Gas flow meter and method for measuring gas flow rate
Robertson, Eric P.
2006-08-01
A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.
Nonintrusive performance measurement of a gas turbine engine in real time
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul P.; Claussen, Heiko
Performance of a gas turbine engine is monitored by computing a mass flow rate through the engine. Acoustic time-of-flight measurements are taken between acoustic transmitters and receivers in the flow path of the engine. The measurements are processed to determine average speeds of sound and gas flow velocities along those lines-of-sound. A volumetric flow rate in the flow path is computed using the gas flow velocities together with a representation of the flow path geometry. A gas density in the flow path is computed using the speeds of sound and a measured static pressure. The mass flow rate is calculatedmore » from the gas density and the volumetric flow rate.« less
Kosaka, Ryo; Fukuda, Kyohei; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi
2013-01-01
In order to monitor the condition of a patient using a left ventricular assist system (LVAS), blood flow should be measured. However, the reliable determination of blood-flow rate has not been established. The purpose of the present study is to develop a noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump. The flow meter uses the centrifugal force generated by the flow rate in the curved cannula. Two strain gauges served as sensors. The first gauges were attached to the curved area to measure static pressure and centrifugal force, and the second gauges were attached to straight area to measure static pressure. The flow rate was determined by the differences in output from the two gauges. The zero compensation was constructed based on the consideration that the flow rate could be estimated during the initial driving condition and the ventricular suction condition without using the flow meter. A mock circulation loop was constructed in order to evaluate the measurement performance of the developed flow meter with zero compensation. As a result, the zero compensation worked effectively for the initial calibration and the zero-drift of the measured flow rate. We confirmed that the developed flow meter using a curved cannula with zero compensation was able to accurately measure the flow rate continuously and noninvasively.
40 CFR 89.415 - Fuel flow measurement specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement specifications... Emission Test Procedures § 89.415 Fuel flow measurement specifications. The fuel flow rate measurement instrument must have a minimum accuracy of 2 percent of the engine maximum fuel flow rate. The controlling...
Electromagnetic Flow Meter Having a Driver Circuit Including a Current Transducer
NASA Technical Reports Server (NTRS)
Patel, Sandeep K. (Inventor); Karon, David M. (Inventor); Cushing, Vincent (Inventor)
2014-01-01
An electromagnetic flow meter (EMFM) accurately measures both the complete flow rate and the dynamically fluctuating flow rate of a fluid by applying a unipolar DC voltage to excitation coils for a predetermined period of time, measuring the electric potential at a pair of electrodes, determining a complete flow rate and independently measuring the dynamic flow rate during the "on" cycle of the DC excitation, and correcting the measurements for errors resulting from galvanic drift and other effects on the electric potential. The EMFM can also correct for effects from the excitation circuit induced during operation of the EMFM.
NASA Astrophysics Data System (ADS)
Liu, Yinyan; Deng, Yuchi; Zhang, Maomao; Yu, Peining; Li, Yi
2017-09-01
Oil-water two-phase flows are commonly found in the production processes of the petroleum industry. Accurate online measurement of flow rates is crucial to ensure the safety and efficiency of oil exploration and production. A research team from Tsinghua University has developed an experimental apparatus for multiphase flow measurement based on an electrical capacitance tomography (ECT) sensor, an electrical resistance tomography (ERT) sensor, and a venturi tube. This work presents the phase fraction and flow rate measurements of oil-water two-phase flows based on the developed apparatus. Full-range phase fraction can be obtained by the combination of the ECT sensor and the ERT sensor. By data fusion of differential pressures measured by venturi tube and the phase fraction, the total flow rate and single-phase flow rate can be calculated. Dynamic experiments were conducted on the multiphase flow loop in horizontal and vertical pipelines and at various flow rates.
Nonintrusive Flow Rate Determination Through Space Shuttle Water Coolant Loop Floodlight Coldplate
NASA Technical Reports Server (NTRS)
Werlink, Rudolph; Johnson, Harry; Margasahayam, Ravi
1997-01-01
Using a Nonintrusive Flow Measurement System (NFMS), the flow rates through the Space Shuttle water coolant coldplate were determined. The objective of this in situ flow measurement was to prove or disprove a potential block inside the affected coldplate had contributed to a reduced flow rate and the subsequent ice formation on the Space Shuttle Discovery. Flow through the coldplate was originally calculated to be 35 to 38 pounds per hour. This application of ultrasonic technology advanced the envelope of flow measurements through use of 1/4-inch-diameter tubing, which resulted in extremely low flow velocities (5 to 30 pounds per hour). In situ measurements on the orbiters Discovery and Atlantis indicated both vehicles, on the average, experienced similar flow rates through the coldplate (around 25 pounds per hour), but lower rates than the designed flow. Based on the noninvasive checks, further invasive troubleshooting was eliminated. Permanent monitoring using the NFMS was recommended.
Evaluation of exhaled nitric oxide in schoolchildren at different exhalation flow rates.
Pedroletti, Christophe; Zetterquist, Wilhelm; Nordvall, Lennart; Alving, Kjell
2002-09-01
Nitric oxide (NO) in exhaled air is believed to reflect allergic inflammation in the airways. Measured levels of exhaled NO vary with the exhaled flow rate, which therefore must be standardized. The aim of this study was to estimate the optimal exhalation flow rate when measuring NO in exhaled air. We studied 15 asthmatic children (8-18 y) with elevated NO levels and 15 age-matched controls and focused on how the quality of the NO curve profile, the discriminatory power, and the reproducibility were influenced by the exhalation flow rate. We used an on-line system for NO measurements at six different exhalation flow rates in the interval of 11-382 mL/s. The fraction of exhaled nitric oxide (FENO) was highly flow-dependent as was expected. Intermediate flow rates yielded a flat and stable NO plateau and were considerably easier to interpret than those obtained at the highest and lowest flow rates. The ratio of FENO between asthmatics and controls was lower at higher flow rates and a considerable overlap in NO values was demonstrated at all flow rates except 50 mL/s. The reproducibility was much lower at more extreme flow rates and was best at 50 mL/s. We conclude that a target exhalation flow rate of approximately 50 mL/s is to be preferred using the single-breath method for on-line NO measurements in schoolchildren.
Measuring Flow Rate in Crystalline Bedrock Wells Using the Dissolved Oxygen Alteration Method.
Vitale, Sarah A; Robbins, Gary A
2017-07-01
Determination of vertical flow rates in a fractured bedrock well can aid in planning and implementing hydraulic tests, water quality sampling, and improving interpretations of water quality data. Although flowmeters are highly accurate in flow rate measurement, the high cost and logistics may be limiting. In this study the dissolved oxygen alteration method (DOAM) is expanded upon as a low-cost alternative to determine vertical flow rates in crystalline bedrock wells. The method entails altering the dissolved oxygen content in the wellbore through bubbler aeration, and monitoring the vertical advective movement of the dissolved oxygen over time. Measurements were taken for upward and downward flows, and under ambient and pumping conditions. Vertical flow rates from 0.06 to 2.30 Lpm were measured. To validate the method, flow rates determined with the DOAM were compared to pump discharge rates and found to be in agreement within 2.5%. © 2017, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Wang, H. L.; Han, W.; Xu, M.
2011-12-01
Measurement of the water flow rate in microchannel has been one of the hottest points in the applications of microfluidics, medical, biological, chemical analyses and so on. In this study, the scanning microscale particle image velocimetry (scanning micro-PIV) technique is used for the measurements of water flow rates in a straight microchannel of 200μm width and 60μm depth under the standard flow rates ranging from 2.481μL/min to 8.269μL/min. The main effort of this measurement technique is to obtain three-dimensional velocity distribution on the cross sections of microchannel by measuring velocities of the different fluid layers along the out-of-plane direction in the microchannel, so the water flow rates can be evaluated from the discrete surface integral of velocities on the cross section. At the same time, the three-dimensional velocity fields in the measured microchannel are simulated numerically using the FLUENT software in order to verify the velocity accuracy of measurement results. The results show that the experimental values of flow rates are well consistent to the standard flow rates input by the syringe pump and the compared results between numerical simulation and experiment are consistent fundamentally. This study indicates that the micro-flow rate evaluated from three-dimensional velocity by the scanning micro-PIV technique is a promising method for the micro-flow rate research.
NASA Astrophysics Data System (ADS)
Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang
2017-11-01
In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.
Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang
2017-11-01
In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.
Method and system for measuring multiphase flow using multiple pressure differentials
Fincke, James R.
2001-01-01
An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.
Quantification of the transient mass flow rate in a simplex swirl injector
NASA Astrophysics Data System (ADS)
Khil, Taeock; Kim, Sunghyuk; Cho, Seongho; Yoon, Youngbin
2009-07-01
When a heat release and acoustic pressure fluctuations are generated in a combustor by irregular and local combustions, these fluctuations affect the mass flow rate of the propellants injected through the injectors. In addition, variations of the mass flow rate caused by these fluctuations bring about irregular combustion, which is associated with combustion instability, so it is very important to identify a mass variation through the pressure fluctuation on the injector and to investigate its transfer function. Therefore, quantification of the variation of the mass flow rate generated in a simplex swirl injector via the injection pressure fluctuation was the subject of an initial study. To acquire the transient mass flow rate in the orifice with time, the axial velocity of flows and the liquid film thickness in the orifice were measured. The axial velocity was acquired through a theoretical approach after measuring the pressure in the orifice. In an effort to understand the flow area in the orifice, the liquid film thickness was measured by an electric conductance method. In the results, the mass flow rate calculated from the axial velocity and the liquid film thickness measured by the electric conductance method in the orifice was in good agreement with the mass flow rate acquired by the direct measuring method in a small error range within 1% in the steady state and within 4% for the average mass flow rate in a pulsated state. Also, the amplitude (gain) of the mass flow rate acquired by the proposed direct measuring method was confirmed using the PLLIF technique in the low pressure fluctuation frequency ranges with an error under 6%. This study shows that our proposed method can be used to measure the mass flow rate not only in the steady state but also in the unsteady state (or the pulsated state). Moreover, this method shows very high accuracy based on the experimental results.
... Living with Asthma > Managing Asthma Measuring Your Peak Flow Rate Download Instructions A peak flow meter is ... to use. Who Benefits from Using a Peak Flow Meter? Many healthcare providers believe that people who ...
NASA Astrophysics Data System (ADS)
Tsukamoto, Kaname; Okada, Mizuki; Inokuchi, Yuzo; Yamasaki, Nobuhiko; Yamagata, Akihiro
2017-04-01
For centrifugal compressors used in automotive turbochargers, the extension of the surge margin is demanded because of lower engine speed. In order to estimate the surge line exactly, it is required to acquire the compressor characteristics at small or negative flow rate. In this paper, measurement and numerical simulation of the characteristics at small or negative flow rate are carried out. In the measurement, an experimental facility with a valve immediately downstream of the compressor is used to suppress the surge. In the numerical work, a new boundary condition that specifies mass flow rate at the outlet boundary is used to simulate the characteristics around the zero flow rate region. Furthermore, flow field analyses at small or negative flow rate are performed with the numerical results. The separated and re-circulated flow fields are investigated by visualization to identify the origin of losses.
Off-design flow measurements in a centrifugal compressor vaneless diffuser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinarbasi, A.; Johnson, M.W.
1995-10-01
Detailed measurements have been taken of the three-dimensional velocity field within the vaneless diffuser of a backswept low speed centrifugal compressor using hot-wire anemometry. A 16% below and an 11% above design flow rate were used in the present study. Results at both flow rates show how the blade wake mixes out more rapidly than the passage wake. Strong secondary flows inherited from the impeller at the higher flow rate delay the mixing out of the circumferential velocity variations, but at both flow rates these circumferential variations are negligible at the last measurement station. The measured tangential/radial flow angle ismore » used to recommend optimum values for the vaneless space and vane angle for design of a vaned diffuser.« less
Method and apparatus for measuring the mass flow rate of a fluid
Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.
2002-01-01
A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.
40 CFR 1066.125 - Data updating, recording, and control.
Code of Federal Regulations, 2014 CFR
2014-07-01
... minimum recording frequency, such as for sample flow rates from a CVS that does not have a heat exchanger... exhaust flow rate from a CVS with a heat exchanger upstream of the flow measurement 1 Hz. 40 CFR 1065.545§ 1066.425 Diluted exhaust flow rate from a CVS without a heat exchanger upstream of the flow measurement...
Mignot, E; Bonakdari, H; Knothe, P; Lipeme Kouyi, G; Bessette, A; Rivière, N; Bertrand-Krajewski, J-L
2012-01-01
Open-channel junctions are common occurrences in sewer networks and flow rate measurement often occurs near these singularities. Local flow structures are 3D, impact on the representativeness of the local flow measurements and thus lead to deviations in the flow rate estimation. The present study aims (i) to measure and simulate the flow pattern in a junction flow, (ii) to analyse the impact of the junction on the velocity distribution according to the distance from the junction and thus (iii) to evaluate the typical error derived from the computation of the flow rate close to the junction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenzhong; Yi, Ji; Chen, Siyu
Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (smallmore » ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.« less
Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F.
2015-01-01
Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length. PMID:26328984
Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F
2015-09-01
Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as -0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31 μl/min among four wild-type rats. The authors' measured flow rates were consistent with results in the literature. By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.
The Accuracy and Precision of Flow Measurements Using Phase Contrast Techniques
NASA Astrophysics Data System (ADS)
Tang, Chao
Quantitative volume flow rate measurements using the magnetic resonance imaging technique are studied in this dissertation because the volume flow rates have a special interest in the blood supply of the human body. The method of quantitative volume flow rate measurements is based on the phase contrast technique, which assumes a linear relationship between the phase and flow velocity of spins. By measuring the phase shift of nuclear spins and integrating velocity across the lumen of the vessel, we can determine the volume flow rate. The accuracy and precision of volume flow rate measurements obtained using the phase contrast technique are studied by computer simulations and experiments. The various factors studied include (1) the partial volume effect due to voxel dimensions and slice thickness relative to the vessel dimensions; (2) vessel angulation relative to the imaging plane; (3) intravoxel phase dispersion; (4) flow velocity relative to the magnitude of the flow encoding gradient. The partial volume effect is demonstrated to be the major obstacle to obtaining accurate flow measurements for both laminar and plug flow. Laminar flow can be measured more accurately than plug flow in the same condition. Both the experiment and simulation results for laminar flow show that, to obtain the accuracy of volume flow rate measurements to within 10%, at least 16 voxels are needed to cover the vessel lumen. The accuracy of flow measurements depends strongly on the relative intensity of signal from stationary tissues. A correction method is proposed to compensate for the partial volume effect. The correction method is based on a small phase shift approximation. After the correction, the errors due to the partial volume effect are compensated, allowing more accurate results to be obtained. An automatic program based on the correction method is developed and implemented on a Sun workstation. The correction method is applied to the simulation and experiment results. The results show that the correction significantly reduces the errors due to the partial volume effect. We apply the correction method to the data of in vivo studies. Because the blood flow is not known, the results of correction are tested according to the common knowledge (such as cardiac output) and conservation of flow. For example, the volume of blood flowing to the brain should be equal to the volume of blood flowing from the brain. Our measurement results are very convincing.
Reges, José E. O.; Salazar, A. O.; Maitelli, Carla W. S. P.; Carvalho, Lucas G.; Britto, Ursula J. B.
2016-01-01
This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068
Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics
NASA Technical Reports Server (NTRS)
Kenny, R Jeremy; Hulka, James R.
2008-01-01
Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.
NASA Astrophysics Data System (ADS)
Fang, Min; Xu, Ke-Jun; Zhu, Wen-Jiao; Shen, Zi-Wen
2016-01-01
Most of the ultrasonic gas flow-meters measure the gas flow rate by calculating the ultrasonic transmission time difference between the downstream and upstream. Ultrasonic energy attenuation occurs in the processes of the ultrasonic generation, conversion, transmission, and reception. Additionally, at the same time, the gas flow will also affect the ultrasonic propagation during the measurement, which results in the ultrasonic energy attenuation and the offset of ultrasonic propagation path. Thus, the ultrasonic energy received by the transducer is weaker. When the gas flow rate increases, this effect becomes more apparent. It leads to the measurement accuracy reduced, and the measurement range narrowed. An energy transfer model, where the ultrasonic gas flow-meter under without/with the gas flow, is established by adopting the statistical analysis and curve fitting based on a large amount of experimental data. The static sub model without the gas flow expresses the energy conversion efficiency of ultrasonic gas transducers, and the dynamic sub model with the gas flow reflects the energy attenuation pattern following the flow rate variations. The mathematical model can be used to determine the minimum energy of the excitation signal for meeting the requirement of specific measurement range, and predict the maximum measurable flow rate in the case of fixed energy of excitation signal. Based on the above studies, a method to enhance the excitation signal energy is proposed under the output power of the transmitting circuit being a finite value so as to extend the measurement rage of ultrasonic gas flow-meter.
Li, Jian; Kong, Ming; Xu, Chuanlong; Wang, Shimin; Fan, Ying
2015-12-10
The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within -3%-8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.
Impact of Pitot tube calibration on the uncertainty of water flow rate measurement
NASA Astrophysics Data System (ADS)
de Oliveira Buscarini, Icaro; Costa Barsaglini, Andre; Saiz Jabardo, Paulo Jose; Massami Taira, Nilson; Nader, Gilder
2015-10-01
Water utility companies often use Cole type Pitot tubes to map velocity profiles and thus measure flow rate. Frequent monitoring and measurement of flow rate is an important step in identifying leaks and other types of losses. In Brazil losses as high as 42% are common and in some places even higher values are found. When using Cole type Pitot tubes to measure the flow rate, the uncertainty of the calibration coefficient (Cd) is a major component of the overall flow rate measurement uncertainty. A common practice is to employ the usual value Cd = 0.869, in use since Cole proposed his Pitot tube in 1896. Analysis of 414 calibrations of Cole type Pitot tubes show that Cd varies considerably and values as high 0.020 for the expanded uncertainty are common. Combined with other uncertainty sources, the overall velocity measurement uncertainty is 0.02, increasing flowrate measurement uncertainty by 1.5% which, for the Sao Paulo metropolitan area (Brazil) corresponds to 3.5 × 107 m3/year.
NASA Astrophysics Data System (ADS)
Liu, Jian; Wang, Yi; Zhao, Yuqian; Dou, Shidan; Ma, Yushu; Ma, Zhenhe
2016-03-01
Activity of brain neurons will lead to changes in local blood flow rate (BFR). Thus, it is important to measure the local BFR of cerebral cortex on research of neuron activity in vivo, such as rehabilitation evaluation after stroke, etc. Currently, laser Doppler flowmetry is commonly used for blood flow measurement, however, relatively low resolution limits its application. Optical coherence tomography (OCT) is a powerful noninvasive 3D imaging modality with high temporal and spatial resolutions. Furthermore, OCT can provide flow distribution image by calculating Doppler frequency shift which makes it possible for blood flow rate measurement. In this paper, we applied OCT to measure the blood flow rate of the primary motor cortex in rats. The animal was immobilized and anesthetized with isoflurane, an incision was made along the sagittal suture, and bone was exposed. A skull window was opened on the primary motor cortex. Then, blood flow rate changes in the primary motor cortex were monitored by our homemade spectral domain OCT with a stimulation of the passive movement of the front legs. Finally, we established the relationship between blood flow rate and the test design. The aim is to demonstrate the potential of OCT in the evaluation of cerebral cortex function.
Kubicka, Zuzanna J; Limauro, Joseph; Darnall, Robert A
2008-01-01
The goal was to estimate the level of delivered continuous positive airway pressure by measuring oral cavity pressure with the mouth closed in infants of various weights and ages treated with heated, humidified high-flow nasal cannula at flow rates of 1-5 L/minute. We hypothesized that clinically relevant levels of continuous positive airway pressure would not be achieved if a nasal leak is maintained. After performing bench measurements and demonstrating that oral cavity pressure closely approximated levels of traditionally applied nasal continuous positive airway pressure, we successfully measured oral cavity pressure during heated, humidified, high-flow nasal cannula treatment in 27 infants. Small (outer diameter: 0.2 cm) cannulae were used for all infants, and flow rates were left as ordered by providers. Bench measurements showed that, for any given leak size, there was a nearly linear relationship between flow rate and pressure. The highest pressure achieved was 4.5 cmH2O (flow rate: 8 L/minute; leak: 3 mm). In our study infants (postmenstrual age: 29.1-44.7 weeks; weight: 835-3735 g; flow rate: 1-5 L/minute), no pressure was generated with the mouth open at any flow rate. With the mouth closed, the oral cavity pressure was related to both flow rate and weight. For infants of < or = 1500 g, there was a linear relationship between flow rate and oral cavity pressure. Oral cavity pressure can estimate the level of continuous positive airway pressure. Continuous positive airway pressure generated with heated, humidified, high-flow nasal cannula treatment depends on the flow rate and weight. Only in the smallest infants with the highest flow rates, with the mouth fully closed, can clinically significant but unpredictable levels of continuous positive airway pressure be achieved. We conclude that heated, humidified high-flow nasal cannula should not be used as a replacement for delivering continuous positive airway pressure.
40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within...: Equation 5 ER18jy97.067 (ii) To successfully pass the flow rate CV measurement accuracy test, the absolute...
40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.
Code of Federal Regulations, 2011 CFR
2011-07-01
... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within...: Equation 5 ER18jy97.067 (ii) To successfully pass the flow rate CV measurement accuracy test, the absolute...
40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within...: Equation 5 ER18jy97.067 (ii) To successfully pass the flow rate CV measurement accuracy test, the absolute...
40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within...: Equation 5 ER18jy97.067 (ii) To successfully pass the flow rate CV measurement accuracy test, the absolute...
Device accurately measures and records low gas-flow rates
NASA Technical Reports Server (NTRS)
Branum, L. W.
1966-01-01
Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.
A methodology to reduce uncertainties in the high-flow portion of a rating curve
USDA-ARS?s Scientific Manuscript database
Flow monitoring at watershed scale relies on the establishment of a rating curve that describes the relationship between stage and flow and is developed from actual flow measurements at various stages. Measurement errors increase with out-of-bank flow conditions because of safety concerns and diffic...
Renninger, Heidi J.; Schäfer, Karina V. R.
2012-01-01
Sap flow measurements have become integral in many physiological and ecological investigations. A number of methods are used to estimate sap flow rates in trees, but probably the most popular is the thermal dissipation (TD) method because of its affordability, relatively low power consumption, and ease of use. However, there have been questions about the use of this method in ring-porous species and whether individual species and site calibrations are needed. We made concurrent measurements of sap flow rates using TD sensors and the tissue heat balance (THB) method in two oak species (Quercus prinus Willd. and Quercus velutina Lam.) and one pine (Pinus echinata Mill.). We also made concurrent measurements of sap flow rates using both 1 and 2-cm long TD sensors in both oak species. We found that both the TD and THB systems tended to match well in the pine individual, but sap flow rates were underestimated by 2-cm long TD sensors in five individuals of the two ring-porous oak species. Underestimations of 20–35% occurred in Q. prinus even when a “Clearwater” correction was applied to account for the shallowness of the sapwood depth relative to the sensor length and flow rates were underestimated by up to 50% in Q. velutina. Two centimeter long TD sensors also underestimated flow rates compared with 1-cm long sensors in Q. prinus, but only at large flow rates. When 2-cm long sensor data in Q. prinus were scaled using the regression with 1-cm long data, daily flow rates matched well with the rates measured by the THB system. Daily plot level transpiration estimated using TD sap flow rates and scaled 1 cm sensor data averaged about 15% lower than those estimated by the THB method. Therefore, these results suggest that 1-cm long sensors are appropriate in species with shallow sapwood, however more corrections may be necessary in ring-porous species. PMID:22661978
Semiempirical method of determining flow coefficients for pitot rake mass flow rate measurements
NASA Technical Reports Server (NTRS)
Trefny, C. J.
1985-01-01
Flow coefficients applicable to area-weighted pitot rake mass flow rate measurements are presented for fully developed, turbulent flow in an annulus. A turbulent velocity profile is generated semiempirically for a given annulus hub-to-tip radius ratio and integrated numerically to determine the ideal mass flow rate. The calculated velocities at each probe location are then summed, and the flow rate as indicated by the rake is obtained. The flow coefficient to be used with the particular rake geometry is subsequently obtained by dividing the ideal flow rate by the rake-indicated flow rate. Flow coefficients ranged from 0.903 for one probe placed at a radius dividing two equal areas to 0.984 for a 10-probe area-weighted rake. Flow coefficients were not a strong function of annulus hub-to-tip radius ratio for rakes with three or more probes. The semiempirical method used to generate the turbulent velocity profiles is described in detail.
NASA Astrophysics Data System (ADS)
Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.
2016-09-01
The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip boundary condition can be applied. The measured viscous slip coefficients of binary gas mixtures exhibit a concave function of the molar ratio of the mixture, showing a similar profile with numerical results. However, from the detailed comparison between the measured and numerical values with the complete and incomplete accommodation at a surface, it is inappropriate to estimate the viscous slip coefficient for the mixture numerically by employing separately measured tangential momentum accommodation coefficient for each component. The time variation of the molar ratio in the downstream chamber was measured by sampling the gas from the chamber using the quadrupole mass spectrometer. In our measurements, it is indicated that the volume flow rate of argon is larger than that of helium because of the difference in the tangential momentum accommodation coefficient.
In vitro flow measurements in ion sputtered hydrocephalus shunts
NASA Technical Reports Server (NTRS)
Cho, Y. I.; Back, L. H.
1989-01-01
This paper describes an experimental procedure for accurate measurements of the pressure-drop/flow rate relationship in hydrocephalus shunts. Using a fish-hook arrangement, small flow rates in a perforated ion-sputtered Teflon microtubule were measured in vitro in a pressured system and were correlated with pressure in the system. Results indicate that appropriate drainage rates could be obtained in the physiological range for hydrocephalus shunts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Woohyun; Braun, J.
Refrigerant mass flow rate is an important measurement for monitoring equipment performance and enabling fault detection and diagnostics. However, a traditional mass flow meter is expensive to purchase and install. A virtual refrigerant mass flow sensor (VRMF) uses a mathematical model to estimate flow rate using low-cost measurements and can potentially be implemented at low cost. This study evaluates three VRMFs for estimating refrigerant mass flow rate. The first model uses a compressor map that relates refrigerant flow rate to measurements of inlet and outlet pressure, and inlet temperature measurements. The second model uses an energy-balance method on the compressormore » that uses a compressor map for power consumption, which is relatively independent of compressor faults that influence mass flow rate. The third model is developed using an empirical correlation for an electronic expansion valve (EEV) based on an orifice equation. The three VRMFs are shown to work well in estimating refrigerant mass flow rate for various systems under fault-free conditions with less than 5% RMS error. Each of the three mass flow rate estimates can be utilized to diagnose and track the following faults: 1) loss of compressor performance, 2) fouled condenser or evaporator filter, 3) faulty expansion device, respectively. For example, a compressor refrigerant flow map model only provides an accurate estimation when the compressor operates normally. When a compressor is not delivering the expected flow due to a leaky suction or discharge valve or other internal fault, the energy-balance or EEV model can provide accurate flow estimates. In this paper, the flow differences provide an indication of loss of compressor performance and can be used for fault detection and diagnostics.« less
USDA-ARS?s Scientific Manuscript database
Flow monitoring at watershed scale relies on the establishment of a rating curve that describes the relationship between stage and flow and is developed from actual flow measurements at various stages. Measurement errors increase with out-of-bank flow conditions because of safety concerns and diffic...
Optical measurement of high-temperature melt flow rate.
Bizjan, Benjamin; Širok, Brane; Chen, Jinpeng
2018-05-20
This paper presents an optical method and system for contactless measurement of the mass flow rate of melts by digital cameras. The proposed method is based on reconstruction of melt stream geometry and flow velocity calculation by cross correlation, and is very cost-effective due its modest hardware requirements. Using a laboratory test rig with a small inductive melting pot and reference mass flow rate measurement by weighing, the proposed method was demonstrated to have an excellent dynamic response (0.1 s order of magnitude) while producing deviations from the reference of about 5% in the steady-state flow regime. Similar results were obtained in an industrial stone wool production line for two repeated measurements. Our method was tested in a wide range of melt flow rates (0.05-1.2 kg/s) and did not require very fast cameras (120 frames per second would be sufficient for most industrial applications).
Economic method for measuring ultra-low flow rates of fluids
NASA Technical Reports Server (NTRS)
Bogdanovic, J. A.; Keller, W. F.
1970-01-01
Capillary tube flowmeter measures ultra-low flows of very corrosive fluids /such as chlorine trifluoride and liquid fluorine/ and other liquids with reasonable accuracy. Flowmeter utilizes differential pressure transducer and operates on the principle that for laminar flow in the tube, pressure drop is proportional to flow rate.
NASA Astrophysics Data System (ADS)
Wada, Sanehiro; Furuichi, Noriyuki; Shimada, Takashi
2017-11-01
This paper proposes the application of a novel ultrasonic pulse, called a partial inversion pulse (PIP), to the measurement of the velocity profile and flow rate in a pipe using the ultrasound time-domain correlation (UTDC) method. In general, the measured flow rate depends on the velocity profile in the pipe; thus, on-site calibration is the only method of checking the accuracy of on-site flow rate measurements. Flow rate calculation using UTDC is based on the integration of the measured velocity profile. The advantages of this method compared with the ultrasonic pulse Doppler method include the possibility of the velocity range having no limitation and its applicability to flow fields without a sufficient amount of reflectors. However, it has been previously reported that the measurable velocity range for UTDC is limited by false detections. Considering the application of this method to on-site flow fields, the issue of velocity range is important. To reduce the effect of false detections, a PIP signal, which is an ultrasound signal that contains a partially inverted region, was developed in this study. The advantages of the PIP signal are that it requires little additional hardware cost and no additional software cost in comparison with conventional methods. The effects of inversion on the characteristics of the ultrasound transmission were estimated through numerical calculation. Then, experimental measurements were performed at a national standard calibration facility for water flow rate in Japan. The experimental results demonstrate that measurements made using a PIP signal are more accurate and yield a higher detection ratio than measurements using a normal pulse signal.
40 CFR 91.417 - Fuel flow measurement specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement specifications... Procedures § 91.417 Fuel flow measurement specifications. (a) Fuel flow measurement is required only for raw testing but is allowed for dilute testing. (b) The fuel flow rate measurement instrument must have a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, Jorge Luiz Goes; Passos, Julio Cesar; Verschaeren, Ruud
Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air-water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi platemore » is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454-457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil-air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601-606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%. (author)« less
Identifying High-Rate Flows Based on Sequential Sampling
NASA Astrophysics Data System (ADS)
Zhang, Yu; Fang, Binxing; Luo, Hao
We consider the problem of fast identification of high-rate flows in backbone links with possibly millions of flows. Accurate identification of high-rate flows is important for active queue management, traffic measurement and network security such as detection of distributed denial of service attacks. It is difficult to directly identify high-rate flows in backbone links because tracking the possible millions of flows needs correspondingly large high speed memories. To reduce the measurement overhead, the deterministic 1-out-of-k sampling technique is adopted which is also implemented in Cisco routers (NetFlow). Ideally, a high-rate flow identification method should have short identification time, low memory cost and processing cost. Most importantly, it should be able to specify the identification accuracy. We develop two such methods. The first method is based on fixed sample size test (FSST) which is able to identify high-rate flows with user-specified identification accuracy. However, since FSST has to record every sampled flow during the measurement period, it is not memory efficient. Therefore the second novel method based on truncated sequential probability ratio test (TSPRT) is proposed. Through sequential sampling, TSPRT is able to remove the low-rate flows and identify the high-rate flows at the early stage which can reduce the memory cost and identification time respectively. According to the way to determine the parameters in TSPRT, two versions of TSPRT are proposed: TSPRT-M which is suitable when low memory cost is preferred and TSPRT-T which is suitable when short identification time is preferred. The experimental results show that TSPRT requires less memory and identification time in identifying high-rate flows while satisfying the accuracy requirement as compared to previously proposed methods.
Radiation beam calorimetric power measurement system
Baker, John; Collins, Leland F.; Kuklo, Thomas C.; Micali, James V.
1992-01-01
A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.
UF6 Density and Mass Flow Measurements for Enrichment Plants using Acoustic Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Good, Morris S.; Smith, Leon E.; Warren, Glen A.
A key enabling capability for enrichment plant safeguards being considered by the International Atomic Energy Agency (IAEA) is high-accuracy, noninvasive, unattended measurement of UF6 gas density and mass flow rate. Acoustic techniques are currently used to noninvasively monitor gas flow in industrial applications; however, the operating pressures at gaseous centrifuge enrichment plants (GCEPs) are roughly two orders magnitude below the capabilities of commercial instrumentation. Pacific Northwest National Laboratory is refining acoustic techniques for estimating density and mass flow rate of UF6 gas in scenarios typical of GCEPs, with the goal of achieving 1% measurement accuracy. Proof-of-concept laboratory measurements using amore » surrogate gas for UF6 have demonstrated signatures sensitive to gas density at low operating pressures such as 10–50 Torr, which were observed over the background acoustic interference. Current efforts involve developing a test bed for conducting acoustic measurements on flowing SF6 gas at representative flow rates and pressures to ascertain the viability of conducting gas flow measurements under these conditions. Density and flow measurements will be conducted to support the evaluation. If successful, the approach could enable an unattended, noninvasive approach to measure mass flow in unit header pipes of GCEPs.« less
40 CFR 86.314-79 - Fuel flow measurement specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...
40 CFR 86.314-79 - Fuel flow measurement specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...
40 CFR 86.314-79 - Fuel flow measurement specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...
40 CFR 86.314-79 - Fuel flow measurement specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...
Chang, Dwayne; Manecksha, Rustom P; Syrrakos, Konstantinos; Lawrentschuk, Nathan
2012-01-01
To investigate the effects of height, external pressure, and bladder fullness on the flow rate in continuous, non-continuous cystoscopy and the automated irrigation fluid pumping system (AIFPS). Each experiment had two 2-litre 0.9% saline bags connected to a continuous, non-continuous cystoscope or AIFPS via irrigation tubing. Other equipment included height-adjustable drip poles, uroflowmetry devices, and model bladders. In Experiment 1, saline bags were elevated to measure the increment in flow rate. In Experiment 2, saline bags were placed under external pressures to evaluate the effect on flow rate. In Experiment 3, flow rate changes in response to variable bladder fullness were measured. Elevating saline bags caused an increase in flow rates, however the increment slowed down beyond a height of 80 cm. Increase in external pressure on saline bags elevated flow rates, but inconsistently. A fuller bladder led to a decrease in flow rates. In all experiments, the AIFPS posted consistent flow rates. Traditional irrigation systems were susceptible to changes in height of irrigation solution, external pressure application, and bladder fullness thus creating inconsistent flow rates. The AIFPS produced consistent flow rates and was not affected by any of the factors investigated in the study.
Measurement uncertainty budget of an interferometric flow velocity sensor
NASA Astrophysics Data System (ADS)
Bermuske, Mike; Büttner, Lars; Czarske, Jürgen
2017-06-01
Flow rate measurements are a common topic for process monitoring in chemical engineering and food industry. To achieve the requested low uncertainties of 0:1% for flow rate measurements, a precise measurement of the shear layers of such flows is necessary. The Laser Doppler Velocimeter (LDV) is an established method for measuring local flow velocities. For exact estimation of the flow rate, the flow profile in the shear layer is of importance. For standard LDV the axial resolution and therefore the number of measurement points in the shear layer is defined by the length of the measurement volume. A decrease of this length is accompanied by a larger fringe distance variation along the measurement axis which results in a rise of the measurement uncertainty for the flow velocity (uncertainty relation between spatial resolution and velocity uncertainty). As a unique advantage, the laser Doppler profile sensor (LDV-PS) overcomes this problem by using two fan-like fringe systems to obtain the position of the measured particles along the measurement axis and therefore achieve a high spatial resolution while it still offers a low velocity uncertainty. With this technique, the flow rate can be estimated with one order of magnitude lower uncertainty, down to 0:05% statistical uncertainty.1 And flow profiles especially in film flows can be measured more accurately. The problem for this technique is, in contrast to laboratory setups where the system is quite stable, that for industrial applications the sensor needs a reliable and robust traceability to the SI units, meter and second. Small deviations in the calibration can, because of the highly position depending calibration function, cause large systematic errors in the measurement result. Therefore, a simple, stable and accurate tool is needed, that can easily be used in industrial surroundings to check or recalibrate the sensor. In this work, different calibration methods are presented and their influences to the measurement uncertainty budget of the sensor is discussed. Finally, generated measurement results for the film flow of an impinging jet cleaning experiment are presented.
Macropore system characteristics controls on non-reactive solute transport at different flow rates
NASA Astrophysics Data System (ADS)
Larsbo, Mats; Koestel, John
2014-05-01
Preferential flow and transport in macroporous soils are important pathways for the leaching of agrochemicals through soils. Preferential solute transport in soil is to a large extent determined by the macropore system characteristics and the water flow conditions. The importance of different characteristics of the macropore system is likely to vary with the flow conditions. The objective of this study was to determine which properties of the macropore system that control the shape of non-reactive tracer solute breakthrough curves at different steady-state flow rates. We sampled five undisturbed columns (20 cm high, 20 cm diameter) from the soil surface of four soils with clay contents between 21 and 50 %. Solute transport experiments were carried out under unsaturated conditions at 2, 4, 6, 8 and 12 mm h-1 flow rates. For each flow rate a pulse of potassium bromide solution was applied at the soil surface and the electrical conductivity was measured with high temporal resolution in the column effluent. We used the 5 % arrival time and the holdback factor to estimate the degree of preferential transport from the resulting breakthrough curves. Unsaturated hydraulic conductivities were measured at the soil surface of the columns using a tension disc infiltrometer. The macropore system was imaged by industrial X-ray computed tomography at a resolution of 125 μm in all directions. Measures of the macropore system characteristics including measures of pore continuity were calculated from these images using the ImageJ software. Results show that the degree of preferential transport is generally increasing with flow rate when larger pores become active in the transport. The degree of preferential flow was correlated to measures of macropore topology. This study show that conclusions drawn from experiments carried out at one flow rate should generally not be extrapolated to other flow rates.
STEAM CARRYUNDER MEASUREMENT BY MEANS OF TWO-PHASE PUMP PERFORMANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemi, R.O.; Steamer, A.G.
1960-10-01
Pump tests were conducted at the Moss Landing Steam Separation Facility at operating pressures of 600 and 1000 psig to provide a method for determining the rate of steam carryunder. Pump power input and head were measured as functions of water flow and steam flow to the pump suction. The pump tested had a rated flow of 1700 gpm and a rated head of 148 feet. It was found that in this facility, steam carryander can be measured to 0.1% by measuring the recirculating water pump input power and Pump head. (auth)
Compact Instruments Measure Helium-Leak Rates
NASA Technical Reports Server (NTRS)
Stout, Stephen; Immer, Christopher
2003-01-01
Compact, lightweight instruments have been developed for measuring small flows of helium and/or detecting helium leaks in solenoid valves when the valves are nominally closed. These instruments do not impede the flows when the valves are nominally open. They can be integrated into newly fabricated valves or retrofitted to previously fabricated valves. Each instrument includes an upstream and a downstream thermistor separated by a heater, plus associated analog and digital heater-control, signal- conditioning, and data-processing circuits. The thermistors and heater are off-the-shelf surface mount components mounted on a circuit board in the flow path. The operation of the instrument is based on a well-established thermal mass-flow-measurement technique: Convection by the flow that one seeks to measure gives rise to transfer of heat from the heater to the downstream thermistor. The temperature difference measured by the thermistors is directly related to the rate of flow. The calibration curve from temperature gradient to helium flow is closely approximated via fifth-order polynomial. A microprocessor that is part of the electronic circuitry implements the calibration curve to compute the flow rate from the thermistor readings.
Data system for multiplexed water-current meters
NASA Technical Reports Server (NTRS)
Ramsey, C. R.
1977-01-01
Flow rates at 32 flood plain locations are measured simultaneously by single digital logic unit with high noise immunity. Water flowing through pygmy current meters rotates element that closes electrical contact once every resolution, so flow rate is measured by counting number of closures in time interval.
NASA Astrophysics Data System (ADS)
Koirala, Nischal; Setser, Randolph M.; Bullen, Jennifer; McLennan, Gordon
2017-03-01
Blood flow rate is a critical parameter for diagnosing dialysis access function during fistulography where a flow rate of 600 ml/min in arteriovenous graft or 400-500 ml/min in arteriovenous fistula is considered the clinical threshold for fully functioning access. In this study, a flow rate computational model for calculating intra-access flow to evaluate dialysis access patency was developed and validated in an in vitro set up using digital subtraction angiography. Flow rates were computed by tracking the bolus through two regions of interest using cross correlation (XCOR) and mean arrival time (MAT) algorithms, and correlated versus an in-line transonic flow meter measurement. The mean difference (mean +/- standard deviation) between XCOR and in-line flow measurements for in vitro setup at 3, 6, 7.5 and 10 frames/s was 118+/-63 37+/-59 31+/-31 and 46+/-57 ml/min respectively while for MAT method it was 86+/-56 57+/-72 35+/-85 and 19+/-129 ml/min respectively. The result of this investigation will be helpful for selecting candidate algorithms while blood flow computational tool is developed for clinical application.
40 CFR 89.415 - Fuel flow measurement specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement specifications. 89.415 Section 89.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.415 Fuel flow measurement specifications. The fuel flow rate measurement...
Dialysate Flow Rate and Delivered Kt/Vurea for Dialyzers with Enhanced Dialysate Flow Distribution
Idoux, John W.; Hamdan, Hiba; Ouseph, Rosemary; Depner, Thomas A.; Golper, Thomas A.
2011-01-01
Summary Background and objectives Previous in vitro and clinical studies showed that the urea mass transfer-area coefficient (KoA) increased with increasing dialysate flow rate. This observation led to increased dialysate flow rates in an attempt to maximize the delivered dose of dialysis (Kt/Vurea). Recently, we showed that urea KoA was independent of dialysate flow rate in the range 500 to 800 ml/min for dialyzers incorporating features to enhance dialysate flow distribution, suggesting that increasing the dialysate flow rate with such dialyzers would not significantly increase delivered Kt/Vurea. Design, setting, participants, & measurements We performed a multi-center randomized clinical trial to compare delivered Kt/Vurea at dialysate flow rates of 600 and 800 ml/min in 42 patients. All other aspects of the dialysis prescription, including treatment time, blood flow rate, and dialyzer, were kept constant for a given patient. Delivered single-pool and equilibrated Kt/Vurea were calculated from pre- and postdialysis plasma urea concentrations, and ionic Kt/V was determined from serial measurements of ionic dialysance made throughout each treatment. Results Delivered Kt/Vurea differed between centers; however, the difference in Kt/Vurea between dialysate flow rates of 800 and 600 ml/min was NS by any measure (95% confidence intervals of −0.064 to 0.024 for single-pool Kt/Vurea, −0.051 to 0.023 for equilibrated Kt/Vurea, and −0.029 to 0.099 for ionic Kt/V). Conclusions These data suggest that increasing the dialysate flow rate beyond 600 ml/min for these dialyzers offers no benefit in terms of delivered Kt/Vurea. PMID:21799145
Lava effusion rate definition and measurement: a review
Calvari, Sonia; Dehn, Jonathan; Harris, A.
2007-01-01
Measurement of effusion rate is a primary objective for studies that model lava flow and magma system dynamics, as well as for monitoring efforts during on-going eruptions. However, its exact definition remains a source of confusion, and problems occur when comparing volume flux values that are averaged over different time periods or spatial scales, or measured using different approaches. Thus our aims are to: (1) define effusion rate terminology; and (2) assess the various measurement methods and their results. We first distinguish between instantaneous effusion rate, and time-averaged discharge rate. Eruption rate is next defined as the total volume of lava emplaced since the beginning of the eruption divided by the time since the eruption began. The ultimate extension of this is mean output rate, this being the final volume of erupted lava divided by total eruption duration. Whether these values are total values, i.e. the flux feeding all flow units across the entire flow field, or local, i.e. the flux feeding a single active unit within a flow field across which many units are active, also needs to be specified. No approach is without its problems, and all can have large error (up to ∼50%). However, good agreement between diverse approaches shows that reliable estimates can be made if each approach is applied carefully and takes into account the caveats we detail here. There are three important factors to consider and state when measuring, giving or using an effusion rate. First, the time-period over which the value was averaged; second, whether the measurement applies to the entire active flow field, or a single lava flow within that field; and third, the measurement technique and its accompanying assumptions.
Soenksen, P.J.
1990-01-01
Tracer-dilution discharge measurements were made during 14 flow periods at six stations from 1986 through 1988 water years. Ratings were developed at three stations with the aid of these measurements. A loop rating was identified at one station during rapidly-changing flow conditions. Incomplete mixing and dye loss to sediment apparently were problems at some stations. Stage hydrographs were recorded for 38 flows at seven stations. Limited data on background fluorescence during high flows were also obtained.
Drop size distribution and air velocity measurements in air assist swirl atomizer sprays
NASA Technical Reports Server (NTRS)
Mao, C.-P.; Oechsle, V.; Chigier, N.
1987-01-01
Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.
A novel, microscope based, non invasive Laser Doppler flowmeter for choroidal blood flow assessment
Strohmaier, C; Werkmeister, RM; Bogner, B; Runge, C; Schroedl, F; Brandtner, H; Radner, W; Schmetterer, L; Kiel, JW; Grabnerand, G; Reitsamer, HA
2015-01-01
Impaired ocular blood flow is involved in the pathogenesis of numerous ocular diseases like glaucoma or AMD. The purpose of the present study was to introduce and validate a novel, microscope based, non invasive laser Doppler flowmeter (NILDF) for measurement of blood flow in the choroid. The custom made NI-LDF was compared with a commercial fiber optic based laser Doppler flowmeter (Perimed PF4000). Linearity and stability of the NI-LDF were assessed in a silastic tubing model (i.d. 0.3 mm) at different flow rates (range 0.4 – 3 ml/h). In a rabbit model continuous choroidal blood flow measurements were performed with both instruments simultaneously. During blood flow measurements ocular perfusion pressure was changed by manipulations of intraocular pressure via intravitreal saline infusions. The NILDF measurement correlated linearly to intraluminal flow rates in the perfused tubing model (r = 0.99, p<0.05) and remained stable during a 1 hour measurement at a constant flow rate. Rabbit choroidal blood flow measured by the PF4000 and the NI-LDF linearly correlated with each other over the entire measurement range (r = 0.99, y = x* 1,01 – 12,35 P.U., p < 0,001). In conclusion, the NI-LDF provides valid, semi quantitative measurements of capillary blood flow in comparison to an established LDF instrument and is suitable for measurements at the posterior pole of the eye. PMID:21443871
NASA Astrophysics Data System (ADS)
Becker, Maik; Bredemeyer, Niels; Tenhumberg, Nils; Turek, Thomas
2016-03-01
Potential probes are applied to vanadium redox-flow batteries for determination of effective felt resistance and current density distribution. During the measurement of polarization curves in 100 cm2 cells with different carbon felt compression rates, alternating potential steps at cell voltages between 0.6 V and 2.0 V are applied. Polarization curves are recorded at different flow rates and states of charge of the battery. Increasing compression rates lead to lower effective felt resistances and a more uniform resistance distribution. Low flow rates at high or low state of charge result in non-linear current density distribution with high gradients, while high flow rates give rise to a nearly linear behavior.
Vacuum-bag-only processing of composites
NASA Astrophysics Data System (ADS)
Thomas, Shad
Ultrasonic imaging in the C-scan mode in conjunction with the amplitude of the reflected signal was used to measure flow rates of an epoxy resin film penetrating through the thickness of single layers of woven carbon fabric. Assemblies, comprised of a single layer of fabric and film, were vacuum-bagged and ultrasonically scanned in a water tank during impregnation at 50°C, 60°C, 70°C, and 80°C. Measured flow rates were plotted versus inverse viscosity to determine the permeability in the thin film, non-saturated system. The results demonstrated that ultrasonic imaging in the C-scan mode is an effective method of measuring z-direction resin flow through a single layer of fabric. The permeability values determined in this work were consistent with permeability values reported in the literature. Capillary flow was not observed at the temperatures and times required for pressurized flow to occur. The flow rate at 65°C was predicted from the linear plot of flow rate versus inverse viscosity. The effects of fabric architecture on through-thickness flow rates during impregnation of an epoxy resin film were measured by ultrasonic imaging. Multilayered laminates comprised of woven carbon fabrics and epoxy films (prepregs) were fabricated by vacuum-bagging. Ultrasonic imaging was performed in a heated water tank (65°C) during impregnation. Impregnation rates showed a strong dependence on fabric architecture, despite similar areal densities. Impregnation rates are directly affected by inter-tow spacing and tow nesting, which depend on fabric architecture, and are indirectly affected by areal densities. A new method of predicting resin infusion rates in prepreg and resin film infusion processes was proposed. The Stokes equation was used to derive an equation to predict the impregnation rate of laminates as a function of fabric architecture. Flow rate data previously measured by ultrasound was analyzed with the new equation and the Kozeny-Carman equation. A fiber interaction parameter was determined as a function of fabric architecture. The derived equation is straight-forward to use, unlike the Kozeny-Carman equation. The results demonstrated that the newly derived equation can be used to predict the resin infusion rate of multilayer laminates.
Extraction of long-chain fatty acids in isolated rat heart during acute low-flow ischemia.
Richter, W S; Fischer, S; Ernst, N; Munz, D L
2001-07-01
Although beta-oxidation of fatty acids is suppressed rapidly during ischemia, the behavior of fatty acid extraction at different flow rates is incompletely understood. This study assessed the relationship between flow and extraction of (123)I-iodophenylpentadecanoic acid (IPPA) in the isolated heart model, especially at low flow. Isolated hearts from male Wistar rats (n = 15) were subjected to retrograde perfusion with constant flow (Krebs Henseleit solution containing 10 mmol/L glucose). A latex balloon in the left ventricle allowed isovolumetric contractions and ventricular pressure measurements. The extraction of (123)I-IPPA was assessed with the indicator dilution technique and (99m)Tc-albumin as the intravascular reference. The flow was either increased from the control flow (8 mL/min) until 300% or reduced until 10%. (123)I-IPPA extraction was measured three times before and 10 min after flow alteration. The tracer uptake was estimated from the product of net extraction and flow. The mean (123)I-IPPA extraction at the control flow (third measurement) was 51.6% +/- 2.8%. Between flow rates of approximately 25% and 300%, (123)I-IPPA extraction increased exponentially at decreasing flow rates. At flow rates < or =25% of the control flow, (123)I-IPPA extraction was exponentially higher than predicted. (123)I-IPPA uptake and flow changed largely in parallel. During low flow, the rate-pressure product showed the expected decline (perfusion-contraction matching). The extraction of (123)I-IPPA is preserved and slightly increased (relative to flow) during acute low-flow ischemia.
Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon
2013-01-01
Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T < 10 s). For performance demonstrations, the proposed method was applied to evaluate blood viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for simultaneous measurement of viscosity and flow rate of whole blood circulating in the complex fluid network, with sensorless and label-free detection. Furthermore, the proposed method will be used in evaluating variations in the viscosity of human blood during cardiopulmonary bypass procedures or hemodialysis. PMID:24404074
Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon
2013-01-01
Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T < 10 s). For performance demonstrations, the proposed method was applied to evaluate blood viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for simultaneous measurement of viscosity and flow rate of whole blood circulating in the complex fluid network, with sensorless and label-free detection. Furthermore, the proposed method will be used in evaluating variations in the viscosity of human blood during cardiopulmonary bypass procedures or hemodialysis.
40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., measurement accuracy, and cut-off. 53.53 Section 53.53 Protection of Environment ENVIRONMENTAL PROTECTION..., measurement accuracy, and cut-off. (a) Overview. This test procedure is designed to evaluate a candidate... measurement accuracy, coefficient of variability measurement accuracy, and the flow rate cut-off function. The...
An electronic flow control system for a variable-rate tree sprayer
USDA-ARS?s Scientific Manuscript database
Precise modulation of nozzle flow rates is a critical measure to achieve variable-rate spray applications. An electronic flow rate control system accommodating with microprocessors and pulse width modulation (PWM) controlled solenoid valves was designed to manipulate the output of spray nozzles inde...
Isgrò, S; Zanella, A; Giani, M; Abd El Aziz El Sayed Deab, S; Pesenti, A; Patroniti, N
2012-10-01
Aim of the paper was to assess the performance of different expiratory valves and the resistance of helmet outlet ports at increasing gas flow rates. A gas flow-meter was connected to 10 different expiratory peep valves: 1 water-seal valve, 4 precalibrated fixed PEEP valves and 5 adjustable PEEP valves. Three new valves of each brand, set at different pressure levels (5-7.5-10-12.5-15 cmH(2)O, if available), were tested at increasing gas flow rates (from 30 to 150 L/min). We measured the pressure generated just before the valves. Three different helmets sealed on a mock head were connected at the inlet port with a gas flow-meter while the outlet was left clear. We measured the pressure generated inside the helmet (due to the flow-resistance of the outlet port) at increasing gas flow rates. Adjustable valves showed a variable degree flow-dependency (increasing difference between the measured and the expected pressure at increasing flow rates), while pre-calibrated valves revealed a flow-independent behavior. Water seal valve showed low degree flow-dependency. The pressures generated by the outlet port of the tested helmets ranged from 0.02 to 2.29 cmH(2)O at the highest gas flow rate. Adjustable PEEP valves are not suggested for continuous-flow CPAP systems as their flow-dependency can lead to pressures higher than expected. Precalibrated and water seal valves exhibit the best performance. Different helmet outlet ports do not significantly affect the pressure generated during helmet CPAP. In order to avoid iatrogenic complications gas flow and pressure delivered during helmet CPAP must always be monitored.
Mixed Convection Flow in Horizontal CVD Reactors
NASA Astrophysics Data System (ADS)
Chiu, Wilson K. S.; Richards, Cristy J.; Jaluria, Yogesh
1998-11-01
Increasing demands for high quality films and production rates are challenging current Chemical Vapor Deposition (CVD) technology. Since film quality and deposition rates are strongly dependent on gas flow and heat transfer (W.K.S. Chiu and Y. Jaluria, ASME HTD-Vol. 347, pp. 293-311, 1997.), process improvement is obtained through the study of mixed convection flow and temperature distribution in a CVD reactor. Experimental results are presented for a CVD chamber with a horizontal or inclined resistance heated susceptor. Vaporized glycol solution illuminated by a light sheet is used for flow visualization. Temperature measurements are obtained by inserting thermocouple probes into the gas stream or embedding probes into the reactor walls. Flow visualization and temperature measurements show predominantly two dimensional flow and temperature distributions along the streamwise direction under forced convection conditions. Natural convection dominates under large heating rates and low flow rates. Over the range of parameters studied, several distinct flow regimes, characterized by instability, separation, and turbulence, are evident. Different flow regimes alter the flow pattern and temperature distribution, and in consequence, significantly modify deposition rates and uniformity.
Flow, affect and visual creativity.
Cseh, Genevieve M; Phillips, Louise H; Pearson, David G
2015-01-01
Flow (being in the zone) is purported to have positive consequences in terms of affect and performance; however, there is no empirical evidence about these links in visual creativity. Positive affect often--but inconsistently--facilitates creativity, and both may be linked to experiencing flow. This study aimed to determine relationships between these variables within visual creativity. Participants performed the creative mental synthesis task to simulate the creative process. Affect change (pre- vs. post-task) and flow were measured via questionnaires. The creativity of synthesis drawings was rated objectively and subjectively by judges. Findings empirically demonstrate that flow is related to affect improvement during visual creativity. Affect change was linked to productivity and self-rated creativity, but no other objective or subjective performance measures. Flow was unrelated to all external performance measures but was highly correlated with self-rated creativity; flow may therefore motivate perseverance towards eventual excellence rather than provide direct cognitive enhancement.
New diesel injection nozzle flow measuring device
NASA Astrophysics Data System (ADS)
Marčič, Milan
2000-04-01
A new measuring device has been developed for diesel injection nozzle testing, allowing measuring of the steady flow through injection nozzle and the injection rate. It can be best applied for measuring the low and high injection rates of the pintle and single hole nozzle. In steady flow measuring the fuel pressure at the inlet of the injection nozzle is 400 bar. The sensor of the measuring device measures the fuel charge, resulting from fuel rubbing in the fuel injection system, as well as from the temperature gradient in the sensor electrode. The electric charge is led to the charge amplifier, where it is converted into electric current and amplified. The amplifier can be used also to measure the mean injection rate value.
Effort of breathing in children receiving high-flow nasal cannula.
Rubin, Sarah; Ghuman, Anoopindar; Deakers, Timothy; Khemani, Robinder; Ross, Patrick; Newth, Christopher J
2014-01-01
High-flow humidified nasal cannula is often used to provide noninvasive respiratory support in children. The effect of high-flow humidified nasal cannula on effort of breathing in children has not been objectively studied, and the mechanism by which respiratory support is provided remains unclear. This study uses an objective measure of effort of breathing (Pressure. Rate Product) to evaluate high-flow humidified nasal cannula in critically ill children. Prospective cohort study. Quaternary care free-standing academic children's hospital. ICU patients younger than 18 years receiving high-flow humidified nasal cannula or whom the medical team planned to extubate to high-flow humidified nasal cannula within 72 hours of enrollment. An esophageal pressure monitoring catheter was placed to measure pleural pressures via a Bicore CP-100 pulmonary mechanics monitor. Change in pleural pressure (ΔPes) and respiratory rate were measured on high-flow humidified nasal cannula at 2, 5, and 8 L/min. ΔPes and respiratory rate were multiplied to generate the Pressure.Rate Product, a well-established objective measure of effort of breathing. Baseline Pes, defined as pleural pressure at end exhalation during tidal breathing, reflected the positive pressure generated on each level of respiratory support. Twenty-five patients had measurements on high-flow humidified nasal cannula. Median age was 6.5 months (interquartile range, 1.3-15.5 mo). Median Pressure,Rate Product was lower on high-flow humidified nasal cannula 8 L/min (median, 329 cm H2O·min; interquartile range, 195-402) compared with high-flow humidified nasal cannula 5 L/min (median, 341; interquartile range, 232-475; p = 0.007) or high-flow humidified nasal cannula 2 L/min (median, 421; interquartile range, 233-621; p < 0.0001) and was lower on high-flow humidified nasal cannula 5 L/min compared with high-flow humidified nasal cannula 2 L/min (p = 0.01). Baseline Pes was higher on high-flow humidified nasal cannula 8 L/min than on high-flow humidified nasal cannula 2 L/min (p = 0.03). Increasing flow rates of high-flow humidified nasal cannula decreased effort of breathing in children, with the most significant impact seen from high-flow humidified nasal cannula 2 to 8 L/min. There are likely multiple mechanisms for this clinical effect, including generation of positive pressure and washout of airway dead space.
NASA Astrophysics Data System (ADS)
Armstrong, R. W.; Balasubramanian, N.
2017-08-01
It is shown that: (i) nano-grain nickel flow stress and hardness data at ambient temperature follow a Hall-Petch (H-P) relation over a wide range of grain size; and (ii) accompanying flow stress and strain rate sensitivity measurements follow an analogous H-P relationship for the reciprocal "activation volume", (1/v*) = (1/A*b) where A* is activation area. Higher temperature flow stress measurements show a greater than expected reduction both in the H-P kɛ and in v*. The results are connected with smaller nano-grain size (< ˜20 nm) measurements exhibiting grain size weakening behavior that extends to larger grain size when tested at very low imposed strain rates.
40 CFR 92.108 - Intake and cooling air measurements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake and cooling air measurements....108 Intake and cooling air measurements. (a) Intake air flow measurement. Measurement of the flow rate..., the measurement technique shall conform to the following: (1) The air flow measurement method used...
NASA Astrophysics Data System (ADS)
Chen, Shuai; Wang, Lumin; Huang, Hongliang; Zhang, Xun
2017-10-01
From August 25 to 29, 2014, the project team carried out the experiment of Antarctic krill trawl in the Beihai Bay of the South China Sea. In order to understand the flow field of the network model in the course of the experiment, it is necessary to record the speed of the ship and to grasp the flow field of the ocean. Therefore, the ocean velocity is measured during the experiment. The flow rate in this experiment was measured using an acoustic Doppler flow meter (Vectoring Plus, Nortek, Norway). In order to compensate for the flow rate error caused by ship drift, the drift condition of the ship was also measured by the positioning device (Snapdragon MSM8274AB, Qualcomm, USA) used in the flow rate measurement. The results show that the actual velocity of the target sea area is in the range of 0.06-0.49 m / s and the direction is 216.17-351.70. And compared with the previous research, the influencing factors were analysed. This study proves that it is feasible to use point Doppler flow meter for velocity study in trawl model experiment.
Determination of Heritage SSME Pogo Suppressor Resistance and Inertance from Waterflow Pulse Testing
NASA Technical Reports Server (NTRS)
McDougal, Chris; Eberhart, Chad; Lee, Erik
2016-01-01
Waterflow tests of a heritage Space Shuttle Main Engine pogo suppressor were performed to experimentally quantify the resistance and inertance provided by the suppressor. Measurements of dynamic pressure and flow rate in response to pulsing flow were made throughout the test loop. A unique system identification methodology combined all sensor measurements with a one-dimensional perturbational flow model of the complete water flow loop to spatially translate physical measurements to the device under test. Multiple techniques were then employed to extract the effective resistance and inertance for the pogo suppressor. Parameters such as steady flow rate, perturbational flow rate magnitude, and pulse frequency were investigated to assess their influence on the behavior of the pogo suppressor dynamic response. These results support validation of the RS-25 pogo suppressor performance for use on the Space Launch System Core Stage.
Low Velocity Difference Thermal Shear Layer Mixing Rate Measurements
NASA Technical Reports Server (NTRS)
Bush, Robert H.; Culver, Harry C. M.; Weissbein, Dave; Georgiadis, Nicholas J.
2013-01-01
Current CFD modeling techniques are known to do a poor job of predicting the mixing rate and persistence of slot film flow in co-annular flowing ducts with relatively small velocity differences but large thermal gradients. A co-annular test was devised to empirically determine the mixing rate of slot film flow in a constant area circular duct (D approx. 1ft, L approx. 10ft). The axial rate of wall heat-up is a sensitive measure of the mixing rate of the two flows. The inflow conditions were varied to simulate a variety of conditions characteristic of moderate by-pass ratio engines. A series of air temperature measurements near the duct wall provided a straightforward means to measure the axial temperature distribution and thus infer the mixing rate. This data provides a characterization of the slot film mixing rates encountered in typical jet engine environments. The experimental geometry and entrance conditions, along with the sensitivity of the results as the entrance conditions vary, make this a good test for turbulence models in a regime important to modern air-breathing propulsion research and development.
A novel, microscope based, non-invasive laser Doppler flowmeter for choroidal blood flow assessment.
Strohmaier, C; Werkmeister, R M; Bogner, B; Runge, C; Schroedl, F; Brandtner, H; Radner, W; Schmetterer, L; Kiel, J W; Grabner, G; Reitsamer, H A
2011-06-01
Impaired ocular blood flow is involved in the pathogenesis of numerous ocular diseases like glaucoma or AMD. The purpose of the present study was to introduce and validate a novel, microscope based, non-invasive Laser Doppler Flowmeter (NI-LDF) for measurement of blood flow in the choroid. The custom made NI-LDF was compared with a commercial fiber optic based laser Doppler flowmeter (Perimed PF4000). Linearity and stability of the NI-LDF were assessed in a silastic tubing model (i.d. 0.3 mm) at different flow rates (range 0.4-3 ml/h). In a rabbit model continuous choroidal blood flow measurements were performed with both instruments simultaneously. During blood flow measurements ocular perfusion pressure was changed by manipulations of intraocular pressure via intravitreal saline infusions. The NI-LDF measurement correlated linearly to intraluminal flow rates in the perfused tubing model (r = 0.99, p < 0.05) and remained stable during a 1 h measurement at a constant flow rate. Rabbit choroidal blood flow measured by the PF4000 and the NI-LDF linearly correlated with each other over the entire measurement range (r = 0.99, y = x∗1.01-12.35 P.U., p < 0.001). In conclusion, the NI-LDF provides valid, semi quantitative measurements of capillary blood flow in comparison to an established LDF instrument and is suitable for measurements at the posterior pole of the eye. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bobovnik, G.; Kutin, J.; Bajsić, I.
