Sample records for flow rate monitoring

  1. Apparatus for monitoring two-phase flow

    DOEpatents

    Sheppard, John D.; Tong, Long S.

    1977-03-01

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  2. Method and apparatus for monitoring two-phase flow. [PWR

    DOEpatents

    Sheppard, J.D.; Tong, L.S.

    1975-12-19

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  3. 40 CFR Appendix E to Part 52 - Performance Specifications and, Specification Test Procedures for Monitoring Systems for Effluent...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Specification Test Procedures for Monitoring Systems for Effluent Stream Gas Volumetric Flow Rate E Appendix E... Stream Gas Volumetric Flow Rate 1. Principle and applicability. 1.1Principle. Effluent stream gas... method is applicable to subparts which require continuous gas volumetric flow rate measurement...

  4. 40 CFR Appendix E to Part 52 - Performance Specifications and, Specification Test Procedures for Monitoring Systems for Effluent...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Specification Test Procedures for Monitoring Systems for Effluent Stream Gas Volumetric Flow Rate E Appendix E... Stream Gas Volumetric Flow Rate 1. Principle and applicability. 1.1Principle. Effluent stream gas... method is applicable to subparts which require continuous gas volumetric flow rate measurement...

  5. Low volume flow meter

    DOEpatents

    Meixler, Lewis D.

    1993-01-01

    The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

  6. Effects of episodic sediment supply on bedload transport rate in mountain rivers. Detecting debris flow activity using continuous monitoring

    NASA Astrophysics Data System (ADS)

    Uchida, Taro; Sakurai, Wataru; Iuchi, Takuma; Izumiyama, Hiroaki; Borgatti, Lisa; Marcato, Gianluca; Pasuto, Alessandro

    2018-04-01

    Monitoring of sediment transport from hillslopes to channel networks as a consequence of floods with suspended and bedload transport, hyperconcentrated flows, debris and mud flows is essential not only for scientific issues, but also for prevention and mitigation of natural disasters, i.e. for hazard assessment, land use planning and design of torrent control interventions. In steep, potentially unstable terrains, ground-based continuous monitoring of hillslope and hydrological processes is still highly localized and expensive, especially in terms of manpower. In recent years, new seismic and acoustic methods have been developed for continuous bedload monitoring in mountain rivers. Since downstream bedload transport rate is controlled by upstream sediment supply from tributary channels and bed-external sources, continuous bedload monitoring might be an effective tool for detecting the sediments mobilized by debris flow processes in the upper catchment and thus represent an indirect method to monitor slope instability processes at the catchment scale. However, there is poor information about the effects of episodic sediment supply from upstream bed-external sources on downstream bedload transport rate at a single flood time scale. We have examined the effects of sediment supply due to upstream debris flow events on downstream bedload transport rate along the Yotagiri River, central Japan. To do this, we have conducted continuous bedload observations using a hydrophone (Japanese pipe microphone) located 6.4 km downstream the lower end of a tributary affected by debris flows. Two debris flows occurred during the two-years-long observation period. As expected, bedload transport rate for a given flow depth showed to be larger after storms triggering debris flows. That is, although the magnitude of sediment supply from debris flows is not large, their effect on bedload is propagating >6 km downstream at a single flood time scale. This indicates that continuous bedload observations could be effective for detecting sediment supply as a consequence of debris flow events.

  7. 40 CFR 63.9920 - What are my continuous monitoring requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... scrubber subject to the operating limits for pressure drop and scrubber water flow rates in § 63.9890(b), you must at all times monitor the hourly average pressure drop and liquid flow rate using a CPMS...

  8. 40 CFR 63.9920 - What are my continuous monitoring requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... scrubber subject to the operating limits for pressure drop and scrubber water flow rates in § 63.9890(b), you must at all times monitor the hourly average pressure drop and liquid flow rate using a CPMS...

  9. 40 CFR 63.9920 - What are my continuous monitoring requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... scrubber subject to the operating limits for pressure drop and scrubber water flow rates in § 63.9890(b), you must at all times monitor the hourly average pressure drop and liquid flow rate using a CPMS...

  10. Use of Audible and Chart-recorded Ultrasonography to Monitor Fetal Heart Rate and Uterine Blood Flow Parameters in Cattle

    USDA-ARS?s Scientific Manuscript database

    The objective of the present study was to evaluate the use of audible chart-recorded doppler ultrasonography (DUS) to monitor both uterine blood flow and fetal heart rate (FHR) during pregnancy in dairy cattle. Possible applications of DUS include the monitoring of fetal distress when a pregnancy be...

  11. 40 CFR 75.72 - Determination of NOX mass emissions for common stack and multiple stack configurations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the hourly stack flow rate (in scfh). Only one methodology for determining NOX mass emissions shall be...-diluent continuous emissions monitoring system and a flow monitoring system in the common stack, record... maintain a flow monitoring system and diluent monitor in the duct to the common stack from each unit; or...

  12. 40 CFR 63.605 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the mass flow of phosphorus-bearing feed material to the process. The monitoring system shall have an... either the mass flow of phosphorus-bearing feed material to the dryer or calciner, or the mass flow of... total mass rate in metric ton/hour of phosphorus bearing feed using a monitoring system for measuring...

  13. 40 CFR 63.605 - Monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the mass flow of phosphorus-bearing feed material to the process. The monitoring system shall have an... either the mass flow of phosphorus-bearing feed material to the dryer or calciner, or the mass flow of... total mass rate in metric ton/hour of phosphorus bearing feed using a monitoring system for measuring...

  14. Apparatus and method for acoustic monitoring of steam quality and flow

    DOEpatents

    Sinha, Dipen N.; Pantea, Cristian

    2016-09-13

    An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.

  15. 40 CFR 60.5407 - What are the requirements for monitoring of emissions and operations from my sweetening unit...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... concentration in the acid gas from the sweetening unit for each 24-hour period. At least one sample per 24-hour... sampling schedule. (3) The average acid gas flow rate from the sweetening unit. You must install and operate a monitoring device to continuously measure the flow rate of acid gas. The monitoring device...

  16. 40 CFR 60.5407 - What are the requirements for monitoring of emissions and operations from my sweetening unit...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... concentration in the acid gas from the sweetening unit for each 24-hour period. At least one sample per 24-hour... sampling schedule. (3) The average acid gas flow rate from the sweetening unit. You must install and operate a monitoring device to continuously measure the flow rate of acid gas. The monitoring device...

  17. 40 CFR Table 7 to Subpart Ddddd of... - Establishing Operating Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Particulate matter, mercury, or total selected metals a. Wet scrubber operating parameters i. Establish a site... drop and liquid flow rate monitors and the particulate matter, mercury, or total selected metals... from the pressure drop and liquid flow rate monitors and the particulate matter, mercury, or total...

  18. 40 CFR 63.1657 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pollution control practices that minimizes emissions per § 63.6(e)(1)(i). (c) Shop opacity. The owner or... monitoring device that continuously records the volumetric flow rate through each separately ducted hood. (3... records the volumetric flow rate at the inlet of the air pollution control device and must check and...

  19. 40 CFR 63.1657 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pollution control practices that minimizes emissions per § 63.6(e)(1)(i). (c) Shop opacity. The owner or... monitoring device that continuously records the volumetric flow rate through each separately ducted hood. (3... records the volumetric flow rate at the inlet of the air pollution control device and must check and...

  20. 40 CFR 63.1657 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pollution control practices that minimizes emissions per § 63.6(e)(1)(i). (c) Shop opacity. The owner or... monitoring device that continuously records the volumetric flow rate through each separately ducted hood. (3... records the volumetric flow rate at the inlet of the air pollution control device and must check and...

  1. 77 FR 30283 - Standards of Performance for New Stationary Sources, National Emission Standards for Hazardous...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... timeline and exceedances of the pressure, temperature, and oxygen and/or nitrogen concentration are... (AMP) that consists of monitoring the inlet scrubbing liquid temperature, flow rate, and acid content... request consisting of monitoring the inlet scrubbing liquid temperature and flow rate and identifying...

  2. Aerosol collection of the (Bladewerx Corporation) breathing zone monitor and portable workplace monitor.

    PubMed

    Moore, Murray E; Kennedy, Trevor J; Dimmerling, Paul J

    2007-11-01

    The Radiation Protection Group at the Los Alamos National Laboratory has a wind tunnel capable of measuring the aerosol collection efficiencies of air sampling devices. In the fall of 2005, the group received an internal Los Alamos request to perform aerosol collection efficiency tests on two air samplers manufactured by the Bladewerx Corporation (Rio Rancho, NM). This paper presents the results from tests performed in the wind tunnel facility at a test velocity of 0.5 m s. The SabreAlert (Portable Workplace Monitor) and the SabreBZM (Breathing Zone Monitor) are both designed to detect and measure the presence of alpha emitting isotopes in atmospheres. The SabreAlert was operated at two test air flow rates of 6 and 45 liters per minute (LPM), and the SabreBZM was operated at two test air flow rates of 3 and 19 LPM. The aerosol collection efficiencies of both samplers were evaluated with oleic acid (monodisperse) liquid droplet aerosols tagged with sodium fluorescein tracer. These test aerosols varied in size from about 2.3 to 17.2 microns (aerodynamic equivalent diameter). The SabreAlert was roughly 100% efficient in aerosol collection at a flow rate of 6 LPM, and had an aerodynamic cutpoint diameter of 11.3 microns at the 45 LPM flow rate. The SabreBZM had an aerodynamic cutpoint diameter of 6.7 microns at the 3 LPM flow rate, but the SabreBZM aerosol collection efficiency never exceeded 13.6% at the 19 LPM test flow rate condition.

  3. 40 CFR 98.154 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the concentrations of the process samples. (b) The mass flow of the product stream containing the HFC... concentration and volumetric flow rate determined by measurement of volumetric flow rate using EPA Method 2, 2A... volumetric flow rate at the inlet or by a metering device for HFC-23 sent to the device. Determine a new...

  4. 49 CFR 195.402 - Procedural manual for operations, maintenance, and emergencies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., monitoring from an attended location pipeline pressure during startup until steady state pressure and flow... operating conditions by monitoring pressure, temperature, flow or other appropriate operational data and...) Increase or decrease in pressure or flow rate outside normal operating limits; (iii) Loss of communications...

  5. 49 CFR 195.402 - Procedural manual for operations, maintenance, and emergencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., monitoring from an attended location pipeline pressure during startup until steady state pressure and flow... operating conditions by monitoring pressure, temperature, flow or other appropriate operational data and...) Increase or decrease in pressure or flow rate outside normal operating limits; (iii) Loss of communications...

  6. A methodology to reduce uncertainties in the high-flow portion of a rating curve

    USDA-ARS?s Scientific Manuscript database

    Flow monitoring at watershed scale relies on the establishment of a rating curve that describes the relationship between stage and flow and is developed from actual flow measurements at various stages. Measurement errors increase with out-of-bank flow conditions because of safety concerns and diffic...

  7. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.

    PubMed

    Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric

    2012-03-07

    We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.

  8. Monitoring probe for groundwater flow

    DOEpatents

    Looney, Brian B.; Ballard, Sanford

    1994-01-01

    A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

  9. Monitoring probe for groundwater flow

    DOEpatents

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  10. A methodology to reduce uncertainties in the high-flow portion of the rating curve for Goodwater Creek Watershed

    USDA-ARS?s Scientific Manuscript database

    Flow monitoring at watershed scale relies on the establishment of a rating curve that describes the relationship between stage and flow and is developed from actual flow measurements at various stages. Measurement errors increase with out-of-bank flow conditions because of safety concerns and diffic...

  11. 40 CFR 60.103a - Design, equipment, work practice or operational standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Description and simple process flow diagram showing the interconnection of the following components of the... rate. (iv) Description and simple process flow diagram showing all gas lines (including flare, purge... which lines are monitored and identify on the process flow diagram the location and type of each monitor...

  12. 40 CFR 60.103a - Design, equipment, work practice or operational standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Description and simple process flow diagram showing the interconnection of the following components of the... rate. (iv) Description and simple process flow diagram showing all gas lines (including flare, purge... which lines are monitored and identify on the process flow diagram the location and type of each monitor...

  13. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, John C.

    1993-01-01

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  14. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1993-02-16

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  15. 40 CFR 60.213 - Monitoring of operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., maintain, and operate a flow monitoring device which can be used to determine the mass flow of phosphorus... daily record of equivalent P2O5 feed by first determining the total mass rate in Mg/hr of phosphorus...

  16. 40 CFR 60.213 - Monitoring of operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., maintain, and operate a flow monitoring device which can be used to determine the mass flow of phosphorus... daily record of equivalent P2O5 feed by first determining the total mass rate in Mg/hr of phosphorus...

  17. 40 CFR 60.233 - Monitoring of operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., maintain, and operate a flow monitoring device which can be used to determine the mass flow of phosphorus... record of equivalent P2O5 feed by first determining the total mass rate in Mg/hr of phosphorus-bearing...

  18. 40 CFR 60.233 - Monitoring of operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., maintain, and operate a flow monitoring device which can be used to determine the mass flow of phosphorus... record of equivalent P2O5 feed by first determining the total mass rate in Mg/hr of phosphorus-bearing...

  19. A wireless monitoring system for Hydrocephalus shunts.

    PubMed

    Narayanaswamy, A; Nourani, M; Tamil, L; Bianco, S

    2015-08-01

    Patients with Hydrocephalus are usually treated by diverting the excess Cerebrospinal Fluid (CSF) to other parts of the body using shunts. More than 40 percentage of shunts implanted fail within the first two years. Obstruction in the shunts is one of the major causes of failure (45 percent) and the detection of obstruction reduces the complexity of the revision surgery. This paper describes a proposed wireless monitoring system for clog detection and flow measurement in shunts. A prototype was built using multiple pressure sensors along the shunt catheters for sensing the location of clog and flow rate. Regular monitoring of flow rates can be used to adjust the valve in the shunt to prevent over drainage or under drainage of CSF. The accuracy of the flow measurement is more than 90 percent.

  20. Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream

    DOEpatents

    Cochran, Jr., Henry D.

    1978-04-11

    This invention relates to an improved method of monitoring the mass flow rate of a substance entering a cocurrent fluid stream. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance.

  1. 40 CFR 75.15 - Special provisions for measuring Hg mass emissions using the excepted sorbent trap monitoring...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the excepted sorbent trap monitoring methodology. For an affected coal-fired unit under a State or...; (c) A certified flow monitoring system is required; (d) Correction for stack gas moisture content is... proportional to the stack gas volumetric flow rate. (f) At the beginning and end of each sample collection...

  2. In situ monitoring of localized shear stress and fluid flow within developing tissue constructs by Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Bagnaninchi, Pierre O.; Wang, Ruikang K.

    2008-02-01

    Mechanical stimuli can be introduced to three dimensional (3D) cell cultures by use of perfusion bioreactor. Especially in musculoskeletal tissues, shear stress caused by fluid flow generally increase extra-cellular matrix (ECM) production and cell proliferation. The relationship between the shear stress and the tissue development in situ is complicated because of the non-uniform pore distribution within the cell-seeded scaffold. In this study, we firstly demonstrated that Doppler optical coherence tomography (DOCT) is capable of monitoring localized fluid flow and shear stress in the complex porous scaffold by examining their variation trends at perfusion rate of 5, 8, 10 and 12 ml/hr. Then, we developed the 3D porous cellular constructs, cell-seeded chitosan scaffolds monitored during several days by DOCT. The fiber based fourier domain DOCT employed a 1300 nm superluminescent diode with a bandwidth of 52 nm and a xyz resolution of 20×20×15 μm in free space. This setup allowed us not only to assess the cell growth and ECM deposition by observing their different scattering behaviors but also to further investigate how the cell attachment and ECM production has the effect on the flow shear stress and the relationship between flow rate and shear stress in the developing tissue construct. The possibility to monitor continuously the constructs under perfusion will easily indicate the effect of flow rate or shear stress on the cell viability and cell proliferation, and then discriminate the perfusion parameters affecting the pre-tissue formation rate growth.

  3. 3D modeling and characterization of a calorimetric flow rate sensor for sweat rate sensing applications

    NASA Astrophysics Data System (ADS)

    Iftekhar, Ahmed Tashfin; Ho, Jenny Che-Ting; Mellinger, Axel; Kaya, Tolga

    2017-03-01

    Sweat-based physiological monitoring has been intensively explored in the last decade with the hopes of developing real-time hydration monitoring devices. Although the content of sweat (electrolytes, lactate, urea, etc.) provides significant information about the physiology, it is also very important to know the rate of sweat at the time of sweat content measurements because the sweat rate is known to alter the concentrations of sweat compounds. We developed a calorimetric based flow rate sensor using PolydimethylSiloxane that is suitable for sweat rate applications. Our simple approach on using temperature-based flow rate detection can easily be adapted to multiple sweat collection and analysis devices. Moreover, we have developed a 3D finite element analysis model of the device using COMSOL Multiphysics™ and verified the flow rate measurements. The experiment investigated flow rate values from 0.3 μl/min up to 2.1 ml/min, which covers the human sweat rate range (0.5 μl/min-10 μl/min). The 3D model simulations and analytical model calculations covered an even wider range in order to understand the main physical mechanisms of the device. With a verified 3D model, different environmental heat conditions could be further studied to shed light on the physiology of the sweat rate.

  4. Microwave/Sonic Apparatus Measures Flow and Density in Pipe

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Ngo, Phong; Carl, J. R.; Byerly, Kent A.

    2004-01-01

    An apparatus for measuring the rate of flow and the mass density of a liquid or slurry includes a special section of pipe instrumented with microwave and sonic sensors, and a computer that processes digitized readings taken by the sensors. The apparatus was conceived specifically for monitoring a flow of oil-well-drilling mud, but the basic principles of its design and operation are also applicable to monitoring flows of other liquids and slurries.

  5. Lessons from the Heart: Individualizing Physical Education with Heart Rate Monitors.

    ERIC Educational Resources Information Center

    Kirkpatrick, Beth; Birnbaum, Burton H.

    Learning about the relationship between heart rate and physical activity is an important aspect of fitness education. Use of a heart rate monitor (HRM) helps a student to understand how stretching and large muscle movements gradually increase the heart rate and blood flow, and enables students to measure their exercise heart rates and set goals…

  6. Nonintrusive performance measurement of a gas turbine engine in real time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSilva, Upul P.; Claussen, Heiko

    Performance of a gas turbine engine is monitored by computing a mass flow rate through the engine. Acoustic time-of-flight measurements are taken between acoustic transmitters and receivers in the flow path of the engine. The measurements are processed to determine average speeds of sound and gas flow velocities along those lines-of-sound. A volumetric flow rate in the flow path is computed using the gas flow velocities together with a representation of the flow path geometry. A gas density in the flow path is computed using the speeds of sound and a measured static pressure. The mass flow rate is calculatedmore » from the gas density and the volumetric flow rate.« less

  7. Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    2002-01-01

    Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.

  8. 40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...

  9. 40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...

  10. 40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...

  11. 40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...

  12. 40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...

  13. 40 CFR 75.57 - General recordkeeping provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., which may use up to 20 load ranges for stack or fuel flow, as specified in the monitoring plan; (5... SO2 concentration using Codes 1-55 in Table 4a of this section. (2) For flow rate during unit....53; (ii) Date and hour; (iii) Hourly average volumetric flow rate (in scfh, rounded to the nearest...

  14. Gas flow meter and method for measuring gas flow rate

    DOEpatents

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  15. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    NASA Astrophysics Data System (ADS)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-01

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m3/hr.

  16. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-01

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 5 psi, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.5 GPM.

  17. Nonintrusive Flow Rate Determination Through Space Shuttle Water Coolant Loop Floodlight Coldplate

    NASA Technical Reports Server (NTRS)

    Werlink, Rudolph; Johnson, Harry; Margasahayam, Ravi

    1997-01-01

    Using a Nonintrusive Flow Measurement System (NFMS), the flow rates through the Space Shuttle water coolant coldplate were determined. The objective of this in situ flow measurement was to prove or disprove a potential block inside the affected coldplate had contributed to a reduced flow rate and the subsequent ice formation on the Space Shuttle Discovery. Flow through the coldplate was originally calculated to be 35 to 38 pounds per hour. This application of ultrasonic technology advanced the envelope of flow measurements through use of 1/4-inch-diameter tubing, which resulted in extremely low flow velocities (5 to 30 pounds per hour). In situ measurements on the orbiters Discovery and Atlantis indicated both vehicles, on the average, experienced similar flow rates through the coldplate (around 25 pounds per hour), but lower rates than the designed flow. Based on the noninvasive checks, further invasive troubleshooting was eliminated. Permanent monitoring using the NFMS was recommended.

  18. Tracer-monitored flow titrations.

    PubMed

    Sasaki, Milton K; Rocha, Diogo L; Rocha, Fábio R P; Zagatto, Elias A G

    2016-01-01

    The feasibility of implementing tracer-monitored titrations in a flow system is demonstrated. A dye tracer is used to estimate the instant sample and titrant volumetric fractions without the need for volume, mass or peak width measurements. The approach was applied to spectrophotometric flow titrations involving variations of sample and titrant flow-rates (i.e. triangle programmed technique) or concentration gradients established along the sample zone (i.e. flow injection system). Both strategies required simultaneous monitoring of two absorbing species, namely the titration indicator and the dye tracer. Mixing conditions were improved by placing a chamber with mechanical stirring in the analytical path aiming at to minimize diffusional effects. Unlike most of flow-based titrations, the innovation is considered as a true titration, as it does not require a calibration curve thus complying with IUPAC definition. As an application, acidity evaluation in vinegars involving titration with sodium hydroxide was selected. Phenolphthalein and brilliant blue FCF were used as indicator and dye tracer, respectively. Effects of sample volume, titrand/titrant concentrations and flow rates were investigated aiming at improved accuracy and precision. Results were reliable and in agreement with those obtained by a reference titration procedure. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Endovascular blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  20. Measuring Flow Rate in Crystalline Bedrock Wells Using the Dissolved Oxygen Alteration Method.

    PubMed

    Vitale, Sarah A; Robbins, Gary A

    2017-07-01

    Determination of vertical flow rates in a fractured bedrock well can aid in planning and implementing hydraulic tests, water quality sampling, and improving interpretations of water quality data. Although flowmeters are highly accurate in flow rate measurement, the high cost and logistics may be limiting. In this study the dissolved oxygen alteration method (DOAM) is expanded upon as a low-cost alternative to determine vertical flow rates in crystalline bedrock wells. The method entails altering the dissolved oxygen content in the wellbore through bubbler aeration, and monitoring the vertical advective movement of the dissolved oxygen over time. Measurements were taken for upward and downward flows, and under ambient and pumping conditions. Vertical flow rates from 0.06 to 2.30 Lpm were measured. To validate the method, flow rates determined with the DOAM were compared to pump discharge rates and found to be in agreement within 2.5%. © 2017, National Ground Water Association.

