet also provides us with a great opportunity to study memory using transactional large-scale data in a quantitative framework similar to the practice in natural sciences. We make use of online data by analyzing viewership statistics of Wikipedia articles on aircraft crashes. We study the relation between recent events and past events and particularly focus on understanding memory-triggering patterns. We devise a quantitative model that explains the flow of viewership from a current event to past events based on similarity in time, geography, topic, and the hyperlink structure of Wikipedia articles. We show that, on average, the secondary flow of attention to past events generated by these remembering processes is larger than the primary attention flow to the current event. We report these previously unknown cascading effects. PMID:28435881

  20. Wind turbine blades: A study of prototypes in a steady regime - Unsteady considerations

    NASA Astrophysics Data System (ADS)

    Leblanc, R.; Goethals, R.; de Saint Louvent, B.

    1981-11-01

    The results of comparisons of numerical models with experimental results for the performance of prototype wind turbines in steady flows are presented, along with preliminary results on behavior in unsteady flows. The numerical models are based on previous schemes devised for propellers, with modifications for small perturbations, significant radial velocity effects from the wake, and the fact that the speed is induced. Two computational methods are currently used, one a method of short blades, the other the Prandtl lifting line theory. Trials have been run in the T4 wind tunnel using a 3 m horizontal axis machine and a 2.5 m Darrieus. Attention is given to modeling the structural dynamics and turbulent flow structures encountered by wind turbines. Experimental results relating windspeed, angle of attack, and output are presented. Optimization studies have indicated that wind farms will require a 6-7 blade diameter unit spacing to maintain satisfactory group output efficiencies.

Top