2016-08-01
This paper deals with an uncertainty analysis of gas flow measurements using a compact, high-speed, clearance-sealed realization of a piston prover. A detailed methodology for the uncertainty analysis, covering the components due to the gas density, dimensional and time measurements, the leakage flow, the density correction factor and the repeatability, is presented. The paper also deals with the selection of the isothermal and adiabatic measurement models, the treatment of the leakage flow and discusses the need for averaging multiple consecutive readings of the piston prover. The analysis is prepared for the flow range (50 000:1) covered by the three interchangeable flow cells. The results show that using the adiabatic measurement model and averaging the multiple readings, the estimated expanded measurement uncertainty of the gas mass flow rate is less than 0.15% in the flow range above 0.012 g min-1, whereas it increases for lower mass flow rates due to the leakage flow related effects. At the upper end of the measuring range, using the adiabatic instead of the isothermal measurement model, as well as averaging multiple readings, proves important.
The wire-mesh sensor as a two-phase flow meter
NASA Astrophysics Data System (ADS)
Shaban, H.; Tavoularis, S.
2015-01-01
A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.
Composition pulse time-of-flight mass flow sensor
Harnett, Cindy K [Livermore, CA; Crocker, Robert W [Fremont, CA; Mosier, Bruce P [San Francisco, CA; Caton, Pamela F [Berkeley, CA; Stamps, James F [Livermore, CA
2007-06-05
A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 2,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined. A pair of spaced apart electrodes can be used to produce the electrochemical pulse. In those instances where it is desired to measure a wide range of fluid flow rates a three electrode configuration in which the electrodes are spaced at unequal distances has been found to be desirable.
Comparative in vitro flow study of 3 different Ex-PRESS miniature glaucoma device models.
Estermann, Stephan; Yuttitham, Kanokwan; Chen, Julie A; Lee, On-Tat; Stamper, Robert L
2013-03-01
To determine the flow characteristics of the 3 different models of the Ex-PRESS miniature glaucoma device in a controlled laboratory study. The 3 different Ex-PRESS models (P-50, R-50, and P-200; Optonol Ltd; now Alcon Lab) were tested using a gravity-driven flow test. Three samples of each of the 3 Ex-PRESS models were subjected to a constant gravitational force of fluid at 5 different pressure levels (5 to 25 mm Hg). Four measurements per sample were taken at each pressure level. The main outcome measure was flow rate (Q) (µL/min). Resistance (R) was calculated by dividing pressure (P) by the measured flow (Q). The flow rate was primarily pressure dependent. The P-200 model (internal diameter 200 µm) showed a statistically significant higher flow rate and lower resistance compared with both the P-50 and R-50 models (internal diameter 50 µm) (P<0.0001). The P-50 and R-50 models demonstrated similar flow rates (P=0.08) despite their difference in tube length (2.64 vs. 2.94 mm). The 3 models of the Ex-PRESS mini shunt behaved in vitro as simple flow resistors by creating a relatively constant resistance to flow. Tube diameter was the only parameter with significant impact on flow and resistance. All models demonstrated flow rates per unit of pressure much higher than the outflow facility of a healthy human eye.
Calibration of sonic valves for the laminar flow control, leading-edge flight test
NASA Technical Reports Server (NTRS)
Petley, D. H.; Alexander, W., Jr.; Wright, A. S., Jr.; Vallas, M.
1985-01-01
Sonic needle valves were calibrated to measure and control airflow in the suction system for the leading-edge flight test. The procedure and results for the calibration flow test of 4:41 flight valves are given. Mass-flow rates, which ranged from 0.001 to 0.012 lbm/sec, and maximum back pressure were measured for total temperatures from -30 F to 75 F and total pressures from 120 to 540 psf. Correlating equations are obtained for mass-flow rate as a function of total pressure, total temperature, and valve opening length. The most important aspect of flow measurement and control is found to be the measurement of valve opening length.
Well logging interpretation of production profile in horizontal oil-water two phase flow pipes
NASA Astrophysics Data System (ADS)
Zhai, Lu-Sheng; Jin, Ning-De; Gao, Zhong-Ke; Zheng, Xi-Ke
2012-03-01
Due to the complicated distribution of local velocity and local phase hold up along the radial direction of pipe in horizontal oil-water two phase flow, it is difficult to measure the total flow rate and phase volume fraction. In this study, we carried out dynamic experiment in horizontal oil-water two phases flow simulation well by using combination measurement system including turbine flowmeter with petal type concentrating diverter, conductance sensor and flowpassing capacitance sensor. According to the response resolution ability of the conductance and capacitance sensor in different range of total flow rate and water-cut, we use drift flux model and statistical model to predict the partial phase flow rate, respectively. The results indicate that the variable coefficient drift flux model can self-adaptively tone the model parameter according to the oil-water two phase flow characteristic, and the prediction result of partial phase flow rate of oil-water two phase flow is of high accuracy.
Accuracy improvement of the ice flow rate measurements on Antarctic ice sheet by DInSAR method
NASA Astrophysics Data System (ADS)
Shiramizu, Kaoru; Doi, Koichiro; Aoyama, Yuichi
2015-04-01
DInSAR (Differential Interferometric Synthetic Aperture Radar) is an effective tool to measure the flow rate of slow flowing ice streams on Antarctic ice sheet with high resolution. In the flow rate measurement by DInSAR method, we use Digital Elevation Model (DEM) at two times in the estimating process. At first, we use it to remove topographic fringes from InSAR images. And then, it is used to project obtained displacements along Line-Of-Sight (LOS) direction to the actual flow direction. ASTER-GDEM widely-used for InSAR prosessing of the data of polar region has a lot of errors especially in the inland ice sheet area. Thus the errors yield irregular flow rates and directions. Therefore, quality of DEM has a substantial influence on the ice flow rate measurement. In this study, we created a new DEM (resolution 10m; hereinafter referred to as PRISM-DEM) based on ALOS/PRISM images, and compared PRISM-DEM and ASTER-GDEM. The study area is around Skallen, 90km south from Syowa Station, in the southern part of Sôya Coast, East Antarctica. For making DInSAR images, we used ALOS/PALSAR data of 13 pairs (Path633, Row 571-572), observed during the period from November 23, 2007 through January 16, 2011. PRISM-DEM covering the PALSAR scene was created from nadir and backward view images of ALOS/PRISM (Observation date: 2009/1/18) by applying stereo processing with a digital mapping equipment, and then the automatically created a primary DEM was corrected manually to make a final DEM. The number of irregular values of actual ice flow rate was reduced by applying PRISM-DEM compared with that by applying ASTER-GDEM. Additionally, an averaged displacement of approximately 0.5cm was obtained by applying PRISM-DEM over outcrop area, where no crustal displacement considered to occur during the recurrence period of ALOS/PALSAR (46days), while an averaged displacement of approximately 1.65 cm was observed by applying ASTER-GDEM. Since displacements over outcrop area are considered to be apparent ones, the average could be a measure of flow rate estimation accuracy by DInSAR. Therefore, it is concluded that the accuracy of the ice flow rate measurement can be improved by using PRISM-DEM. In this presentation, we will show the results of the estimated flow rate of ice streams in the region of interest, and discuss the additional accuracy improvement of this method.
Flow tests of a single fuel element coolant channel for a compact fast reactor for space power
NASA Technical Reports Server (NTRS)
Springborn, R. H.
1971-01-01
Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.
Columbus Payloads Flow Rate Anomalies
NASA Technical Reports Server (NTRS)
Quaranta, Albino; Bufano, Gaetana; DePalo, Savino; Holt, James M.; Szigetvari, Zoltan; Palumberi, Sergio; Hinderer, S.
2011-01-01
The Columbus Active Thermal Control System (ATCS) is the main thermal bus for the pressurized racks working inside the European laboratory. One of the ATCS goals is to provide proper water flow rate to each payload (P/L) by controlling actively the pressure drop across the common plenum distribution piping. Overall flow measurement performed by the Water Pump Assembly (WPA) is the only flow rate monitor available at system level and is not part of the feedback control system. At rack activation the flow rate provided by the system is derived on ground by computing the WPA flow increase. With this approach, several anomalies were raised during these 3 years on-orbit, with the indication of low flow rate conditions on the European racks FSL, BioLab, EDR and EPM. This paper reviews the system and P/Ls calibration approach, the anomalies occurred, the engineering evaluation on the measurement approach and the accuracy improvements proposed, the on-orbit test under evaluation with NASA and finally discusses possible short and long term solutions in case of anomaly confirmation.
40 CFR 98.154 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the concentrations of the process samples. (b) The mass flow of the product stream containing the HFC... concentration and volumetric flow rate determined by measurement of volumetric flow rate using EPA Method 2, 2A... volumetric flow rate at the inlet or by a metering device for HFC-23 sent to the device. Determine a new...
Design and performance of a dynaniic gas flux chamber.
Reichman, Rivka; Rolston, Dennis E
2002-01-01
Chambers are commonly used to measure the emission of many trace gases and chemicals from soil. An aerodynamic (flow through) chamber was designed and fabricated to accurately measure the surface flux of trace gases. Flow through the chamber was controlled with a small vacuum at the outlet. Due to the design using fans, a partition plate, and aerodynamic ends, air is forced to sweep parallel and uniform over the entire soil surface. A fraction of the air flowing inside the chamber is sampled in the outlet. The air velocity inside the chamber is controlled by fan speed and outlet suction flow rate. The chamber design resulted in a uniform distribution of air velocity at the soil surface. Steady state flux was attained within 5 min when the outlet air suction rate was 20 L/min or higher. For expected flux rates, the presence of the chamber did not affect the measured fluxes at outlet suction rates of around 20 L/min, except that the chamber caused some cooling of the surface in field experiments. Sensitive measurements of the pressure deficit across the soil layer in conjunction with measured fluxes in the source box and chamber outlet show that the outflow rate must be controlled carefully to minimize errors in the flux measurements. Both over- and underestimation of the fluxes are possible if the outlet flow rate is not controlled carefully. For this design, the chamber accurately measured steady flux at outlet air suction rates of approximately 20 L/min when the pressure deficit within the chamber with respect to the ambient atmosphere ranged between 0.46 and 0.79 Pa.
Measurement of LNAPL flow using single-well tracer dilution techniques.
Sale, Tom; Taylor, Geoffrey Ryan; Iltis, Gabriel; Lyverse, Mark
2007-01-01
This paper describes the use of single-well tracer dilution techniques to resolve the rate of light nonaqueous phase liquid (LNAPL) flow through wells and the adjacent geologic formation. Laboratory studies are presented in which a fluorescing tracer is added to LNAPL in wells. An in-well mixer keeps the tracer well mixed in the LNAPL. Tracer concentrations in LNAPL are measured through time using a fiber optic cable and a spectrometer. Results indicate that the rate of tracer depletion is proportional to the rate of LNAPL flow through the well and the adjacent formation. Tracer dilution methods are demonstrated for vertically averaged LNAPL Darcy velocities of 0.00048 to 0.11 m/d and LNAPL thicknesses of 9 to 24 cm. Over the range of conditions studied, results agree closely with steady-state LNAPL flow rates imposed by pumping. A key parameter for estimating LNAPL flow rates in the formation is the flow convergence factor alpha. Measured convergence factors for 0.030-inch wire wrap, 0.030-inch-slotted polyvinyl chloride (PVC), and 0.010-inch-slotted PVC are 1.7, 0.91, and 0.79, respectively. In addition, methods for using tracer dilution data to determine formation transmissivity to LNAPL are presented. Results suggest that single-well tracer dilution techniques are a viable approach for measuring in situ LNAPL flow and formation transmissivity to LNAPL.
Seebacher, Frank; Franklin, Craig E
2007-11-01
Changes in blood flow are a principal mechanism of thermoregulation in vertebrates. Changes in heart rate will alter blood flow, although multiple demands for limited cardiac output may compromise effective thermoregulation. We tested the hypothesis that regional differences in blood flow during heating and cooling can occur independently from changes in heart rate. We measured heart rate and blood pressure concurrently with blood flow in the crocodile, Crocodylus porosus. We measured changes in blood flow by laser Doppler flowmetry, and by injecting coloured microspheres. All measurements were made under different heat loads, with and without blocking cholinergic and beta-adrenergic receptors (autonomic blockade). Heart rates were significantly faster during heating than cooling in the control animals, but not when autonomic receptors were blocked. There were no significant differences in blood flow distribution between the control and autonomic blockade treatments. In both treatments, blood flow was directed to the dorsal skin and muscle and away from the tail and duodenum during heating. When the heat source was switched off, there was a redistribution of blood from the dorsal surface to the duodenum. Blood flow to the leg skin and muscle, and to the liver did not change significantly with thermal state. Blood pressure was significantly higher during the autonomic blockade than during the control. Thermal time constants of heating and cooling were unaffected by the blockade of autonomic receptors. We concluded that animals partially compensated for a lack of differential heart rates during heating and cooling by redistributing blood within the body, and by increasing blood pressure to increase flow. Hence, measures of heart rate alone are insufficient to assess physiological thermoregulation in reptiles.
Magnetic transit-time flowmeter
Forster, George A.
1976-07-06
The flow rate of a conducting fluid in a stream is determined by disposing two permanent-magnet flowmeters in the stream, one downstream of the other. Flow of the conducting fluid causes the generation of both d-c and a-c electrical signals, the a-c comprising flow noise. Measurement of the time delay between similarities in the a-c signals by cross-correlation methods provides a measure of the rate of flow of the fluid.
Preliminary characterization of a water vaporizer for resistojet applications
NASA Technical Reports Server (NTRS)
Morren, W. Earl
1992-01-01
A series of tests was conducted to explore the characteristics of a water vaporizer intended for application to resistojet propulsion systems. The objectives of these tests were to (1) observe the effect of orientation with respect to gravity on vaporizer stability, (2) characterize vaporizer efficiency and outlet conditions over a range of flow rates, and (3) measure the thrust performance of a vaporizer/resistojet thruster assembly. A laboratory model of a forced-flow, once-through water vaporizer employing a porous heat exchange medium was built and characterized over a range of flow rates and power levels of interest for application to water resistojets. In a test during which the vaporizer was rotated about a horizontal axis normal to its own axis, the outlet temperature and mass flow rate through the vaporizer remained steady. Throttlability to 30 percent of the maximum flow rate tested was demonstrated. The measured thermal efficiency of the vaporizer was near 0.9 for all tests. The water vaporizer was integrated with an engineering model multipropellant resistojet. Performance of the vaporizer/thruster assembly was measured over a narrow range of operating conditions. The maximum specific impulse measured was 234 s at a mass flow rate and specific power level (vaporizer and thruster combined) of 154 x 10(exp-6)kg/s and 6.8 MJ/kg, respectively.
Transient response of sap flow to wind speed.
Chu, Chia R; Hsieh, Cheng-I; Wu, Shen-Yuang; Phillips, Nathan G
2009-01-01
Transient responses of sap flow to step changes in wind speed were experimentally investigated in a wind tunnel. A Granier-type sap flow sensor was calibrated and tested in a cylindrical tube for analysis of its transient time response. Then the sensor was used to measure the transient response of a well-watered Pachira macrocarpa plant to wind speed variations. The transient response of sap flow was described using the resistance-capacitance model. The steady sap flow rate increased as the wind speed increased at low wind speeds. Once the wind speed exceeded 8.0 m s(-1), the steady sap flow rate did not increase further. The transpiration rate, measured gravimetrically, showed a similar trend. The response of nocturnal sap flow to wind speed variation was also measured and compared with the results in the daytime. Under the same wind speed, the steady sap flow rate was smaller than that in the daytime, indicating differences between diurnal and nocturnal hydraulic function, and incomplete stomatal closure at night. In addition, it was found that the temporal response of the Granier sensor is fast enough to resolve the transient behaviour of water flux in plant tissue.
40 CFR 1065.546 - Validation of minimum dilution ratio for PM batch sampling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the raw exhaust flow rate based on the measured intake air molar flow rate and the chemical balance..., fuel rate measurements, and fuel properties, consistent with good engineering judgment. (b) Determine...) and dilute exhaust corrected for any removed water. (c) Use good engineering judgment to develop your...
Rootless shield and perched lava pond collapses at Kīlauea Volcano, Hawai'i
Patrick, Matthew R.; Orr, Tim R.
2012-01-01
Effusion rate is a primary measurement used to judge the expected advance rate, length, and hazard potential of lava flows. At basaltic volcanoes, the rapid draining of lava stored in rootless shields and perched ponds can produce lava flows with much higher local effusion rates and advance velocities than would be expected based on the effusion rate at the vent. For several months in 2007–2008, lava stored in a series of perched ponds and rootless shields on Kīlauea Volcano, Hawai'i, was released episodically to produce fast-moving 'a'ā lava flows. Several of these lava flows approached Royal Gardens subdivision and threatened the safety of remaining residents. Using time-lapse image measurements, we show that the initial time-averaged discharge rate for one collapse-triggered lava flow was approximately eight times greater than the effusion rate at the vent. Though short-lived, the collapse-triggered 'a'ā lava flows had average advance rates approximately 45 times greater than that of the pāhoehoe flow field from which they were sourced. The high advance rates of the collapse-triggered lava flows demonstrates that recognition of lava accumulating in ponds and shields, which may be stored in a cryptic manner, is vital for accurately assessing short-term hazards at basaltic volcanoes.
Modelling rating curves using remotely sensed LiDAR data
Nathanson, Marcus; Kean, Jason W.; Grabs, Thomas J.; Seibert, Jan; Laudon, Hjalmar; Lyon, Steve W.
2012-01-01
Accurate stream discharge measurements are important for many hydrological studies. In remote locations, however, it is often difficult to obtain stream flow information because of the difficulty in making the discharge measurements necessary to define stage-discharge relationships (rating curves). This study investigates the feasibility of defining rating curves by using a fluid mechanics-based model constrained with topographic data from an airborne LiDAR scanning. The study was carried out for an 8m-wide channel in the boreal landscape of northern Sweden. LiDAR data were used to define channel geometry above a low flow water surface along the 90-m surveyed reach. The channel topography below the water surface was estimated using the simple assumption of a flat streambed. The roughness for the modelled reach was back calculated from a single measurment of discharge. The topographic and roughness information was then used to model a rating curve. To isolate the potential influence of the flat bed assumption, a 'hybrid model' rating curve was developed on the basis of data combined from the LiDAR scan and a detailed ground survey. Whereas this hybrid model rating curve was in agreement with the direct measurements of discharge, the LiDAR model rating curve was equally in agreement with the medium and high flow measurements based on confidence intervals calculated from the direct measurements. The discrepancy between the LiDAR model rating curve and the low flow measurements was likely due to reduced roughness associated with unresolved submerged bed topography. Scanning during periods of low flow can help minimize this deficiency. These results suggest that combined ground surveys and LiDAR scans or multifrequency LiDAR scans that see 'below' the water surface (bathymetric LiDAR) could be useful in generating data needed to run such a fluid mechanics-based model. This opens a realm of possibility to remotely sense and monitor stream flows in channels in remote locations.
A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.
Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric
2012-03-07
We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.
Intravenous fluid flow meter concept for zero gravity environment
NASA Technical Reports Server (NTRS)
Miller, C. G.
1972-01-01
Measuring chamber, included in infusion-set tubing, and peristaltic flow meter concept can be incorporated into flow meter that measures fluid flow rates between 100 and 600 cu cm per hour and at the same time maintains sterilization.
Apparatus for monitoring two-phase flow
Sheppard, John D.; Tong, Long S.
1977-03-01
A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.
Method and apparatus for monitoring two-phase flow. [PWR
Sheppard, J.D.; Tong, L.S.
1975-12-19
A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.
Surface-acoustic-wave (SAW) flow sensor
NASA Astrophysics Data System (ADS)
Joshi, Shrinivas G.
1991-03-01
The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.
Surface-acoustic-wave (SAW) flow sensor.
Joshi, S G
1991-01-01
The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 degrees rotated Y-cut lithium niobate substrate and heated to 55 degrees C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cm(3)/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves, propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.
Apparatus for passive removal of subsurface contaminants and mass flow measurement
Jackson, Dennis G [Augusta, GA; Rossabi, Joseph [Aiken, SC; Riha, Brian D [Augusta, GA
2003-07-15
A system for improving the Baroball valve and a method for retrofitting an existing Baroball valve. This invention improves upon the Baroball valve by reshaping the interior chamber of the valve to form a flow meter measuring chamber. The Baroball valve sealing mechanism acts as a rotameter bob for determining mass flow rate through the Baroball valve. A method for retrofitting a Baroball valve includes providing static pressure ports and connecting a measuring device, to these ports, for measuring the pressure differential between the Baroball chamber and the well. A standard curve of nominal device measurements allows the mass flow rate to be determined through the retrofitted Baroball valve.
Apparatus for passive removal of subsurface contaminants and volume flow measurement
Jackson, Dennis G.; Rossabi, Joseph; Riha, Brian D.
2002-01-01
A system for improving the Baroball valve and a method for retrofitting an existing Baroball valve. This invention improves upon the Baroball valve by reshaping the interior chamber of the valve to form a flow meter measuring chamber. The Baroball valve sealing mechanism acts as a rotameter bob for determining volume flow rate through the Baroball valve. A method for retrofitting a Baroball valve includes providing static pressure ports and connecting a measuring device, to these ports, for measuring the pressure differential between the Baroball chamber and the well. A standard curve of nominal device measurements allows the volume flow rate to be determined through the retrofitted Baroball valve.
NASA Technical Reports Server (NTRS)
Reddy, N. M.
1980-01-01
Convective heat transfer measurements, made on the conical portion of spherically blunted cones (30 deg and 40 deg half angle) in an expansion tube are discussed. The test gases used were helium and air; flow velocities were about 6.8 km/sec for helium and about 5.1 km/sec for air. The measured heating rates are compared with calculated results using a viscous shock layer computer code. For air, various techniques to determine flow velocity yielded identical results, but for helium, the flow velocity varied by as much as eight percent depending on which technique was used. The measured heating rates are in satisfactory agreement with calculation for helium, assuming the lower flow velocity, the measurements are significantly greater than theory and the discrepancy increased with increasing distance along the cone.
Experiments in a flighted conveyor comparing shear rates in compressed versus free surface flows
NASA Astrophysics Data System (ADS)
Pohlman, Nicholas; Higgins, Hannah; Krupiarz, Kamila; O'Connor, Ryan
2017-11-01
Uniformity of granular flow rate is critical in industry. Experiments in a flighted conveyor system aim to fill a gap in knowledge of achieving steady mass flow rate by correlating velocity profile data with mass flow rate measurements. High speed images were collected for uniformly-shaped particles in a bottom-driven flow conveyor belt system from which the velocity profiles can be generated. The correlation of mass flow rates from the velocity profiles to the time-dependent mass measurements will determine energy dissipation rates as a function of operating conditions. The velocity profiles as a function of the size of the particles, speed of the belt, and outlet size, will be compared to shear rate relationships found in past experiments that focused on gravity-driven systems. The dimension of the linear shear and type of decaying transition to the stationary bed may appear different due to the compression versus dilation space in open flows. The application of this research can serve to validate simulations in discrete element modeling and physically demonstrate a process that can be further developed and customized for industry applications, such as feeding a biomass conversion reactor. Sponsored by NIU's Office of Student Engagement and Experiential Learning.
NASA Astrophysics Data System (ADS)
Lei, Wenwen; McKenzie, David R.
2015-12-01
Enhanced liquid water flows through carbon nanotubes reinvigorated the study of moisture permeation through membranes and micro- and nano-channels. The study of water vapour through micro-and nano-channels has been neglected even though water vapour is as important as liquid water for industry, especially for encapsulation of electronic devices. Here we measure moisture flow rates in silica microchannels and interdiffusive water vapour flows in anodic aluminium oxide (AAO) membrane channels for the first time. We construct theory for the flow rates of the dominant modes of water transport through four previously defined standard configurations and benchmark it against our new measurements. The findings show that measurements of leak behaviour made using other molecules, such as helium, are not reliable. Single phase water vapour flow is overestimated by a helium measurement, while Washburn or capillary flow is underestimated or for all channels when boundary slip applies, to an extent that depends on the slip length for the liquid phase flows.
Position Corrections for Airspeed and Flow Angle Measurements on Fixed-Wing Aircraft
NASA Technical Reports Server (NTRS)
Grauer, Jared A.
2017-01-01
This report addresses position corrections made to airspeed and aerodynamic flow angle measurements on fixed-wing aircraft. These corrections remove the effects of angular rates, which contribute to the measurements when the sensors are installed away from the aircraft center of mass. Simplified corrections, which are routinely used in practice and assume small flow angles and angular rates, are reviewed. The exact, nonlinear corrections are then derived. The simplified corrections are sufficient in most situations; however, accuracy diminishes for smaller aircraft that incur higher angular rates, and for flight at high air flow angles. This is demonstrated using both flight test data and a nonlinear flight dynamics simulation of a subscale transport aircraft in a variety of low-speed, subsonic flight conditions.
Probe measures gas and liquid mass flux in high mass flow ratio two-phase flows
NASA Technical Reports Server (NTRS)
Burick, R. J.
1972-01-01
Deceleration probe constructed of two concentric tubes with separator inlet operates successfully in flow fields where ratio of droplet flow rate to gas flow rate ranges from 1.0 to 20, and eliminates problems of local flow field disturbances and flooding. Probe is effective tool for characterization of liquid droplet/gas spray fields.
40 CFR 1065.546 - Validation of minimum dilution ratio for PM batch sampling.
Code of Federal Regulations, 2012 CFR
2012-07-01
... chemical balance terms as given in § 1065.655(e). You may determine the raw exhaust flow rate based on the measured intake air and dilute exhaust molar flow rates and the dilute exhaust chemical balance terms as... air, fuel rate measurements, and fuel properties, consistent with good engineering judgment. (b...
40 CFR 1065.546 - Validation of minimum dilution ratio for PM batch sampling.
Code of Federal Regulations, 2013 CFR
2013-07-01
... chemical balance terms as given in § 1065.655(e). You may determine the raw exhaust flow rate based on the measured intake air and dilute exhaust molar flow rates and the dilute exhaust chemical balance terms as... air, fuel rate measurements, and fuel properties, consistent with good engineering judgment. (b...
40 CFR 1065.546 - Verification of minimum dilution ratio for PM batch sampling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... chemical balance terms as given in § 1065.655(e). You may determine the raw exhaust flow rate based on the measured intake air and dilute exhaust molar flow rates and the dilute exhaust chemical balance terms as... air, fuel rate measurements, and fuel properties, consistent with good engineering judgment. (b...
Design and Implementation of Automatic Air Flow Rate Control System
NASA Astrophysics Data System (ADS)
Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal
2016-08-01
Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.
Investigation of the effect of wall friction on the flow rate in 2D and 3D Granular Flow
NASA Astrophysics Data System (ADS)
Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Birwa, Sumit; Shah, Neil; Tewari, Shubha
We have measured the mass flow rate of spherical steel spheres under gravity in vertical, straight-walled 2 and 3-dimensional hoppers, where the flow velocity is controlled by the opening size. Our measurements focus on the role of friction and its placement along the walls of the hopper. In the 2D case, an increase in the coefficient of static friction from μ = 0.2 to 0.6 is seen to decrease the flow rate significantly. We have changed the placement of frictional boundaries/regions from the front and back walls of the 2D hopper to the side walls and floor to investigate the relative importance of the different regions in determining the flow rate. Fits to the Beverloo equation show significant departure from the expected exponent of 1.5 in the case of 2D flow. In contrast, 3D flow rates do not show much dependence on wall friction and its placement. We compare the experimental data to numerical simulations of gravity driven hopper granular flow with varying frictional walls constructed using LAMMPS*. *http://lammps.sandia.gov Supported by NSF MRSEC DMR 0820506.
Science of Water Leaks: Validated Theory for Moisture Flow in Microchannels and Nanochannels.
Lei, Wenwen; Fong, Nicole; Yin, Yongbai; Svehla, Martin; McKenzie, David R
2015-10-27
Water is ubiquitous; the science of its transport in micro- and nanochannels has applications in electronics, medicine, filtration, packaging, and earth and planetary science. Validated theory for water vapor and two-phase water flows is a "missing link"; completing it enables us to define and quantify flow in a set of four standard leak configurations with dimensions from the nanoscale to the microscale. Here we report the first measurements of water vapor flow rates through four silica microchannels as a function of humidity, including under conditions when air is present as a background gas. An important finding is that the tangential momentum accommodation coefficient (TMAC) is strongly modified by surface layers of adsorbed water molecules, in agreement with previous work on the TMAC for nitrogen molecules impacting a silica surface in the presence of moisture. We measure enhanced flow rates for two-phase flows in silica microchannels driven by capillary filling. For the measurement of flows in nanochannels we use heavy water mass spectrometry. We construct the theory for the flow rates of the dominant modes of water transport through each of the four standard configurations and benchmark it against our new measurements in silica and against previously reported measurements for nanochannels in carbon nanotubes, carbon nanopipes, and porous alumina. The findings show that all behavior can be described by the four standard leak configurations and that measurements of leak behavior made using other molecules, such as helium, are not reliable. Single-phase water vapor flow is overestimated by a helium measurement, while two-phase flows are greatly underestimated for channels larger than 100 nm or for all channels when boundary slip applies, to an extent that depends on the slip length for the liquid-phase flows.
NASA Astrophysics Data System (ADS)
Zhu, Jiajian; Sun, Zhiwei; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Salewski, Mirko; Leipold, Frank; Kusano, Yukihiro
2014-07-01
We demonstrate a plasma discharge which is generated between two diverging electrodes and extended into a gliding arc in non-equilibrium condition by an air flow at atmospheric pressure. Effects of the air flow rates on the dynamics, ground-state OH distributions and spectral characterization of UV emission of the gliding arc were investigated by optical methods. High-speed photography was utilized to reveal flow-rate dependent dynamics such as ignitions, propagation, short-cutting events, extinctions and conversions of the discharge from glowtype to spark-type. Short-cutting events and ignitions occur more frequently at higher flow rates. The anchor points of the gliding arc are mostly steady at the top of the electrodes at lower flow rates whereas at higher flow rates they glide up along the electrodes most of the time. The afterglow of fully developed gliding arcs is observed to decay over hundreds of microseconds after being electronically short-cut by a newly ignited arc. The extinction time decreases with the increase of the flow rate. The frequency of the conversion of a discharge from glow-type to spark-type increases with the flow rate. Additionally, spatial distributions of ground-state OH were investigated using planar laser-induced fluorescence. The results show that the shape, height, intensity and thickness of ground-state OH distribution vary significantly with air flow rates. Finally, UV emission of the gliding arc is measured using optical emission spectroscopy and it is found that the emission intensity of NO γ (A-X), OH (A-X) and N2 (C-B) increase with the flow rates showing more characteristics of spark-type arcs. The observed phenomena indicate the significance of the interaction between local turbulence and the gliding arc.
Rogus-Pulia, Nicole M.; Larson, Charles; Mittal, Bharat B; Pierce, Marge; Zecker, Steven; Kennelty, Korey; Kind, Amy; Connor, Nadine P.
2016-01-01
Purpose Patients treated with chemoradiation for head and neck cancer frequently develop dysphagia. Tissue damage to the oral tongue causing weakness and decreases in saliva production may contribute to dysphagia. Yet, effects of these variables on swallowing-related measures are unclear. The purpose of this study was (1) to determine effects of chemoradiation on tongue pressures, as a surrogate for strength, and salivary flow rates and (2) to elucidate relationships among tongue pressures, saliva production, and swallowing efficiency by bolus type. Methods and Materials 21 patients with head and neck cancer treated with chemoradiation were assessed before and after treatment and matched with 21 healthy control participants who did not receive chemoradiation. Each participant was given a questionnaire to rate dysphagia symptoms. Videofluoroscopic evaluation of swallowing was used to determine swallowing efficiency; the Saxon test measured salivary flow rate; and the Iowa Oral Performance Instrument (IOPI) was used for oral tongue maximum and endurance measures. Results Results revealed significantly lower tongue endurance measures for patients post-treatment as compared to controls (p=.012). Salivary flow rates also were lower compared to pre-treatment (p=.000) and controls (p=.000). Simple linear regression analyses showed that change in salivary flow rate was predictive of change in swallow efficiency measures from pre- to post-treatment for 1mL thin liquid (p=.017), 3mL nectar-thick liquid (p=.026), and 3mL standard barium pudding (p=.011) boluses. Conclusions Based on these findings, it appears that chemoradiation treatment affects tongue endurance and salivary flow rate and these changes may impact swallow efficiency. These factors should be considered when planning treatment for dysphagia. PMID:27492408
A system for calibrating seepage meters used to measure flow between ground water and surface water
Rosenberry, Donald O.; Menheer, Michael A.
2006-01-01
The in-line flowmeter used with this system is incapable of measuring seepage rates below about 7 centimeters per day. Smaller seepage rates can be measured manually. The seepage- control system also can be modified for measuring slower seepage rates with the use of two flowmeters and a slightly different water-routing system, or a fluid-metering pump can be used to control flow through the flux tank instead of an adjustable-height reservoir.
NASA Technical Reports Server (NTRS)
Hippensteele, S. A.; Cochran, R. P.
1980-01-01
The effects of two design parameters, electrode diameter and hole angle, and two machine parameters, electrode current and current-on time, on air flow rates through small-diameter (0.257 to 0.462 mm) electric-discharge-machined holes were measured. The holes were machined individually in rows of 14 each through 1.6 mm thick IN-100 strips. The data showed linear increase in air flow rate with increases in electrode cross sectional area and current-on time and little change with changes in hole angle and electrode current. The average flow-rate deviation (from the mean flow rate for a given row) decreased linearly with electrode diameter and increased with hole angle. Burn time and finished hole diameter were also measured.
Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications
NASA Astrophysics Data System (ADS)
Jang, Jaesung; Wereley, Steven T.
2007-02-01
The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both walls. The sensors consist of a pair of capacitive pressure sensors, inlet/outlet and a microchannel. The main microchannel is 128.0 µm wide, 4.64 µm deep and 5680 µm long, and operated under nearly atmospheric conditions where the outlet Knudsen number is 0.0137. The sensor was fabricated using silicon wet etching, ultrasonic drilling, deep reactive ion etching (DRIE) and anodic bonding. The capacitance change of the sensor and the mass flow rate of nitrogen were measured as the inlet-to-outlet pressure ratio was varied from 1.00 to 1.24. The measured maximum mass flow rate was 3.86 × 10-10 kg s-1 (0.019 sccm) at the highest pressure ratio tested. As the pressure difference increased, both the capacitance of the differential pressure sensor and the flow rate through the main microchannel increased. The laminar friction constant f sdot Re, an important consideration in sensor design, varied from the incompressible no-slip case and the mass sensitivity and resolution of this sensor were discussed. Using the current slip flow formulae, a microchannel with much smaller mass flow rates can be designed at the same pressure ratios.
Engelen, Lina; de Wijk, Rene A; Prinz, Jon F; van der Bilt, Andries; Bosman, Frits
2003-01-01
Salivary flow rates were measured at rest and after three types of stimulation; odor, Parafilm chewing, and citric acid. The highest flow rate was elicited by citric acid followed by Parafilm and odor, while the lowest flow rate was unstimulated. In order to investigate whether and how the amount of saliva a subject produces influences the sensory ratings, the four types of salivary flow rates were correlated with sensory ratings of three different types of vanilla custard dessert. No significant correlation could be found between any of the salivary flow rates and the sensory ratings. A subject with a larger saliva flow rate during eating did not rate the foods differently from a subject with less saliva flow. The same pattern was seen for all types of stimulation. This finding could indicate that subjects are used to their respective amounts of saliva to such a degree that the differences in sensory ratings between subjects cannot be explained by the interindividual difference in saliva flow rate.
Computer aided approximation of flow rate through systemic-pulmonary arterial shunts (SPAS).
Vennemann, Peter; Montag, Michael; Peters, Franz; Merzkirch, Wolfgang
2012-02-22
The discrimination of flow rates through bronchial arteries that are affected by pathological SPAS today still happens solely qualitatively. A reproducible quantification of flow rates, however, would enable the comprehension of phenomena like the intensified shunt perfusion seen in cases of chronic inflammations or the characterization of SPAS that may cause cardiovascular problems. A computational program is developed, that allows the modeling of individual bronchial arteries on the basis of the information provided by angiography. Angiographic images are available from the standard clinical assessment of SPAS. The flow through continuous and geometrically measurable vessel segments and SPAS is given by the law of Hagen-Poiseuille. The discharge through healthy branches is calculated by means of allometric scaling laws. The simulation results are verified by flow experiments in artificial vessel networks made of glass and PE tubing. The experimental set-up mimics realistic, pulsating pressure and flow conditions. When applied to the artificial vessel networks, the model described herein provides results for the volumetric flow rate that differ from values measured in laboratory experiments by <6%. The computer model is also applied to real angiographic images. Due to inaccuracies during the deduction of the geometry and due to necessary simplifications of the model, we expect significant deviations between calculated and real flow rates in bronchial systems. Nevertheless, the presented method enables the physician to objectively estimate the order of magnitude of volumetric flow through individual SPAS fairly independently from his experience and without the need of measurements additional to the mandatory angiography.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Specification Test Procedures for Monitoring Systems for Effluent Stream Gas Volumetric Flow Rate E Appendix E... Stream Gas Volumetric Flow Rate 1. Principle and applicability. 1.1Principle. Effluent stream gas... method is applicable to subparts which require continuous gas volumetric flow rate measurement...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Specification Test Procedures for Monitoring Systems for Effluent Stream Gas Volumetric Flow Rate E Appendix E... Stream Gas Volumetric Flow Rate 1. Principle and applicability. 1.1Principle. Effluent stream gas... method is applicable to subparts which require continuous gas volumetric flow rate measurement...
Effect of Er,Cr:YSGG laser on human dentin fluid flow.
Al-Omari, Wael M; Palamara, Joseph E
2013-11-01
The aim of the current investigation was to assess the rate and magnitude of dentin fluid flow of dentinal surfaces irradiated with Er,Cr:YSGG laser. Twenty extracted third molars were sectioned, mounted, and irradiated with Er,Cr:YSGG laser at 3.5 and 4.5 W power settings. Specimens were connected to an automated fluid flow measurement apparatus (Flodec). The rate, magnitude, and direction of dentin fluid flow were recorded at baseline and after irradiation. Nonparametric Wilcoxon signed ranks repeated measure t test revealed a statistically significant reduction in fluid flow for all the power settings. The 4.5-W power output reduced the flow significantly more than the 3.5 W. The samples showed a baseline outward flow followed by inward flow due to irradiation then followed by decreased outward flow. It was concluded that Er,Cr:YSGG laser irradiation at 3.5 and 4.5 W significantly reduced dentinal fluid flow rate. The reduction was directly proportional to power output.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zohar, J.; Insel, T.R.; Berman, K.F.
1989-06-01
To investigate the relationship between anxiety and regional cerebral blood flow, we administered behavioral challenges to 10 patients with obsessive-compulsive disorder while measuring regional cerebral blood flow with the xenon 133 inhalation technique. Each patient was studied under three conditions: relaxation, imaginal flooding, and in vivo (actual) exposure to the phobic stimulus. Subjective anxiety, obsessive-compulsive ratings, and autonomic measures (heart rate, blood pressure) increased significantly, but respiratory rate and PCO/sub 2/ did not change across the three conditions. Regional cerebral blood flow increased slightly (in the temporal region) during imaginal flooding, but decreased markedly in several cortical regions during inmore » vivo exposure, when anxiety was highest by subjective and peripheral autonomic measures. These results demonstrate that intense anxiety can be associated with decreased rather than increased cortical perfusion and that ostensibly related states of anxiety (eg, anticipatory and obsessional anxiety) may be associated with opposite effects on regional cerebral blood flow.« less
Composition Pulse Time-Of-Flight Mass Flow Sensor
Mosier, Bruce P.; Crocker, Robert W.; Harnett, Cindy K. l
2004-01-13
A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 10,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined
Calibrationless rotating Lorentz-force flowmeters for low flow rate applications
NASA Astrophysics Data System (ADS)
Hvasta, M. G.; Dudt, D.; Fisher, A. E.; Kolemen, E.
2018-07-01
A ‘weighted magnetic bearing’ has been developed to improve the performance of rotating Lorentz-force flowmeters (RLFFs). Experiments have shown that the new bearing reduces frictional losses within a double-sided, disc-style RLFF to negligible levels. Operating such an RLFF under ‘frictionless’ conditions provides two major benefits. First, the steady-state velocity of the RLFF magnets matches the average velocity of the flowing liquid at low flow rates. This enables an RLFF to make accurate volumetric flow measurements without any calibration or prior knowledge of the fluid properties. Second, due to minimized frictional losses, an RLFF is able to measure low flow rates that cannot be detected when conventional, high-friction bearings are used. This paper provides a brief background on RLFFs, gives a detailed description of weighted magnetic bearings, and compares experimental RLFF data to measurements taken with a commercially available flowmeter.
Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream
Cochran, Jr., Henry D.
1978-04-11
This invention relates to an improved method of monitoring the mass flow rate of a substance entering a cocurrent fluid stream. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance.
Experimental validation of a self-calibrating cryogenic mass flowmeter
NASA Astrophysics Data System (ADS)
Janzen, A.; Boersch, M.; Burger, B.; Drache, J.; Ebersoldt, A.; Erni, P.; Feldbusch, F.; Oertig, D.; Grohmann, S.
2017-12-01
The Karlsruhe Institute of Technology (KIT) and the WEKA AG jointly develop a commercial flowmeter for application in helium cryostats. The flowmeter functions according to a new thermal measurement principle that eliminates all systematic uncertainties and enables self-calibration during real operation. Ideally, the resulting uncertainty of the measured flow rate is only dependent on signal noises, which are typically very small with regard to the measured value. Under real operating conditions, cryoplant-dependent flow rate fluctuations induce an additional uncertainty, which follows from the sensitivity of the method. This paper presents experimental results with helium at temperatures between 30 and 70 K and flow rates in the range of 4 to 12 g/s. The experiments were carried out in a control cryostat of the 2 kW helium refrigerator of the TOSKA test facility at KIT. Inside the cryostat, the new flowmeter was installed in series with a Venturi tube that was used for reference measurements. The measurement results demonstrate the self-calibration capability during real cryoplant operation. The influences of temperature and flow rate fluctuations on the self-calibration uncertainty are discussed.
40 CFR 61.93 - Emission monitoring and test procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... or frequent flow rate measurements shall be made. For relatively constant flow rates only periodic... applicable to batch processes when the unit is in operation. Periodic sampling (grab samples) may be used... have a potential to release radionuclides into the air, periodic confirmatory measurements shall be...
40 CFR 61.93 - Emission monitoring and test procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or frequent flow rate measurements shall be made. For relatively constant flow rates only periodic... applicable to batch processes when the unit is in operation. Periodic sampling (grab samples) may be used... have a potential to release radionuclides into the air, periodic confirmatory measurements shall be...
40 CFR 61.93 - Emission monitoring and test procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... or frequent flow rate measurements shall be made. For relatively constant flow rates only periodic... applicable to batch processes when the unit is in operation. Periodic sampling (grab samples) may be used... have a potential to release radionuclides into the air, periodic confirmatory measurements shall be...
40 CFR 61.93 - Emission monitoring and test procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... or frequent flow rate measurements shall be made. For relatively constant flow rates only periodic... applicable to batch processes when the unit is in operation. Periodic sampling (grab samples) may be used... have a potential to release radionuclides into the air, periodic confirmatory measurements shall be...
40 CFR 61.93 - Emission monitoring and test procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... or frequent flow rate measurements shall be made. For relatively constant flow rates only periodic... applicable to batch processes when the unit is in operation. Periodic sampling (grab samples) may be used... have a potential to release radionuclides into the air, periodic confirmatory measurements shall be...
NASA Astrophysics Data System (ADS)
Latz, Michael I.; Rohr, Jim
2013-07-01
Bathyphotometer measurements of bioluminescence are used as a proxy for the abundance of luminescent organisms for studying population dynamics; the interaction of luminescent organisms with physical, chemical, and biological oceanographic processes; and spatial complexity especially in coastal areas. However, the usefulness of bioluminescence measurements has been limited by the inability to compare results from different bathyphotometer designs, or even the same bathyphotometer operating at different volume flow rates. The primary objective of this study was to compare measurements of stimulated bioluminescence of four species of cultured dinoflagellates, the most common source of bioluminescence in coastal waters, using two different bathyphotometer flow agitators as a function of bathyphotometer volume flow rate and dinoflagellate concentration. For both the NOSC and BIOLITE flow agitators and each species of dinoflagellate tested, there was a critical volume flow rate, above which average bioluminescence intensity, designated as bathyphotometer bioluminescence potential (BBP), remained relatively constant and scaled directly with dinoflagellate cell concentration. At supra-critical volume flow rates, the ratio of BIOLITE to NOSC BBP was nearly constant for the same species studied, but varied between species. The spatial pattern and residence time of flash trajectories within the NOSC flow agitator indicated the presence of dominant secondary recirculating flows, where most of the bioluminescence was detected. A secondary objective (appearing in the Appendix) was to study the feasibility of using NOSC BBP to scale flow-stimulated bioluminescence intensity across similar flow fields, where the contributing composition of luminescent species remained the same. Fully developed turbulent pipe flow was chosen because it is hydrodynamically well characterized. Average bioluminescence intensity in a 2.54-cm i.d. pipe was highly correlated with wall shear stress and BBP. This correlation, when further scaled by pipe diameter, effectively predicted bioluminescence intensity in fully developed turbulent flow in a 0.83-cm i.d. pipe. Determining similar correlations between other bathyphotometer flow agitators and flow fields will allow bioluminescence potential measurements to become a more powerful tool for the oceanographic community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Murray E.
Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to massmore » flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is expected to require six months of time, after receipt of funding. Benefits: US DOE facilities that use HEPA filters will benefit from access to the new operational measurement methods. Uncertainty and guesswork will be removed from HEPA filter operations.« less
NASA Astrophysics Data System (ADS)
Herring, Anna L.; Middleton, Jill; Walsh, Rick; Kingston, Andrew; Sheppard, Adrian
2017-09-01
We investigate capillary pressure-saturation (PC-S) relationships for drainage-imbibition experiments conducted with air (nonwetting phase) and brine (wetting phase) in Bentheimer sandstone cores. Three different flow rate conditions, ranging over three orders of magnitude, are investigated. X-ray micro-computed tomographic imaging is used to characterize the distribution and amount of fluids and their interfacial characteristics. Capillary pressure is measured via (1) bulk-phase pressure transducer measurements, and (2) image-based curvature measurements, calculated using a novel 3D curvature algorithm. We distinguish between connected (percolating) and disconnected air clusters: curvatures measured on the connected phase interfaces are used to validate the curvature algorithm and provide an indication of the equilibrium condition of the data; curvature and volume distributions of disconnected clusters provide insight to the snap-off processes occurring during drainage and imbibition under different flow rate conditions.
Towards metering tap water by Lorentz force velocimetry
NASA Astrophysics Data System (ADS)
Vasilyan, Suren; Ebert, Reschad; Weidner, Markus; Rivero, Michel; Halbedel, Bernd; Resagk, Christian; Fröhlich, Thomas
2015-11-01
In this paper, we present enhanced flow rate measurement by applying the contactless Lorentz Force Velocimetry (LFV) technique. Particularly, we show that the LFV is a feasible technique for metering the flow rate of salt water in a rectangular channel. The measurements of the Lorentz forces as a function of the flow rate are presented for different electrical conductivities of the salt water. The smallest value of conductivity is achieved at 0.06 S·m-1, which corresponds to the typical value of tap water. In comparison with previous results, the performance of LFV is improved by approximately 2 orders of magnitude by means of a high-precision differential force measurement setup. Furthermore, the sensitivity curve and the calibration factor of the flowmeter are provided based on extensive measurements for the flow velocities ranging from 0.2 to 2.5 m·s-1 and conductivities ranging from 0.06 to 10 S·m-1.
Sato, Emi; Matsuda, Kouhei
2018-06-11
The purpose of this study was to examine cerebral blood flow in the frontal cortex area during personality self-rating tasks. Our two hypotheses were (1) cerebral blood flow varies based on personality rating condition and (2) cerebral blood flow varies based on the personality traits. This experiment measured cerebral blood flow under 3 personal computer rating conditions and 2 questionnaire conditions. Comparing the rating conditions, the results of the t-test indicated that cerebral blood flow was higher in the questionnaire condition than it was in the personal computer condition. With respect to the Big Five, the result of the correlation coefficient, that is, cerebral blood flow during a personality rating task, changed according to the trait for agreeableness. The results of the analysis of the 5-cluster on individual differences indicated that certain personality traits were related to the factors that increased or decreased cerebral blood flow. An analysis of variance indicated that openness to experience and Behavioural Activation System-drive was significant given that participants with high intellectual curiosity were motivated in this experiment, thus, their cerebral blood flow may have increased. The significance of this experiment was that by employing certain performance measures we could examine differences in physical changes based on personality traits. © 2018 International Union of Psychological Science.
Arteriovenous Fistula Development in the First 6 Weeks after Creation.
Robbin, Michelle L; Greene, Tom; Cheung, Alfred K; Allon, Michael; Berceli, Scott A; Kaufman, James S; Allen, Matthew; Imrey, Peter B; Radeva, Milena K; Shiu, Yan-Ting; Umphrey, Heidi R; Young, Carlton J
2016-05-01
To assess the anatomic development of native arteriovenous fistula (AVF) during the first 6 weeks after creation by using ultrasonographic (US) measurements in a multicenter hemodialysis fistula maturation study. Each institutional review board approved the prospective study protocol, and written informed consent was obtained. Six hundred and two participants (180 women and 422 men, 459 with upper-arm AVF and 143 with forearm AVF) from seven clinical centers underwent preoperative artery and vein US mapping. AVF draining vein diameter and blood flow rate were assessed postoperatively after 1 day, 2 weeks, and 6 weeks. Relationships among US measurements were summarized after using multiple imputation for missing measurements. In 55% of forearm AVFs (68 of 124) and 83% of upper-arm AVFs (341 of 411) in surviving patients without thrombosis or AVF intervention prior to 6 weeks, at least 50% of their 6-week blood flow rate measurement was achieved at 1 day. Among surviving patients without thrombosis or AVF intervention prior to week 2, 70% with upper-arm AVFs (302 of 433) and 77% with forearm AVFs (99 of 128) maintained at least 85% of their week 2 flow rate at week 6. Mean AVF diameters of at least 0.40 cm were seen in 85% (389 of 459), 91% (419 of 459), and 87% (401 of 459) of upper-arm AVFs and in 40% (58 of 143), 73% (104 of 143), and 77% (110 of 143) of forearm AVFs at 1 day, 2 weeks, and 6 weeks, respectively. One-day and 2-week AVF flow rates and diameters were used to predict 6-week levels, with 2-week prediction of 6-week measures more accurate than those of 1 day (flow rates, R(2) = 0.47 and 0.61, respectively; diameters, R(2) = 0.49 and 0.82, respectively). AVF blood flow rate at 1 day is usually more than 50% of the 6-week blood flow rate. Two-week measurements are more predictive of 6-week diameter and blood flow than those of 1 day. US measurements at 2 weeks may be of value in the early identification of fistulas that are unlikely to develop optimally. (©) RSNA, 2015 Online supplemental material is available for this article.
40 CFR 1065.245 - Sample flow meter for batch sampling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... rates or total flow sampled into a batch sampling system over a test interval. You may use the... rates or total raw exhaust flow over a test interval. (b) Component requirements. We recommend that you... averaging Pitot tube, or a hot-wire anemometer. Note that your overall system for measuring sample flow must...
Relationship between xerostomia and salivary flow rates in HIV-infected individuals.
Nittayananta, Wipawee; Chanowanna, Nilnara; Pruphetkaew, Nannapat; Nauntofte, Birgitte
2013-08-01
The aim of the present study was to determine the relationship between self-reported xerostomia and salivary flow rates among HIV-infected individuals. A cross-sectional study was performed on 173 individuals (81 HIV-infected individuals, mean age: 32 years, and 92 non-HIV controls, mean age: 30 years). Subjective complaints of dry mouth, based on a self-report of xerostomia questions, and dry mouth, based on a visual analogue scale (VAS), were recorded along with measurements of salivary flow rate of both unstimulated and wax-stimulated whole saliva. The relationship between subjective responses to the xerostomia questions, the VAS of dry mouth, and objective measurements of salivary flow rates were analyzed. Responses to the questions--Do you carry water or a saliva substitute? and Have you had taste disturbance?--were significantly different between HIV-infected and non-HIV individuals (P < 0.05). Individuals' responses to questions concerning dry mouth were significantly correlated with a low unstimulated salivary flow rate. A significant correlation between the VAS of dry mouth and salivary flow rates was observed (P = 0.023). Responses to self-reported xerostomia questions reflects low unstimulated salivary flow rates. Thus, questions concerning dry mouth might be useful tools to identify HIV-infected individuals with hyposalivation, especially at a resting stage. © 2013 Wiley Publishing Asia Pty Ltd.
Flow and evaporation in single micrometer and nanometer scale pipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velasco, A. E.; Yang, C.; Siwy, Z. S.
2014-07-21
We report measurements of pressure driven flow of fluids entering vacuum through a single pipe of micrometer or nanometer scale diameter. Nanopores were fabricated by etching a single ion track in polymer or mica foils. A calibrated mass spectrometer was used to measure the flow rates of nitrogen and helium through pipes with diameter ranging from 10 μm to 31 nm. The flow of gaseous and liquid nitrogen was studied near 77 K, while the flow of helium was studied from the lambda point (2.18 K) to above the critical point (5.2 K). Flow rates were controlled by changing the pressure drop across the pipemore » in the range 0–31 atm. When the pressure in the pipe reached the saturated vapor pressure, an abrupt flow transition was observed. A simple viscous flow model is used to determine the position of the liquid/vapor interface in the pipe. The observed mass flow rates are consistent with no slip boundary conditions.« less
An experimental study of the fluid mechanics associated with porous walls
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Heaman, J.; Smith, A.
1992-01-01
The fluid mechanics of air exiting from a porous material is investigated. The experiments are filter rating dependent, as porous walls with filter ratings differing by about three orders of magnitude are studied. The flow behavior is investigated for its spatial and temporal stability. The results from the investigation are related to jet behavior in at least one of the following categories: (1) jet coalescence effects with increasing flow rate; (2) jet field decay with increasing distance from the porous wall; (3) jet field temporal turbulence characteristics; and (4) single jet turbulence characteristics. The measurements show that coalescence effects cause jet development, and this development stage can be traced by measuring the pseudoturbulence (spatial velocity variations) at any flow rate. The pseudoturbulence variation with increasing mass flow reveals an initial increasing trend followed by a leveling trend, both of which are directly proportional to the filter rating. A critical velocity begins this leveling trend and represents the onset of fully developed jetting action in the flow field. A correlation is developed to predict the onset of fully developed jets in the flow emerging from a porous wall. The data further show that the fully developed jet dimensions are independent of the filter rating, thus providing a length scale for this type of flow field (1 mm). Individual jet characteristics provide another unifying trend with similar velocity decay behavior with distance; however, the respective turbulence magnitudes show vast differences between jets from the same sample. Measurements of the flow decay with distance from the porous wall show that the higher spatial frequency components of the jet field dissipate faster than the lower frequency components. Flow turbulence intensity measurements show an out of phase behavior with the velocity field and are generally found to increase as the distance from the wall is increased.
Koch, H; Demling, L
1976-02-27
The study has been carried out to ensure the positive evidence of the measurement of the gastric mucosal blood-flow with the aid of the thermocouple (heat-clearance technique). The experiments have shown that the suction pressure of 600 mm mercury column which was used to fix the Thermocouple to the mucosa was indispensable in order to assess the blood-flow in the entire depth of the mucosa. Changes in the mucosal blood-flow are measuured at the same rate in all quadrants of the gastric corpus. The measuring of the blood-flow of a well circumscribed area of the mucosa is therefore representative for the entire corpus. Vasopressin led to a significant reduction of the gastric mucosal blood-flow measured with heat-clearance as well aminopyrine-clearance. There was a linear correlation between the results of both methods. Vasopressin selectively reduces the blood-flow of the gastric mucosa but not of the submucosa, the muscular layer and the serosa. Therefore it seems to be probable that changes in mucosal blood-flow selectively can be measured with the aid of the thermocouple. After previous stimulation with pentagastrin neither mucosal blood-flow nor acid secretion of the stomach were influenced by the occlusion of the celiac artery by 25 %. The occlusion of the celiac artery by 50 % reduced significantly the pentagastrin-stimulated gastric mucosal blood-flow whereas the acid secretion was not influenced. Prostaglandin E1 at a dose rate of 2 mug/kg-h increased significantly arterial and mucosal blood-flow as well as acid secretion of the stomach. In comparison PGE1 administered at a dose rate of 4 mug/kg-h reduced significantly gastric mucosal blood-flow and gastric secretion. PGE1 at a dose rate of 8 mug/kg-h did not produce any significant changes in blood-flow and secretion. The results suggested that the changes of gastric secretion observed with PGE1 were the consequence of primary changes in the gastric mucosal blood-flow.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., the water consumption flow rate of commercial prerinse spray valves. (b) Testing and Calculations. The test procedure to determine the water consumption flow rate for prerinse spray valves, expressed in... the previous step. Round the final water consumption value to one decimal place as follows: (1) A...
Continuous measurements of flow rate in a shallow gravel-bed river by a new acoustic system
NASA Astrophysics Data System (ADS)
Kawanisi, K.; Razaz, M.; Ishikawa, K.; Yano, J.; Soltaniasl, M.
2012-05-01
The continuous measurement of river discharge for long periods of time is crucial in water resource studies. However, the accurate estimation of river discharge is a difficult and labor-intensive procedure; thus, a robust and efficient method of measurement is required. Continuous measurements of flowrate have been carried out in a wide, shallow gravel bed river (water depth ≈ 0.6 m under low-flow conditions, width ≈ 115 m) using Fluvial Acoustic Tomography System (FATS) that has 25 kHz broadband transducers with horizontally omnidirectional and vertically hemispherical beam patterns. Reciprocal sound transmissions were performed between the two acoustic stations located diagonally on both sides of the river. The horizontal distance between the transducers was 301.96 m. FATS enabled the measurement of the depth- and range-averaged sound speed and flow velocity along the ray path. In contrast to traditional point/transect measurements of discharge, in a fraction of a second, FATS covers the entire cross section of river in a single measurement. The flow rates measured by FATS were compared to those estimated by moving boat Acoustic Doppler Current Profiler (ADCP) and rating curve (RC) methods. FATS estimates were in good agreement with ADCP estimates over a range of 20 to 65 m3 s-1. The RMS of residual between the two measurements was 2.41 m3 s-1. On the other hand the flowrate by RC method fairly agreed with FATS estimates for greater discharges than around 40 m3 s-1. This inconsistency arises from biased RC estimates in low flows. Thus, the flow rates derived from FATS could be considered reliable.
NASA Astrophysics Data System (ADS)
Moore, Joel; Lichtner, Peter C.; White, Art F.; Brantley, Susan L.
2012-09-01
The reactive transport model FLOTRAN was used to forward-model weathering profiles developed on granitic outwash alluvium over 40-3000 ka from the Merced, California (USA) chronosequence as well as deep granitic regolith developed over 800 ka near Davis Run, Virginia (USA). Baseline model predictions that used laboratory rate constants (km), measured fluid flow velocities (v), and BET volumetric surface areas for the parent material (AB,mo) were not consistent with measured profiles of plagioclase, potassium feldspar, and quartz. Reaction fronts predicted by the baseline model are deeper and thinner than the observed, consistent with faster rates of reaction in the model. Reaction front depth in the model depended mostly upon saturated versus unsaturated hydrologic flow conditions, rate constants controlling precipitation of secondary minerals, and the average fluid flow velocity (va). Unsaturated hydrologic flow conditions (relatively open with respect to CO2(g)) resulted in the prediction of deeper reaction fronts and significant differences in the separation between plagioclase and potassium feldspar reaction fronts compared to saturated hydrologic flow (relatively closed with respect to CO2(g)). Under saturated or unsaturated flow conditions, the rate constant that controls precipitation rates of secondary minerals must be reduced relative to laboratory rate constants to match observed reaction front depths and measured pore water chemistry. Additionally, to match the observed reaction front depths, va was set lower than the measured value, v, for three of the four profiles. The reaction front gradients in mineralogy and pore fluid chemistry could only be modeled accurately by adjusting values of the product kmAB,mo. By assuming km values were constrained by laboratory data, field observations were modeled successfully with TST-like rate equations by dividing measured values of AB,mo by factors from 50 to 1700. Alternately, with sigmoidal or Al-inhibition rate models, this adjustment factor ranges from 5 to 170. Best-fit models of the wetter, hydrologically saturated Davis Run profile required a smaller adjustment to AB,mo than the drier hydrologically unsaturated Merced profiles. We attributed the need for large adjustments in va and AB,mo necessary for the Merced models to more complex hydrologic flow that decreased the reactive surface area in contact with bulk flow water, e.g., dead-end pore spaces containing fluids that are near or at chemical equilibrium. Thus, rate models from the laboratory can successfully predict weathering over millions of years, but work is needed to understand how to incorporate changes in what controls the relationship between reactive surface area and hydrologic flow.
Chau, Destiny F; Vasilopoulos, Terrie; Schoepf, Miriam; Zhang, Christina; Fahy, Brenda G
2016-09-01
Complex surgical and critically ill pediatric patients rely on syringe infusion pumps for precise delivery of IV medications. Low flow rates and in-line IV filter use may affect drug delivery. To determine the effects of an in-line filter to remove air and/or contaminants on syringe pump performance at low flow rates, we compared the measured rates with the programmed flow rates with and without in-line IV filters. Standardized IV infusion assemblies with and without IV filters (filter and control groups) attached to a 10-mL syringe were primed and then loaded onto a syringe pump and connected to a 16-gauge, 16-cm single-lumen catheter. The catheter was suspended in a normal saline fluid column to simulate the back pressure from central venous circulation. The delivered infusate was measured by gravimetric methods at predetermined time intervals, and flow rate was calculated. Experimental trials for initial programmed rates of 1.0, 0.8, 0.6, and 0.4 mL/h were performed in control and filter groups. For each trial, the flow rate was changed to double the initial flow rate and was then returned to the initial flow rate to analyze pump performance for titration of rates often required during medication administration. These conditions (initial rate, doubling of initial rate, and return to initial rate) were analyzed separately for steady-state flow rate and time to steady state, whereas their average was used for percent deviation analysis. Differences between control and filter groups were assessed using Student t tests with adjustment for multiplicity (using n = 3 replications per group). Mean time from 0 to initial flow (startup delay) was <1 minute in both groups with no statistical difference between groups (P = 1.0). The average time to reach steady-state flow after infusion startup or rate changes was not statistically different between the groups (range, 0.8-5.5 minutes), for any flow rate or part of the trial (initial rate, doubling of initial rate, and return to initial rate), although the study was underpowered to detect small time differences. Overall, the mean steady-state flow rate for each trial was below the programmed flow rate with negative mean percent deviations for each trial. In the 1.0-mL/h initial rate trial, the steady-state flow rate attained was lower in the filter than the control group for the initial rate (P = 0.04) and doubling of initial rate (P = 0.04) with a trend during the return to initial rate (P = 0.06), although this same effect was not observed when doubling the initial rate trials of 0.8 or 0.6 mL/h or any other rate trials compared with the control group. With low flow rates used in complex surgical and pediatric critically ill patients, the addition of IV filters did not confer statistically significant changes in startup delay, flow variability, or time to reach steady-state flow of medications administered by syringe infusion pumps. The overall flow rate was lower than programmed flow rate with or without a filter.
van 't Veer, Marcel; Adjedj, Julien; Wijnbergen, Inge; Tóth, Gabor G; Rutten, Marcel C M; Barbato, Emanuele; van Nunen, Lokien X; Pijls, Nico H J; De Bruyne, Bernard
2016-08-20
The aim of this study is to validate a novel monorail infusion catheter for thermodilution-based quantitative coronary flow measurements. Based on the principles of thermodilution, volumetric coronary flow can be determined from the flow rate of a continuous saline infusion, the temperature of saline when it enters the coronary artery, and the temperature of the blood mixed with the saline in the distal part of the coronary artery. In an in vitro set-up of the systemic and coronary circulation at body temperature, coronary flow values were varied from 50-300 ml/min in steps of 50 ml/min. At each coronary flow value, thermodilution-based measurements were performed at infusion rates of 15, 20, and 30 ml/min. Temperatures and pressures were simultaneously measured with a pressure/temperature sensor-tipped guidewire. Agreement of the calculated flow and the measured flow as well as repeatability were assessed. A total of five catheters were tested, with a total of 180 measurements. A strong correlation (ρ=0.976, p<0.0001) and a difference of -6.5±15.5 ml/min were found between measured and calculated flow. The difference between two repeated measures was 0.2%±8.0%. This novel infusion catheter used in combination with a pressure/temperature sensor-tipped guidewire allows accurate and repeatable absolute coronary flow measurements. This opens a window to a better understanding of the coronary microcirculation.