  1. A Capillary Flow Dynamics-Based Sensing Modality for Direct Environmental Pathogen Monitoring.

    PubMed

    Klug, Katherine E; Reynolds, Kelly A; Yoon, Jeong-Yeol

    2018-04-20

    Toward ultra-simple and field-ready biosensors, we demonstrate a novel assay transducer mechanism based on interfacial property changes and capillary flow dynamics in antibody-conjugated submicron particle suspensions. Differential capillary flow is tunable, allowing pathogen quantification as a function of flow rate through a paper-based microfluidic device. Flow models based on interfacial and rheological properties indicate a significant relationship between the flow rate and the interfacial effects caused by target-particle aggregation. This mechanism is demonstrated for assays of Escherichia coli K12 in water samples and Zika virus (ZIKV) in blood serum. These assays achieved very low limits of detection compared with other demonstrated methods (1 log CFU/mL E. coli and 20 pg/mL ZIKV whole virus) with an operating time of 30 s, showing promise for environmental and health monitoring. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Respiratory analysis system and method

    NASA Technical Reports Server (NTRS)

    Liu, F. F. (Inventor)

    1973-01-01

    A system is described for monitoring the respiratory process in which the gas flow rate and the frequency of respiration and expiration cycles can be determined on a real time basis. A face mask is provided with one-way inlet and outlet valves where the gas flow is through independent flowmeters and through a mass spectrometer. The opening and closing of a valve operates an electrical switch, and the combination of the two switches produces a low frequency electrical signal of the respiratory inhalation and exhalation cycles. During the time a switch is operated, the corresponsing flowmeter produces electric pulses representative of the flow rate; the electrical pulses being at a higher frequency than that of the breathing cycle and combined with the low frequency signal. The high frequency pulses are supplied to conventional analyzer computer which also receives temperature and pressure inputs and computes mass flow rate and totalized mass flow of gas. From the mass spectrometer, components of the gas are separately computed as to flow rate. The electrical switches cause operation of up-down inputs of a reversible counter. The respective up and down cycles can be individually monitored and combined for various respiratory measurements.

  3. Application of thoron interference as a tool for simultaneous measurement of radon and thoron with a pulse ionisation chamber.

    PubMed

    Tripathi, R M; Sumesh, C G; Vinod Kumar, A; Puranik, V D

    2013-07-01

    Pulse ionisation chamber (PIC)-based monitors measuring radioactive gas radon ((222)Rn) without energy discrimination will have interference due to thoron ((220)Rn) present in the atmosphere. A technique has been developed to use this property of interference for simultaneous measurement of radon and thoron gas. These monitors work on the principle of counting of gross alphas emitted from radon and its progeny. A theoretical model has been developed for the variation of thoron sensitivity with respect to the flow rate of gas through the monitor. The thoron sensitivity of the monitor is found to vary with the flow rate of gas through the monitor. Using this sensitivity, the sampling procedure has been developed and verified for simultaneous measurement of radon and thoron. The PIC-measured radon and thoron concentration using this procedure agrees well with those measured by using standard radon and thoron discriminating monitor.

  4. Effect of flow rate on environmental variables and phytoplankton dynamics: results from field enclosures

    NASA Astrophysics Data System (ADS)

    Zhang, Haiping; Chen, Ruihong; Li, Feipeng; Chen, Ling

    2015-03-01

    To investigate the effects of flow rate on phytoplankton dynamics and related environment variables, a set of enclosure experiments with different flow rates were conducted in an artificial lake. We monitored nutrients, temperature, dissolved oxygen, pH, conductivity, turbidity, chlorophyll- a and phytoplankton levels. The lower biomass in all flowing enclosures showed that flow rate significantly inhibited the growth of phytoplankton. A critical flow rate occurred near 0.06 m/s, which was the lowest relative inhibitory rate. Changes in flow conditions affected algal competition for light, resulting in a dramatic shift in phytoplankton composition, from blue-green algae in still waters to green algae in flowing conditions. These findings indicate that critical flow rate can be useful in developing methods to reduce algal bloom occurrence. However, flow rate significantly enhanced the inter-relationships among environmental variables, in particular by inducing higher water turbidity and vegetative reproduction of periphyton ( Spirogyra). These changes were accompanied by a decrease in underwater light intensity, which consequently inhibited the photosynthetic intensity of phytoplankton. These results warn that a universal critical flow rate might not exist, because the effect of flow rate on phytoplankton is interlinked with many other environmental variables.

  5. Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.

    2010-12-01

    Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.

  6. Extensive investigation of the sap flow of maize plants in an oasis farmland in the middle reach of the Heihe River, Northwest China.

    PubMed

    Zhao, Liwen; He, Zhibin; Zhao, Wenzhi; Yang, Qiyue

    2016-09-01

    A better understanding of the sap flow characteristics of maize plants is critical for improving irrigation water-use efficiency, especially for regions facing water resource shortages. In this study, sap flow rates, related soil-physics and plant-growth parameters, and meteorological factors, were simultaneously monitored in a maize field in two consecutive years, 2011 and 2012, and the sap flow rates of the maize plants were extensively analyzed based on the monitored data. Seasonal and daily variational characteristics were identified at different growth stages and under different weather conditions, respectively. The analyses on the relationships between sap flow rate and reference evapotranspiration (ET0), as well as several plant-growth parameters, indicate that the irrigation schedule can exert an influence on sap flow, and can consequently affect crop yield. The ranking of the main meteorological factors affecting the sap flow rate was: net radiation > air temperature > vapor pressure deficit > wind speed. For a quick estimation of sap flow rates, an empirical formula based on the two top influencing factors was put forward and verified to be reliable. The sap flow rate appeared to show little response to irrigation when the water content was relatively high, implying that some of the irrigation in recent years may have been wasted. These results may help to reveal the bio-physical processes of maize plants related to plant transpiration, which could be beneficial for establishing an efficient irrigation management system in this region and also for providing a reference for other maize-planting regions.

  7. Satellite-driven modeling approach for monitoring lava flow hazards during the 2017 Etna eruption

    NASA Astrophysics Data System (ADS)

    Del Negro, C.; Bilotta, G.; Cappello, A.; Ganci, G.; Herault, A.; Zago, V.

    2017-12-01

    The integration of satellite data and modeling represents an efficient strategy that may provide immediate answers to the main issues raised at the onset of a new effusive eruption. Satellite-based thermal remote sensing of hotspots related to effusive activity can effectively provide a variety of products suited to timing, locating, and tracking the radiant character of lava flows. Hotspots show the location and occurrence of eruptive events (vents). Discharge rate estimates may indicate the current intensity (effusion rate) and potential magnitude (volume). High-spatial resolution multispectral satellite data can complement field observations for monitoring the front position (length) and extension of flows (area). Physics-based models driven, or validated, by satellite-derived parameters are now capable of fast and accurate forecast of lava flow inundation scenarios (hazard). Here, we demonstrate the potential of the integrated application of satellite remote-sensing techniques and lava flow models during the 2017 effusive eruption at Mount Etna in Italy. This combined approach provided insights into lava flow field evolution by supplying detailed views of flow field construction (e.g., the opening of ephemeral vents) that were useful for more accurate and reliable forecasts of eruptive activity. Moreover, we gave a detailed chronology of the lava flow activity based on field observations and satellite images, assessed the potential extent of impacted areas, mapped the evolution of lava flow field, and executed hazard projections. The underside of this combination is the high sensitivity of lava flow inundation scenarios to uncertainties in vent location, discharge rate, and other parameters, which can make interpreting hazard forecasts difficult during an effusive crisis. However, such integration at last makes timely forecasts of lava flow hazards during effusive crises possible at the great majority of volcanoes for which no monitoring exists.

  8. Solids mass flow determination

    DOEpatents

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  9. 40 CFR 61.93 - Emission monitoring and test procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or frequent flow rate measurements shall be made. For relatively constant flow rates only periodic... applicable to batch processes when the unit is in operation. Periodic sampling (grab samples) may be used... have a potential to release radionuclides into the air, periodic confirmatory measurements shall be...

  10. 40 CFR 61.93 - Emission monitoring and test procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or frequent flow rate measurements shall be made. For relatively constant flow rates only periodic... applicable to batch processes when the unit is in operation. Periodic sampling (grab samples) may be used... have a potential to release radionuclides into the air, periodic confirmatory measurements shall be...

  11. 40 CFR 61.93 - Emission monitoring and test procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or frequent flow rate measurements shall be made. For relatively constant flow rates only periodic... applicable to batch processes when the unit is in operation. Periodic sampling (grab samples) may be used... have a potential to release radionuclides into the air, periodic confirmatory measurements shall be...

  12. 40 CFR 61.93 - Emission monitoring and test procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or frequent flow rate measurements shall be made. For relatively constant flow rates only periodic... applicable to batch processes when the unit is in operation. Periodic sampling (grab samples) may be used... have a potential to release radionuclides into the air, periodic confirmatory measurements shall be...

  13. 40 CFR 61.93 - Emission monitoring and test procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or frequent flow rate measurements shall be made. For relatively constant flow rates only periodic... applicable to batch processes when the unit is in operation. Periodic sampling (grab samples) may be used... have a potential to release radionuclides into the air, periodic confirmatory measurements shall be...

  14. 40 CFR 146.23 - Operating, monitoring, and reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pressure, flow rate, and cumulative volume at least with the following frequencies: (i) Weekly for produced..., flow rate and cumulative volume at reasonable intervals no greater than 30 days. (3) A demonstration of..., and any major changes in characteristics or sources of injected fluid. Previously submitted...

  15. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1991-01-01

    The present invention relates to a system for monitoring and controlling the rate of fluid flow from an injection well used for in-situ remediation of contaminated groundwater. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  16. Monitoring blood flow and photobleaching during topical ALA PDT treatment

    NASA Astrophysics Data System (ADS)

    Sands, Theresa L.; Sunar, Ulas; Foster, Thomas H.; Oseroff, Allan R.

    2009-02-01

    Photodynamic therapy (PDT) using topical aminolevulinic acid (ALA) is currently used as a clinical treatment for nonmelanoma skin cancers. In order to optimize PDT treatment, vascular shutdown early in treatment must be identified and prevented. This is especially important for topical ALA PDT where vascular shutdown is only temporary and is not a primary method of cell death. Shutdown in vasculature would limit the delivery of oxygen which is necessary for effective PDT treatment. Diffuse correlation spectroscopy (DCS) was used to monitor relative blood flow changes in Balb/C mice undergoing PDT at fluence rates of 10mW/cm2 and 75mW/cm2 for colon-26 tumors implanted intradermally. DCS is a preferable method to monitor the blood flow during PDT of lesions due to its ability to be used noninvasively throughout treatment, returning data from differing depths of tissue. Photobleaching of the photosensitizer was also monitored during treatment as an indirect manner of monitoring singlet oxygen production. In this paper, we show the conditions that cause vascular shutdown in our tumor model and its effects on the photobleaching rate.

  17. Water Pipeline Monitoring and Leak Detection using Flow Liquid Meter Sensor

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Satria, I. S.; Siregar, B.; Budiarto, R.

    2017-04-01

    Water distribution is generally installed through underground pipes. Monitoring the underground water pipelines is more difficult than monitoring the water pipelines located on the ground in open space. This situation will cause a permanent loss if there is a disturbance in the pipeline such as leakage. Leaks in pipes can be caused by several factors, such as the pipe’s age, improper installation, and natural disasters. Therefore, a solution is required to detect and to determine the location of the damage when there is a leak. The detection of the leak location will use fluid mechanics and kinematics physics based on harness water flow rate data obtained using flow liquid meter sensor and Arduino UNO as a microcontroller. The results show that the proposed method is able to work stably to determine the location of the leak which has a maximum distance of 2 metres, and it’s able to determine the leak location as close as possible with flow rate about 10 litters per minute.

  18. River Bank Erosion and the Influence of Environmental Flow Management.

    PubMed

    Vietz, Geoff J; Lintern, Anna; Webb, J Angus; Straccione, David

    2018-03-01

    Environmental flows aim to influence river hydrology to provide appropriate physical conditions for ecological functioning within the restrictions of flow regulation. The hydrologic characteristics of flow events, however, may also lead to unintended morphologic effects in rivers, such as increases in riverbank erosion beyond natural rates. This may negatively impact habitat for biota, riparian infrastructure, and land use. Strategic environmental flow delivery linked to monitoring and adaptive management can help mitigate risks. We monitor riverbank condition (erosion and deposition) relative to environmental flows on the Goulburn River, Victoria, Australia. We describe the process of adaptive management aimed at reducing potential impacts of flow management on bank condition. Field measurements (erosion pins) quantify the hydrogeomorphic response of banks to the delivery of planned and natural flow events. Managed flows provide opportunities for monitoring riverbank response to flows, which in turn informs planning. The results demonstrate that environmental flows have little influence on bank erosion and visual perceptions in the absence of monitoring are an unreliable guide. This monitoring project represents a mutually beneficial, science-practice partnership demonstrating that a traditional 'know then do' approach can be foreshortened by close collaboration between researchers and managers. To do so requires transparent, often informal lines of communication. The benefits for researchers-a more strategic and targeted approach to monitoring activities; and benefits for the practitioners-reduced time between actions and understanding response; mean that a learn by doing approach is likely to have better outcomes for researchers, stakeholders, the public, and the environment.

  19. River Bank Erosion and the Influence of Environmental Flow Management

    NASA Astrophysics Data System (ADS)

    Vietz, Geoff J.; Lintern, Anna; Webb, J. Angus; Straccione, David

    2018-03-01

    Environmental flows aim to influence river hydrology to provide appropriate physical conditions for ecological functioning within the restrictions of flow regulation. The hydrologic characteristics of flow events, however, may also lead to unintended morphologic effects in rivers, such as increases in riverbank erosion beyond natural rates. This may negatively impact habitat for biota, riparian infrastructure, and land use. Strategic environmental flow delivery linked to monitoring and adaptive management can help mitigate risks. We monitor riverbank condition (erosion and deposition) relative to environmental flows on the Goulburn River, Victoria, Australia. We describe the process of adaptive management aimed at reducing potential impacts of flow management on bank condition. Field measurements (erosion pins) quantify the hydrogeomorphic response of banks to the delivery of planned and natural flow events. Managed flows provide opportunities for monitoring riverbank response to flows, which in turn informs planning. The results demonstrate that environmental flows have little influence on bank erosion and visual perceptions in the absence of monitoring are an unreliable guide. This monitoring project represents a mutually beneficial, science-practice partnership demonstrating that a traditional `know then do' approach can be foreshortened by close collaboration between researchers and managers. To do so requires transparent, often informal lines of communication. The benefits for researchers-a more strategic and targeted approach to monitoring activities; and benefits for the practitioners-reduced time between actions and understanding response; mean that a learn by doing approach is likely to have better outcomes for researchers, stakeholders, the public, and the environment.

  20. IMPROVED BIOSAND FILTERS BY ENHANCED MONITORING AND DATA COLLECTION METHODS

    EPA Science Inventory

    The result of this project will be the development of a sensor that will automatically and accurately record BSF use, flow rate, and volume of water poured in. The quantitative volume and flow rate data output will be used to compare actual BSF frequency and usage patterns ...

  1. Scram signal generator

    DOEpatents

    Johanson, Edward W.; Simms, Richard

    1981-01-01

    A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

  2. Scram signal generator

    DOEpatents

    Johanson, E.W.; Simms, R.

    A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

  3. A High Pressure Flowing Oil Switch For Gigawatt, Repetitive Applications

    DTIC Science & Technology

    2005-06-01

    for testing the high pressure switch concept under repetitive pulse conditions is a 4.8 Ω, 70 ns water pulse forming line (PFL). The water PFL is...Cox Instruments. A pair of Hedland variable area flow sensors monitored relative flow rates in the two oil lines that fed the high pressure switch . High... pressure switch was tested under both single shot and repetitive conditions over a range of pressures, flow rates and temperatures. The primary

  4. Remotely Characterizing the Topographic and Thermal Evolution of Kīlauea's Lava Flow Field

    NASA Astrophysics Data System (ADS)

    Rumpf, M. E.; Vaughan, R. G.; Poland, M. P.

    2017-12-01

    New technologies in satellite data acquisition and the continuous development of analysis software capabilities are greatly improving the ability of scientists to monitor volcanoes in near-real-time. Satellite-based thermal infrared (TIR) data are used to monitor and analyze new and ongoing volcanic activity by identifying and quantifying surface thermal characteristics and lava flow discharge rates. Improved detector sensitivities provide unprecedented spatial detail in visible to shortwave infrared (VSWIR) satellite imagery. The acquisition of stereo and tri-stereo visible imagery, as well as SAR, by an increasing number of satellite systems enables the creation of digital elevation models (DEMs) at higher temporal frequencies and resolutions than in the past. Free, user-friendly software programs, such as NASA's Ames Stereo Pipeline and Google Earth Engine, ease the accessibility and usability of satellite data to users unfamiliar with traditional analysis techniques. An effective and efficient integration of these technologies can be utilized towards volcano monitoring.Here, we use the active lava flows from the East Rift Zone vents of Kīlauea Volcano, Hawai`i as a testing ground for developing new techniques in multi-sensor volcano remote sensing. We use DEMs generated from stereo and tri-stereo images captured by the WorldView3 and Pleiades satellite systems to assess topographic changes over time at the active flow fields. Time-series data of lava flow area, thickness, and discharge rate developed from thermal emission measurements collected by ASTER, Landsat 8, and WorldView3 are compared to satellite-detected topographic changes and to ground observations of flow development to identify behavioral patterns and to monitor flow field evolution. We explore methods of combining these visual and TIR data sets collected by multiple satellite systems with a variety of resolutions and repeat times. Our ultimate goal is to develop integrative tools for near-real-time volcano monitoring. In addition, we recommend improvements to future satellite mission capabilities (e.g., repeat times, resolutions) to improve lava flow monitoring techniques.

  5. Determination of deployment specific chemical uptake rates for SDB-RPD Empore disk using a passive flow monitor (PFM).

    PubMed

    O'Brien, Dominique; Bartkow, Michael; Mueller, Jochen F

    2011-05-01

    The use of the adsorbent styrenedivinylbenzene-reverse phase sulfonated (SDB-RPD) Empore disk in a chemcatcher type passive sampler is routinely applied in Australia when monitoring herbicides in aquatic environments. One key challenge in the use of passive samplers is mitigating the potentially confounding effects of varying flow conditions on chemical uptake by the passive sampler. Performance reference compounds (PRCs) may be applied to correct sampling rates (R(s)) for site specific changed in flow and temperature however evidence suggests the use of PRCs is unreliable when applied to adsorbent passive samplers. The use of the passive flow monitor (PFM) has been introduced for the assessment of site-specific changes in water flow. In the presented study we have demonstrated that the R(s) at which both atrazine and prometryn are accumulated within the SDB-RPD-Empore disk is dependent on the flow conditions. Further, the calibration of the measured R(s) for chemical uptake by the SDB-RPD-Empore disk to the mass lost from the PFM has shown that the PFM provides an accurate measure of R(s) for flow velocities from 0 to 16cms(-1). Notably, for flow rates >16cms(-1), a non linear increase in the R(s) of both herbicides was observed which indicates that the key resistance to uptake into the SDB-RPD Empore disk is associated with the diffusion through the overlying diffusion limiting membrane. Overall the greatest uncertainty remains at very low flow conditions, which are unlikely to often occur in surface waters. Validation of the PFM use has also been undertaken in a limited field study. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. 40 CFR 75.33 - Standard missing data procedures for SO2, NOX, Hg, and flow rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Standard missing data procedures for... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data procedures for SO2, NOX, Hg, and flow rate. (a) Following initial...

  7. 40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Standard missing data procedures for... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data procedures for SO2, NOX, and flow rate. (a) Following initial certification...

  8. 40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Standard missing data procedures for... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data procedures for SO2, NOX, and flow rate. (a) Following initial certification...

  9. 40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Standard missing data procedures for... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data procedures for SO2, NOX, and flow rate. (a) Following initial certification...

  10. 40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Standard missing data procedures for... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data procedures for SO2, NOX, and flow rate. (a) Following initial certification...

  11. Monitoring Enzymatic Reactions in Real Time Using Venturi Easy Ambient Sonic-Spray Ionization Mass Spectrometry

    PubMed Central

    2016-01-01

    We developed a technique to monitor spatially confined surface reactions with mass spectrometry under ambient conditions, without the need for voltage or organic solvents. Fused-silica capillaries immersed in an aqueous solution, positioned in close proximity to each other and the functionalized surface, created a laminar flow junction with a resulting reaction volume of ∼5 pL. The setup was operated with a syringe pump, delivering reagents to the surface through a fused-silica capillary. The other fused-silica capillary was connected to a Venturi easy ambient sonic-spray ionization source, sampling the resulting analytes at a slightly higher flow rate compared to the feeding capillary. The combined effects of the inflow and outflow maintains a chemical microenvironment, where the rate of advective transport overcomes diffusion. We show proof-of-concept where acetylcholinesterase was immobilized on an organosiloxane polymer through electrostatic interactions. The hydrolysis of acetylcholine by acetylcholinesterase into choline was monitored in real-time for a range of acetylcholine concentrations, fused-silica capillary geometries, and operating flow rates. Higher reaction rates and conversion yields were observed with increasing acetylcholine concentrations, as would be expected. PMID:27249533

  12. Fast blood flow monitoring in deep tissues with real-time software correlators

    PubMed Central

    Wang, Detian; Parthasarathy, Ashwin B.; Baker, Wesley B.; Gannon, Kimberly; Kavuri, Venki; Ko, Tiffany; Schenkel, Steven; Li, Zhe; Li, Zeren; Mullen, Michael T.; Detre, John A.; Yodh, Arjun G.

    2016-01-01

    We introduce, validate and demonstrate a new software correlator for high-speed measurement of blood flow in deep tissues based on diffuse correlation spectroscopy (DCS). The software correlator scheme employs standard PC-based data acquisition boards to measure temporal intensity autocorrelation functions continuously at 50 – 100 Hz, the fastest blood flow measurements reported with DCS to date. The data streams, obtained in vivo for typical source-detector separations of 2.5 cm, easily resolve pulsatile heart-beat fluctuations in blood flow which were previously considered to be noise. We employ the device to separate tissue blood flow from tissue absorption/scattering dynamics and thereby show that the origin of the pulsatile DCS signal is primarily flow, and we monitor cerebral autoregulation dynamics in healthy volunteers more accurately than with traditional instrumentation as a result of increased data acquisition rates. Finally, we characterize measurement signal-to-noise ratio and identify count rate and averaging parameters needed for optimal performance. PMID:27231588

  13. 40 CFR 60.5225 - What are the monitoring and calibration requirements for compliance with my operating limits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SOURCES Emission Guidelines and Compliance Times for Existing Sewage Sludge Incineration Units Model Rule... monitoring system according to your monitoring plan required under § 60.4880. Additionally: (i) For carrier gas flow rate monitors (for activated carbon injection), during the performance test conducted...