Miniature FBG-based fluidic flowmeter to measure hot oil and water
NASA Astrophysics Data System (ADS)
Liu, Zhengyong; Htein, Lin; Cheng, Lun-Kai; Martina, Quincy; Jansen, Rob; Tam, Hwa-Yaw
2017-04-01
In this paper, we present a miniature fluidic flowmeter based on a packaged FBG and laser-heated fibers. The flow rates of water and hydraulic oil were measured by utilizing the proposed flowmeter. The measured results exhibited good sensitivity of 0.339 nm/(m/s) for water and 0.578 nm/(m/s) for oil flow. Experimental results showed that the sensitivity of the fluidic flow sensor is depending on the heat capacity of the fluids, where the fluid with higher heat capacity has higher sensitivity and lower detection limit at the same measurement condition. The real-time flow rates measured by the proposed sensor and a commercial flowmeter installed in the test rig were also compared, demonstrating good agreement with correlation coefficient of 0.9974.
Leslie, Daniel C; Melnikoff, Brett A; Marchiarullo, Daniel J; Cash, Devin R; Ferrance, Jerome P; Landers, James P
2010-08-07
Quality control of microdevices adds significant costs, in time and money, to any fabrication process. A simple, rapid quantitative method for the post-fabrication characterization of microchannel architecture using the measurement of flow with volumes relevant to microfluidics is presented. By measuring the mass of a dye solution passed through the device, it circumvents traditional gravimetric and interface-tracking methods that suffer from variable evaporation rates and the increased error associated with smaller volumes. The multiplexed fluidic resistance (MFR) measurement method measures flow via stable visible-wavelength dyes, a standard spectrophotometer and common laboratory glassware. Individual dyes are used as molecular markers of flow for individual channels, and in channel architectures where multiple channels terminate at a common reservoir, spectral deconvolution reveals the individual flow contributions. On-chip, this method was found to maintain accurate flow measurement at lower flow rates than the gravimetric approach. Multiple dyes are shown to allow for independent measurement of multiple flows on the same device simultaneously. We demonstrate that this technique is applicable for measuring the fluidic resistance, which is dependent on channel dimensions, in four fluidically connected channels simultaneously, ultimately determining that one chip was partially collapsed and, therefore, unusable for its intended purpose. This method is thus shown to be widely useful in troubleshooting microfluidic flow characteristics.
Analysis of Active Lava Flows on Kilauea Volcano, Hawaii, Using SIR-C Radar Correlation Measurements
NASA Technical Reports Server (NTRS)
Zebker, H. A.; Rosen, P.; Hensley, S.; Mouginis-Mark, P. J.
1995-01-01
Precise eruption rates of active pahoehoe lava flows on Kilauea volcano, Hawaii, have been determined using spaceborne radar data acquired by the Space Shuttle Imaging Radar-C (SIR-C). Measurement of the rate of lava flow advance, and the determination of the volume of new material erupted in a given period of time, are among the most important observations that can be made when studying a volcano.
Flow of sand and a variable mass Atwood machine
NASA Astrophysics Data System (ADS)
Flores, José; Solovey, Guillermo; Gil, Salvador
2003-07-01
We discuss a simple and inexpensive apparatus that lets us measure the instantaneous flow rate of granular media, such as sand, in real time. The measurements allow us to elucidate the phenomenological laws that govern the flow of granular media through an aperture. We use this apparatus to construct a variable mass system and study the motion of an Atwood machine with one weight changing in time in a controlled manner. The study illustrates Newton's second law for variable mass systems and lets us investigate the dependence of the flow rate on acceleration.
Membrane water-flow rate in electrolyzer cells with a solid polymer electrolyte (SPE)
NASA Astrophysics Data System (ADS)
Li, Xiaojin; Qu, Shuguo; Yu, Hongmei; Hou, Ming; Shao, Zhigang; Yi, Baolian
Water-flow rate across Nafion membrane in SPE electrolyzer cells was measured and modelled. From the analysis of water transport mechanisms in SPE water electrolysis, the water-flow rate through membrane can be described by the electro-osmotic drag. The calculated electro-osmotic drag coefficients, n d, for the membrane in SPE electrolysis cells at different temperatures were compared with literature and in good agreement with those of Ge et al. and Ise et al. To describe the water-flow rate through membrane more accurately, a linear fit of n d as a function of temperature for the membrane in SPE water electrolysis was proposed in this paper. This paper studied the membrane water-flow rate experimentally and mathematically, which is of importance in the designing and optimization of the process of SPE water electrolysis. This paper also provided a novel method for measuring the electro-osmotic drag coefficient of Nafion membrane in contact with liquid water, acid and methanol solutions, etc.
Karataş, Abdullah
2017-09-01
Intranasal steroid sprays (INSS) are frequently prescribed for treating inferior turbinate hypertrophy (ITH). Complications due to the long-term application of INSS such as crusting, epistaxis, nasal mucosa dryness, and septal perforation may occur. Predicting patients who would benefit from INSS early might lower treatment costs and complication rates. We examined the predictive value of nasal decongestant response rates for the outcomes of INSS in ITH. Fifty patients with bilateral ITH were included in two groups: patients benefiting from INSS and those not benefiting. Nasal airflow was assessed by peak nasal inspiratory flow (PNIF) measurement in all cases. Measurements were taken three times: before and after the application of nasal decongestant sprays and after the application of INSS. In both groups, the nasal air flow rates significantly increased after the application of nasal decongestant sprays; however, the nasal decongestant response rates were higher in the group with patients benefiting from INSS. There was a strong correlation between the nasal air flow rates measured after the application of nasal decongestant sprays and after the application of INSS. The cut-off value for the relationship between increased nasal air flow rates after the application of nasal decongestant sprays and outcomes of INSS was 23%. Measurement of nasal airflow increase rate after the application of nasal decongestant sprays is a simple and easy method for the early prediction of the outcomes of INSS in ITH. A higher than 23% increase in nasal air flow rates after the application of nasal decongestant sprays indicates much better outcomes of INSS for patients.
Karataş, Abdullah
2017-01-01
Objective Intranasal steroid sprays (INSS) are frequently prescribed for treating inferior turbinate hypertrophy (ITH). Complications due to the long-term application of INSS such as crusting, epistaxis, nasal mucosa dryness, and septal perforation may occur. Predicting patients who would benefit from INSS early might lower treatment costs and complication rates. We examined the predictive value of nasal decongestant response rates for the outcomes of INSS in ITH. Methods Fifty patients with bilateral ITH were included in two groups: patients benefiting from INSS and those not benefiting. Nasal airflow was assessed by peak nasal inspiratory flow (PNIF) measurement in all cases. Measurements were taken three times: before and after the application of nasal decongestant sprays and after the application of INSS. Results In both groups, the nasal air flow rates significantly increased after the application of nasal decongestant sprays; however, the nasal decongestant response rates were higher in the group with patients benefiting from INSS. There was a strong correlation between the nasal air flow rates measured after the application of nasal decongestant sprays and after the application of INSS. The cut-off value for the relationship between increased nasal air flow rates after the application of nasal decongestant sprays and outcomes of INSS was 23%. Conclusion Measurement of nasal airflow increase rate after the application of nasal decongestant sprays is a simple and easy method for the early prediction of the outcomes of INSS in ITH. A higher than 23% increase in nasal air flow rates after the application of nasal decongestant sprays indicates much better outcomes of INSS for patients. PMID:29392066
CFD Based Prediction of Discharge Coefficient of Sonic Nozzle with Surface Roughness
NASA Astrophysics Data System (ADS)
Bagaskara, Agastya; Agoes Moelyadi, Mochammad
2018-04-01
Due to its simplicity and accuracy, sonic nozzle is widely used in gas flow measurement, gas flow meter calibration standard, and flow control. The nozzle obtains mass flow rate by measuring temperature and pressure in the inlet during choked flow condition and calculate the flow rate using the one-dimensional isentropic flow equation multiplied by a discharge coefficient, which takes into account multiple non-isentropic effects, which causes the reduction in mass flow. Proper determination of discharge coefficient is crucial to ensure the accuracy of mass flow measurement by the nozzle. Available analytical solution for the prediction of discharge coefficient assumes that the nozzle wall is hydraulically smooth which causes disagreement with experimental results. In this paper, the discharge coefficient of sonic nozzle is determined using computational fluid dynamics method by taking into account the roughness of the wall. It is found that the result shows better agreement with the experiment data compared to the analytical result.
Dual-plane ultrasound flow measurements in liquid metals
NASA Astrophysics Data System (ADS)
Büttner, Lars; Nauber, Richard; Burger, Markus; Räbiger, Dirk; Franke, Sven; Eckert, Sven; Czarske, Jürgen
2013-05-01
An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies.
NASA Astrophysics Data System (ADS)
Liu, Lingli; Zheng, Hairong; Williams, Logan; Zhang, Fuxing; Wang, Rui; Hertzberg, Jean; Shandas, Robin
2008-03-01
We have recently developed an ultrasound-based velocimetry technique, termed echo particle image velocimetry (Echo PIV), to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. The original system was implemented on images obtained from a commercial echocardiography scanner. Although promising, this system was limited in spatial resolution and measurable velocity range. In this work, we propose standard rules for characterizing Echo PIV performance and report on a custom-designed Echo PIV system with increased spatial resolution and measurable velocity range. Then we employed this system for initial measurements on tube flows, rotating flows and in vitro carotid artery and abdominal aortic aneurysm (AAA) models to acquire the local velocity and shear rate distributions in these flow fields. The experimental results verified the accuracy of this technique and indicated the promise of the custom Echo PIV system in capturing complex flow fields non-invasively.
NASA Astrophysics Data System (ADS)
Biggs, J.; Arnold, D. W. D.; Mothes, P. A.; Anderson, K. R.; Albino, F.; Wadge, G.; Vallejo Vargas, S.; Ebmeier, S. K.
2017-12-01
There are relatively few studies of active lava flows of an andesitic rather than basaltic composition. The flow field at El Reventador volcano, Ecuador is a good example, but observations are hampered by persistent cloud cover. We use high resolution satellite radar from Radarsat-2 and TanDEM-X to map the dimensions of 43 lava flows extruded between 9 Feb 2012 and 24 Aug 2016. Flow height is measured using the width of radar shadow cast by steep sided features, or the difference in radar phase between two sensors separated in space. The cumulative volume of erupted material was 44.8M m3 dense rock equivalent with an average rate of 0.31 ± 0.02 m3s-1, similar to the long term average. The flows were mostly emplaced over durations shorter than the satellite repeat interval of 24 days and ranged in length from 0.3 to 1.7 km. We use the dimensions of the levees to estimate the flow yield strengths and compare measurements of diversions around barriers with observations from laboratory experiments. The rate of effusion, flow length and flow volume all decrease with time, and simple physics-based models can be equally well fit by a closed reservoir depressurising during the eruption with no magma recharge, or an open reservoir with a time-constant magma recharge rate of up to 0.35 ± 0.01 m3s-1. We propose that the conduit acts as magma capacitor and individual flows are volume-limited. Emplaced flows are subsiding at rates proportional to lava thickness that decay with time following a square-root relationship. Radar observations, such as those presented here, could be used to map and measure properties of evolving lava flow fields at other remote or difficult to monitor volcanoes. Physics-based models can be run into the future, but a sudden increase in flow length in 2017 seen by Sentinel illustrates that changes in magma supply can cause rapid changes in behavior, which remain challenging to forecast.
Control of skin blood flow, sweating, and heart rate - Role of skin vs. core temperature
NASA Technical Reports Server (NTRS)
Wyss, C. R.; Brengelmann, G. L.; Johnson, J. M.; Rowell, L. B.; Niederberger, M.
1974-01-01
A study was conducted to generate quantitative expressions for the influence of core temperature, skin temperature, and the rate of change of skin temperature on sweat rate, skin blood flow, and heart rate. A second goal of the study was to determine whether the use of esophageal temperature rather than the right atrial temperature as a measure of core temperature would lead to different conclusions about the control of measured effector variables.
NASA Astrophysics Data System (ADS)
Iftekhar, Ahmed Tashfin; Ho, Jenny Che-Ting; Mellinger, Axel; Kaya, Tolga
2017-03-01
Sweat-based physiological monitoring has been intensively explored in the last decade with the hopes of developing real-time hydration monitoring devices. Although the content of sweat (electrolytes, lactate, urea, etc.) provides significant information about the physiology, it is also very important to know the rate of sweat at the time of sweat content measurements because the sweat rate is known to alter the concentrations of sweat compounds. We developed a calorimetric based flow rate sensor using PolydimethylSiloxane that is suitable for sweat rate applications. Our simple approach on using temperature-based flow rate detection can easily be adapted to multiple sweat collection and analysis devices. Moreover, we have developed a 3D finite element analysis model of the device using COMSOL Multiphysics™ and verified the flow rate measurements. The experiment investigated flow rate values from 0.3 μl/min up to 2.1 ml/min, which covers the human sweat rate range (0.5 μl/min-10 μl/min). The 3D model simulations and analytical model calculations covered an even wider range in order to understand the main physical mechanisms of the device. With a verified 3D model, different environmental heat conditions could be further studied to shed light on the physiology of the sweat rate.
Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya
2010-01-01
The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions
Observations of pockmark flow structure in Belfast Bay, Maine, Part 2: evidence for cavity flow
Fandel, Christina L.; Lippmann, Thomas C.; Foster, Diane L.; Brothers, Laura L.
2017-01-01
Pockmark flow circulation patterns were investigated through current measurements along the rim and center of two pockmarks in Belfast Bay, Maine. Observed time-varying current profiles have a complex vertical and directional structure that rotates significantly with depth and is strongly dependent on the phase of the tide. Observations of the vertical profiles of horizontal velocities in relation to relative geometric parameters of the pockmark are consistent with circulation patterns described qualitatively by cavity flow models (Ashcroft and Zhang 2005). The time-mean behavior of the shear layer is typically used to characterize cavity flow, and was estimated using vorticity thickness to quantify the growth rate of the shear layer horizontally across the pockmark. Estimated positive vorticity thickness spreading rates are consistent with cavity flow predictions, and occur at largely different rates between the two pockmarks. Previously modeled flow (Brothers et al. 2011) and laboratory measurements (Pau et al. 2014) over pockmarks of similar geometry to those examined herein are also qualitatively consistent with cavity flow circulation, suggesting that cavity flow may be a good first-order flow model for pockmarks in general.
A new approach for flow-through respirometry measurements in humans
Ingebrigtsen, Jan P.; Bergouignan, Audrey; Ohkawara, Kazunori; Kohrt, Wendy M.; Lighton, John R. B.
2010-01-01
Indirect whole room calorimetry is commonly used in studies of human metabolism. These calorimeters can be configured as either push or pull systems. A major obstacle to accurately calculating gas exchange rates in a pull system is that the excurrent flow rate is increased above the incurrent flow rate, because the organism produces water vapor, which also dilutes the concentrations of respiratory gasses in the excurrent sample. A common approach to this problem is to dry the excurrent gasses prior to measurement, but if drying is incomplete, large errors in the calculated oxygen consumption will result. The other major potential source of error is fluctuations in the concentration of O2 and CO2 in the incurrent airstream. We describe a novel approach to measuring gas exchange using a pull-type whole room indirect calorimeter. Relative humidity and temperature of the incurrent and excurrent airstreams are measured continuously using high-precision, relative humidity and temperature sensors, permitting accurate measurement of water vapor pressure. The excurrent flow rates are then adjusted to eliminate the flow contribution from water vapor, and respiratory gas concentrations are adjusted to eliminate the effect of water vapor dilution. In addition, a novel switching approach is used that permits constant, uninterrupted measurement of the excurrent airstream while allowing frequent measurements of the incurrent airstream. To demonstrate the accuracy of this approach, we present the results of validation trials compared with our existing system and metabolic carts, as well as the results of standard propane combustion tests. PMID:20200135
Flow Measurement. Training Module 3.315.2.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the principles of liquid flow and the methods of measuring open channel and fuel pipe flow rates. Included are objectives, instructor guides, student handouts, and transparency masters. The module addresses the basic flow formula, and…
Measurement of filtration rates by infaunal bivalves in a recirculating flume
Cole, B.E.; Thompson, J.K.; Cloern, J.E.
1992-01-01
A flume system and protocol for measuring the filtration rate of infaunal bivalves is described. Assemblages of multi-sized clams, at natural densities and in normal filter-feeding positions, removed phytoplankton suspended in a unidirectional flow of water. The free-stream velocity and friction velocity of the flow, and bottom roughness height were similar to those in natural estuarine waters. Continuous variations in phytoplankton (Chroomonas salinay) cell density were used to measure the filtration rate of the suspension-feeding clam Potamocorbula amurensis for periods of 2 to 28 h. Filtration rates of P. amurensis varied from 100 to 580 liters (gd)-1 over a free-stream velocity range of 9 to 25 cm s-1. Phytoplankton loss rates were usually constant throughout the experiments. Our results suggest that suspension-feeding by infaunal bivalves is sensitive to flow velocity. ?? 1992 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Taha, Z.; Rahim, MF Abdul; Mamat, R.
2017-10-01
The injection characteristics of direct injector affect the mixture formation and combustion processes. In addition, the injector is converted from gasoline operation for CNG application. Thus measurement of CNG direct injector mass flow rate was done by independently tested a single injector on a test bench. The first case investigated the effect of CNG injection pressure and the second case evaluate the effect of pulse-width of injection duration. An analytical model was also developed to predict the mass flow rate of the injector. The injector was operated in a choked condition in both the experiments and simulation studies. In case 1, it was shown that mass flow rate through the injector is affected by injection pressure linearly. Based on the tested injection pressure of 20 bar to 60 bar, the resultant mass flow rate are in the range of 0.4 g/s to 1.2 g/s which are met with theoretical flow rate required by the engine. However, in Case 2, it was demonstrated that the average mass flow rate at short injection durations is lower than recorded in Case 1. At injection pressure of 50 bar, the average mass flow rate for Case 2 and Case 1 are 0.7 g/s and 1.1 g/s respectively. Also, the measured mass flow rate at short injection duration showing a fluctuating data in the range of 0.2 g/s - 1.3 g/s without any noticeable trends. The injector model able to predict the trend of the mass flow rate at different injection pressure but unable to track the fluctuating trend at short injection duration.
Invited article: Time accurate mass flow measurements of solid-fueled systems.
Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D
2008-10-01
A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.
Invited Article: Time accurate mass flow measurements of solid-fueled systems
NASA Astrophysics Data System (ADS)
Olliges, Jordan D.; Lilly, Taylor C.; Joslyn, Thomas B.; Ketsdever, Andrew D.
2008-10-01
A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.
NASA Astrophysics Data System (ADS)
Crone, T. J.; Mittelstaedt, E. L.; Fornari, D. J.
2014-12-01
Fluid flow rates through high-temperature mid-ocean ridge hydrothermal vents are likely quite sensitive to poroelastic forcing mechanisms such as tidal loading and tectonic activity. Because poroelastic deformation and flow perturbations are estimated to extend to considerable depths within young oceanic crust, observations of flow rate changes at seafloor vents have the potential to provide constraints on the flow geometry and permeability structure of the underlying hydrothermal systems, as well as the quantities of heat and chemicals they exchange with overlying ocean, and the potential biological productivity of ecosystems they host. To help provide flow rate measurements in these challenging environments, we have developed two new optical flow oriented technologies. The first is a new form of Optical Plume Velocimetry (OPV) which relies on single-frame temporal cross-correlation to obtain time-averaged image velocity fields from short video sequences. The second is the VentCam, a deep sea camera system that can collect high-frame-rate video sequences at focused hydrothermal vents suitable for analysis with OPV. During the July 2014 R/V Atlantis/Alvin expedition to Axial Seamount, we deployed the VentCam at the ~300C Phoenix vent within the ASHES vent field and positioned it with DSRV Alvin. We collected 24 seconds of video at 50 frames per second every half-hour for approximately 10 days beginning July 22nd. We are currently applying single-frame lag OPV to these videos to estimate relative and absolute fluid flow rates through this vent. To explore the relationship between focused and diffuse venting, we deployed a second optical flow camera, the Diffuse Effluent Measurement System (DEMS), adjacent to this vent at a fracture within the lava carapace where low-T (~30C) fluids were exiting. This system collected video sequences and diffuse flow measurements at overlapping time intervals. Here we present the preliminary results of our work with VentCam and OPV, and comparisons with results from the DEMS camera.
Simple Radiowave-Based Method For Measuring Peripheral Blood Flow Project
NASA Technical Reports Server (NTRS)
Oliva-Buisson, Yvette J.
2014-01-01
Project objective is to design small radio frequency based flow probes for the measurement of blood flow velocity in peripheral arteries such as the femoral artery and middle cerebral artery. The result will be the technological capability to measure peripheral blood flow rates and flow changes during various environmental stressors such as microgravity without contact to the individual being monitored. This technology may also lead to an easier method of detecting venous gas emboli during extravehicular activities.
How can we maximize the diagnostic utility of uroflow?: ICI-RS 2017.
Gammie, Andrew; Rosier, Peter; Li, Rui; Harding, Chris
2018-01-09
To gauge the current level of diagnostic utility of uroflowmetry and to suggest areas needing research to improve this. A summary of the debate held at the 2017 meeting of the International Consultation on Incontinence Research Society, with subsequent analysis by the authors. Limited diagnostic sensitivity and specificity exist for maximum flow rates, multiple uroflow measurements, and flow-volume nomograms. There is a lack of clarity in flow rate curve shape description and uroflow time measurement. There is a need for research to combine uroflowmetry with other non-invasive indicators. Better standardizations of test technique, flow-volume nomograms, uroflow shape descriptions, and time measurements are required. © 2017 Wiley Periodicals, Inc.
Abulon, Dina Joy K; Buboltz, David C
2015-02-01
To measure flow rate of balanced salt solution and IOP during simulated vitrectomy using two sets of high-speed dual-pneumatic probes. A closed-model eye system measured IOP and flow rate of a balanced salt solution through infusion cannula. The Constellation Vision System was tested with two sets of high-speed dual-pneumatic probes (UltraVit 23-gauge and enhanced 25+-gauge 5000-cpm probes; UltraVit 23-gauge and enhanced 25+-gauge 7500-cpm probes; n = 6 each) under different vacuum levels and cut rates in three duty cycle modes. In both probe sets, flow rates were dependent on cut rate with the biased open and biased closed duty cycles. Flow rates were highest with the biased open duty cycle, lower with the 50/50 duty cycle, and lowest with the biased closed duty cycle. IOP, as expected, was inversely associated with flow rate using both probe sets. The 7500-cpm probes offer greater control and customization compared with 5000-cpm probes under certain experimental conditions. At maximum cut rates, performance of 7500-cpm probes was similar to that of 5000-cpm probes, suggesting that 7500-cpm probes may be used without sacrifice of flow rate and IOP stability. Customization of vitrectomy parameters allows greater surgeon control during vitrectomy and may expand the usefulness of vitrectomy probes.
Evaluation of a turbine flow meter (Ventilometer Mark 2) in the measurement of ventilation.
Cooper, C B; Harris, N D; Howard, P
1990-01-01
We have evaluated a turbine flow meter (Ventilometer Mark 2, PK Morgan, Kent, UK) at low flow rates and levels of ventilation which are likely to be encountered during exercise in patients with chronic respiratory disease. Pulsatile flows were generated from a volume-cycled mechanical ventilator, the flow wave-form was modified by damping to simulate a human breathing pattern. Comparative measurements of ventilation were made whilst varying tidal volume (VT) from 0.22 to 1.131 and respiratory rate (fR) from 10 to 35 min-1. At lower levels of ventilation the instrument tended to underread especially with increasing fR. The calibration factor must be adjusted to match the level of ventilation if the measurement errors are to be within 5%.
NASA Astrophysics Data System (ADS)
Sklaveniti, S.; Locoge, N.; Dusanter, S.; Leonardis, T.; Lew, M.; Bottorff, B.; Sigler, P. S. R.; Stevens, P. S.; Wood, E. C. D.; Kundu, S.; Gentner, D. R.
2015-12-01
Ozone is a greenhouse gas and a primary constituent of urban smog, irritating the respiratory system and damaging the vegetation. The current understanding of ozone chemistry in the troposphere indicates that net ozone production P(O3) occurs when peroxy radicals (HO2+RO2) react with NO producing NO2, whose photolysis leads to O3 formation. P(O3) values can be calculated from peroxy radical concentrations, either from ambient measurements or box model outputs. These two estimation methods often disagree for NOx mixing ratios higher than a few ppb, questioning our ability to measure peroxy radicals under high NOx conditions or indicating that there are still unknowns in our understanding of the radical and ozone production chemistry. Direct measurements of ozone production rates will help to address this issue and improve air quality regulations. We will present the development of an instrument for direct measurements of ozone production rates (OPR). The OPR instrument consists of three parts: (i) two quartz flow tubes sampling ambient air ("Ambient" and "Reference" flow tube), (ii) an O3-to-NO2 conversion unit, and (iii) a Cavity Attenuated Phase Shift (CAPS) monitor to measure NO2. The air in the Ambient flow tube undergoes the same photochemistry as in ambient air, while the Reference flow tube is covered by a UV filter limiting the formation of ozone. Exiting the flow tubes, ozone is converted into NO2 and the sum O3+NO2 (Ox) is measured by the CAPS monitor. The difference in Ox between the two flow tubes divided by the residence time yields the Ox production rate, P(Ox). P(O3) is assumed to be equal to P(Ox) when NO2 is efficiently photolyzed during daytime. We will present preliminary results from the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC) campaign in Bloomington, Indiana, during July 2015, where ozone production rates were measured by introducing various amounts of NO inside the flow tubes to investigate the ozone production sensitivity.
Anna, D H; Zellers, E T; Sulewski, R
1998-08-01
ASTM (American Society for Testing and Materials) Method F739-96 specifies a test-cell design and procedures for measuring the permeation resistance of chemical protective clothing. Among the specifications are open-loop collection stream flow rates of 0.050 to 0.150 L/min for a gaseous medium. At elevated temperatures the test must be maintained within 1 degree C of the set point. This article presents a critical analysis of the effect of the collection stream flow rate on the measured permeation rate and on the temperature uniformity within the test cell. Permeation tests were conducted on four polymeric glove materials with 44 solvents at 25 degrees C. Flow rates > 0.5 L/min were necessary to obtain accurate steady-state permeation rate (SSPR) values in 25 percent of the tests. At the lower flow rates the true SSPR typically was underestimated by a factor of two or less, but errors of up to 33-fold were observed. No clear relationship could be established between the need for a higher collection stream flow rate and either the vapor pressure or the permeation rate of the solvent, but test results suggest that poor mixing within the collection chamber was a contributing factor. Temperature gradients between the challenge and collection chambers and between the bottom and the top of the collection chamber increased with the water-bath temperature and the collection stream flow rate. Use of a test cell modified to permit deeper submersion reduced the gradients to < or = 0.5 degrees C. It is recommended that all SSPR measurements include verification of the adequacy of the collection stream flow rate. For testing at nonambient temperatures, the modified test cell described here could be used to ensure temperature uniformity throughout the cell.
Dudek Ronan, Anne; Prudic, David E.; Thodal, Carl E.; Constantz, Jim
1998-01-01
Two experiments were performed to investigate flow beneath an ephemeral stream and to estimate streambed infiltration rates. Discharge and stream-area measurements were used to determine infiltration rates. Stream and subsurface temperatures were used to interpret subsurface flow through variably saturated sediments beneath the stream. Spatial variations in subsurface temperatures suggest that flow beneath the streambed is dependent on the orientation of the stream in the canyon and the layering of the sediments. Streamflow and infiltration rates vary diurnally: Streamflow is lowest in late afternoon when stream temperature is greatest and highest in early morning when stream temperature is least. The lower afternoon Streamflow is attributed to increased infiltration rates; evapotranspiration is insufficient to account for the decreased Streamflow. The increased infiltration rates are attributed to viscosity effects on hydraulic conductivity from increased stream temperatures. The first set of field data was used to calibrate a two-dimensional variably saturated flow model that includes heat transport. The model was calibrated to (1) temperature fluctuations in the subsurface and (2) infiltration rates determined from measured Streamflow losses. The second set of field data was to evaluate the ability to predict infiltration rates on the basis of temperature measurements alone. Results indicate that the variably saturated subsurface flow depends on downcanyon layering of the sediments. They also support the field observations in indicating that diurnal changes in infiltration can be explained by temperature dependence of hydraulic conductivity. Over the range of temperatures and flows monitored, diurnal stream temperature changes can be used to estimate streambed infiltration rates. It is often impractical to maintain equipment for determining infiltration rates by traditional means; however, once a model is calibrated using both infiltration and temperature data, only relatively inexpensive temperature monitoring can later yield infiltration rates that are within the correct order of magnitude.
Costa, John E.; Jarrett, Robert D.
2008-01-01
Thirty flood peak discharges determine the envelope curve of maximum floods documented in the United States by the U.S. Geological Survey. These floods occurred from 1927 to 1978 and are extraordinary not just in their magnitude, but in their hydraulic and geomorphic characteristics. The reliability of the computed discharge of these extraordinary floods was reviewed and evaluated using current (2007) best practices. Of the 30 flood peak discharges investigated, only 7 were measured at daily streamflow-gaging stations that existed when the flood occurred, and 23 were measured at miscellaneous (ungaged) sites. Methods used to measure these 30 extraordinary flood peak discharges consisted of 21 slope-area measurements, 2 direct current-meter measurements, 1 culvert measurement, 1 rating-curve extension, and 1 interpolation and rating-curve extension. The remaining four peak discharges were measured using combinations of culvert, slope-area, flow-over-road, and contracted-opening measurements. The method of peak discharge determination for one flood is unknown. Changes to peak discharge or rating are recommended for 20 of the 30 flood peak discharges that were evaluated. Nine floods retained published peak discharges, but their ratings were downgraded. For two floods, both peak discharge and rating were corrected and revised. Peak discharges for five floods that are subject to significant uncertainty due to complex field and hydraulic conditions, were re-rated as estimates. This study resulted in 5 of the 30 peak discharges having revised values greater than about 10 percent different from the original published values. Peak discharges were smaller for three floods (North Fork Hubbard Creek, Texas; El Rancho Arroyo, New Mexico; South Fork Wailua River, Hawaii), and two peak discharges were revised upward (Lahontan Reservoir tributary, Nevada; Bronco Creek, Arizona). Two peak discharges were indeterminate because they were concluded to have been debris flows with peak discharges that were estimated by an inappropriate method (slope-area) (Big Creek near Waynesville, North Carolina; Day Creek near Etiwanda, California). Original field notes and records could not be found for three of the floods, however, some data (copies of original materials, records of reviews) were available for two of these floods. A rating was assigned to each of seven peak discharges that had no rating. Errors identified in the reviews include misidentified flow processes, incorrect drainage areas for very small basins, incorrect latitude and longitude, improper field methods, arithmetic mistakes in hand calculations, omission of measured high flows when developing rating curves, and typographical errors. Common problems include use of two-section slope-area measurements, poor site selection, uncertainties in Manning's n-values, inadequate review, lost data files, and insufficient and inadequately described high-water marks. These floods also highlight the extreme difficulty in making indirect discharge measurements following extraordinary floods. Significantly, none of the indirect measurements are rated better than fair, which indicates the need to improve methodology to estimate peak discharge. Highly unsteady flow and resulting transient hydraulic phenomena, two-dimensional flow patterns, debris flows at streamflow-gaging stations, and the possibility of disconnected flow surfaces are examples of unresolved problems not well handled by current indirect discharge methodology. On the basis of a comprehensive review of 50,000 annual peak discharges and miscellaneous floods in California, problems with individual flood peak discharges would be expected to require a revision of discharge or rating curves at a rate no greater than about 0.10 percent of all floods. Many extraordinary floods create complex flow patterns and processes that cannot be adequately documented with quasi-steady, uniform one-dimensional analyses. These floods are most accura
Flow and volume dependence of rat airway resistance during constant flow inflation and deflation.
Rubini, Alessandro; Carniel, Emanuele Luigi; Parmagnani, Andrea; Natali, Arturo Nicola
2011-12-01
The aim of this study was to measure the flow and volume dependence of both the ohmic and the viscoelastic pressure dissipations of the normal rat respiratory system separately during inflation and deflation. The study was conducted in the Respiratory Physiology Laboratory in our institution. Measurements were obtained for Seven albino Wistar rats of both sexes by using the flow interruption method during constant flow inflations and deflations. Measurements included anesthesia induction, tracheostomy and positioning of a tracheal cannula, positive pressure ventilation, constant flow respiratory system inflations and deflations at two different volumes and flows. The ohmic resistance exhibited volume and flow dependence, decreasing with lung volume and increasing with flow rate, during both inflation and deflation. The stress relaxation-related viscoelastic resistance also exhibited volume and flow dependence. It decreased with the flow rate at a constant lung volume during both inflation and deflation, but exhibited a different behavior with the lung volume at a constant flow rate (i.e., increased during inflations and decreased during deflations). Thus, stress relaxation in the rat lungs exhibited a hysteretic behavior. The observed flow and volume dependence of respiratory system resistance may be predicted by an equation derived from a model of the respiratory system that consists of two distinct compartments. The equation agrees well with the experimental data and indicates that the loading time is the critical parameter on which stress relaxation depends, during both lung inflation and deflation.
NASA Astrophysics Data System (ADS)
Fee, David; Izbekov, Pavel; Kim, Keehoon; Yokoo, Akihiko; Lopez, Taryn; Prata, Fred; Kazahaya, Ryunosuke; Nakamichi, Haruhisa; Iguchi, Masato
2017-12-01
Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been applied to the inversion technique. Here we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan. Six infrasound stations deployed from 12-20 February 2015 recorded the explosions. We compute numerical Green's functions using 3-D Finite Difference Time Domain modeling and a high-resolution digital elevation model. The inversion, assuming a simple acoustic monopole source, provides realistic eruption masses and excellent fit to the data for the majority of the explosions. The inversion results are compared to independent eruption masses derived from ground-based ash collection and volcanic gas measurements. Assuming realistic flow densities, our infrasound-derived eruption masses for ash-rich eruptions compare favorably to the ground-based estimates, with agreement ranging from within a factor of two to one order of magnitude. Uncertainties in the time-dependent flow density and acoustic propagation likely contribute to the mismatch between the methods. Our results suggest that realistic and accurate infrasound-based eruption mass and mass flow rate estimates can be computed using the method employed here. If accurate volcanic flow parameters are known, application of this technique could be broadly applied to enable near real-time calculation of eruption mass flow rates and total masses. These critical input parameters for volcanic eruption modeling and monitoring are not currently available.
Syková, E; Syka, J; Johnstone, B M; Yates, G K
1987-01-01
Longitudinal endolymph flow rate in the guinea pig cochlea was measured by determining the rate of migration of extrinsic ions, tetraethylammonium chloride (TEA) or choline, with a potassium sensitive ion-selective microelectrode (ISM). Low concentrations of iontophoretically injected TEA were detected with the ISM at various distances from the injection electrode. The results were variable when the ISM was used to record spread of TEA from turn II to turn I and vice versa. However, consistent data were obtained when the TEA spread was measured at different electrode separations (0.2, 0.5, 0.7 mm) within turn II. Electrode locations were systematically exchanged without changing their distance, i.e. the ISM electrode was placed basally or apically with respect to the TEA electrode. Comparison of data with a model, which combines the bulk diffusion of TEA and the flow of endolymph, is consistent with a rate of endolymph flow in turn II of about 0.2 mm/min, apex to base. A similar value was also obtained with the iontophoretic injection of choline. The endolymph flow rate may be different in turn I as indicated by measurements of compound action potential (CAP) changes. However, the results of experiments when TEA spread is measured at large distances must be interpreted cautiously because TEA may enter cellular walls of the cochlear duct and alternative routes of transport may be involved.
Lotufo, Guilherme R; George, Robert D; Belden, Jason B; Woodley, Christa M; Smith, David L; Rosen, Gunther
2018-02-24
Munition constituents (MC) are present in aquatic environments throughout the world. Potential for fluctuating release with low residence times may cause concentrations of MC to vary widely over time at contaminated sites. Recently, polar organic chemical integrative samplers (POCIS) have been demonstrated to be valuable tools for the environmental exposure assessment of MC in water. Flow rate is known to influence sampling by POCIS. Because POCIS sampling rates (R s ) for MC have only been determined under quasi-static conditions, the present study evaluated the uptake of 2,4,6-trinitrotoluene (TNT), RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), and 2,4- and 2,6-dinitrotoluenes (DNT), by POCIS in a controlled water flume at 7, 15, and 30 cm/s in 10-day experiments using samplers both within and without a protective cage. Sampling rate increased with flow rate for all MC investigated, but flow rate had the strongest impact on TNT and the weakest impact on RDX. For uncaged POCIS, mean R s for 30 cm/s was significantly higher than that for 7 cm by 2.7, 1.9, 1.9, and 1.3 folds for TNT, 2,4-DNT, 2,6-DNT, and RDX, respectively. For all MC except RDX, mean R s for caged POCIS at 7 cm/s were significantly lower than for uncaged samplers and similar to those measured at quasi-static condition, but except for 2,6-DNT, no caging effect was measured at the highest flow rate, indicating that the impact of caging on R s is flow rate-dependent. When flow rates are known, flow rate-specific R s should be used for generating POCIS-derived time-averaged concentrations of MC at contaminated sites.
Flow separation characteristics of unstable dispersions
NASA Astrophysics Data System (ADS)
Voulgaropoulos, Victor; Zhai, Lusheng; Angeli, Panagiota
2016-11-01
Drops of a low viscosity oil are introduced through a multi-capillary inlet during the flow of water in a horizontal pipe. The flow rates of the continuous water phase are kept in the turbulent region while the droplets are injected at similar flow rates (with oil fractions ranging from 0.15 to 0.60). The acrylic pipe (ID of 37mm) is approximately 7m long. Measurements are conducted at three different axial locations to illustrate how the flow structures are formed and develop along the pipe. Initial observations are made on the flow patterns through high-speed imaging. Stratification is observed for the flow rates studied, indicating that the turbulent dispersive forces are lower than the gravity ones. These results are complemented with a tomography system acquiring measurements at the same locations and giving the cross-sectional hold-up. The coalescence dynamics are strong in the dense-packed drop layer and thus measurements with a dual-conductance probe are conducted to capture any drop size changes. It is found that the drop size variations depend on the spatial configuration of the drops, the initial drop size along with the continuous and dispersed phase velocities. Project funded under Chevron Energy Technology.
Fast blood flow monitoring in deep tissues with real-time software correlators
Wang, Detian; Parthasarathy, Ashwin B.; Baker, Wesley B.; Gannon, Kimberly; Kavuri, Venki; Ko, Tiffany; Schenkel, Steven; Li, Zhe; Li, Zeren; Mullen, Michael T.; Detre, John A.; Yodh, Arjun G.
2016-01-01
We introduce, validate and demonstrate a new software correlator for high-speed measurement of blood flow in deep tissues based on diffuse correlation spectroscopy (DCS). The software correlator scheme employs standard PC-based data acquisition boards to measure temporal intensity autocorrelation functions continuously at 50 – 100 Hz, the fastest blood flow measurements reported with DCS to date. The data streams, obtained in vivo for typical source-detector separations of 2.5 cm, easily resolve pulsatile heart-beat fluctuations in blood flow which were previously considered to be noise. We employ the device to separate tissue blood flow from tissue absorption/scattering dynamics and thereby show that the origin of the pulsatile DCS signal is primarily flow, and we monitor cerebral autoregulation dynamics in healthy volunteers more accurately than with traditional instrumentation as a result of increased data acquisition rates. Finally, we characterize measurement signal-to-noise ratio and identify count rate and averaging parameters needed for optimal performance. PMID:27231588
Wave structure in the radial film flow with a circular hydraulic jump
NASA Astrophysics Data System (ADS)
Rao, A.; Arakeri, J. H.
A circular hydraulic jump is commonly seen when a circular liquid jet impinges on a horizontal plate. Measurements of the film thickness, jump radius and the wave structure for various jet Reynolds numbers are reported. Film thickness measurements are made using an electrical contact method for regions both upstream and downstream of the jump over circular plates without a barrier at the edge. The jump radius and the separation bubble length are measured for various flow rates, plate edge conditions, and radii. Flow visualization using high-speed photography is used to study wave structure and transition. Waves on the jet amplify in the film region upstream of the jump. At high flow rates, the waves amplify enough to cause three-dimensional breakdown and what seems like transition to turbulence. This surface wave induced transition is different from the traditional route and can be exploited to enhance heat and mass transfer rates.
Effects of free convection and friction on heat-pulse flowmeter measurement
NASA Astrophysics Data System (ADS)
Lee, Tsai-Ping; Chia, Yeeping; Chen, Jiun-Szu; Chen, Hongey; Liu, Chen-Wuing
2012-03-01
SummaryHeat-pulse flowmeter can be used to measure low flow velocities in a borehole; however, bias in the results due to measurement error is often encountered. A carefully designed water circulation system was established in the laboratory to evaluate the accuracy and precision of flow velocity measured by heat-pulse flowmeter in various conditions. Test results indicated that the coefficient of variation for repeated measurements, ranging from 0.4% to 5.8%, tends to increase with flow velocity. The measurement error increases from 4.6% to 94.4% as the average flow velocity decreases from 1.37 cm/s to 0.18 cm/s. We found that the error resulted primarily from free convection and frictional loss. Free convection plays an important role in heat transport at low flow velocities. Frictional effect varies with the position of measurement and geometric shape of the inlet and flow-through cell of the flowmeter. Based on the laboratory test data, a calibration equation for the measured flow velocity was derived by the least-squares regression analysis. When the flowmeter is used with a diverter, the range of measured flow velocity can be extended, but the measurement error and the coefficient of variation due to friction increase significantly. At higher velocities under turbulent flow conditions, the measurement error is greater than 100%. Our laboratory experimental results suggested that, to avoid a large error, the heat-pulse flowmeter measurement is better conducted in laminar flow and the effect of free convection should be eliminated at any flow velocities. Field measurement of the vertical flow velocity using the heat-pulse flowmeter was tested in a monitoring well. The calibration of measured velocities not only improved the contrast in hydraulic conductivity between permeable and less permeable layers, but also corrected the inconsistency between the pumping rate and the measured flow rate. We identified two highly permeable sections where the horizontal hydraulic conductivity is 3.7-6.4 times of the equivalent hydraulic conductivity obtained from the pumping test. The field test results indicated that, with a proper calibration, the flowmeter measurement is capable of characterizing the vertical distribution of preferential flow or hydraulic conductivity.
Cyclic variation of ultrasonic backscattering from porcine whole blood under pulsatile flow
NASA Astrophysics Data System (ADS)
Lin, Yu-Hong
1997-10-01
The cyclic variation of ultrasonic backscattering from blood under pulsatile flow is believed to be related to the change of aggregation state of red cells and is only observed in whole blood. This study was to investigate the phenomenon by an invasive approach which was performed by inserting a 10 MHz catheter mounted transducer into a vessel. For ultrasonic measurement from blood, the most fundamental scheme is the hematocrit dependence. The backscatter maximum location was changed as the blood was stirred or stationary, as well as under steady laminar or turbulent flows. The same trend was also observed under pulsatile flow with 10% to 50% hematocrits in this study, as the backscattering to hematocrit curves were plotted at different times during a flow cycle. When the cyclic variation at 20 beats per minute (BPM) was interpreted in time domain, the enhanced aggregation at the beginning of shearing was observed. At 20 BPM with 40% hematocrit, the amplitude of cyclic variation was reduced when the shear rate was increased and the threshold of 150 s-1 was estimated. The results showed that there was no cyclic variation at 60 BPM. The backscattering was also plotted against the mean flow velocity, which demonstrated the hysteresis loops. The ultrasonic measurements showed that the relationship between the forward and backward paths of the loops were altered as beat rate, hematocrit, and shear rate were varied. Since the pulsatile flow was very complicated, a computational fluid dynamics package, FIDAPTM, was used to compute the shear rate based on the Power Law Model for non-Newtonian fluid viscosity. The non- Newtonian index and consistency in the model were computed from the viscosity to shear rate curves at 10% to 50% hematocrits measured by a cone-plate viscometer. For in vivo measurements, small pigs were used as models. Ultrasonic backscattering measurements were performed in the arteries and veins. The effect of stenosis was also investigated at the site below the renal branch in the artery. The results show that the cyclic variation from whole blood was mediated by the shear rate, hematocrit, beat rate, and fibrinogen concentration.
Capes, D; Martin, K; Underwood, R
1997-10-01
The aim of this study was to investigate the flow performance of the mechanical Springfusor 30 short model and the electronic Graseby MS16A. Flow rate was measured gravimetrically in a temperature-controlled cabinet. There was no statistically significant difference between the Graseby and Springfusor syringe drivers in the flow rate error at 25 degrees C. The percentage of flow rates within +/-20% accuracy during a 35-min periods at 25 degrees C was significantly less with the Graseby, being 91.9% compared with 100% for the Springfusor. Only 58.2% of flow rates with the Graseby were within the manufacturer claimed accuracy of +/-5%. The flow rate of the Springfusor was affected by temperature; at 30 degrees C the mean flow rate was 10.8% greater than at 25 degrees C. These results indicate that the Springfusor 30 had less flow rate variation than the Graseby MS16A. However, this would not be expected to cause noticeable clinical effects when used for opioid infusion in palliative care.
Unstimulated salivary flow rate, pH and buffer capacity of saliva in healthy volunteers.
Fenoll-Palomares, C; Muñoz Montagud, J V; Sanchiz, V; Herreros, B; Hernández, V; Mínguez, M; Benages, A
2004-11-01
To assess the salivary flow rate, pH, and buffer capacity of healthy volunteers, and their relationships with age, gender, obesity, smoking, and alcohol consumption, and to establish the lower-end value of normal salivary flow (oligosialia). A prospective study was conducted in 159 healthy volunteers (age > 18 years, absence of medical conditions that could decrease salivary flow). Unstimulated whole saliva was collected during ten minutes, and salivary flow rate (ml/min), pH, and bicarbonate concentration (mmol/l) were measured using a Radiometer ABL 520. The 5 percentile of salivary flow rate and bicarbonate concentration was considered the lower limit of normality. Median salivary flow rate was 0.48 ml/min (range: 0.1-2 ml/min). Age younger than 44 years was associated with higher flow rates (OR 2.10). Compared with women, men presented a higher flow rate (OR 3.19) and buffer capacity (OR 2.81). Bicarbonate concentration correlated with salivary flow rate. The lower-end values of normal flow rate and bicarbonate concentration were 0.15 ml/min and 1.800 mmol/l, respectively. The presence of obesity, smoking, and alcohol consumption did not influence salivary parameters. In healthy volunteers, salivary flow rate depends on age and gender, and correlates with buffer capacity. Obesity, smoking, and alcohol use do not influence salivary secretion.
The effects of recirculation flows on mass transfer from the arterial wall to flowing blood.
Zhang, Zhiguo; Deng, Xiaoyan; Fan, Yubo; Guidoin, Robert
2008-01-01
Using a sudden tubular expansion as a model of an arterial stenosis, the effect of disturbed flow on mass transfer from the arterial wall to flowing blood was studied theoretically and tested experimentally by measuring the dissolution rate of benzoic acid disks forming the outer tube of a sudden tubular expansion. The study revealed that mass transfer from vessel wall to flowing fluid in regions of disturbed flow is independent of wall shear rates. The rate of mass transfer is significantly higher in regions of disturbed flow with a local maximum around the reattachment point where the wall shear rate is zero. The experimental study also revealed that the rate of mass transfer from the vessel wall to a flowing fluid is much higher in the presence of microspheres (as models of blood cells) in the flowing fluid and under the condition of pulsatile flow than in steady flow. These results imply that flow disturbance may enhance the transport of biochemicals and macromolecules, such as plasma proteins and lipoproteins synthesized within the blood vessel wall, from the blood vessel wall to flowing blood.
Electromagnetic Monitoring of Lava Tubes: Numerical Modeling and Instrument Testing
NASA Astrophysics Data System (ADS)
Sly, Michael K.
Currently the only method to measure the flow rates of lava in lava tubes is through the use of a skylight. This means that only a fraction of lava tubes can be measured. It is important to know the flow rate throughout a lava tube to know how much lava is being produced by a volcano at a given time. In order to measure the flow rate without using a skylight we can utilize the electromagnetic properties of flowing lava and the Lorentz force. Theoretical as well as numerical methods have been used to model an expected response using this technique. The experimental results will be compared to these models to discern accuracy. The main difficulty involved in this experiment is the high resistivity of the basalt that surrounds the lava tube. In order to obtain measurements in this environment high impedance electrodes are needed. After months of development and testing, multiple high impedance electrodes are available to be used on any surface including basalt. These electrodes are able to measure electric signals through any highly resistive surface including concrete, asphalt, basalt, and ice. Currently no tests have been done or are planned to measure flowing lava. Instead we will measure flowing sea water in pipes on the SIO campus. These pipes provide a good analog to the lava tubes. These tests have provided useful information about the noise floor for this system, telling us that a response from a full size lava tube could most likely be seen.
Can hydraulic-modelled rating curves reduce uncertainty in high flow data?
NASA Astrophysics Data System (ADS)
Westerberg, Ida; Lam, Norris; Lyon, Steve W.
2017-04-01
Flood risk assessments rely on accurate discharge data records. Establishing a reliable rating curve for calculating discharge from stage at a gauging station normally takes years of data collection efforts. Estimation of high flows is particularly difficult as high flows occur rarely and are often practically difficult to gauge. Hydraulically-modelled rating curves can be derived based on as few as two concurrent stage-discharge and water-surface slope measurements at different flow conditions. This means that a reliable rating curve can, potentially, be derived much faster than a traditional rating curve based on numerous stage-discharge gaugings. In this study we compared the uncertainty in discharge data that resulted from these two rating curve modelling approaches. We applied both methods to a Swedish catchment, accounting for uncertainties in the stage-discharge gauging and water-surface slope data for the hydraulic model and in the stage-discharge gauging data and rating-curve parameters for the traditional method. We focused our analyses on high-flow uncertainty and the factors that could reduce this uncertainty. In particular, we investigated which data uncertainties were most important, and at what flow conditions the gaugings should preferably be taken. First results show that the hydraulically-modelled rating curves were more sensitive to uncertainties in the calibration measurements of discharge than water surface slope. The uncertainty of the hydraulically-modelled rating curves were lowest within the range of the three calibration stage-discharge gaugings (i.e. between median and two-times median flow) whereas uncertainties were higher outside of this range. For instance, at the highest observed stage of the 24-year stage record, the 90% uncertainty band was -15% to +40% of the official rating curve. Additional gaugings at high flows (i.e. four to five times median flow) would likely substantially reduce those uncertainties. These first results show the potential of the hydraulically-modelled curves, particularly where the calibration gaugings are of high quality and cover a wide range of flow conditions.
Estimates of Lava Eruption Rates at Alba Patera, Mars
NASA Technical Reports Server (NTRS)
Baloga, S. M.; Pieri, D. C.
1985-01-01
The Martian volcanic complex Alba Patera exhibits a suite of well-defined, long and relatively narrow lava flows qualitatively resembling those found in Hawaii. Even without any information on the duration of the Martian flows, eruption rates (total volume discharge/duration of the extrusion) estimates are implied by the physical dimensions of the flows and the likely conjecture that Stephan-Boltzmann radiation is the dominating thermal loss mechanism. The ten flows in this analysis emanate radially from the central vent and were recently measured in length, plan areas, and average thicknesses by shadow measurement techniques. The dimensions of interest are shown. Although perhaps morphologically congruent to certain Hawaiian flows, the dramatically expanded physical dimensions of the Martian flows argues for some markedly distinct differences in lava flow composition for eruption characteristics.
Improvements to a Flow Sensor for Liquid Bismuth-Fed Hall Thrusters
NASA Technical Reports Server (NTRS)
Bonds, Kevin; Polzin, Kurt A.
2010-01-01
Recently, there has been significant interest in using bismuth metal as a propellant in Hall Thrusters [1, 2]. Bismuth offers some considerable cost, weight, and space savings over the traditional propellant--xenon. Quantifying the performance of liquid metal-fed Hall thrusters requires a very precise measure of the low propellant flow rates [1, 2]. The low flow rates (10 mg/sec) and the temperature at which free flowing liquid bismuth exists (above 300 C) preclude the use of off-the-shelf flow sensing equipment [3]. Therefore a new type of sensor is required. The hotspot bismuth flow sensor, described in Refs. [1-5] is designed to perform a flow rate measurement by measuring the velocity at which a thermal feature moves through a flow chamber. The mass flow rate can be determined from the time of flight of the thermal peak, [4, 5]. Previous research and testing has been concerned mainly with the generation of the thermal peak and it's subsequent detection. In this paper, we present design improvements to the sensor concept; and the results of testing conducted to verify the functionality of these improvements. A ceramic material is required for the sensor body (see Fig. 1), which must allow for active heating of the bismuth flow channel to keep the propellant in a liquid state. The material must be compatible with bismuth and must be bonded to conductive elements to allow for conduction of current into the liquid metal and measurement of the temperature in the flow. The new sensor requires fabrication techniques that will allow for a very small diameter flow chamber, which is required to produce useful measurements. Testing of various materials has revealed several that are potentially compatible with liquid bismuth. Of primary concern in the fabrication and testing of a robust, working prototype, is the compatibility of the selected materials with one another. Specifically, the thermal expansion rates of the materials relative to the ceramic body cannot expand so much as to cause cracks in the body or cause the bond between parts to delaminate. Those parts that will carry the current pulse must be electrically conductive while the sensor body must be an electrical insulator. Generally, the material choices as well as the sensor design must aid to preserve the integrity of the thermal feature to obtain accurate measurements. The present aim is to also incorporate, into the sensor body, an active heating arrangement based on ceramic heater technology similar to that used in semiconductor manufacturing.
Milk Flow Rates from bottle nipples used after hospital discharge.
Pados, Britt Frisk; Park, Jinhee; Thoyre, Suzanne M; Estrem, Hayley; Nix, W Brant
To test the milk flow rates and variability in flow rates of bottle nipples used after hospital discharge. Twenty-six nipple types that represented 15 common brands as well as variety in price per nipple and store location sold (e.g., Babies R' Us, Walmart, Dollar Store) were chosen for testing. Ten of each nipple type (n = 260 total) were tested by measuring the amount of infant formula expressed in 1 minute using a breast pump. Mean milk flow rate (mL/min) and coefficient of variation (CV) were calculated. Flow rates of nipples within brand were compared statistically. Milk flow rates varied from 1.68 mL/min for the Avent Natural Newborn Flow to 85.34 mL/min for the Dr. Brown's Standard Y-cut. Variability between nipple types also varied widely, from .03 for the Dr. Brown's Standard Level 3 to .37 for MAM Nipple 1 Slow Flow. The extreme range of milk flow rates found may be significant for medically fragile infants being discharged home who are continuing to develop oral feeding skills. The name of the nipple does not provide clear information about the flow rate to guide parents in decision making. Variability in flow rates within nipples of the same type may complicate oral feeding for the medically fragile infant who may not be able to adapt easily to change in flow rates. Both flow rate and variability should be considered when guiding parents to a nipple choice.
Apparatus and method for acoustic monitoring of steam quality and flow
Sinha, Dipen N.; Pantea, Cristian
2016-09-13
An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.
NASA Astrophysics Data System (ADS)
Garel, F.; Kaminski, E.; Tait, S.; Limare, A.
2014-06-01
The prediction of lava flow advance and velocity is crucial during an effusive volcanic crisis. The effusion rate is a key control of lava dynamics, and proxies have been developed to estimate it in near real-time. The thermal proxy in predominant use links the satellite-measured thermal radiated power to the effusion rate. It lacks however a robust physical basis to allow time-dependent modeling. We investigate here through analogue experiments the coupling between the spreading of a solidifying flow and its surface thermal signal. We extract a first order behavior from experimental results obtained using polyethylene glycol (PEG) wax, that solidifies abruptly during cooling. We find that the flow advance is discontinuous, with relatively low supply rates yielding long stagnation phases and compound flows. Flows with higher supply rates are less sensitive to solidification and display a spreading behavior closer to that of purely viscous currents. The total power radiated from the upper surface also grows by stages, but the signal radiated by the hottest and liquid part of the flow reaches a quasi-steady state after some time. This plateau value scales around half of the theoretical prediction of a model developed previously for the spreading and cooling of isoviscous gravity currents. The corrected scaling yields satisfying estimates of the effusion rate from the total radiated power measured on a range of basaltic lava flows. We conclude that a gross estimate of the supply rate of solidifying flows can be retrieved from thermal remote-sensing, but the predictions of lava advance as a function of effusion rate appears a more difficult task due to chaotic emplacement of solidifying flows.
Time-resolved flowmetering of gas-liquid two-phase pipe flow by ultrasound pulse Doppler method
NASA Astrophysics Data System (ADS)
Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi
2012-03-01
Ultrasound pulse Doppler method is applied for componential volumetric flow rate measurement in multiphase pipe flow consisted of gas and liquid phases. The flowmetering is realized with integration of measured velocity profile over the cross section of the pipe within liquid phase. Spatio-temporal position of interface is detected also with the same ultrasound pulse, which further gives cross sectional void fraction. A series of experimental demonstration was shown by applying this principle of measurement to air-water two-phase flow in a horizontal tube of 40 mm in diameter, of which void fraction ranges from 0 to 90% at superficial velocity from 0 to 15 m/s. The measurement accuracy is verified with a volumetric type flowmeter. We also analyze the accuracy of area integration of liquid velocity distribution for many different patterns of ultrasound measurement lines assigned on the cross section of the tube. The present method is also identified to be pulsation sensor of flow rate that fluctuates with complex gas-liquid interface behavior.
NASA Astrophysics Data System (ADS)
Hamdollahi, Hassan; Rahbar-Shahrouzi, Javad
2018-05-01
In this paper, a cantilever-type flow meter was fabricated to measure the rate of air flow in turbulent subsonic regimes such as purged gases. In the fabrication process, a piezoresistive material was coated on an interdigitated electric board as a substrate. The piezoresistive layer was a blend of latex as the polymeric matrix and graphene oxide as the sensing nanomaterial agent, which was reduced by solvothermal reduction method. The piezoresistive blend was dip-coated on a substrate with dotted pattern and was then reduced at 240 °C for 1 h in every coating step. When an air flow passed over the surface of the cantilever beam, the beam was bent in the downward direction, resulting in small variations in the resistance of the piezoresistive layer and a change in the bending angle of the cantilever which were measured simultaneously. The air flow rate was acquired via calibrating electrical resistance changes by Arduino and Wheatstone bridge circuit. The blending angle of the substrate caused by the interaction between the airflow and the cantilever and recorded by the camera and image processing was ultimately compared with the simulation results. The flow meter accuracy as a percentage of full scale (% FS) was calculated to be ±5.8%, and mean deviation was equal to 2.1 (% FS) with the appropriate response time of 0.70 s at the air flow range of 100‑240 m s‑1. Highlights • A cantilever-type flow meter was fabricated to measure the high-speed air flow rate. • The sensitive piezoresistive material was composed of GO and latex. • The dip-coating method was used to deposit the piezoresistive layer on the fiberglass substrate. • The impact of effective parameters on the performance of the flow meter was investigated. • A simulation study was performed and the results were compared with the experimental data.
Lei, Wenwen; Rigozzi, Michelle K; McKenzie, David R
2016-02-01
This review assesses the current state of understanding of the calculation of the rate of flow of gases, vapours and liquids confined in channels, in porous media and in permeable materials with an emphasis on the flow of water and its vapour. One motivation is to investigate the relation between the permeation rate of moisture and that of a noncondensable test gas such as helium, another is to assist in unifying theory and experiment across disparate fields. Available theories of single component ideal gas flows in channels of defined geometry (cylindrical, rectangular and elliptical) are described and their predictions compared with measurement over a wide range of conditions defined by the Knudsen number. Theory for two phase flows is assembled in order to understand the behaviour of four standard water leak configurations: vapour, slug, Washburn and liquid flow, distinguished by the number and location of phase boundaries (menisci). Air may or may not be present as a background gas. Slip length is an important parameter that greatly affects leak rates. Measurements of water vapour flows confirm that water vapour shows ideal gas behaviour. Results on carbon nanotubes show that smooth walls may lead to anomalously high slip lengths arising from the properties of 'confined' water. In porous media, behaviour can be matched to the four standard leaks. Traditional membrane permeation models consider that the permeant dissolves, diffuses and evaporates at the outlet side, ideas we align with those from channel flow. Recent results on graphite oxide membranes show examples where helium which does not permeate while at the same time moisture is almost unimpeded, again a result of confined water. We conclude that while there is no a priori relation between a noncondensable gas flow and a moisture flow, measurements using helium will give results within two orders of magnitude of the moisture flow rate, except in the case where there is anomalous slip or confined water, when moisture specific measurements are essential.
Identification of Carbon loss in the production of pilot-scale Carbon nanotube using gauze reactor
NASA Astrophysics Data System (ADS)
Wulan, P. P. D. K.; Purwanto, W. W.; Yeni, N.; Lestari, Y. D.
2018-03-01
Carbon loss more than 65% was the major obstacles in the Carbon Nanotube (CNT) production using gauze pilot scale reactor. The results showed that the initial carbon loss calculation is 27.64%. The calculation of carbon loss, then, takes place with various corrections parameters of: product flow rate error measurement, feed flow rate changes, gas product composition by Gas Chromatography Flame Ionization Detector (GC FID), and the carbon particulate by glass fiber filters. Error of product flow rate due to the measurement with bubble soap gives calculation error of carbon loss for about ± 4.14%. Changes in the feed flow rate due to CNT growth in the reactor reduce carbon loss by 4.97%. The detection of secondary hydrocarbon with GC FID during CNT production process reduces carbon loss by 5.14%. Particulates carried by product stream are very few and merely correct the carbon loss about 0.05%. Taking all the factors into account, the amount of carbon loss within this study is (17.21 ± 4.14)%. Assuming that 4.14% of carbon loss is due to the error measurement of product flow rate, the amount of carbon loss is 13.07%. It means that more than 57% of carbon loss within this study is identified.
Influence of Dai-kenchu-to (DKT) on human portal blood flow.
Ogasawara, Takashi; Morine, Yuji; Ikemoto, Tetsuya; Imura, Satoru; Fujii, Masahiko; Soejima, Yuji; Shimada, Mitsuo
2008-01-01
Dai-kenchu-to (DKT) is known as an herbal medicine used for postoperative ileus. However, no report exists about the effect of DKT on portal blood flow. The aim of this study is to clarify the influence of DKT on portal blood flow. To healthy volunteers (Healthy; n = 6), cirrhotic patients (Cirrhosis; n = 7) and liver-transplant patients (LTx; n = 3), DKT (2.5g) with 100mL of warm water was orally administrated in the DKT group, and only warm water was administrated in the control group. The portal blood flow rate (M-VEL: cm/sec.) and portal blood flow (Flow volume: mL/min.) was measured each time after administration using an ultrasonic Doppler method. Furthermore, the arterial blood pressure and heart rate was measured at the same time points. In the DKT group, a significant increase of M-VEL (120%) and flow volume (150%) 30 minutes after administration was observed in both Healthy and Cirrhosis in comparison with the control group. In LTx, there was also a significant increase of flow volume (128%) 30 minutes after administration. However, there was no change in average blood pressure and heart rate in all groups. DKT increases portal blood flow in early phase after oral administration without any significant changes in the blood pressure and heart rate.
Microparticle tracking velocimetry as a tool for microfluidic flow measurements
NASA Astrophysics Data System (ADS)
Salipante, Paul; Hudson, Steven D.; Schmidt, James W.; Wright, John D.
2017-07-01
The accurate measurement of flows in microfluidic channels is important for commercial and research applications. We compare the accuracy of flow measurement techniques over a wide range flows. Flow measurements made using holographic microparticle tracking velocimetry (µPTV) and a gravimetric flow standard over the range of 0.5-100 nL/s agree within 0.25%, well within the uncertainty of the two flow systems. Two commercial thermal flow sensors were used as the intermediaries (transfer standards) between the two flow measurement systems. The gravimetric flow standard was used to calibrate the thermal flow sensors by measuring the rate of change of the mass of liquid in a beaker on a micro-balance as it fills. The holographic µPTV flow measurements were made in a rectangular channel and the flow was seeded with 1 µm diameter polystyrene spheres. The volumetric flow was calculated using the Hagen-Pouiseille solution for a rectangular channel. The uncertainty of both flow measurement systems is given. For the gravimetric standard, relative uncertainty increased for decreasing flows due to surface tension forces between the pipette carrying the flow and the free surface of the liquid in the beaker. The uncertainty of the holographic µPTV measurements did not vary significantly over the measured flow range, and thus comparatively are especially useful at low flow velocities.
Measurement of gas yields and flow rates using a custom flowmeter
Circone, S.; Kirby, S.H.; Pinkston, J.C.; Stern, L.A.
2001-01-01
A simple gas collection apparatus based on the principles of a Torricelli tube has been designed and built to measure gas volume yields and flow rates. This instrument is routinely used to monitor and collect methane gas released during methane hydrate dissociation experiments. It is easily and inexpensively built, operates at ambient pressures and temperatures, and measures gas volumes of up to 7 L to a precision of about 15 ml (about 0.0025 mol). It is capable of measuring gas flow rates varying from more than 103 to less than 10-1 ml/min during gas evolution events that span minutes to several days. We have obtained a highly reproducible hydrate number of n=5.891 with a propagated uncertainty of ??0.020 for synthetic methane hydrate. ?? 2001 American Institute of Physics.
Augmentative effect of pulsatility on the wall shear stress in tube flow.
Nakata, M; Tatsumi, E; Tsukiya, T; Taenaka, Y; Nishimura, T; Nishinaka, T; Takano, H; Masuzawa, T; Ohba, K
1999-08-01
Wall shear stress (WSS) has been considered to play an important role in the physiological and metabolic functions of the vascular endothelial cells. We investigated the effects of the pulse rate and the maximum flow rate on the WSS to clarify the influence of pulsatility. Water was perfused in a 1/2 inch transparent straight cylinder with a nonpulsatile centrifugal pump and a pulsatile pneumatic ventricular assist device (VAD). In nonpulsatile flow (NF), the flow rate was changed 1 to 6 L/min by 1 L/min increments to obtain standard values of WSS at each flow rate. In pulsatile flow (PF), the pulse rate was controlled at 40, 60, and 80 bpm, and the maximum flow rate was varied from 3.3 to 12.0 L/min while the mean flow rate was kept at 3 L/min. The WSS was estimated from the velocity profile at measuring points using the laser illuminated fluorescence method. In NF, the WSS was 12.0 dyne/cm2 at 3 L/min and 33.0 dyne/cm2 at 6 L/min. In PF, the pulse rate change with the same mean, and the maximum flow rate did not affect WSS. On the other hand, the increase in the maximum flow rate at the constant mean flow rate of 3 L/min augmented the mean WSS from 13.1 to 32.9 dyne/cm2. We concluded that the maximum flow rate exerted a substantial augmentative effect on WSS, and the maximum flow rate was a dominant factor of pulsatility in this effect.
Quantifying the flow rate of the Deepwater Horizon Macondo Well oil spill
NASA Astrophysics Data System (ADS)
Camilli, R.; Bowen, A.; Yoerger, D. R.; Whitcomb, L. L.; Techet, A. H.; Reddy, C. M.; Sylva, S.; Seewald, J.; di Iorio, D.; Whoi Flow Rate Measurement Group
2010-12-01
The Deepwater Horizon blowout in the Mississippi Canyon block 252 of the Gulf of Mexico created the largest recorded offshore oil spill. The well outflow’s multiple leak sources, turbulent multiphase flow, tendency for hydrate formation, and extreme source depth of 1500 m below the sea surface complicated the quantitative estimation of oil and gas leakage rates. We present methods and results from a U.S. Coast Guard sponsored flow assessment study of the Deepwater Horizon’s damaged blow out preventer and riser. This study utilized a remotely operated vehicle equipped with in-situ acoustic sensors (a Doppler sonar and an imaging multibeam sonar) and isobaric gas-tight fluid samplers to measure directly outflow from the damaged well. Findings from this study indicate oil release rates and total release volume estimates that corroborate estimates made by the federal government’s Flow Rate Technical Group using non-acoustic techniques. The acoustic survey methods reported here provides a means for estimating fluid flow rates in subsurface environments, and are potentially useful for a diverse range of oceanographic applications. Photograph of the Discoverer Enterprise burning natural gas collected from the Macondo well blowout preventer during flow measurement operations. Copyright Wood Hole Oceanographic Institution.
Hoganson, David M; Hinkel, Cameron J; Chen, Xiaomin; Agarwal, Ramesh K; Shenoy, Surendra
2014-01-01
Stenosis in a vascular access circuit is the predominant cause of access dysfunction. Hemodynamic significance of a stenosis identified by angiography in an access circuit is uncertain. This study utilizes computational fluid dynamics (CFD) to model flow through arteriovenous fistula to predict the functional significance of stenosis in vascular access circuits. Three-dimensional models of fistulas were created with a range of clinically relevant stenoses using SolidWorks. Stenoses diameters ranged from 1.0 to 3.0 mm and lengths from 5 to 60 mm within a fistula diameter of 7 mm. CFD analyses were performed using a blood model over a range of blood pressures. Eight patient-specific stenoses were also modeled and analyzed with CFD and the resulting blood flow calculations were validated by comparison with brachial artery flow measured by duplex ultrasound. Predicted flow rates were derived from CFD analysis of a range of stenoses. These stenoses were modeled by CFD and correlated with the ultrasound measured flow rate through the fistula of eight patients. The calculated flow rate using CFD correlated within 20% of ultrasound measured flow for five of eight patients. The mean difference was 17.2% (ranged from 1.3% to 30.1%). CFD analysis-generated flow rate tables provide valuable information to assess the functional significance of stenosis detected during imaging studies. The CFD study can help in determining the clinical relevance of a stenosis in access dysfunction and guide the need for intervention.
Fee, David; Izbekov, Pavel; Kim, Keehoon; ...
2017-10-09
Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been appliedmore » to the inversion technique. Furthermore we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fee, David; Izbekov, Pavel; Kim, Keehoon
Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been appliedmore » to the inversion technique. Furthermore we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan.« less
Air change rates (ACRs) and interzonal flows are key determinants of indoor air quality (IAQ) and building energy use. This paper characterizes ACRs and interzonal flows in 126 houses, and evaluates effects of these parameters on IAQ. ACRs measured using weeklong tracer measureme...
The Shape of the Urine Stream — From Biophysics to Diagnostics
Wheeler, Andrew P. S.; Morad, Samir; Buchholz, Noor; Knight, Martin M.
2012-01-01
We develop a new computational model of capillary-waves in free-jet flows, and apply this to the problem of urological diagnosis in this first ever study of the biophysics behind the characteristic shape of the urine stream as it exits the urethral meatus. The computational fluid dynamics model is used to determine the shape of a liquid jet issuing from a non-axisymmetric orifice as it deforms under the action of surface tension. The computational results are verified with experimental modelling of the urine stream. We find that the shape of the stream can be used as an indicator of both the flow rate and orifice geometry. We performed volunteer trials which showed these fundamental correlations are also observed in vivo for male healthy volunteers and patients undergoing treatment for low flow rate. For healthy volunteers, self estimation of the flow shape provided an accurate estimation of peak flow rate (). However for the patients, the relationship between shape and flow rate suggested poor meatal opening during voiding. The results show that self measurement of the shape of the urine stream can be a useful diagnostic tool for medical practitioners since it provides a non-invasive method of measuring urine flow rate and urethral dilation. PMID:23091609
Handpiece coolant flow rates and dental cutting.
von Fraunhofer, J A; Siegel, S C; Feldman, S
2000-01-01
High-speed handpieces incorporate water coolant sprays to remove cutting debris and minimize thermal insult to the pulp. Little data exists on optimal coolant flow rates during clinical procedures. This study compared the effect of different coolant flow rates on diamond stone cutting efficiency. Cutting studies were performed on Macor machinable ceramic using a previously developed test regimen--a KaVo high-speed handpiece at a cutting force of 91.5 g (0.9 N). Cutting was performed with round end tapered medium grit diamond stones under cooling water flow rates of 15, 20, 25, 30 and 44 ml/min, with cutting rates determined as the time to transect the 13 mm square cross-section of the Macor bar. Each bur was used for five cuts, with six burs used for each flow rate, for a total of 150 measurements. The data were analyzed by one-way ANOVA with a post hoc Scheffé test. The cutting studies indicated that diamond stone cutting rates increased with higher coolant flow rates over the range of 15-44 ml/min. The data suggest that higher coolant flow rates promote cutting efficiency.
Time-resolved fluorescence decay measurements for flowing particles
Deka, C.; Steinkamp, J.A.
1999-06-01
Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.
Time-resolved fluorescence decay measurements for flowing particles
Deka, Chiranjit; Steinkamp, John A.
1999-01-01
Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.
Estimation of inlet flow rates for image-based aneurysm CFD models: where and how to begin?
Valen-Sendstad, Kristian; Piccinelli, Marina; KrishnankuttyRema, Resmi; Steinman, David A
2015-06-01
Patient-specific flow rates are rarely available for image-based computational fluid dynamics models. Instead, flow rates are often assumed to scale according to the diameters of the arteries of interest. Our goal was to determine how choice of inlet location and scaling law affect such model-based estimation of inflow rates. We focused on 37 internal carotid artery (ICA) aneurysm cases from the Aneurisk cohort. An average ICA flow rate of 245 mL min(-1) was assumed from the literature, and then rescaled for each case according to its inlet diameter squared (assuming a fixed velocity) or cubed (assuming a fixed wall shear stress). Scaling was based on diameters measured at various consistent anatomical locations along the models. Choice of location introduced a modest 17% average uncertainty in model-based flow rate, but within individual cases estimated flow rates could vary by >100 mL min(-1). A square law was found to be more consistent with physiological flow rates than a cube law. Although impact of parent artery truncation on downstream flow patterns is well studied, our study highlights a more insidious and potentially equal impact of truncation site and scaling law on the uncertainty of assumed inlet flow rates and thus, potentially, downstream flow patterns.
NASA Technical Reports Server (NTRS)
Walthall, Harry G.; Reay, William G.
1993-01-01
Instrument measures seepage of groundwater into inland or coastal body of water. Positioned at depth as great as 40 meters, and measures flow at low rate and low pressure differential. Auxiliary pressure meter provides data for correlation of flow of groundwater with tides and sea states. Seepage meter operates independently for several weeks. Its sampling rate adjusted to suit hydrologic conditions; to measure more frequently when conditions changing rapidly. Used in water-quality management and for biological and geological research. Potential industrial uses include measurement of seepage of caustic and corrosive liquids.
Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania
Kang, Mary; Kanno, Cynthia M.; Reid, Matthew C.; Zhang, Xin; Mauzerall, Denise L.; Celia, Michael A.; Chen, Yuheng; Onstott, Tullis C.
2014-01-01
Abandoned oil and gas wells provide a potential pathway for subsurface migration and emissions of methane and other fluids to the atmosphere. Little is known about methane fluxes from the millions of abandoned wells that exist in the United States. Here, we report direct measurements of methane fluxes from abandoned oil and gas wells in Pennsylvania, using static flux chambers. A total of 42 and 52 direct measurements were made at wells and at locations near the wells (“controls”) in forested, wetland, grassland, and river areas in July, August, October 2013 and January 2014, respectively. The mean methane flow rates at these well locations were 0.27 kg/d/well, and the mean methane flow rate at the control locations was 4.5 × 10−6 kg/d/location. Three out of the 19 measured wells were high emitters that had methane flow rates that were three orders of magnitude larger than the median flow rate of 1.3 × 10−3 kg/d/well. Assuming the mean flow rate found here is representative of all abandoned wells in Pennsylvania, we scaled the methane emissions to be 4–7% of estimated total anthropogenic methane emissions in Pennsylvania. The presence of ethane, propane, and n-butane, along with the methane isotopic composition, indicate that the emitted methane is predominantly of thermogenic origin. These measurements show that methane emissions from abandoned oil and gas wells can be significant. The research required to quantify these emissions nationally should be undertaken so they can be accurately described and included in greenhouse gas emissions inventories. PMID:25489074
Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania.
Kang, Mary; Kanno, Cynthia M; Reid, Matthew C; Zhang, Xin; Mauzerall, Denise L; Celia, Michael A; Chen, Yuheng; Onstott, Tullis C
2014-12-23
Abandoned oil and gas wells provide a potential pathway for subsurface migration and emissions of methane and other fluids to the atmosphere. Little is known about methane fluxes from the millions of abandoned wells that exist in the United States. Here, we report direct measurements of methane fluxes from abandoned oil and gas wells in Pennsylvania, using static flux chambers. A total of 42 and 52 direct measurements were made at wells and at locations near the wells ("controls") in forested, wetland, grassland, and river areas in July, August, October 2013 and January 2014, respectively. The mean methane flow rates at these well locations were 0.27 kg/d/well, and the mean methane flow rate at the control locations was 4.5 × 10(-6) kg/d/location. Three out of the 19 measured wells were high emitters that had methane flow rates that were three orders of magnitude larger than the median flow rate of 1.3 × 10(-3) kg/d/well. Assuming the mean flow rate found here is representative of all abandoned wells in Pennsylvania, we scaled the methane emissions to be 4-7% of estimated total anthropogenic methane emissions in Pennsylvania. The presence of ethane, propane, and n-butane, along with the methane isotopic composition, indicate that the emitted methane is predominantly of thermogenic origin. These measurements show that methane emissions from abandoned oil and gas wells can be significant. The research required to quantify these emissions nationally should be undertaken so they can be accurately described and included in greenhouse gas emissions inventories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, R.B.; Borling, D.C.; Powers, B.S.
1998-02-01
A multiphase flowmeter (MPFM) installed in offshore Egypt has accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive, with no moving parts, requires no flow mixing before measurement, and has no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow caused by the dynamics of gas-lift gas in the production stream. Average gas-volume fraction ranged from 93 to 98% during tests conducted on seven wells. The meter was installed in the Gulf of Suez on a well protector platformmore » in the Gulf of Suez Petroleum Co. (Gupco) October field, and was placed in series with a test separator located on a nearby production platform. Wells were individually tested with flow conditions ranging from 1,300 to 4,700 B/D fluid, 2.4 to 3.9 MMscf/D of gas, and water cuts from 1 to 52%. The meter is capable of measuring water cuts up to 100%. Production was routed through both the MPFM and the test separator simultaneously as wells flowed with the assistance of gas-lift gas. The MPFM measured gas and liquid rates to within {+-} 10% of test-separator reference measurement flow rates, and accomplished this at gas-volume fractions from 93 to 96%. At higher gas-volume fractions up to 98%, accuracy deteriorated but the meter continued to provide repeatable results.« less
NASA Astrophysics Data System (ADS)
Secchi, Eleonora; Marbach, Sophie; Siria, Alessandro; Bocquet, Lyderic
2015-11-01
Over the last decade, nanometric sized channels have been intensively investigated since new model of fluid transport are expected due to the flow confinement at the nanometric scale. Nanoconfinement generates new phenomena, such as superfast flows in carbon nanotubes and slippage over smooth surfaces. However, a major challenge of nanofluidics lies in fabricating nanoscale fluidic devices and developing new velocimetry techniques able to measure flow rates down to femtoL/s. In this work we report the experimental study of the velocity fields generated by pressure driven flow from glass nanochannel with a diameter ranging from 1 μm to 100nm. The flow emerging from these channels can be described by the classical Landau-Squire solution of the Navier-Stokes equation for a point jet. We show that due to the peculiarity of this flow, it can be used as an efficient probe to characterize the permeability of nanochannels. Velocity field is measured experimentally seeding the fluid in the reservoir with 500 nm Polystyrene particles and measuring the velocity with a standard PIV algorithm. Predictions are tested for nanochannels of several dimensions and supported by ionic current measurement. This demonstrates that this technique is a powerful tool to characterize the flow through nanochannels. We finally apply this method to the measurement of the flow emerging from a single carbon nanotube inserted in the nanochannels and present first data of permeability measurement through a single nanotube.
Seed Cotton Mass Flow Measurement in the Gin
USDA-ARS?s Scientific Manuscript database
Seed cotton mass flow measurement is necessary for the development of improved gin process control systems that can increase gin efficiency and improve fiber quality. Previous studies led to the development of a seed cotton mass flow rate sensor based on the static pressure drop across the blowbox, ...
Improving H-Q rating curves in temprorary streams by using Acoustic Doppler Current meters
NASA Astrophysics Data System (ADS)
Marchand, P.; Salles, C.; Rodier, C.; Hernandez, F.; Gayrard, E.; Tournoud, M.-G.
2012-04-01
Intermittent rivers pose different challenges to stream rating due to high spatial and temporal gradients. Long dry periods, cut by short duration flush flood events explain the difficulty to obtain reliable discharge data, for low flows as well as for floods: problems occur with standard gauging, zero flow period, etc. Our study aims to test the use of an acoustic Doppler currentmeter (ADC) for improving stream rating curves in small catchments subject to large variations of discharge, solid transport and high eutrophication levels. The study is conducted at the outlet of the river Vène, a small coastal river (67 km2) located close to the city of Montpellier (France). The low flow period lasts for more than 6 month; during this period the river flow is sustained by effluents from urban sewage systems, which allows development of algae and macrophytes in the riverbed. The ADC device (Sontek ®Argonaut SW) is a pulsed Doppler current profiling system designed for measuring water velocity profiles and levels that are used to compute volumetric flow rates. It is designed for shallow waters (less than 4 meter depth). Its main advantages are its low cost and high accuracy (±1% of the measured velocity or ±0.05 m/sec, as reported by the manufacturer). The study will evaluate the improvement in rating curves in an intermittent flow context and the effect of differences in sensitivity between low and high water level, by comparing mean flow velocity obtained by ADC to direct discharges measurements. The study will also report long-term use of ADC device, by considering effects of biofilms, algae and macrophytes, as well as solid transport on the accuracy of the measurements. In conclusion, we show the possibility to improve stream rating and continuous data collection of an intermittent river by using a ADC with some precautions.
Tyree, M T
1983-10-01
Sap flow rates and sap pressure changes were measured in dormant sugar maple trees (Acer saccharum Marsh.). In the forest, sap flow rates and pressure changes were measured from tap holes drilled into tree trunks in mature trees and sap flow rates were measured from the base of excised branches. Excised branches were also brought into the laboratory where air temperature could be carefully controlled in a refrigerated box and sap flow rates and sap pressures were measured from the cut base of the branches.Under both forest and laboratory conditions, sap uptake occurred as the wood temperature declined but much more rapid sap uptake correlated with the onset of the freezing exotherm. When sap pressures were measured under conditions of negligible volume displacement, the sap pressure rapidly fell to -60 to -80 kilopascals at the start of the freezing exotherm. The volume of water uptake and the rate of uptake depended on the rate of freezing. A slow freezing rate correlated with a large volume of water uptake, a fast freezing rate induced a smaller volume of water uptake. The volume of water uptake ranged from 0.02 to 0.055 grams water per gram dry weight of sapwood. The volume of water exuded after thawing was usually less than the volume of uptake so that after several freezing and thawing cycles the sapwood water content increased from 0.7 to 0.8 grams water per gram dry weight.These results are discussed in terms of a physical model of the mechanism of maple sap uptake and exudation first proposed by P. E. R. O'Malley. The proposed mechanism of sap uptake is by vapor distillation in air filled wood fiber lumina during the freezing of minor branches. Gravity and pressurized air bubbles (compressed during freezing) cause sap flow from the canopy down the tree after the thaw.
Tyree, Melvin T.
1983-01-01
Sap flow rates and sap pressure changes were measured in dormant sugar maple trees (Acer saccharum Marsh.). In the forest, sap flow rates and pressure changes were measured from tap holes drilled into tree trunks in mature trees and sap flow rates were measured from the base of excised branches. Excised branches were also brought into the laboratory where air temperature could be carefully controlled in a refrigerated box and sap flow rates and sap pressures were measured from the cut base of the branches. Under both forest and laboratory conditions, sap uptake occurred as the wood temperature declined but much more rapid sap uptake correlated with the onset of the freezing exotherm. When sap pressures were measured under conditions of negligible volume displacement, the sap pressure rapidly fell to −60 to −80 kilopascals at the start of the freezing exotherm. The volume of water uptake and the rate of uptake depended on the rate of freezing. A slow freezing rate correlated with a large volume of water uptake, a fast freezing rate induced a smaller volume of water uptake. The volume of water uptake ranged from 0.02 to 0.055 grams water per gram dry weight of sapwood. The volume of water exuded after thawing was usually less than the volume of uptake so that after several freezing and thawing cycles the sapwood water content increased from 0.7 to 0.8 grams water per gram dry weight. These results are discussed in terms of a physical model of the mechanism of maple sap uptake and exudation first proposed by P. E. R. O'Malley. The proposed mechanism of sap uptake is by vapor distillation in air filled wood fiber lumina during the freezing of minor branches. Gravity and pressurized air bubbles (compressed during freezing) cause sap flow from the canopy down the tree after the thaw. PMID:16663208
Method and device for determining heats of combustion of gaseous hydrocarbons
NASA Technical Reports Server (NTRS)
Singh, Jag J. (Inventor); Sprinkle, Danny R. (Inventor); Puster, Richard L. (Inventor)
1988-01-01
A method and device is provided for a quick, accurate and on-line determination of heats of combustion of gaseous hydrocarbons. First, the amount of oxygen in the carrier air stream is sensed by an oxygen sensing system. Second, three individual volumetric flow rates of oxygen, carrier stream air, and hydrocrabon test gas are introduced into a burner. The hydrocarbon test gas is fed into the burner at a volumetric flow rate, n, measured by a flowmeter. Third, the amount of oxygen in the resulting combustion products is sensed by an oxygen sensing system. Fourth, the volumetric flow rate of oxygen is adjusted until the amount of oxygen in the combustion product equals the amount of oxygen previously sensed in the carrier air stream. This equalizing volumetric flow rate is m and is measured by a flowmeter. The heat of combustion of the hydrocrabon test gas is then determined from the ratio m/n.
NASA Astrophysics Data System (ADS)
Williams, J. H.; Johnson, C. D.; Paillet, F. L.
2004-05-01
In the past, flow logging was largely restricted to the application of spinner flowmeters to determine flow-zone contributions in large-diameter production wells screened in highly transmissive aquifers. Development and refinement of tool-measurement technology, field methods, and analysis techniques has greatly extended and enhanced flow logging to include the hydraulic characterization of boreholes and aquifer flow zones at contaminated bedrock sites. State-of-the-art in flow logging will be reviewed, and its application to bedrock-contamination investigations will be presented. In open bedrock boreholes, vertical flows are measured with high-resolution flowmeters equipped with flexible rubber-disk diverters fitted to the nominal borehole diameters to concentrate flow through the measurement throat of the tools. Heat-pulse flowmeters measure flows in the range of 0.05 to 5 liters per minute, and electromagnetic flowmeters measure flows in the range of 0.3 to 30 liters per minute. Under ambient and low-rate stressed (either extraction or injection) conditions, stationary flowmeter measurements are collected in competent sections of the borehole between fracture zones identified on borehole-wall images. Continuous flow, fluid-resistivity, and temperature logs are collected under both sets of conditions while trolling with a combination electromagnetic flowmeter and fluid tool. Electromagnetic flowmeters are used with underfit diverters to measure flow rates greater than 30 liters per minute and suppress effects of diameter variations while trolling. A series of corrections are applied to the flow-log data to account for the zero-flow response, bypass, trolling, and borehole-diameter biases and effects. The flow logs are quantitatively analyzed by matching simulated flows computed with a numerical model to measured flows by varying the hydraulic properties (transmissivity and hydraulic head) of the flow zones. Several case studies will be presented that demonstrate the integration of flow logging in site-characterization activities framework; 2) evaluate cross-connection effects and determine flow-zone contributions to water-quality samples from open boreholes; and 3) design discrete-zone hydraulic tests and monitoring-well completions.
Gingival blood flow measurement with a non-contact laser flowmeter.
Matsuki, M; Xu, Y B; Nagasawa, T
2001-07-01
A non-contact laser flowmeter was used to measure the changing of the gingival blood flow. Five university students with healthy oral condition were selected in this study. The blood flow measurement on the extensor digitorum (above the head of third metacarpal), with the changing of distance and angle between the probe and the tissue was used as a pre-study experiment. Blood flow rate was determined in the labial gingiva (2 mm above the cervical line) of upper central incisor using a stent fixing the probe at a 3-mm distance from the tissue. A basal level of gingival blood flow was taken two times each day for 5 days. The effects of water of different temperatures on the gingival blood flow are discussed. With the changing of distance, the blood flow rate became smaller, but there was no significant effect from the angle. The reproducibility was acceptable through the 5-day measurement. After stimulating with warm and body temperature water, the blood flow first increased significantly and then went back to the basal line (faster with the body temperature water). With cold water, different reactions between the subjects were observed.
The Relationship between High Flow Nasal Cannula Flow Rate and Effort of Breathing in Children.
Weiler, Thomas; Kamerkar, Asavari; Hotz, Justin; Ross, Patrick A; Newth, Christopher J L; Khemani, Robinder G
2017-10-01
To use an objective metric of effort of breathing to determine optimal high flow nasal cannula (HFNC) flow rates in children <3 years of age. Single-center prospective trial in a 24-bed pediatric intensive care unit of children <3 years of age on HFNC. We measured the percent change in pressure∙rate product (PRP) (an objective measure of effort of breathing) as a function of weight-indexed flow rates of 0.5, 1.0, 1.5, and 2.0 L/kg/minute. For a subgroup of patients, 2 different HFNC delivery systems (Fisher & Paykel [Auckland, New Zealand] and Vapotherm [Exeter, New Hampshire]) were compared. Twenty-one patients (49 titration episodes) were studied. The most common diagnoses were bronchiolitis and pneumonia. Overall, there was a significant difference in the percent change in PRP from baseline (of 0.5 L/kg/minute) with increasing flow rates for the entire cohort (P < .001) with largest change at 2.0 L/kg/min (-21%). Subgroup analyses showed no significant difference in percent change in PRP from baseline when comparing the 2 different HFNC delivery systems (P = .12). Patients ≤8 kg experienced a larger percent change in PRP as HFNC flow rates were increased (P = .001) than patients >8 kg. The optimal HFNC flow rate to reduce effort of breathing in infants and young children is approximately 1.5-2.0 L/kg/minute with more benefit seen in children ≤8 kg. Copyright © 2017 Elsevier Inc. All rights reserved.
An electrode polarization impedance based flow sensor for low water flow measurement
NASA Astrophysics Data System (ADS)
Yan, Tinghu; Sabic, Darko
2013-06-01
This note describes an electrode polarization impedance based flow sensor for low water flow measurement. It consists of two pairs of stainless steel electrodes set apart and inserted into a non-conductive flow tube with each pair of electrodes placed diametrically at the opposite sides. The flow sensor is modeled as a typical four-electrode system of which two electrodes are current-carrying and the other two serve as output pick ups. The polarization impedances of the two current carrying electrodes are affected by water flows resulting in changes of differential potential between the two pick-up electrodes which are separated by the same fluid. The interrogation of the two excitation electrodes with dc biased ac signals offers significantly higher sensor sensitivities to flow. The prototype flow sensor constructed for a 20 mm diameter pipeline was able to measure water flow rate as low as tested at 1.06 l h-1 and remained sensitive at a flow rate of 25.18 l h-1 when it was driven with a sinusoidal voltage at 1000 Hz with a peak ac amplitude of 2 V and a dc offset of +8 V. The nonlinear characteristics of the sensor response indicate that the sensor is more sensitive at low flows and will not be able to measure at very high flows. Additional experiments are needed to evaluate the influences of impurities, chemical species, ions constituents, conductivity and temperature over a practical range of residential water conditions, the effects of fluctuating ground signals, measurement uncertainty, power consumption, compensation of effects and practical operations. The flow sensor (principle) presented may be used as (in) a secondary sensor in combination with an existing electronic water meter to extend the low end of measurement range in residential water metering.
NASA Astrophysics Data System (ADS)
Nakabayashi, Mikie; Ono, Yumie; Ichinose, Masashi
2018-02-01
Diffuse correlation spectroscopy (DCS) has a potential to noninvasively and quantitatively measure the blood flow in the exercising muscle that could contribute to the fields of sports physiology and medicine. However, the blood flow index (BFI) measured from skin surface by DCS reflects hemodynamic signals from both superficial tissue and muscle layer. Thus, an appropriate calibration technology is required to quantify the absolute blood flow in the muscle layer. We therefore fabricated a realistic two-layer phantom model consisted of a static silicon layer imitating superficial tissue and a dynamic flow layer imitating the muscle blood flow and investigated the relationship between the simulated blood flow rate in the muscle layer and the BFI measured from the surface of the phantom. The absorption coefficient and the reduced scattering coefficient of the forearm were measured from 25 healthy young adults using a time-resolved nearinfrared spectroscopy. The depths of the superficial and muscle layers of forearm were also determined by ultrasound tomography images from 25 healthy young adults. The phantoms were fabricated to satisfy these optical coefficients and anatomical constraints. The simulated blood flow rate were set from 0 mL/ min to 68.7 mL/ min in ten steps, which is considered to cover a physiological range of mean blood flow of the forearm between per 100g of muscle tissue at rest to heavy dynamic handgrip exercise. We found a proportional relationship between the flow rates and BFIs with significant correlation coefficient of R = 0.986. Our results suggest that the absolute exercising muscle blood flow could be estimated by DCS with optimal calibration using phantom models.
An Investigation into Performance Modelling of a Small Gas Turbine Engine
2012-10-01
b = Combustor part load constant f = Fuel to mass flow ratio or scale factor h = Enthalpy F = Force P = Pressure T = Temperature W = Mass flow...HP engine performance parameters[5,6] Parameter Condition (ISA, SLS) Value Thrust 108000 rpm 230 N Pressure Ratio 108000 rpm 4 Mass Flow Rate...system. The reasons for removing the electric starter were to ensure uniform flow through the bell- mouth for mass flow rate measurement, eliminate a
The structure of evaporating and combusting sprays: Measurements and predictions
NASA Technical Reports Server (NTRS)
Shuen, J. S.; Solomon, A. S. P.; Faeth, G. M.
1982-01-01
An apparatus was constructed to provide measurements in open sprays with no zones of recirculation, in order to provide well-defined conditions for use in evaluating spray models. Measurements were completed in a gas jet, in order to test experimental methods, and are currently in progress for nonevaporating sprays. A locally homogeneous flow (LHF) model where interphase transport rates are assumed to be infinitely fast; a separated flow (SF) model which allows for finite interphase transport rates but neglects effects of turbulent fluctuations on drop motion; and a stochastic SF model which considers effects of turbulent fluctuations on drop motion were evaluated using existing data on particle-laden jets. The LHF model generally overestimates rates of particle dispersion while the SF model underestimates dispersion rates. The stochastic SF flow yield satisfactory predictions except at high particle mass loadings where effects of turbulence modulation may have caused the model to overestimate turbulence levels.
Design and setup of intermittent-flow respirometry system for aquatic organisms.
Svendsen, M B S; Bushnell, P G; Steffensen, J F
2016-01-01
Intermittent-flow respirometry is an experimental protocol for measuring oxygen consumption in aquatic organisms that utilizes the best features of closed (stop-flow) and flow-through respirometry while eliminating (or at least reducing) some of their inherent problems. By interspersing short periods of closed-chamber oxygen consumption measurements with regular flush periods, accurate oxygen uptake rate measurements can be made without the accumulation of waste products, particularly carbon dioxide, which may confound results. Automating the procedure with easily available hardware and software further reduces error by allowing many measurements to be made over long periods thereby minimizing animal stress due to acclimation issues. This paper describes some of the fundamental principles that need to be considered when designing and carrying out automated intermittent-flow respirometry (e.g. chamber size, flush rate, flush time, chamber mixing, measurement periods and temperature control). Finally, recent advances in oxygen probe technology and open source automation software will be discussed in the context of assembling relatively low cost and reliable measurement systems. © 2015 The Fisheries Society of the British Isles.
Emplacement of Basaltic Lava Flows: the Legacy of GPL Walker
NASA Astrophysics Data System (ADS)
Cashman, K. V.
2005-12-01
Through his early field measurements of lava flow morphology, G.P.L. Walker established a framework for examination of the dynamics of lava flow emplacement that is still in place today. I will examine this legacy as established by three early papers: (1) his 1967 paper, where he defined a relationship between the thickness of recent Etna lava flows and the slope over which they flowed, a relationship that he ascribed to lava viscosity; (2) his 1971 paper, which defined a relationship between lava flux and the formation of simple and compound flow units that he used to infer high effusion rates for the emplacement of some flood basalt lavas; and (3) his often-cited 1973 paper, which related the length of lava flows to their average effusion rate. These three papers, all similar in their basic approach of using field measurements of lava flow morphology to extract fundamental relationships between eruption conditions (magma flux and rheology) and emplacement style (flow length and thickness), firmly established the relationship between flow morphology and emplacement dynamics that has since been widely applied not only to subaerial lava flows, but also to the interpretation of flows in submarine and planetary environments. Important extensions of these concepts have been provided by improved field observation methods, particularly for analysis of flowing lava, by laboratory measurements of lava rheology, by the application of analog experiments to lava flow dynamics, and by steady improvement of numerical techniques to model the flow of lava over complex terrain. The real legacy of G.P.L. Walker's field measurement approach, however, may lie in the future, as new topographic measurement techniques such as LIDAR hold exciting promise for truly quantitative analysis of lava flow morphologies and their relationship to flow dynamics.
Acoustic measurement of the Deepwater Horizon Macondo well flow rate
Camilli, Richard; Di Iorio, Daniela; Bowen, Andrew; Reddy, Christopher M.; Techet, Alexandra H.; Yoerger, Dana R.; Whitcomb, Louis L.; Seewald, Jeffrey S.; Sylva, Sean P.; Fenwick, Judith
2012-01-01
On May 31, 2010, a direct acoustic measurement method was used to quantify fluid leakage rate from the Deepwater Horizon Macondo well prior to removal of its broken riser. This method utilized an acoustic imaging sonar and acoustic Doppler sonar operating onboard a remotely operated vehicle for noncontact measurement of flow cross-section and velocity from the well’s two leak sites. Over 2,500 sonar cross-sections and over 85,000 Doppler velocity measurements were recorded during the acquisition process. These data were then applied to turbulent jet and plume flow models to account for entrained water and calculate a combined hydrocarbon flow rate from the two leak sites at seafloor conditions. Based on the chemical composition of end-member samples collected from within the well, this bulk volumetric rate was then normalized to account for contributions from gases and condensates at initial leak source conditions. Results from this investigation indicate that on May 31, 2010, the well’s oil flow rate was approximately 0.10 ± 0.017 m3 s-1 at seafloor conditions, or approximately 85 ± 15 kg s-1 (7.4 ± 1.3 Gg d-1), equivalent to approximately 57,000 ± 9,800 barrels of oil per day at surface conditions. End-member chemical composition indicates that this oil release rate was accompanied by approximately an additional 24 ± 4.2 kg s-1 (2.1 ± 0.37 Gg d-1) of natural gas (methane through pentanes), yielding a total hydrocarbon release rate of 110 ± 19 kg s-1 (9.5 ± 1.6 Gg d-1). PMID:21903931
NASA Technical Reports Server (NTRS)
Hardalupas, Y.; Whitelaw, J. H.
1993-01-01
An experimental investigation was performed to quantify the characteristics of the sprays of coaxial injectors with particular emphasis on those aspects relevant to the performance of rocket engines. Measurements for coaxial air blast atomizers were obtained using air to represent the gaseous stream and water to represent the liquid stream. A wide range of flow conditions were examined for sprays with and without swirl for gaseous streams. The parameters varied include Weber number, gas flow rate, liquid flow rate, swirl, and nozzle geometry. Measurements were made with a phase Doppler velocimeter. Major conclusions of the study focused upon droplet size as a function of Weber number, effect of gas flow rate on atomization and spray spread, effect of nozzle geometry on atomization and spread, effect of swirl on atomization, spread, jet recirculation and breakup, and secondary atomization.
Observation of dual-mode, Kelvin-Helmholtz instability vortex merger in a compressible flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, W. C.; Malamud, Guy; Shimony, A.
Here, we report the first observations of Kelvin-Helmholtz vortices evolving from well-characterized, dual-mode initial conditions in a steady, supersonic flow. The results provide the first measurements of the instability's vortex merger rate and supplement data on the inhibition of the instability's growth rate in a compressible flow. These experimental data were obtained by sustaining a shockwave over a foam-plastic interface with a precision-machined seed perturbation. This technique produced a strong shear layer between two plasmas at high-energy-density conditions. The system was diagnosed using x-ray radiography and was well-reproduced using hydrodynamic simulations. Experimental measurements imply that we observed the anticipated vortexmore » merger rate and growth inhibition for supersonic shear flow.« less
Observation of dual-mode, Kelvin-Helmholtz instability vortex merger in a compressible flow
Wan, W. C.; Malamud, Guy; Shimony, A.; ...
2017-04-25
Here, we report the first observations of Kelvin-Helmholtz vortices evolving from well-characterized, dual-mode initial conditions in a steady, supersonic flow. The results provide the first measurements of the instability's vortex merger rate and supplement data on the inhibition of the instability's growth rate in a compressible flow. These experimental data were obtained by sustaining a shockwave over a foam-plastic interface with a precision-machined seed perturbation. This technique produced a strong shear layer between two plasmas at high-energy-density conditions. The system was diagnosed using x-ray radiography and was well-reproduced using hydrodynamic simulations. Experimental measurements imply that we observed the anticipated vortexmore » merger rate and growth inhibition for supersonic shear flow.« less
Milk flow rates from bottle nipples used after hospital discharge
Pados, Britt Frisk; Park, Jinhee; Thoyre, Suzanne M.; Estrem, Hayley; Nix, W. Brant
2016-01-01
Purpose To test the milk flow rates and variability in flow rates of bottle nipples used after hospital discharge. Study Design and Methods Twenty-six nipple types that represented 15 common brands as well as variety in price per nipple and store location sold (e.g., Babies R’ Us, Walmart, Dollar Store) were chosen for testing. Ten of each nipple type (n=260 total) were tested by measuring the amount of infant formula expressed in one minute using a breast pump. Mean milk flow rate (mL/min) and coefficient of variation (CV) were calculated. Flow rates of nipples within brand were compared statistically. Results Milk flow rates varied from 1.68 mL/min for the Avent Natural Newborn Flow to 85.34 mL/min for the Dr. Brown’s Standard Y-cut. Variability between nipple types also varied widely, from .03 for the Dr. Brown’s Standard Level 3 to .37 for MAM Nipple 1 Slow Flow. Clinical Implications The extreme range of milk flow rates found may be significant for medically fragile infants being discharged home who are continuing to develop oral feeding skills. The name of the nipple does not provide clear information about the flow rate to guide parents in decision-making. Variability in flow rates within nipples of the same type may complicate oral feeding for the medically fragile infant who may not be able to adapt easily to change in flow rates. Both flow rate and variability should be considered when guiding parents to a nipple choice. PMID:27008466
NASA Astrophysics Data System (ADS)
Jaatinen, Ahti; Grönman, Aki; Turunen-Saaresti, Teemu; Backman, Jari
2011-06-01
Three vaned diffusers, designed to have high negative incidence (-8°) at the design operating point, are studied experimentally. The overall performance (efficiency and pressure ratio) are measured at three rotational speeds, and flow angles before and after the diffuser are measured at the design rotational speed and with three mass flow rates. The results are compared to corresponding results of the original vaneless diffuser design. Attention is paid to the performance at lower mass flows than the design mass flow. The results show that it is possible to improve the performance at mass flows lower than the design mass flow with a vaned diffuser designed with high negative incidence. However, with the vaned diffusers, the compressor still stalls at higher mass flow rates than with the vaneless one. The flow angle distributions after the diffuser are more uniform with the vaned diffusers.
Bhimani, Jai P.; Ouseph, Rosemary; Ward, Richard A.
2010-01-01
Background. Diffusive clearance depends on blood and dialysate flow rates and the overall mass transfer area coefficient (KoA) of the dialyzer. Although KoA should be constant for a given dialyzer, urea KoA has been reported to vary with dialysate flow rate possibly because of improvements in flow distribution. This study examined the dependence of KoA for urea, phosphate and β2-microglobulin on dialysate flow rate in dialyzers containing undulating fibers to promote flow distribution and two different fiber packing densities. Methods. Twelve stable haemodialysis patients underwent dialysis with four different dialyzers, each used with a blood flow rate of 400 mL/min and dialysate flow rates of 350, 500 and 800 mL/min. Clearances of urea, phosphate and β2-microglobulin were measured and KoA values calculated. Results. Clearances of urea and phosphate, but not β2-microglobulin, increased significantly with increasing dialysate flow rate. However, increasing dialysate flow rate had no significant effect on KoA or Ko for any of the three solutes examined, although Ko for urea and phosphate increased significantly as the average flow velocity in the dialysate compartment increased. Conclusions. For dialyzers with features that promote good dialysate flow distribution, increasing dialysate flow rate beyond 600 mL/min at a blood flow rate of 400 mL/min is likely to have only a modest impact on dialyzer performance, limited to the theoretical increase predicted for a constant KoA. PMID:20543211
Ide, Momo; Saruta, Juri; To, Masahiro; Yamamoto, Yuko; Sugimoto, Masahiro; Fuchida, Shinya; Yokoyama, Mina; Kimoto, Shigenari; Tsukinoki, Keiichi
2016-10-01
The antimicrobial substances in saliva contribute to the maintenance of both oral health and overall health of the body. Therefore, the associations among immunoglobulin A (IgA), lactoferrin and lysozyme flow rates in the saliva of children, and their relationships with the physical attributes and lifestyle factors of children, were examined. Saliva was collected from 90 children who visited the Kanagawa Dental University Hospital Pediatric Dentistry, and questionnaires were completed by guardians. IgA, lactoferrin and lysozyme concentrations were measured in the saliva samples using enzyme-linked immunosorbent assays (ELISAs). The IgA flow rate in saliva increased as age, height and weight increased. A correlation was found between lactoferrin and lysozyme flow rates. When the antimicrobial substance flow rates in the saliva were divided into two groups of 22 children each based on the highest and lowest quartiles, children with either a low or high IgA flow rate also had a high or low lactoferrin flow rate, respectively. The same pattern was observed for lactoferrin and lysozyme flow rates. There is a high probability that the IgA flow rate in the saliva of children reflects and corresponds to the developmental status of immune function as the child ages and increases in height and weight. The flow rates of lactoferrin and lysozyme were correlated in children. In addition, regarding lifestyle factors, the duration of sleep and lactoferrin flow rate were also related.
NASA Astrophysics Data System (ADS)
Juarsa, M.; Giarno; Rohman, A. N.; Heru K., G. B.; Witoko, J. P.; Sony Tjahyani, D. T.
2018-02-01
The need for large-scale experimental facilities to investigate the phenomenon of natural circulation flow rate becomes a necessity in the development of nuclear reactor safety management. The FASSIP-01 loop has been built to determine the natural circulation flow rate performance in the large-scale media and aimed to reduce errors in the results for its application in the design of new generation reactors. The commissioning needs to be done to define the capability of the FASSIP-01 loop and to prescribe the experiment limitations. On this commissioning, two scenarios experimental method has been used. The first scenario is a static condition test which was conducted to verify measurement system response during 24 hours without electrical load in heater and cooler, there is water and no water inside the rectangular loop. Second scenario is a dynamics condition that aims to understand the flow rate, a dynamic test was conducted using heater power of 5627 watts and coolant flow rate in the HSS loop of 9.35 LPM. The result of this test shows that the temperature characterization on static test provide a recommendation, that the experiments should be done at night because has a better environmental temperature stability compared to afternoon, with stable temperature around 1°C - 3°C. While on the dynamic test, the water temperature difference between the inlet-outlets in the heater area is quite large, about 7 times the temperature difference in the cooler area. The magnitude of the natural circulation flow rate calculated is much larger at about 300 times compared to the measured flow rate with different flow rate profiles.
NASA Astrophysics Data System (ADS)
Yagi, Ippei; Shirakawa, Yuki; Hirakata, Kenta; Akiyama, Taketoshi; Yonemori, Seiya; Mizuno, Kazue; Ono, Ryo; Oda, Tetsuji
2015-10-01
Mouse melanoma cells in a culture medium are treated using a nanosecond pulsed streamer discharge plasma and the correlations between the rate of cell death and the densities of reactive species (OH, O, and NO) in the plasma are measured. The plasma is irradiated onto the culture medium surface with a vertical gas flow of an O2/N2 mixture from a glass tube at various gas flow rates and O2 concentrations. The densities of the reactive species are measured very close to the culture medium surface, where the reactive species interact with the culture medium, using laser-induced fluorescence. In the case of the N2 discharge (O2 = 0%), an increase in gas flow rate decreases OH density because it lowers the water vapor concentration by diluting the vapor, which is required for OH production. The increase in gas flow rate also leads to a decreased cell death rate. In the case of the O2/N2 discharge, on the other hand, an increase in O2 concentration at a fixed flow rate does not affect the rate of cell death, although it considerably changes the O and NO densities. These findings indicate that some reactive species derived from water vapor such as OH are responsible for the melanoma cell death, whereas those from O2, such as O and NO, are less likely responsible. They also indicate the importance of water evaporation from the culture medium surface in cell treatment.
Ethylene Trace-gas Techniques for High-speed Flows
NASA Technical Reports Server (NTRS)
Davis, David O.; Reichert, Bruce A.
1994-01-01
Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.
Influence of different heating types on the pumping performance of a bubble pump
NASA Astrophysics Data System (ADS)
Bierling, Bernd; Schmid, Fabian; Spindler, Klaus
2017-11-01
This study presents an experimental investigation of the influence of different heating types on the pumping performance of a bubble pump. A test rig was set up at the Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart. The vertical lift tube is made of copper with an inner diameter of 8 mm and a length of 1.91 m. The working fluid is demineralized water. The test rig offers the possibility to vary the supplied heat flow (0 W - 750 W), the resulting supplied heat flux and the location of the heating. Investigations were carried out using spot heating, partial-length heating and full-length heating. A Coriolis mass flowmeter was successfully implemented which measures the vapor mass flow rate continuously. The improvement of the vapor mass flow rate measurement by using the continuous measurement method compared to a discontinuous one is discussed. Furthermore, the influence of an unstable inlet temperature of the working fluid entering the lift tube on the pumping performance is investigated. The focus of this publication lies on the build-up of the test rig with the measurement setup and the analysis of the pumping performance for the three heating types. The measurement results show a big influence of the heating type on the pumping performance. The lower the relative length of the heating, the higher is the pumping ratio which is defined as the lifted liquid mass flow rate in relation to the generated vapor mass flow rate.
Kim, Won Ho; Hong, Tae Hee; Byun, Joung Hun; Kim, Jong Woo; Kim, Sung Hwan; Moon, Sung Ho; Park, Hyun Oh; Choi, Jun Young; Yang, Jun Ho; Jang, In Seok; Lee, Chung Eun; Yun, Jeong Hee
In refractory cardiogenic shock, veno-arterial extracorporeal membrane oxygenation (ECMO) can be initiated. Although left heart decompression can be accomplished by insertion of a left atrial (LA) or left ventricular (LV) cannula using a percutaneous pigtail catheter, the venting flow rate according to catheter size and ECMO flow rate is unknown. We developed an artificial ECMO circuit. One liter saline bag with its pressure set to 20 mm Hg was connected to ECMO to mimic LV failure. A pigtail catheter was inserted into the 1 L saline bag to simulate LV unloading. For each pigtail catheter size (5-8 Fr) and ECMO flow rate (2.0-4.0 L/min), the moving distance of an air bubble that was injected through a three-way stopcock was measured in the arterial pressure line between the pigtail catheter and ECMO inflow limb. The flow rate was then calculated. We obtained the following equation to estimate the pigtail catheter flow rate.Pigtail vent catheter flow rate (ml/min) = 8×ECMOflow rate(L /min)+9×pigtail catheter size(Fr)- 57This equation would aid in designing of a further study to determine optimal venting flow rate. To achieve optimal venting flow, our equation would enable selection of an adequate catheter size.
Internal Flow of Contra-Rotating Small Hydroturbine at Off- Design Flow Rates
NASA Astrophysics Data System (ADS)
SHIGEMITSU, Toru; TAKESHIMA, Yasutoshi; OGAWA, Yuya; FUKUTOMI, Junichiro
2016-11-01
Small hydropower generation is one of important alternative energy, and enormous potential lie in the small hydropower. However, efficiency of small hydroturbines is lower than that of large one. Then, there are demands for small hydroturbines to keep high performance in wide flow rate range. Therefore, we adopted contra-rotating rotors, which can be expected to achieve high performance. In this research, performance of the contra-rotating small hydroturbine with 60mm casing diameter was investigated by an experiment and numerical analysis. Efficiency of the contra-rotating small hydroturbine was high in pico-hydroturbine and high efficiency could be kept in wide flow rate range, however the performance of a rear rotor decreased significantly in partial flow rates. Then, internal flow condition, which was difficult to measure experimentally, was investigated by the numerical flow analysis. Then, a relation between the performance and internal flow condition was considered by the numerical analysis result.
[A capillary blood flow velocity detection system based on linear array charge-coupled devices].
Zhou, Houming; Wang, Ruofeng; Dang, Qi; Yang, Li; Wang, Xiang
2017-12-01
In order to detect the flow characteristics of blood samples in the capillary, this paper introduces a blood flow velocity measurement system based on field-programmable gate array (FPGA), linear charge-coupled devices (CCD) and personal computer (PC) software structure. Based on the analysis of the TCD1703C and AD9826 device data sheets, Verilog HDL hardware description language was used to design and simulate the driver. Image signal acquisition and the extraction of the real-time edge information of the blood sample were carried out synchronously in the FPGA. Then a series of discrete displacement were performed in a differential operation to scan each of the blood samples displacement, so that the sample flow rate could be obtained. Finally, the feasibility of the blood flow velocity detection system was verified by simulation and debugging. After drawing the flow velocity curve and analyzing the velocity characteristics, the significance of measuring blood flow velocity is analyzed. The results show that the measurement of the system is less time-consuming and less complex than other flow rate monitoring schemes.
NASA Technical Reports Server (NTRS)
Chirivella, J. E.
1975-01-01
Instrumentation for the measurement of plume exhaust specie deposition rates were developed and demonstrated. The instruments, two sets of quartz crystal microbalances, were designed for low temperature operation in the back flow and variable temperature operation in the core flow regions of an exhaust plume. These quartz crystal microbalances performed nominally, and measurements of exhaust specie deposition rates for 8400 number of pulses for a 0.1-lb monopropellant thruster are reported.
Initial testing of a 3D printed perfusion phantom using digital subtraction angiography
NASA Astrophysics Data System (ADS)
Wood, Rachel P.; Khobragade, Parag; Ying, Leslie; Snyder, Kenneth; Wack, David; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.
2015-03-01
Perfusion imaging is the most applied modality for the assessment of acute stroke. Parameters such as Cerebral Blood Flow (CBF), Cerebral Blood volume (CBV) and Mean Transit Time (MTT) are used to distinguish the tissue infarct core and ischemic penumbra. Due to lack of standardization these parameters vary significantly between vendors and software even when provided with the same data set. There is a critical need to standardize the systems and make them more reliable. We have designed a uniform phantom to test and verify the perfusion systems. We implemented a flow loop with different flow rates (250, 300, 350 ml/min) and injected the same amount of contrast. The images of the phantom were acquired using a Digital Angiographic system. Since this phantom is uniform, projection images obtained using DSA is sufficient for initial validation. To validate the phantom we measured the contrast concentration at three regions of interest (arterial input, venous output, perfused area) and derived time density curves (TDC). We then calculated the maximum slope, area under the TDCs and flow. The maximum slope calculations were linearly increasing with increase in flow rate, the area under the curve decreases with increase in flow rate. There was 25% error between the calculated flow and measured flow. The derived TDCs were clinically relevant and the calculated flow, maximum slope and areas under the curve were sensitive to the measured flow. We have created a systematic way to calibrate existing perfusion systems and assess their reliability.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, Marcos G.; Boucher, Timothy J.
1997-01-01
A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.
PIV measurements in a compact return diffuser under multi-conditions
NASA Astrophysics Data System (ADS)
Zhou, L.; Lu, W. G.; Shi, W. D.
2013-12-01
Due to the complex three-dimensional geometries of impellers and diffusers, their design is a delicate and difficult task. Slight change could lead to significant changes in hydraulic performance and internal flow structure. Conversely, the grasp of the pump's internal flow pattern could benefit from pump design improvement. The internal flow fields in a compact return diffuser have been investigated experimentally under multi-conditions. A special Particle Image Velocimetry (PIV) test rig is designed, and the two-dimensional PIV measurements are successfully conducted in the diffuser mid-plane to capture the complex flow patterns. The analysis of the obtained results has been focused on the flow structure in diffuser, especially under part-load conditions. The vortex and recirculation flow patterns in diffuser are captured and analysed accordingly. Strong flow separation and back flow appeared at the part-load flow rates. Under the design and over-load conditions, the flow fields in diffuser are uniform, and the flow separation and back flow appear at the part-load flow rates, strong back flow is captured at one diffuser passage under 0.2Qdes.
Osinga, Ronald; Derksen-Hooijberg, Marlous; Wijgerde, Tim; Verreth, Johan A J
2017-06-15
Rates of dark respiration and net photosynthesis were measured for six replicate clonal fragments of the stony coral Galaxea fascicularis (Linnaeus 1767), which were incubated under 12 different combinations of dissolved oxygen (20%, 100% and 150% saturation), dissolved carbon dioxide (9.5 and 19.1 µmol l -1 ) and water flow (1-1.6 versus 4-13 cm s -1 ) in a repeated measures design. Dark respiration was enhanced by increased flow and increased oxygen saturation in an interactive way, which relates to improved oxygen influx into the coral tissue. Oxygen saturation did not influence net photosynthesis: neither hypoxia nor hyperoxia affected net photosynthesis, irrespective of flow and pH, which suggests that hyperoxia does not induce high rates of photorespiration in this coral. Flow and pH had a synergistic effect on net photosynthesis: at high flow, a decrease in pH stimulated net photosynthesis by 14%. These results indicate that for this individual of G. fascicularis , increased uptake of carbon dioxide rather than increased efflux of oxygen explains the beneficial effect of water flow on photosynthesis. Rates of net photosynthesis measured in this study are among the highest ever recorded for scleractinian corals and confirm a strong scope for growth. © 2017. Published by The Company of Biologists Ltd.
Fluctuations of wormlike micelle fluids in capillary flow
NASA Astrophysics Data System (ADS)
Salipante, Paul; Meek, Stephen; Hudson, Steven; Polymers; Complex Fluids Group Team
2017-11-01
We investigate the effect of entrance geometry on the flow stability of wormlike micelles solutions in capillary flow. These solutions exhibit strong shear thinning behavior resulting from micelle breakage and have been observed to undergo large flow rate fluctuations. We investigate these fluctuations using simultaneous measurements of flow rate and pressure drop across a capillary, and we adjust entrance geometry. With a tapered constriction, we observe large persistent fluctuations above a critical flow rate, characterized by rapid decreases in the pressure drop with corresponding increase in flow rate followed by a period of recovery where pressure increases and flow rate decreases. Flow field observations in the tapered entrance show large flow circulations. An abrupt contraction produces smaller transient fluidized jets forming upstream of the constriction and the magnitude of the fluctuations are significantly diminished. The effect of fluid properties is studied by comparing the magnitude and timescales of the fluctuations for surfactant systems with different relaxation times. The onset of fluctuations is compared to a criterion for the onset of elastic instabilities and the magnitude is compared to estimates for changes in channel resistance. NIST on a Chip.
Leypoldt, John K; Kamerath, Craig D; Gilson, Janice F; Friederichs, Goetz
2006-01-01
New daily hemodialysis therapies operate at low dialysate flow rates to minimize dialysate volume requirements; however, the dependence of dialyzer clearances and mass transfer-area coefficients for small solutes on dialysate flow rate under these conditions have not been studied extensively. We evaluated in vitro dialyzer clearances for urea and creatinine at dialysate flow rates of 40, 80, 120, 160, and 200 ml/min and ultrafiltration flow rates of 0, 1, and 2 l/h, using a dialyzer containing PUREMA membranes (NxStage Medical, Lawrence, MA). Clearances were measured directly across the dialyzer by perfusing bovine blood with added urea and creatinine single pass through the dialyzer at a nominal blood flow rate of 400 ml/min. Limited, additional studies were performed with the use of dialyzers containing PUREMA membranes at a blood flow rate of 200 ml/min and also with the use of other dialyzers containing polysulfone membranes (Optiflux 160NR, FMC-NA, Ogden, UT) and dialyzers containing Synphan membranes (NxStage Medical). For dialyzers containing PUREMA membranes, urea and creatinine clearances increased (p < 0.001) with increasing dialysate and ultrafiltration flow rates but were not different at blood flow rates of 200 and 400 ml/min. Dialysate saturation, defined as dialysate outlet concentration divided by blood water inlet concentration, for urea and creatinine was independent of blood and ultrafiltration flow rate but varied inversely (p < 0.001) with dialysate flow rate. Mass transfer-area coefficients for urea and creatinine were independent of blood and ultrafiltration flow rate but decreased (p < 0.001) with decreasing dialysate flow rate. Calculated mass transfer-area coefficients at low dialysate flow rates for all dialyzers tested were substantially lower than those reported by the manufacturers under conventional conditions. We conclude that dialyzers require specific characterization under relevant conditions if they are used in novel daily hemodialysis therapies at low dialysate flow rate.
High-flow oxygen therapy: pressure analysis in a pediatric airway model.
Urbano, Javier; del Castillo, Jimena; López-Herce, Jesús; Gallardo, José A; Solana, María J; Carrillo, Ángel
2012-05-01
The mechanism of high-flow oxygen therapy and the pressures reached in the airway have not been defined. We hypothesized that the flow would generate a low continuous positive pressure, and that elevated flow rates in this model could produce moderate pressures. The objective of this study was to analyze the pressure generated by a high-flow oxygen therapy system in an experimental model of the pediatric airway. An experimental in vitro study was performed. A high-flow oxygen therapy system was connected to 3 types of interface (nasal cannulae, nasal mask, and oronasal mask) and applied to 2 types of pediatric manikin (infant and neonatal). The pressures generated in the circuit, in the airway, and in the pharynx were measured at different flow rates (5, 10, 15, and 20 L/min). The experiment was conducted with and without a leak (mouth sealed and unsealed). Linear regression analyses were performed for each set of measurements. The pressures generated with the different interfaces were very similar. The maximum pressure recorded was 4 cm H(2)O with a flow of 20 L/min via nasal cannulae or nasal mask. When the mouth of the manikin was held open, the pressures reached in the airway and pharynxes were undetectable. Linear regression analyses showed a similar linear relationship between flow and pressures measured in the pharynx (pressure = -0.375 + 0.138 × flow) and in the airway (pressure = -0.375 + 0.158 × flow) with the closed mouth condition. According to our hypothesis, high-flow oxygen therapy systems produced a low-level CPAP in an experimental pediatric model, even with the use of very high flow rates. Linear regression analyses showed similar linear relationships between flow and pressures measured in the pharynx and in the airway. This finding suggests that, at least in part, the effects may be due to other mechanisms.
F-actin and microtubule suspensions as indeterminate fluids.
Buxbaum, R E; Dennerll, T; Weiss, S; Heidemann, S R
1987-03-20
The viscosity of F-actin and microtubule suspensions has been measured as a function of shear rate with a Weissenberg rheogoniometer. At shear rates of less than 1.0 per second the viscosity of suspensions of these two structural proteins is inversely proportional to shear rate. These results are consistent with previous in vivo measurements of the viscosity of cytoplasm. This power law implies that shear stress is independent of shear rate; that is, shear stress is a constant at all shear rates less than 1.0 per second. Thus the flow profile of these fluids is indeterminate, or nearly so. This flow property may explain several aspects of intracellular motility in living cells. Possible explanations for this flow property are based on a recent model for semidilute suspensions of rigid rods or a classical friction model for liquid crystals.
Effects of bleed air extraction on thrust levels on the F404-GE-400 turbofan engine
NASA Technical Reports Server (NTRS)
Yuhas, Andrew J.; Ray, Ronald J.
1992-01-01
A ground test was performed to determine the effects of compressor bleed flow extraction on the performance of F404-GE-400 afterburning turbofan engines. The two engines were installed in the F/A-18 High Alpha Research Vehicle at the NASA Dryden Flight Research Facility. A specialized bleed ducting system was installed onto the aircraft to control and measure engine bleed airflow while the aircraft was tied down to a thrust measuring stand. The test was conducted on each engine and at various power settings. The bleed air extraction levels analyzed included flow rates above the manufacturer's maximum specification limit. The measured relationship between thrust and bleed flow extraction was shown to be essentially linear at all power settings with an increase in bleed flow causing a corresponding decrease in thrust. A comparison with the F404-GE-400 steady-state engine simulation showed the estimation to be within +/- 1 percent of measured thrust losses for large increases in bleed flow rate.
Demonstration that a new flow sensor can operate in the clinical range for cerebrospinal fluid flow
Raj, Rahul; Lakshmanan, Shanmugamurthy; Apigo, David; Kanwal, Alokik; Liu, Sheng; Russell, Thomas; Madsen, Joseph R.; Thomas, Gordon A.; Farrow, Reginald C.
2015-01-01
A flow sensor has been fabricated and tested that is capable of measuring the slow flow characteristic of the cerebrospinal fluid in the range from less than 4 mL/h to above 100 mL/h. This sensor is suitable for long-term implantation because it uses a wireless external spectrometer to measure passive subcutaneous components. The sensors are pressure-sensitive capacitors, in the range of 5 pF with an air gap at atmospheric pressure. Each capacitor is in series with an inductor to provide a resonant frequency that varies with flow rate. At constant flow, the system is steady with drift <0.3 mL/h over a month. At variable flow rate, V̇, the resonant frequency, f0, which is in the 200–400 MHz range, follows a second order polynomial with respect to V̇. For this sensor system the uncertainty in measuring f0 is 30 kHz which corresponds to a sensitivity in measuring flow of ΔV̇= 0.6 mL/hr. Pressures up to 20 cm H2O relative to ambient pressure were also measured. An implantable twin capacitor system is proposed that can measure flow, which is fully compensated for all hydrostatic pressures. For twin capacitors, other sources of systematic variation within clinical range, such as temperature and ambient pressure, are smaller than our sensitivity and we delineate a calibration method that should maintain clinically useful accuracy over long times. PMID:26543321
Levitt, Michael D.; Levitt, David G.
1973-01-01
Measurement of the relative absorption rates of inert gases (H2, He, CH4, SF6, and 133Xe) was used to investigate the interaction between diffusion and blood flow during passive absorption from the stomach, small bowel, and colon of the rat. If uptake is blood flow limited, the gases should be absorbed in proportion to their solubilities in blood, but if diffusion limited, uptake should be proportional to the diffusion rate of the gases in mucosal tissues. The observed absorption data were fitted to a series of models of interaction between perfusion and diffusion. A simple model accurately predicted the absorption rates of the gases from all segments of bowel. In this model, gas is absorbed into two distinct blood flows: one which flows in proximity to the lumen and completely equilibrates with the lumen, and a second which is sufficiently rapid and distant from the lumen that its gas uptake is entirely diffusion limited. The fraction of the total absorption attributable to the equilibrating flow can be readily calculated and equalled 93%, 77%, and 33% for the small bowel, colon, and stomach, respectively. Thus the rate of passive absorption of gases from the small bowel is limited almost entirely by the blood flow to the mucosa, and absorption from the stomach is largely limited by the diffusion rate of the gases. The flow which equilibrates with the lumen can be quantitated, and this flow may provide a useful measure of “effective” mucosal blood flow. Images PMID:4719667
Highly sensitive miniature fluidic flowmeter based on an FBG heated by Co2+-doped fiber.