  14. 40 CFR 75.74 - Annual and ozone season monitoring and reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... owner or operator of an affected unit subject both to an Acid Rain emission limitation and to a State or... State or federal NOX mass reduction program that adopts the provisions of this part and that requires...-diluent monitoring system, each flow rate monitoring system, each moisture monitoring system and each...

  15. Analysis of vertical flow during ambient and pumped conditions in four monitoring wells at the Pantex Plant, Carson County, Texas, July-September 2008

    USGS Publications Warehouse

    Stanton, Gregory P.; Thomas, Jonathan V.; Stoval, Jeffery

    2009-01-01

    Logs collected in monitoring well PTX06–1068 during ambient conditions indicate a static environment with no flow. During pumping there was upward vertical flow at rates ranging from 0.4 to 4.8 gallons per minute. During pumping, a gradual trend of more positive flowmeter values (upward flow) with distance up the well was observed. Estimated total transmissivity for four production zones identified from Flow–B numerical model results taken together was calculated to be about 200 feet squared per day.

  16. Estimation of inhalation flow profile using audio-based methods to assess inhaler medication adherence.

    PubMed

    Taylor, Terence E; Lacalle Muls, Helena; Costello, Richard W; Reilly, Richard B

    2018-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) patients are required to inhale forcefully and deeply to receive medication when using a dry powder inhaler (DPI). There is a clinical need to objectively monitor the inhalation flow profile of DPIs in order to remotely monitor patient inhalation technique. Audio-based methods have been previously employed to accurately estimate flow parameters such as the peak inspiratory flow rate of inhalations, however, these methods required multiple calibration inhalation audio recordings. In this study, an audio-based method is presented that accurately estimates inhalation flow profile using only one calibration inhalation audio recording. Twenty healthy participants were asked to perform 15 inhalations through a placebo Ellipta™ DPI at a range of inspiratory flow rates. Inhalation flow signals were recorded using a pneumotachograph spirometer while inhalation audio signals were recorded simultaneously using the Inhaler Compliance Assessment device attached to the inhaler. The acoustic (amplitude) envelope was estimated from each inhalation audio signal. Using only one recording, linear and power law regression models were employed to determine which model best described the relationship between the inhalation acoustic envelope and flow signal. Each model was then employed to estimate the flow signals of the remaining 14 inhalation audio recordings. This process repeated until each of the 15 recordings were employed to calibrate single models while testing on the remaining 14 recordings. It was observed that power law models generated the highest average flow estimation accuracy across all participants (90.89±0.9% for power law models and 76.63±2.38% for linear models). The method also generated sufficient accuracy in estimating inhalation parameters such as peak inspiratory flow rate and inspiratory capacity within the presence of noise. Estimating inhaler inhalation flow profiles using audio based methods may be clinically beneficial for inhaler technique training and the remote monitoring of patient adherence.

  17. Estimation of inhalation flow profile using audio-based methods to assess inhaler medication adherence

    PubMed Central

    Lacalle Muls, Helena; Costello, Richard W.; Reilly, Richard B.

    2018-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) patients are required to inhale forcefully and deeply to receive medication when using a dry powder inhaler (DPI). There is a clinical need to objectively monitor the inhalation flow profile of DPIs in order to remotely monitor patient inhalation technique. Audio-based methods have been previously employed to accurately estimate flow parameters such as the peak inspiratory flow rate of inhalations, however, these methods required multiple calibration inhalation audio recordings. In this study, an audio-based method is presented that accurately estimates inhalation flow profile using only one calibration inhalation audio recording. Twenty healthy participants were asked to perform 15 inhalations through a placebo Ellipta™ DPI at a range of inspiratory flow rates. Inhalation flow signals were recorded using a pneumotachograph spirometer while inhalation audio signals were recorded simultaneously using the Inhaler Compliance Assessment device attached to the inhaler. The acoustic (amplitude) envelope was estimated from each inhalation audio signal. Using only one recording, linear and power law regression models were employed to determine which model best described the relationship between the inhalation acoustic envelope and flow signal. Each model was then employed to estimate the flow signals of the remaining 14 inhalation audio recordings. This process repeated until each of the 15 recordings were employed to calibrate single models while testing on the remaining 14 recordings. It was observed that power law models generated the highest average flow estimation accuracy across all participants (90.89±0.9% for power law models and 76.63±2.38% for linear models). The method also generated sufficient accuracy in estimating inhalation parameters such as peak inspiratory flow rate and inspiratory capacity within the presence of noise. Estimating inhaler inhalation flow profiles using audio based methods may be clinically beneficial for inhaler technique training and the remote monitoring of patient adherence. PMID:29346430

  18. Automated measurement and monitoring of bioprocesses: key elements of the M(3)C strategy.

    PubMed

    Sonnleitner, Bernhard

    2013-01-01

    The state-of-routine monitoring items established in the bioprocess industry as well as some important state-of-the-art methods are briefly described and the potential pitfalls discussed. Among those are physical and chemical variables such as temperature, pressure, weight, volume, mass and volumetric flow rates, pH, redox potential, gas partial pressures in the liquid and molar fractions in the gas phase, infrared spectral analysis of the liquid phase, and calorimetry over an entire reactor. Classical as well as new optical versions are addressed. Biomass and bio-activity monitoring (as opposed to "measurement") via turbidity, permittivity, in situ microscopy, and fluorescence are critically analyzed. Some new(er) instrumental analytical tools, interfaced to bioprocesses, are explained. Among those are chromatographic methods, mass spectrometry, flow and sequential injection analyses, field flow fractionation, capillary electrophoresis, and flow cytometry. This chapter surveys the principles of monitoring rather than compiling instruments.

  19. 40 CFR 60.734 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fuller's earth rotary dryer, a gypsum rotary dryer, a gypsum flash calciner, gypsum kettle calciner, an... water column gauge pressure at the level of operation. The liquid flow rate monitoring device must be...

  20. 40 CFR 60.734 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fuller's earth rotary dryer, a gypsum rotary dryer, a gypsum flash calciner, gypsum kettle calciner, an... water column gauge pressure at the level of operation. The liquid flow rate monitoring device must be...

  1. 40 CFR 60.734 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fuller's earth rotary dryer, a gypsum rotary dryer, a gypsum flash calciner, gypsum kettle calciner, an... water column gauge pressure at the level of operation. The liquid flow rate monitoring device must be...

  2. 40 CFR 60.734 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fuller's earth rotary dryer, a gypsum rotary dryer, a gypsum flash calciner, gypsum kettle calciner, an... water column gauge pressure at the level of operation. The liquid flow rate monitoring device must be...

  3. Fine PM measurements: personal and indoor air monitoring.

    PubMed

    Jantunen, M; Hänninen, O; Koistinen, K; Hashim, J H

    2002-12-01

    This review compiles personal and indoor microenvironment particulate matter (PM) monitoring needs from recently set research objectives, most importantly the NRC published "Research Priorities for Airborne Particulate Matter (1998)". Techniques and equipment used to monitor PM personal exposures and microenvironment concentrations and the constituents of the sampled PM during the last 20 years are then reviewed. Development objectives are set and discussed for personal and microenvironment PM samplers and monitors, for filter materials, and analytical laboratory techniques for equipment calibration, filter weighing and laboratory climate control. The progress is leading towards smaller sample flows, lighter, silent, independent (battery powered) monitors with data logging capacity to store microenvironment or activity relevant sensor data, advanced flow controls and continuous recording of the concentration. The best filters are non-hygroscopic, chemically pure and inert, and physically robust against mechanical wear. Semiautomatic and primary standard equivalent positive displacement flow meters are replacing the less accurate methods in flow calibration, and also personal sampling flow rates should become mass flow controlled (with or without volumetric compensation for pressure and temperature changes). In the weighing laboratory the alternatives are climatic control (set temperature and relative humidity), and mechanically simpler thermostatic heating, air conditioning and dehumidification systems combined with numerical control of temperature, humidity and pressure effects on flow calibration and filter weighing.

  4. 40 CFR 60.646 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... concentration in the acid gas from the sweetening unit for each 24-hour period: At least one sample per 24-hour... require a more frequent sampling schedule. (3) The average acid gas flow rate from the sweetening unit... rate of acid gas. The monitoring device reading shall be recorded at least once per hour during each 24...

  5. 40 CFR 60.646 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... concentration in the acid gas from the sweetening unit for each 24-hour period: At least one sample per 24-hour... require a more frequent sampling schedule. (3) The average acid gas flow rate from the sweetening unit... rate of acid gas. The monitoring device reading shall be recorded at least once per hour during each 24...

  6. 40 CFR 60.646 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... concentration in the acid gas from the sweetening unit for each 24-hour period: At least one sample per 24-hour... require a more frequent sampling schedule. (3) The average acid gas flow rate from the sweetening unit... rate of acid gas. The monitoring device reading shall be recorded at least once per hour during each 24...

  7. 40 CFR 60.646 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... concentration in the acid gas from the sweetening unit for each 24-hour period: At least one sample per 24-hour... require a more frequent sampling schedule. (3) The average acid gas flow rate from the sweetening unit... rate of acid gas. The monitoring device reading shall be recorded at least once per hour during each 24...

  8. 40 CFR 60.646 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... concentration in the acid gas from the sweetening unit for each 24-hour period: At least one sample per 24-hour... require a more frequent sampling schedule. (3) The average acid gas flow rate from the sweetening unit... rate of acid gas. The monitoring device reading shall be recorded at least once per hour during each 24...

  9. Outcomes and reliability of the flow coupler in postoperative monitoring of head and neck free flaps.

    PubMed

    Fujiwara, Rance J T; Dibble, Jacqueline M; Larson, Scott V; Pierce, Matthew L; Mehra, Saral

    2018-04-01

    To assess the accuracy and reliability of the flow coupler relative to the implantable arterial Doppler probe in postoperative monitoring of head and neck free flaps. Retrospective single-institution study, April 2015 to March 2017. Both the venous flow coupler and arterial Doppler were employed in 120 consecutive head and neck free flap cases. When Doppler signal loss occurred, flaps were evaluated by physical exam to determine whether signal loss was a true positive necessitating operating room takeback. Sensitivity, specificity, and false positive rate (FPR) were recorded for each device. Logistic regression was conducted to identify user trends over time. Eleven of 120 patients (9.2%) required takeback, 10 from venous thrombosis and one from arterial thrombosis. Permanent signal loss (PSL) occurred in the flow coupler in all takebacks; PSL occurred in the arterial Doppler only in the case of arterial thrombosis. Salvage rate was 9/11 (81.8%). For the flow coupler, sensitivity was 100%, specificity 86.4%, and FPR 13.6%. For the arterial probe, sensitivity was 9.1%, specificity 97.1%, and FPR 2.9%. A 4.1% decrease in false positives with each additional flow coupler use was observed. Monitoring the vein via flow coupler has high sensitivity in identifying vascular compromise compared to the arterial probe, especially for venous thrombosis. There is moderate FPR; this decreases with increased usage and, when supplemented with physical examination, does not result in unnecessary takebacks. The flow coupler can be a valuable tool in postoperative monitoring of head and neck free flaps. 4. Laryngoscope, 128:812-817, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  10. Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream

    USGS Publications Warehouse

    Dudek Ronan, Anne; Prudic, David E.; Thodal, Carl E.; Constantz, Jim

    1998-01-01

    Two experiments were performed to investigate flow beneath an ephemeral stream and to estimate streambed infiltration rates. Discharge and stream-area measurements were used to determine infiltration rates. Stream and subsurface temperatures were used to interpret subsurface flow through variably saturated sediments beneath the stream. Spatial variations in subsurface temperatures suggest that flow beneath the streambed is dependent on the orientation of the stream in the canyon and the layering of the sediments. Streamflow and infiltration rates vary diurnally: Streamflow is lowest in late afternoon when stream temperature is greatest and highest in early morning when stream temperature is least. The lower afternoon Streamflow is attributed to increased infiltration rates; evapotranspiration is insufficient to account for the decreased Streamflow. The increased infiltration rates are attributed to viscosity effects on hydraulic conductivity from increased stream temperatures. The first set of field data was used to calibrate a two-dimensional variably saturated flow model that includes heat transport. The model was calibrated to (1) temperature fluctuations in the subsurface and (2) infiltration rates determined from measured Streamflow losses. The second set of field data was to evaluate the ability to predict infiltration rates on the basis of temperature measurements alone. Results indicate that the variably saturated subsurface flow depends on downcanyon layering of the sediments. They also support the field observations in indicating that diurnal changes in infiltration can be explained by temperature dependence of hydraulic conductivity. Over the range of temperatures and flows monitored, diurnal stream temperature changes can be used to estimate streambed infiltration rates. It is often impractical to maintain equipment for determining infiltration rates by traditional means; however, once a model is calibrated using both infiltration and temperature data, only relatively inexpensive temperature monitoring can later yield infiltration rates that are within the correct order of magnitude.

  11. 40 CFR 63.9920 - What are my continuous monitoring requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Continuous Compliance Requirements § 63.9920 What are my continuous monitoring requirements? For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rates in § 63.9890(b...

  12. 40 CFR 63.9920 - What are my continuous monitoring requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Continuous Compliance Requirements § 63.9920 What are my continuous monitoring requirements? For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rates in § 63.9890(b...

  13. Doppler Endoscopic Probe Monitoring of Blood Flow Improves Risk Stratification and Outcomes of Patients With Severe Nonvariceal Upper Gastrointestinal Hemorrhage.

    PubMed

    Jensen, Dennis M; Kovacs, Thomas O G; Ohning, Gordon V; Ghassemi, Kevin; Machicado, Gustavo A; Dulai, Gareth S; Sedarat, Alireza; Jutabha, Rome; Gornbein, Jeffrey

    2017-05-01

    For 4 decades, stigmata of recent hemorrhage in patients with nonvariceal lesions have been used for risk stratification and endoscopic hemostasis. The arterial blood flow that underlies the stigmata rarely is monitored, but can be used to determine risk for rebleeding. We performed a randomized controlled trial to determine whether Doppler endoscopic probe monitoring of blood flow improves risk stratification and outcomes in patients with severe nonvariceal upper gastrointestinal hemorrhage. In a single-blind study performed at 2 referral centers we assigned 148 patients with severe nonvariceal upper gastrointestinal bleeding (125 with ulcers, 19 with Dieulafoy's lesions, and 4 with Mallory Weiss tears) to groups that underwent standard, visually guided endoscopic hemostasis (control, n = 76), or endoscopic hemostasis assisted by Doppler monitoring of blood flow under the stigmata (n = 72). The primary outcome was the rate of rebleeding after 30 days; secondary outcomes were complications, death, and need for transfusions, surgery, or angiography. There was a significant difference in the rates of lesion rebleeding within 30 days of endoscopic hemostasis in the control group (26.3%) vs the Doppler group (11.1%) (P = .0214). The odds ratio for rebleeding with Doppler monitoring was 0.35 (95% confidence interval, 0.143-0.8565) and the number needed to treat was 7. In a randomized controlled trial of patients with severe upper gastrointestinal hemorrhage from ulcers or other lesions, Doppler probe guided endoscopic hemostasis significantly reduced 30-day rates of rebleeding compared with standard, visually guided hemostasis. Guidelines for nonvariceal gastrointestinal bleeding should incorporate these results. ClinicalTrials.gov no: NCT00732212 (CLIN-013-07F). Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. 40 CFR 63.1086 - How must I monitor for leaks to cooling water?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... monitor for leaks to cooling water? You must monitor for leaks to cooling water by monitoring each heat... system so that the cooling water flow rate is 51,031 liters per minute or less so that a leak of 3.06 kg... detected a leak. (b) Individual heat exchangers. Monitor the cooling water at the entrance and exit of each...

  15. Star Formation Rates in Cooling Flow Clusters: A UV Pilot Study with Archival XMM-Newton Optical Monitor Data

    NASA Technical Reports Server (NTRS)

    Hicks, A. K.; Mushotzky, R.

    2006-01-01

    We have analyzed XMM-Newton Optical Monitor (OM) UV (180-400 nm) data for a sample of 33 galaxies. 30 are cluster member galaxies, and nine of these are central cluster galaxies (CCGs) in cooling flow clusters having mass deposition rates which span a range of 8 - 525 Solar Mass/yr. By comparing the ratio of UV to 2MASS J band fluxes, we find a significant UV excess in many, but not all, cooling flow CCGs, a finding consistent with the outcome of previous studies based on optical imaging data (McNamara & O'Connell 1989; Cardiel, Gorgas, & Aragon-Salamanca 1998; Crawford et al. 1999). This UV excess is a direct indication of the presence of young massive stars, and therefore recent star formation, in these galaxies. Using the Starburst99 spectral energy distribution (SED) model of continuous star formation over a 900 Myr period, we derive star formation rates of 0.2 - 219 solar Mass/yr for the cooling flow sample. For 2/3 of this sample it is possible to equate Chandra/XMM cooling flow mass deposition rates with UV inferred star formation rates, for a combination of starburst lifetime and IMF slope. This is a pilot study of the well populated XMM UV cluster archive and a more extensive follow up study is currently underway.

  16. Columbus Payloads Flow Rate Anomalies

    NASA Technical Reports Server (NTRS)

    Quaranta, Albino; Bufano, Gaetana; DePalo, Savino; Holt, James M.; Szigetvari, Zoltan; Palumberi, Sergio; Hinderer, S.

    2011-01-01

    The Columbus Active Thermal Control System (ATCS) is the main thermal bus for the pressurized racks working inside the European laboratory. One of the ATCS goals is to provide proper water flow rate to each payload (P/L) by controlling actively the pressure drop across the common plenum distribution piping. Overall flow measurement performed by the Water Pump Assembly (WPA) is the only flow rate monitor available at system level and is not part of the feedback control system. At rack activation the flow rate provided by the system is derived on ground by computing the WPA flow increase. With this approach, several anomalies were raised during these 3 years on-orbit, with the indication of low flow rate conditions on the European racks FSL, BioLab, EDR and EPM. This paper reviews the system and P/Ls calibration approach, the anomalies occurred, the engineering evaluation on the measurement approach and the accuracy improvements proposed, the on-orbit test under evaluation with NASA and finally discusses possible short and long term solutions in case of anomaly confirmation.

  17. A noninvasive optical system for the measurement of xylem and phloem sap flow in woody plants of small stem size.

    PubMed

    Helfter, Carole; Shephard, Jonathon D; Martinez-Vilalta, Jordi; Mencuccini, Maurizio; Hand, Duncan P

    2007-02-01

    Over the past 70 years, heat has been widely used as a tracer for estimating the flow of water in woody and herbaceous plants. However, most commercially available techniques for monitoring whole plant water use are invasive and the measurements are potentially flawed because of wounding of the xylem tissue. The study of photosynthate transport in the phloem remains in its infancy, and little information about phloem transport rates is available owing to the fragility of the vascular tissue. The aim of our study was to develop a compact, stand-alone non-invasive system allowing for direct detection of phloem and xylem sap movement. The proposed method uses a heat pulse as a tracer for sap flow. Heat is applied to the surface of the stem with a near-infrared laser source, and heat propagation is monitored externally by means of an infrared camera. Heat pulse velocities are determined from the thermometric data and related to the more useful quantity, mass flow rate. Simulation experiments on the xylem tissue of severed silver birch (Betula pendula Roth.) branch segments were performed to assess the feasibility of the proposed approach, highlight the characteristics of the technique and outline calibration strategies. Good agreement between imposed and measured flow rates was achieved leading to experimentation with live silver birch and oak (Quercus robur L.) saplings. It was demonstrated that water flow through xylem vessels can be monitored non-invasively on an intact stem with satisfactory accuracy despite simultaneous sugar transport in the phloem. In addition, it was demonstrated that the technique allows for unequivocal detection of phloem flow velocities.

  18. Monitoring pulmonary function with superimposed pulmonary gas exchange curves from standard analyzers.

    PubMed

    Zar, Harvey A; Noe, Frances E; Szalados, James E; Goodrich, Michael D; Busby, Michael G

    2002-01-01

    A repetitive graphic display of the single breath pulmonary function can indicate changes in cardiac and pulmonary physiology brought on by clinical events. Parallel advances in computer technology and monitoring make real-time, single breath pulmonary function clinically practicable. We describe a system built from a commercially available airway gas monitor and off the shelf computer and data-acquisition hardware. Analog data for gas flow rate, O2, and CO2 concentrations are introduced into a computer through an analog-to-digital conversion board. Oxygen uptake (VO2) and carbon dioxide output (VCO2) are calculated for each breath. Inspired minus expired concentrations for O2 and CO2 are displayed simultaneously with the expired gas flow rate curve for each breath. Dead-space and alveolar ventilation are calculated for each breath and readily appreciated from the display. Graphs illustrating the function of the system are presented for the following clinical scenarios; upper airway obstruction, bronchospasm, bronchopleural fistula, pulmonary perfusion changes and inadequate oxygen delivery. This paper describes a real-time, single breath pulmonary monitoring system that displays three parameters graphed against time: expired flow rate, oxygen uptake and carbon dioxide production. This system allows for early and rapid recognition of treatable conditions that may lead to adverse events without any additional patient measurements or invasive procedures. Monitoring systems similar to the one described in this paper may lead to a higher level of patient safety without any additional patient risk.

  19. Design and Implementation of Automatic Air Flow Rate Control System

    NASA Astrophysics Data System (ADS)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  20. Effort of breathing in children receiving high-flow nasal cannula.