Liu, Zhengyong; Htein, Lin; Cheng, Lun-Kai; Martina, Quincy; Jansen, Rob; Tam, Hwa-Yaw
2017-02-20
In this paper, we present a miniature fluidic flow sensor based on a short fiber Bragg grating inscribed in a single mode fiber and heated by Co2+-doped multimode fibers. The proposed flow sensor was employed to measure the flow rates of oil and water, showing good sensitivity of 0.339 nm/(m/s) and 0.578 nm/(m/s) for water and oil, flowing at v = 0.2 m/s. The sensitivity can be increased with higher laser power launched to the Co2+-doped multimode fibers. A small flow rate of 0.005 m/s and 0.002 m/s can be distinguished for a particular phase of water or oil, respectively, at a certain laser power (i.e. ~1.43W). The flow sensor can measure volume speed up to 30 L/min, which is limited by the test rig. The experimental results show that the sensor can discriminate slight variation of flow rates as small as 0.002m/s.
Type 1 diabetes mellitus, xerostomia, and salivary flow rates.
Moore, P A; Guggenheimer, J; Etzel, K R; Weyant, R J; Orchard, T
2001-09-01
The Oral Health Science Institute at the University of Pittsburgh has completed a cross-sectional epidemiologic study of 406 subjects with type 1 diabetes and 268 control subjects without diabetes that assessed the associations between oral health and diabetes. This report describes the prevalence of dry-mouth symptoms (xerostomia), the prevalence of hyposalivation in this population, and the possible interrelationships between salivary dysfunction and diabetic complications. The subjects with diabetes were participants in the Pittsburgh Epidemiology of Diabetes Complications study who were enrolled in an oral health substudy. Control subjects were spouses or best friends of participants or persons recruited from the community through advertisements in local newspapers. Assessments of salivary function included self-reported xerostomia measures and quantification of resting and stimulated whole saliva flow rates. Subjects with diabetes reported symptoms of dry mouth more frequently than did control subjects. Salivary flow rates were also impaired in the subjects with diabetes. Regression models of potential predictor variables were created for the 3 self-reported xerostomia measures and 4 salivary flow rate variables. Of the medical diabetic complications studied (ie, retinopathy, peripheral and autonomic neuropathy, nephropathy, and peripheral vascular disease), only neuropathy was found to be associated with xerostomia and decreased salivary flow measures. A report of dry-mouth symptoms was associated with current use of cigarettes, dysgeusia (report of a bad taste), and more frequent snacking behavior. Xerogenic medications and elevated fasting blood glucose concentrations were significantly associated with decreased salivary flow. Resting salivary flow rates less than 0.01 mL/min were associated with a slightly higher prevalence of dental caries. Subjects who reported higher levels of alcohol consumption were less likely to have lower rates of stimulated salivary flow. Subjects with type 1 diabetes who had developed neuropathy more often reported symptoms of dry mouth as well as symptoms of decreased salivary flow rates. Because of the importance of saliva in the maintenance and the preservation of oral health, management of oral diseases in diabetic patients should include a comprehensive evaluation of salivary function.
Viumdal, Håkon; Mylvaganam, Saba
2017-01-01
In oil and gas and geothermal installations, open channels followed by sieves for removal of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular) and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and support vector regression algorithms applied to the data from temporal and spatial ultrasonic level measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient reliability, repeatability and uncertainty, providing a novel soft sensing of an important process variable. Simulations, cross-validations and experimental results show that feedforward neural networks with the Bayesian regularization learning algorithm provide the best flow rate estimates. Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open channels are discussed. PMID:29072595
DOSE CONTROLLER FOR AGUACLARA WATER TREATMENT PLANTS
The expected results include a proven design for a gravity powered dose controller that works for calcium hypochlorite or aluminum sulfate solutions. The dose controller will be coupled with plant flow rate measuring systems that have compatible relationships between flow rate...
Gas Flow in the Capillary of the Atmosphere-to-Vacuum Interface of Mass Spectrometers
NASA Astrophysics Data System (ADS)
Skoblin, Michael; Chudinov, Alexey; Soulimenkov, Ilia; Brusov, Vladimir; Kozlovskiy, Viacheslav
2017-10-01
Numerical simulations of a gas flow through a capillary being a part of mass spectrometer atmospheric interface were performed using a detailed laminar flow model. The simulated interface consisted of atmospheric and forevacuum volumes connected via a thin capillary. The pressure in the forevacuum volume where the gas was expanding after passing through the capillary was varied in the wide range from 10 to 900 mbar in order to study the volume flow rate as well as the other flow parameters as functions of the pressure drop between the atmospheric and forevacuum volumes. The capillary wall temperature was varied in the range from 24 to 150 °C. Numerical integration of the complete system of Navier-Stokes equations for a viscous compressible gas taking into account the heat transfer was performed using the standard gas dynamic simulation software package ANSYS CFX. The simulation results were compared with experimental measurements of gas flow parameters both performed using our experimental setup and taken from the literature. The simulated volume flow rates through the capillary differed no more than by 10% from the measured ones over the entire pressure and temperatures ranges. A conclusion was drawn that the detailed digital laminar model is able to quantitatively describe the measured gas flow rates through the capillaries under conditions considered. [Figure not available: see fulltext.
Gas Flow in the Capillary of the Atmosphere-to-Vacuum Interface of Mass Spectrometers.
Skoblin, Michael; Chudinov, Alexey; Soulimenkov, Ilia; Brusov, Vladimir; Kozlovskiy, Viacheslav
2017-10-01
Numerical simulations of a gas flow through a capillary being a part of mass spectrometer atmospheric interface were performed using a detailed laminar flow model. The simulated interface consisted of atmospheric and forevacuum volumes connected via a thin capillary. The pressure in the forevacuum volume where the gas was expanding after passing through the capillary was varied in the wide range from 10 to 900 mbar in order to study the volume flow rate as well as the other flow parameters as functions of the pressure drop between the atmospheric and forevacuum volumes. The capillary wall temperature was varied in the range from 24 to 150 °C. Numerical integration of the complete system of Navier-Stokes equations for a viscous compressible gas taking into account the heat transfer was performed using the standard gas dynamic simulation software package ANSYS CFX. The simulation results were compared with experimental measurements of gas flow parameters both performed using our experimental setup and taken from the literature. The simulated volume flow rates through the capillary differed no more than by 10% from the measured ones over the entire pressure and temperatures ranges. A conclusion was drawn that the detailed digital laminar model is able to quantitatively describe the measured gas flow rates through the capillaries under conditions considered. Graphical Abstract ᅟ.
On-Line Measurement of Heat of Combustion of Gaseous Hydrocarbon Fuel Mixtures
NASA Technical Reports Server (NTRS)
Sprinkle, Danny R.; Chaturvedi, Sushil K.; Kheireddine, Ali
1996-01-01
A method for the on-line measurement of the heat of combustion of gaseous hydrocarbon fuel mixtures has been developed and tested. The method involves combustion of a test gas with a measured quantity of air to achieve a preset concentration of oxygen in the combustion products. This method involves using a controller which maintains the fuel (gas) volumetric flow rate at a level consistent with the desired oxygen concentration in the combustion products. The heat of combustion is determined form a known correlation with the fuel flow rate. An on-line computer accesses the fuel flow data and displays the heat of combustion measurement at desired time intervals. This technique appears to be especially applicable for measuring heats of combustion of hydrocarbon mixtures of unknown composition such as natural gas.
NASA Technical Reports Server (NTRS)
Gai, S. L.; Cain, T.; Joe, W. S.; Sandeman, R. J.; Miller, C. G.
1988-01-01
Heat transfer rate measurements have been obtained at 0, 5, 15, and 21 deg angles-of-attack for a straight biconic scale model of an aeroassisted orbital vehicle proposed for planetary probe missions. Heat-transfer distributions were measured using palladium thin-film resistance gauges deposited on a glass-ceramic substrate. The windward heat transfer correlations were based on equilibrium flow in the shock layer of the model, although the flow may depart from equilibrium in the flow-field.
Sustained High Basal Motion of the Greenland Ice Sheet Revealed by Borehole Deformation
NASA Technical Reports Server (NTRS)
Ryser, Claudia; Luthi, Martin P.; Andrews, Lauren C.; Hoffman, Matthew, J.; Catania, Ginny A.; Hawley, Robert L.; Neumann, Thomas A.; Kristensen, Steen S.
2014-01-01
Ice deformation and basal motion characterize the dynamical behavior of the Greenland ice sheet (GrIS). We evaluate the contribution of basal motion from ice deformation measurements in boreholes drilled to the bed at two sites in the western marginal zone of the GrIS. We find a sustained high amount of basal motion contribution to surface velocity of 44-73 percent in winter, and up to 90 percent in summer. Measured ice deformation rates show an unexpected variation with depth that can be explained with the help of an ice-flow model as a consequence of stress transfer from slippery to sticky areas. This effect necessitates the use of high-order ice-flow models, not only in regions of fast-flowing ice streams but in all temperate-based areas of the GrIS. The agreement between modeled and measured deformation rates confirms that the recommended values of the temperature-dependent flow rate factor A are a good choice for ice-sheet models.
Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System
NASA Astrophysics Data System (ADS)
Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan
2015-11-01
Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, A.G.
1979-06-01
Steady state, steam-water testing of a Semiscale Mod-3 system instrumented spool piece was accomplished in the Gesellschaft fur Kernforschung (GfK) facility at Karlsruhe Kernforschungzentrum, West Germany. The testing was undertaken to determine the accuracy of spool piece, two-phase mass flow rate, inferential measurements by comparison with upstream single-phase reference measurements. Other two-phase measurements were also made to aid in understanding the flow conditions and to implement data reduction. A total of 132 single- and two-phase test points were acquired, covering pressures from 0.4 to 7.5 MPa, flow rates from 0.5 to 4.9 kg/s, and two-phase mixture qualities from 1.0 tomore » 83% in the 66.7 mm inside diameter spool piece. The report includes a detailed description of the hardware and software and a tabulation of the data.« less
Oxygen-Mass-Flow Calibration Cell
NASA Technical Reports Server (NTRS)
Martin, Robert E.
1996-01-01
Proposed calibration standard for mass flow rate of oxygen based on conduction of oxygen ions through solid electrolyte membrane made of zirconia and heated to temperature of 1,000 degrees C. Flow of oxygen ions proportional to applied electric current. Unaffected by variations in temperature and pressure, and requires no measurement of volume. Calibration cell based on concept used to calibrate variety of medical and scientific instruments required to operate with precise rates of flow of oxygen.
Effective Discharge and Annual Sediment Yield on Brazos River
NASA Astrophysics Data System (ADS)
Rouhnia, M.; Salehi, M.; Keyvani, A.; Ma, F.; Strom, K. B.; Raphelt, N.
2012-12-01
Geometry of an alluvial river alters dynamically over the time due to the sediment mobilization on the banks and bottom of the river channel in various flow rates. Many researchers tried to define a single representative discharge for these morphological processes such as "bank-full discharge", "effective discharge" and "channel forming discharge". Effective discharge is the flow rate in which, the most sediment load is being carried by water, in a long term period. This project is aimed to develop effective discharge estimates for six gaging stations along the Brazos River from Waco, TX to Rosharon, TX. The project was performed with cooperation of the In-stream Flow Team of the Texas Water Development Board (TWDB). Project objectives are listed as: 1) developing "Flow Duration Curves" for six stations based on mean-daily discharge by downloading the required, additional data from U.S Geological Survey website, 2) developing "Rating Curves" for six gaging stations after sampling and field measurements in three different flow conditions, 3) developing a smooth shaped "Sediment Yield Histogram" with a well distinguished peak as effective discharge. The effective discharge was calculated using two methods of manually and automatic bin selection. The automatic method is based on kernel density approximation. Cross-sectional geometry measurements, particle size distributions and water field samples were processed in the laboratory to obtain the suspended sediment concentration associated with flow rate. Rating curves showed acceptable trends, as the greater flow rate we experienced, the more sediment were carried by water.
Reentry heating analysis of space shuttle with comparison of flight data
NASA Technical Reports Server (NTRS)
Gong, L.; Quinn, R. D.; Ko, W. L.
1982-01-01
Surface heating rates and surface temperatures for a space shuttle reentry profile were calculated for two wing cross sections and one fuselage cross section. Heating rates and temperatures at 12 locations on the wing and 6 locations on the fuselage are presented. The heating on the lower wing was most severe, with peak temperatures reaching values of 1240 C for turbulent flow and 900 C for laminar flow. For the fuselage, the most severe heating occured on the lower glove surface where peak temperatures of 910 C and 700 C were calculated for turbulent flow and laminar flow, respectively. Aluminum structural temperatures were calculated using a finite difference thermal analyzer computer program, and the predicted temperatures are compared to measured flight data. Skin temperatures measured on the lower surface of the wing and bay 1 of the upper surface of the wing agreed best with temperatures calculated assuming laminar flow. The measured temperatures at bays two and four on the upper surface of the wing were in quite good agreement with the temperatures calculated assuming separated flow. The measured temperatures on the lower forward spar cap of bay four were in good agreement with values predicted assuming laminar flow.
IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.
Zehetner, Claus; Moelgg, Marion; Bechrakis, Emmanouil; Linhart, Caroline; Bechrakis, Nikolaos E
2017-10-09
To analyze the performance and flow characteristics of novel double-cutting, open-port, 23-, 25-, and 27-gauge ultrahigh-speed vitrectomy systems. In vitro fluidic measurements were performed to assess the volumetric aspiration profiles of several vitrectomy systems in basic salt solution and egg white. Double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. Increase in cutting frequency to the maximum level resulted in flow reduction of less than 10% (0.0%-9.5%). Commercially available 23-, 25-, and 27-G double-cutting probes exhibited higher egg-white and basic salt solution flow rates at all evaluated cut rates, with aspirational efficiencies being 1.1 to 2.9 times the flow rates of standard single-blade vitrectomy probes of the same caliber at the maximum preset vacuum. The highest relative differences were observed at faster cut rates. The newly introduced double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. The fluidic principle of constant flow even at the highest cut rates and low vacuum levels might impact surgical strategies, especially when performing manipulations close to the retina.
In Situ Local Fracture Flow Measurement by the Double Packer Dilution Test
NASA Astrophysics Data System (ADS)
Englert, A.; Le Borgne, T.; Bour, O.; Klepikova, M.; Lavenant, N.
2011-12-01
For prediction of flow and transport in fractured media, prior estimation of the fracture network is essential, but challenging. Recent developments in hydraulic tomography have shown promising results for understanding connectivities between boreholes. However, as the hydraulic tomographic survey is typically based on the propagation of head only, it becomes a strongly non unique problem. To reduce the non uniqueness of tomographic surveys point conditioning has been found beneficial. Just as well, measurement of local flow in a fracture can serve as point conditioning for hydraulic and tracer tomographic surveys. Nevertheless, only few measurements of local fracture flow have been performed since this type of measurements implies several important technical issues. Dilution test in a packed off interval is a possible method for measuring fracture flow (e.g. Drost et al. 1968, Novakowski et al., 2005). However, a key issue for estimating flow with dilution tests is to ensure a full mixing of the tracer in the packed interval. This is typically done by including a mixing system within the packer. The design of such system can be challenging for deep wells and small diameters. Here, we propose a method where mixing is ensured by a recirculation loop including a surface tank. This method is adapted from the design proposed by Brouyere et al. (2008), who measured dilution in open wells. Dilution is quantified by measuring the concentration in the surface barrel as function of time. Together with the measurement of the circulating flow and the water filled volume in the surface barrel, the measured tracer dilution allows for calculation of the fracture flow. Since the method can be applied using a classical double packer system, it may provide a broader application of local flow measurements in heterogeneous media. We tested the approach on the Ploemeur fractured crystalline rock site. A one meter interval at depth 80 m with a single flowing fracture was isolated with a double packer dilution system. We performed a pumping test in the adjacent well. Different flow rates were estimated from the dilution curves for the different pumping rates in the adjacent well, showing a linear response. The obtained fracture flow rates provide important information on the flow geometry and connectivity between the two wells. Future joint interpretation of flow measurements, hydraulic head and tracer test data is expected to provide detailed insights in the flow and transport processes at the Ploemeur site. Drost, W., Klotz, D., Koch, A., Moser, H., Neumaier, F., Rauert, W.: Point dilution methods of investigating ground water flow by means of radioisotopes, Water. Resour. Res., 4(1), 1968. Novakowski, K., Bickerton, G., Lapcevic, P., Voralek, J., Ross, N.: Measurements of groundwater velocity in discrete rock fractures: Jour. Cont. Hydr., 82(1-2), 2006. Brouyere, S., Batlle-Aguilar, J., Goderniaux, P., Dassargues, A.: A new tracer technique for monitoring groundwater fluxes: The Finite Volume Point Dilution Method, Jour. Cont. Hydr., 95(3-4), 121-140, 2008.
Evaluation of a locally homogeneous flow model of spray combustion
NASA Technical Reports Server (NTRS)
Mao, C. P.; Szekely, G. A., Jr.; Faeth, G. M.
1980-01-01
A model of spray combustion which employs a second-order turbulence model was developed. The assumption of locally homogeneous flow is made, implying infinitely fast transport rates between the phase. Measurements to test the model were completed for a gaseous n-propane flame and an air atomized n-pentane spray flame, burning in stagnant air at atmospheric pressure. Profiles of mean velocity and temperature, as well as velocity fluctuations and Reynolds stress, were measured in the flames. The predictions for the gas flame were in excellent agreement with the measurements. The predictions for the spray were qualitatively correct, but effects of finite rate interphase transport were evident, resulting in a overstimation of the rate development of the flow. Predictions of spray penetration length at high pressures, including supercritical combustion conditions, were also completed for comparison with earlier measurements. Test conditions involved a pressure atomized n-pentane spray, burning in stagnant air at pressures of 3, 5, and 9 MPa. The comparison between predictions and measurements was fair. This is not a very sensitive test of the model, however, and further high pressure experimental and theoretical results are needed before a satisfactory assessment of the locally homogeneous flow approximation can be made.
Singh, Pankaj K; Marzo, Alberto; Staicu, Cristina; William, Matt G; Wilkinson, Iain; Lawford, Patricia V; Rufenacht, Daniel A; Bijlenga, Philippe; Frangi, Alejandro F; Hose, Rodney; Patel, Umang J; Coley, Stuart C
2010-01-01
Hemodynamic changes in the cerebral circulation in presence of coarctation of aorta (CoA) and their significance in the increased intracranial aneurysms (IAs) formation in these patients remain unclear. In the present study, we measured the flow-rate waveforms in the cerebral arteries of a patient with CoA, followed by an analysis of different hemodynamic indices in a coexisting IA. Phase-contrast Magnetic Resonance (pc-MR) volumetric flow-rate (VFR) measurements were performed in cerebral arteries of a 51 years old woman with coexisting CoA, and five healthy volunteers. Numerical predictions of a number of relevant hemodynamic indices were performed in an IA located in sub-clinoid part of left internal carotid artery (ICA) of the patient. Computations were performed using Ansys(®)-CFX(™) solver using the VFR values measured in the patient as boundary conditions (BCs). A second analysis was performed using the average VFR values measured in healthy volunteers. The VFR waveforms measured in the patient and healthy volunteers were compared followed by a comparison of the hemodynamic indices obtained using both approaches. The results are discussed in the background of relevant literature. Mean flow-rates were increased by 27.1% to 54.9% (2.66-5.44 ml/sec) in the cerebral circulation of patients with CoA as compared to healthy volunteers (1.2-3.95 ml/sec). Velocities were increased inside the IA by 35-45%. An exponential rise of 650% was observed in the area affected by high wall shear stress (WSS>15Pa) when flow-rates specific to CoA were used as compared to population average flow-rates. Absolute values of space and time averaged WSS were increased by 65%. Whereas values of maximum pressure on the IA wall were increased by 15% the area of elevated pressure was actually decreased by 50%, reflecting a more focalized jet impingement within the IA of the CoA patient. IAs can develop in patients with CoA several years after the surgical repair. Cerebral flow-rates in CoA patients are significantly higher as compared to average flow-rates in healthy population. The increased supra-physiological WSS (>15Pa), OSI (>0.2) and focalized pressure may play an important role in the etiopathogenesis of IAs in patients with CoA.
Singh, Pankaj K; Marzo, Alberto; Staicu, Cristina; William, Matt G; Wilkinson, Iain; Lawford, Patricia V; Rufenacht, Daniel A; Bijlenga, Philippe; Frangi, Alejandro F; Hose, Rodney; Patel, Umang J; Coley, Stuart C
2010-01-01
Objectives: Hemodynamic changes in the cerebral circulation in presence of coarctation of aorta (CoA) and their significance in the increased intracranial aneurysms (IAs) formation in these patients remain unclear. In the present study, we measured the flow-rate waveforms in the cerebral arteries of a patient with CoA, followed by an analysis of different hemodynamic indices in a coexisting IA. Materials and Methods: Phase-contrast Magnetic Resonance (pc-MR) volumetric flow-rate (VFR) measurements were performed in cerebral arteries of a 51 years old woman with coexisting CoA, and five healthy volunteers. Numerical predictions of a number of relevant hemodynamic indices were performed in an IA located in sub-clinoid part of left internal carotid artery (ICA) of the patient. Computations were performed using Ansys®-CFX™ solver using the VFR values measured in the patient as boundary conditions (BCs). A second analysis was performed using the average VFR values measured in healthy volunteers. The VFR waveforms measured in the patient and healthy volunteers were compared followed by a comparison of the hemodynamic indices obtained using both approaches. The results are discussed in the background of relevant literature. Results: Mean flow-rates were increased by 27.1% to 54.9% (2.66–5.44 ml/sec) in the cerebral circulation of patients with CoA as compared to healthy volunteers (1.2–3.95 ml/sec). Velocities were increased inside the IA by 35–45%. An exponential rise of 650% was observed in the area affected by high wall shear stress (WSS>15Pa) when flow-rates specific to CoA were used as compared to population average flow-rates. Absolute values of space and time averaged WSS were increased by 65%. Whereas values of maximum pressure on the IA wall were increased by 15% the area of elevated pressure was actually decreased by 50%, reflecting a more focalized jet impingement within the IA of the CoA patient. Conclusions: IAs can develop in patients with CoA several years after the surgical repair. Cerebral flow-rates in CoA patients are significantly higher as compared to average flow-rates in healthy population. The increased supra-physiological WSS (>15Pa), OSI (>0.2) and focalized pressure may play an important role in the etiopathogenesis of IAs in patients with CoA. PMID:22518256
Battista, L; Sciuto, S A; Scorza, A
2013-03-01
In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r(2) is equal to 0.997; for the bi-directional configuration, the coefficient of determination r(2) is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty δQ of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l∕min to a maximum of about 9% at -12.0 l∕min.
NASA Astrophysics Data System (ADS)
Battista, L.; Sciuto, S. A.; Scorza, A.
2013-03-01
In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r2 is equal to 0.997; for the bi-directional configuration, the coefficient of determination r2 is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty δQ of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.
Use of radars to monitor stream discharge by noncontact methods
Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.; Spicer, K.R.; Hayes, E.; Plant, W.; Hayes, K.; Teague, C.; Barrick, D.
2006-01-01
Conventional measurements of river flows are costly, time‐consuming, and frequently dangerous. This report evaluates the use of a continuous wave microwave radar, a monostatic UHF Doppler radar, a pulsed Doppler microwave radar, and a ground‐penetrating radar to measure river flows continuously over long periods and without touching the water with any instruments. The experiments duplicate the flow records from conventional stream gauging stations on the San Joaquin River in California and the Cowlitz River in Washington. The purpose of the experiments was to directly measure the parameters necessary to compute flow: surface velocity (converted to mean velocity) and cross‐sectional area, thereby avoiding the uncertainty, complexity, and cost of maintaining rating curves. River channel cross sections were measured by ground‐penetrating radar suspended above the river. River surface water velocity was obtained by Bragg scattering of microwave and UHF Doppler radars, and the surface velocity data were converted to mean velocity on the basis of detailed velocity profiles measured by current meters and hydroacoustic instruments. Experiments using these radars to acquire a continuous record of flow were conducted for 4 weeks on the San Joaquin River and for 16 weeks on the Cowlitz River. At the San Joaquin River the radar noncontact measurements produced discharges more than 20% higher than the other independent measurements in the early part of the experiment. After the first 3 days, the noncontact radar discharge measurements were within 5% of the rating values. On the Cowlitz River at Castle Rock, correlation coefficients between the USGS stream gauging station rating curve discharge and discharge computed from three different Doppler radar systems and GPR data over the 16 week experiment were 0.883, 0.969, and 0.992. Noncontact radar results were within a few percent of discharge values obtained by gauging station, current meter, and hydroacoustic methods. Time series of surface velocity obtained by different radars in the Cowlitz River experiment also show small‐amplitude pulsations not found in stage records that reflect tidal energy at the gauging station. Noncontact discharge measurements made during a flood on 30 January 2004 agreed with the rated discharge to within 5%. Measurement at both field sites confirm that lognormal velocity profiles exist for a wide range of flows in these rivers, and mean velocity is approximately 0.85 times measured surface velocity. Noncontact methods of flow measurement appear to (1) be as accurate as conventional methods, (2) obtain data when standard contact methods are dangerous or cannot be obtained, and (3) provide insight into flow dynamics not available from detailed stage records alone.
Sathyabama, N; Datta, D; Gaware, J J; Mayya, Y S; Tripathi, R M
2014-01-01
Lucas-type scintillation cells (LSCs) are commonly used for rapid measurements of (220)Rn concentrations in flow-through mode in field and for calibration experiments in laboratories. However, in those measurements, equilibrium between (220)Rn and (216)Po is generally assumed and two alpha particles are considered to be emitted per (220)Rn decay due to very short half-life of (216)Po. In this paper, a small, yet significant disequilibrium existing between (220)Rn and (216)Po has been examined and shown that less than two alpha particles are actually emitted per (220)Rn decay in the cell when flow is maintained. A theoretical formula has been derived for the first time for a correction factor (CF) to be applied to this measured concentration to account for the disequilibrium. The existence of this disequilibrium has been verified experimentally and is found to increase with the increase in the ratio of flow rate to cell volume. The reason for the disequilibrium is attributed to the flushing out of (216)Po formed in the cell before its decay due to the flow. Uncertainties in measured concentrations have been estimated and the estimated CF values have been found to be significant for the flow rates considered above 5 dm(3) min(-1) for a cell of volume 0.125 dm(3). The calculated values of the CF are about 1.055 to 1.178 in the flow rate range of 4 to 15 dm(3) min(-1) for the cell of volume 0.125 dm(3), while the corresponding experimental values are 1.023 to 1.264. This is a systematic error introduced in (220)Rn measurements using a flow-through LSC, which can be removed either by correct formulation or by proper design of a measurement set-up.
High-repetition-rate interferometric Rayleigh scattering for flow-velocity measurements
NASA Astrophysics Data System (ADS)
Estevadeordal, Jordi; Jiang, Naibo; Cutler, Andrew D.; Felver, Josef J.; Slipchenko, Mikhail N.; Danehy, Paul M.; Gord, James R.; Roy, Sukesh
2018-03-01
High-repetition-rate interferometric-Rayleigh-scattering (IRS) velocimetry is demonstrated for non-intrusive, high-speed flow-velocity measurements. High temporal resolution is obtained with a quasi-continuous burst-mode laser that is capable of operating at 10-100 kHz, providing 10-ms bursts with pulse widths of 5-1000 ns and pulse energy > 100 mJ at 532 nm. Coupled with a high-speed camera system, the IRS method is based on imaging the flow field through an etalon with 8-GHz free spectral range and capturing the Doppler shift of the Rayleigh-scattered light from the flow at multiple points having constructive interference. The seed-laser linewidth permits a laser linewidth of < 150 MHz at 532 nm. The technique is demonstrated in a high-speed jet, and high-repetition-rate image sequences are shown.
Investigation of a liquid-fed water resistojet plume
NASA Technical Reports Server (NTRS)
Manzella, D. H.; Carney, L. M.
1989-01-01
Measurements of mass flux and flow angle were taken throughout the forward flow region of the exhaust of a liquid-fed water resistojet using a quartz crystal microbalance (QCM). The resistojet operated at a mass flow rate of 0.1 g/s with a power input of 330 Watts. Measured values were compared to theoretical predictions obtained by employing a source flow approximation. Excellent agreement between predicted and measured mass flux values was attained; however, this agreement was highly dependent on knowledge of nozzle flow conditions. Measurements of the temperature at which the exhaust condensed on the QCM were obtained as a function of incident mass flux.
40 CFR 1065.202 - Data updating, recording, and control.
Code of Federal Regulations, 2010 CFR
2010-07-01
... means. § 1065.514, § 1065.530 Steady-state and ramped-modal duty cycle reference and feedback speeds and... mean value per test interval. § 1065.530, § 1065.545 Diluted exhaust flow rate from a CVS with a heat exchanger upstream of the flow measurement N/A 1 Hz. § 1065.530, § 1065.545 Diluted exhaust flow rate from a...
Flink, Håkan
2007-01-01
Reduced salivary flow is a condition that affects oral health. Its prevalence is unknown in young and middle-aged adults and there is no known treatment that permanently increases the salivary flow rate. Reduced salivary flow is related to dental caries, the most common oral disease. Reduced salivary flow is often found in individuals with insufficient food intake and thereby insufficient nutrition to the salivary glands. One nutrition related factor that has been proposed to effect salivary flow rate is iron deficiency. The aims of the thesis were to investigate i) the prevalence of reduced salivary flow rate in different age groups of adults, ii) the relationship between reduced salivary flow rate, general health and dental caries, iii) the influence of time of measurement on reduced salivary flow rate, and iv) if reduced salivary flow rates could be increased by iron supplementation. In Study I saliva was collected from 1427 individuals aged 20-69 years. A questionnaire was answered regarding subjective oral dryness, general diseases, use of drugs, BMI (Body Mass Index) and use of tobacco. In Study II saliva was collected from 48 patients with active caries and 48 caries-inactive patients. A blood sample was analysed for serum ferritin. In Study III the unstimulated salivary flow rate was tested at 7:30 and 11:30 a.m. in 108 individuals, age 15-46 years. The participants were allocated to one of three groups (very low < 0.1 mL/min, low 0.1-0.2 mL/min and normal > 0.2 mL/min) based on the the unstimulated salivary flow rate at 7:30 a.m. Different aspects of the perception of oral dryness were rated using Visual Analogue Scales. In Study IV a double-blind, randomized controlled trial was carried out on 50 individuals with a low unstimulated whole salivary flow rate and low serum ferritin. Half the individuals received 60 mg of iron orally twice a day for 3 months, while the other half received placebo. In Study I it was found that the prevalence of very low (< 0.1 mL/min) and low (0.10-0.19 mL/min) unstimulated salivary flow rate were similar for different age groups up to 50 years, ranging between 10.9-17.8% and 17.3-22.7%, respectively. Multiple logistic regression revealed that above age 50, female gender, 'having fewer than 20 teeth', and taking xerogenic drugs significantly increased the risk of very low unstimulated salivary flow rate. In Study II 32 individuals (67%) in the caries active group had low unstimulated salivary flow rate compared with 13 individuals (27%) in the caries inactive group. There was no difference in serum ferritin levels between the two groups. Study III showed for all groups a statistically significant increase in unstimulated salivary flow rate at 11:30 a.m. compared with 7:30 a.m., all of similar magnitude (0.08-0.09 mL/min). In the group with very low salivary flow rate, 70% at 11:30 a.m. exceeded the 0.1 mL/min limit. There were significant difference in perception of oral dryness between the normal group and both the low and the very low groups. In Study IV no statistically significant difference was found between the groups after treatment for the unstimulated flow rate and in the subjective assessments of oral dryness. The prevalence of reduced salivary flow rates is consistent and prevalent in younger and middle-aged adults (< 50 years). Very low salivary flow rates are related to high Body Mass Index (BMI) and diagnosed diseases in younger adults, but to medication in older adults. Reduced salivary flow rate in young adult women is related to caries. The time of measurement of salivary flow rates influences diagnosis of hyposalivation. Iron supplementation does not enhance salivary flow.
Flowfield analysis for successive oblique shock wave-turbulent boundary layer interactions
NASA Technical Reports Server (NTRS)
Sun, C. C.; Childs, M. E.
1976-01-01
A computation procedure is described for predicting the flowfields which develop when successive interactions between oblique shock waves and a turbulent boundary layer occur. Such interactions may occur, for example, in engine inlets for supersonic aircraft. Computations are carried out for axisymmetric internal flows at M 3.82 and 2.82. The effect of boundary layer bleed is considered for the M 2.82 flow. A control volume analysis is used to predict changes in the flow field across the interactions. Two bleed flow models have been considered. A turbulent boundary layer program is used to compute changes in the boundary layer between the interactions. The results given are for flows with two shock wave interactions and for bleed at the second interaction site. In principle the method described may be extended to account for additional interactions. The predicted results are compared with measured results and are shown to be in good agreement when the bleed flow rate is low (on the order of 3% of the boundary layer mass flow), or when there is no bleed. As the bleed flow rate is increased, differences between the predicted and measured results become larger. Shortcomings of the bleed flow models at higher bleed flow rates are discussed.
Optical spectral sweep comb liquid flow rate sensor.
Shen, Changyu; Lian, Xiaokang; Kavungal, Vishnu; Zhong, Chuan; Liu, Dejun; Semenova, Yuliya; Farrell, Gerald; Albert, Jacques; Donegan, John F
2018-02-15
In microfluidic chip applications, the flow rate plays an important role. Here we propose a simple liquid flow rate sensor by using a tilted fiber Bragg grating (TFBG) as the sensing element. As the water flows in the vicinity of the TFBG along the fiber axis direction, the TFBG's spectrum changes due to its contact with water. By comparing the time-swept spectra of the TFBG in water to that of the TFBG with water flowing over it, a spectral sweep comb was formed, and the flow rate can be detected by selecting a suitable sweeping frequency. The proposed sensor has a high Q-value of over 17,000 for the lower rate and a large detectable range from 0.0058 mm/s to 3.2 mm/s. And the calculated corresponding lower detectable flow rate of 0.03 nL/s is 3 orders magnitude better than that of the current fiber flowmeter. Meanwhile, the proposed sensor has the temperature self-compensation function for the variation of the external temperature. We believe that this simple configuration will open a research direction of the TFBG-deriving theory and configuration for lower flow rate measurements for microfluidic chip applications.
Yavuz, Y C; Selcuk, N Y; Altıntepe, L; Güney, I; Yavuz, S
2018-01-01
In chronic hemodialysis patients, the low flow of vascular access may leads to inadequate dialysis, increased rate of hospitalization, morbidity, and mortality. It was found that surveillance should be performed for native arteriovenous (AV) should not be performed for AV graft in various studies. However, surveillance was done in graft AV fistulas in most studies. Doppler ultrasonography (US) was suggested for surveillance of AV fistulas by the last vascular access guideline of National Kidney Foundation Disease Outcomes Quality Initiative (NKF KDOQI). The aim of study is to determine whether glucose pump test (GPT) is used for surveillance of native AV fistulas by using Doppler US as reference. In 93 chronic hemodialysis patients with native AV fistula, blood flow rates were measured by Doppler US and GPT. For GPT, glucose was infused to 16 mL/min by pump and was measured at basal before the infusion and 11 s after the start of the infusion by glucometer. Doppler US was done by an expert radiologist. Used statistical tests were Mann-Whitney U test, Friedman test, regression analysis, and multiple regression analysis. Median values of blood flow rates measured by GPT (707 mL/min) and by Doppler US (700 mL/min) were not different (Z = 0.414, P = 0.678). Results of GPT and Doppler US measurements were positive correlate by regression analysis. The mean GPT value of diabetic patients (n = 39; 908 mL/min) was similar to that of nondiabetic patients (n = 54; 751 mL/min; Z = 1.31, P = 0.188). GPT values measured at three different dialysis session did not differ from each other that by Friedman test (F = 0.92, P = 0.39). This showed that GPT was stable and reliable. Glucose pump test can be used to measure blood flow rate of native AV fistula. GPT is an accurate and reliable test.
Coggins, Marie A; Healy, Catherine B; Lee, Taekhee; Harper, Martin
2014-01-01
Restoration stone work regularly involves work with high-silica-content materials (e.g., sandstone), but low-silica-content materials (<2 % quartz) such as limestone and lime mortar are also used. A combination of short sample duration and low silica content makes the quantification of worker exposure to respirable crystalline silica (RCS) difficult. This problem will be further compounded by the introduction of lower occupational exposure standards for RCS. The objective of this work was to determine whether higher-flow samplers might be an effective tool in characterizing lower RCS concentrations. A short study was performed to evaluate the performance of three high-flow samplers (FSP10, CIP10-R, and GK2.69) using side-by-side sampling with low-flow samplers (SIMPEDS and 10-mm nylon cyclones) for RCS exposure measurement at a restoration stonemasonry field site. A total of 19 side-by-side sample replicates for each high-flow and low-flow sampler pair were collected from work tasks involving limestone and sandstone. Most of the RCS (quartz) masses collected with the high-flow-rate samplers were above the limit of detection (62 % to 84 %) relative to the low-flow-rate samplers (58 % to 78 %). The average of the respirable mass concentration ratios for CIP10-R/SIMPEDS, GK2.69/10-mm nylon, FSP10/SIMPEDS, and FSP10/10-mm nylon pairs and the range of the quartz concentration ratios for the CIP10-R/SIMPEDS, CIP10-R/10-mm nylon, GK2.69/10-mm nylon, FSP10/SIMPEDS, and FSP10/10-mm nylon pairs included unity with an average close to unity, indicating no likely difference between the reported values for each sampler. Workers reported problems related to the weight of the sampling pumps for the high-flow-rate samplers. Respirable mass concentration data suggest that the high-flow-rate samplers evaluated would be appropriate for sampling respirable dust concentrations during restoration stone work. Results from the comparison of average quartz concentration ratios between high-and low-flow samplers suggest that the higher mass collected by the high-flow-rate samplers did not interfere with the quartz measurement. A sig-nificant portion of the data collected with the high-flow-rate samplers (>82 %) were greater than the limit of detection, which indicates that these samplers are suitable for quantifying exposures, even with low-quartz materials.
Portable wastewater flow meter
Hunter, Robert M.
1999-02-02
A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.
Portable wastewater flow meter
Hunter, Robert M.
1990-01-01
A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.
Project Rulison gas flow analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montan, D.N.
1971-01-01
An analysis of the well performance was attempted by fitting a simple model of the chimney, gas sands, and explosively created fracturing to the 2 experimentally measured variables, flow rate, and chimney pressure. The gas-flow calculations for various trial models were done by a finite difference solution to the nonlinear partial differential equation for radial Darcy flow. The TRUMP computer program was used to perform the numerical calculations. In principle, either the flow rate or the chimney pressure could be used as the independent variable in the calculations. In the present case, the flow rate was used as the independentmore » variable, since chimney pressure measurements were not made until after the second flow period in early Nov. 1970. Furthermore, the formation pressure was not accurately known and, hence, was considered a variable parameter in the modeling process. The chimney pressure was assumed equal to the formation pressure at the beginning of the flow testing. The model consisted of a central zone, representing the chimney, surrounded by a number of concentric zones, representing the formation. The effect of explosive fracturing was simulated by increasing the permeability in the zones near the central zone.« less
Diagnostic Features of Lava Flows in Satellite and Airborne Images (Invited)
NASA Astrophysics Data System (ADS)
Rowland, S. K.; Bruno, B. C.; Comeau, D.; Mouginis-Mark, P. J.; Fagents, S. A.; Harris, A. J.
2013-12-01
Characteristic surface features on lava flows can be seen in, and measured from, nadir and oblique airborne and space borne images. Some are diagnostic of volumetric flow rate, lava-transport mode, rheology, and composition. These in turn can be used to infer eruption styles, magma chamber stress regimes, volcanic histories, etc. Where independent methods can determine these properties, the image-based methods can be refined and (tentatively) extended to other planets. For example, the planimetric outline of a lava flow is determined by the lava's volumetric flow rate and rheology, the strength of the cooled skin relative to that of the fluid interior, and the extent to which a flow can conform to, or over-run, pre-existing topography. Fluid, skin-strength-dominated lava such as pāhoehoe, has a very convoluted outline; more viscous, interior-strength-dominated lava such as ';a';ā (as well as more silicic compositions) have more linear outlines. This can be quantified by the fractal dimension, which increases with convolution. Spatial resolution and degradation of the flow margin are important caveats. Flow margins are relatively easy to measure with IKONOS and QuickBird (Earth), HiRISE (Mars), and LROC NAC (Moon) data, all of which have spatial resolutions < 1 m. They become more difficult to measure in Landsat (30 m), THEMIS vis. (Mars; 18 m), or Magellan (75 m; Venus) data. Also useful is the ratio between the radius of curvature of the flow front and the flow length, which is small for long narrow (fluid) flows, and large for short stubby (viscous) flows. Even incipient channels display shear zones across which there were sharp velocity gradients, and these are preserved on flow surfaces. Tube-fed flows may display lines of skylights that indicate master tubes. Whether a flow is channel-fed ';a';ā or tube-fed pāhoehoe is determined by the volumetric flow rate, which is almost always directly related to the eruption rate. This may be related to the driving pressure in the magma chamber. Relative age information from stratigraphic, cross-cutting, and weathering relationships, in combination with eruption style information, can be used to determine changes in volcanic behavior through time. Diagnostic features on part of the 1907 Mauna Loa SW rift zone flow. Flow margin (red, B), shear planes (green, C), and clefts between pressure ridges (blue, D). If the only information available were that in B, C, or D, it would still be possible to identify this as a high volumetric flow-rate channel-fed ';a';ā flow.
Momentum rate probe for use with two-phase flows
NASA Astrophysics Data System (ADS)
Bush, S. G.; Bennett, J. B.; Sojka, P. E.; Panchagnula, M. V.; Plesniak, M. W.
1996-05-01
An instrument for measuring the momentum rate of two-phase flows is described, and design and construction details are provided. The device utilizes a conelike body to turn the flow from the axial to the radial direction. The force resulting from the change in momentum rate of the turning flow is measured using a strain-gage-instrumented cantilevered beam. The instrument is applicable to a wide range of flows including nuclear reactor coolant streams, refrigerants in heating-ventilating air-conditioning equipment, impingement cooling of small scale electronic hardware (computer chips are one example), supercritical fuel injection (in Diesel engines, for instance), and consumer product sprays (such as hair-care product sprays produced using effervescent atomizers). The latter application is discussed here. Features of the instrument include sensitivity to a wide range of forces and the ability to damp oscillations of the deflection cone. Instrument sensitivity allows measurement of momentum rates considerably lower (below 0.01 N) than those that could be obtained using previous devices. This feature is a direct result of our use of precision strain gages, capable of sensing strains below 20 μm/m, and the damping of oscillations which can overwhelm the force measurements. Oscillation damping results from a viscous fluid damper whose resistance is easily varied by changing fluids. Data used to calibrate the instrument are presented to demonstrate the effectiveness of the technique. As an example of the instrument's utility, momentum rate data obtained using it will be valuable in efforts to explain entrainment of surrounding air into effervescent atomizer-produced sprays and also to model the effervescent atomization process.
Ojima, Jun
2017-03-28
In a job site, a portable fan is often used to ventilate a confined space. When a portable fan is applied to such a space, the actual ventilation flow rate must be accurately estimated in advance because the safety level of contaminant and oxygen concentrations in the space will determine the ventilation requirements. When a portable fan is used with a flexible duct, the actual flow rate of the fan decreases due to the friction and duct bending loss of the duct. Intending to show the decline of a fan performance, the author conducted laboratory experiments and reported the quantitative effect of the friction and duct bending loss of a flexible duct to the flow rate of a portable fan. Four commercial portable fans of different specifications were procured for the experiments, and the decline of the performance of each portable fan due to the friction loss etc. of a connected flexible duct was investigated by measuring actual flow rate. The flow rate showed an obvious decrease from the rated flow rate when a flexible duct was connected. Connection of a straight polyester flexible duct and a straight aluminum flexible duct reduced the flow rates to 81.2 - 52.9% and less than 50%, respectively. The flow rate decreased with an increase of the bend angle of the flexible duct. It is recommended that flow rate check of a portable fan should be diligently carried out in every job site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christian, Mark H; Hadjerioua, Boualem; Lee, Kyutae
2015-01-01
The following paper represents the results of an investigation into the impact of the number and placement of Current Meter (CM) flow sensors on the accuracy to which they are capable of predicting the overall flow rate. Flow measurement accuracy is of particular importance in multiunit plants because it plays a pivotal role in determining the operational efficiency characteristics of each unit, allowing the operator to select the unit (or combination of units) which most efficiently meet demand. Several case studies have demonstrated that optimization of unit dispatch has the potential to increase plant efficiencies from between 1 to 4.4more » percent [2] [3]. Unfortunately current industry standards do not have an established methodology to measure the flow rate through hydropower units with short converging intakes (SCI); the only direction provided is that CM sensors should be used. The most common application of CM is horizontally, along a trolley which is incrementally lowered across a measurement cross section. As such, the measurement resolution is defined horizontally and vertically by the number of CM and the number of measurement increments respectively. There has not been any published research on the role of resolution in either direction on the accuracy of flow measurement. The work below investigates the effectiveness of flow measurement in a SCI by performing a case study in which point velocity measurements were extracted from a physical plant and then used to calculate a series of reference flow distributions. These distributions were then used to perform sensitivity studies on the relation between the number of CM and the accuracy to which the flow rate was predicted. The following research uncovered that a minimum of 795 plants contain SCI, a quantity which represents roughly 12% of total domestic hydropower capacity. In regards to measurement accuracy, it was determined that accuracy ceases to increase considerably due to strict increases in vertical resolution beyond the application of 49 transects. Moreover the research uncovered that the application of 5 CM (when applied at 49 vertical transects) resulted in an average accuracy of 95.6% and the application of additional sensors resulted in a linear increase in accuracy up to 17 CM which had an average accuracy of 98.5%. Beyond 17 CM incremental increases in accuracy due to the addition of CM was found decrease exponentially. Future work that will be performed in this area will investigate the use of computational fluid dynamics to acquire a broader range of flow fields within SCI.« less
Saline-Induced Coronary Hyperemia: Mechanisms and Effects on Left Ventricular Function.
De Bruyne, Bernard; Adjedj, Julien; Xaplanteris, Panagiotis; Ferrara, Angela; Mo, Yujing; Penicka, Martin; Floré, Vincent; Pellicano, Mariano; Toth, Gabor; Barbato, Emanuele; Duncker, Dirk J; Pijls, Nico H J
2017-04-01
During thermodilution-based assessment of volumetric coronary blood flow, we observed that intracoronary infusion of saline increased coronary flow. This study aims to quantify the extent and unravel the mechanisms of saline-induced hyperemia. Thirty-three patients were studied; in 24 patients, intracoronary Doppler flow velocity measurements were performed at rest, after intracoronary adenosine, and during increasing infusion rates of saline at room temperature through a dedicated catheter with 4 lateral side holes. In 9 patients, global longitudinal strain and flow propagation velocity were assessed by transthoracic echocardiography during a prolonged intracoronary saline infusion. Taking adenosine-induced maximal hyperemia as reference, intracoronary infusion of saline at rates of 5, 10, 15, and 20 mL/min induced 6%, 46%, 111%, and 112% of maximal hyperemia, respectively. There was a close agreement of maximal saline- and adenosine-induced coronary flow reserve (intraclass correlation coefficient, 0.922; P <0.001). The same infusion rates given through 1 end hole (n=6) or in the contralateral artery (n=6) did not induce a significant increase in flow velocity. Intracoronary saline given on top of an intravenous infusion of adenosine did not further increase flow. Intracoronary saline infusion did not affect blood pressure, systolic, or diastolic left ventricular function. Heart rate decreased by 15% during saline infusion ( P =0.021). Intracoronary infusion of saline at room temperature through a dedicated catheter for coronary thermodilution induces steady-state maximal hyperemia at a flow rate ≥15 mL/min. These findings open new possibilities to measure maximal absolute coronary blood flow and minimal microcirculatory resistance. © 2017 American Heart Association, Inc.
Mizukawa, N; Hino, A; Imahori, Y; Tenjin, H; Yano, I; Yoshino, E; Hirakawa, K; Yamashita, M; Oki, F; Nakahashi, H
1989-03-01
Blood flow and glucose metabolism of the tumors and perifocal edematous tissues were evaluated using positron emission tomography (PET). Thirty-one brain tumor cases were investigated 12 non glial tumors (9 meningiomas and 3 metastatic tumors) and 19 gliomas (these were classified in 5 astrocytomas, 7 anaplastic astrocytomas and 7 glioblastomas, according to the malignancy). The diagnosis were confirmed pathologically in 30 cases. Cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), oxygen extraction fraction (OEF) and cerebral blood volume (CBV) were measured by O-15 labeled gases inhalation methods. Cerebral metabolic rate for glucose (CMFglu) were measured by F-18 Deoxyglucose intravenous injection method and calculated by Hutchins's formula. The rate constant (ks) and lumped constant (LC) used in this study were the same as those published by Phelps et al. in 1979. The blood flow and glucose metabolic rates of tumors were measured by the same methods. The results were as follows: 1) Meningiomas showed very high blood flow and blood volume with a wide range. The OEF and metabolic rate for glucose (MRglu) values were very low. 2) Metastatic tumors showed the low values of blood flow, metabolic rate for oxygen (MRO2) and OEF. 3) The blood flow and MRglu values on gliomas were varied with no significant differences between the three subgroups. On the other hands, as the malignancy of the glioma increased, a statistically significant increase in blood volume and a decrease in OEF were noted. 4) The OEF values from the various types of tumors studied were significantly lower than those obtained from the normal tissue.(ABSTRACT TRUNCATED AT 250 WORDS)
40 CFR 60.705 - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... readings, heat content determinations, flow rate measurements, and exit velocity determinations made during... mass flow measured at least every 15 minutes and averaged over the same time period of the performance... of the flow indication specified under § 60.703(a)(2)(i), § 60.703(b)(2)(i) and § 60.703(c)(1)(i), as...
Evaluation of a locally homogeneous model of spray evaporation
NASA Technical Reports Server (NTRS)
Shearer, A. J.; Faeth, G. M.
1979-01-01
A model of spray evaporation which employs a second-order turbulence model in conjunction with the locally homogeneous flow approximation, which implies infinitely fast interphase transport rates is presented. Measurements to test the model were completed for single phase constant and variable density jets, as well as an evaporating spray in stagnant air. Profiles of mean velocity, composition, temperature and drop size distribution as well as velocity fluctuations and Reynolds stress, were measured within the spray. Predictions were in agreement with measurements in single phase flows and also with many characteristics of the spray, e.g. flow width, radial profiles of mean and turbulent quantities, and the axial rate of decay of mean velocity and mixture fraction.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, M.G.; Boucher, T.J.
1997-06-24
A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.
NASA Technical Reports Server (NTRS)
Monje, Oscar; Nolek, Sara D.; Wheeler, Raymond M.
2011-01-01
NH3 is a degradation product of SA9T, a solid-amine sorbent developed by Hamilton Sundstrand, that is continually emitted into the gas stream being conditioned by this sorbent. NH3 offgassing rates were measured using FTIR spectroscopy using a packed bed at similar contact times as offgassing tests conducted at Hamilton Sundstrand and at the Ames Research Center. The bed was challenged with moist air at several flow rates and humidities and NH3 concentration of the effluent was measured for several hours. The NH3 offgassing rates in open-loop testing were calculated from the steady state outlet NH3 concentration and flow rate. NH3 offgassing rates from SA9T were found to be influenced by the contact time with the adsorbent (flow rate) and by the humidity of the inlet gas stream, which are consistent with previous studies. Closed-loop vacuum-swing adsorption cycling rates verified that NH3 offgassing continues when a constant source of water vapor is present.
Effect of surface roughness on the heating rates of large-angled hypersonic blunt cones
NASA Astrophysics Data System (ADS)
Irimpan, Kiran Joy; Menezes, Viren
2018-03-01
Surface-roughness caused by the residue of an ablative Thermal Protection System (TPS) can alter the turbulence level and surface heating rates on a hypersonic re-entry capsule. Large-scale surface-roughness that could represent an ablated TPS, was introduced over the forebody of a 120° apex angle blunt cone, in order to test for its influence on surface heating rates in a hypersonic freestream of Mach 8.8. The surface heat transfer rates measured on smooth and roughened models under the same freestream conditions were compared. The hypersonic flow-fields of the smooth and rough-surfaced models were visualized to analyse the flow physics. Qualitative numerical simulations and pressure measurements were carried out to have an insight into the high-speed flow physics. Experimental observations under moderate Reynolds numbers indicated a delayed transition and an overall reduction of 17-46% in surface heating rates on the roughened model.
NASA Astrophysics Data System (ADS)
Zhu, Donghui; Bian, Yongning
2018-03-01
The shape of pipeline structure, fluid medium and flow state have important influence on the heat transfer and mass effect of fluid. In this paper, we investigated the mass transfer behavior of Non-Newtonian fluid CMC solution with 700ppm concentration in five different-sized axisymmetric wave-walled tubes for pulsatile flow. It is revealed that the effect of mass transfer is enhanced with the increase of oscillatory fractions P based on the PIV measurements. Besides, mass transfer rate was measured by the electrochemical method in the larger oscillatory points rate range. It is observed that mass transfer rate increases with the increase in P and reached the maximum mass transfer rate at the most optimal oscillatory fractions P opt. After reaching the optimal oscillatory fractions P opt, the mass transfer rate decreases with increasing P.
Polymer as Permeability Modifier in Porous Media
NASA Astrophysics Data System (ADS)
Parsa, S.; Weitz, D.
2017-12-01
Polymer flow through porous media is of particular interest in applications such as enhanced oil recovery and ground water remediation. We measure the effects of polymer flow on the permeability and local velocity distribution of a single phase flow in 3D micromodel of porous media using confocal microscopy and bulk permeability measurement. Our measurements show considerable reduction in permeability and increased velocity fluctuations with fluid velocities being diverted in some pores after polymer flow. We also find that the average velocity in the medium at constant imposed flow rate scales with the inverse square root of permeability.
NASA Astrophysics Data System (ADS)
Gañán-Calvo, A. M.; Rebollo-Muñoz, N.; Montanero, J. M.
2013-03-01
We aim to establish the scaling laws for both the minimum rate of flow attainable in the steady cone-jet mode of electrospray, and the size of the resulting droplets in that limit. Use is made of a small body of literature on Taylor cone-jets reporting precise measurements of the transported electric current and droplet size as a function of the liquid properties and flow rate. The projection of the data onto an appropriate non-dimensional parameter space maps a region bounded by the minimum rate of flow attainable in the steady state. To explain these experimental results, we propose a theoretical model based on the generalized concept of physical symmetry, stemming from the system time invariance (steadiness). A group of symmetries rising at the cone-to-jet geometrical transition determines the scaling for the minimum flow rate and related variables. If the flow rate is decreased below that minimum value, those symmetries break down, which leads to dripping. We find that the system exhibits two instability mechanisms depending on the nature of the forces arising against the flow: one dominated by viscosity and the other by the liquid polarity. In the former case, full charge relaxation is guaranteed down to the minimum flow rate, while in the latter the instability condition becomes equivalent to the symmetry breakdown by charge relaxation or separation. When cone-jets are formed without artificially imposing a flow rate, a microjet is issued quasi-steadily. The flow rate naturally ejected this way coincides with the minimum flow rate studied here. This natural flow rate determines the minimum droplet size that can be steadily produced by any electrohydrodynamic means for a given set of liquid properties.
Stereoscopic Planar Laser-Induced Fluorescence Imaging at 500 kHz
NASA Technical Reports Server (NTRS)
Medford, Taylor L.; Danehy, Paul M.; Jones, Stephen B.; Jiang, N.; Webster, M.; Lempert, Walter; Miller, J.; Meyer, T.
2011-01-01
A new measurement technique for obtaining time- and spatially-resolved image sequences in hypersonic flows is developed. Nitric-oxide planar laser-induced fluorescence (NO PLIF) has previously been used to investigate transition from laminar to turbulent flow in hypersonic boundary layers using both planar and volumetric imaging capabilities. Low flow rates of NO were typically seeded into the flow, minimally perturbing the flow. The volumetric imaging was performed at a measurement rate of 10 Hz using a thick planar laser sheet that excited NO fluorescence. The fluorescence was captured by a pair of cameras having slightly different views of the flow. Subsequent stereoscopic reconstruction of these images allowed the three-dimensional flow structures to be viewed. In the current paper, this approach has been extended to 50,000 times higher repetition rates. A laser operating at 500 kHz excites the seeded NO molecules, and a camera, synchronized with the laser and fitted with a beam-splitting assembly, acquires two separate images of the flow. The resulting stereoscopic images provide three-dimensional flow visualizations at 500 kHz for the first time. The 200 ns exposure time in each frame is fast enough to freeze the flow while the 500 kHz repetition rate is fast enough to time-resolve changes in the flow being studied. This method is applied to visualize the evolving hypersonic flow structures that propagate downstream of a discrete protuberance attached to a flat plate. The technique was demonstrated in the NASA Langley Research Center s 31-Inch Mach 10 Air Tunnel facility. Different tunnel Reynolds number conditions, NO flow rates and two different cylindrical protuberance heights were investigated. The location of the onset of flow unsteadiness, an indicator of transition, was observed to move downstream during the tunnel runs, coinciding with an increase in the model temperature.
Experimental validation of an ultrasonic flowmeter for unsteady flows
NASA Astrophysics Data System (ADS)
Leontidis, V.; Cuvier, C.; Caignaert, G.; Dupont, P.; Roussette, O.; Fammery, S.; Nivet, P.; Dazin, A.
2018-04-01
An ultrasonic flowmeter was developed for further applications in cryogenic conditions and for measuring flow rate fluctuations in the range of 0 to 70 Hz. The prototype was installed in a flow test rig, and was validated experimentally both in steady and unsteady water flow conditions. A Coriolis flowmeter was used for the calibration under steady state conditions, whereas in the unsteady case the validation was done simultaneously against two methods: particle image velocimetry (PIV), and with pressure transducers installed flush on the wall of the pipe. The results show that the developed flowmeter and the proposed methodology can accurately measure the frequency and amplitude of unsteady fluctuations in the experimental range of 0-9 l s-1 of the mean main flow rate and 0-70 Hz of the imposed disturbances.
An in vitro test bench reproducing coronary blood flow signals.
Chodzyński, Kamil Jerzy; Boudjeltia, Karim Zouaoui; Lalmand, Jacques; Aminian, Adel; Vanhamme, Luc; de Sousa, Daniel Ribeiro; Gremmo, Simone; Bricteux, Laurent; Renotte, Christine; Courbebaisse, Guy; Coussement, Grégory
2015-08-07
It is a known fact that blood flow pattern and more specifically the pulsatile time variation of shear stress on the vascular wall play a key role in atherogenesis. The paper presents the conception, the building and the control of a new in vitro test bench that mimics the pulsatile flows behavior based on in vivo measurements. An in vitro cardiovascular simulator is alimented with in vivo constraints upstream and provided with further post-processing analysis downstream in order to mimic the pulsatile in vivo blood flow quantities. This real-time controlled system is designed to perform real pulsatile in vivo blood flow signals to study endothelial cells' behavior under near physiological environment. The system is based on an internal model controller and a proportional-integral controller that controls a linear motor with customized piston pump, two proportional-integral controllers that control the mean flow rate and temperature of the medium. This configuration enables to mimic any resulting blood flow rate patterns between 40 and 700 ml/min. In order to feed the system with reliable periodic flow quantities in vivo measurements were performed. Data from five patients (1 female, 4 males; ages 44-63) were filtered and post-processed using the Newtonian Womersley's solution. These resulting flow signals were compared with 2D axisymmetric, numerical simulation using a Carreau non-Newtonian model to validate the approximation of a Newtonian behavior. This in vitro test bench reproduces the measured flow rate time evolution and the complexity of in vivo hemodynamic signals within the accuracy of the relative error below 5%. This post-processing method is compatible with any real complex in vivo signal and demonstrates the heterogeneity of pulsatile patterns in coronary arteries among of different patients. The comparison between analytical and numerical solution demonstrate the fair quality of the Newtonian Womersley's approximation. Therefore, Womersley's solution was used to calculate input flow rate for the in vitro test bench.
Quantifying measurement uncertainties in ADCP measurements in non-steady, inhomogeneous flow
NASA Astrophysics Data System (ADS)
Schäfer, Stefan
2017-04-01
The author presents a laboratory study of fixed-platform four-beam ADCP and three-beam ADV measurements in the tailrace of a micro hydro power setup with a 35kW Kaplan-turbine and 2.5m head. The datasets discussed quantify measurement uncertainties of the ADCP measurement technique coming from non-steady, inhomogeneous flow. For constant discharge of 1.5m3/s, two different flow scenarios were investigated: one being the regular tailrace flow downstream the draft tube and the second being a straightened, less inhomogeneous flow, which was generated by the use of a flow straightening device: A rack of diameter 40mm pipe sections was mounted right behind the draft tube. ADCP measurements (sampling rate 1.35Hz) were conducted in three distances behind the draft tube and compared bin-wise to measurements of three simultaneously measuring ADV probes (sampling rate 64Hz). The ADV probes were aligned horizontally and the ADV bins were placed in the centers of two facing ADCP bins and in the vertical under the ADCP probe of the corresponding depth. Rotating the ADV probes by 90° allowed for measurements of the other two facing ADCP bins. For reasons of mutual probe interaction, ADCP and ADV measurements were not conducted at the same time. The datasets were evaluated by using mean and fluctuation velocities. Turbulence parameters were calculated and compared as far as applicable. Uncertainties coming from non-steady flow were estimated with the normalized mean square error und evaluated by comparing long-term measurements of 60 minutes to shorter measurement intervals. Uncertainties coming from inhomogeneous flow were evaluated by comparison of ADCP with ADV data along the ADCP beams where ADCP data were effectively measured and in the vertical under the ADCP probe where velocities of the ADCP measurements were displayed. Errors coming from non-steady flow could be compensated through sufficiently long measurement intervals with high enough sampling rates depending on the turbulence scales of the flow. In case of heterogeneous distributions of vertical velocity components in the ADCP beams, the resulting errors significantly biased the mean velocities and could not be recognized by sole ADCP measurements. For the straightened flow scenario, the results showed good agreement of ADCP and ADV data for mean velocities, whereas the ADCP data consistently overestimated turbulence intensities by a factor of 2. Reynolds stresses were in good agreement as well as were turbulent kinetic energies, apart from one measurement with outliers of up to 30%. For the tailrace flow scenario, the mean velocities from the ADCP data underestimated the ADV data by 23%. Turbulence intensities from the ADCP data were fluctuant, overestimated the ADV data by factors of up to 2.8 and showed spatial discrepancies over the depth. Reynolds stresses were only partly in good agreement and turbulent kinetic energies were over- and underestimated in a range of [-50; +30] %.
Bernardi, Maria José; Reis, Alessandra; Loguercio, Alessandro Dourado; Kehrig, Ruth; Leite, Mariana Ferreira; Nicolau, José
2007-01-01
This study measured the flow rate, pH and buffering capacity of saliva from well- and poorly metabolically controlled Type 2 diabetic patients in three cities of the southern part of Brazil, compared with healthy individuals from the same cities. Whole saliva was collected by mechanical stimulation and buffering capacity and glucose level were measured. Blood was collected after 12 hours fasting and glucose and glycosylated haemoglobin concentrations were determined. The data were analysed by one-way ANOVA and Student-Newman-Keuls (alpha= 0.05). The flow rate was lower in the Type 2 diabetic patients, regardless of whether they were well or poorly metabolically controlled, compared with healthy individuals (p < 0.05). Salivary glucose concentration was higher in both diabetic patient groups, i.e. well and poorly metabolically controlled, than in the control (p < 0.05). The metabolic control of hyperglycaemia was not sufficient to improve the salivary flow rate or the salivary glucose concentration.
A two-step method for rapid characterization of electroosmotic flows in capillary electrophoresis.
Zhang, Wenjing; He, Muyi; Yuan, Tao; Xu, Wei
2017-12-01
The measurement of electroosmotic flow (EOF) is important in a capillary electrophoresis (CE) experiment in terms of performance optimization and stability improvement. Although several methods exist, there are demanding needs to accurately characterize ultra-low electroosmotic flow rates (EOF rates), such as in coated capillaries used in protein separations. In this work, a new method, called the two-step method, was developed to accurately and rapidly measure EOF rates in a capillary, especially for measuring the ultra-low EOF rates in coated capillaries. In this two-step method, the EOF rates were calculated by measuring the migration time difference of a neutral marker in two consecutive experiments, in which a pressure driven was introduced to accelerate the migration and the DC voltage was reversed to switch the EOF direction. Uncoated capillaries were first characterized by both this two-step method and a conventional method to confirm the validity of this new method. Then this new method was applied in the study of coated capillaries. Results show that this new method is not only fast in speed, but also better in accuracy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kucinschi, Bogdan R; Scherer, Ronald C; DeWitt, Kenneth J; Ng, Terry T M
2006-06-01
Flow visualization with smoke particles illuminated by a laser sheet was used to obtain a qualitative description of the air flow structures through a dynamically similar 7.5x symmetric static scale model of the human larynx (divergence angle of 10 deg, minimal diameter of 0.04 cm real life). The acoustic level downstream of the vocal folds was measured by using a condenser microphone. False vocal folds (FVFs) were included. In general, the glottal flow was laminar and bistable. The glottal jet curvature increased with flow rate and decreased with the presence of the FVFs. The glottal exit flow for the lowest flow rate showed a curved jet which remained laminar for all geometries. For the higher flow rates, the jet flow patterns exiting the glottis showed a laminar jet core, transitioning to vortical structures, and leading spatially to turbulent dissipation. This structure was shortened and tightened with an increase in flow rate. The narrow FVF gap lengthened the flow structure and reduced jet curvature via acceleration of the flow. These results suggest that laryngeal flow resistance and the complex jet flow structure exiting the glottis are highly affected by flow rate and the presence of the false vocal folds. Acoustic consequences are discussed in terms of the quadrupole- and dipole-type sound sources due to ordered flow structures.
Bedload Rating and Flow Competence Curves Vary With Watershed and Bed Material Parameters
NASA Astrophysics Data System (ADS)
Bunte, K.; Abt, S. R.
2003-12-01
Bedload transport rating curves and flow competence curves (largest bedload size for specified flow) are usually not known for streams unless a large number of bedload samples has been collected and analyzed. However, this information is necessary for assessing instream flow needs and stream responses to watershed effects. This study therefore analyzed whether bedload transport rating and flow competence curves were related to stream parameters. Bedload transport rating curves and flow competence curves were obtained from extensive bedload sampling in six gravel- and cobble-bed mountain streams. Samples were collected using bedload traps and a large net sampler, both of which provide steep and relatively well-defined bedload rating and flow competence curves due to a long sampling duration, a large sampler opening and a large sampler capacity. The sampled streams have snowmelt regimes, steep (1-9%) gradients, and watersheds that are mainly forested and relatively undisturbed with basin area sizes of 8 to 105 km2. The channels are slightly incised and can contain flows of more than 1.5 times bankfull with little overbank flow. Exponents of bedload rating and flow competence curves obtained from these measurements were found to systematically increase with basin area size and decrease with the degree of channel armoring. By contrast, coefficients of bedload rating and flow competence curves decreased with basin size and increased with armoring. All of these relationships were well-defined (0.86 < r2 < 0.99). Data sets from other studies in coarse-bedded streams fit the indicated trend if the sampling device used allows measuring bedload transport rates over a wide range and if bedload supply is somewhat low. The existence of a general positive trend between bedload rating curve exponents and basin area, and a negative trend between coefficients and basin area, is confirmed by a large data set of bedload rating curves obtained from Helley-Smith samples. However, in this case, the trends only become visible as basin area sizes span a wide range (1 - 10,000 km2). The well-defined relationships obtained from the bedload trap and the large net sampler suggest that exponents and coefficients of bedload transport rating curves (and flow competence curves) are predictable from an easily obtainable parameter such as basin size. However, the relationships of bedload rating curve exponents and coefficients with basin size and armoring appear to be influenced by the sampling device used and the watershed sediment production.
An experimental study of the fluid mechanics associated with porous walls
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Heaman, J.; Smith, A.
1992-01-01
The fluid mechanics associated with the blowing phenomenon from porous walls is measured and characterized. The measurements indicate that the flow exiting a porous wall exhibits a lumpy velocity profile caused by the coalescence effects of smaller jets emerging from the surface. The velocity variations are spatially stable and prevail even at low flow rates. The intensity of this pseudoturbulence is found to be directly proportional to the filter rating of the porous wall and to increase linearly with the mean velocity. Beyond a critical mean velocity, the pseudoturbulence intensity shows a leveling trend with increase in the mean velocity. This critical velocity varies inversely as the filter rating and represents the onset of fully developed jetting action in the flow field. Based on the data, a more appropriate length scale for the flow field is proposed and a correlation is developed that can be used to predict the onset of fully developed jets in the flow emerging from a porous wall.
NASA Astrophysics Data System (ADS)
Khanzadeh, Mohammad; Jamal, Fatemeh; Shariat, Mahdi
2018-04-01
Nowadays, cold atmospheric-pressure (CAP) helium plasma jets are widely used in material processing devices in various industries. Researchers often use indirect and spectrometric methods for measuring the plasma parameters which are very expensive. In this paper, for the first time, characterization of CAP, i.e., finding its parameters such as refractive index and electron density distribution, was carried out using an optical method, Moiré deflectometry. This method is a wave front analysis technique based on geometric optics. The advantages of this method are simplicity, high accuracy, and low cost along with the non-contact, non-destructive, and direct measurement of CAP parameters. This method demonstrates that as the helium gas flow rate decreases, the refractive index increases. Also, we must note that the refractive index is larger in the gas flow consisting of different flow rates of plasma comparing with the gas flow without the plasma.
Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong
2014-01-01
The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment. PMID:25319447
Borehole flowmeter logging for the accurate design and analysis of tracer tests.
Basiricò, Stefano; Crosta, Giovanni B; Frattini, Paolo; Villa, Alberto; Godio, Alberto
2015-04-01
Tracer tests often give ambiguous interpretations that may be due to the erroneous location of sampling points and/or the lack of flow rate measurements through the sampler. To obtain more reliable tracer test results, we propose a methodology that optimizes the design and analysis of tracer tests in a cross borehole mode by using vertical borehole flow rate measurements. Experiments using this approach, herein defined as the Bh-flow tracer test, have been performed by implementing three sequential steps: (1) single-hole flowmeter test, (2) cross-hole flowmeter test, and (3) tracer test. At the experimental site, core logging, pumping tests, and static water-level measurements were previously carried out to determine stratigraphy, fracture characteristics, and bulk hydraulic conductivity. Single-hole flowmeter testing makes it possible to detect the presence of vertical flows as well as inflow and outflow zones, whereas cross-hole flowmeter testing detects the presence of connections along sets of flow conduits or discontinuities intercepted by boreholes. Finally, the specific pathways and rates of groundwater flow through selected flowpaths are determined by tracer testing. We conclude that the combined use of single and cross-borehole flowmeter tests is fundamental to the formulation of the tracer test strategy and interpretation of the tracer test results. © 2014, National Ground Water Association.
Smith, D R; Kaye, S M; Lee, W; Mazzucato, E; Park, H K; Bell, R E; Domier, C W; Leblanc, B P; Levinton, F M; Luhmann, N C; Menard, J E; Yuh, H
2009-06-05
Electron gyroscale fluctuation measurements in National Spherical Torus Experiment H-mode plasmas with large toroidal rotation reveal fluctuations consistent with electron temperature gradient (ETG) turbulence. Large toroidal rotation in National Spherical Torus Experiment plasmas with neutral beam injection generates ExB flow shear rates comparable to ETG linear growth rates. Enhanced fluctuations occur when the electron temperature gradient is marginally stable with respect to the ETG linear critical gradient. Fluctuation amplitudes decrease when the ExB flow shear rate exceeds ETG linear growth rates. The observations indicate that ExB flow shear can be an effective suppression mechanism for ETG turbulence.
Choked flow of fluid nitrogen with emphasis on the thermodynamic critical region
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Simoneau, R. J.; Ehlers, R. C.
1972-01-01
Experimental measurements of critical flow rate and pressure ratio for nitrogen flowing through a nozzle are presented. Data for selected stagnation isotherms from 87.5 to 234 K with pressures to 9.3 MN/m2 are compared to an equilibrium model with real fluid properties and also a nonequilibrium model. Critical flow pressure ratio along an isotherm tends to peak while the flow rate indicates an inflection. The point is closely associated with the transposed critical temperature and represents a change in the fluid structure.
High-speed Particle Image Velocimetry Near Surfaces
Lu, Louise; Sick, Volker
2013-01-01
Multi-dimensional and transient flows play a key role in many areas of science, engineering, and health sciences but are often not well understood. The complex nature of these flows may be studied using particle image velocimetry (PIV), a laser-based imaging technique for optically accessible flows. Though many forms of PIV exist that extend the technique beyond the original planar two-component velocity measurement capabilities, the basic PIV system consists of a light source (laser), a camera, tracer particles, and analysis algorithms. The imaging and recording parameters, the light source, and the algorithms are adjusted to optimize the recording for the flow of interest and obtain valid velocity data. Common PIV investigations measure two-component velocities in a plane at a few frames per second. However, recent developments in instrumentation have facilitated high-frame rate (> 1 kHz) measurements capable of resolving transient flows with high temporal resolution. Therefore, high-frame rate measurements have enabled investigations on the evolution of the structure and dynamics of highly transient flows. These investigations play a critical role in understanding the fundamental physics of complex flows. A detailed description for performing high-resolution, high-speed planar PIV to study a transient flow near the surface of a flat plate is presented here. Details for adjusting the parameter constraints such as image and recording properties, the laser sheet properties, and processing algorithms to adapt PIV for any flow of interest are included. PMID:23851899
Chopski, Steven G; Rangus, Owen M; Moskowitz, William B; Throckmorton, Amy L
2014-09-01
A mechanical blood pump specifically designed to increase pressure in the great veins would improve hemodynamic stability in adolescent and adult Fontan patients having dysfunctional cavopulmonary circulation. This study investigates the impact of axial-flow blood pumps on pressure, flow rate, and energy augmentation in the total cavopulmonary circulation (TCPC) using a patient-specific Fontan model. The experiments were conducted for three mechanical support configurations, which included an axial-flow impeller alone in the inferior vena cava (IVC) and an impeller with one of two different protective stent designs. All of the pump configurations led to an increase in pressure generation and flow in the Fontan circuit. The increase in IVC flow was found to augment pulmonary arterial flow, having only a small impact on the pressure and flow in the superior vena cava (SVC). Retrograde flow was neither observed nor measured from the TCPC junction into the SVC. All of the pump configurations enhanced the rate of power gain of the cavopulmonary circulation by adding energy and rotational force to the fluid flow. We measured an enhancement of forward flow into the TCPC junction, reduction in IVC pressure, and only minimally increased pulmonary arterial pressure under conditions of pump support. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor.
Ahmed, Syed Ubaid; Ranganathan, Panneerselvam; Pandey, Ashok; Sivaraman, Savithri
2010-06-01
In the present study, experiments have been carried out to identify various flow regimes in a dual Rushton turbines stirred bioreactor for different gas flow rates and impeller speeds. The hydrodynamic parameters like fractional gas hold-up, power consumption and mixing time have been measured. A two fluid model along with MUSIG model to handle polydispersed gas flow has been implemented to predict the various flow regimes and hydrodynamic parameters in the dual turbines stirred bioreactor. The computational model has been mapped on commercial solver ANSYS CFX. The flow regimes predicted by numerical simulations are validated with the experimental results. The present model has successfully captured the flow regimes as observed during experiments. The measured gross flow characteristics like fractional gas hold-up, and mixing time have been compared with numerical simulations. Also the effect of gas flow rate and impeller speed on gas hold-up and power consumption have been investigated. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Tian, Yu; Bian, Yulong; Han, Piguo; Wang, Peng; Gao, Fengqiang; Chen, Yingmin
2017-01-01
Flow is the experience of effortless attention, reduced self-consciousness, and a deep sense of control that typically occurs during the optimal performance of challenging tasks. On the basis of the person-artifact-task model, we selected computer games (tasks) with varying levels of difficulty (difficult, medium, and easy) and shyness (personality) as flow precursors to study the physiological activity of users in a flow state. Cardiac and respiratory activity and mean changes in skin conductance (SC) were measured continuously while the participants ( n = 40) played the games. Moreover, the associations between self-reported psychological flow and physiological measures were investigated through a series of repeated-measures analyses. The results showed that the flow experience is related to a faster respiratory rate, deeper respiration, moderate heart rate (HR), moderate HR variability, and moderate SC. The main effect of shyness was non-significant, whereas the interaction of shyness and difficulty influenced the flow experience. These findings are discussed in relation to current models of arousal and valence. The results indicate that the flow state is a state of moderate mental effort that arises through the increased parasympathetic modulation of sympathetic activity.
Tian, Yu; Bian, Yulong; Han, Piguo; Wang, Peng; Gao, Fengqiang; Chen, Yingmin
2017-01-01
Flow is the experience of effortless attention, reduced self-consciousness, and a deep sense of control that typically occurs during the optimal performance of challenging tasks. On the basis of the person–artifact–task model, we selected computer games (tasks) with varying levels of difficulty (difficult, medium, and easy) and shyness (personality) as flow precursors to study the physiological activity of users in a flow state. Cardiac and respiratory activity and mean changes in skin conductance (SC) were measured continuously while the participants (n = 40) played the games. Moreover, the associations between self-reported psychological flow and physiological measures were investigated through a series of repeated-measures analyses. The results showed that the flow experience is related to a faster respiratory rate, deeper respiration, moderate heart rate (HR), moderate HR variability, and moderate SC. The main effect of shyness was non-significant, whereas the interaction of shyness and difficulty influenced the flow experience. These findings are discussed in relation to current models of arousal and valence. The results indicate that the flow state is a state of moderate mental effort that arises through the increased parasympathetic modulation of sympathetic activity. PMID:28725206
Kean, Jason W.; Staley, Dennis M.; Leeper, Robert J.; Schmidt, Kevin Michael; Gartner, Joseph E.
2012-01-01
Data on the specific timing of post-fire flash floods and debris flows are very limited. We describe a method to measure the response times of small burned watersheds to rainfall using a low-cost pressure transducer, which can be installed quickly after a fire. Although the pressure transducer is not designed for sustained sampling at the fast rates ({less than or equal to}2 sec) used at more advanced debris-flow monitoring sites, comparisons with high-data rate stage data show that measured spikes in pressure sampled at 1-min intervals are sufficient to detect the passage of most debris flows and floods. Post-event site visits are used to measure the peak stage and identify flow type based on deposit characteristics. The basin response timescale (tb) to generate flow at each site was determined from an analysis of the cross correlation between time series of flow pressure and 5-min rainfall intensity. This timescale was found to be less than 30 minutes for 40 post-fire floods and 11 post-fire debris flows recorded in 15 southern California watersheds ({less than or equal to} 1.4 km2). Including data from 24 other debris flows recorded at 5 more instrumentally advanced monitoring stations, we find there is not a substantial difference in the median tb for floods and debris flows (11 and 9 minutes, respectively); however, there are slight, statistically significant differences in the trends of flood and debris-flow tb with basin area, which are presumably related to differences in flow speed between floods and debris flows.
Larsen, Poul S.; Riisgård, Hans Ulrik
2012-01-01
Summary To obtain precise and reliable laboratory clearance rate (filtration rate) measurements with the ‘flow-through chamber method’ (FTC) the design must ensure that only inflow water reaches the bivalve's inhalant aperture and that exit flow is fully mixed. As earlier recommended these prerequisites can be checked by a plot of clearance rate (CR) versus increasing through-flow (Fl) to reach a plateau, which is the true CR, but we also recommend to plot percent particles cleared versus reciprocal through-flow where the plateau becomes the straight line CR/Fl, and we emphasize that the percent of particles cleared is in itself neither a criterion for valid CR measurement, nor an indicator of appropriate ‘chamber geometry’ as hitherto adapted in many studies. For the ‘steady-state method’ (SS), the design must ensure that inflow water becomes fully mixed with the bivalve's excurrent flow to establish a uniform chamber concentration prevailing at its incurrent flow and at the chamber outlet. These prerequisites can be checked by a plot of CR versus increasing Fl, which should give the true CR at all through-flows. Theoretically, the experimental uncertainty of CR for a given accuracy of concentration measurements depends on the percent reduction in particle concentration (100×P) from inlet to outlet of the ideal ‘chamber geomety’. For FTC, it decreases with increasing values of P while for SS it first decreases but then increases again, suggesting the use of an intermediate value of P. In practice, the optimal value of P may depend on the given ‘chamber geometry’. The fundamental differences between the FTC and the SS methods and practical guidelines for their use are pointed out, and new data on CR for the blue mussel, Mytilus edulis, illustrate a design and use of the SS method which may be employed in e.g. long-term growth experiments at constant algal concentrations. PMID:23213362
Malm, A V; Waigh, T A
2017-04-26
The flow instabilities of solutions of high molecular weight DNA in the entangled semi-dilute concentration regime were investigated using optical coherence tomography velocimetry, a technique that provides high spatial (probe volumes of 3.4 pL) and temporal resolution (sub μs) information on the flow behaviour of complex fluids in a rheometer. The velocity profiles of the opaque DNA solutions (high and low salt) were measured as a function of the distance across the gap of a parallel plate rheometer, and their evolution over time was measured. At lower DNA concentrations and low shear rates, the velocity fluctuations were well described by Gaussian functions and the velocity gradient was uniform across the rheometer gap, which is expected for Newtonian flows. As the DNA concentration and shear rate were increased there was a stable wall slip regime followed by an evolving wall slip regime, which is finally followed by the onset of elastic turbulence. Strain localization (shear banding) is observed on the boundaries of the flows at intermediate shear rates, but decreases in the high shear elastic turbulence regime, where bulk strain localization occurs. A dynamic phase diagram for non-linear flow was created to describe the different behaviours.
Fourier-domain study of drift turbulence driven sheared flow in a laboratory plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, M.; Tynan, G. R.; Holland, C.
2010-03-15
Frequency-resolved nonlinear internal and kinetic energy transfer rates have been measured in the Controlled Shear Decorrelation Experiment (CSDX) linear plasma device using a recently developed technique [Xu et al., Phys. Plasmas 16, 042312 (2009)]. The results clearly show a net kinetic energy transfer into the zonal flow frequency region, consistent with previous time-domain observations of turbulence-driven shear flows [Tynan et al., Plasma Phys. Controlled Fusion 48, S51 (2006)]. The experimentally measured dispersion relation has been used to map the frequency-resolved energy transfer rates into the wave number domain, which shows that the shear flow drive comes from midrange (k{sub t}hetarho{submore » S}>0.3) drift fluctuations, and the strongest flow drive comes from k{sub t}hetarho{sub S}approx =1 fluctuations. Linear growth rates have been inferred from a linearized Hasegawa-Wakatani model [Hasegawa et al., Phys. Fluids 22, 2122 (1979)], which indicates that the m=0 mode is linearly stable and the m=1-10 modes (corresponding to k{sub t}hetarho{sub S}>0.3) are linearly unstable for the n=1 and n=2 radial eigenmodes. This is consistent with our energy transfer measurements.« less
NASA Technical Reports Server (NTRS)
Carter, Howard S.; Carr, Robert E.
1961-01-01
Heat-transfer rates have been measured in free flight along the stagnation line of an unswept cylinder mounted transversely on an axial cylinder so that the shock wave from the hemispherical nose of the axial cylinder intersected the bow shock of the unswept transverse cylinder. Data were obtained at Mach numbers from 2.53 to 5.50 and at Reynolds numbers based on the transverse cylinder diameter from 1.00 x 10(exp 6) to 1.87 x 10(exp 6). Shadowgraph pictures made in a wind tunnel showed that the flow field was influenced by boundary-layer separation on the axial cylinder and by end effects on the transverse cylinder as well as by the intersecting shocks. Under these conditions, the measured heat-transfer rates had inconsistent variations both in magnitude and distribution which precluded separating the effects of these disturbances. The general magnitude of the measured heating rates at Mach numbers up to 3 was from 0.1 to 0.5 of the theoretical laminar heating rates along the stagnation line for an infinite unswept cylinder in undisturbed flow. At Mach numbers above 4 the measured heating rates were from 1.5 to 2 times the theoretical rates.
Microwave/Sonic Apparatus Measures Flow and Density in Pipe
NASA Technical Reports Server (NTRS)
Arndt, G. D.; Ngo, Phong; Carl, J. R.; Byerly, Kent A.
2004-01-01
An apparatus for measuring the rate of flow and the mass density of a liquid or slurry includes a special section of pipe instrumented with microwave and sonic sensors, and a computer that processes digitized readings taken by the sensors. The apparatus was conceived specifically for monitoring a flow of oil-well-drilling mud, but the basic principles of its design and operation are also applicable to monitoring flows of other liquids and slurries.
Hysteretic behavior of stage-discharge relationships in urban streams
NASA Astrophysics Data System (ADS)
Miller, A. J.; Lindner, G. A.
2009-12-01
Reliable stage-discharge relationships or rating curves are of critical importance for accurate calculation of streamflow and maintenance of long-term flow records. Urban streams offer particular challenges for the maintenance of accurate rating curves. It is often difficult or impossible to collect direct discharge measurements at high flows, many of which are generated by short-duration high-intensity summer thunderstorms, both because of dangerous conditions in the channel and also because the stream rises and falls so rapidly that field crews cannot reach sites in time and sometimes cannot make measurements rapidly enough to keep pace with changing water levels even when they are on site during a storm. Work in urban streams in the Baltimore metropolitan area has shown that projection of rating curves beyond the range of measured flows can lead to overestimation of flood peaks by as much as 100%, and these can only be corrected when adequate field data are available to support modeling efforts. Even moderate flows that are above safe wading depth and velocity may best be estimated using hydraulic models. Current research for NSF CNH project 0709659 includes the application of 2-d depth-averaged hydraulic models to match existing rating curves over a range of low to moderate flows and to extend rating curves for higher flows, based on field collection of high-water marks. Although it is generally assumed that stage-discharge relationships are single-valued, we find that modeling results in small urban streams often generate hysteretic relationships, with higher discharges on the rising limb of the hydrograph than on the falling limb. The difference between discharges for the same stage on the rising and falling limb can be on the order of 20-30% even for in-channel flows that are less than 1 m deep. As safety considerations dictate that it is preferable to make direct discharge measurements on the falling limb of the hydrograph, the higher direct measurements used in many rating curves probably have been collected on the falling limb and therefore may not capture the correct stage-discharge relationship for the rising limb. In some cases model results selected only from the falling limb are able to match the existing rating curve very closely. Although hysteresis may be explained with reference to the innate properties of the flood wave, other factors also lead to hysteretic behavior. Downstream constrictions and obstructions associated with urban infrastructure may cause substantial backwater effects, particularly during flood flows. Flood conditions at tributary confluences also can exert a controlling influence upstream. Based on our results we recommend that at some sites it is advisable to develop separate rating curves for the rising and falling limbs, and to develop a range of modeling scenarios for predicting the range of potential uncertainty.
Flow rate-pressure drop relation for deformable shallow microfluidic channels
NASA Astrophysics Data System (ADS)
Christov, Ivan C.; Cognet, Vincent; Shidhore, Tanmay C.; Stone, Howard A.
2018-04-01
Laminar flow in devices fabricated from soft materials causes deformation of the passage geometry, which affects the flow rate--pressure drop relation. For a given pressure drop, in channels with narrow rectangular cross-section, the flow rate varies as the cube of the channel height, so deformation can produce significant quantitative effects, including nonlinear dependence on the pressure drop [{Gervais, T., El-Ali, J., G\\"unther, A. \\& Jensen, K.\\ F.}\\ 2006 Flow-induced deformation of shallow microfluidic channels.\\ \\textit{Lab Chip} \\textbf{6}, 500--507]. Gervais et. al. proposed a successful model of the deformation-induced change in the flow rate by heuristically coupling a Hookean elastic response with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbation approach for the flow rate--pressure drop relation in a shallow deformable microchannel using the theory of isotropic quasi-static plate bending and the Stokes equations under a lubrication approximation (specifically, the ratio of the channel's height to its width and of the channel's height to its length are both assumed small). Our result contains no free parameters and confirms Gervais et. al.'s observation that the flow rate is a quartic polynomial of the pressure drop. The derived flow rate--pressure drop relation compares favorably with experimental measurements.
Self-Calibrating Respiratory-Flowmeter Combination
NASA Technical Reports Server (NTRS)
Westenskow, Dwayne R.; Orr, Joseph A.
1990-01-01
Dual flowmeters ensure accuracy over full range of human respiratory flow rates. System for measurement of respiratory flow employs two flowmeters; one compensates for deficiencies of other. Combination yields easily calibrated system accurate over wide range of gas flow.
NASA Technical Reports Server (NTRS)
Bryan, William B.; Fleeter, Sanford
1987-01-01
The internal three-dimensional steady and time-varying flow through the diffusing elements of a centrifugal impeller were investigated using a moderate scale, subsonic, mixed flow research compressor facility. The characteristics of the test facility which permit the measurement of internal flow conditions throughout the entire research compressor and radial diffuser for various operating conditions are described. Results are presented in the form of graphs and charts to cover a range of mass flow rates with inlet guide vane settings varying from minus 15 degrees to plus 45 degrees. The static pressure distributions in the compressor inlet section and on the impeller and exit diffuser vanes, as well as the overall pressure and temperature rise and mass flow rate, were measured and analyzed at each operating point to determine the overall performance as well as the detailed aerodynamics throughout the compressor.
Afterload-dependent flow fluctuation of centrifugal pump: should it be actively fixed?
Nishida, H; Akazawa, T; Nishinaka, T; Aomi, S; Endo, M; Koyanagi, H
1998-05-01
To evaluate the clinical meaning and effects of afterload-dependent flow fluctuation in a centrifugal pump, concomitant measurement of flow rate and mixed venous oxygen saturation (SVO2) was performed in 5 cases of open heart surgery in which the patients underwent cardiopulmonary bypass (CPB) with the Terumo Capiox centrifugal pump. Continuous measurement of SVO2 using the 3M CDI System 100 was performed with a disposable cuvette incorporated into the drainage circuit. After the target flow rate of 2.4 L/min/m2 was obtained under a nonbeating condition, the pump rotational speed was fixed. During the cooling and low temperature period, SVO2 decreased as the flow rate spontaneously decreased but still stayed around 80% even with a 15-20% decrease in blood flow rate. This indicates that a luxury perfusion condition is ensured as long as the body temperature is kept low. In contrast, during the rewarming period, SVO2 decreased to around 70-75% despite a 15-25% spontaneous increase in flow rate. Although this level of SVO2 still indicates adequate systemic perfusion, there is a possibility of regional hypoperfusion in patients with such conditions as cerebrovascular disease. In conclusion, although diligent adjustment of the physiological fluctuating flow rate in the centrifugal pump seems unnecessary during conventional open heart surgery, manual control may be necessary especially during the rewarming period, normothermic surgery, or circulatory assist for shocked patients. From this study, we also conclude that the major benefit of the afterload-independent autoflow control system of the centrifugal pump is the improvement of safety in terms of the fixed reservoir level and the handling of cardiopulmonary bypass.
Boutsioukis, C; Lambrianidis, T; Kastrinakis, E; Bekiaroglou, P
2007-07-01
To monitor ex vivo intra-canal irrigation with three endodontic needles (25, 27 and 30 gauge) and compare them in terms of irrigant flow rate, intra-barrel pressure, duration of irrigation and volume of irrigant delivered. A testing system was constructed to allow measurement of selected variables with pressure and displacement transducers during ex vivo intra-canal irrigation with a syringe and three different needles (groups A, B, C) into a prepared root canal. Ten specialist endodontists performed the irrigation procedure. Each operator performed ten procedures with each needle. Data recorded by the transducers were analysed using Friedman's test, Wilcoxon Signed Rank test, Mann-Whitney U-test and Kendall's T(b) test. The level of significance was set to 95%. Significant differences were detected among the three needles for most variables. Duration of delivery and flow rates significantly decreased as the needle diameter increased, whilst pressure increased up to 400-550 kPa. Gender of the operator had a significant impact on the results. Experience of the operators (years) were negatively correlated to volume of irrigant (all groups), to the duration of delivery (groups A, B) and to the average flow rate (group A). Finer diameter needles require increased effort to deliver the irrigant and result in higher intra-barrel pressure. The syringe and needles used tolerated the pressure developed. Irrigant flow rate should be considered as a factor directly influencing flow beyond the needle. Wide variations of flow rate were observed among operators. Syringe irrigation appears difficult to standardize and control.
NASA Astrophysics Data System (ADS)
Talaghat, Mohammad Reza; Jokar, Seyyed Mohammad
2018-03-01
The induction time is a time interval to detect the initial hydrate formation, which is counted from the moment when the stirrer is turned on until the first detection of hydrate formation. The main objective of the present work is to predict and measure the induction time of methane hydrate formation in the presence or absence of tetrahydrofuran (THF) as promoter in the flow loop system. A laboratory flow mini-loop apparatus was set up to measure the induction time of methane hydrate formation. The induction time is predicted using developed Kashchiev and Firoozabadi model and modified model of Natarajan for a flow loop system. Furthermore, the effects of volumetric flow rate of the fluid on the induction time were investigated. The results of the models were compared with experimental data. They show that the induction time of hydrate formation in the presence of THF is very short at high pressure and high volumetric flow rate of the fluid. It decreases with increasing pressure and liquid volumetric flow rate. It is also shown that the modified Natarajan model is more accurate than the Kashchiev and Firoozabadi ones in prediction of the induction time.
Phase transition and flow-rate behavior of merging granular flows.
Hu, Mao-Bin; Liu, Qi-Yi; Jiang, Rui; Hou, Meiying; Wu, Qing-Song
2015-02-01
Merging of granular flows is ubiquitous in industrial, mining, and geological processes. However, its behavior remains poorly understood. This paper studies the phase transition and flow-rate behavior of two granular flows merging into one channel. When the main channel is wider than the side channel, the system shows a remarkable two-sudden-drops phenomenon in the outflow rate when gradually increasing the main inflow. When gradually decreasing the main inflow, the system shows obvious hysteresis phenomenon. We study the flow-rate-drop phenomenon by measuring the area fraction and the mean velocity at the merging point. The phase diagram of the system is also presented to understand the occurrence of the phenomenon. We find that the dilute-to-dense transition occurs when the area fraction of particles at the joint point exceeds a critical value ϕ(c)=0.65±0.03.
Performance of three systems for warming intravenous fluids at different flow rates.
Satoh, J; Yamakage, M; Wasaki, S I; Namiki, A
2006-02-01
This study compared the intravenous fluid warming capabilities of three systems at different flow rates. The devices studied were a water-bath warmer, a dry-heat plate warmer, and an intravenous fluid tube warmer Ambient temperature was controlled at 22 degrees to 24 degrees C. Normal saline (0.9% NaCl) at either room temperature (21 degrees to 23 degrees C) or at ice-cold temperature (3 degrees to 5 degrees C) was administered through each device at a range of flow rates (2 to 100 ml/min). To mimic clinical conditions, the temperature of the fluid was measured with thermocouples at the end of a one metre tube connected to the outflow of the warmer for the first two devices and at the end of the 1.2 m warming tubing for the intravenous fluid tube warmer The temperature of fluid delivered by the water bath warmer increased as the flow rate was increased up to 15 to 20 ml/min but decreased with greater flow rates. The temperature of the fluid delivered by the dry-heat plate warmer significantly increased as the flow rate was increased within the range tested (due to decreased cooling after leaving the device at higher flow rates). The temperature of fluid delivered by the intravenous fluid tube warmer did not depend on the flow rate up to 20 ml/min but significantly and fluid temperature-dependently decreased at higher flow rates (>30 ml/min). Under the conditions of our testing, the dry heat plate warmer delivered the highest temperature fluid at high flow rates.
Effects of argon gas flow rate on laser-welding.
Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro
2012-01-01
The purpose of this study was to evaluate the effects of the rate of argon gas flow on joint strength in the laser-welding of cast metal plates and to measure the porosity. Two cast plates (Ti and Co-Cr alloy) of the same metal were abutted and welded together. The rates of argon gas flow were 0, 5 and 10 L/min for the Co-Cr alloy, and 5 and 10 L/min for the Ti. There was a significant difference in the ratio of porosity according to the rate of argon gas flow in the welded area. Argon shielding had no significant effect on the tensile strength of Co-Cr alloy. The 5 L/min specimens showed greater tensile strength than the 10 L/min specimens for Ti. Laser welding of the Co-Cr alloy was influenced very little by argon shielding. When the rate of argon gas flow was high, joint strength decreased for Ti.
Moore, Murray E; Kennedy, Trevor J; Dimmerling, Paul J
2007-11-01
The Radiation Protection Group at the Los Alamos National Laboratory has a wind tunnel capable of measuring the aerosol collection efficiencies of air sampling devices. In the fall of 2005, the group received an internal Los Alamos request to perform aerosol collection efficiency tests on two air samplers manufactured by the Bladewerx Corporation (Rio Rancho, NM). This paper presents the results from tests performed in the wind tunnel facility at a test velocity of 0.5 m s. The SabreAlert (Portable Workplace Monitor) and the SabreBZM (Breathing Zone Monitor) are both designed to detect and measure the presence of alpha emitting isotopes in atmospheres. The SabreAlert was operated at two test air flow rates of 6 and 45 liters per minute (LPM), and the SabreBZM was operated at two test air flow rates of 3 and 19 LPM. The aerosol collection efficiencies of both samplers were evaluated with oleic acid (monodisperse) liquid droplet aerosols tagged with sodium fluorescein tracer. These test aerosols varied in size from about 2.3 to 17.2 microns (aerodynamic equivalent diameter). The SabreAlert was roughly 100% efficient in aerosol collection at a flow rate of 6 LPM, and had an aerodynamic cutpoint diameter of 11.3 microns at the 45 LPM flow rate. The SabreBZM had an aerodynamic cutpoint diameter of 6.7 microns at the 3 LPM flow rate, but the SabreBZM aerosol collection efficiency never exceeded 13.6% at the 19 LPM test flow rate condition.
Decay rates of magnetic modes below the threshold of a turbulent dynamo.
Herault, J; Pétrélis, F; Fauve, S
2014-04-01
We measure the decay rates of magnetic field modes in a turbulent flow of liquid sodium below the dynamo threshold. We observe that turbulent fluctuations induce energy transfers between modes with different symmetries (dipolar and quadrupolar). Using symmetry properties, we show how to measure the decay rate of each mode without being restricted to the one with the smallest damping rate. We observe that the respective values of the decay rates of these modes depend on the shape of the propellers driving the flow. Dynamical regimes, including field reversals, are observed only when the modes are both nearly marginal. This is in line with a recently proposed model.
Bransky, Avishay; Korin, Natanel; Nemirovski, Yael; Dinnar, Uri
2006-08-15
An automated rheoscope has been developed, utilizing a microfabricated glass flow cell, high speed camera and advanced image-processing software. RBCs suspended in a high viscosity medium were filmed flowing through a microchannel. Under these conditions, RBCs exhibit different orientations and deformations according to their location in the velocity profile. The rheoscope system produces valuable data such as velocity profile of RBCs, spatial distribution within a microchannel and deformation index (DI) curves. The variation of DI across the channel height, due to change in shear stress, was measured carrying implications for diffractometry methods. These curves of DI were taken at a constant flow rate and cover most of the relevant shear stress spectrum. This is an improvement of the existing techniques for deformability measurements and may serve as a diagnostic tool for certain blood disorders. The DI curves were compared to measurements of the flowing RBCs velocity profile. In addition, we found that RBCs flowing in a microchannel are mostly gathered in the center of the flow and maintain a characteristic spatial distribution. The spatial distribution in this region changes slightly with increasing flow rate. Hence, the system described, provides means for examining the behavior of individual RBCs, and may serve as a microfabricated diagnostic device for deformability measurement.
Advanced Instrumentation for Molten Salt Flow Measurements at NEXT
NASA Astrophysics Data System (ADS)
Tuyishimire, Olive
2017-09-01
The Nuclear Energy eXperiment Testing (NEXT) Lab at Abilene Christian University is building a Molten Salt Loop to help advance the technology of molten salt reactors (MSR). NEXT Lab's aim is to be part of the solution for the world's top challenges by providing safe, clean, and inexpensive energy, clean water and medical Isotopes. Measuring the flow rate of the molten salt in the loop is essential to the operation of a MSR. Unfortunately, there is no flow meter that can operate in the high temperature and corrosive environment of a molten salt. The ultrasonic transit time method is proposed as one way to measure the flow rate of high temperature fluids. Ultrasonic flow meter uses transducers that send and receive acoustic waves and convert them into electrical signals. Initial work presented here focuses on the setup of ultrasonic transducers. This presentation is the characterization of the pipe-fluid system with water as a baseline for future work.
Geist, Rebecca E; DuBois, Chase H; Nichols, Timothy C; Caughey, Melissa C; Merricks, Elizabeth P; Raymer, Robin; Gallippi, Caterina M
2016-09-01
Acoustic radiation force impulse (ARFI) Surveillance of Subcutaneous Hemorrhage (ASSH) has been previously demonstrated to differentiate bleeding phenotype and responses to therapy in dogs and humans, but to date, the method has lacked experimental validation. This work explores experimental validation of ASSH in a poroelastic tissue-mimic and in vivo in dogs. The experimental design exploits calibrated flow rates and infusion durations of evaporated milk in tofu or heparinized autologous blood in dogs. The validation approach enables controlled comparisons of ASSH-derived bleeding rate (BR) and time to hemostasis (TTH) metrics. In tissue-mimicking experiments, halving the calibrated flow rate yielded ASSH-derived BRs that decreased by 44% to 48%. Furthermore, for calibrated flow durations of 5.0 minutes and 7.0 minutes, average ASSH-derived TTH was 5.2 minutes and 7.0 minutes, respectively, with ASSH predicting the correct TTH in 78% of trials. In dogs undergoing calibrated autologous blood infusion, ASSH measured a 3-minute increase in TTH, corresponding to the same increase in the calibrated flow duration. For a measured 5% decrease in autologous infusion flow rate, ASSH detected a 7% decrease in BR. These tissue-mimicking and in vivo preclinical experimental validation studies suggest the ASSH BR and TTH measures reflect bleeding dynamics. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pezeshki, Alan M.; Sacci, Robert L.; Delnick, Frank M.
Here, an improved method for quantitative measurement of the charge transfer, finite diffusion, and ohmic overpotentials in redox flow batteries using electrochemical impedance spectroscopy is presented. The use of a pulse dampener in the hydraulic circuit enables the collection of impedance spectra at low frequencies with a peristaltic pump, allowing the measurement of finite diffusion resistances at operationally relevant flow rates. This method is used to resolve the rate-limiting processes for the V 2+/V 3+ redox couple on carbon felt and carbon paper electrodes in the vanadium redox flow battery. Carbon felt was limited by both charge transfer and ohmicmore » resistance, while carbon paper was limited by charge transfer, finite diffusion, and ohmic resistances. The influences of vanadium concentration and flow field design also are quantified.« less
Urine flow is a novel hemodynamic monitoring tool for the detection of hypovolemia.
Shamir, Micha Y; Kaplan, Leonid; Marans, Rachel S; Willner, Dafna; Klein, Yoram
2011-03-01
Noticeable changes in vital signs indicating hypovolemia occur only after 15% of the blood volume is lost. More sensitive variables (e.g., cardiac output, systolic pressure variation and its Δdown component) are invasive and difficult to obtain in the early phase of bleeding. Lately, a new technology for continuous optical measurements of minute-to-minute urine flow rates has become available. We performed a preliminary evaluation to determine whether urine flow can act as an early and sensitive warning of hypovolemia. Eleven patients (ASA physical status I-II) undergoing posterior spine fusion surgery were studied prospectively. Study variables included heart rate, blood pressure (systolic and diastolic), systolic pressure variation and Δdown, minute urinary flow, hemoglobin, blood and urinary sodium, and creatinine in the blood and urine. Urine flow rate was measured using URINFO 2000™ (FlowSense Medical, Misgav, Israel). After recording baseline variables, 10 mL/kg of the patient's blood was shed and a second set of variables was recorded. Subsequently, hypovolemia was reversed by infusing colloid solution (hetastarch 6%) followed by recording a third set of variables. These 3 observations were then compared. An average of 614 ± 143 mL (mean ± SD) of blood was shed. During phlebotomy, the mean urine flow rate decreased from 5.7 ± 8 mL/min to 1.07 ± 2.5 mL/min. Systolic blood pressure and hemoglobin also decreased. Δdown increased. After rehydration, urine flow, blood pressure, and Δdown values returned to baseline. The hemoglobin concentration decreased whereas other variables did not change significantly. Urine flow rate is a dynamic variable that seems to be a reliable indicator of changes in blood volume. These results justify further investigation.
Endovascular blood flow measurement system
NASA Astrophysics Data System (ADS)
Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu
2016-06-01
In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.
Avrahami, Idit; Kersh, Dikla
2016-01-01
Arterial wall shear stress (WSS) parameters are widely used for prediction of the initiation and development of atherosclerosis and arterial pathologies. Traditional clinical evaluation of arterial condition relies on correlations of WSS parameters with average flow rate (Q) and heart rate (HR) measurements. We show that for pulsating flow waveforms in a straight tube with flow reversals that lead to significant reciprocating WSS, the measurements of HR and Q are not sufficient for prediction of WSS parameters. Therefore, we suggest adding a third quantity—known as the pulsatility index (PI)—which is defined as the peak-to-peak flow rate amplitude normalized by Q. We examine several pulsating flow waveforms with and without flow reversals using a simulation of a Womersley model in a straight rigid tube and validate the simulations through experimental study using particle image velocimetry (PIV). The results indicate that clinically relevant WSS parameters such as the percentage of negative WSS (P[%]), oscillating shear index (OSI) and the ratio of minimum to maximum shear stress rates (min/max), are better predicted when the PI is used in conjunction with HR and Q. Therefore, we propose to use PI as an additional and essential diagnostic quantity for improved predictability of the reciprocating WSS. PMID:27893801
Nanoscale Capillary Flows in Alumina: Testing the Limits of Classical Theory.
Lei, Wenwen; McKenzie, David R
2016-07-21
Anodic aluminum oxide (AAO) membranes have well-formed cylindrical channels, as small as 10 nm in diameter, in a close packed hexagonal array. The channels in AAO membranes simulate very small leaks that may be present for example in an aluminum oxide device encapsulation. The 10 nm alumina channel is the smallest that has been studied to date for its moisture flow properties and provides a stringent test of classical capillary theory. We measure the rate at which moisture penetrates channels with diameters in the range of 10 to 120 nm with moist air present at 1 atm on one side and dry air at the same total pressure on the other. We extend classical theory for water leak rates at high humidities by allowing for variable meniscus curvature at the entrance and show that the extended theory explains why the flow increases greatly when capillary filling occurs and enables the contact angle to be determined. At low humidities our measurements for air-filled channels agree well with theory for the interdiffusive flow of water vapor in air. The flow rate of water-filled channels is one order of magnitude less than expected from classical capillary filling theory and is coincidentally equal to the helium flow rate, validating the use of helium leak testing for evaluating moisture flows in aluminum oxide leaks.
NASA Technical Reports Server (NTRS)
Fink, J.; Zimbelman, J.
1985-01-01
Theoretical models used in the remote determination of lava flow rheology and compositions rely on estimates of such geometric and flow parameters as volume flow rates, levee heights, and channel dimensions, as well as morphologic and structural patterns on the flow surfaces. Quantitative measures of these variables are difficult to obtain, even under optimum conditions. Detailed topographic profiles across several Hawaiian lava flows that were carefully monitored by the U.S. Geological Survey during their emplacement in 1983 were surveyed in order to test various flow emplacement models. Twenty two accurate channel cross sections were constructed by combining these profiles with digitized pre-flow topographic measurements. Levee heights, shear zone widths, and flow depths could then be read directly from the cross sections and input into the models. The profiles were also compared with ones constructed for some Martian lava flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battista, L.; Sciuto, S. A.; Scorza, A.
2013-03-15
In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it;more » the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r{sup 2} is equal to 0.997; for the bi-directional configuration, the coefficient of determination r{sup 2} is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty {delta}Q of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.« less
The structure of evaporating and combusting sprays: Measurements and predictions
NASA Technical Reports Server (NTRS)
Shuen, J. S.; Solomon, A. S. P.; Faeth, F. M.
1983-01-01
The structure of particle-laden jets and nonevaporating and evaporating sprays was measured in order to evaluate models of these processes. Three models are being evaluated: (1) a locally homogeneous flow model, where slip between the phases is neglected and the flow is assumed to be in local thermodynamic equilibrium; (2) a deterministic separated flow model, where slip and finite interphase transport rates are considered but effects of particle/drop dispersion by turbulence and effects of turbulence on interphase transport rates are ignored; and (3) a stochastic separated flow model, where effects of interphase slip, turbulent dispersion and turbulent fluctuations are considered using random sampling for turbulence properties in conjunction with random-walk computations for particle motion. All three models use a k-e-g turbulence model. All testing and data reduction are completed for the particle laden jets. Mean and fluctuating velocities of the continuous phase and mean mixture fraction were measured in the evaporating sprays.
Ocvirk, Gregor; Hajnsek, Martin; Gillen, Ralph; Guenther, Arnfried; Hochmuth, Gernot; Kamecke, Ulrike; Koelker, Karl-Heinz; Kraemer, Peter; Obermaier, Karin; Reinheimer, Cornelia; Jendrike, Nina; Freckmann, Guido
2009-05-01
A novel microdialysis-based continuous glucose monitoring system, the so-called Clinical Research Tool (CRT), is presented. The CRT was designed exclusively for investigational use to offer high analytical accuracy and reliability. The CRT was built to avoid signal artifacts due to catheter clogging, flow obstruction by air bubbles, and flow variation caused by inconstant pumping. For differentiation between physiological events and system artifacts, the sensor current, counter electrode and polarization voltage, battery voltage, sensor temperature, and flow rate are recorded at a rate of 1 Hz. In vitro characterization with buffered glucose solutions (c(glucose) = 0 - 26 x 10(-3) mol liter(-1)) over 120 h yielded a mean absolute relative error (MARE) of 2.9 +/- 0.9% and a recorded mean flow rate of 330 +/- 48 nl/min with periodic flow rate variation amounting to 24 +/- 7%. The first 120 h in vivo testing was conducted with five type 1 diabetes subjects wearing two systems each. A mean flow rate of 350 +/- 59 nl/min and a periodic variation of 22 +/- 6% were recorded. Utilizing 3 blood glucose measurements per day and a physical lag time of 1980 s, retrospective calibration of the 10 in vivo experiments yielded a MARE value of 12.4 +/- 5.7. Clarke error grid analysis resulted in 81.0%, 16.6%, 0.8%, 1.6%, and 0% in regions A, B, C, D, and E, respectively. The CRT demonstrates exceptional reliability of system operation and very good measurement performance. The ability to differentiate between artifacts and physiological effects suggests the use of the CRT as a reference tool in clinical investigations. 2009 Diabetes Technology Society.
Ocvirk, Gregor; Hajnsek, Martin; Gillen, Ralph; Guenther, Arnfried; Hochmuth, Gernot; Kamecke, Ulrike; Koelker, Karl-Heinz; Kraemer, Peter; Obermaier, Karin; Reinheimer, Cornelia; Jendrike, Nina; Freckmann, Guido
2009-01-01
Background A novel microdialysis-based continuous glucose monitoring system, the so-called Clinical Research Tool (CRT), is presented. The CRT was designed exclusively for investigational use to offer high analytical accuracy and reliability. The CRT was built to avoid signal artifacts due to catheter clogging, flow obstruction by air bubbles, and flow variation caused by inconstant pumping. For differentiation between physiological events and system artifacts, the sensor current, counter electrode and polarization voltage, battery voltage, sensor temperature, and flow rate are recorded at a rate of 1 Hz. Method In vitro characterization with buffered glucose solutions (cglucose = 0 - 26 × 10-3 mol liter-1) over 120 h yielded a mean absolute relative error (MARE) of 2.9 ± 0.9% and a recorded mean flow rate of 330 ± 48 nl/min with periodic flow rate variation amounting to 24 ± 7%. The first 120 h in vivo testing was conducted with five type 1 diabetes subjects wearing two systems each. A mean flow rate of 350 ± 59 nl/min and a periodic variation of 22 ± 6% were recorded. Results Utilizing 3 blood glucose measurements per day and a physical lag time of 1980 s, retrospective calibration of the 10 in vivo experiments yielded a MARE value of 12.4 ± 5.7. Clarke error grid analysis resulted in 81.0%, 16.6%, 0.8%, 1.6%, and 0% in regions A, B, C, D, and E, respectively. Conclusion The CRT demonstrates exceptional reliability of system operation and very good measurement performance. The ability to differentiate between artifacts and physiological effects suggests the use of the CRT as a reference tool in clinical investigations. PMID:20144284
Construction and geometric stability of physiological flow rate wall-less stenosis phantoms.
Ramnarine, K V; Anderson, T; Hoskins, P R
2001-02-01
Wall-less flow phantoms are preferred for ultrasound (US) because tissue-mimicking material (TMM) with good acoustical properties can be made and cast to form anatomical models. The construction and geometrical stability of wall-less TMM flow phantoms is described using a novel method of sealing to prevent leakage of the blood-mimicking fluid (BMF). Wall-less stenosis flow models were constructed using a robust agar-based TMM and sealed using reticulated foam at the inlet and outlet tubes. There was no BMF leakage at the highest flow rate of 2.8 L/min in 0%, 35% and 57% diameter reduction stenoses models. Failure of the 75% stenosis model, due to TMM fracture, occurred at maximum flow rate of 2 L/min (mean velocity 10 m/s within the stenosis). No change of stenosis geometry was measured over 4 days. The construction is simple and effective and extends the possibility for high flow rate studies using robust TMM wall-less phantoms.
Thermally determining flow and/or heat load distribution in parallel paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.
A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.
Thermally determining flow and/or heat load distribution in parallel paths
Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.
2016-12-13
A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.
Sohn, J H; Smith, R; Yoong, E; Hudson, N; Kim, T I
2004-01-01
A novel laboratory wind tunnel, with the capability to control factors such as air flow-rate, was developed to measure the kinetics of odour emissions from liquid effluent. The tunnel allows the emission of odours and other volatiles under an atmospheric transport system similar to ambient conditions. Sensors for wind speed, temperature and humidity were installed and calibrated. To calibrate the wind tunnel, trials were performed to determine the gas recovery efficiency under different air flow-rates (ranging from 0.001 to 0.028m3/s) and gas supply rates (ranging from 2.5 to 10.0 L/min) using a standard CO gas mixture. The results have shown gas recovery efficiencies ranging from 61.7 to 106.8%, while the average result from the trials was 81.14%. From statistical analysis, it was observed that the highest, most reliable gas recovery efficiency of the tunnel was 88.9%. The values of air flow-rate and gas supply rate corresponding to the highest gas recovery efficiency were 0.028 m3/s and 10.0 L/min respectively. This study suggested that the wind tunnel would provide precise estimates of odour emission rate. However, the wind tunnel needs to be calibrated to compensate for errors caused by different air flow-rates.
NASA Technical Reports Server (NTRS)
Arbeille, P.; Berson, M.; Blondeau, B.; Durand, A.; Bodard, S.; Locatelli, A.; Fox, G. E. (Principal Investigator)
1995-01-01
The object of this study was to define and validate a non-invasive method of evaluation and monitoring of vascular resistances in the leg. Blood flow velocity was measured by Doppler ultrasound in an animal model (ewe) with similar blood flow characteristics in the lower limb as man and allowing access to the required invasive measurements for validation of the method (pressure and flow). Vascular resistances distal to the measuring point (femoral, for example) were assessed using the resistance index R = D/S, S being the peak systolic deflection and D that of diastolic reflux of the Doppler spectral analysis of flow in the femoral artery. The values and variations of this resistance index were compared with the vascular resistances calculated from measurements of pressure and flow at the point of Doppler sampling and expressed in mmHg/ml/min. Femoral flow was measured by Doppler ultrasound (Doppler-echo), and mean pressure by an arterial catheter introduced into the abdominal aorta. Compression of the lower limb veins induced a venous return resulting in a reduction of cardiac output and femoral flow. During compression, femoral flow decreased by an average of 29% (p < 0.001) although mean pressure and heart rate did not change significantly. The femoral resistance index (Rf) increased by an average of 37.5% (p < 0.01) and vascular resistances increased by 45.9% (p < 0.01). Injection of 1 mg adrenaline induced peripheral vasoconstriction with an increase in blood pressure and a decrease in heart rate and femoral flow.(ABSTRACT TRUNCATED AT 250 WORDS).
Ahmed, J; Pulfer, M K; Linsenmeier, R A
2001-09-01
The most successful method for measuring absolute blood flow rate through the retinal circulation has been the use of radioactive microspheres. The purpose of this study was to develop a microsphere method that did not have the drawbacks associated with radioactivity and to use this method to make measurements of retinal blood flow in the cat. Blood flow measurements were made by injecting 15-microm-diameter polystyrene microspheres into the left ventricle of anesthetized, artificially ventilated cats. These microspheres were labeled with one of three fluorescent dyes. Retinal blood flow measurements were made by determining the number of spheres that were embedded in the retina and comparing them to the number found in a reference sample. Spheres in the retina were counted by making retinal whole mounts and taking retinal images with a CCD camera mounted on an epifluorescence microscope equipped with filter sets appropriate for imaging the dyes used to label the spheres. Blood flow measurements made under normal conditions showed a mean retinal blood flow of 19.8 +/- 12.4 ml/min 100 g tissue (mean +/- SD; n = 15 cats). Since the retinal circulation perfuses only the inner half of the retina, the effective flow rate in that region is about twice this value. RBF increased during hypoxemia (P(a)O2 < 42 mm Hg) to 336% of the normoxic value on average. Analysis of sphere deposition patterns showed that the central retina had a higher blood flow than the peripheral retina, although this difference was significant only during hypoxemia. We conclude that even with a relatively small number of spheres deposited in the retina, the technique can reveal important properties of the retinal circulation. Copyright 2001 Academic Press.
Thomas, Carole L.; Stewart, Amy E.; Constantz, Jim E.
2000-01-01
Two methods, one a surface-water method and the second a ground-water method, were used to determine infiltration and percolation rates along a 2.5-kilometer reach of the Santa Fe River near La Bajada, New Mexico. The surface-water method uses streamflow measurements and their differences along a stream reach, streamflow-loss rates, stream surface area, and evaporation rates to determine infiltration rates. The ground-water method uses heat as a tracer to monitor percolation through shallow streambed sediments. Data collection began in October 1996 and continued through December 1997. During that period the stream reach was instrumented with three streamflow gages, and temperature profiles were monitored from the stream-sediment interface to about 3 meters below the streambed at four sites along the reach. Infiltration is the downward flow of water through the stream- sediment interface. Infiltration rates ranged from 92 to 267 millimeters per day for an intense measurement period during June 26- 28, 1997, and from 69 to 256 millimeters per day during September 27-October 6, 1997. Investigators calculated infiltration rates from streamflow loss, stream surface-area measurements, and evaporation-rate estimates. Infiltration rates may be affected by unmeasured irrigation-return flow in the study reach. Although the amount of irrigation-return flow was none to very small, it may result in underestimation of infiltration rates. The infiltration portion of streamflow loss was much greater than the evaporation portion. Infiltration accounted for about 92 to 98 percent of streamflow loss. Evaporation-rate estimates ranged from 3.4 to 7.6 millimeters per day based on pan-evaporation data collected at Cochiti Dam, New Mexico, and accounted for about 2 to 8 percent of streamflow loss. Percolation is the movement of water through saturated or unsaturated sediments below the stream-sediment interface. Percolation rates ranged from 40 to 109 millimeters per day during June 26-28, 1997. Percolation rates were not calculated for the September 27-October 6, 1997, period because a late summer flood removed the temperature sensors from the streambed. Investigators used a heat-and-water flow model, VS2DH (variably saturated, two- dimensional heat), to calculate near-surface streambed infiltration and percolation rates from temperatures measured in the stream and streambed. Near the stream-sediment interface, infiltration and percolation rates are comparable. Comparison of infiltration and percolation rates showed that infiltration rates were greater than percolation rates. The method used to calculate infiltration rates accounted for net loss or gain over the entire stream reach, whereas the method used to calculate percolation was dependent on point measurements and, as applied in this study, neglected the nonvertical component of heat and water fluxes. In general, using the ground-water method was less labor intensive than making a series of streamflow measurements and relied on temperature, an easily measured property. The ground-water method also eliminated the difficulty of measuring or estimating evaporation from the water surface and was therefore more direct. Both methods are difficult to use during periods of flood flow. The ground-water method has problems with the thermocouple-wire temperature sensors washing out during flood events. The surface- water method often cannot be used because of safety concerns for personnel making wading streamflow measurements.
Radiative Heat Loss Measurements During Microgravity Droplet Combustion in a Slow Convective Flow
NASA Technical Reports Server (NTRS)
Hicks, Michael C.; Kaib, Nathan; Easton, John; Nayagam, Vedha; Williams, Forman A.
2003-01-01
Radiative heat loss from burning droplets in a slow convective flow under microgravity conditions is measured using a broad-band (0.6 to 40 microns) radiometer. In addition, backlit images of the droplet as well as color images of the flame were obtained using CCD cameras to estimate the burning rates and the flame dimensions, respectively. Tests were carried out in air at atmospheric pressure using n-heptane and methanol fuels with imposed forced flow velocities varied from 0 to 10 centimeters per second and initial droplet diameters varied from 1 to 3 millimeters. Slow convective flows were generated using three different experimental configurations in three different facilities in preparation for the proposed International Space Station droplet experiments. In the 2.2 Second Drop-Tower Facility a droplet supported on the leading edge of a quartz fiber is placed within a flow tunnel supplied by compressed air. In the Zero-Gravity Facility (five-second drop tower) a tethered droplet is translated in a quiescent ambient atmosphere to establish a uniform flow field around the droplet. In the KC 135 aircraft an electric fan was used to draw a uniform flow past a tethered droplet. Experimental results show that the burn rate increases and the overall flame size decreases with increases in forced-flow velocities over the range of flow velocities and droplet sizes tested. The total radiative heat loss rate, Q(sub r), decreases as the imposed flow velocity increases with the spherically symmetric combustion having the highest values. These observations are in contrast to the trends observed for gas-jet flames in microgravity, but consistent with the observations during flame spread over solid fuels where the burning rate is coupled to the forced flow as here.
Faybishenko, Boris A.
2005-10-25
A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.
CFD Approach To Investigate The Flow Characteristics In Bi-Directional Ventilated Disc Brake
NASA Astrophysics Data System (ADS)
Munisamy, Kannan M.; Yusoff, Mohd. Zamri; Shuaib, Norshah Hafeez; Thangaraju, Savithry K.
2010-06-01
This paper presents experimental and Computational Fluids Dynamics (CFD) investigations of the flow in ventilated brake discs. Development of an experiment rig with basic measuring devices are detailed out and following a validation study, the possible improvement in the brake cooling can be further analyzed using CFD analysis. The mass flow rate is determined from basic flow measurement technique following that the conventional bi-directional passenger car is simulated using commercial CFD software FLUENT™. The CFD simulation is used to investigate the flow characteristics in between blade flow of the bi-directional ventilated disc brake.
JAERI instrumented spool piece performance in two-phase flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colson, J.B.; Gilbert, J.V.
1979-01-01
Instrumented spool pieces to be installed in horizontal piping on the Cylindrical Core Test Facility (CCTF) at the Japanese Atomic Energy Institute (JAERI) have been designed and tested. The instrumented spool pieces will provide measurements from which mass flow rates can be computed. The primary instruments included in the spool pieces are a full-flow turbine, a full-flow perforated drag plate, and a low energy three-beam photon densitometer. Secondary instruments are provided to measured absolute pressure, fluid temperature, and differential pressure across the full-flow perforated drag plate.
Nitrogen-doped diamond thin films: potential application in Fabry-Pérot interferometer
NASA Astrophysics Data System (ADS)
Kosowska, M.; Majchrowicz, D.; Sankaran, K. J.; Ficek, M.; Jedrzejewska-Szczerska, M.; Haenen, M. K.
2018-04-01
In this paper we present results of preliminary research of using nitrogen-doped diamond (NDD) films as reflective layer in Fabry-Pérot interferometer. NDD films were deposited on Si substrates by Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) with the use of CH4, H2 and N2 gas mixtures. During deposition process methane flow rate varied while nitrogen flow was constant. We performed series of measurements which showed that NDD can be used as a mirror in Fabry-Pérot interferometer. The best signal visibility and repeatability of measurements were obtained for sample made with 3 sccm methane flow rate.
On-line measurement of heat of combustion
NASA Technical Reports Server (NTRS)
Chaturvedi, S. K.; Chegini, H.
1988-01-01
An experimental method for an on-line measurement of heat of combustion of a gaseous hydrocarbon fuel mixture of unknown composition is developed. It involves combustion of a test gas with a known quantity of air to achieve a predetermined oxygen concentration level in the combustion products. This is accomplished by a feedback controller which maintains the gas volumetric flow rate at a level consistent with the desired oxygen concentration in the products. The heat of combustion is determined from a known correlation with the gas volumetric flow rate. An on-line microcomputer accesses the gas volumetric flow data, and displays the heat of combustion values at desired time intervals.
Flow rate measurement in a volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galvez, Cristhian
A system for measuring flow rate within a volume includes one or more transmission devices that transmit one or more signals through fluid contained within the volume. The volume may be bounded, at least in part, by an outer structure and by an object at least partially contained within the outer structure. A transmission device located at a first location of the outer structure transmits a first signal to a second location of the outer structure. A second signal is transmitted through the fluid from the second location to a third location of the outer structure. The flow rate ofmore » the fluid within the volume may be determined based, at least in part, on the time of flight of both the first signal and the second signal.« less
Yulong Guan; Xiaowei Su; McCoach, Robert; Kunselman, Allen; El-Banayosy, Aly; Undar, Akif
2010-03-01
Centrifugal blood pumps have been widely adopted in conventional adult cardiopulmonary bypass and circulatory assist procedures. Different brands of centrifugal blood pumps incorporate distinct designs which affect pump performance. In this adult extracorporeal life support (ECLS) model, the performances of two brands of centrifugal blood pump (RotaFlow blood pump and CentriMag blood pump) were compared. The simulated adult ECLS circuit used in this study included a centrifugal blood pump, Quadrox D membrane oxygenator and Sorin adult ECLS tubing package. A Sorin Cardiovascular(R) VVR(R) 4000i venous reservoir (Sorin S.p.A., Milan, Italy) with a Hoffman clamp served as a pseudo-patient. The circuit was primed with 900ml heparinized human packed red blood cells and 300ml lactated Ringer's solution (total volume 1200 ml, corrected hematocrit 40%). Trials were conducted at normothermia (36 degrees C). Performance, including circuit pressure and flow rate, was measured for every setting analyzed. The shut-off pressure of the RotaFlow was higher than the CentriMag at all measurement points given the same rotation speed (p < 0.0001). The shut-off pressure differential between the two centrifugal blood pumps was significant and increased given higher rotation speeds (p < 0.0001). The RotaFlow blood pump has higher maximal flow rate (9.08 +/- 0.01L/min) compared with the CentriMag blood pump (8.37 +/- 0.02L/min) (p < 0.0001). The blood flow rate differential between the two pumps when measured at the same revolutions per minute (RPM) ranged from 1.64L/min to 1.73L/min. The results obtained in this experiment demonstrate that the RotaFlow has a higher shut-off pressure (less retrograde flow) and maximal blood flow rate than the CentriMag blood pump. Findings support the conclusion that the RotaFlow disposable pump head has a better mechanical performance than the CentriMag. In addition, the RotaFlow disposable pump is 20-30 times less expensive than the CentriMag.
Saffer, D.M.; Bekins, B.A.