    PubMed

    Rubin, Sarah; Ghuman, Anoopindar; Deakers, Timothy; Khemani, Robinder; Ross, Patrick; Newth, Christopher J

    2014-01-01

    High-flow humidified nasal cannula is often used to provide noninvasive respiratory support in children. The effect of high-flow humidified nasal cannula on effort of breathing in children has not been objectively studied, and the mechanism by which respiratory support is provided remains unclear. This study uses an objective measure of effort of breathing (Pressure. Rate Product) to evaluate high-flow humidified nasal cannula in critically ill children. Prospective cohort study. Quaternary care free-standing academic children's hospital. ICU patients younger than 18 years receiving high-flow humidified nasal cannula or whom the medical team planned to extubate to high-flow humidified nasal cannula within 72 hours of enrollment. An esophageal pressure monitoring catheter was placed to measure pleural pressures via a Bicore CP-100 pulmonary mechanics monitor. Change in pleural pressure (ΔPes) and respiratory rate were measured on high-flow humidified nasal cannula at 2, 5, and 8 L/min. ΔPes and respiratory rate were multiplied to generate the Pressure.Rate Product, a well-established objective measure of effort of breathing. Baseline Pes, defined as pleural pressure at end exhalation during tidal breathing, reflected the positive pressure generated on each level of respiratory support. Twenty-five patients had measurements on high-flow humidified nasal cannula. Median age was 6.5 months (interquartile range, 1.3-15.5 mo). Median Pressure,Rate Product was lower on high-flow humidified nasal cannula 8 L/min (median, 329 cm H2O·min; interquartile range, 195-402) compared with high-flow humidified nasal cannula 5 L/min (median, 341; interquartile range, 232-475; p = 0.007) or high-flow humidified nasal cannula 2 L/min (median, 421; interquartile range, 233-621; p < 0.0001) and was lower on high-flow humidified nasal cannula 5 L/min compared with high-flow humidified nasal cannula 2 L/min (p = 0.01). Baseline Pes was higher on high-flow humidified nasal cannula 8 L/min than on high-flow humidified nasal cannula 2 L/min (p = 0.03). Increasing flow rates of high-flow humidified nasal cannula decreased effort of breathing in children, with the most significant impact seen from high-flow humidified nasal cannula 2 to 8 L/min. There are likely multiple mechanisms for this clinical effect, including generation of positive pressure and washout of airway dead space.

  1. Integrated control system and method

    DOEpatents

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  2. Performance of an electrochemical carbon monoxide monitor in the presence of anesthetic gases.

    PubMed

    Dunning, M; Woehlck, H J

    1997-11-01

    The passage of volatile anesthetic agents through accidentally dried CO2 absorbents in anesthesia circuits can result in the chemical breakdown of anesthetics with production of greater than 10000 ppm carbon monoxide (CO). This study was designed to evaluate a portable CO monitor in the presence of volatile anesthetic agents. Two portable CO monitors employing electrochemical sensors were tested to determine the effects of anesthetic agents, gas sample flow rates, and high CO concentrations on their electrochemical sensor. The portable CO monitors were exposed to gas mixtures of 0 to 500 ppm CO in either 70% nitrous oxide, 1 MAC concentrations of contemporary volatile anesthetics, or reacted isoflurane or desflurane (containing CO and CHF3) in oxygen. The CO measurements from the electrochemical sensors were compared to simultaneously obtained samples measured by gas chromatography (GC). Data were analyzed by linear regression. Overall correlation between the portable CO monitors and the GC resulted in an r2 value >0.98 for all anesthetic agents. Sequestered samples produced an exponential decay of measured CO with time, whereas stable measurements were maintained during continuous flow across the sensor. Increasing flow rates resulted in higher CO readings. Exposing the CO sensor to 3000 and 19000 ppm CO resulted in maximum reported concentrations of approximately 1250 ppm, with a prolonged recovery. Decrease in measured concentration of the sequestered samples suggests destruction of the sample by the sensor, whereas a diffusion limitation is suggested by the dependency of measured value upon flow. Any value over 500 ppm must be assumed to represent dangerous concentrations of CO because of the non-linear response of these monitors at very high CO concentrations. These portable electrochemical CO monitors are adequate to measure CO concentrations up to 500 ppm in the presence of typical clinical concentrations of anesthetics.

  3. Long-term temperature monitoring at the biological community site on the Nankai accretionary prism off Kii Peninsula

    NASA Astrophysics Data System (ADS)

    Goto, S.; Hamamoto, H.; Yamano, M.; Kinoshita, M.; Ashi, J.

    2008-12-01

    Nankai subduction zone off Kii Peninsula is one of the most intensively surveyed areas for studies on the seismogenic zone. Multichannel seismic reflection surveys carried out in this area revealed the existence of splay faults that branched from the subduction zone plate boundary [Park et al., 2002]. Along the splay faults, reversal of reflection polarity was observed, indicating elevated pore fluid pressure along the faults. Cold seepages with biological communities were discovered along a seafloor outcrop of one of the splay faults through submersible observations. Long-term temperature monitoring at a biological community site along the outcrop revealed high heat flow carried by upward fluid flow (>180 mW/m2) [Goto et al., 2003]. Toki et al. [2004] estimated upward fluid flow rates of 40-200 cm/yr from chloride distribution of interstitial water extracted from sediments in and around biological community sites along the outcrop. These observation results suggest upward fluid flow along the splay fault. In order to investigate hydrological nature of the splay fault, we conducted long-term temperature monitoring again in the same cold seepage site where Goto et al. [2003] carried out long-term temperature monitoring. In this presentation, we present results of the temperature monitoring and estimate heat flow carried by upward fluid flow from the temperature records. In this long-term temperature monitoring, we used stand-alone heat flow meter (SAHF), a probe-type sediment temperature recorder. Two SAHFs (SAHF-3 and SAHF-4) were used in this study. SAHF-4 was inserted into a bacterial mat, within several meters of which the previous long-term temperature monitoring was conducted. SAHF-3 was penetrated into ordinary sediment near the bacterial mat. The sub-bottom temperature records were obtained for 8 months. The subsurface temperatures oscillated reflecting bottom- water temperature variation (BTV). For sub-bottom temperatures measured with SAHF-3 (outside of the bacterial mat), we found that the effects of the BTV propagated into sediment by conduction only. By correcting the effect of the BTV, conductive heat flow estimated is higher than 100 mW/m2. Sub-bottom temperatures measured within bacterial mat (SAHF-4) except for the topmost sensor could be explained by a conduction model. The heat flow estimated based on the conduction model is similar to that measured with SAHF-3. The temperature of the topmost sensor is slightly higher than that expected from the conduction model. To explain the high temperature, upward fluid flow at a rate of 10-7 m/s order is needed. Heat flow carried by the upward fluid flow is higher than that estimated by Goto et al. [2003]. Heat flow value expected from the distribution of heat flow around this area is 70-80 mW/m2. The high heat flow values inside and outside the bacterial mat estimated in the present and previous studies may reflect upward fluid flow along the splay fault.

  4. A new approach to monitoring spatial distribution and dynamics of wetlands and associated flows of Australian Great Artesian Basin springs using QuickBird satellite imagery

    NASA Astrophysics Data System (ADS)

    White, Davina C.; Lewis, Megan M.

    2011-09-01

    SummaryThis study develops an expedient digital mapping technique using Very High Resolution satellite imagery to monitor the temporal response of permanent wetland vegetation to changes in spring flow rates from the Australian Great Artesian Basin at Dalhousie Springs Complex, South Australia. Three epochs of QuickBird satellite multispectral imagery acquired between 2006 and 2010 were analysed using the Normalised Difference Vegetation Index (NDVI). A regression of 2009 NDVI values against vegetation cover from field botanical survey plots provided a relationship of increasing NDVI with increased vegetation cover ( R2 = 0.86; p < 0.001). On the basis of this relationship a vegetation threshold was determined (NDVI ⩾ 0.35), which discriminated perennial and ephemeral wetland vegetation from surrounding dryland vegetation in the imagery. The extent of wetlands for the entire Dalhousie Springs Complex mapped from the imagery increased from 607 ha in December 2006 to 913 ha in May 2009 and 1285 ha in May 2010. Comparison of the three NDVI images showed considerable localised change in wetland vegetation greenness, distribution and extent in response to fires, alien vegetation removal, rainfall and fluctuations in spring flow. A strong direct relationship ( R2 = 0.99; p < 0.001) was exhibited between spring flow rate and the area of associated wetland vegetation for eight individual springs. This relationship strongly infers that wetland area is an indicator of spring flow and can be used for monitoring purposes. This method has the potential to determine the sensitivity of spring wetland vegetation extent and distribution to associated changes in spring flow rates due to land management and aquifer extractions. Furthermore, this approach is timely and provides reliable and repeatable monitoring, particularly needed given the projected increased demand for groundwater extractions from the GAB for mining operations.

  5. Noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump.

    PubMed

    Kosaka, Ryo; Fukuda, Kyohei; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2013-01-01

    In order to monitor the condition of a patient using a left ventricular assist system (LVAS), blood flow should be measured. However, the reliable determination of blood-flow rate has not been established. The purpose of the present study is to develop a noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump. The flow meter uses the centrifugal force generated by the flow rate in the curved cannula. Two strain gauges served as sensors. The first gauges were attached to the curved area to measure static pressure and centrifugal force, and the second gauges were attached to straight area to measure static pressure. The flow rate was determined by the differences in output from the two gauges. The zero compensation was constructed based on the consideration that the flow rate could be estimated during the initial driving condition and the ventricular suction condition without using the flow meter. A mock circulation loop was constructed in order to evaluate the measurement performance of the developed flow meter with zero compensation. As a result, the zero compensation worked effectively for the initial calibration and the zero-drift of the measured flow rate. We confirmed that the developed flow meter using a curved cannula with zero compensation was able to accurately measure the flow rate continuously and noninvasively.

  6. 40 CFR Table 3 to Subpart Ec of... - Operating Parameters To Be Monitored and Minimum Measurement and Recording Frequencies

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... scrubber followed by fabric filter Wet scrubber Dry scrubber followed by fabric filter and wet scrubber... flow rate Hourly 1×hour ✔ ✔ Minimum pressure drop across the wet scrubber or minimum horsepower or amperage to wet scrubber Continuous 1×minute ✔ ✔ Minimum scrubber liquor flow rate Continuous 1×minute...

  7. Internal cycle modeling and environmental assessment of multiple cycle consumer products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsiliyannis, C.A., E-mail: anion@otenet.gr

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Dynamic flow models are presented for remanufactured, reused or recycled products. Black-Right-Pointing-Pointer Early loss and stochastic return are included for fast and slow cycling products. Black-Right-Pointing-Pointer The reuse-to-input flow ratio (Internal Cycle Factor, ICF) is determined. Black-Right-Pointing-Pointer The cycle rate, which is increasing with the ICF, monitors eco-performance. Black-Right-Pointing-Pointer Early internal cycle losses diminish the ICF, the cycle rate and performance. - Abstract: Dynamic annual flow models incorporating consumer discard and usage loss and featuring deterministic and stochastic end-of-cycle (EOC) return by the consumer are developed for reused or remanufactured products (multiple cycle products, MCPs), including fast andmore » slow cycling, short and long-lived products. It is shown that internal flows (reuse and overall consumption) increase proportionally to the dimensionless internal cycle factor (ICF) which is related to environmental impact reduction factors. The combined reuse/recycle (or cycle) rate is shown capable for shortcut, albeit effective, monitoring of environmental performance in terms of waste production, virgin material extraction and manufacturing impacts of all MCPs, a task, which physical variables (lifetime, cycling frequency, mean or total number of return trips) and conventional rates, via which environmental policy has been officially implemented (e.g. recycling rate) cannot accomplish. The cycle rate is shown to be an increasing (hyperbolic) function of ICF. The impact of the stochastic EOC return characteristics on total reuse and consumption flows, as well as on eco-performance, is assessed: symmetric EOC return has a small, positive effect on performance compared to deterministic, while early shifted EOC return is more beneficial. In order to be efficient, environmental policy should set higher minimum reuse targets for higher trippage MCPs. The results may serve for monitoring, flow accounting and comparative eco-assessment of MCPs. They may be useful in identifying reachable and efficient reuse/recycle targets for consumer products and in planning return via appropriate labelling and digital coding for enhancing environmental performance, while satisfying consumer demand.« less

  8. Miniaturized Water Flow and Level Monitoring System for Flood Disaster Early Warning

    NASA Astrophysics Data System (ADS)

    Ifedapo Abdullahi, Salami; Hadi Habaebi, Mohamed; Surya Gunawan, Teddy; Rafiqul Islam, MD

    2017-11-01

    This study presents the performance of a prototype miniaturised water flow and water level monitoring sensor designed towards supporting flood disaster early warning systems. The design involved selection of sensors, coding to control the system mechanism, and automatic data logging and storage. During the design phase, the apparatus was constructed where all the components were assembled using locally sourced items. Subsequently, under controlled laboratory environment, the system was tested by running water through the inlet during which the flow rate and rising water levels are automatically recorded and stored in a database via Microsoft Excel using Coolterm software. The system is simulated such that the water level readings measured in centimeters is output in meters using a multiplicative of 10. A total number of 80 readings were analyzed to evaluate the performance of the system. The result shows that the system is sensitive to water level rise and yielded accurate measurement of water level. But, the flow rate fluctuates due to the manual water supply that produced inconsistent flow. It was also observed that the flow sensor has a duty cycle of 50% of operating time under normal condition which implies that the performance of the flow sensor is optimal.

  9. Continuous 'Passive' Registration of Non-Point Contaminant Loads Via Agricultural Subsurface Drain Tubes

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J.; Jansen, S.; de Jonge, H.; Lindblad Vendelboe, A.

    2014-12-01

    Considering their crucial role in water and solute transport, enhanced monitoring and modeling of agricultural subsurface tube drain systems is important for adequate water quality management. For example, previous work in lowland agricultural catchments has shown that subsurface tube drain effluent contributed up to 80% of the annual discharge and 90-92% of the annual NO3 loads from agricultural fields towards the surface water. However, existing monitoring techniques for flow and contaminant loads from tube drains are expensive and labor-intensive. Therefore, despite the unambiguous relevance of this transport route, tube drain monitoring data are scarce. The presented study aimed developing a cheap, simple, and robust method to monitor loads from tube drains. We are now ready to introduce the Flowcap that can be attached to the outlet of tube drains and is capable of registering total flow, contaminant loads, and flow-averaged concentrations. The Flowcap builds on the existing SorbiCells, a modern passive sampling technique that measures average concentrations over longer periods of time (days to months) for various substances. By mounting SorbiCells in our Flowcap, a flow-proportional part of the drain effluent is sampled from the main stream. Laboratory testing yielded good linear relations (R-squared of 0.98) between drainage flow rates and sampling rates. The Flowcap was tested in practice for measuring NO3 loads from two agricultural fields and one glasshouse in the Netherlands. The Flowcap registers contaminant loads from tube drains without any need for housing, electricity, or maintenance. This enables large-scale monitoring of non-point contaminant loads via tube drains, which would facilitate the improvement of contaminant transport models and would yield valuable information for the selection and evaluation of mitigation options to improve water quality.

  10. Monitoring and assessment of tumor hemodynamics during pleural PDT

    NASA Astrophysics Data System (ADS)

    Ong, Yi Hong; Kim, Michele M.; Penjweini, Rozhin; Rodriguez, Carmen E.; Dimofte, Andrea; Finlay, Jarod C.; Busch, Theresa M.; Yodh, Arjun G.; Cengel, Keith A.; Singhal, Sunil; Zhu, Timothy C.

    2017-02-01

    Intrapleural photodynamic therapy (PDT) has been used in combination with lung sparing surgery to treat patients with malignant pleural mesothelioma. The light, photosensitizers and tissue oxygen are the three most important factors required by type II PDT to produce singlet oxygen, 1O2, which is the main photocytotoxic agent that damages the tumor vasculature and stimulates the body's anti-tumor immune response. Although light fluence rate and photosensitizer concentrations are routinely monitored during clinical PDT, there is so far a lack of a Food and Drug Administration (FDA)-approved non-invasive technique that can be employed clinically to monitor tissue oxygen in vivo. In this paper, we demonstrated that blood flow correlates well with tissue oxygen concentration during PDT and can be used in place of [3O2] to calculate reacted singlet oxygen concentration [1O2]rx using the macroscopic singlet oxygen model. Diffuse correlation spectroscopy (DCS) was used to monitor the change in tissue blood flow non-invasively during pleural PDT. A contact probe with three source and detectors separations, 0.4, 0.7 and 1.0-cm, was sutured to the pleural cavity wall of the patients after surgical resection of the pleural mesothelioma tumor to monitor the tissue blood flow during intraoperative PDT treatment. The changes of blood flow during PDT of 2 patients are found to be in good correlation with the treatment light fluence rate recorded by the isotropic detector placed adjacent to the DCS probe. [1O2]rx calculated based on light fluence, mean photosensitizer concentration, and relative blood flow was found to be 32% higher in patient #4 (0.50mM) than that for patient #3 (0.38mM).

  11. Pressure fluctuation generated by the interaction of blade and tongue

    NASA Astrophysics Data System (ADS)

    Zheng, Lulu; Dou, Hua-Shu; Chen, Xiaoping; Zhu, Zuchao; Cui, Baoling

    2018-02-01

    Pressure fluctuation around the tongue has large effect on the stable operation of a centrifugal pump. In this paper, the Reynolds averaged Navier-Stokes equations (RANS) and the RNG k-epsilon turbulence model is employed to simulate the flow in a pump. The flow field in the centrifugal pump is computed for a range of flow rate. The simulation results have been compared with the experimental data and good agreement has been achieved. In order to study the interaction of the tongue with the impeller, fifteen monitor probes are evenly distributed circumferentially at three radii around the tongue. Pressure distribution is investigated at various blade positions while the blade approaches to and leaves the tongue region. Results show that pressure signal fluctuates largely around the tongue, and it is more intense near the tongue surface. At design condition, standard deviation of pressure fluctuation is the minimum. At large flow rate, the increased low pressure region at the blade trailing edge results in the increases of pressure fluctuation amplitude and pressure spectra at the monitor probes. Minimum pressure is obtained when the blade is facing to the tongue. It is found that the amplitude of pressure fluctuation strongly depends on the blade positions at large flow rate, and pressure fluctuation is caused by the relative movement between blades and tongue. At small flow rate, the rule of pressure fluctuation is mainly depending on the structure of vortex flow at blade passage exit besides the influence from the relative position between the blade and the tongue.

  12. Reservoir response to thermal and high-pressure well stimulation efforts at Raft River, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plummer, Mitchell; Bradford, Jacob; Moore, Joseph

    An injection stimulation test begun at the Raft River geothermal reservoir in June, 2013 has produced a wealth of data describing well and reservoir response via high-resolution temperature logging and distributed temperature sensing, seismic monitoring, periodic borehole televiewer logging, periodic stepped flow rate tests and tracer injections before and after stimulation efforts. One of the primary measures of response to the stimulation is the relationship between fluid pressure and flow rate, short-term during forced flow rate changes and the long-term change in injectivity. In this paper we examine that hydraulic response using standard pumping test analysis methods, largely because pressuremore » response to the stimulation was not detected, or measurable, in other wells. Analysis of stepped rate flow tests supports the inference from other data that a large fracture, with a radial extent of one to several meters, intersects the well in the target reservoir, suggests that the flow regime is radial to a distance of only several meters and demonstrates that the pressure build-up cone reaches an effective constant head at that distance. The well’s longer term hydraulic response demonstrated continually increasing injectivity but at a dramatically faster rate later from ~2 years out and continuing to the present. The net change in injectivity is significantly greater than observed in other longterm injectivity monitoring studies, with an approximately 150–fold increase occurring over ~2.5 years. While gradually increasing injectivity is a likely consequence of slow migration of a cooling front, and consequent dilation of fractures, the steady, ongoing, rate of increase is contrary to what would be expected in a radial or linear flow regime, where the cooling front would slow with time. As a result, occasional step-like changes in injectivity, immediately following high-flow rate tests suggest that hydro shearing during high-pressure testing altered the near-well permeability structure.« less

  13. Determination of the precision error of the pulmonary artery thermodilution catheter using an in vitro continuous flow test rig.

    PubMed

    Yang, Xiao-Xing; Critchley, Lester A; Joynt, Gavin M

    2011-01-01

    Thermodilution cardiac output using a pulmonary artery catheter is the reference method against which all new methods of cardiac output measurement are judged. However, thermodilution lacks precision and has a quoted precision error of ± 20%. There is uncertainty about its true precision and this causes difficulty when validating new cardiac output technology. Our aim in this investigation was to determine the current precision error of thermodilution measurements. A test rig through which water circulated at different constant rates with ports to insert catheters into a flow chamber was assembled. Flow rate was measured by an externally placed transonic flowprobe and meter. The meter was calibrated by timed filling of a cylinder. Arrow and Edwards 7Fr thermodilution catheters, connected to a Siemens SC9000 cardiac output monitor, were tested. Thermodilution readings were made by injecting 5 mL of ice-cold water. Precision error was divided into random and systematic components, which were determined separately. Between-readings (random) variability was determined for each catheter by taking sets of 10 readings at different flow rates. Coefficient of variation (CV) was calculated for each set and averaged. Between-catheter systems (systematic) variability was derived by plotting calibration lines for sets of catheters. Slopes were used to estimate the systematic component. Performances of 3 cardiac output monitors were compared: Siemens SC9000, Siemens Sirecust 1261, and Philips MP50. Five Arrow and 5 Edwards catheters were tested using the Siemens SC9000 monitor. Flow rates between 0.7 and 7.0 L/min were studied. The CV (random error) for Arrow was 5.4% and for Edwards was 4.8%. The random precision error was ± 10.0% (95% confidence limits). CV (systematic error) was 5.8% and 6.0%, respectively. The systematic precision error was ± 11.6%. The total precision error of a single thermodilution reading was ± 15.3% and ± 13.0% for triplicate readings. Precision error increased by 45% when using the Sirecust monitor and 100% when using the Philips monitor. In vitro testing of pulmonary artery catheters enabled us to measure both the random and systematic error components of thermodilution cardiac output measurement, and thus calculate the precision error. Using the Siemens monitor, we established a precision error of ± 15.3% for single and ± 13.0% for triplicate reading, which was similar to the previous estimate of ± 20%. However, this precision error was significantly worsened by using the Sirecust and Philips monitors. Clinicians should recognize that the precision error of thermodilution cardiac output is dependent on the selection of catheter and monitor model.

  14. In-line wear monitor. Final report, July 1988-April 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pieper, K.A.; Taylor, I.J.

    This report describes construction and test results of an in-line monitor for critical ferrous and nonferrous metal debris in turbine engine lubrication systems. The in-line wear monitor (ILWM) uses the X-ray fluorescence principle for detecting metal debris on a continuous basis while the engine is running. The sensor portion of the system is engine mounted and contains a radioactive X-ray source, a flow cell to direct the oil across an X-ray permeable window, a proportional counter X-ray detector and its associated preamplifier and amplifier electronics. The data acquisition electronics is mounted on the airframe and contains a microprocessor based systemmore » for inputting pulses from the sensor, classifying and counting them according to energy bands, and analyzing the data and outputting metal concentration values to the engine monitoring system. The sensor portion of the system is designed to fit on a TF41 turbine engine in place of a tube between the oil tank and the oil pump. A TF41 engine monitoring system has been modified to accept the new signals from the ILWM on spare inputs so that none of the existing functions were disturbed. The ILWM has been flow tested at various flow rates, concentration levels, oil temperatures, and aerations. The wear monitor detected iron, copper, and both iron and copper together with less than 2 ppm one sigma statistical uncertainty for 30 minute count times over the 0-50 ppm range. There was no significant effect of flow rate or aeration on accuracy. The system is developed to the point that it can be tested in an actual flight environment.« less

  15. Optical in situ monitoring of plasma-enhanced atomic layer deposition process

    NASA Astrophysics Data System (ADS)

    Zeeshan Arshad, Muhammad; Jo, Kyung Jae; Kim, Hyun Gi; Jeen Hong, Sang

    2018-06-01

    An optical in situ process monitoring method for the early detection of anomalies in plasma process equipment is presented. Cyclic process steps of precursor treatment and plasma reaction for the deposition of an angstrom-scale film increase their complexity to ensure the process quality. However, a small deviation in process parameters, for instance, gas flow rate, process temperature, or RF power, may jeopardize the deposited film quality. As a test vehicle for the process monitoring, we have investigated the aluminum-oxide (Al2O3) encapsulation process in plasma-enhanced atomic layer deposition (PEALD) to form a moisture and oxygen diffusion barrier in organic-light emitting diodes (OLEDs). By optical in situ monitoring, we successfully identified the reduction in oxygen flow rates in the reaction steps, which resulted in a 2.67 times increase in the water vapor transmission ratio (WVTR) of the deposited Al2O3 films. Therefore, we are convinced that the suggested in situ monitoring method is useful for the detection of process shifts or drifts that adversely affect PEALD film quality.

  16. Simple Radiowave-Based Method For Measuring Peripheral Blood Flow Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Project objective is to design small radio frequency based flow probes for the measurement of blood flow velocity in peripheral arteries such as the femoral artery and middle cerebral artery. The result will be the technological capability to measure peripheral blood flow rates and flow changes during various environmental stressors such as microgravity without contact to the individual being monitored. This technology may also lead to an easier method of detecting venous gas emboli during extravehicular activities.

  17. 40 CFR 63.7741 - What are the installation, operation, and maintenance requirements for my monitors?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... paragraphs (a)(1)(i) through (iv) of this section. (i) Locate the flow sensor and other necessary equipment... sensor with a minimum measurement sensitivity of 2 percent of the flow rate. (iii) Conduct a flow sensor... paragraphs (a)(2)(i) through (vi) of this section. (i) Locate the pressure sensor(s) in or as close as...

  18. 40 CFR 63.7741 - What are the installation, operation, and maintenance requirements for my monitors?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... paragraphs (a)(1)(i) through (iv) of this section. (i) Locate the flow sensor and other necessary equipment... sensor with a minimum measurement sensitivity of 2 percent of the flow rate. (iii) Conduct a flow sensor... paragraphs (a)(2)(i) through (vi) of this section. (i) Locate the pressure sensor(s) in or as close as...

  19. 40 CFR 63.7741 - What are the installation, operation, and maintenance requirements for my monitors?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... paragraphs (a)(1)(i) through (iv) of this section. (i) Locate the flow sensor and other necessary equipment... sensor with a minimum measurement sensitivity of 2 percent of the flow rate. (iii) Conduct a flow sensor... paragraphs (a)(2)(i) through (vi) of this section. (i) Locate the pressure sensor(s) in or as close as...

  20. Online Monitoring System of Air Distribution in Pulverized Coal-Fired Boiler Based on Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Żymełka, Piotr; Nabagło, Daniel; Janda, Tomasz; Madejski, Paweł

    2017-12-01

    Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA) nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS) data.

  1. Impact of Pitot tube calibration on the uncertainty of water flow rate measurement

    NASA Astrophysics Data System (ADS)

    de Oliveira Buscarini, Icaro; Costa Barsaglini, Andre; Saiz Jabardo, Paulo Jose; Massami Taira, Nilson; Nader, Gilder

    2015-10-01

    Water utility companies often use Cole type Pitot tubes to map velocity profiles and thus measure flow rate. Frequent monitoring and measurement of flow rate is an important step in identifying leaks and other types of losses. In Brazil losses as high as 42% are common and in some places even higher values are found. When using Cole type Pitot tubes to measure the flow rate, the uncertainty of the calibration coefficient (Cd) is a major component of the overall flow rate measurement uncertainty. A common practice is to employ the usual value Cd = 0.869, in use since Cole proposed his Pitot tube in 1896. Analysis of 414 calibrations of Cole type Pitot tubes show that Cd varies considerably and values as high 0.020 for the expanded uncertainty are common. Combined with other uncertainty sources, the overall velocity measurement uncertainty is 0.02, increasing flowrate measurement uncertainty by 1.5% which, for the Sao Paulo metropolitan area (Brazil) corresponds to 3.5 × 107 m3/year.

  2. Towards development of a mobile RF Doppler sensor for continuous heart rate variability and blood pressure monitoring.

    PubMed

    Insoo Kim; Bhagat, Yusuf A

    2016-08-01

    The standard in noninvasive blood pressure (BP) measurement is an inflatable cuff device based on the oscillometric method, which poses several practical challenges for continuous BP monitoring. Here, we present a novel ultra-wide band RF Doppler radar sensor for next-generation mobile interface for the purpose of characterizing fluid flow speeds, and for ultimately measuring cuffless blood flow in the human wrist. The system takes advantage of the 7.1~10.5 GHz ultra-wide band signals which can reduce transceiver complexity and power consumption overhead. Moreover, results obtained from hardware development, antenna design and human wrist modeling, and subsequent phantom development are reported. Our comprehensive lab bench system setup with a peristaltic pump was capable of characterizing various speed flow components during a linear velocity sweep of 5~62 cm/s. The sensor holds potential for providing estimates of heart rate and blood pressure.

  3. Cardiac surgery during pregnancy: continuous fetal monitoring using umbilical artery Doppler flow velocity indices.

    PubMed

    Mishra, Manisha; Sawhney, Ravindra; Kumar, Anil; Bapna, Kumar Ramesh; Kohli, Vijay; Wasir, Harpreet; Trehan, Naresh

    2014-01-01

    The fetal death rate associated with cardiac surgery with cardiopulmonary bypass (CPB) is as high as 9.5-29%. We report continuous monitoring of fetal heart rate and umbilical artery flow-velocity waveforms by transvaginal ultrasonography and their analyses in relation to events of the CPB in two cases in second trimester of pregnancy undergoing mitral valve replacement. Our findings suggest that the transition of circulation from corporeal to extracorporeal is the most important event during surgery; the associated decrease in mean arterial pressure (MAP) at this stage potentially has deleterious effects on the fetus, which get aggravated with the use of vasopressors. We suggest careful management of CPB at this stage, which include partial controlled CPB at initiation and gradual transition to full CPB; this strategy maintains high MAP and avoids the use of vasopressors. Maternal and fetal monitoring can timely recognize the potential problems and provide window for the required treatment.

  4. A resettable in-line particle concentrator using AC electrokinetics for distributed monitoring of microalgae in source waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Quan; Purdue Univ., West Lafayette, IN; Wu, Jayne

    Green algae have been studied as an important and effective biomarker to indicate water quality due to their sensitivity to toxic agents in freshwater sources. But, conventional methods to monitor algal physiology use a chlorophyll fluorometer whose use is hampered by high-cost, large footprint, and limited sensitivity for practical samples containing low algal concentration. In order to overcome these constraints, we developed a multi-level electrode platform for resettable trapping of algae via AC electro-osmosis (ACEO) and negative dielectrophoresis. Preliminary experiments were performed in freshwater with conductivity of 0.02 S/m. Algal trapping was demonstrated at a low voltage of 2 V.more » The concentration effect was experimentally verified by measuring the fluorescence intensity of algae and using hemocytometer counting chambers at the inlet and outlet of the multilevel microchannel lab-on-a-chip. An optimal frequency was found for trapping, which agrees with the frequency dependence of ACEO flow velocity. Through-flow rate and electrode dimensions were optimized as well. Trapping efficiencies within the range of 26% - 65% have been obtained. A maximum trapping rate of 182 cells/s was obtained with a flow rate of 20 l/min. Our lab-on-a-chip shows high potential for improving the limit of detection in algal monitoring and enabling the development of a portable, integrated and automated system for monitoring the quality of source drinking waters.« less

  5. A resettable in-line particle concentrator using AC electrokinetics for distributed monitoring of microalgae in source waters

    DOE PAGES

    Yuan, Quan; Purdue Univ., West Lafayette, IN; Wu, Jayne; ...

    2016-12-29

    Green algae have been studied as an important and effective biomarker to indicate water quality due to their sensitivity to toxic agents in freshwater sources. But, conventional methods to monitor algal physiology use a chlorophyll fluorometer whose use is hampered by high-cost, large footprint, and limited sensitivity for practical samples containing low algal concentration. In order to overcome these constraints, we developed a multi-level electrode platform for resettable trapping of algae via AC electro-osmosis (ACEO) and negative dielectrophoresis. Preliminary experiments were performed in freshwater with conductivity of 0.02 S/m. Algal trapping was demonstrated at a low voltage of 2 V.more » The concentration effect was experimentally verified by measuring the fluorescence intensity of algae and using hemocytometer counting chambers at the inlet and outlet of the multilevel microchannel lab-on-a-chip. An optimal frequency was found for trapping, which agrees with the frequency dependence of ACEO flow velocity. Through-flow rate and electrode dimensions were optimized as well. Trapping efficiencies within the range of 26% - 65% have been obtained. A maximum trapping rate of 182 cells/s was obtained with a flow rate of 20 l/min. Our lab-on-a-chip shows high potential for improving the limit of detection in algal monitoring and enabling the development of a portable, integrated and automated system for monitoring the quality of source drinking waters.« less

  6. Tank depletion flow controller

    DOEpatents

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  7. Instability patterns in a miscible core annular flow

    NASA Astrophysics Data System (ADS)

    D'Olce, Marguerite; Martin, Jerome; Rakotomalala, Nicole; Salin, Dominique; Talon, Laurent

    2006-11-01

    Laboratoire FAST, batiment 502, campus universitaire, 91405 Orsay Cedex (France). Experiments are performed with two miscible fluids of equal density but different viscosities. The fluids are injected co-currently and concentrically into a cylindrical pipe. The so-obtained base state is an axisymmetric parallel flow, for which the ratio of the flow rates of the two fluids monitors the relative amount (and so the radius) of the fluids. Depending on this relative amount and on the total flow rate of the fluids, unstable axisymmetric patterns such as mushrooms and pearls are observed. We delineate the diagram of occurrence of the two patterns and characterize the instabilities.

  8. Measurement of cerebral blood flow rate and its relationship with brain function using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Wang, Yi; Zhao, Yuqian; Dou, Shidan; Ma, Yushu; Ma, Zhenhe

    2016-03-01

    Activity of brain neurons will lead to changes in local blood flow rate (BFR). Thus, it is important to measure the local BFR of cerebral cortex on research of neuron activity in vivo, such as rehabilitation evaluation after stroke, etc. Currently, laser Doppler flowmetry is commonly used for blood flow measurement, however, relatively low resolution limits its application. Optical coherence tomography (OCT) is a powerful noninvasive 3D imaging modality with high temporal and spatial resolutions. Furthermore, OCT can provide flow distribution image by calculating Doppler frequency shift which makes it possible for blood flow rate measurement. In this paper, we applied OCT to measure the blood flow rate of the primary motor cortex in rats. The animal was immobilized and anesthetized with isoflurane, an incision was made along the sagittal suture, and bone was exposed. A skull window was opened on the primary motor cortex. Then, blood flow rate changes in the primary motor cortex were monitored by our homemade spectral domain OCT with a stimulation of the passive movement of the front legs. Finally, we established the relationship between blood flow rate and the test design. The aim is to demonstrate the potential of OCT in the evaluation of cerebral cortex function.

  9. 40 CFR 75.4 - Compliance dates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... volumetric flow rate required under this part (or under the applicable State or Federal mass emissions... applicable on the deadlines specified in the applicable State or federal NOX mass emission reduction program... required by this part for monitoring SO2, NOX, CO2, opacity, moisture and volumetric flow are installed and...

  10. 40 CFR 63.7330 - What are my monitoring requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... relative change in particulate matter loadings using a bag leak detection system according to the... integrity of the baghouse through quarterly visual inspections of the baghouse interior for air leaks; and... must at all times monitor the pressure drop and water flow rate using a CPMS according to the...

  11. 40 CFR 60.384 - Monitoring of operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wet scrubbing emission control device. The monitoring device must be certified by the manufacturer to be accurate within ±250 pascals (±1 inch water) gauge pressure and must be calibrated on an annual... continuous measurement of the scrubbing liquid flow rate to a wet scrubber for any affected facility using...

  12. 40 CFR 60.384 - Monitoring of operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wet scrubbing emission control device. The monitoring device must be certified by the manufacturer to be accurate within ±250 pascals (±1 inch water) gauge pressure and must be calibrated on an annual... continuous measurement of the scrubbing liquid flow rate to a wet scrubber for any affected facility using...

  13. 40 CFR 60.384 - Monitoring of operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wet scrubbing emission control device. The monitoring device must be certified by the manufacturer to be accurate within ±250 pascals (±1 inch water) gauge pressure and must be calibrated on an annual... continuous measurement of the scrubbing liquid flow rate to a wet scrubber for any affected facility using...

  14. 40 CFR 60.384 - Monitoring of operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wet scrubbing emission control device. The monitoring device must be certified by the manufacturer to be accurate within ±250 pascals (±1 inch water) gauge pressure and must be calibrated on an annual... continuous measurement of the scrubbing liquid flow rate to a wet scrubber for any affected facility using...

  15. 40 CFR 60.384 - Monitoring of operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wet scrubbing emission control device. The monitoring device must be certified by the manufacturer to be accurate within ±250 pascals (±1 inch water) gauge pressure and must be calibrated on an annual... continuous measurement of the scrubbing liquid flow rate to a wet scrubber for any affected facility using...

  16. 40 CFR 98.323 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... systems (metric tons CH4). CH4V = Quarterly CH4 liberated from each ventilation monitoring point (metric... vent holes are collected, you must calculate the quarterly CH4 liberated from the ventilation system... CH4 liberated from a ventilation monitoring point (metric tons CH4). V = Volumetric flow rate for the...

  17. 40 CFR 98.364 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or operator shall document the procedures used to ensure the accuracy of gas flow rate, gas... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.364 Monitoring and QA/QC requirements... fraction of total manure managed in each system component. (c) The CH4 concentration of gas from digesters...

  18. 40 CFR 98.364 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or operator shall document the procedures used to ensure the accuracy of gas flow rate, gas... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.364 Monitoring and QA/QC requirements... fraction of total manure managed in each system component. (c) The CH4 concentration of gas from digesters...

  19. 40 CFR 98.364 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or operator shall document the procedures used to ensure the accuracy of gas flow rate, gas... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.364 Monitoring and QA/QC requirements... fraction of total manure managed in each system component. (c) The CH4 concentration of gas from digesters...

  20. Pneumatic testing in 45-degree-inclined boreholes in ash-flow tuff near Superior, Arizona

    USGS Publications Warehouse

    LeCain, G.D.

    1995-01-01

    Matrix permeability values determined by single-hole pneumatic testing in nonfractured ash-flow tuff ranged from 5.1 to 20.3 * 1046 m2 (meters squared), depending on the gas-injection rate and analysis method used. Results from the single-hole tests showed several significant correlations between permeability and injection rate and between permeability and test order. Fracture permeability values determined by cross-hole pneumatic testing in fractured ash-flow tuff ranged from 0.81 to 3.49 * 1044 m2, depending on injection rate and analysis method used. Results from the cross-hole tests monitor intervals showed no significant correlation between permeability and injection rate; however, results from the injection interval showed a significant correlation between injection rate and permeability. Porosity estimates from the 'cross-hole testing range from 0.8 to 2.0 percent. The maximum temperature change associated with the pneumatic testing was 1.2'(2 measured in the injection interval during cross-hole testing. The maximum temperature change in the guard and monitor intervals was O.Ip C. The maximum error introduced into the permeability values due to temperature fluctuations is approximately 4 percent. Data from temperature monitoring in the borehole indicated a positive correlation between the temperature decrease in the injection interval during recovery testing and the gas-injection rate. The thermocouple psychrometers indicated that water vapor was condensing in the boreholes during testing. The psychrometers in the guard and monitor intervals detected the drier injected gas as an increase in the dry bulb reading. The relative humidity in the test intervals was always higher than the upper measurement limit of the psychrometers. Although the installation of the packer system may have altered the water balance of the borehole, the gas-injection testing resulted in minimal or no changes in the borehole relative humidity.

  1. Atomizing, continuous, water monitoring module

    DOEpatents

    Thompson, C.V.; Wise, M.B.

    1997-07-08

    A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid. 3 figs.

  2. Atomizing, continuous, water monitoring module

    DOEpatents

    Thompson, Cyril V.; Wise, Marcus B.

    1997-01-01

    A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid.

  3. Continuous Passive Sampling of Solutes from Agricultural Subsurface Drainage Tubes

    NASA Astrophysics Data System (ADS)

    Lindblad Vendelboe, Anders; de Jonge, Hubert; Rozemeijer, Joachim; Wollesen de Jonge, Lis

    2015-04-01

    Agricultural subsurface tube drain systems play an important role in water and solute transport. One study, focusing on lowland agricultural catchments, showed that subsurface tube drainage contributed up to 80% of the annual discharge and 90% of the annual NO3 load from agricultural fields to the receiving water bodies. Knowledge of e.g. nutrient loads and drainage volumes, based on measurements and modelling, are important for adequate water quality management. Despite the importance of tube drain transport of solutes, monitoring data are scarce. This scarcity is a result of the existing monitoring techniques for flow and contaminant load from tube drains being expensive and labor-extensive. The study presented here aimed at developing a cheap, simple, and robust method to monitor solute loads from tube drains. The method is based on the newly developed Flowcap, which can be attached to existing tube drain outlets and can measure total flow, contaminant load and flow-averaged concentrations of solutes in the drainage. The Flowcap builds on the existing Sorbicell principle, a passive sampling system that measures average concentrations over longer periods of time (days to months) for various compounds. The Sorbicell consists of two compartments permeable to water. One compartment contains an adsorbent and one contains a tracer. When water passes through the Sorbicell the compound of interest is absorbed while a tracer is released. Using the tracer loss to calculate the volume of water that has passed the Sorbicell it is possible to calculate the average concentration of the compound. When mounting Sorbicells in the Flowcap, a flow-proportional part of the drainage is sampled from the main stream. To accommodate the wide range of drainage flow rates two Flowcaps with different capacities were tested in the laboratory: one with a capacity of 25 L min-1 (Q25) and one with a capacity of 256 L min-1 (Q256). In addition, Sorbicells with two different hydraulic resistances were tested, again to accommodate a large range of potential drainage flows rates. The experiment was continued until the Sorbicell's capacity was exhausted, which gave experimentation times from 6 to 34 days, while continuously changing the drainage flow rate to simulate field drainage conditions, and to test the range of the Flowcap. The laboratory testing yielded a very good linear correlation between drainage flow rates and Sorbicell sampling rates, giving r = 0.99 for both the Q25 and the Q256 Flowcap. The Sorbicells in this experiment were designed to measure NO3, but the Flowcap can be used with any Sorbicell and thus be used to measure any compound of interest. The Flowcap does not need housing, electricity, or maintenance and continuously register drainage volumes and contaminant loads for periods up to one month. This, in addition to the low cost of the monitoring system, enables large-scale monitoring of contaminant loads via tube drains, giving valuable data for the improvement of contaminant transport models. Further, these data will help select and evaluate the different mitigation option to improve water quality.

  4. Apparatus and method for combusting low quality fuel

    DOEpatents

    Brushwood, John Samuel; Pillsbury, Paul; Foote, John; Heilos, Andreas

    2003-11-04

    A gas turbine (12) capable of combusting a low quality gaseous fuel having a ratio of flammability limits less than 2, or a heat value below 100 BTU/SCF. A high quality fuel is burned simultaneously with the low quality fuel to eliminate instability in the combustion flame. A sensor (46) is used to monitor at least one parameter of the flame indicative of instability. A controller (50) having the sensor signal (48) as input is programmed to control the relative flow rates of the low quality and high quality fuels. When instability is detected, the flow rate of high quality fuel is automatically increased in relation to the flow rate of low quality fuel to restore stability.

  5. Useful method to monitor the physiological effects of alcohol ingestion by combination of micro-integrated laser Doppler blood flow meter and arm-raising test.

    PubMed

    Iwasaki, Wataru; Nogami, Hirofumi; Ito, Hiroki; Gotanda, Takeshi; Peng, Yao; Takeuchi, Satoshi; Furue, Masutaka; Higurashi, Eiji; Sawada, Renshi

    2012-10-01

    Alcohol has a variety of effects on the human body, affecting both the sympathetic and parasympathetic nervous system. We examined the peripheral blood flow of alcohol drinkers using a micro-integrated laser Doppler blood flow meter (micro-electromechanical system blood flow sensor). An increased heart rate and blood flow was recorded at the earlobe after alcohol ingestion, and we observed strong correlation between blood flow, heart rate, and breath alcohol content in light drinkers; but not heavy drinkers. We also found that the amplitude of pulse waves measured at the fingertip during an arm-raising test significantly decreased on alcohol consumption, regardless of the individual's alcohol tolerance. Our micro-electromechanical system blood flow sensor successfully detected various physiological changes in peripheral blood circulation induced by alcohol consumption.

  6. A low-cost method to measure the timing of post-fire flash floods and debris flows relative to rainfall

    USGS Publications Warehouse

    Kean, Jason W.; Staley, Dennis M.; Leeper, Robert J.; Schmidt, Kevin Michael; Gartner, Joseph E.

    2012-01-01

    Data on the specific timing of post-fire flash floods and debris flows are very limited. We describe a method to measure the response times of small burned watersheds to rainfall using a low-cost pressure transducer, which can be installed quickly after a fire. Although the pressure transducer is not designed for sustained sampling at the fast rates ({less than or equal to}2 sec) used at more advanced debris-flow monitoring sites, comparisons with high-data rate stage data show that measured spikes in pressure sampled at 1-min intervals are sufficient to detect the passage of most debris flows and floods. Post-event site visits are used to measure the peak stage and identify flow type based on deposit characteristics. The basin response timescale (tb) to generate flow at each site was determined from an analysis of the cross correlation between time series of flow pressure and 5-min rainfall intensity. This timescale was found to be less than 30 minutes for 40 post-fire floods and 11 post-fire debris flows recorded in 15 southern California watersheds ({less than or equal to} 1.4 km2). Including data from 24 other debris flows recorded at 5 more instrumentally advanced monitoring stations, we find there is not a substantial difference in the median tb for floods and debris flows (11 and 9 minutes, respectively); however, there are slight, statistically significant differences in the trends of flood and debris-flow tb with basin area, which are presumably related to differences in flow speed between floods and debris flows.