1998-01-01
Down-hole geochemical anomalies encountered in active accretionary systems can be used to constrain the timing, rates, and localization of fluid flow. Here we combine a coupled flow and solute transport model with a kinetic model for smectite dehydration to better understand and quantify fluid flow in the Nankai accretionary complex offshore of Japan. Compaction of sediments and clay dehydration provide fluid sources which drive the model flow system. We explicitly include the consolidation rate of underthrust sediments in our calculations to evaluate the impact that variations in this unknown quantity have on pressure and chloride distribution. Sensitivity analysis of steady state pressure solutions constrains bulk and flow conduit permeabilities. Steady state simulations with 30% smectite in the incoming sedimentary sequence result in minimum chloride concentrations at site 808 of 550 mM, but measured chlorinity is as low as 447 mM. We simulate the transient effects of hydrofracture or a strain event by assuming an instantaneous permeability increase of 3-4 orders of magnitude along a flow conduit (in this case the de??collement), using steady state results as initial conditions. Transient results with an increase in de??collement permeability from 10-16 m2 to 10-13 m2 and 20% smectite reproduce the observed chloride profile at site 808 after 80-160 kyr. Modeled chloride concentrations are highly sensitive to the consolidation rate of underthrust sediments, such that rapid compaction of underthrust material leads to increased freshening. Pressures within the de??collement during transient simulations rise rapidly to a significant fraction of lithostatic and remain high for at least 160 kyr, providing a mechanism for maintaining high permeability. Flow rates at the deformation front for transient simulations are in good agreement with direct measurements, but steady state flow rates are 2-3 orders of magnitude smaller than observed. Fluid budget calculations indicate that nearly 71% of the incoming water in the sediments leaves the accretionary wedge via diffuse flow out the seafloor, 0-5% escapes by focused flow along the de??collement, and roughly 1% is subducted. Copyright 1998 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Wu, Yue; Xu, Wenjiang; Ma, Lin
2018-03-01
This paper reports the demonstration of instantaneous three-dimension (3D) measurements in turbulent flows at repetition rates up to 10 kHz using VLIF (volumetric laser induced fluorescence). The measurements were performed based on the LIF signal of iodine (I2) vapor seeded in the flow. The LIF signals of I2 vapor were generated volumetrically by a thick laser slab and then simultaneously captured by a total of seven cameras from different perspectives, based on which a 3D tomographic reconstruction was performed to obtain the 3D distribution of I2 vapor concentration. Single-shot measurements obtained in a duration of hundreds of nanoseconds (limited by the pulse duration of the excitation laser) were demonstrated in a 50 × 50 × 50 mm3 at a repetition rate up to 10 kHz. These measurements demonstrated the feasibility and potential of VLIF for resolving the 4D spatiotemporal dynamics of turbulent flows. Based on the experimental results obtained, this work also studied the VLIF signal level and its effects on the reconstruction accuracy under different the measurement conditions, illustrating the capabilities and limitations of performing high speed VLIF measurements.
Modeling Fluid Flow and Microbial Reactions in the Peru Accretionary Complex
NASA Astrophysics Data System (ADS)
Bekins, B. A.; Matmon, D.
2002-12-01
Accretionary complexes are sites where sediment compaction and deeper reactions drive large-scale flow systems that can affect global solute budgets. Extensive modeling and drilling studies have elucidated the origin of the fluids, pore pressures, duration of flow, and major flow paths in these settings. An important research goal is to quantify the effect of these flow systems on global chemical budgets of reactive solutes such as carbon. The Peru margin represents an end member setting that can serve as a basis to extend the results to other margins. The sediments are relatively high in organic carbon with an average value of 2.6%. The subduction rate at ~9 cm/yr and taper angle at 14-17° are among the largest in the world. Recent microbial studies on Ocean Drilling Program Leg 201 at the Peru accretionary margin provide many key elements needed to quantify the processes affecting organic carbon in an accretionary complex. Pore water chemistry data from Site 1230 located in the Peru accretionary prism indicate that sulfate reduction is important in the top 8 mbsf. Below this depth, methanogenesis is the dominant process and methane concentrations are among the highest measured at any site on Leg 201. The presence of high methane concentrations at shallow depths suggests that methane is transported upward in the prism by fluid flow. Measurements of in-situ pore pressures and temperatures also support the presence of upward fluid flow. A single in-situ pressure measurement at ~100 mbsf indicated an overpressure of 0.14 MPa. For a reasonable formation permeability of ~ 10-16 m2, the measured overpressure is adequate to produce flow at a rate of ~5 mm/yr. This rate is comparable to previous model estimates for flow rates in the Peru accretionary prism. In addition, curvature in the downhole temperature profile can best be explained by upward fluid flow of 1-10 mm/yr. These data are used to constrain a two-dimensional coupled fluid flow and reactive transport model focusing on the fate of organic carbon entering in the Peru accretionary complex. The proposed work is the first attempt at a quantitative estimate of the processes affecting the fate of organic carbon entering a subduction zone.
Spiromax, a New Dry Powder Inhaler: Dose Consistency under Simulated Real-World Conditions.
Canonica, Giorgio Walter; Arp, Jan; Keegstra, Johan René; Chrystyn, Henry
2015-10-01
Spiromax(®) is a novel dry powder inhaler for patients with asthma or chronic obstructive pulmonary disease (COPD). The studies presented here provide further data on attributes (in vitro dosing consistency with budesonide-formoterol (DuoResp) Spiromax; flow rates through empty versions of the Spiromax and Turbuhaler inhaler) of importance to patients with asthma or COPD. Dose-delivery studies were performed using low-, middle-, and high-strength DuoResp Spiromax. Dose consistency was assessed over inhaler life. Total emitted doses (TEDs) were measured at various flow rates, after exposure to high and low temperature or humidity, at different inhaler orientations, and after dropping the inhaler. The criterion for evaluating dose uniformity was whether mean TEDs were within the product specification limits. In separate studies, flow rates were measured after training, using the patient information leaflets, and again after enhanced training as part of a randomized, open-label, cross-over study. Mean values for both budesonide and formoterol were within 85%-115% of the label claim for each strength of DuoResp Spiromax for initial dose uniformity and for the other investigated conditions (temperature, humidity, orientation, dropping, knocking), with the exception of approximately an 80% increase in first dose after dropping the inhaler (subsequent doses not affected). In the flow rate patient study, two patients' inhalations with Spiromax and six with Turbuhaler were <30 L/min. The majority of asthma patients [91% (Spiromax) versus 82% (Turbuhaler)] achieved the preferred flow rate of >60 L/min. DuoResp Spiromax consistently meets dose uniformity criteria, under controlled laboratory conditions and with variations intended to mimic real-world use. Following enhanced training, all patients in the flow study were able to achieve the minimal inspiratory flow rate of >30 L/min, which is required for effective treatment.
Slip length measurement of gas flow.
Maali, Abdelhamid; Colin, Stéphane; Bhushan, Bharat
2016-09-16
In this paper, we present a review of the most important techniques used to measure the slip length of gas flow on isothermal surfaces. First, we present the famous Millikan experiment and then the rotating cylinder and spinning rotor gauge methods. Then, we describe the gas flow rate experiment, which is the most widely used technique to probe a confined gas and measure the slip. Finally, we present a promising technique using an atomic force microscope introduced recently to study the behavior of nanoscale confined gas.
Gebert, J; Gröngröft, A
2006-01-01
An upflow biofilter system was operated on a passively vented landfill for the treatment of residual landfill methane. Biofilter methane emissions as a basis for determining methane removal rates were assessed by manual and automated chamber measurements, by measuring methane concentrations in the top layer gaseous phase in combination with gas flow rates, and by evaluating the methane load in the reverse gas flow following the change of landfill gas flux direction as governed by the course of barometric pressure. Methane removal rates were very high with maximum values of 80 g h(-1) m(-3). For the observed cases, the limit of biofilter methane oxidation capacity was not reached and absolute removal rates were thus linearly correlated to the amount of methane entering the filter. The analysis of methane loads flowing back from the biofilter following phases of longer, continuous and non-oscillating landfill gas emission, however, revealed that in these situations biofilter performance is restricted by deficient oxygen supply. At the oxygen-restricted capacity limit, removal rates are influenced by temperature (positively), methane influx (negatively) and flow rate (negatively) as a measure for the displacement of oxygen. These situations, however, account for only 12% of all emission phases. The investigated biofilter capacity, as derived from laboratory analyses of methanotrophic activities, is sufficient to oxidise 62% of the methane load emitted annually. Field and laboratory data provide a stable basis for the dimensioning of filters in future applications.
Fiber-Optic/Photoelastic Flow Sensors
NASA Technical Reports Server (NTRS)
Wesson, Laurence N.; Cabato, Nellie L.; Brooks, Edward F.
1995-01-01
Simple, rugged, lightweight transducers detect periodic vortices. Fiber-optic-coupled transducers developed to measure flows over wide dynamic ranges and over wide temperature ranges in severe environments. Used to measure flows of fuel in advanced aircraft engines. Feasibility of sensors demonstrated in tests of prototype sensor in water flowing at various temperatures and speeds. Particularly attractive for aircraft applications because optical fibers compact and make possible transmission of sensor signals at high rates with immunity from electromagnetic interference at suboptical frequencies. Sensors utilize optical-to-optical conversion via photoelastic effect.
Heat-transfer measurements of the 1983 Kilauea lava flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardee, H.C.
1983-10-07
Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.
Heat transfer measurements of the 1983 kilauea lava flow.
Hardee, H C
1983-10-07
Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.
40 CFR 60.54 - Test methods and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sample CO2 concentrations at all traverse points. (ii) If sampling is conducted after a wet scrubber, an... volumetric flow rates at the inlet and outlet of the wet scrubber and the inlet CO2 concentration may be used... concentration measured before the scrubber, percent dry basis. Qdi=volumetric flow rate of effluent gas before...
Minimum data requirement for neural networks based on power spectral density analysis.
Deng, Jiamei; Maass, Bastian; Stobart, Richard
2012-04-01
One of the most critical challenges ahead for diesel engines is to identify new techniques for fuel economy improvement without compromising emissions regulations. One technique is the precise control of air/fuel ratio, which requires the measurement of instantaneous fuel consumption. Measurement accuracy and repeatability for fuel rate is the key to successfully controlling the air/fuel ratio and real-time measurement of fuel consumption. The volumetric and gravimetric measurement principles are well-known methods for measurement of fuel consumption in internal combustion engines. However, the fuel flow rate measured by these methods is not suitable for either real-time control or real-time measurement purposes because of the intermittent nature of the measurements. This paper describes a technique that can be used to find the minimum data [consisting of data from just 2.5% of the non-road transient cycle (NRTC)] to solve the problem concerning discontinuous data of fuel flow rate measured using an AVL 733S fuel meter for a medium or heavy-duty diesel engine using neural networks. Only torque and speed are used as the input parameters for the fuel flow rate prediction. Power density analysis is used to find the minimum amount of the data. The results show that the nonlinear autoregressive model with exogenous inputs could predict the particulate matter successfully with R(2) above 0.96 using 2.5% NRTC data with only torque and speed as inputs.
Evaluating Use of Environmental Flows to Aerate Streams by Modelling the Counterfactual Case.
Stewardson, Michael J; Skinner, Dominic
2018-03-01
This paper evaluates an experimental environmental flow manipulation by modeling the counterfactual case that no environmental flow was applied. This is an alternate approach to evaluating the effect of an environmental flow intervention when a before-after or control-impact comparison is not possible. In this case, the flow manipulation is a minimum flow designed to prevent hypoxia in a weir on the low-gradient Broken Creek in south-eastern Australia. At low flows, low reaeration rates and high respiration rates associated with elevated organic matter loading in the weir pool can lead to a decline in dissolved oxygen concentrations with adverse consequences both for water chemistry and aquatic biota. Using a one dimensional oxygen balance model fitted to field measurements, this paper demonstrates that increased flow leads to increases in reaeration rates, presumably because of enhanced turbulence and hence mixing in the surface layers. By comparing the observed dissolved oxygen levels with the modeled counterfactual case, we show that the environmental flow was effective in preventing hypoxia.
Evaluating Use of Environmental Flows to Aerate Streams by Modelling the Counterfactual Case
NASA Astrophysics Data System (ADS)
Stewardson, Michael J.; Skinner, Dominic
2018-03-01
This paper evaluates an experimental environmental flow manipulation by modeling the counterfactual case that no environmental flow was applied. This is an alternate approach to evaluating the effect of an environmental flow intervention when a before-after or control-impact comparison is not possible. In this case, the flow manipulation is a minimum flow designed to prevent hypoxia in a weir on the low-gradient Broken Creek in south-eastern Australia. At low flows, low reaeration rates and high respiration rates associated with elevated organic matter loading in the weir pool can lead to a decline in dissolved oxygen concentrations with adverse consequences both for water chemistry and aquatic biota. Using a one dimensional oxygen balance model fitted to field measurements, this paper demonstrates that increased flow leads to increases in reaeration rates, presumably because of enhanced turbulence and hence mixing in the surface layers. By comparing the observed dissolved oxygen levels with the modeled counterfactual case, we show that the environmental flow was effective in preventing hypoxia.
Estimation of Blood Flow Rates in Large Microvascular Networks
Fry, Brendan C.; Lee, Jack; Smith, Nicolas P.; Secomb, Timothy W.
2012-01-01
Objective Recent methods for imaging microvascular structures provide geometrical data on networks containing thousands of segments. Prediction of functional properties, such as solute transport, requires information on blood flow rates also, but experimental measurement of many individual flows is difficult. Here, a method is presented for estimating flow rates in a microvascular network based on incomplete information on the flows in the boundary segments that feed and drain the network. Methods With incomplete boundary data, the equations governing blood flow form an underdetermined linear system. An algorithm was developed that uses independent information about the distribution of wall shear stresses and pressures in microvessels to resolve this indeterminacy, by minimizing the deviation of pressures and wall shear stresses from target values. Results The algorithm was tested using previously obtained experimental flow data from four microvascular networks in the rat mesentery. With two or three prescribed boundary conditions, predicted flows showed relatively small errors in most segments and fewer than 10% incorrect flow directions on average. Conclusions The proposed method can be used to estimate flow rates in microvascular networks, based on incomplete boundary data and provides a basis for deducing functional properties of microvessel networks. PMID:22506980
Measurements of Flow Rate and Trajectory of Aircraft Tire-Generated Water Spray
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Stubbs, Sandy M.
1987-01-01
An experimental investigation was conducted at the NASA Langley Research Center to measure the flow rate and trajectory of water spray generated by an aircraft tire operating on a flooded runway. Tests were conducted in the Hydrodynamics Research Facility and made use of a partial airframe and a nose tire from a general aviation aircraft. Nose tires from a commercial transport aircraft were also used. The effects of forward speed, tire load, and water depth on water spray patterns were evaluated by measuring the amount and location of water captured by an array of tubes mounted behind the test tire. Water ejected from the side of the tire footprint had the most significant potential for ingestion into engine inlets. A lateral wake created on the water surface by the rolling tire can dominate the shape of the spray pattern as the distance aft of the tire is increased. Forward speed increased flow rates and moved the spray pattern inboard. Increased tire load caused the spray to become less dense. Near the tire, increased water depths caused flow rates to increase. Tests using a fuselage and partial wing along with the nose gear showed that for certain configurations, wing aerodynamics can cause a concentration of spray above the wing.
Robust estimation of simulated urinary volume from camera images under bathroom illumination.
Honda, Chizuru; Bhuiyan, Md Shoaib; Kawanaka, Haruki; Watanabe, Eiichi; Oguri, Koji
2016-08-01
General uroflowmetry method involves the risk of nosocomial infections or time and effort of the recording. Medical institutions, therefore, need to measure voided volume simply and hygienically. Multiple cylindrical model that can estimate the fluid flow rate from the photographed image using camera has been proposed in an earlier study. This study implemented a flow rate estimation by using a general-purpose camera system (Raspberry Pi Camera Module) and the multiple cylindrical model. However, large amounts of noise in extracting liquid region are generated by the variation of the illumination when performing measurements in the bathroom. So the estimation error gets very large. In other words, the specifications of the previous study's camera setup regarding the shutter type and the frame rate was too strict. In this study, we relax the specifications to achieve a flow rate estimation using a general-purpose camera. In order to determine the appropriate approximate curve, we propose a binarizing method using background subtraction at each scanning row and a curve approximation method using RANSAC. Finally, by evaluating the estimation accuracy of our experiment and by comparing it with the earlier study's results, we show the effectiveness of our proposed method for flow rate estimation.
NASA Technical Reports Server (NTRS)
Fagot, R. J.; Mc Donald, R. T.; Roman, J. A.
1968-01-01
Respiration-rate transducers in the form of pneumotachometers measure respiration rates of pilots operating high performance research aircraft. In each low pressure or high pressure oxygen system a sensor is placed in series with the pilots oxygen supply line to detect gas flow accompanying respiration.
Theoretical and Experimental Study on Wide Range Optical Fiber Turbine Flow Sensor.
Du, Yuhuan; Guo, Yingqing
2016-07-15
In this paper, a novel fiber turbine flow sensor was proposed and demonstrated for liquid measurement with optical fiber, using light intensity modulation to measure the turbine rotational speed for converting to flow rate. The double-circle-coaxial (DCC) fiber probe was introduced in frequency measurement for the first time. Through the divided ratio of two rings light intensity, the interference in light signals acquisition can be eliminated. To predict the characteristics between the output frequency and flow in the nonlinear range, the turbine flow sensor model was built. Via analyzing the characteristics of turbine flow sensor, piecewise linear equations were achieved in expanding the flow measurement range. Furthermore, the experimental verification was tested. The results showed that the flow range ratio of DN20 turbine flow sensor was improved 2.9 times after using piecewise linear in the nonlinear range. Therefore, combining the DCC fiber sensor and piecewise linear method, it can be developed into a strong anti-electromagnetic interference(anti-EMI) and wide range fiber turbine flowmeter.
Theoretical and Experimental Study on Wide Range Optical Fiber Turbine Flow Sensor
Du, Yuhuan; Guo, Yingqing
2016-01-01
In this paper, a novel fiber turbine flow sensor was proposed and demonstrated for liquid measurement with optical fiber, using light intensity modulation to measure the turbine rotational speed for converting to flow rate. The double-circle-coaxial (DCC) fiber probe was introduced in frequency measurement for the first time. Through the divided ratio of two rings light intensity, the interference in light signals acquisition can be eliminated. To predict the characteristics between the output frequency and flow in the nonlinear range, the turbine flow sensor model was built. Via analyzing the characteristics of turbine flow sensor, piecewise linear equations were achieved in expanding the flow measurement range. Furthermore, the experimental verification was tested. The results showed that the flow range ratio of DN20 turbine flow sensor was improved 2.9 times after using piecewise linear in the nonlinear range. Therefore, combining the DCC fiber sensor and piecewise linear method, it can be developed into a strong anti-electromagnetic interference(anti-EMI) and wide range fiber turbine flowmeter. PMID:27428976
Cheri, Mohammad Sadegh; Latifi, Hamid; Sadeghi, Jalal; Moghaddam, Mohammadreza Salehi; Shahraki, Hamidreza; Hajghassem, Hasan
2014-01-21
Real-time and accurate measurement of flow rate is an important reqirement in lab on a chip (LOC) and micro total analysis system (μTAS) applications. In this paper, we present an experimental and numerical investigation of a cantilever-based optofluidic flow sensor for this purpose. Two sensors with thin and thick cantilevers were fabricated by engraving a 2D pattern of cantilever/base on two polymethylmethacrylate (PMMA) slabs using a CO2 laser system and then casting a 2D pattern with polydimethylsiloxane (PDMS). The basic working principle of the sensor is the fringe shift of the Fabry-Pérot (FP) spectrum due to a changing flow rate. A Finite Element Method (FEM) is used to solve the three dimensional (3D) Navier-Stokes and structural deformation equations to simulate the pressure distribution, velocity and cantilever deflection results of the flow in the channel. The experimental results show that the thin and thick cantilevers have a minimum detectable flow change of 1.3 and 4 (μL min(-1)) respectively. In addition, a comparison of the numerical and experimental deflection of the cantilever has been done to obtain the effective Young's modulus of the thin and thick PDMS cantilevers.
Eruption Constraints for a Young Channelized Lava Flow, Marte Vallis, Mars
NASA Technical Reports Server (NTRS)
Therkelsen, J. P.; Santiago, S. S.; Grosfils, E. B.; Sakimoto, S. E. H.; Mendelson, C. V.; Bleacher, J. E.
2001-01-01
This study constrains flow rates for a specific channelized lava flow in Marte Vallis, Mars. We measured slope-gradient, channel width, and channel depth. Our results are similar to other recent studies which suggests similarities to long, terrestrial basaltic flow. Additional information is contained in the original extended abstract.
PCB Food Web Dynamics Quantify Nutrient and Energy Flow in Aquatic Ecosystems.
McLeod, Anne M; Paterson, Gordon; Drouillard, Ken G; Haffner, G Douglas
2015-11-03
Measuring in situ nutrient and energy flows in spatially and temporally complex aquatic ecosystems represents a major ecological challenge. Food web structure, energy and nutrient budgets are difficult to measure, and it is becoming more important to quantify both energy and nutrient flow to determine how food web processes and structure are being modified by multiple stressors. We propose that polychlorinated biphenyl (PCB) congeners represent an ideal tracer to quantify in situ energy and nutrient flow between trophic levels. Here, we demonstrate how an understanding of PCB congener bioaccumulation dynamics provides multiple direct measurements of energy and nutrient flow in aquatic food webs. To demonstrate this novel approach, we quantified nitrogen (N), phosphorus (P) and caloric turnover rates for Lake Huron lake trout, and reveal how these processes are regulated by both growth rate and fish life history. Although minimal nutrient recycling was observed in young growing fish, slow growing, older lake trout (>5 yr) recycled an average of 482 Tonnes·yr(-1) of N, 45 Tonnes·yr(-1) of P and assimilated 22 TJ yr(-1) of energy. Compared to total P loading rates of 590 Tonnes·yr(-1), the recycling of primarily bioavailable nutrients by fish plays an important role regulating the nutrient states of oligotrophic lakes.
NASA Technical Reports Server (NTRS)
Mcardle, J. G.; Homyak, L.; Moore, A. S.
1979-01-01
The performance of a YF-102 turbofan engine was measured in an outdoor test stand with a bellmouth inlet and seven exhaust-system configurations. The configurations consisted of three separate-flow systems of various fan and core nozzle sizes and four confluent-flow systems of various nozzle sizes and shapes. A computer program provided good estimates of the engine performance and of thrust at maximum rating for each exhaust configuration. The internal performance of two different-shaped core nozzles for confluent-flow configurations was determined to be satisfactory. Pressure and temperature surveys were made with a traversing probe in the exhaust-nozzle flow for some confluent-flow configurations. The survey data at the mixing plane, plus the measured flow rates, were used to calculate the static-pressure variation along the exhaust nozzle length. The computed pressures compared well with experimental wall static-pressure data. External-flow surveys were made, for some confluent-flow configurations, with a large fixed rake at various locations in the exhaust plume.
A wireless monitoring system for Hydrocephalus shunts.
Narayanaswamy, A; Nourani, M; Tamil, L; Bianco, S
2015-08-01
Patients with Hydrocephalus are usually treated by diverting the excess Cerebrospinal Fluid (CSF) to other parts of the body using shunts. More than 40 percentage of shunts implanted fail within the first two years. Obstruction in the shunts is one of the major causes of failure (45 percent) and the detection of obstruction reduces the complexity of the revision surgery. This paper describes a proposed wireless monitoring system for clog detection and flow measurement in shunts. A prototype was built using multiple pressure sensors along the shunt catheters for sensing the location of clog and flow rate. Regular monitoring of flow rates can be used to adjust the valve in the shunt to prevent over drainage or under drainage of CSF. The accuracy of the flow measurement is more than 90 percent.
Hyvärinen, Antti-Pekka; Brus, David; Zdímal, Vladimír; Smolík, Jiri; Kulmala, Markku; Viisanen, Yrjö; Lihavainen, Heikki
2006-06-14
Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons.
NASA Technical Reports Server (NTRS)
Bulzan, Daniel L.
1988-01-01
A theoretical and experimental investigation of particle-laden, weakly swirling, turbulent free jets was conducted. Glass particles, having a Sauter mean diameter of 39 microns, with a standard deviation of 15 microns, were used. A single loading ratio (the mass flow rate of particles per unit mass flow rate of air) of 0.2 was used in the experiments. Measurements are reported for three swirl numbers, ranging from 0 to 0.33. The measurements included mean and fluctuating velocities of both phases, and particle mass flux distributions. Measurements were also completed for single-phase non-swirling and swirling jets, as baselines. Measurements were compared with predictions from three types of multiphase flow analysis, as follows: (1) locally homogeneous flow (LHF) where slip between the phases was neglected; (2) deterministic separated flow (DSF), where slip was considered but effects of turbulence/particle interactions were neglected; and (3) stochastic separated flow (SSF), where effects of both interphase slip and turbulence/particle interactions were considered using random sampling for turbulence properties in conjunction with random-walk computations for particle motion. Single-phase weakly swirling jets were considered first. Predictions using a standard k-epsilon turbulence model, as well as two versions modified to account for effects of streamline curvature, were compared with measurements. Predictions using a streamline curvature modification based on the flux Richardson number gave better agreement with measurements for the single-phase swirling jets than the standard k-epsilon model. For the particle-laden jets, the LHF and DSF models did not provide very satisfactory predictions. The LHF model generally overestimated the rate of decay of particle mean axial and angular velocities with streamwise distance, and predicted particle mass fluxes also showed poor agreement with measurements, due to the assumption of no-slip between phases. The DSF model also performed quite poorly for predictions of particle mass flux because turbulent dispersion of the particles was neglected. The SSF model, which accounts for both particle inertia and turbulent dispersion of the particles, yielded reasonably good predictions throughout the flow field for the particle-laden jets.
Steinman, David A; Hoi, Yiemeng; Fahy, Paul; Morris, Liam; Walsh, Michael T; Aristokleous, Nicolas; Anayiotos, Andreas S; Papaharilaou, Yannis; Arzani, Amirhossein; Shadden, Shawn C; Berg, Philipp; Janiga, Gábor; Bols, Joris; Segers, Patrick; Bressloff, Neil W; Cibis, Merih; Gijsen, Frank H; Cito, Salvatore; Pallarés, Jordi; Browne, Leonard D; Costelloe, Jennifer A; Lynch, Adrian G; Degroote, Joris; Vierendeels, Jan; Fu, Wenyu; Qiao, Aike; Hodis, Simona; Kallmes, David F; Kalsi, Hardeep; Long, Quan; Kheyfets, Vitaly O; Finol, Ender A; Kono, Kenichi; Malek, Adel M; Lauric, Alexandra; Menon, Prahlad G; Pekkan, Kerem; Esmaily Moghadam, Mahdi; Marsden, Alison L; Oshima, Marie; Katagiri, Kengo; Peiffer, Véronique; Mohamied, Yumnah; Sherwin, Spencer J; Schaller, Jens; Goubergrits, Leonid; Usera, Gabriel; Mendina, Mariana; Valen-Sendstad, Kristian; Habets, Damiaan F; Xiang, Jianping; Meng, Hui; Yu, Yue; Karniadakis, George E; Shaffer, Nicholas; Loth, Francis
2013-02-01
Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.
Diamond, Jared M.
1966-01-01
1. The relation between osmotic gradient and rate of osmotic water flow has been measured in rabbit gall-bladder by a gravimetric procedure and by a rapid method based on streaming potentials. Streaming potentials were directly proportional to gravimetrically measured water fluxes. 2. As in many other tissues, water flow was found to vary with gradient in a markedly non-linear fashion. There was no consistent relation between the water permeability and either the direction or the rate of water flow. 3. Water flow in response to a given gradient decreased at higher osmolarities. The resistance to water flow increased linearly with osmolarity over the range 186-825 m-osM. 4. The resistance to water flow was the same when the gall-bladder separated any two bathing solutions with the same average osmolarity, regardless of the magnitude of the gradient. In other words, the rate of water flow is given by the expression (Om — Os)/[Ro′ + ½k′ (Om + Os)], where Ro′ and k′ are constants and Om and Os are the bathing solution osmolarities. 5. Of the theories advanced to explain non-linear osmosis in other tissues, flow-induced membrane deformations, unstirred layers, asymmetrical series-membrane effects, and non-osmotic effects of solutes could not explain the results. However, experimental measurements of water permeability as a function of osmolarity permitted quantitative reconstruction of the observed water flow—osmotic gradient curves. Hence non-linear osmosis in rabbit gall-bladder is due to a decrease in water permeability with increasing osmolarity. 6. The results suggest that aqueous channels in the cell membrane behave as osmometers, shrinking in concentrated solutions of impermeant molecules and thereby increasing membrane resistance to water flow. A mathematical formulation of such a membrane structure is offered. PMID:5945254
Diamond, Kelly M; Schoenfuss, Heiko L; Walker, Jeffrey A; Blob, Richard W
2016-10-01
Experimental measurements of escape performance in fishes have typically been conducted in still water; however, many fishes inhabit environments with flow that could impact escape behavior. We examined the influences of flow and predator attack direction on the escape behavior of fish, using juveniles of the amphidromous Hawaiian goby Sicyopterus stimpsoni In nature, these fish must escape ambush predation while moving through streams with high-velocity flow. We measured the escape performance of juvenile gobies while exposing them to a range of water velocities encountered in natural streams and stimulating fish from three different directions. Frequency of response across treatments indicated strong effects of flow conditions and attack direction. Juvenile S. stimpsoni had uniformly high response rates for attacks from a caudal direction (opposite flow); however, response rates for attacks from a cranial direction (matching flow) decreased dramatically as flow speed increased. Mechanical stimuli produced by predators attacking in the same direction as flow might be masked by the flow environment, impairing the ability of prey to detect attacks. Thus, the likelihood of successful escape performance in fishes can depend critically on environmental context. © 2016. Published by The Company of Biologists Ltd.
Methods to quantify seepage beneath Levee 30, Miami-Dade County, Florida
Sonenshein, R.S.
2001-01-01
A two-dimensional, cross-sectional, finite-difference, ground-water flow model and a simple application of Darcy?s law were used to quantify ground-water flow (from a wetlands) beneath Levee 30 in Miami-Dade County, Florida. Geologic and geophysical data, vertical seepage data from the wetlands, canal discharge data, ground-water-level data, and surface-water-stage data collected during 1995 and 1996 were used as boundary conditions and calibration data for the ground-water flow model and as input for the analytical model. Vertical seepage data indicated that water from the wetlands infiltrated the subsurface, near Levee 30, at rates ranging from 0.033 to 0.266 foot per day when the gates at the control structures along Levee 30 canal were closed. During the same period, stage differences between the wetlands (Water Conservation Area 3B) and Levee 30 canal ranged from 0.11 to 1.27 feet. A layer of low-permeability limestone, located 7 to 10 feet below land surface, restricts vertical flow between the surface water in the wetlands and the ground water. Based on measured water-level data, ground-water flow appears to be generally horizontal, except in the direct vicinity of the canal. The increase in discharge rate along a 2-mile reach of the Levee 30 canal ranged from 9 to 30 cubic feet per second per mile and can be attributed primarily to ground-water inflow. Flow rates in Levee 30 canal were greatest when the gates at the control structures were open. The ground-water flow model data were compared with the measured ground-water heads and vertical seepage from the wetlands. Estimating the horizontal ground-water flow rate beneath Levee 30 was difficult owing to the uncertainty in the horizontal hydraulic conductivity of the main flow zone of the Biscayne aquifer. Measurements of ground-water flows into Levee 30 canal, a substantial component of the water budget, were also uncertain, which lessened the ability to validate the model results. Because of vertical flows near Levee 30 canal and a very low hydraulic gradient east of the canal, a simplified Darcian approach simulated with the ground-water flow model does not accurately estimate the horizontal ground-water flow rate. Horizontal ground-water flow rates simulated with the ground-water flow model (for a 60-foot-deep by 1-foot-wide section of the Biscayne aquifer) ranged from 150 to 450 cubic feet per day west of Levee 30 and from 15 to 170 cubic feet per day east of Levee 30 canal. Vertical seepage from the wetlands, within 500 feet of Levee 30, generally accounted for 10 to 15 percent of the total horizontal flow beneath the levee. Simulated horizontal ground-water flow was highest during the wet season and when the gates at the control structures were open.
Process viscometry in flows of non-Newtonian fluids using an anchor agitator
NASA Astrophysics Data System (ADS)
Jo, Hae Jin; Jang, Hye Kyeong; Kim, Young Ju; Hwang, Wook Ryol
2017-11-01
In this work, we present a viscosity measurement technique for inelastic non-Newtonian fluids directly in flows of anchor agitators that are commonly used in highly viscous fluid mixing particularly with yield stress. A two-blade anchor impeller is chosen as a model flow system and Carbopol 940 solutions and Xanthan gum solutions with various concentrations are investigated as test materials. Following the Metzner-Otto correlation, the effective shear rate constant and the energy dissipation rate constant have been estimated experimentally by establishing (i) the relationship between the power number and the Reynolds number using a reference Newtonian fluid and (ii) the proportionality between the effective shear rate and the impeller speed with a reference non-Newtonian fluid. The effective viscosity that reproduces the same amount of the energy dissipation rate, corresponding to that of Newtonian fluid, has been obtained by measuring torques for various impeller speeds and the accuracy in the viscosity prediction as a function of the shear rate has been compared with the rheological measurement. We report that the process viscometry with the anchor impeller yields viscosity estimation within the relative error of 20% with highly shear-thinning fluids.
Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment
McCoy, S.W.; Kean, Jason W.; Coe, Jeffrey A.; Tucker, G.E.; Staley, Dennis M.; Wasklewicz, T.A.
2012-01-01
Debris flows can dramatically increase their volume, and hence their destructive potential, by entraining sediment. Yet quantitative constraints on rates and mechanics of sediment entrainment by debris flows are limited. Using an in situ sensor network in the headwaters of a natural catchment we measured flow and bed properties during six erosive debris-flow events. Despite similar flow properties and thicknesses of bed sediment entrained across all events, time-averaged entrainment rates were significantly faster for bed sediment that was saturated prior to flow arrival compared with rates for sediment that was dry. Bed sediment was entrained from the sediment-surface downward in a progressive fashion and occurred during passage of dense granular fronts as well as water-rich, inter-surge flow.En massefailure of bed sediment along the sediment-bedrock interface was never observed. Large-magnitude, high-frequency fluctuations in total normal basal stress were dissipated within the upper 5 cm of bed sediment. Within this near surface layer, concomitant fluctuations in Coulomb frictional resistance are expected, irrespective of the influence of pore fluid pressure or fluctuations in shear stress. If the near-surface sediment was wet as it was overridden by a flow, additional large-magnitude, high-frequency pore pressure fluctuations were measured in the near-surface bed sediment. These pore pressure fluctuations propagated to depth at subsonic rates and in a diffusive manner. The depth to which large excess pore pressures propagated was typically less than 10 cm, but scaled as (D/fi)0.5, in which D is the hydraulic diffusivity and fi is the frequency of a particular pore pressure fluctuation. Shallow penetration depths of granular-normal-stress fluctuations and excess pore pressures demonstrate that only near-surface bed sediment experiences the full dynamic range of effective-stress fluctuations, and as a result, can be more easily entrained than deeper sediment. These data provide robust tests for mechanical models of entrainment and demonstrate that a debris flow over wet bed sediment will be larger than the same flow over dry bed sediment.
NASA Astrophysics Data System (ADS)
Behrens, Alison Anne
Reacting flow studies in a novel dump combustor facility focused on increasing volumetric heat release rates, under stable burning conditions, and understanding the physical mechanisms governing flame anchoring in an effort to extend range and maneuverability of compact, low drag, air-breathing engines. Countercurrent shear flow was enhanced within the combustor as the primary control variable. Experiments were performed burning premixed JP10/air and methane/air in a dump combustor using reacting flow particle image velocimetry (PIV) and chemiluminescence as the primary diagnostics. Stable combustion studies burning lean mixtures of JP10/air aimed to increase volumetric heat release rates through the implementation of countercurrent shear control. Countercurrent shear flow was produced by creating a suction flow from a low pressure cavity connected to the dump combustor via a gap directly below the trailing edge. Chemiluminescence measurements showed that enhancing countercurrent shear within the combustor doubles volumetric heat release rates. PIV measurements indicate that counterflow acts to increase turbulent kinetic energy while maintaining constant strain rates. This acts to increase flame surface area through flame wrinkling without disrupting the integrity of the flame. Flame anchorability is one of the most important fundamental aspects to understand when trying to enhance turbulent combustion in a high-speed engine without increasing drag. Studies burning methane/air mixtures used reacting flow PIV to study flame anchoring. The operating point with the most stable flame anchor exhibited a correspondingly strong enthalpy flux of products into reactants via a single coherent structure positioned downstream of the step. However, the feature producing a strong flame anchor, i.e. a single coherent structure, also is responsible for combustion instabilities, therefore making this operating point undesirable. Counterflow control was found to create the best flow features for stable, robust, compact combustion. Enhancing countercurrent shear flow within a dump combustor enhances burning rates, provides a consistent pump of reaction-initiating combustion products required for sustained combustion, while maintaining flow three dimensionality needed to disrupt combustion instabilities. Future studies will focus on geometric and control scenarios that further reduce drag penalties while creating these same flow features found with countercurrent shear thus producing robust operating points.
Cooling rate of an active Hawaiian lava flow from nighttime spectroradiometer measurements
NASA Technical Reports Server (NTRS)
Flynn, Luke P.; Mouginis-Mark, Peter J.
1992-01-01
A narrow-band spectroradiometer has been used to make nighttime measurements of the Phase 50 eruption of Pu'u O'o, on the East Rift Zone of Kilauea Volcano, Hawaii. On February 19, 1992, a GER spectroradiometer was used to determine the cooling rate of an active lava flow. This instrument collects 12-bit data between 0.35 to 3.0 microns at a spectral resolution of 1-5 nm. Thirteen spectra of a single area on a pahoehoe flow field were collected over a 59 minute period (21:27-22:26 HST) from which the cooling of the lava surface has been investigated. A two-component thermal mixing model (Flynn, 1992) applied to data for the flow immediately on emplacement gave a best-fit crustal temperature of 768 C, a hot component at 1150 C, and a hot radiating area of 3.6 percent of the total area. Over a 52-minute period (within the time interval between flow resurfacings) the lava flow crust cooled by 358 to 410 C at a rate that was as high as 15 C/min. The observations have significance both for satellite observations of active volcanoes and for numerical models of the cooling of lava flows during their emplacement.
Pyrogenic renal hyperemia: the role of prostaglandins.
Gagnon, J A; Ramwell, P W; Flamenbaum, W
1978-01-01
The intravenous administration of triple typhoid vaccine to anesthetized dogs resulted in a significant increase in renal blood flow accompanied by a modest decline in systemic blood pressure. This renal hyperemia was associated with elevated renal secretory rates of renin and prostaglandin E and F. Measurements of the intracortical distribution of radiolabeled microspheres revealed a progressive decrease in outer cortical blood flow rates and a progressive increase in inner cortical flow rates. When meclofenamate, an inhibitor of prostaglandin synthetase, was administered concomitantly with triple typhoid vaccine renal hyperemia did not develop. The renal renin secretory rate increased modestly and intracortical renal blood flow was not redistributed. The increased renal blood flow after triple typhoid vaccine administration to unanesthetized dogs was also reversed by meclofenamate. The marked increase in prostaglandin secretion by the kidney during renal hyperemia following triple typhoid vaccine administration (pyrogen), and the effect of meclofenamate, is consonant with a role for increased renal synthesis and release of prostaglandins.
NASA Technical Reports Server (NTRS)
Bentley, P. B.
1975-01-01
The measurement of the volume flow-rate of blood in an artery or vein requires both an estimate of the flow velocity and its spatial distribution and the corresponding cross-sectional area. Transcutaneous measurements of these parameters can be performed using ultrasonic techniques that are analogous to the measurement of moving objects by use of a radar. Modern digital data recording and preprocessing methods were applied to the measurement of blood-flow velocity by means of the CW Doppler ultrasonic technique. Only the average flow velocity was measured and no distribution or size information was obtained. Evaluations of current flowmeter design and performance, ultrasonic transducer fabrication methods, and other related items are given. The main thrust was the development of effective data-handling and processing methods by application of modern digital techniques. The evaluation resulted in useful improvements in both the flowmeter instrumentation and the ultrasonic transducers. Effective digital processing algorithms that provided enhanced blood-flow measurement accuracy and sensitivity were developed. Block diagrams illustrative of the equipment setup are included.
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
Jones, K P; Mullee, M A
1990-01-01
OBJECTIVE--To compare measurements of the peak expiratory flow rate taken by the mini Wright peak flow meter and the turbine spirometer. DESIGN--Pragmatic study with randomised order of use of recording instruments. Phase 1 compared a peak expiratory flow type expiration recorded by the mini Wright peak flow meter with an expiration to forced vital capacity recorded by the turbine spirometer. Phase 2 compared peak expiratory flow type expirations recorded by both meters. Reproducibility was assessed separately. SETTING--Routine surgeries at Aldermoor Health Centre, Southampton. SUBJECTS--212 Patients aged 4 to 78 presenting with asthma or obstructive airways disease. Each patient contributed only once to each phase (105 in phase 1, 107 in phase 2), but some entered both phases on separate occasions. Reproducibility was tested on a further 31 patients. MAIN OUTCOME MEASURE--95% Limits of agreement between measurements on the two meters. RESULTS--208 (98%) Of the readings taken by the mini Wright meter were higher than the corresponding readings taken by the turbine spirometer, but the 95% limits of agreement (mean difference (2 SD] were wide (1 to 173 l/min). Differences due to errors in reproducibility were not sufficient to predict this level of disagreement. Analysis by age, sex, order of use, and the type of expiration did not detect any significant differences. CONCLUSIONS--The two methods of measuring peak expiratory flow rate were not comparable. The mini Wright meter is likely to remain the preferred instrument in general practice. PMID:2142611
Gaseous oxygen uptake in porous media at different moisture contents and airflow velocities.
Sharma, Prabhakar; Poulsen, Tjalfe G; Kalluri, Prasad N V
2009-06-01
The presence and distribution of water in the pore space is a critical factor for flow and transport of gases through unsaturated porous media. The water content also affects the biological activity necessary for treatment of polluted gas streams in biofilters. In this research, microbial activity and quantity of inactive volume in a porous medium as a function of moisture content and gas flow rate were investigated. Yard waste compost was used as a test medium, and oxygen uptake rate measurements were used to quantify microbial activity and effective active compost volume using batch and column flow-through systems. Compost water contents were varied from air-dry to field capacity and gas flows ranged from 0.2 to 2 L x min(-1). The results showed that overall microbial activity and the relative fraction of active compost medium volume increased with airflow velocity for all levels of water content up to a certain flow rate above which the oxygen uptake rate assumed a constant value independent of gas flow. The actual value of the maximum oxygen uptake rate was controlled by the water content. The oxygen uptake rate also increased with increasing water content and reached a maximum between 42 and 48% volumetric water content, above which it decreased, again likely because of formation of inactive zones in the compost medium. Overall, maximum possible oxygen uptake rate as a function of gas flow rate across all water contents and gas flows could be approximated by a linear expression. The relative fraction of active volume also increased with gas flow rate and reached approximately 80% for the highest gas flows used.
Debris-flow deposits and watershed erosion rates near southern Death Valley, CA, United States
Schmidt, K.M.; Menges, C.M.; ,
2003-01-01
Debris flows from the steep, granitic hillslopes of the Kingston Range, CA are commensurate in age with nearby fluvial deposits. Quaternary chronostratigraphic differentiation of debris-flow deposits is based upon time-dependent characteristics such as relative boulder strength, derived from Schmidt Hammer measurements, degree of surface desert varnish, pedogenesis, and vertical separation. Rock strength is highest for Holocene-aged boulders and decreases for Pleistocene-aged boulders weathering to grus. Volumes of age-stratified debris-flow deposits, constrained by deposit thickness above bedrock, GPS surveys, and geologic mapping, are greatest for Pleistocene deposits. Shallow landslide susceptibility, derived from a topographically based GIS model, in conjunction with deposit volumes produces watershed-scale erosion rates of ???2-47 mm ka-1, with time-averaged Holocene rates exceeding Pleistocene rates. ?? 2003 Millpress.
Spectroscopic Doppler analysis for visible-light optical coherence tomography
NASA Astrophysics Data System (ADS)
Shu, Xiao; Liu, Wenzhong; Duan, Lian; Zhang, Hao F.
2017-12-01
Retinal oxygen metabolic rate can be effectively measured by visible-light optical coherence tomography (vis-OCT), which simultaneously quantifies oxygen saturation and blood flow rate in retinal vessels through spectroscopic analysis and Doppler measurement, respectively. Doppler OCT relates phase variation between sequential A-lines to the axial flow velocity of the scattering medium. The detectable phase shift is between -π and π due to its periodicity, which limits the maximum measurable unambiguous velocity without phase unwrapping. Using shorter wavelengths, vis-OCT is more vulnerable to phase ambiguity since flow induced phase variation is linearly related to the center wavenumber of the probing light. We eliminated the need for phase unwrapping using spectroscopic Doppler analysis. We split the whole vis-OCT spectrum into a series of narrow subbands and reconstructed vis-OCT images to extract corresponding Doppler phase shifts in all the subbands. Then, we quantified flow velocity by analyzing subband-dependent phase shift using linear regression. In the phantom experiment, we showed that spectroscopic Doppler analysis extended the measurable absolute phase shift range without conducting phase unwrapping. We also tested this method to quantify retinal blood flow in rodents in vivo.
NASA Astrophysics Data System (ADS)
Rodgers, D. W.; Potter, K. E.; Shervais, J. W.; Champion, D. E.; Duncan, R. A.
2013-12-01
Project Hotspot's Kimama drill hole on the Snake River Plain, Idaho recovered a 1912 m thick section of basalt core that ranges in age from ~700 ka to at least 6.14 Ma, based on five 40Ar/39Ar analyses and twenty paleomagnetic age assignments. Fifty-four flow groups comprising 510 individual flows were defined, yielding an average recurrence interval of ~11,400 years between flows. Age-depth analysis indicate that, over thicknesses >150 m and age spans >500 k.y., accumulation rates were constant at 30 m/100 k.y. The existence and persistence of this linear accumulation rate for greater than 5 m.y. documents an external tectonic control on eruption dynamics. One conceptual model relates accumulation rates to horizontal crustal strain, such that far-field extension rate controls the periodicity of dikes that feed basalt flows. In this model, each of the 54 flow groups would have a deep-seated, relatively wide (1-10m) dike that branches upward into a network of narrow (10-100 cm) dikes feeding individual lava flows. Assuming an east-west lateral lava flow extent of up to 50 km, the Kimama data record a steady-state crustal strain rate of 10-9 to 10-10 y-1. This rate is comparable to modern, decadal strain rates measured with GPS in the adjacent Basin & Range province, but exceeds decadal strain rates of zero measured in the eastern Snake River Plain. Linear accumulation rates also provide insight into basalt subsidence history. In this model, the middle-upper crust subsides due to the added weight of lava flows, the added weight of mid-crustal sills/dikes, and thermal contraction in the wake of the Yellowstone hot spot. Isostatic compensation would occur in the (nearly) molten lower crust. Assuming constant surface elevation and a basalt density of 2.6 g/cm3, the lava flow weight would account for 87% of the burial through time, yielding a steady-state "tectonic" subsidence rate of 4 m/100 k.y. attributed to the driving forces of mid-crustal injection and/or thermal contraction. An even faster tectonic rate is likely, given the evidence for decreasing surface elevation through time. We propose that tectonic subsidence was a necessary condition for maintaining basalt eruption over such a long duration -- it would inhibit the growth of a topographic plateau and maintain an appropriate level of neutral buoyancy for the periodically ascending mantle-derived magma
Advection within shallow pore waters of a coastal lagoon, Florida
Cable, J.E.; Martin, Jonathan B.; Swarzenski, Peter W.; Lindenberg, Mary K.; Steward, Joel
2004-01-01
Ground water sources can be a significant portion of a local water budget in estuarine environments, particularly in areas with high recharge rates, transmissive aquifers, and permeable marine sediments. However, field measurements of ground water discharge are often incongruent with ground water flow modeling results, leaving many scientists unsure which estimates are accurate. In this study, we find that both measurements and model results are reasonable. The difference between estimates apparently results from the sources of water being measured and not the techniques themselves. In two locations in the Indian River Lagoon estuarine system, we found seepage meter rates similar to rates calculated from the geochemical tracers 222Rn and 226Ra. Ground water discharge rates ranged from 4 to 9 cm/d using seepage meters and 3 to 20 cm/d using 222Rn and 226Ra. In contrast, in comparisons to other studies where finite element ground water flow modeling was used, much lower ground water discharge rates of ∼0.05 to 0.15 cm/d were estimated. These low rates probably represent discharge of meteoric ground water from land-recharged aquifers, while the much higher rates measured with seepage meters, 222Rn, and 226Ra likely include an additional source of surface waters that regularly flush shallow (< 1 m depth) sediments. This resultant total flow of mixed land-recharged water and recirculated surface waters contributes to the total biogeochemical loading in this shallow estuarine environment.
NASA Astrophysics Data System (ADS)
Bieliński, Henryk
2016-09-01
The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.
Laser Doppler imaging of genital blood flow: a direct measure of female sexual arousal.
Waxman, Samantha E; Pukall, Caroline F
2009-08-01
Female sexual arousal is a challenging construct to measure, partly because of the subtle nature of its indicators, vaginal lubrication and genital swelling. As a result, many instruments have been used in an attempt to accurately measure it; however, problems are associated with each. Furthermore, the relationship between subjective and physiological indicators of arousal appears to be influenced by the instrument used to measure physiological arousal. Specifically, instruments measuring physiological arousal internally yield lower correlations between measures of physiological and subjective arousal than instruments examining the external genitals. Laser Doppler imaging (LDI) is a direct measure of external genital blood flow. The purpose of this study was to investigate the usefulness of LDI for measuring genital blood flow in women in response to erotic visual stimuli, and to explore the relationship between physiological and subjective sexual arousal. Sixty-five participants watched three 15-minute films during LDI scanning. Two nature films (measuring acclimatization and baseline blood flow levels) and one randomly assigned experimental film (erotic, anxiety, humor, or neutral) were used. Participants rated their level of subjective arousal following the third film. Results indicated a significant effect of film condition on genital blood flow, P < 0.001, with the erotic condition differing significantly from the other three conditions. In terms of the relationship between physiological and subjective sexual arousal, physiological arousal was significantly predicted by subjective ratings of sexual arousal (P < 0.001). LDI appears to be able to differentiate blood flow during erotic and nonerotic conditions. In addition, physiological sexual arousal was significantly predicted by women's reported subjective sexual arousal. These findings suggest that LDI is a useful instrument for measuring female sexual arousal, and that women may be more aware of their level of physiological arousal than previously assumed.
Hypoxia and Prx1 in Malignant Progression of Prostate Cancer
2006-09-01
Species (ROS) Formation The rate of ROS formation was determined by flow cytometry analysis using the probe 20,70-dichlorofluorescin diacetate (DCFH-DA...DA were subjected to 4-h hypoxia treatment. After the indicated time, fluorescent cells were analyzed by flow cytometry . Western Blot Analysis Equal...species (ROS) generation was measured by flow cytometry at 0.5, 1, 2, 3, 6, 12, or 24 h after hypoxia treatment. The rate of ROS generation increased
Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data
NASA Astrophysics Data System (ADS)
Benghanem, M.; Daffallah, K. O.; Almohammedi, A.
2018-03-01
This paper presents a simple model which allows us to contribute in the studies of photovoltaic (PV) water pumping systems sizing. The nonlinear relation between water flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enables us to simulate the water flow rate using solar radiation data for different heads (50 m, 60 m, 70 m and 80 m) and for 8S × 3P PV array configuration. The experimental data are obtained with our pumping test facility located at Madinah site (Saudi Arabia). The performances are calculated using the measured solar radiation data of different locations in Saudi Arabia. Knowing the solar radiation data, we have estimated with a good precision the water flow rate Q in five locations (Al-Jouf, Solar Village, AL-Ahsa, Madinah and Gizan) in Saudi Arabia. The flow rate Q increases with the increase of pump power for different heads following the nonlinear model proposed.
Nonlinear elastic instability in channel flows at low Reynolds numbers.
Pan, L; Morozov, A; Wagner, C; Arratia, P E
2013-04-26
It is presently believed that flows of viscoelastic polymer solutions in geometries such as a straight pipe or channel are linearly stable. Here we present experimental evidence that such flows can be nonlinearly unstable and can exhibit a subcritical bifurcation. Velocimetry measurements are performed in a long, straight microchannel; flow disturbances are introduced at the entrance of the channel system by placing a variable number of obstacles. Above a critical flow rate and a critical size of the perturbation, a sudden onset of large velocity fluctuations indicates the presence of a nonlinear subcritical instability. Together with the previous observations of hydrodynamic instabilities in curved geometries, our results suggest that any flow of polymer solutions becomes unstable at sufficiently high flow rates.
Gieseler, Henning; Kessler, William J; Finson, Michael; Davis, Steven J; Mulhall, Phillip A; Bons, Vincent; Debo, David J; Pikal, Michael J
2007-07-01
The goal of this work was to demonstrate the use of Tunable Diode Laser Absorption Spectroscopy (TDLAS) as a noninvasive method to continuously measure the water vapor concentration and the vapor flow velocity in the spool connecting a freeze-dryer chamber and condenser. The instantaneous measurements were used to determine the water vapor mass flow rate (g/s). The mass flow determinations provided a continuous measurement of the total amount of water removed. Full load runs of pure water at different pressure and shelf temperature settings and a 5% (w/w) mannitol product run were performed in both laboratory and pilot scale freeze dryers. The ratio of "gravimetric/TDLAS" measurements of water removed was 1.02 +/- 0.06. A theoretical heat transfer model was used to predict the mass flow rate and the model results were compared to both the gravimetric and TDLAS data. Good agreement was also observed in the "gravimetric/TDLAS" ratio for the 5% mannitol runs dried in both freeze dryers. The endpoints of primary and secondary drying for the product runs were clearly identified. Comparison of the velocity and mass flux profiles between the laboratory and pilot dryers indicated a higher restriction to mass flow for the lab scale freeze dryer. Copyright 2007 Wiley-Liss, Inc.
Measurement of strong Marangoni flow near a contact line of a water droplet on hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Park, Joonsik; Breuer, Kenneth S.
2015-11-01
Strong Marangoni flow from a water droplet on unheated substrate has been theoretically predicted but not been quantitatively measured. Using two different experimental techniques, multi-layer flood illumination and Total Internal Reflection Fluorescence Microscopy (TIRFM), we report Marangoni flows with large (O(100 μm/s)) velocity near a contact line of a water droplet on hydrophobic substrates. The flow is measured by tracking the motion of nanoparticles with respect to the contact line, using statistical particle tracking velocimetry combined with sub-pixel edge detection algorithm. Under multi-layer flood illumination, the recirculating convective flow is identified within 5 μm vertically from the substrate. From the TIRFM measurement, the changes in the bulk-averaged velocity (O(100 μm/s)) and the shear rate (O(100 s-1)) as the distance from the contact line are identified within 550 nm vertically from the substrate, and compared to the characteristic shear rate and speed from Marangoni effect, respectively. Surprisingly, both Flood and TIRFM measurements indicate high slip velocities extending as far as 33 μm from the contact line. One possible explanation is that the high slip velocity is due to the accumulation of nanobubbles near the contact line which were formed at the deposition of a droplet.
NASA Astrophysics Data System (ADS)
Agnese, C.; Cammalleri, C.; Ciraolo, G.; Minacapilli, M.; Provenzano, G.; Rallo, G.; de Bruin, H. A. R.
2009-09-01
Models to estimate the actual evapotranspiration (ET) in sparse vegetation area can be fundamental for agricultural water managements, especially when water availability is a limiting factor. Models validation must be carried out by considering in situ measurements referred to the field scale, which is the relevant scale of the modelled variables. Moreover, a particular relevance assumes to consider separately the components of plant transpiration (T) and soil evaporation (E), because only the first is actually related to the crop stress conditions. Objective of the paper was to assess a procedure aimed to estimate olive trees actual transpiration by combining sap flow measurements with the scintillometer technique at field scale. The study area, located in Western Sicily (Italy), is mainly cultivated with olive crop and is characterized by typical Mediterranean semi-arid climate. Measurements of sap flow and crop actual evapotranspiration rate were carried out during 2008 irrigation season. Crop transpiration fluxes, measured on some plants by means of sap flow sensors, were upscaled considering the leaf area index (LAI). The comparison between evapotranspiration values, derived by displaced-beam small-aperture scintillometer (DBSAS-SLS20, Scintec AG), with the transpiration fluxes obtained by the sap flow sensors, also allowed to evaluate the contribute of soil evaporation in an area characterized by low vegetation coverage.
Evaluation of four fast-response flow measurement devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gero, A.J.; Suppers, K.L.; Tomb, T.F.
1988-01-01
The Federal Mine Safety and Health Act of 1977 requires that sampling of dust in coal mine environments be conducted with an approved sampler operating at a flow rate of 2.0 liters of air per minute or at such other flow rate as prescribed by the Secretaries of Labor and of Health and Human Services. Standard procedures for calibration of these samplers within the Mine Safety and Health Administration utilize either a 3.0 liter capacity wet test meter or a 1.0 liter soap film calibrator. Several new flow calibrating devices have become commercially available. This paper describes an evaluation conductedmore » on four such devices: the Mast Model 823-2 bubble flowmeter, the Buck Calibrator, the Kurz Model 541S mass flowmeter and the Kurz Pocket Calibrator. The precision of a series of measurements made with each instrument was compared to the precision of a series of measurements made with the wet test meter. The comparison showed that the variability of calibration measurements obtained with the fast response flow calibrators was between 1.5 and 4.5 times larger than that obtained with the WTM; however, with all of the calibration devices evaluated, three repetitive measurements were sufficient to obtain a precision of {plus minus}0.1 liters per minute. 4 refs., 2 figs., 1 tab.« less
Determining Near-Bottom Fluxes of Passive Tracers in Aquatic Environments
NASA Astrophysics Data System (ADS)
Bluteau, Cynthia E.; Ivey, Gregory N.; Donis, Daphne; McGinnis, Daniel F.
2018-03-01
In aquatic systems, the eddy correlation method (ECM) provides vertical flux measurements near the sediment-water interface. The ECM independently measures the turbulent vertical velocities w' and the turbulent tracer concentration c' at a high sampling rate (> 1 Hz) to obtain the vertical flux w'c'¯ from their time-averaged covariance. This method requires identifying and resolving all the flow-dependent time (and length) scales contributing to w'c'¯. With increasingly energetic flows, we demonstrate that the ECM's current technology precludes resolving the smallest flux-contributing scales. To avoid these difficulties, we show that for passive tracers such as dissolved oxygen, w'c'¯ can be measured from estimates of two scalar quantities: the rate of turbulent kinetic energy dissipation ɛ and the rate of tracer variance dissipation χc. Applying this approach to both laboratory and field observations demonstrates that w'c'¯ is well resolved by the new method and can provide flux estimates in more energetic flows where the ECM cannot be used.
Gas-liquid mass transfer and flow phenomena in the Peirce-Smith converter: a water model study
NASA Astrophysics Data System (ADS)
Zhao, Xing; Zhao, Hong-liang; Zhang, Li-feng; Yang, Li-qiang
2018-01-01
A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow characteristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume ( Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coefficient), and gas utilization ratio ( η) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and η steadily increased. When the converter was rotated clockwise, both Ak/V and η increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these parameters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3·h-1 and 10°, respectively.
Separation Dynamics of Controlled Internal Flow in an Adverse Pressure Gradient
NASA Astrophysics Data System (ADS)
Peterson, C. J.; Vukasinovic, B.; Glezer, A.
2017-11-01
The effects of fluidic actuation on the dynamic evolution of aggressive internal flow separation is investigated at speeds up to M = 0.4 within a constant-width diffuser branching off of a primary flow duct. It is shown that a spanwise array of fluidic actuators upstream of the separation actively controls the flow constriction (and losses) within the diffuser and consequently the local pressure gradient at its entrance. The effectiveness of the actuation, as may be measured by the increased flow rate that is diverted through the diffuser, scales with its flow rate coefficient. In the presence of actuation (0.7% mass fraction), the mass flow rate in the primary duct increases by 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45%. The flow dynamics near separation in the absence and presence of actuation are characterized using high speed particle image velocimetry and analyzed using proper orthogonal and spectral decompositions. In particular, the spectral contents of the incipient boundary layer separation are compared in the absence and presence of actuation with emphasis on the changes in local dynamics near separation as the characteristic cross stream scale of the boundary layer increases with separation delay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Wenwen, E-mail: wlei@physics.usyd.edu.au; McKenzie, David R., E-mail: d.mckenzie@physics.usyd.edu.au
2014-12-15
Gas flows have been studied quantitatively for more than a hundred years and have relevance in modern fields such as the control of gas inputs to processes, the measurement of leak rates and the separation of gaseous species. Cha and McCoy have derived a convenient formula for the flow of an ideal gas applicable across a wide range of Knudsen numbers (Kn) that approaches the Navier–Stokes equations at small Kn and the Smoluchowski extension of the Knudsen flow equation at large Kn. Smoluchowski’s result relies on the Maxwell definition of the tangential momentum accommodation coefficient α, recently challenged by Aryamore » et al. We measure the flow rate of nitrogen gas in a smooth walled silica tube across a wide range of Knudsen numbers from 0.0048 to 12.4583. We find that the nitrogen flow obeys the Cha and McCoy equation with a large value of α, unlike carbon nanotubes which show flows consistent with a small value of α. Silica capillaries are therefore not atomically smooth. The flow at small Kn has α=0.91 and at large Kn has α close to one, consistent with the redefinition of accommodation coefficient by Arya et al., which also resolves a problem in the literature where there are many observations of α of less than one at small Kn and many equal to one at large Kn. Silica capillaries are an excellent choice for an accurate flow control system. - Highlights: • First experimental study on flow rate across all flow regimes in a well-defined microtube. • Extend Cha and McCoy theory for molecular flow regime. • Demonstrate the Maxwell accommodation coefficient is different in the slip and molecular flow regimes.« less
NASA Astrophysics Data System (ADS)
Saffer, D. M.; McKiernan, A. W.; Skarbek, R. M.
2008-12-01
Characterizing dewatering pathways and chemical fluxes near and outboard of subduction trenches is important toward understanding early sediment dewatering and devolatilization. Quantifying fluid flow rates also constrains the hydraulic gradients driving flow, and thus ultimately hold implications for pore pressure distribution and fault mechanical strength. We focus on the well-studied Nankai Trough offshore SW Japan, where drilling has sampled the sedimentary section at several boreholes from ~11 km outboard of the trench to 3 km landward. At these drillsites, &δ37Cl data and correlation of distinct extrema in downhole chloride profiles have been interpreted to reflect substantial horizontal fluid flow to >10 km outboard of the trench within the ~400 m-thick, homogeneous Lower Shikoku Basin (LSB) facies mudstone. The estimated horizontal velocities are 13 ± 5 cm yr-1; the flow is presumably driven by loading during subduction, and mediated by either permeable conduits or strong anisotropy in permeability. However, the pressure gradients and sediment permeabilities necessary for such flow have not been quantified. Here, we address this problem by combining (1) laboratory measurement of horizontal and vertical sediment permeability from a combination of constant rate of strain (CRS) consolidation tests and flow-through measurements on core samples; and (2) numerical models of fluid flow within a cross section perpendicular to the trench. In our models, we assign hydrostatic pressure at the top and seaward edges, a no-flow condition at the base of the sediments, and pore pressures ranging from 40%-100% of lithostatic at the arcward model boundary. We assign sediment permeability on the basis of our laboratory measurements, and evaluate the possible role of thin permeable conduits as well as strong anisotropy in the incoming section. Our laboratory results define a systematic log-linear relationship between sediment permeability and porosity within the LSB mudstones. The overall variation in permeability for our suite of samples is ~1 order of magnitude. Notably, horizontal permeabilities fall within the range of measured vertical permeabilities, and indicate no significant anisotropy. Using laboratory-derived permeability values, simulated horizontal flow rates range from 10-4 to 10-1 cm yr-1, and decrease dramatically with distance seaward of the trench. With permeability anisotropy of 1000x (i.e. kh = 1000kv), simulated flow rates peak at 3 cm yr-1 at the trench, and decrease to 3x10-1 cm yr-1 by 10 km seaward. These flow rates are substantially lower than those inferred from the geochemical data and also lower than the plate convergence rate of 4 cm yr-1, such that net transport of fluids out of the subduction zone is not likely. If discrete conduits are included in our models, permeabilities of ~10-114m2 are required to sustain the inferred flow rates. However, no potential conduits in the LSB were observed by coring or logging- while-drilling. In contrast, net egress of fluids - and associated chemical transport and pressure translation - are plausible at margins where continuous permeable strata are subducting. Overall, our results highlight a major discrepancy between constraints on fluid flow derived from physical hydrogeology and inferences from geochemical data. In this case, we suggest that the chemical signals may be affected by other processes such as in situ clay dehydration and down-section chemical variations.