  7. Fast diffuse correlation spectroscopy (DCS) for non-invasive measurement of intracranial pressure (ICP) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Farzam, Parisa; Sutin, Jason; Wu, Kuan-Cheng; Zimmermann, Bernhard B.; Tamborini, Davide; Dubb, Jay; Boas, David A.; Franceschini, Maria Angela

    2017-02-01

    Intracranial pressure (ICP) monitoring has a key role in the management of neurosurgical and neurological injuries. Currently, the standard clinical monitoring of ICP requires an invasive transducer into the parenchymal tissue or the brain ventricle, with possibility of complications such as hemorrhage and infection. A non-invasive method for measuring ICP, would be highly preferable, as it would allow clinicians to promptly monitor ICP during transport and allow for monitoring in a larger number of patients. We have introduced diffuse correlation spectroscopy (DCS) as a non-invasive ICP monitor by fast measurement of pulsatile cerebral blood flow (CBF). The method is similar to Transcranial Doppler ultrasound (TCD), which derives ICP from the amplitude of the pulsatile cerebral blood flow velocity, with respect to the amplitude of the pulsatile arterial blood pressure. We believe DCS measurement is superior indicator of ICP than TCD estimation because DCS directly measures blood flow, not blood flow velocity, and the small cortical vessels measured by DCS are more susceptible to transmural pressure changes than the large vessels. For fast DCS measurements to recover pulsatile CBF we have developed a custom high-power long-coherent laser and a strategy for delivering it to the tissue within ANSI standards. We have also developed a custom FPGA-based correlator board, which facilitates DCS data acquisitions at 50-100 Hz. We have tested the feasibility of measuring pulsatile CBF and deriving ICP in two challenging scenarios: humans and rats. SNR is low in human adults due to large optode distances. It is similarly low in rats because the fast heart rate in this setting requires a high repetition rate.

  8. Site Plan Safety Submission for Sampling, Monitoring, and Decontamination of Mustard Agent - South Plant, Rocky Mountain Arsenal. Volume 1

    DTIC Science & Technology

    1988-10-01

    sample these ducts. This judgement was based on the following factors : 1. The ducts were open to the atmosphere. 2. RMA records of building area samples...selected based on several factors including piping arrangements, volume to be sampled, sampling equipment flow rates, and the flow rate necessary for...effective sampling. Therefore, each sampling point strategy and procedure was customized based on these factors . The individual specific sampling

  9. Development and evaluation of virtual refrigerant mass flow sensors for fault detection and diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woohyun; Braun, J.

    Refrigerant mass flow rate is an important measurement for monitoring equipment performance and enabling fault detection and diagnostics. However, a traditional mass flow meter is expensive to purchase and install. A virtual refrigerant mass flow sensor (VRMF) uses a mathematical model to estimate flow rate using low-cost measurements and can potentially be implemented at low cost. This study evaluates three VRMFs for estimating refrigerant mass flow rate. The first model uses a compressor map that relates refrigerant flow rate to measurements of inlet and outlet pressure, and inlet temperature measurements. The second model uses an energy-balance method on the compressormore » that uses a compressor map for power consumption, which is relatively independent of compressor faults that influence mass flow rate. The third model is developed using an empirical correlation for an electronic expansion valve (EEV) based on an orifice equation. The three VRMFs are shown to work well in estimating refrigerant mass flow rate for various systems under fault-free conditions with less than 5% RMS error. Each of the three mass flow rate estimates can be utilized to diagnose and track the following faults: 1) loss of compressor performance, 2) fouled condenser or evaporator filter, 3) faulty expansion device, respectively. For example, a compressor refrigerant flow map model only provides an accurate estimation when the compressor operates normally. When a compressor is not delivering the expected flow due to a leaky suction or discharge valve or other internal fault, the energy-balance or EEV model can provide accurate flow estimates. In this paper, the flow differences provide an indication of loss of compressor performance and can be used for fault detection and diagnostics.« less

  10. The development of a microprocessor-controlled linearly-actuated valve assembly

    NASA Technical Reports Server (NTRS)

    Wall, R. H.

    1984-01-01

    The development of a proportional fluid control valve assembly is presented. This electromechanical system is needed for space applications to replace the current proportional flow controllers. The flow is controlled by a microprocessor system that monitors the control parameters of upstream pressure and requested volumetric flow rate. The microprocessor achieves the proper valve stem displacement by means of a digital linear actuator. A linear displacement sensor is used to measure the valve stem position. This displacement is monitored by the microprocessor system as a feedback signal to close the control loop. With an upstream pressure between 15 and 47 psig, the developed system operates between 779 standard CU cm/sec (SCCS) and 1543 SCCS.

  11. The use of ultrasound for postoperative monitoring of cerebral bypass grafts: A technical report.

    PubMed

    Morton, Ryan P; Abecassis, Isaac Joshua; Moore, Anne E; Kelly, Cory M; Levitt, Michael R; Kim, Louis J; Sekhar, Laligam N

    2017-06-01

    Duplex ultrasound and transcranial Doppler are valuable tools for post-operative monitoring of extracranial-intracranial cerebral bypass grafts. Here we describe our technique for the evaluation of both high-flow and low-flow cerebral bypass grafts over a nine year period. 186 bypass grafts were studied daily during the inpatient period between Jan 2005 and Dec 2014 after surgery for various cerebrovascular pathologies. There was a technical success rate of 97%. Duplex ultrasonographic flow measurements had excellent interobserver reliability with an intraclass correlation coefficient (ICC) of 0.89 (p=0.009). Technical nuances are highlighted and a brief discussion of pathology is undertaken. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. 40 CFR 60.624 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-water separator. Near the end of the recovery cycle, the entire flow of recovered solvent should be... solvent from the solvent recovery dryer at the termination of the recovery cycle is no greater than 0.05... cycle and the monitoring procedure should continue until the flow rate of solvent is less than or equal...

  13. 40 CFR 60.624 - Test methods and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-water separator. Near the end of the recovery cycle, the entire flow of recovered solvent should be... solvent from the solvent recovery dryer at the termination of the recovery cycle is no greater than 0.05... cycle and the monitoring procedure should continue until the flow rate of solvent is less than or equal...

  14. 40 CFR 60.624 - Test methods and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-water separator. Near the end of the recovery cycle, the entire flow of recovered solvent should be... solvent from the solvent recovery dryer at the termination of the recovery cycle is no greater than 0.05... cycle and the monitoring procedure should continue until the flow rate of solvent is less than or equal...

  15. 40 CFR 60.624 - Test methods and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-water separator. Near the end of the recovery cycle, the entire flow of recovered solvent should be... solvent from the solvent recovery dryer at the termination of the recovery cycle is no greater than 0.05... cycle and the monitoring procedure should continue until the flow rate of solvent is less than or equal...

  16. 40 CFR 75.53 - Monitoring plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... are pre-combustion, post-combustion, or integral to the combustion process; control equipment code... fuel flow-to-load test in section 2.1.7 of appendix D to this part is used: (A) The upper and lower... and applied to the hourly flow rate data: (A) Stack or duct width at the test location, ft; (B) Stack...

  17. Development of In-Fiber Reflective Bragg Gratings as Shear Stress Monitors in Aerodynamic Facilities

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Sprinkle, Danny R.; Singh, Jag J.

    1998-01-01

    Bragg gratings centered at nominal wavelengths of 1290 nm and 1300 run were inscribed in a 9/125 microns germano-silicate optical fiber, using continuous wave frequency doubled Ar+ laser radiation at 244 nm. Such gratings have been used extensively as temperature and strain monitors in smart structures. They have, however, never been used for measuring aerodynamic shear stresses. As a test of their sensitivity as shear stress monitors, a Bragg fiber attached to a metal plate was subjected to laminar flows in a glass pipe. An easily measurable large flow-induced wavelength shift (Delta Lambda(sub B)) was observed in the Bragg reflected wavelength. Thereafter, the grating was calibrated by making one time, simultaneous measurements of Delta Lambda(sub B) and the coefficient of skin friction (C(sub f)) with a skin friction balance, as a function of flow rates in a subsonic wind tunnel. Onset of fan-induced transition in the tunnel flow provided a unique flow rate for correlating Delta Lambda(sub B) and (C(sub f) values needed for computing effective modulus of rigidity (N(sub eff)) of the fiber attached to the metal plate. This value Of N(sub eff) is expected to remain constant throughout the elastic stress range expected during the Bragg grating aerodynamic tests. It has been used for calculating the value of Cf at various tunnel speeds, on the basis of measured values of Bragg wavelength shifts at those speeds.

  18. 40 CFR 63.1429 - Process vent monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the presence of a pilot flame. (3) Where a boiler or process heater of less than 44 megawatts design... series are used, a scrubbing liquid flow rate meter, or a pressure monitoring device, equipped with a continuous recorder, is required for each absorber in the series. An owner or operator may submit a request...

  19. 40 CFR 63.1429 - Process vent monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the presence of a pilot flame. (3) Where a boiler or process heater of less than 44 megawatts design... series are used, a scrubbing liquid flow rate meter, or a pressure monitoring device, equipped with a continuous recorder, is required for each absorber in the series. An owner or operator may submit a request...

  20. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... heat input data. 97.76 Section 97.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring and Reporting § 97.76 Additional requirements to provide heat input data. The owner or operator of... a flow system shall also monitor and report heat input rate at the unit level using the procedures...

  1. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... heat input data. 97.76 Section 97.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring and Reporting § 97.76 Additional requirements to provide heat input data. The owner or operator of... a flow system shall also monitor and report heat input rate at the unit level using the procedures...

  2. 40 CFR 63.1366 - Monitoring and inspection requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... scenario is implemented based on process knowledge and representative operating data. The procedures used... control scenarios in paragraphs (b)(1)(ii) through (xii) of this section, and are summarized in Table 3 of... also be monitored once a day. The minimum scrubber liquid flow rate or pressure drop shall be based on...

  3. 40 CFR Table 3 to Subpart Uuu of... - Continous Monitoring Systems for Metal HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system to measure and record the opacity of emissions from each catalyst regnerator vent. 4. Option 3: Ni... monitoring system to measure and record the gas flow rate 1. 5. Option 4: Ni lb/1,000 lbs of coke burn-off...

  4. 40 CFR Table 3 to Subpart Uuu of... - Continous Monitoring Systems for Metal HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system to measure and record the opacity of emissions from each catalyst regnerator vent. 4. Option 3: Ni... monitoring system to measure and record the gas flow rate 1. 5. Option 4: Ni lb/1,000 lbs of coke burn-off...

  5. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... heat input data. 97.76 Section 97.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring and Reporting § 97.76 Additional requirements to provide heat input data. The owner or operator of... a flow system shall also monitor and report heat input rate at the unit level using the procedures...

  6. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... heat input data. 97.76 Section 97.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring and Reporting § 97.76 Additional requirements to provide heat input data. The owner or operator of... a flow system shall also monitor and report heat input rate at the unit level using the procedures...

  7. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... heat input data. 97.76 Section 97.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring and Reporting § 97.76 Additional requirements to provide heat input data. The owner or operator of... a flow system shall also monitor and report heat input rate at the unit level using the procedures...

  8. New Approach to Purging Monitoring Wells: Lower Flow Rates Reduce Required Purging Volumes and Sample Turbidity

    EPA Science Inventory

    It is generally accepted that monitoring wells must be purged to access formation water to obtain “representative” ground water quality samples. Historically anywhere from 3 to 5 well casing volumes have been removed prior to sample collection to evacuate the standing well water...

  9. 40 CFR 60.203 - Monitoring of operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for the Phosphate..., calibrate, maintain, and operate a monitoring device which can be used to determine the mass flow of... maintain a daily record of equivalent P2O5 feed by first determining the total mass rate in Mg/hr of...

  10. Development of a new aerosol monitoring system and its application in Fukushima nuclear accident related aerosol radioactivity measurement at the CTBT radionuclide station in Sidney of Canada.

    PubMed

    Zhang, Weihua; Bean, Marc; Benotto, Mike; Cheung, Jeff; Ungar, Kurt; Ahier, Brian

    2011-12-01

    A high volume aerosol sampler ("Grey Owl") has been designed and developed at the Radiation Protection Bureau, Health Canada. Its design guidance is based on the need for a low operational cost and reliable sampler to provide daily aerosol monitoring samples that can be used as reference samples for radiological studies. It has been developed to provide a constant air flow rate at low pressure drops (∼3 kPa for a day sampling) with variations of less than ±1% of the full scale flow rate. Its energy consumption is only about 1.5 kW for a filter sampling over 22,000 standard cubic meter of air. It has been demonstrated in this Fukushima nuclear accident related aerosol radioactivity monitoring study at Sidney station, B.C. that the sampler is robust and reliable. The results provided by the new monitoring system have been used to support decision-making in Canada during an emergency response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Operational thermal remote sensing and lava flow monitoring at the Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Patrick, Matthew R.; Kauahikaua, James P.; Orr, Tim R.; Davies, Ashley G.; Ramsey, Michael S.

    2016-01-01

    Hawaiian volcanoes are highly accessible and well monitored by ground instruments. Nevertheless, observational gaps remain and thermal satellite imagery has proven useful in Hawai‘i for providing synoptic views of activity during intervals between field visits. Here we describe the beginning of a thermal remote sensing programme at the US Geological Survey Hawaiian Volcano Observatory (HVO). Whereas expensive receiving stations have been traditionally required to achieve rapid downloading of satellite data, we exploit free, low-latency data sources on the internet for timely access to GOES, MODIS, ASTER and EO-1 ALI imagery. Automated scripts at the observatory download these data and provide a basic display of the images. Satellite data have been extremely useful for monitoring the ongoing lava flow activity on Kīlauea's East Rift Zone at Pu‘u ‘Ō‘ō over the past few years. A recent lava flow, named Kahauale‘a 2, was upslope from residential subdivisions for over a year. Satellite data helped track the slow advance of the flow and contributed to hazard assessments. Ongoing improvement to thermal remote sensing at HVO incorporates automated hotspot detection, effusion rate estimation and lava flow forecasting, as has been done in Italy. These improvements should be useful for monitoring future activity on Mauna Loa.

  12. Optimum aerobic volume control based on continuous in-line oxygen uptake monitoring.

    PubMed

    Svardal, K; Lindtner, S; Winkler, S

    2003-01-01

    Dynamic adaptation of the aerated volume to changing load conditions is essential to maximise the nitrogen removal performance and to minimise energy consumption. A control strategy is presented which provides optimum aerobic volume control (OAV-control concept) based on continuous in-line oxygen uptake monitoring. For ammonium concentrations below 1 mg/l the oxygen uptake rate shows a strong and almost linear dependency on the ammonium concentration. Therefore, the oxygen uptake rate is an ideal indicator for the nitrification performance in activated sludge systems. The OAV-control concept provides dynamic variation of the minimum aerobic volume required for complete nitrification and therefore maximises the denitrification performance. In-line oxygen uptake monitoring is carried out by controlling the oxygen concentration in a continuous aerated zone of the aeration tank and measuring the total air flow to the aeration tank. The total air flow to the aeration tank is directly proportional to the current oxygen uptake rate and can therefore be used as an indicator for the required aerobic volume. The instrumentation requirements for installation of the OAV-control are relatively low, oxygen sensors in the aeration tank and an on-line air flow measurement are needed. This enables individual control of aeration tanks operated in parallel at low investment costs. The OAV-control concept is installed at the WWTP Linz-Asten (1 Mio PE) and shows very good results. Full scale results are presented.

  13. Sensitive gas analysis system on a microchip and application for on-site monitoring of NH3 in a clean room.

    PubMed

    Hiki, Shinichiro; Mawatari, Kazuma; Aota, Arata; Saito, Maki; Kitamori, Takehiko

    2011-06-15

    A portable, highly sensitive, and continuous ammonia gas monitoring system was developed with a microfluidic chip. The system consists of a main unit, a gas pumping unit, and a computer which serves as an operation console. The size of the system is 45 cm width × 30 cm depth × 30 cm height, and the portable system was realized. A highly efficient and stable extraction method was developed by utilizing an annular gas/liquid laminar flow. In addition, a stable gas/liquid separation method with a PTFE membrane was developed by arranging a fluidic network in three dimensions to achieve almost zero dead volume at the gas/liquid extraction part. The extraction rate was almost 100% with a liquid flow rate of 3.5 μL/min and a gas flow rate of 100 mL/min (contact time of ~15 ms), and the concentration factor was 200 times by calculating the NH(3) concentration (w/w unit) in the gas and liquid phases. Stable phase separation and detection was sustained for more than 3 weeks in an automated operation, which was sufficient for the monitoring application. The lower limit of detection calculated based on a signal-to-noise ratio of 3 was 84 ppt, which showed good detectability for NH(3) analysis. We believe that our system is a very powerful tool for gas analysis due to the advantages of portable size, high sensitivity, and continuous monitoring, and it is particularly useful in the semiconductor field.

  14. Final technical report. In-situ FT-IR monitoring of a black liquor recovery boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Markham; Joseph Cosgrove; David Marran

    1999-05-31

    This project developed and tested advanced Fourier transform infrared (FT-IR) instruments for process monitoring of black liquor recovery boilers. The state-of-the-art FT-IR instruments successfully operated in the harsh environment of a black liquor recovery boiler and provided a wealth of real-time process information. Concentrations of multiple gas species were simultaneously monitored in-situ across the combustion flow of the boiler and extractively at the stack. Sensitivity to changes of particulate fume and carryover levels in the process flow were also demonstrated. Boiler set-up and operation is a complex balance of conditions that influence the chemical and physical processes in the combustionmore » flow. Operating parameters include black liquor flow rate, liquor temperature, nozzle pressure, primary air, secondary air, tertiary air, boiler excess oxygen and others. The in-process information provided by the FT-IR monitors can be used as a boiler control tool since species indicative of combustion efficiency (carbon monoxide, methane) and pollutant emissions (sulfur dioxide, hydrochloric acid and fume) were monitored in real-time and observed to fluctuate as operating conditions were varied. A high priority need of the U.S. industrial boiler market is improved measurement and control technology. The sensor technology demonstrated in this project is applicable to the need of industry.« less

  15. Performance of different PEEP valves and helmet outlets at increasing gas flow rates: a bench top study.

    PubMed

    Isgrò, S; Zanella, A; Giani, M; Abd El Aziz El Sayed Deab, S; Pesenti, A; Patroniti, N

    2012-10-01

    Aim of the paper was to assess the performance of different expiratory valves and the resistance of helmet outlet ports at increasing gas flow rates. A gas flow-meter was connected to 10 different expiratory peep valves: 1 water-seal valve, 4 precalibrated fixed PEEP valves and 5 adjustable PEEP valves. Three new valves of each brand, set at different pressure levels (5-7.5-10-12.5-15 cmH(2)O, if available), were tested at increasing gas flow rates (from 30 to 150 L/min). We measured the pressure generated just before the valves. Three different helmets sealed on a mock head were connected at the inlet port with a gas flow-meter while the outlet was left clear. We measured the pressure generated inside the helmet (due to the flow-resistance of the outlet port) at increasing gas flow rates. Adjustable valves showed a variable degree flow-dependency (increasing difference between the measured and the expected pressure at increasing flow rates), while pre-calibrated valves revealed a flow-independent behavior. Water seal valve showed low degree flow-dependency. The pressures generated by the outlet port of the tested helmets ranged from 0.02 to 2.29 cmH(2)O at the highest gas flow rate. Adjustable PEEP valves are not suggested for continuous-flow CPAP systems as their flow-dependency can lead to pressures higher than expected. Precalibrated and water seal valves exhibit the best performance. Different helmet outlet ports do not significantly affect the pressure generated during helmet CPAP. In order to avoid iatrogenic complications gas flow and pressure delivered during helmet CPAP must always be monitored.

  16. Video monitoring in the Gadria debris flow catchment: preliminary results of large scale particle image velocimetry (LSPIV)

    NASA Astrophysics Data System (ADS)

    Theule, Joshua; Crema, Stefano; Comiti, Francesco; Cavalli, Marco; Marchi, Lorenzo

    2015-04-01

    Large scale particle image velocimetry (LSPIV) is a technique mostly used in rivers to measure two dimensional velocities from high resolution images at high frame rates. This technique still needs to be thoroughly explored in the field of debris flow studies. The Gadria debris flow monitoring catchment in Val Venosta (Italian Alps) has been equipped with four MOBOTIX M12 video cameras. Two cameras are located in a sediment trap located close to the alluvial fan apex, one looking upstream and the other looking down and more perpendicular to the flow. The third camera is in the next reach upstream from the sediment trap at a closer proximity to the flow. These three cameras are connected to a field shelter equipped with power supply and a server collecting all the monitoring data. The fourth camera is located in an active gully, the camera is activated by a rain gauge when there is one minute of rainfall. Before LSPIV can be used, the highly distorted images need to be corrected and accurate reference points need to be made. We decided to use IMGRAFT (an opensource image georectification toolbox) which can correct distorted images using reference points and camera location, and then finally rectifies the batch of images onto a DEM grid (or the DEM grid onto the image coordinates). With the orthorectified images, we used the freeware Fudaa-LSPIV (developed by EDF, IRSTEA, and DeltaCAD Company) to generate the LSPIV calculations of the flow events. Calculated velocities can easily be checked manually because of the already orthorectified images. During the monitoring program (since 2011) we recorded three debris flow events at the sediment trap area (each with very different surge dynamics). The camera in the gully was in operation in 2014 which managed to record granular flows and rockfalls, which particle tracking may be more appropriate for velocity measurements. The four cameras allows us to explore the limitations of camera distance, angle, frame rate, and image quality.

  17. Performance monitoring can boost turboexpander efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntire, R.

    1982-07-05

    Focuses on the turboexpander/refrigeration system's radial expander and radial compressor. Explains that radial expander efficiency depends on mass flow rate, inlet pressure, inlet temperature, discharge pressure, gas composition, and shaft speed. Discusses quantifying the performance of the separate components over a range of operating conditions; estimating the increase in performance associated with any hardware change; and developing an analytical (computer) model of the entire system by using the performance curve of individual components. Emphasizes antisurge control and modifying Q/N (flow rate/ shaft speed).

  18. Portable device and method for determining permeability characteristics of earth formations

    DOEpatents

    Shuck, Lowell Z.

    1977-01-01

    The invention is directed to a device which is used for determining permeability characteristics of earth formations at the surface thereof. The determination of the maximum permeability direction and the magnitude of permeability are achieved by employing a device comprising a housing having a central fluid-injection port surrounded by a plurality of spaced-apart fluid flow and pressure monitoring ports radially extending from the central injection port. With the housing resting on the earth formation in a relatively fluid-tight manner as provided by an elastomeric pad disposed therebetween, fluid is injected through the central port into the earth formation and into registry with the fluid-monitoring ports disposed about the injection port. The fluid-monitoring ports are selectively opened and the flow of the fluid through the various fluid ports is measured so as to provide a measurement of flow rates and pressure distribution about the center hole which is indicative on the earth formation permeability direction and magnitude. For example, the azimuthal direction of the fluid-monitoring ports in the direction through which the greatest amount of injected fluid flows as determined by the lowest pressure distribution corresponds to the direction of maximum permeability in the earth formation.

  19. Long-term flow monitoring of submarine gas emanations

    NASA Astrophysics Data System (ADS)

    Spickenbom, K.; Faber, E.; Poggenburg, J.; Seeger, C.

    2009-04-01

    One of the Carbon Capture and Storage (CCS) strategies currently under study is the sequestration of CO2 in sub-seabed geological formations. Even after a thorough review of the geological setting, there is the possibility of leaks from the reservoirs. As part of the EU-financed project CO2ReMoVe (Research, Monitoring, Verification), which aims to develop innovative research and technologies for monitoring and verification of carbon dioxide geological storage, we are working on the development of submarine long-term gas flow monitoring systems. Technically, however, these systems are not limited to CO2 but can be used for monitoring of any free gas emission (bubbles) on the seafloor. The basic design of the gas flow sensor system was derived from former prototypes developed for monitoring CO2 and CH4 on mud volcanoes in Azerbaijan. This design was composed of a raft floating on the surface above the gas vent to collect the bubbles. Sensors for CO2 flux and concentration and electronics for data storage and transmission were mounted on the raft, together with battery-buffered solar panels for power supply. The system was modified for installation in open sea by using a buoy instead of a raft and a funnel on the seafloor to collect the gas, which is then guided above water level through a flexible tube. Besides some technical problems (condensed water in the tube, movement of the buoys due to waves leading to biased measurement of flow rates), this setup provides a cost-effective solution for shallow waters. However, a buoy interferes with ship traffic, and it is also difficult to adapt this design to greater water depths. These requirements can best be complied by a completely submersed system. To allow unattended long-term monitoring in a submarine environment, such a system has to be extremely durable. Therefore, we focussed on developing a mechanically and electrically as simple setup as possible, which has the additional advantage of low cost. The system consists of gas collector, sensor head and pressure housing for electronics and power supply. The collector is a plastic funnel, enclosed in a stainless-steel frame to add weight and stability. The whole unit is fixed to the sediment by nails or sediment screws. The sensor head is equipped with an "inverted tipping-bucket" sensor, which basically works like a turned upside-down rain gauge. It fills with the collected gas until full, then empties completely and starts again, which allows the calculation of the flow rate by container volume and frequency of the cycle. This sensor type is very robust due to a design nearly without moving parts and suitable for very low to medium flow rates. For higher flow rates different sensor heads using turbine wheels or pressure differences can be used. The pressure housing for this prototype is made of aluminium and contains a Hobo Pendant data logger with integrated battery supply. Since this setup is inexpensive, it can be deployed in numbers to cover larger areas. By addition of multi-channel data loggers, data transmission by acoustic modem or cable, relay stations on the seafloor or buoys etc. the infrastructure can be adapted to the environmental setting and financial budget. Prototype tests under laboratory conditions as well as field tests on natural submarine gas vents as an analogue to leaking storage sites have demonstrated the capabilities and robustness of the systems.

  20. Users' guide to system dynamics model describing Coho salmon survival in Olema Creek, Point Reyes National Seashore, Marin County, California

    USGS Publications Warehouse

    Woodward, Andrea; Torregrosa, Alicia; Madej, Mary Ann; Reichmuth, Michael; Fong, Darren

    2014-01-01

    The system dynamics model described in this report is the result of a collaboration between U.S. Geological Survey (USGS) scientists and National Park Service (NPS) San Francisco Bay Area Network (SFAN) staff, whose goal was to develop a methodology to integrate inventory and monitoring data to better understand ecosystem dynamics and trends using salmon in Olema Creek, Marin County, California, as an example case. The SFAN began monitoring multiple life stages of coho salmon (Oncorhynchus kisutch) in Olema Creek during 2003 (Carlisle and others, 2013), building on previous monitoring of spawning fish and redds. They initiated water-quality and habitat monitoring, and had access to flow and weather data from other sources. This system dynamics model of the freshwater portion of the coho salmon life cycle in Olema Creek integrated 8 years of existing monitoring data, literature values, and expert opinion to investigate potential factors limiting survival and production, identify data gaps, and improve monitoring and restoration prescriptions. A system dynamics model is particularly effective when (1) data are insufficient in time series length and/or measured parameters for a statistical or mechanistic model, and (2) the model must be easily accessible by users who are not modelers. These characteristics helped us meet the following overarching goals for this model: Summarize and synthesize NPS monitoring data with data and information from other sources to describe factors and processes affecting freshwater survival of coho salmon in Olema Creek. Provide a model that can be easily manipulated to experiment with alternative values of model parameters and novel scenarios of environmental drivers. Although the model describes the ecological dynamics of Olema Creek, these dynamics are structurally similar to numerous other coastal streams along the California coast that also contain anadromous fish populations. The model developed for Olema can be used, at least as a starting point, for other watersheds. This report describes each of the model elements with sufficient detail to guide the primary target audience, the NPS resource specialist, to run the model, interpret the results, change the input data to explore hypotheses, and ultimately modify and improve the model. Running the model and interpreting the results does not require modeling expertise on the part of the user. Additional companion publications will highlight other aspects of the model, such as its development, the rationale behind the methodological approach, scenario testing, and discussions of its use. System dynamics models consist of three basic elements: stocks, flows, and converters. Stocks are measurable quantities that can change over time, such as animal populations. Flows are any processes or conditions that change the quantity in a stock over time (Ford, 1999), are expressed in the model as a rate of change, and are diagrammed as arrows to or from stocks. Converters are processes or conditions that change the rate of flows. A converter is connected to a flow with an arrow indicating that it alters the rate of change. Anything that influences the rate of change (such as different environmental conditions, other external factors, or feedbacks from other stocks or flows) is modeled as a converter. For example, the number of fish in a population is appropriately modeled as a stock. Mortality is modeled as a flow because it is a rate of change over time used to determine the number of fish in the population. The density-dependent effect on mortality is modeled as a converter because it influences the rate of morality. Together, the flow and converter change the number, or stock, of juvenile coho. The instructions embedded in the stocks, flows, converters, and the sequence in which they are linked are processed by the simulation software with each completed sequence composing a model run. At each modeled time step within the model run, the stock counts will go up, down, or stay the same based on the modeled flows and the influence of converters on those flows. The model includes a user-friendly interface to change model parameters, which allows park staff and others to conduct sensitivity analyses, incorporate future knowledge, and implement scenarios for various future conditions. The model structure incorporates place holders for relationships that we hypothesize are significant but data are currently lacking. Future climate scenarios project stream temperatures higher than any that have ever been recorded at Olema Creek. Exploring climate change impacts on coho survival is a high priority for park staff, therefore the model provides the user with the option to experiment with hypothesized effects and to incorporate effects based on future observations.

  1. 40 CFR Table 24 to Subpart Uuu of... - Continuous Monitoring Systems for Inorganic HAP Emissions From Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... entering the scrubber during coke burn-off and catalyst rejuvenation; and continuous parameter monitoring system to measure and record gas flow rate entering or exiting the scrubber during coke burn-off and... alkalinity of the water (or scrubbing liquid) exiting the scrubber during coke burn-off and catalyst...

  2. 40 CFR Table 24 to Subpart Uuu of... - Continuous Monitoring Systems for Inorganic HAP Emissions From Catalytic Reforming Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... scrubbing liquid) flow rate entering the scrubber during coke burn-off and catalyst rejuvenation; and... during coke burn-off and catalyst rejuvenation 1; and continuous parameter monitoring system to measure and record the pH or alkalinity of the water (or scrubbing liquid) exiting the scrubber during coke...

  3. 40 CFR Table 24 to Subpart Uuu of... - Continuous Monitoring Systems for Inorganic HAP Emissions From Catalytic Reforming Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... scrubbing liquid) flow rate entering the scrubber during coke burn-off and catalyst rejuvenation; and... during coke burn-off and catalyst rejuvenation 1; and continuous parameter monitoring system to measure and record the pH or alkalinity of the water (or scrubbing liquid) exiting the scrubber during coke...

  4. 40 CFR Table 24 to Subpart Uuu of... - Continuous Monitoring Systems for Inorganic HAP Emissions From Catalytic Reforming Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... scrubbing liquid) flow rate entering the scrubber during coke burn-off and catalyst rejuvenation; and... during coke burn-off and catalyst rejuvenation 1; and continuous parameter monitoring system to measure and record the pH or alkalinity of the water (or scrubbing liquid) exiting the scrubber during coke...

  5. Optical measurement of blood flow in exercising skeletal muscle: a pilot study

    NASA Astrophysics Data System (ADS)

    Wang, Detian; Baker, Wesley B.; Parthasarathy, Ashwin B.; Zhu, Liguo; Li, Zeren; Yodh, Arjun G.

    2017-07-01

    Blood flow monitoring during rhythm exercising is very important for sports medicine and muscle dieases. Diffuse correlation spectroscopy(DCS) is a relative new invasive way to monitor blood flow but suffering from muscle fiber motion. In this study we focus on how to remove exercise driven artifacts and obtain accurate estimates of the increase in blood flow from exercise. Using a novel fast software correlator, we measured blood flow in forearm flexor muscles of N=2 healthy adults during handgrip exercise, at a sampling rate of 20 Hz. Combining the blood flow and acceleration data, we resolved the motion artifact in the DCS signal induced by muscle fiber motion, and isolated the blood flow component of the signal from the motion artifact. The results show that muscle fiber motion strongly affects the DCS signal, and if not accounted for, will result in an overestimate of blood flow more than 1000%. Our measurements indicate rapid dilation of arterioles following exercise onset, which enabled blood flow to increase to a plateau of 200% in 10s. The blood flow also rapidly recovered to baseline following exercise in 10s. Finally, preliminary results on the dependence of blood flow from exercise intensity changes will be discussed.

  6. A simple recirculating flow system for the calibration of polar organic chemical integrative samplers (POCIS): effect of flow rate on different water pollutants.

    PubMed

    Di Carro, Marina; Bono, Luca; Magi, Emanuele

    2014-03-01

    A calibration system for POCIS was developed and used to calculate the sampling rates of eight analytes belonging to pesticides, non-steroidal anti-inflammatory drugs and perfluorinated compounds: atrazine, propazine, terbutylazine, diclofenac, ibuprofen, ketoprofen, perfluorooctanoic acid and perfluorooctanesulfonate. Experiments with a linear velocity of 2.0, 5.1, 10.2 and 15.3 cm/s were carried out for 96 h using two different analyte concentrations. POCIS extracts were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), using multiple reaction monitoring to maximize sensitivity. Results highlighted that the calculated sampling rates are rather constant at the considered concentrations and flow rates. Obtained values of sampling rates were then employed to calculate Time-Weighted Average concentration of the analytes in river and drinking waters. © 2013 Published by Elsevier B.V.

  7. Evaluation Of Landfill Gas Decay Constant For Municipal Solid Waste Landfills Operated As Bioreactors

    EPA Science Inventory

    Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...

  8. [Evaluation of vaporizers by anesthetic gas monitors corrected with a new method for preparation of calibration gases].

    PubMed

    Kurashiki, T

    1996-11-01

    For resolving the discrepancy of concentrations found among anesthetic gas monitors, the author proposed a new method using a vaporizer as a standard anesthetic gas generator for calibration. In this method, the carrier gas volume is measured by a mass flow meter (SEF-510 + FI-101) installed before the inlet of the vaporizer. The vaporized weight of volatile anesthetic agent is simultaneously measured by an electronic force balance (E12000S), on which the vaporizer is placed directly. The molar percent of the anesthetic is calculated using these data and is transformed into the volume percent. These gases discharging from the vaporizer are utilized for calibrating anesthetic gas monitors. These monitors are normalized by the linear equation describing the relationship between concentrations of calibration gases and readings of the anesthetic gas monitors. By using normalized monitors, flow rate-concentration performance curves of several anesthetic vaporizers were obtained. The author concludes that this method can serve as a standard in evaluating anesthetic vaporizers.

  9. Determination of pump flow rate during cardiopulmonary bypass in obese patients avoiding hemodilution.

    PubMed

    Santambrogio, Luisa; Leva, Cristian; Musazzi, Giorgio; Bruno, Piergiorgio; Vailati, Andrea; Zecchillo, Franco; Di Credico, Germano

    2009-01-01

    During cardiopulmonary bypass the pump flow is usually set on 2.4 L/min/m(2) of body surface area (BSA) to guarantee adequate tissue perfusion without differences for patient constitutional type. The present study attempts to evaluate the adequacy of pump flow rate in obese patients, considering the ideal weight instead of the real one, avoiding the overflow side effects and hemodilution. Obese patients with body mass index (BMI) > 30 presented for cardiac surgery were randomized in two groups: in one the cardiopulmonary bypass was led traditionally, in the other, pump flow rate was calculated on ideal BMI of 25. Demographics, preoperative tests, and monitoring data were registered. Mortality at hospital discharge and 30 days after were analyzed. The pump flow rate between the groups was different (4.46 vs. 4.87; p = 0.004); there were no differences in organ perfusion (SvO(2); diuresis) and mortality, but the study group presented fewer complications and blood transfusions. The BSA is widely used as the biometric unit to normalize physiologic parameters included pump flow rate, but it is disputable if this practice is correct also in obese patients. The study group, in which pump flow rate was set on ideal BSA, presented no difference in diuresis and mixed venous saturation but fewer complications and fewer perioperative blood transfusions.

  10. Monitoring of Lactobacillus fermentation process by using ion chromatography with a series piezoelectric quartz crystal detector.

    PubMed

    Zhang, J; Xie, Y; Dai, X; Wei, W

    2001-03-01

    A new method monitoring Lactobacillus fermentation process, which combines ion chromatography (IC) with a series piezoelectric quartz crystal (SPQC) technique, is presented in this paper. Monitoring of the fermentation process was realized by examining the rate of production of lactic acid. An automatic membrane dialyser was used for the pretreatment of the sample in on-line monitoring. A mixture of p-hydroxybenzoic acid and N,N-diethylethanolamine was adopted as mobile phase and its flow rate was 0.8 ml/min. The effects of some fermentation conditions were also discussed in detail. Accordingly, the optimal fermentation conditions were obtained. This method is simple and convenient while the results obtained are accurate and reliable.

  11. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a patient with peripheral vascular disease (PVD) were found.

  12. Fluid flow measurements by means of vibration monitoring

    NASA Astrophysics Data System (ADS)

    Campagna, Mauro M.; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano

    2015-11-01

    The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology.

  13. 40 CFR 60.683 - Monitoring of operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... uses a wet electrostatic precipitator control device to comply with the mass emission standard shall... current (amperes) and voltage in each electrical field and the inlet water flow rate. In addition, the...

  14. 40 CFR 60.683 - Monitoring of operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... uses a wet electrostatic precipitator control device to comply with the mass emission standard shall... current (amperes) and voltage in each electrical field and the inlet water flow rate. In addition, the...

  15. [Quantification and monitoring of vascular resistance in the lower limbs by the Doppler method (animal model)

    NASA Technical Reports Server (NTRS)

    Arbeille, P.; Berson, M.; Blondeau, B.; Durand, A.; Bodard, S.; Locatelli, A.; Fox, G. E. (Principal Investigator)

    1995-01-01

    The object of this study was to define and validate a non-invasive method of evaluation and monitoring of vascular resistances in the leg. Blood flow velocity was measured by Doppler ultrasound in an animal model (ewe) with similar blood flow characteristics in the lower limb as man and allowing access to the required invasive measurements for validation of the method (pressure and flow). Vascular resistances distal to the measuring point (femoral, for example) were assessed using the resistance index R = D/S, S being the peak systolic deflection and D that of diastolic reflux of the Doppler spectral analysis of flow in the femoral artery. The values and variations of this resistance index were compared with the vascular resistances calculated from measurements of pressure and flow at the point of Doppler sampling and expressed in mmHg/ml/min. Femoral flow was measured by Doppler ultrasound (Doppler-echo), and mean pressure by an arterial catheter introduced into the abdominal aorta. Compression of the lower limb veins induced a venous return resulting in a reduction of cardiac output and femoral flow. During compression, femoral flow decreased by an average of 29% (p < 0.001) although mean pressure and heart rate did not change significantly. The femoral resistance index (Rf) increased by an average of 37.5% (p < 0.01) and vascular resistances increased by 45.9% (p < 0.01). Injection of 1 mg adrenaline induced peripheral vasoconstriction with an increase in blood pressure and a decrease in heart rate and femoral flow.(ABSTRACT TRUNCATED AT 250 WORDS).

  16. Ultrasonic and optical evaluation of surgical implant materials and devices. A durability study of pericardial bioprostheses

    NASA Technical Reports Server (NTRS)

    Schuster, P. R.

    1984-01-01

    Laser Doppler Anemometry (LDA) and accelerated fatigue testing were used in an attempt to assess the durability of two cardiac value bioprostheses. The LDA system was used to monitor the function of the cardiac valves over time. This was done through flow characterization in an aortic flow chamber, designed to closely simulate in vivo conditions, both in the near vicinity (sinuses of valsalva region) and also somewhat downstream (aortic region) from the values. The accelerated fatigue tester was operated by opening and closing the valves at a rate of 1300 R.P.M., about 18 x the normal rate. The results from the two test valves indicate a definite change in the flow characteristics downstream from the valve after certain accelerated test intervals. The high velocity cross-sectional flow area seems to increase over time in use, causing a decrease in the peak velocity. The tissue became more flaccid in certain areas, and tears were apparent at about 9.4 million cycles for the Ionescu-Shiley valve and at 24 million cycles for the Carpentier-Edwards valve. The use of Doppler ultrasound as a technique for monitoring the function of bioprostheses over time in vivo is also discussed.

  17. Critical care nursing: Embedded complex systems.

    PubMed

    Trinier, Ruth; Liske, Lori; Nenadovic, Vera

    2016-01-01

    Variability in parameters such as heart rate, respiratory rate and blood pressure defines healthy physiology and the ability of the person to adequately respond to stressors. Critically ill patients have lost this variability and require highly specialized nursing care to support life and monitor changes in condition. The critical care environment is a dynamic system through which information flows. The critical care unit is typically designed as a tree structure with generally one attending physician and multiple nurses and allied health care professionals. Information flow through the system allows for identification of deteriorating patient status and timely interventionfor rescue from further deleterious effects. Nurses provide the majority of direct patient care in the critical care setting in 2:1, 1:1 or 1:2 nurse-to-patient ratios. The bedside nurse-critically ill patient relationship represents the primary, real-time feedback loop of information exchange, monitoring and treatment. Variables that enhance information flow through this loop and support timely nursing intervention can improve patient outcomes, while barriers can lead to errors and adverse events. Examining patient information flow in the critical care environment from a dynamic systems perspective provides insights into how nurses deliver effective patient care and prevent adverse events.

  18. A Wearable Microfluidic Sensing Patch for Dynamic Sweat Secretion Analysis.

    PubMed

    Nyein, Hnin Yin Yin; Tai, Li-Chia; Ngo, Quynh Phuong; Chao, Minghan; Zhang, George B; Gao, Wei; Bariya, Mallika; Bullock, James; Kim, Hyungjin; Fahad, Hossain M; Javey, Ali

    2018-05-25

    Wearable sweat sensing is a rapidly rising research area driven by its promising potential in health, fitness, and diagnostic applications. Despite the growth in the field, major challenges in relation to sweat metrics remain to be addressed. These challenges include sweat rate monitoring for its complex relation with sweat compositions and sweat sampling for sweat dynamics studies. In this work, we present a flexible microfluidic sweat sensing patch that enhances real-time electrochemical sensing and sweat rate analysis via sweat sampling. The device contains a spiral-patterned microfluidic component that is embedded with ion-selective sensors and an electrical impedance-based sweat rate sensor on a flexible plastic substrate. The patch is enabled to autonomously perform sweat analysis by interfacing the sensing component with a printed circuit board that is capable of on-site signal conditioning, analysis, and transmission. Progressive sweat flow in the microfluidic device, governed by the pressure induced by the secreted sweat, enhances sweat sampling and electrochemical detection via a defined sweat collection chamber and a directed sweat route. The characteristic of the sweat rate sensor is validated through a theoretical simulation, and the precision and accuracy of the flow rate is verified with a commercial syringe pump and a Macroduct sweat collector. On-body simultaneous monitoring of ion (H + , Na + , K + , Cl - ) concentration and sweat rate is also demonstrated for sensor functionality. This sweat sensing patch provides an integrated platform for a comprehensive sweat secretion analysis and facilitates physiological and clinical investigations by closely monitoring interrelated sweat parameters.

  19. Improved security monitoring method for network bordary

    NASA Astrophysics Data System (ADS)

    Gao, Liting; Wang, Lixia; Wang, Zhenyan; Qi, Aihua

    2013-03-01

    This paper proposes a network bordary security monitoring system based on PKI. The design uses multiple safe technologies, analysis deeply the association between network data flow and system log, it can detect the intrusion activities and position invasion source accurately in time. The experiment result shows that it can reduce the rate of false alarm or missing alarm of the security incident effectively.

  20. A simple, remote, video based breathing monitor.

    PubMed

    Regev, Nir; Wulich, Dov

    2017-07-01

    Breathing monitors have become the all-important cornerstone of a wide variety of commercial and personal safety applications, ranging from elderly care to baby monitoring. Many such monitors exist in the market, some, with vital signs monitoring capabilities, but none remote. This paper presents a simple, yet efficient, real time method of extracting the subject's breathing sinus rhythm. Points of interest are detected on the subject's body, and the corresponding optical flow is estimated and tracked using the well known Lucas-Kanade algorithm on a frame by frame basis. A generalized likelihood ratio test is then utilized on each of the many interest points to detect which is moving in harmonic fashion. Finally, a spectral estimation algorithm based on Pisarenko harmonic decomposition tracks the harmonic frequency in real time, and a fusion maximum likelihood algorithm optimally estimates the breathing rate using all points considered. The results show a maximal error of 1 BPM between the true breathing rate and the algorithm's calculated rate, based on experiments on two babies and three adults.

  1. Physics Simulation Software for Autonomous Propellant Loading and Gas House Autonomous System Monitoring

    NASA Technical Reports Server (NTRS)

    Regalado Reyes, Bjorn Constant

    2015-01-01

    1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.