NASA Astrophysics Data System (ADS)
Macinnis-Ng, C.; Taylor, D. T.; Kaplick, J.; Clearwater, M.
2015-12-01
Amongst the largest and longest lived conifers in the world, the endemic New Zealand kauri, Agathis australis, provides a proxy-climate record dating back 4000 y. Tree-ring widths provide a strong indicator of the occurrence of El Niño Southern Oscillation (ENSO) events. We are measuring physiological processes, including carbon uptake and loss, leaf-scale gas exchange and sap flow together with meteorological data to explore the mechanisms of the climate response of this iconic and culturally significant species. In this continuous 15 min time interval sap flow dataset spanning four years, we have captured very wet and very dry summer periods. Winter flow rates peaked lower than summer flow rates and winter flow also started later and finished earlier in the day, resulting in less water use. Larger, canopy dominant trees (DBH up to 176 cm) had large sapwood area (sapwood depth up to 18 cm) and faster flow rates and therefore dominated stand water use. During dry periods, smaller trees (DBH 20-80 cm) were more responsive to dry soils than larger trees, suggesting access to deeper soil water stores. Leaf-scale gas exchange rates were low with very low stomatal conductance values reflecting known vulnerability to xylem embolism. Night-time refilling of sapwood was particularly evident during the summer drought with evidence that refilling was incomplete as the drought progressed. Photosynthetically active radiation and vapour pressure deficit are strongly correlated with sap flow across all seasons, a promising indicator for future modelling work on this dataset. Water saving strategies and stand-scale water budgets are discussed.
Energy flow and energy dissipation in a free surface.
NASA Astrophysics Data System (ADS)
Goldburg, Walter; Cressman, John
2005-11-01
Turbulent flows on a free surface are strongly compressible [1] and do not conserve energy in the absence of viscosity as bulk fluids do. Despite violation of assumptions essential to Kolmogorov's theory of 1941 (K41) [2, 3], surface flows show strong agreement with Kolmogorov scaling, though intermittency is larger there. Steady state turbulence is generated in a tank of water, and the spatially averaged energy flux is measured from the four-fifth's law at each instant of time. Likewise, the energy dissipation rate as measured from velocity gradients is also a random variable in this experiment. The energy flux - dissipation rate cross-correlation is measured to be correlated in incompressible bulk flows, but strongly anti-correlated on the surface. We argue that the reason for this discrepancy between surface and bulk flows is due to compressible effects present on the surface. [1] J. R. Cressman, J. Davoudi, W. I. Goldburg, and J. Schumacher, New Journal of Physics, 6, 53, 2004. [2] U. Frisch. Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995. [3] A. N. Kolmogorov, Doklady Akad. Nauk SSSR, 32, 16, 1941.
Yan, Z; McKee, G R; Fonck, R; Gohil, P; Groebner, R J; Osborne, T H
2014-03-28
Comprehensive 2D turbulence and eddy flow velocity measurements on DIII-D demonstrate a rapidly increasing turbulence-driven shear flow that develops ∼100 μs prior to the low-confinement (L mode) to high-confinement (H mode) transition and appears to trigger it. These changes are localized to a narrow layer 1-2 cm inside the magnetic boundary. Increasing heating power increases the Reynolds stress, the energy transfer from turbulence to the poloidal flow, and the edge flow shearing rate that then exceeds the decorrelation rate, suppressing turbulence and triggering the transition.
A Novel Uncertainty Framework for Improving Discharge Data Quality Using Hydraulic Modelling.
NASA Astrophysics Data System (ADS)
Mansanarez, V.; Westerberg, I.; Lyon, S. W.; Lam, N.
2017-12-01
Flood risk assessments rely on accurate discharge data records. Establishing a reliable stage-discharge (SD) rating curve for calculating discharge from stage at a gauging station normally takes years of data collection efforts. Estimation of high flows is particularly difficult as high flows occur rarely and are often practically difficult to gauge. Hydraulically-modelled rating curves can be derived based on as few as two concurrent stage-discharge and water-surface slope measurements at different flow conditions. This means that a reliable rating curve can, potentially, be derived much faster than a traditional rating curve based on numerous stage-discharge gaugings. We introduce an uncertainty framework using hydraulic modelling for developing SD rating curves and estimating their uncertainties. The proposed framework incorporates information from both the hydraulic configuration (bed slope, roughness, vegetation) and the information available in the stage-discharge observation data (gaugings). This method provides a direct estimation of the hydraulic configuration (slope, bed roughness and vegetation roughness). Discharge time series are estimated propagating stage records through posterior rating curve results.We applied this novel method to two Swedish hydrometric stations, accounting for uncertainties in the gaugings for the hydraulic model. Results from these applications were compared to discharge measurements and official discharge estimations.Sensitivity analysis was performed. We focused analyses on high-flow uncertainty and the factors that could reduce this uncertainty. In particular, we investigated which data uncertainties were most important, and at what flow conditions the gaugings should preferably be taken.
Wilson, Timothy P.
2014-01-01
Sediment oxygen demand rates were measured in Hammonton Creek, Hammonton, New Jersey, and Crosswicks Creek, near New Egypt, New Jersey, during August through October 2009. These rates were measured as part of an ongoing water-quality monitoring program being conducted in cooperation with the New Jersey Department of Environmental Protection. Oxygen depletion rates were measured using in-situ test chambers and a non-consumptive optical electrode sensing technique for measuring dissolved oxygen concentrations. Sediment oxygen demand rates were calculated on the basis of these field measured oxygen depletion rates and the temperature of the stream water at each site. Hammonton Creek originates at an impoundment, then flows through pine forest and agricultural fields, and receives discharge from a sewage-treatment plant. The streambed is predominantly sand and fine gravel with isolated pockets of organic-rich detritus. Sediment oxygen demand rates were calculated at four sites on Hammonton Creek and were found to range from -0.3 to -5.1 grams per square meter per day (g/m2/d), adjusted to 20 degrees Celsius. When deployed in pairs, the chambers produced similar values, indicating that the method was working as expected and yielding reproducible results. At one site where the chamber was deployed for more than 12 hours, dissolved oxygen was consumed linearly over the entire test period. Crosswicks Creek originates in a marshy woodland area and then flows through woodlots and pastures. The streambed is predominantly silt and clay with some bedrock exposures. Oxygen depletion rates were measured at three sites within the main channel of the creek, and the calculated sediment oxygen demand rates ranged from -0.33 to -2.5 g/m2/d, adjusted to 20 degrees Celsius. At one of these sites sediment oxygen demand was measured in both a center channel flowing area of a pond in the stream and in a stagnant non-flowing area along the shore of the pond where organic-rich bottom sediments had accumulated and lower dissolved oxygen concentration conditions existed in the water column. Dissolved oxygen concentrations in the center channel test chamber showed a constant slow decrease over the entire test period. Oxygen consumption in the test chamber at the near-shore location began rapidly and then slowed over time as oxygen became depleted in the chamber. Depending on the portion of the near-shore dissolved oxygen depletion curve used, calculated sediment oxygen demand rates ranged from as low as -0.03 g/m2/d to as high as -10 g/m2/d. The wide range of sediment oxygen demand rates indicates that care must be taken when extrapolating sediment oxygen demand rates between stream sites that have different bottom sediment types and different flow regimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yong-Ho; Maeng, Jwa-Young; Park, Dongho
2007-07-23
This letter reports a module for airborne particle classification, which consists of a micromachined three-stage virtual impactor for classifying airborne particles according to their size and a flow rate distributor for supplying the required flow rate to the virtual impactor. Dioctyl sebacate particles, 100-600 nm in diameter, and carbon particles, 0.6-10 {mu}m in diameter, were used for particle classification. The collection efficiency and cutoff diameter were examined. The measured cutoff diameters of the first, second, and third stages were 135 nm, 1.9 {mu}m, and 4.8 {mu}m, respectively.
NASA Astrophysics Data System (ADS)
Morlot, Thomas; Perret, Christian; Favre, Anne-Catherine
2013-04-01
Whether we talk about safety reasons, energy production or regulation, water resources management is one of EDF's (French hydropower company) main concerns. To meet these needs, since the fifties EDF-DTG operates a hydrometric network that includes more than 350 hydrometric stations. The data collected allow real time monitoring of rivers (hydro meteorological forecasts at points of interests), as well as hydrological studies and the sizing of structures. Ensuring the quality of stream flow data is a priority. A rating curve is an indirect method of estimating the discharge in rivers based on water level measurements. The value of discharge obtained thanks to the rating curve is not entirely accurate due to the constant changes of the river bed morphology, to the precision of the gaugings (direct and punctual discharge measurements) and to the quality of the tracing. As time goes on, the uncertainty of the estimated discharge from a rating curve « gets older » and increases: therefore the final level of uncertainty remains particularly difficult to assess. Moreover, the current EDF capacity to produce a rating curve is not suited to the frequency of change of the stage-discharge relationship. The actual method does not take into consideration the variation of the flow conditions and the modifications of the river bed which occur due to natural processes such as erosion, sedimentation and seasonal vegetation growth. In order to get the most accurate stream flow data and to improve their reliability, this study undertakes an original « dynamic» method to compute rating curves based on historical gaugings from a hydrometric station. A curve is computed for each new gauging and a model of uncertainty is adjusted for each of them. The model of uncertainty takes into account the inaccuracies in the measurement of the water height, the quality of the tracing, the uncertainty of the gaugings and the aging of the confidence intervals calculated with a variographic analysis. These rating curves enable to provide values of stream flow taking into account the variability of flow conditions, while providing a model of uncertainties resulting from the aging of the rating curves. By taking into account the variability of the flow conditions and the life of the hydrometric station, this original dynamic method can answer important questions in the field of hydrometry such as « How many gaugings a year have to be made so as to produce stream flow data with an average uncertainty of X% ? » and « When and in which range of water flow do we have to realize those gaugings ? ». KEY WORDS : Uncertainty, Rating curve, Hydrometric station, Gauging, Variogram, Stream Flow
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois A; Guiochon, Georges
2014-01-17
Five methods for controlling the mobile phase flow rate for gradient elution analyses using very high pressure liquid chromatography (VHPLC) were tested to determine thermal stability of the column during rapid gradient separations. To obtain rapid separations, instruments are operated at high flow rates and high inlet pressure leading to uneven thermal effects across columns and additional time needed to restore thermal equilibrium between successive analyses. The purpose of this study is to investigate means to minimize thermal instability and obtain reliable results by measuring the reproducibility of the results of six replicate gradient separations of a nine component RPLC standard mixture under various experimental conditions with no post-run times. Gradient separations under different conditions were performed: constant flow rates, two sets of constant pressure operation, programmed flow constant pressure operation, and conditions which theoretically should yield a constant net heat loss at the column's wall. The results show that using constant flow rates, programmed flow constant pressures, and constant heat loss at the column's wall all provide reproducible separations. However, performing separations using a high constant pressure with programmed flow reduces the analysis time by 16% compared to constant flow rate methods. For the constant flow rate, programmed flow constant pressure, and constant wall heat experiments no equilibration time (post-run time) was required to obtain highly reproducible data. Copyright © 2013 Elsevier B.V. All rights reserved.
Flow experience and the mobilization of attentional resources.
de Sampaio Barros, Marcelo Felipe; Araújo-Moreira, Fernando M; Trevelin, Luis Carlos; Radel, Rémi
2018-05-07
The present study attempts to better identify the neurophysiological changes occurring during flow experience and how this can be related to the mobilization of attentional resources. Self-reports of flow (using a flow feelings scale) and attention (using thought probes), autonomic activity (heart rate, heart rate variability, and breathing rate), and cerebral oxygenation (using near-infrared spectroscopy) in two regions of the frontoparietal attention network (right lateral frontal cortex and right inferior parietal lobe) were measured during the practice of two simple video games (Tetris and Pong) played at different difficulty conditions (easy, optimal, hard, or self-selected). Our results indicated that an optimal level of difficulty, compared with an easy or hard level of difficulty led to greater flow feelings and a higher concentration of oxygenated hemoglobin in the regions of the frontoparietal network. The self-selected, named autonomy condition did not lead to more flow feelings than the optimal condition; however, the autonomy condition led to greater sympathetic activity (reduced heart rate variability and greater breathing rate) and higher activation of the frontoparietal regions. Our study suggests that flow feelings are highly connected to the mobilization of attentional resources, and all the more in a condition that promotes individuals' choice and autonomy.
... gland. Other tests may include: Urine flow rate Post-void residual urine test to see how much urine is left in your bladder after you urinate Pressure-flow studies to measure the pressure in the bladder as ...
Electrical conduction disturbance effects on dynamic changes of functional mitral regurgitation.
Fukuda, Shota; Grimm, Richard; Song, Jong-Min; Kihara, Takashi; Daimon, Masao; Agler, Deborah A; Wilkoff, Bruce L; Natale, Andrea; Thomas, James D; Shiota, Takahiro
2005-12-20
The aim of this study was to investigate the relationship between dynamics of functional mitral regurgitation (MR) and the degree of electrical conduction disturbance, and to evaluate the impact of cardiac resynchronization therapy (CRT) on MR severity and its phasic pattern. Mechanisms of phasic changes of functional MR, which may be determined by annulus dilation and tethering of the leaflet, remain unclear. Transthoracic two-dimensional echocardiography was performed in 60 patients with functional MR. A biventricular pacemaker was implanted in 19 patients. The mitral annulus area (MAA) and the tenting area (TA) were measured from apical views. The MR volume and fraction were assessed by the quantitative pulsed Doppler method. Instantaneous regurgitation flow rate was measured by proximal flow convergence method. A dynamic change in MR flow rate was evaluated by frame-by-frame analysis throughout systole. A phasic pattern with two peaks at early- and late-systole and decrease in mid-systole was noticed in 57 patients. The early-systolic peak of MR was larger than the late-systolic peak (128.4 +/- 64.3 ml/s vs. 73.9 +/- 55.1 ml/s, p < 0.001). The ratio of flow rate at these two peaks correlated with QRS duration (r = 0.55, p < 0.001). Early-systolic flow rate reduced after CRT (143.9 +/- 60.8 ml/s to 90.7 +/- 54.1 ml/s, p < 0.05), but late-systolic flow rate did not (61.5 +/- 55.0 ml/s to 51.2 +/- 40.9 ml/s, p = NS). A similar pattern was observed for TA, whereas MAA did not change after CRT. Biphasic pattern was found in functional MR, and the ratio of flow rate at two peaks correlated with QRS duration. The CRT decreased regurgitation flow volume by reducing early-systolic MR but not late-systolic MR, resulting in the change in phasic pattern of functional MR.
NASA Astrophysics Data System (ADS)
Hennessy, Ricky; Koo, Chiwan; Ton, Phuc; Han, Arum; Righetti, Raffaella; Maitland, Kristen C.
2011-03-01
Ultrasound poroelastography can quantify structural and mechanical properties of tissues such as stiffness, compressibility, and fluid flow rate. This novel ultrasound technique is being explored to detect tissue changes associated with lymphatic disease. We have constructed a macroscopic fluorescence imaging system to validate ultrasonic fluid flow measurements and to provide high resolution imaging of microfluidic phantoms. The optical imaging system is composed of a white light source, excitation and emission filters, and a camera with a zoom lens. The field of view can be adjusted from 100 mm x 75 mm to 10 mm x 7.5 mm. The microfluidic device is made of polydimethylsiloxane (PDMS) and has 9 channels, each 40 μm deep with widths ranging from 30 μm to 200 μm. A syringe pump was used to propel water containing 15 μm diameter fluorescent microspheres through the microchannels, with flow rates ranging from 0.5 μl/min to 10 μl/min. Video was captured at a rate of 25 frames/sec. The velocity of the microspheres in the microchannels was calculated using an algorithm that tracked the movement of the fluorescent microspheres. The imaging system was able to measure particle velocities ranging from 0.2 mm/sec to 10 mm/sec. The range of flow velocities of interest in lymph vessels is between 1 mm/sec to 10 mm/sec; therefore our imaging system is sufficient to measure particle velocity in phantoms modeling lymphatic flow.
NASA Astrophysics Data System (ADS)
Gao, Y.; Lin, Q.; Bijeljic, B.; Blunt, M. J.
2017-12-01
To observe intermittency in consolidated rock, we image a steady state flow of brine and decane in Bentheimer sandstone. We devise an experimental method based on X-ray differential imaging method to examine how changes in flow rate impact the pore-scale distribution of fluids during co-injection flow under dynamic flow conditions at steady state. This helps us elucidate the diverse flow regimes (connected, intermittent break-up, or continual break-up of the non-wetting phase pathways) for two capillary numbers. Also, relative permeability curves under both capillary and viscous limited conditions could be measured. We have performed imbibition sample floods using oil-brine and measured steady state relative permeability on a sandstone rock core in order to fully characterize the flow behaviour at low and high Ca. Two sets of experiments at high and low flow rates are provided to explore the time-evolution of the non-wetting phase clusters distribution under different flow conditions. The high flow rate is 0.5 mL/min, whose corresponding capillary number is 7.7×10-6. The low flow rate is 0.02 mL/min, whose capillary number is 3.1×10-7. A procedure based on using high-salinity brine as the contrast phase and applying differential imaging between the dry scan and that of the sample saturation with a 30 wt% Potassium iodide (KI) doped brine help to make sure there is no non-wetting phase in micro-pores. Then the intermittent phase in multiphase flow image at high Ca can be quantified by obtaining the differential image between the 30 wt% KI brine image and the scans that taken at each fixed fractional flow. By using the grey scale histogram distribution of the raw images at each condition, the oil proportion in the intermittent phase can be calculated. The pressure drops at each fractional flow at low and high Ca can be measured by high-precision pressure differential sensors and utilized to calculate to the relative permeability at pore scale. The relative permeability data and fw-Sw relationship obtained by our experiment at pore scale are compared with the data collected from experiments which were conducted at core scale, and they match well.
Wall, M A; Olson, D; Bonn, B A; Creelman, T; Buist, A S
1982-02-01
Reference standards of lung function was determined in 176 healthy North American Indian children (94 girls, 82 boys) 7 to 18 yr of age. Spirometry, maximal expiratory flow volume curves, and peak expiratory flow rate were measured using techniques and equipment recommended by the American Thoracic Society. Standing height was found to be an accurate predictor of lung function, and prediction equations for each lung function variable are presented using standing height as the independent variable. Lung volumes and expiratory flow rates in North American Indian children were similar to those previously reported for white and Mexican-American children but were greater than those in black children. In both boys and girls, lung function increased in a curvilinear fashion. Volume-adjusted maximal expiratory flow rates after expiring 50 or 75% of FVC tended to decrease in both sexes as age and height increased. Our maximal expiratory flow volume curve data suggest that as North American Indian children grow, lung volume increases at a slightly faster rate than airway size does.
Experimental study on unsteady open channel flow and bedload transport based on a physical model
NASA Astrophysics Data System (ADS)
Cao, W.
2015-12-01
Flow in a nature river are usually unsteady, while nearly all the theories about bedload transport are on the basis of steady, uniform flow, and also with supposed equilibrium state of sediment transport. This is may be one of the main reasons why the bedload transport formulas are notoriously poor accuracy to predict the bedload. The aim of this research is to shed light on the effect of unsteadiness on the bedload transport based on experimental studies. The novel of this study is that the experiments were not carried out in a conventional flume but in a physical model, which are more similar to the actual river. On the other hand, in our experiments, multiple consecutive flood wave were reproduced in the physical model, and all the flow and sediment parameters are based on a large number of data obtained from many of identical flood waves. This method allow us to get more data for one flood, efficiently avoids the uncertainty of bedload rate only for one single flood wave, due to the stochastic fluctuation of the bedload transport. Three different flood waves were selected in the experiments. During each run of experiment, the water level of five different positions along the model were measured by ultrasonic water level gauge, flow velocity at the middle of the channel were measured by two dimensional electromagnetic current meter. Moreover, the bedload transport rate was measured by a unique automatic trap collecting and weighing system at the end of the physical model. The results shows that the celerity of flood wave propagate varies for different flow conditions. The velocity distribution was approximately accord with log-law profile during the entire rising and falling limb of flood. The bedload transport rate show intensity fluctuation in all the experiments, moreover, for different flood waves, the moment when the shear stress reaches its maximum value is not the exact moment when the sediment transport rate reaches its maximum value, which indicates that the movement of flow and the sediment are not always synchronous during the flood processes. Comparing the bedload transport rate with the existing results of steady flows shows that the bedload transport capacity in unsteady flow is greater than that of the steady flow with same bed shear stresses. (Supported by KPNST(2013BAB12B01; 2012BAB04B01) and NSFC(11472310))
Minich, L L; Tani, L Y; Pantalos, G M
1997-01-01
To determine the accuracy of using power-weighted mean velocities for quantitating volumetric flow across a cardiac valve, we equipped pulsatile flow-tank systems with a 25 mm porcine or a 27 mm mechanical valve with various sizes of regurgitant orifices. Forward and reverse volumetric flows were measured over a range of hemodynamic conditions using two insonating angles (0 and 45 degrees). Pulsed Doppler power-weighted mean velocity measurements were obtained simultaneously with electromagnetic or ultrasonic transit-time probe measurements. For the porcine valve, Doppler measurements correlated well with electromagnetic flow measurements for all (r = 0.75 to 0.97, p < 0.05) except the smallest (2.7 mm) orifice (r = 0.19). For the mechanical valve, power-weighted mean velocity measurements correlated well with ultrasonic transit-time measurements for each hemodynamic condition defined by pulse rate, mean arterial pressure, and insonating angle (r = 0.93 to 0.99, p < 0.01), but equations varied unpredictably. Thus, although power-weighted mean velocity volumetric flow measurements correlate well with flow probe measurements, equations vary widely as hemodynamic conditions change. Because of this variation, power-weighted mean velocity data are not useful for quantitation of volumetric flow across a cardiac valve at this time. Further investigation may show how different hemodynamic conditions affect power-weighted mean velocity measurements of volumetric flow.
Kim, Peter T W; Fernandez, Hoylan; Gupta, Amar; Saracino, Giovanna; Ramsay, Michael; McKenna, Gregory J; Testa, Giuliano; Anthony, Tiffany; Onaca, Nicholas; Ruiz, Richard M; Klintmalm, Goran B
2017-02-01
This study was conducted to determine effect of lower measured hepatic arterial (HA) flow (<400 mL/min) on biliary complications and graft survival after deceased donor liver transplantation. Hepatic artery is the main blood supply to bile duct and lack of adequate HA flow is thought to be a risk factor for biliary complications. A retrospective review of 1300 patients who underwent deceased donor liver transplantation was performed. Patients with arterial complications were excluded to eliminate potential contribution to biliary complications from HA thrombosis. Patients were divided into low (<400 mL/min; N = 201) and high (≥400 mL/min; N = 1099) HA flow groups. Incidence of biliary complications and graft survival were analyzed. HA flows less than 400 mL/min were associated with increased rate of biliary strictures in younger donors (<50 years old), and in patients with duct-to-duct anastomoses (P = 0.028). Lower HA flows were associated with decreased graft survival (P = 0.013). Donor older than 50 years was associated with increased rate of biliary strictures (hazard ratio [HR], 1.67; 95% confidence interval [CI], 1.14-2.45; P = 0.0085) and graft failure (HR, 1.68; 95% CI, 1.35-2.1; P <0.0001) on multivariate analyses. HA flow less than 400 mL/min was associated with biliary strictures (HR, 1.53; 95% CI, 1.04-2.24; P = 0.0297) on univariate analysis only. HA flow less than 400 mL/min was associated with higher rate of biliary strictures in younger donors with duct-to-duct reconstruction and lower graft survival. A consideration should be given to increase the intraoperative HA flow to prevent biliary strictures in such patients.
NASA Astrophysics Data System (ADS)
Leggiero, Michael; Bulusu, Kartik V.; Plesniak, Michael W.
2013-11-01
The main objective of this study was to examine inertial effects in a 180-degree model of curved arteries under pulsatile inflow conditions. Two-component, two-dimensional particle image velocimetery (2C-2D PIV) data were acquired upstream of and at several cross-sectional locations in the curved artery model. A blood-analog fluid comprised of 71% saturated sodium iodide solution, 28% glycerol and 1% distilled water (by volume) was subjected to multi-harmonic pulsatile inflow functions. First, signal time-lag was quantified by cross-correlating the input (voltage-time) supplied to a programmable pump and the output PIV (flow rate-time) measurements. The experiment was then treated as a linear, time-invariant system, and frequency response was estimated for phase shifts across a certain spectrum. Input-output signal dissimilarities were attributable to intrinsic inertial effects of flow. By coupling pressure-time and upstream flow rate-time measurements, the experiment was modeled using system identification methods. Results elucidate the role of inertial effects in fluid flow velocity measurements and the effect of these delays on secondary flow structure detection in a curved artery model. Supported by the NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.
Rapid heat-flowing surveying of geothermal areas, utilizing individual snowfalls as calorimeters
White, Donald E.
1969-01-01
Local differences in rate of heat transfer in vapor and by conduction through the ground in hot spring areas are difficult and time-consuming to measure quantitatively. Individual heavy snowfalls provide a rapid low-cost means of measuring total heat flow from such ground. After a favorable snowfall (heavy, brief duration, little wind, air temperature near 0°C), contacts between snow-covered and snow-free ground are mapped on a suitable base. Each mapped contact, as time elapses after a specific snowfall, is a heat-flow contour representing a decreasing rate of flow. Calibration of each mapped contact or snow line is made possible by the fact that snow remains on insulated surfaces (such as the boardwalks of Yellowstone's thermal areas) long after it has melted on adjacent warm ground. Heat-flow contours mapped to date range from 450 to 5500 μcal/cm2 sec, or 300 to 3700 times the world average of conductive heat flow. The very high rates of heat flow (2000 to > 10,000 μcal/cm2 sec) are probably too high, and the lower heat flows determinable by the method (2 sec) may be too low. Values indicated by the method are, however, probably within a factor of 2 of the total conductive and convective heat flow. Thermal anomalies from infrared imagery are similar in shape to heat-flow contours of a test area near Old Faithful geyser. Snowfall calorimetry provides a rapid means for evaluating the imagery and computer-derived products of the infrared data in terms of heat flow.
Reservoir response to thermal and high-pressure well stimulation efforts at Raft River, Idaho
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plummer, Mitchell; Bradford, Jacob; Moore, Joseph
An injection stimulation test begun at the Raft River geothermal reservoir in June, 2013 has produced a wealth of data describing well and reservoir response via high-resolution temperature logging and distributed temperature sensing, seismic monitoring, periodic borehole televiewer logging, periodic stepped flow rate tests and tracer injections before and after stimulation efforts. One of the primary measures of response to the stimulation is the relationship between fluid pressure and flow rate, short-term during forced flow rate changes and the long-term change in injectivity. In this paper we examine that hydraulic response using standard pumping test analysis methods, largely because pressuremore » response to the stimulation was not detected, or measurable, in other wells. Analysis of stepped rate flow tests supports the inference from other data that a large fracture, with a radial extent of one to several meters, intersects the well in the target reservoir, suggests that the flow regime is radial to a distance of only several meters and demonstrates that the pressure build-up cone reaches an effective constant head at that distance. The well’s longer term hydraulic response demonstrated continually increasing injectivity but at a dramatically faster rate later from ~2 years out and continuing to the present. The net change in injectivity is significantly greater than observed in other longterm injectivity monitoring studies, with an approximately 150–fold increase occurring over ~2.5 years. While gradually increasing injectivity is a likely consequence of slow migration of a cooling front, and consequent dilation of fractures, the steady, ongoing, rate of increase is contrary to what would be expected in a radial or linear flow regime, where the cooling front would slow with time. As a result, occasional step-like changes in injectivity, immediately following high-flow rate tests suggest that hydro shearing during high-pressure testing altered the near-well permeability structure.« less
A water-powered Energy Harvesting system with Bluetooth Low Energy interface
NASA Astrophysics Data System (ADS)
Kroener, M.; Allinger, K.; Berger, M.; Grether, E.; Wieland, F.; Heller, S.; Woias, P.
2016-11-01
This paper reports the design, and testing of a water turbine generator system for typical flow rates in domestic applications, with an integrated power management and a Bluetooth low energy (BLE) based RF data transmission interface. It is based on a commercially available low cost hydro generator. The generator is built into a housing with optimized reduced fluidic resistance to enable operation with flow rates as low as 6 l/min. The power management combines rectification, buffering, defined start-up, and circuit protection. An MSP430FR5949 microcontroller is used for data acquisition and processing. The data are transmitted via RF, using a Bluegiga BLE112 module in advertisement mode, to a PC where the measured flow rate is stored and displayed. The transmission rate of the wireless sensor node (WSN) is set to 1 Hz if enough power is available, which is the case for flow rates above 5.5 l/min. The electronics power demand is calculated to be 340 μW in average, while the generator is capable of delivering more than 200 mW for flow rates above 15 l/min.
Dynamic PIV measurement of a compressible flow issuing from an airbag inflator nozzle
NASA Astrophysics Data System (ADS)
Lee, Sang Joon; Jang, Young Gil; Kim, Seok; Kim, Chang Soo
2006-12-01
Among many equipment for passenger safety, the air bag system is the most fundamental and effective device for an automobile. The inflator housing is a main part of the curtain-type air bag system, which supplies high-pressure gases in pumping up the air bag-curtain which is increasingly being adapted in deluxe cars for protecting passengers from the danger of side clash. However, flow information on the inflator housing is very limited. In this study, we measure the instantaneous velocity fields of a high-speed compressible flow issuing from the exit nozzle of an inflator housing using a dynamic PIV system. From the velocity field data measured at a high frame-rate, we evaluate the variation of the mass flow rate with time. The dynamic PIV system consists of a high-repetition Nd:YLF laser, a high-speed CMOS camera, and a delay generator. The flow images are taken at 4000 fps with synchronization of the trigger signal for inflator ignition. From the instantaneous velocity field data of flow ejecting from the airbag inflator housing at the initial stage, we can see a flow pattern of broken shock wave front and its downward propagation. The flow ejecting from the inflator housing is found to have very high velocity fluctuations, with the maximum velocity at about 700 m/s. The time duration of the high-speed flow is very short, and there is no perceptible flow after 100 ms.
Tsui, Po-Hsiang; Yeh, Chih-Kuang; Chang, Chien-Cheng
2009-05-01
The microbubbles destruction/replenishment technique has been previously applied to estimating blood flow in the microcirculation. The rate of increase of the time-intensity curve (TIC) due to microbubbles flowing into the region of interest (ROI), as measured from B-mode images, closely reflects the flow velocity. In previous studies, we proposed a new approach called the time-Nakagami-parameter curve (TNC) obtained from Nakagami images to monitor microbubble replenishment for quantifying the microvascular flow velocity. This study aimed to further explore some effects that may affect the TNC to estimate the microflow, including microbubble concentration, ultrasound transmitting energy, attenuation, intrinsic noise, and tissue clutter. In order to well control each effect production, we applied a typical simulation method to investigate the TIC and TNC. The rates of increase of the TIC and TNC were expressed by the rate constants beta(I) and beta(N), respectively, of a monoexponential model. The results show that beta(N) quantifies the microvascular flow velocity similarly to the conventional beta(I) . Moreover, the measures of beta(I) and beta(N) are not influenced by microbubble concentration, transducer excitation energy, and attenuation effect. Although the effect of intrinsic signals contributed by noise and blood would influence the TNC behavior, the TNC method has a better tolerance of tissue clutter than the TIC does, allowing the presence of some clutter components in the ROI. The results suggest that the TNC method can be used as a complementary tool for the conventional TIC to reduce the wall filter requirements for blood flow measurement in the microcirculation.
Haward, Simon J; McKinley, Gareth H
2012-03-01
We employ the techniques of microparticle image velocimetry and full-field birefringence microscopy combined with mechanical measurements of the pressure drop to perform a detailed characterization of the extensional rheology and elastic flow instabilities observed for a range of wormlike micellar solutions flowing through a microfluidic cross-slot device. As the flow rate through the device is increased, the flow first bifurcates from a steady symmetric to a steady asymmetric configuration characterized by a birefringent strand of highly aligned micellar chains oriented along the shear-free centerline of the flow field. At higher flow rates the flow becomes three dimensional and time dependent and is characterized by aperiodic spatiotemporal fluctuations of the birefringent strand. The extensional properties and critical conditions for the onset of flow instabilities in the fluids are highly dependent on the fluid formulation (surfactant concentration and ionic strength) and the resulting changes in the linear viscoelasticity and nonlinear shear rheology of the fluids. By combining the measurements of critical conditions for the flow transitions with the viscometric material properties and the degree of shear-thinning characterizing each test fluid, it is possible to construct a stability diagram for viscoelastic flow of complex fluids in the cross-slot geometry.
NASA Astrophysics Data System (ADS)
Diak, Bradley James
Forming limit predictions that incorporate crystal plasticity models still cannot adequately predict the deformation performance of polycrystalline materials. The reason for the limitation in predictive power is that the constitutive equations used to connect to the atomic scale assume an affine deformation which do not have a physical basis, but give general trends. This study was undertaken to better elucidate the microplastic process and how it manifests itself phenomenologically. In this endeavour, the strain rate sensitivity of the flow stress was identified as one parameter that greatly affects the forming limit. Hence, an attempt was made to properly define and measure the strain rate sensitivity according to the dictates of thermodynamics. The thermodynamics of systems can delineate the evolution of the state of a material if the state variables can be characterized and measured. Inevitably, these variables must be determined at constant structure. Using the theory of thermally activated flow, where the movement of dislocations past obstacles is the rate controlling step, the mechanical testing techniques have been designed to statistically assess the dynamic evolution of the microstructure by controlling the temperature, T, and strain rate, dotvarepsilon, and measuring the stress, sigma, mean slip distance, lambda, and mean slip velocity, dotlambda, to define sigma=f(lambda,dotlambda, T). The apparent activation volume, which characterizes the obstacle resistance of strain centres, is determined at constant structure by applying the strain rate change technique. Strain rate sensitivity data are compared to the Cottrell-Stokes relation, and the Haasen plot is used to separate the different contributions to the flow stress. Using these precise measurements at interrupted segments of strain, the evolution of a microstructure during plastic flow can be monitored. By this examination of different rate controlling obstacles, the microstructural parameters which correlate to formability were assessed. Detailed experimental evidence is given for different aluminum alloys containing mainly fast or slow diffusing solute species, transition precipitates, dispersed particles, and/or dislocation debris. These systems of Al-Fe, Al-Cr, Al-Cu, Al-Mg, and Al-Mg-Si, all displayed unique dislocation-defect interactions which could be elucidated by the current theory of thermally activated flow.
Temperature constraints on the Ginkgo flow of the Columbia River Basalt Group
NASA Astrophysics Data System (ADS)
Ho, Anita M.; Cashman, Katharine V.
1997-05-01
This study provides the first quantitative estimate of heat loss for a Columbia River Basalt Group flow. A glass composition-based geothermometer was experimentally calibrated for a composition representative of the 500-km-long Ginkgo flow of the Columbia River Basalt Group to measure temperature change during transport. Melting experiments were conducted on a bulk sample at 1 atm between 1200 and 1050 °C. Natural glass was sampled from the margin of a feeder dike near Kahlotus, Washington, and from pillow basalt at distances of 120 km (Vantage, Washington), 350 km (Molalla, Oregon), and 370 km (Portland, Oregon). Ginkgo basalt was also sampled at its distal end at Yaquina Head, Oregon (500 km). Comparison of the glass MgO content, K2O in plagioclase, and measured crystallinities in the experimental charges and natural samples tightly constrains the minimum flow temperature to 1085 ± 5 °C. Glass and plagioclase compositions indicate an upper temperature of 1095 ± 5 °C; thus the maximum temperature decrease along the flow axis of the Ginkgo is 20 °C, suggesting cooling rates of 0.02 0.04 °C/km. These cooling rates, substantially lower than rates observed in active and historic flows, are inconsistent with turbulent flow models. Calculated melt temperatures and viscosities of 240 750 Pa · s allow emplacement either as a fast laminar flow under an insulating crust or as a slower, inflated flow.
Magnetic Eigenmode Analysis of the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Nornberg, M. D.; Forest, C. B.; Kendrick, Roch; O'Connell, R.; Spence, E. J.
2004-11-01
The magnetic field generated by a spherical homogeneous liquid-sodium dynamo is explored in terms of the magnetic eigenmodes predicted by Dudley and James. The flow geometry chosen corresponds to the T2S2 flow and is created by two counter-rotating propellers driven by 100HP motors with flow velocities up to 15 m/s. A perturbative magnetic field is generated by pulsing a set axial field coils. The largest growing eigenmode is predicted by linear analysis to be a strong equatorial-dipole field. The field is measured using an array of Hall probes both on the surface of the sphere and within the sphere. From the measured field the growth or decay rates of the magnetic eigenmodes are determined. Turbulence in the flow is expected to give rise to modifications of the growth rates and the structure of the eigenmodes.
Liquid Bismuth Feed System for Electric Propulsion
NASA Technical Reports Server (NTRS)
Markusic, T. E.; Polzin, K. A.; Stanojev, B. J.
2006-01-01
Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions. For example, the VHITAL project aims td accurately, experimentally assess the performance characteristics of 10 kW-class bismuth-fed Hall thrusters - in order to validate earlier results and resuscitate a promising technology that has been relatively dormant for about two decades. A critical element of these tests will be the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre/post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work was to develop a precision liquid bismuth Propellant Management System (PMS) that provides real-time propellant mass flow rate measurement and control, enabling accurate thruster performance measurements. Additionally, our approach emphasizes the development of new liquid metal flow control components and, hence, will establish a basis for the future development of components for application in spaceflight. The design of various critical components in a bismuth PMS are described - reservoir, electromagnetic pump, hotspot flow sensor, and automated control system. Particular emphasis is given to material selection and high-temperature sealing techniques. Open loop calibration test results are reported, which validate the systems capability to deliver bismuth at mass flow rates ranging from 10 to 100 mg/sec with an uncertainty of less than +/- 5%. Results of integrated vaporizer/liquid PMS tests demonstrate all of the necessary elements of a complete bismuth feed system for electric propulsion.
The effect of carbon dioxide flow rate on the euthanasia of laboratory mice.
Moody, C M; Chua, B; Weary, D M
2014-10-01
Laboratory rodents are commonly euthanized by exposure to gradually increasing concentrations of carbon dioxide (CO2). Current recommended flow rates range between 10 and 30% chamber vol/min and result in insensibility before exposure to painful concentrations (<40%). However, this method causes dyspnea, indicated by deep, rapid breathing. In humans dyspnea is associated with a negative affective experience. Sensations of dyspnea may explain why rodents find CO2 concentrations >3% aversive. This study aimed to assess the effect of CO2 flow rates on time between the onset of dyspnea and various measures of insensibility (recumbency, loss of the righting reflex and loss of the pedal withdrawal reflex) to identify flow rates that minimize the potential experience of dyspnea. The results of this study indicate that a flow rate of 50% chamber vol/min, while holding the CO2 cage concentration just below 40%, minimizes the interval between the onset of labored breathing and recumbency. Using a 50% flow rate this interval averaged (± SE) 30.3 ± 2.9 s versus 49.7 ± 2.9 s at 20% chamber vol/min (F3,22 = 7.83, P = 0.0013). Similarly, the interval between the onset of labored breathing and loss of the righting reflex averaged 38.2 ± 2.4 s at a flow rate of 50% versus 59.2 ± 2.4 s at 20% chamber vol/min of CO2 (F3,22 = 13.62, P < 0.0001). We conclude that higher flow rates reduce the duration of dyspnea, but even at the highest flow rate mice experience more than 30 s between the onset of dyspnea and the most conservative estimate of insensibility. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Kondoh, Kei; Atiba, Ayman; Nagase, Kiyoshi; Ogawa, Shizuko; Miwa, Takashi; Katsumata, Teruya; Ueno, Hiroshi; Uzuka, Yuji
2015-08-01
In the present study, we compare a new carbon dioxide (CO2) absorbent, Yabashi lime(®) with a conventional CO2 absorbent, Sodasorb(®) as a control CO2 absorbent for Compound A (CA) and Carbon monoxide (CO) productions. Four dogs were anesthetized with sevoflurane. Each dog was anesthetized with four preparations, Yabashi lime(®) with high or low-flow rate of oxygen and control CO2 absorbent with high or low-flow rate. CA and CO concentrations in the anesthetic circuit, canister temperature and carbooxyhemoglobin (COHb) concentration in the blood were measured. Yabashi lime(®) did not produce CA. Control CO2 absorbent generated CA, and its concentration was significantly higher in low-flow rate than a high-flow rate. CO was generated only in low-flow rate groups, but there was no significance between Yabashi lime(®) groups and control CO2 absorbent groups. However, the CO concentration in the circuit could not be detected (≤5ppm), and no change was found in COHb level. Canister temperature was significantly higher in low-flow rate groups than high-flow rate groups. Furthermore, in low-flow rate groups, the lower layer of canister temperature in control CO2 absorbent group was significantly higher than Yabashi lime(®) group. CA and CO productions are thought to be related to the composition of CO2 absorbent, flow rate and canister temperature. Though CO concentration is equal, it might be safer to use Yabashi lime(®) with sevoflurane anesthesia in dogs than conventional CO2 absorbent at the point of CA production.
A simple bubble-flowmeter with quasicontinuous registration.
Ludt, H; Herrmann, H D
1976-07-22
The construction of a simple bubble-flow-meter is described. The instrument has the following features: 1. automatic bubble injection, 2. precise measurement of the bubble passage time by a digital counter, 3. quasicontinuous registration of the flow rate, 4. alternative run with clear fluid (water) and coloured fluid (blood), 5. low volume, 6. closed measuring system for measurements in low and high pressure systems.
NASA Astrophysics Data System (ADS)
Akbaridoust, Farzan; Philip, Jimmy; Marusic, Ivan
2018-04-01
Stagnation point flows have been widely used to study the deformation and break-up of objects in two-dimensional pure straining flows. Here, we report a systematic study of the characterisation of stagnation point flows in two devices, a miniature Taylor’s four-roll mill and a cross-slot microchannel. The aim of the study is to find the best platform suitable for investigating the effect of strain rate on the mechanical properties of waterborne microorganisms. Using micro-PIV, the velocity field and the strain rates in both devices were measured at different flow rates and compared with an ideal hyperbolic stagnation point flow. The cross-slot microchannel was found to be a better experimental device than the miniature four-roll mill for the purpose of confining micron-sized objects in a controlled stagnation point flow. This is mainly due to the difficulty of maintaining a fixed location for the stagnation point within one micron in the miniature four-roll mill and achieving high strain rates beyond 10 s-1 . However, with no moving parts, the cross-slot microchannel was found to maintain a steady flow, with the stagnation point varying less than one micron at a cross-junction of 400× 400~μm2 , and was able to reach uniform strain rates up to 140 s-1 .
Laminar and turbulent flow modes of cold atmospheric pressure argon plasma jet
NASA Astrophysics Data System (ADS)
Basher, Abdulrahman H.; Mohamed, Abdel-Aleam H.
2018-05-01
Laminar and turbulent flow modes of a cold atmospheric pressure argon plasma jet are investigated in this work. The effects of the gas flow rate, applied voltage, and frequency on each plasma mode and on intermodal transitions are characterized using photographic, electrical, and spectroscopic techniques. Increasing the gas flow rate increases the plasma jet length in the laminar mode. Upon transition to the turbulent mode, increasing the gas flow rate leads to a decrease in the plasma jet length. The flow rate at which the jet transitions from laminar to turbulent increases with the applied voltage. The presence of nitric oxide (NO) radicals is indicated by the emission spectra of the turbulent plasmas only, while excited Ar, N2, OH, and O excited species are produced in both laminar and turbulent modes. With no distinctive behavior observed upon transition between the two operating modes, the power consumption was found to be insensitive to gas flow rate variation, while the energy density was found to decrease exponentially with the gas flow rate. Rotational and vibrational temperature measurements of the two plasma modes indicated that they are of the non-thermal equilibrium plasma type. Since they offer NO radicals while maintaining the benefits of the laminar plasma jet, the turbulent plasma jet is more useful than its laminar counterpart in biomedical applications.
Griffiths, C. J.; Pickard, R. S.
2009-01-01
Objective: This article defines the need for objective measurements to help diagnose the cause of lower urinary tract symptoms (LUTS). It describes the conventional techniques available, mainly invasive, and then summarizes the emerging range of non-invasive measurement techniques. Methods: This is a narrative review derived form the clinical and scientific knowledge of the authors together with consideration of selected literature. Results: Consideration of measured bladder pressure urinary flow rate during voiding in an invasive pressure flow study is considered the gold standard for categorization of bladder outlet obstruction (BOO). The diagnosis is currently made by plotting the detrusor pressure at maximum flow (pdetQmax) and maximum flow rate (Qmax) on the nomogram approved by the International Continence Society. This plot will categorize the void as obstructed, equivocal or unobstructed. The invasive and relatively complex nature of this investigation has led to a number of inventive techniques to categorize BOO either by measuring bladder pressure non-invasively or by providing a proxy measure such as bladder weight. Conclusion: Non-invasive methods of diagnosing BOO show great promise and a few have reached the stage of being commercially available. Further studies are however needed to validate the measurement technique and assess their worth in the assessment of men with LUTS. PMID:19468436
Brain microvascular function during cardiopulmonary bypass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorensen, H.R.; Husum, B.; Waaben, J.
1987-11-01
Emboli in the brain microvasculature may inhibit brain activity during cardiopulmonary bypass. Such hypothetical blockade, if confirmed, may be responsible for the reduction of cerebral metabolic rate for glucose observed in animals subjected to cardiopulmonary bypass. In previous studies of cerebral blood flow during bypass, brain microcirculation was not evaluated. In the present study in animals (pigs), reduction of the number of perfused capillaries was estimated by measurements of the capillary diffusion capacity for hydrophilic tracers of low permeability. Capillary diffusion capacity, cerebral blood flow, and cerebral metabolic rate for glucose were measured simultaneously by the integral method, different tracersmore » being used with different circulation times. In eight animals subjected to normothermic cardiopulmonary bypass, and seven subjected to hypothermic bypass, cerebral blood flow, cerebral metabolic rate for glucose, and capillary diffusion capacity decreased significantly: cerebral blood flow from 63 to 43 ml/100 gm/min in normothermia and to 34 ml/100 gm/min in hypothermia and cerebral metabolic rate for glucose from 43.0 to 23.0 mumol/100 gm/min in normothermia and to 14.1 mumol/100 gm/min in hypothermia. The capillary diffusion capacity declined markedly from 0.15 to 0.03 ml/100 gm/min in normothermia but only to 0.08 ml/100 gm/min in hypothermia. We conclude that the decrease of cerebral metabolic rate for glucose during normothermic cardiopulmonary bypass is caused by interruption of blood flow through a part of the capillary bed, possibly by microemboli, and that cerebral blood flow is an inadequate indicator of capillary blood flow. Further studies must clarify why normal microvascular function appears to be preserved during hypothermic cardiopulmonary bypass.« less
Progress in fuel systems to meet new fuel economy and emissions standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
This publication includes information describing the latest developments within the automotive industry on fuel system hardware and control strategies. Contents include: Slow heating process of a heated pintle-type gasoline fuel injector; Mixture preparation measurements; Study of fuel flow rate change in injector for methanol fueled S.I. engine; Flow and structural analysis for fuel pressure regulator performance; A new method to analyze fuel behavior in a spark ignition engine; Throttle body at engine idle -- tolerance effect on flow rate; and more.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, R.N.
1986-01-01
Deuterium oxide (D/sub 2/O) dilution was evaluated for use in estimating body composition of ruminants. Empty body composition of cattle could not be accurately estimated by two- or three-compartment models when solved on the basis of clearance of D/sub 2/O from blood. A 29-compartment blood-flow model was developed from measured blood flow rates and water volumes of tissues of sheep. The rates of equilibration of water in tissues that were simulated by the blood-flow model were much faster than actual rates measured in sheep and cattle. The incorporation of diffusion hindrances for movement of water into tissues enabled the bloodmore » flow model to simulate the measured equilibration rates in tissues, but the values of the diffusion coefficients were different for each tissue. The D/sub 2/O-disappearance curve for blood simulated by the blood-flow model with diffusion limitations was comprised for four exponential components. The tissues and gastrointestinal tract contents were placed into five groups based upon the rate of equilibration. Water in the organs of the body equilibrated with water in blood within 3 min. Water in visceral fat, head, and some of the gastrointestinal tract tissues equilibrated within 8 to 16 min. Water in skeletal muscle, fat, and bone and the contents of some segments of the gastrointestinal tract equilibrated within 30 to 36 min. Water in the tissues and contents of the cecum and upper-large intestine equilibrated within 160 to 200 min. Water in ruminal tissue and contents equilibrated within 480 min.« less
Powell, Karin; Ethun, Kelly; Taylor, Douglas K
2016-09-21
Euthanasia protocols are designed to mitigate the stress experienced by animals, and an environment that induces minimal stress helps achieve that goal. A protocol that is efficient and practical in a typical animal research facility is also important. Light intensity, isoflurane, and CO2 flow rate were studied for their impact on the stress response of mice during CO2 euthanasia. Behavior was observed and scored during euthanasia and serum corticosterone was measured immediately after death. Unsurprisingly, animals euthanized with a high-flow rate of CO2 became unconscious in the least amount of time, while animals euthanized with a low-flow rate required the most time to reach unconsciousness. There was a significant increase in anxious behaviors in animals in the isoflurane group (F1,12 = 6.67, P = 0.024), the high-flow rate CO2 group (F1,12 = 10.24, P = 0.007), and bright chamber group (F1,12 = 7.27, P = 0.019). Serum corticosterone was highest in the isoflurane group (124.72 ± 83.98 ng/ml), however there was no significant difference in corticosterone levels observed for the other study variables of light and flow-rate. A darkened chamber and low CO2 flow rates help to decrease stress experienced during CO2 euthanasia, while the use of isoflurane was observed to increase the stress response during euthanasia.
Flow Characteristics and Robustness of an Inclined Quad-vortex Range Hood
CHEN, Jia-Kun; HUANG, Rong Fung
2014-01-01
A novel design of range hood, which was termed the inclined quad-vortex (IQV) range hood, was examined for its flow and containment leakage characteristics under the influence of a plate sweeping across the hood face. A flow visualization technique was used to unveil the flow behavior. Three characteristic flow modes were observed: convex, straight, and concave modes. A tracer gas detection method using sulfur hexafluoride (SF6) was employed to measure the containment leakage levels. The results were compared with the test data reported previously in the literature for a conventional range hood and an inclined air curtain (IAC) range hood. The leakage SF6 concentration of the IQV range hood under the influence of the plate sweeping was 0.039 ppm at a suction flow rate of 9.4 m3/min. The leakage concentration of the conventional range hood was 0.768 ppm at a suction flow rate of 15.0 m3/min. For the IAC range hood, the leakage concentration was 0.326 ppm at a suction flow rate of 10.9 m3/min. The IQV range hood presented a significantly lower leakage level at a smaller suction flow rate than the conventional and IAC range hoods due to its aerodynamic design for flow behavior. PMID:24583513
Blood flow measurement in extracorporeal circulation using self-mixing laser diode
NASA Astrophysics Data System (ADS)
Cattini, Stefano; Norgia, Michele; Pesatori, Alessandro; Rovati, Luigi
2010-02-01
To measure blood flow rate in ex-vivo circulation, we propose an optical Doppler flowmeter based on the self-mixing effect within a laser diode (SM-LD). Advantages in adopting SM-LD techniques derive from reduced costs, ease of implementation and limited size. Moreover, the provided contactless sensing allows sensor reuse, hence further cost reduction. Preliminary measurements performed on bovine blood are reported, thus demonstrating the applicability of the proposed measurement method.
Camper, Anne K.; Hayes, Jason T.; Sturman, Paul J.; Jones, Warren L.; Cunningham, Alfred B.
1993-01-01
Three strains of Pseudomonas fluorescens with different motility rates and adsorption rate coefficients were injected into porous-medium reactors packed with l-mm-diameter glass spheres. Cell breakthrough, time to peak concentration, tailing, and cell recovery were measured at three interstitial pore velocities (higher than, lower than, and much lower than the maximal bacterial motility rate). All experiments were done with distilled water to reduce the effects of growth and chemotaxis. Contrary to expectations, motility did not result in either early breakthrough or early time to peak concentration at flow velocities below the motility rate. Bacterial size exclusion effects were shown to affect breakthrough curve shape at the very low flow velocity, but no such effect was seen at the higher flow velocity. The tendency of bacteria to adsorb to porous-medium surfaces, as measured by adsorption rate coefficients, profoundly influenced transport characteristics. Cell recoveries were shown to be correlated with the ratio of advective to adsorptive transport in the reactors. Adsorption rate coefficients were found to be better predictors of microbial transport phenomena than individual characteristics, such as size, motility, or porous-medium hydrodynamics. PMID:16349075
40 CFR 63.605 - Monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the mass flow of phosphorus-bearing feed material to the process. The monitoring system shall have an... either the mass flow of phosphorus-bearing feed material to the dryer or calciner, or the mass flow of... total mass rate in metric ton/hour of phosphorus bearing feed using a monitoring system for measuring...
40 CFR 63.605 - Monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the mass flow of phosphorus-bearing feed material to the process. The monitoring system shall have an... either the mass flow of phosphorus-bearing feed material to the dryer or calciner, or the mass flow of... total mass rate in metric ton/hour of phosphorus bearing feed using a monitoring system for measuring...
NASA Technical Reports Server (NTRS)
Dolan, F. X.; Runstadler, P. W., Jr.
1979-01-01
The instrument was designed as a diagnostic tool for the basic fluid dynamics of the inducer, impeller, and diffuser regions of this type compressor. The LV instrumentation was optimized to measure instantaneous velocities up to approximately 500 m/s, measured in absolute coordinates, within the rotating compressor impeller and in the two dimensional radial plane of the diffuser. Some measurements were made within the diffuser and the impeller inlet flows; however, attempts to make detailed measurements of the velocity field were not successful. Difficulties in maintaining high seed particle rates within the probe volume and the improper operation of the blade gating optics may explain the lack of success. Recommendations are made to further pursue these problems. At 100% speed the stage attained a total static pressure ratio of 7.5:1 at 75% total-static efficiency. Flow range from choke-to-surge was 6.8% of choking mass flow rate. Performance was lower than the design intent of 8:1 pressure ratio at 77% efficiency and 12% flow range. Detailed measurements of the stage components are presented which show the reasons for the stage performance deficiencies.
Youn, Woong-Kyu; Kim, Chan-Soo; Hwang, Nong-Moon
2013-10-01
The generation of charged nanoparticles in the gas phase has been continually reported in many chemical vapor deposition processes. Charged silicon nanoparticles in the gas phase were measured using a differential mobility analyzer connected to an atmospheric-pressure chemical vapor deposition reactor at various nitrogen carrier gas flow rates (300-1000 standard cubic centimeter per minute) under typical conditions for silicon deposition at the reactor temperature of 900 degrees C. The carrier gas flow rate affected not only the growth behavior of nanostructures but also the number concentration and size distribution of both negatively and positively charged nanoparticles. As the carrier gas flow rate decreased, the growth behavior changed from films to nanowires, which grew without catalytic metal nanoparticles on a quartz substrate.
Dynamic Synchronous Capture Algorithm for an Electromagnetic Flowmeter.
Fanjiang, Yong-Yi; Lu, Shih-Wei
2017-04-10
This paper proposes a dynamic synchronous capture (DSC) algorithm to calculate the flow rate for an electromagnetic flowmeter. The characteristics of the DSC algorithm can accurately calculate the flow rate signal and efficiently convert an analog signal to upgrade the execution performance of a microcontroller unit (MCU). Furthermore, it can reduce interference from abnormal noise. It is extremely steady and independent of fluctuations in the flow measurement. Moreover, it can calculate the current flow rate signal immediately (m/s). The DSC algorithm can be applied to the current general MCU firmware platform without using DSP (Digital Signal Processing) or a high-speed and high-end MCU platform, and signal amplification by hardware reduces the demand for ADC accuracy, which reduces the cost.
Dynamic Synchronous Capture Algorithm for an Electromagnetic Flowmeter
Fanjiang, Yong-Yi; Lu, Shih-Wei
2017-01-01
This paper proposes a dynamic synchronous capture (DSC) algorithm to calculate the flow rate for an electromagnetic flowmeter. The characteristics of the DSC algorithm can accurately calculate the flow rate signal and efficiently convert an analog signal to upgrade the execution performance of a microcontroller unit (MCU). Furthermore, it can reduce interference from abnormal noise. It is extremely steady and independent of fluctuations in the flow measurement. Moreover, it can calculate the current flow rate signal immediately (m/s). The DSC algorithm can be applied to the current general MCU firmware platform without using DSP (Digital Signal Processing) or a high-speed and high-end MCU platform, and signal amplification by hardware reduces the demand for ADC accuracy, which reduces the cost. PMID:28394306
Improving Bedload Transport Predictions by Incorporating Hysteresis
NASA Astrophysics Data System (ADS)
Crowe Curran, J.; Gaeuman, D.
2015-12-01
The importance of unsteady flow on sediment transport rates has long been recognized. However, the majority of sediment transport models were developed under steady flow conditions that did not account for changing bed morphologies and sediment transport during flood events. More recent research has used laboratory data and field data to quantify the influence of hysteresis on bedload transport and adjust transport models. In this research, these new methods are combined to improve further the accuracy of bedload transport rate quantification and prediction. The first approach defined reference shear stresses for hydrograph rising and falling limbs, and used these values to predict total and fractional transport rates during a hydrograph. From this research, a parameter for improving transport predictions during unsteady flows was developed. The second approach applied a maximum likelihood procedure to fit a bedload rating curve to measurements from a number of different coarse bed rivers. Parameters defining the rating curve were optimized for values that maximized the conditional probability of producing the measured bedload transport rate. Bedload sample magnitude was fit to a gamma distribution, and the probability of collecting N particles in a sampler during a given time step was described with a Poisson probability density function. Both approaches improved estimates of total transport during large flow events when compared to existing methods and transport models. Recognizing and accounting for the changes in transport parameters over time frames on the order of a flood or flood sequence influences the choice of method for parameter calculation in sediment transport calculations. Those methods that more tightly link the changing flow rate and bed mobility have the potential to improve bedload transport rates.
Micro-Viscometer for Measuring Shear-Varying Blood Viscosity over a Wide-Ranging Shear Rate.
Kim, Byung Jun; Lee, Seung Yeob; Jee, Solkeun; Atajanov, Arslan; Yang, Sung
2017-06-20
In this study, a micro-viscometer is developed for measuring shear-varying blood viscosity over a wide-ranging shear rate. The micro-viscometer consists of 10 microfluidic channel arrays, each of which has a different micro-channel width. The proposed design enables the retrieval of 10 different shear rates from a single flow rate, thereby enabling the measurement of shear-varying blood viscosity with a fixed flow rate condition. For this purpose, an optimal design that guarantees accurate viscosity measurement is selected from a parametric study. The functionality of the micro-viscometer is verified by both numerical and experimental studies. The proposed micro-viscometer shows 6.8% (numerical) and 5.3% (experimental) in relative error when compared to the result from a standard rotational viscometer. Moreover, a reliability test is performed by repeated measurement (N = 7), and the result shows 2.69 ± 2.19% for the mean relative error. Accurate viscosity measurements are performed on blood samples with variations in the hematocrit (35%, 45%, and 55%), which significantly influences blood viscosity. Since the blood viscosity correlated with various physical parameters of the blood, the micro-viscometer is anticipated to be a significant advancement for realization of blood on a chip.
Mass transfer in thin films under counter-current gas: experiments and numerical study
NASA Astrophysics Data System (ADS)
Lucquiaud, Mathieu; Lavalle, Gianluca; Schmidt, Patrick; Ausner, Ilja; Wehrli, Marc; O Naraigh, Lennon; Valluri, Prashant
2016-11-01
Mass transfer in liquid-gas stratified flows is strongly affected by the waviness of the interface. For reactive flows, the chemical reactions occurring at the liquid-gas interface also influence the mass transfer rate. This is encountered in several technological applications, such as absorption units for carbon capture. We investigate the absorption rate of carbon dioxide in a liquid solution. The experimental set-up consists of a vertical channel where a falling film is sheared by a counter-current gas flow. We measure the absorption occurring at different flow conditions, by changing the liquid solution, the liquid flow rate and the gas composition. With the aim to support the experimental results with numerical simulations, we implement in our level-set flow solver a novel module for mass transfer taking into account a variant of the ghost-fluid formalism. We firstly validate the pure mass transfer case with and without hydrodynamics by comparing the species concentration in the bulk flow to the analytical solution. In a final stage, we analyse the absorption rate in reactive flows, and try to reproduce the experimental results by means of numerical simulations to explore the active role of the waves at the interface.
Methods of measurement signal acquisition from the rotational flow meter for frequency analysis
NASA Astrophysics Data System (ADS)
Świsulski, Dariusz; Hanus, Robert; Zych, Marcin; Petryka, Leszek
One of the simplest and commonly used instruments for measuring the flow of homogeneous substances is the rotational flow meter. The main part of such a device is a rotor (vane or screw) rotating at a speed which is the function of the fluid or gas flow rate. A pulse signal with a frequency proportional to the speed of the rotor is obtained at the sensor output. For measurements in dynamic conditions, a variable interval between pulses prohibits the analysis of the measuring signal. Therefore, the authors of the article developed a method involving the determination of measured values on the basis of the last inter-pulse interval preceding the moment designated by the timing generator. For larger changes of the measured value at a predetermined time, the value can be determined by means of extrapolation of the two adjacent interpulse ranges, assuming a linear change in the flow. The proposed methods allow analysis which requires constant spacing between measurements, allowing for an analysis of the dynamics of changes in the test flow, eg. using a Fourier transform. To present the advantages of these methods simulations of flow measurement were carried out with a DRH-1140 rotor flow meter from the company Kobold.
Simulation Study of Nano Aqueous Flow Sensor Based on Amperometric Measurement
Wu, Jian; Zhou, Qingli; Liu, Jun; Lou, Zhengguo
2006-01-01
In this paper, a novel nano aqueous flow sensor which consists of two closely spaced amperometric sensors is investigated by digital simulation. The simulation results indicate that the ratio of the responses of two closely spaced amperometric sensors is only related to flow rates in the channel, insensitive to the analyte concentration in the solution. By comparing the output of two amperometric sensors, the flow rate in the channel can be deduced. It is not necessary to determine the analyte concentration in advance. The simulation results show it is able to detect flow rate by in the range of several nano-liters per minute when the distance between the working electrodes of two amperometric sensors is 200 nm and the cross-section of the channel is 1 μm × 1 μm.
Cutaneous heat flow during heating and cooling in Alligator mississipiensis.
Smith, E N
1976-05-01
Direct in vivo measurement of heat flow across the skin of the American alligator (Alligator mississipiensis) showed increased heat flow during warming. Mean values at 25 degrees C during warming (15-35 degrees C) in air (airspeed 300 cm/s) were 17.9 +/- 92 SE cal/cm2 per h (mean alligator wt 3.27 kg). Cooling heat flow at the same temperature was 13.6 +/- 0.57 cal/cm2 per h. Subdermal heat flow was reduced during warming and was not significantly different from cutaneous heat flow during cooling. This indicated that the alligator was able to control its rate of heat exchange with the environment by altering cutaneous perfusion. Atropine, phenoxybenzamine, nitroglycerin, and Xylocaine did not affect cutaneous heat flow or heating and cooling rates. Atropine blocked bradycardia during cooling.