  2. Breath acetone monitoring by portable Si:WO3 gas sensors

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2013-01-01

    Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (~20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702

  3. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  4. 40 CFR 60.4870 - How do I establish my operating limits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Sewage Sludge Incineration Units Initial Compliance Requirements § 60.4870 How do I establish my... compliance with the emission limit for particulate matter, cadmium, and lead. (4) For an activated carbon... limit and monitor sorbent injection rate and carrier gas flow rate (or carrier gas pressure drop) if you...

  5. 40 CFR 60.4870 - How do I establish my operating limits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Sewage Sludge Incineration Units Initial Compliance Requirements § 60.4870 How do I establish my... compliance with the emission limit for particulate matter, cadmium, and lead. (4) For an activated carbon... limit and monitor sorbent injection rate and carrier gas flow rate (or carrier gas pressure drop) if you...

  6. 40 CFR 60.4870 - How do I establish my operating limits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Sewage Sludge Incineration Units Initial Compliance Requirements § 60.4870 How do I establish my... compliance with the emission limit for particulate matter, cadmium, and lead. (4) For an activated carbon... limit and monitor sorbent injection rate and carrier gas flow rate (or carrier gas pressure drop) if you...

  7. 40 CFR 60.4870 - How do I establish my operating limits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Sewage Sludge Incineration Units Initial Compliance Requirements § 60.4870 How do I establish my... compliance with the emission limit for particulate matter, cadmium, and lead. (4) For an activated carbon... limit and monitor sorbent injection rate and carrier gas flow rate (or carrier gas pressure drop) if you...

  8. Dynamic rating curve assessment in hydrometric stations and calculation of the associated uncertainties : Quality and monitoring indicators

    NASA Astrophysics Data System (ADS)

    Morlot, Thomas; Perret, Christian; Favre, Anne-Catherine

    2013-04-01

    Whether we talk about safety reasons, energy production or regulation, water resources management is one of EDF's (French hydropower company) main concerns. To meet these needs, since the fifties EDF-DTG operates a hydrometric network that includes more than 350 hydrometric stations. The data collected allow real time monitoring of rivers (hydro meteorological forecasts at points of interests), as well as hydrological studies and the sizing of structures. Ensuring the quality of stream flow data is a priority. A rating curve is an indirect method of estimating the discharge in rivers based on water level measurements. The value of discharge obtained thanks to the rating curve is not entirely accurate due to the constant changes of the river bed morphology, to the precision of the gaugings (direct and punctual discharge measurements) and to the quality of the tracing. As time goes on, the uncertainty of the estimated discharge from a rating curve « gets older » and increases: therefore the final level of uncertainty remains particularly difficult to assess. Moreover, the current EDF capacity to produce a rating curve is not suited to the frequency of change of the stage-discharge relationship. The actual method does not take into consideration the variation of the flow conditions and the modifications of the river bed which occur due to natural processes such as erosion, sedimentation and seasonal vegetation growth. In order to get the most accurate stream flow data and to improve their reliability, this study undertakes an original « dynamic» method to compute rating curves based on historical gaugings from a hydrometric station. A curve is computed for each new gauging and a model of uncertainty is adjusted for each of them. The model of uncertainty takes into account the inaccuracies in the measurement of the water height, the quality of the tracing, the uncertainty of the gaugings and the aging of the confidence intervals calculated with a variographic analysis. These rating curves enable to provide values of stream flow taking into account the variability of flow conditions, while providing a model of uncertainties resulting from the aging of the rating curves. By taking into account the variability of the flow conditions and the life of the hydrometric station, this original dynamic method can answer important questions in the field of hydrometry such as « How many gaugings a year have to be made so as to produce stream flow data with an average uncertainty of X% ? » and « When and in which range of water flow do we have to realize those gaugings ? ». KEY WORDS : Uncertainty, Rating curve, Hydrometric station, Gauging, Variogram, Stream Flow

  9. Development and field deployment of an instrument to measure ozone production rates in the troposphere

    NASA Astrophysics Data System (ADS)

    Sklaveniti, S.; Locoge, N.; Dusanter, S.; Leonardis, T.; Lew, M.; Bottorff, B.; Sigler, P. S. R.; Stevens, P. S.; Wood, E. C. D.; Kundu, S.; Gentner, D. R.

    2015-12-01

    Ozone is a greenhouse gas and a primary constituent of urban smog, irritating the respiratory system and damaging the vegetation. The current understanding of ozone chemistry in the troposphere indicates that net ozone production P(O3) occurs when peroxy radicals (HO2+RO2) react with NO producing NO2, whose photolysis leads to O3 formation. P(O3) values can be calculated from peroxy radical concentrations, either from ambient measurements or box model outputs. These two estimation methods often disagree for NOx mixing ratios higher than a few ppb, questioning our ability to measure peroxy radicals under high NOx conditions or indicating that there are still unknowns in our understanding of the radical and ozone production chemistry. Direct measurements of ozone production rates will help to address this issue and improve air quality regulations. We will present the development of an instrument for direct measurements of ozone production rates (OPR). The OPR instrument consists of three parts: (i) two quartz flow tubes sampling ambient air ("Ambient" and "Reference" flow tube), (ii) an O3-to-NO2 conversion unit, and (iii) a Cavity Attenuated Phase Shift (CAPS) monitor to measure NO2. The air in the Ambient flow tube undergoes the same photochemistry as in ambient air, while the Reference flow tube is covered by a UV filter limiting the formation of ozone. Exiting the flow tubes, ozone is converted into NO2 and the sum O3+NO2 (Ox) is measured by the CAPS monitor. The difference in Ox between the two flow tubes divided by the residence time yields the Ox production rate, P(Ox). P(O3) is assumed to be equal to P(Ox) when NO2 is efficiently photolyzed during daytime. We will present preliminary results from the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC) campaign in Bloomington, Indiana, during July 2015, where ozone production rates were measured by introducing various amounts of NO inside the flow tubes to investigate the ozone production sensitivity.

  10. Uranyl adsorption kinetics within silica gel: dependence on flow velocity and concentration

    NASA Astrophysics Data System (ADS)

    Dodd, Brandon M.; Tepper, Gary

    2017-09-01

    Trace quantities of a uranyl dissolved in water were measured using a simple optical method. A dilute solution of uranium nitrate dissolved in water was forced through nanoporous silica gel at fixed and controlled water flow rates. The uranyl ions deposited and accumulated within the silica gel and the uranyl fluorescence within the silica gel was monitored as a function of time using a light emitting diode as the excitation source and a photomultiplier tube detector. It was shown that the response time of the fluorescence output signal at a particular volumetric flow rate or average liquid velocity through the silica gel can be used to quantify the concentration of uranium in water. The response time as a function of concentration decreased with increasing flow velocity.

  11. 40 CFR 98.447 - Records that must be retained.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Quarterly records of CO2 received, including mass flow rate of contents of containers (mass or volumetric... specified for retention in your EPA-approved MRV plan. (b) You must complete your monitoring plans, as...

  12. 40 CFR 98.447 - Records that must be retained.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Quarterly records of CO2 received, including mass flow rate of contents of containers (mass or volumetric... specified for retention in your EPA-approved MRV plan. (b) You must complete your monitoring plans, as...

  13. 40 CFR 98.447 - Records that must be retained.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Quarterly records of CO2 received, including mass flow rate of contents of containers (mass or volumetric... specified for retention in your EPA-approved MRV plan. (b) You must complete your monitoring plans, as...

  14. 40 CFR 60.103a - Work practice standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... becomes an affected flare subject to this subpart. The plan must include: (1) A diagram illustrating all connections to the flare; (2) Methods for monitoring flow rate to the flare, including a detailed description...

  15. 40 CFR 60.103a - Work practice standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... becomes an affected flare subject to this subpart. The plan must include: (1) A diagram illustrating all connections to the flare; (2) Methods for monitoring flow rate to the flare, including a detailed description...

  16. Relationship between unstimulated salivary flow rate and saliva composition of healthy children in Taiwan.

    PubMed

    Wu, Katie P; Ke, Jyh-Yuh; Chung, Chia-Ying; Chen, Chia-Ling; Hwang, Tsong-Long; Chou, Ming-Yen; Wong, Alice M K; Hu, Ching-Fang; Lee, Yu-Cheng

    2008-01-01

    Saliva is one of the most important factors in regulating oral health, with flow rate and composition changing throughout development and during disease. In view of the shortage of data, the present study aimed to shed light on the relationship between unstimulated salivary flow rate and saliva composition of healthy children in Taiwan. Forty-four normal, healthy children from 3-14 years of age were divided into three age groups: pre-school, elementary school and junior-high school. All participants received salivary flow rate, pH and saliva composition analysis under unstimulated conditions. One-way ANOVA and Pearson's correlation were used. Statistical significance was set at p < 0.05. Our results suggest that, under unstimulated conditions, the salivary flow rate of the elementary school group was greater than that of the pre-school group (p < 0.05). No difference in pH was found among the three groups. Intergroup salivary calcium, phosphorus and amylase did not reach statistical difference. As the flow rate increased, the pH increased (r = 0.364, p < 0.05) but the protein level decreased (r = -0.473, p < 0.05). In addition, salivary protein was positively correlated to age (r = 0.479, p < 0.05) and negatively correlated to pH (r = -0.361, p < 0.01). Age-related increase in the unstimulated salivary flow rate of pre-school and elementary school groups was noted. As the flow rate increased, the pH increased but the protein level decreased. The information obtained may serve as reference values for the growing interest in saliva as a diagnostic tool, especially monitoring those with neurological or oral motor dysfunction.

  17. Aquifer-test data and borehole flow test results from monitoring well 16P52 at the South Trend development area number 1, McKinley County, New Mexico

    USGS Publications Warehouse

    Stevens, Ken

    1984-01-01

    Mobil Oil Corporation personnel have designated at least four sandstone intervals, A-D (top to bottom), on the single-point resistivity logs of wells drilled in the South Trend Development Area. This report presents time-drawdown data reported by Mobil Oil Corporation from singly (A or B or C or D sandstone interval) and multiply (A, B, C, and D sandstone Intervals) completed wells for the August 16-17, 1982 aquifer test at the South Trend Development Area Site 1. This report also describes the results of flowmeter and brine-injection tests by the U.S. Geological Survey in monitoring well 16P52. Well 16P52 is open to sandstone intervals A, B, C, and D. On July 26, 1982, water was injected at a rate of 1.43 cubic feet per minute above the A sandstone interval in well 16P52. Based on flowmeter data, the calculated rates of flow were 1.23 cubic feet per minute between the A and B sandstone intervals, 0.63 cubic foot per minute between the B and C sandstone intervals, and less than 0.17 cubic foot per minute between the C and D sandstone intervals. Based upon brine-slug-injection tests conducted during August 1982, the calculated flow rates between sandstone intervals A and B are as follows: 0.01 cubic foot per minute upward flow (B to A) about 5 hours after pumping began for the aquifer test; 0.004 cubic foot per minute upward flow (B to A) about 21 hours after pumping began; and 0.0 cubic foot per minute about 46 hours after the pump was turned off. All other brine-slug-injection tests measured no flow.

  18. Calculating e-flow using UAV and ground monitoring

    NASA Astrophysics Data System (ADS)

    Zhao, C. S.; Zhang, C. B.; Yang, S. T.; Liu, C. M.; Xiang, H.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Yu, X. Y.; Shao, N. F.; Yu, Q.

    2017-09-01

    Intense human activity has led to serious degradation of basin water ecosystems and severe reduction in the river flow available for aquatic biota. As an important water ecosystem index, environmental flows (e-flows) are crucial for maintaining sustainability. However, most e-flow measurement methods involve long cycles, low efficiency, and transdisciplinary expertise. This makes it impossible to rapidly assess river e-flows at basin or larger scales. This study presents a new method to rapidly assessing e-flows coupling UAV and ground monitorings. UAV was firstly used to calculate river-course cross-sections with high-resolution stereoscopic images. A dominance index was then used to identify key fish species. Afterwards a habitat suitability index, along with biodiversity and integrity indices, was used to determine an appropriate flow velocity with full consideration of the fish spawning period. The cross-sections and flow velocity values were then combined into AEHRA, an e-flow assessment method for studying e-flows and supplying-rate. To verify the results from this new method, the widely used Tennant method was employed. The root-mean-square errors of river cross-sections determined by UAV are less than 0.25 m, which constitutes 3-5% water-depth of the river cross-sections. In the study area of Jinan city, the ecological flow velocity (VE) is equal to or greater than 0.11 m/s, and the ecological water depth (HE) is greater than 0.8 m. The river ecosystem is healthy with the minimum e-flow requirements being always met when it is close to large rivers, which is beneficial for the sustainable development of the water ecosystem. In the south river channel of Jinan, the upstream flow mostly meets the minimum e-flow requirements, and the downstream flow always meets the minimum e-flow requirements. The north of Jinan consists predominantly of artificial river channels used for irrigation. Rainfall rarely meets the minimum e-flow and irrigation water requirements. We suggest that the water shortage problem can be partly solved by diversion of the Yellow River. These results can provide useful information for ecological operations and restoration. The method used in this study for calculating e-flow based on a combination of UAV and ground monitoring can effectively promote research progress into basin e-flow, and provide an important reference for e-flow monitoring around the world.

  19. 40 CFR 63.9916 - What test methods and other procedures must I use to establish and demonstrate initial compliance...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...

  20. 40 CFR 63.9916 - What test methods and other procedures must I use to establish and demonstrate initial compliance...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...

  1. 40 CFR 63.9916 - What test methods and other procedures must I use to establish and demonstrate initial compliance...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...

  2. 40 CFR 63.9916 - What test methods and other procedures must I use to establish and demonstrate initial compliance...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...

  3. 40 CFR 63.9916 - What test methods and other procedures must I use to establish and demonstrate initial compliance...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...

  4. Guidance for the Development of Air Force Storm Water Sampling Programs

    DTIC Science & Technology

    1993-09-01

    38 Storm Water Quality Monitoring ................. 39 Determining Flow Rate ....................... 42 Weirs and Flumes... water quality monitoring it is not possible to analyze the entire nmoff from a drainage basin. The objective of water quality sampling is to collect a...development of storm water pollution prevention plans. Best management practices can also be developed to control the pollution sources identified. In storm

  5. Long-term hydrothermal temperature and pressure monitoring equipped with a Kuroko cultivation apparatus on the deep-sea artificial hydrothermal vent at the middle Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Masaki, Y.; Nozaki, T.; Saruhashi, T.; Kyo, M.; Sakurai, N.; Yokoyama, T.; Akiyama, K.; Watanabe, M.; Kumagai, H.; Maeda, L.; Kinoshita, M.

    2017-12-01

    The middle Okinawa Trough, located along the Ryukyu- arc on the margin of the East China Sea, has several active hydrothermal fields. From February to March 2016, Cruise CK16-01 by D/V Chikyu targeted the Iheya-North Knoll and southern flank of the Iheya Minor Ridge to comprehend sub-seafloor geological structure and polymetallic sulfide mineralization. In this cruise, we installed two Kuroko cultivation apparatuses equipped with P/T sensors, flowmeter and load cell to monitor pressure, temperature and flow rate of hydrothermal fluid discharged from the artificial hydrothermal vent together with weight of hydrothermal precipitate. During Cruise KR16-17 in January 2017, two cultivation cells with sensor loggers were successfully recovered by ROV Kaiko MK-IV and R/V Kairei. We report these physical sensor data obtained by more than 10 months monitoring at two deep-sea artificial hydrothermal vents through many first and challenging operations.Hole C9017B at southern flank of the Iheya Minor Ridge (water depth of 1,500 mbsl), fluid temperature was constant ca. 75 ºC for 5 months from the beginning of monitoring. Then temperature gradually decrease to be 40 ºC. In November 2016, temperature and pressure suddenly dropped and quickly recovered due to the disturbance of subseafloor hydrology, induced by another drilling operation at Hole C9017A which is 10.8 meters northeastward from Hole C9017B during Cruise CK16-05. Temperature data exhibit conspicuous periodic 12.4hour cycles and this is attributable to oceanic tidal response. The amplitude of temperature variations increased along with decline of the temperature variations increased along with decline of the temperature. The average flow rate was 67 L/min for 9 hours from the onset of monitoring.Hole C9024A at the Iheya-North Knoll (water depth of 1,050 msl), the maximum temperature reached 308 ºC, which is similar to the maximum value of 311 ºC obtained from the ROV thermometer. The average flow rate was 289 L/min for 8 days from onset of monitoring.

  6. UF6 Density and Mass Flow Measurements for Enrichment Plants using Acoustic Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Good, Morris S.; Smith, Leon E.; Warren, Glen A.

    A key enabling capability for enrichment plant safeguards being considered by the International Atomic Energy Agency (IAEA) is high-accuracy, noninvasive, unattended measurement of UF6 gas density and mass flow rate. Acoustic techniques are currently used to noninvasively monitor gas flow in industrial applications; however, the operating pressures at gaseous centrifuge enrichment plants (GCEPs) are roughly two orders magnitude below the capabilities of commercial instrumentation. Pacific Northwest National Laboratory is refining acoustic techniques for estimating density and mass flow rate of UF6 gas in scenarios typical of GCEPs, with the goal of achieving 1% measurement accuracy. Proof-of-concept laboratory measurements using amore » surrogate gas for UF6 have demonstrated signatures sensitive to gas density at low operating pressures such as 10–50 Torr, which were observed over the background acoustic interference. Current efforts involve developing a test bed for conducting acoustic measurements on flowing SF6 gas at representative flow rates and pressures to ascertain the viability of conducting gas flow measurements under these conditions. Density and flow measurements will be conducted to support the evaluation. If successful, the approach could enable an unattended, noninvasive approach to measure mass flow in unit header pipes of GCEPs.« less

  7. Twenty years of experience in monitoring 41Ar in a research reactor and decrease of its discharge into the environment.

    PubMed

    Fukui, M

    2004-04-01

    The radioactive gas 41Ar has been produced at high concentration by neutron activation near the reactor core in the Kyoto University Research Reactor. A pipe line for an exhaust stream, so-called sweep gas, was fabricated at the construction of the reactor in 1964 in order to exhale 41Ar from the facilities above to the environment. Other exhaust lines with decay tanks were established separately from the sweep line for both the cold neutron source in 1986 and the heavy-water tank in 1996, respectively, because a higher amount of 41Ar was thought to be produced from these facilities due to the improvement. As a result, a slight change in the flow rate of the exhaust was found to have a great deal of influence on both the 41Ar concentration in the reactor room and the rate of emission from the stack. By monitoring the exhaust air from the decay tanks, the mechanism for decreasing the emission was clarified together with identifying an obstacle, i.e., the condensate against the steady state flow, formed in the exhaust pipe. By setting the flow rate suitably in the exhaust line, the rate of 41Ar emission from the biological shielding into both the work place in the reactor room and the environment has been controlled as low as reasonably achievable.

  8. Simulating nailfold capillaroscopy sequences to evaluate algorithms for blood flow estimation.

    PubMed

    Tresadern, P A; Berks, M; Murray, A K; Dinsdale, G; Taylor, C J; Herrick, A L

    2013-01-01

    The effects of systemic sclerosis (SSc)--a disease of the connective tissue causing blood flow problems that can require amputation of the fingers--can be observed indirectly by imaging the capillaries at the nailfold, though taking quantitative measures such as blood flow to diagnose the disease and monitor its progression is not easy. Optical flow algorithms may be applied, though without ground truth (i.e. known blood flow) it is hard to evaluate their accuracy. We propose an image model that generates realistic capillaroscopy videos with known flow, and use this model to quantify the effect of flow rate, cell density and contrast (among others) on estimated flow. This resource will help researchers to design systems that are robust under real-world conditions.

  9. Opportunities and challenges for the application of SP measurements to monitor subsurface flow (Invited)

    NASA Astrophysics Data System (ADS)

    Jackson, M.; Vinogradov, J.; MacAllister, D.; Butler, A. P.; Leinov, E.; Zhang, J.

    2013-12-01

    Measurements of self-potential (SP) have been proposed or applied to monitor flow in the shallow subsurface in numerous settings, including volcanoes, earthquake zones, geothermal fields and hydrocarbon reservoirs, to detect leaks from dams, tanks and embankments, and to characterize groundwater flow and hydraulic properties. To interpret the measurements, it is generally assumed that the SP is dominated by the streaming potential, arising from the drag of excess electrical charge in the diffuse part of the electrical double layer at the mineral-fluid interfaces. The constitutive equation relating electrical current density j to the driving forces ▽V and ▽P is then j = -σ▽V -σC▽P=-σ▽V + Qv (1) where V is the streaming potential, P is the water pressure, σ is the saturated rock conductivity, v is the Darcy velocity, C is the streaming potential coupling coefficient, and Q is the excess charge transported by the flow. Equation (1) shows that there is a close relationship between flow properties of interest, such as the pressure gradient or Darcy velocity, and the streaming potential component of the SP. Hence SP measurements are an attractive method to monitor subsurface flow. However, the problem with interpreting the measurements is that both C and Q can vary over orders of magnitude, in response to variations in pore-water salinity, temperature, rock texture, and the presence of NAPLs in the pore-space. Moreover, additional current sources may be present if there are gradients in concentration or temperature, arising from differential rates of ion migration down gradient (diffusion potentials), and because of charge exclusion from the pore-space (exclusion potentials). In general, these additional current sources are neglected. This talk suggests a potential new opportunity for the application of SP measurements to monitor subsurface flow, in which the signal of interest arises from salinity rather than pressure gradients. Saline intrusion into freshwater aquifers is a global problem, threatening the water supply of millions of people in coastal settlements. Abstraction rates could be much more efficiently managed if encroaching saline water could be detected before it arrived at the borehole. However, current monitoring is based largely on borehole conductivity measurements, which requires a dense network of monitoring boreholes to map the saline front. Recent laboratory and field experiments suggest that the concentration gradient associated with the front generates an SP signal which can be detected at an abstraction well prior to the arrival of the front, potentially allowing monitoring using a comparatively cheap array of non-polarising borehole electrodes. Current challenges in interpreting SP measurements for subsurface flow are also discussed, particularly the use of models to predict the values of C and Q. The importance of accounting for the pore-level distribution of flow and excess charge in such models is emphasised, and a way forward is suggested in which pore-scale network models, used previously to predict relative permeability and capillary pressure, are extended to include charge transport at the pore-level.

  10. Internal cycle modeling and environmental assessment of multiple cycle consumer products.

    PubMed

    Tsiliyannis, C A

    2012-01-01

    Dynamic annual flow models incorporating consumer discard and usage loss and featuring deterministic and stochastic end-of-cycle (EOC) return by the consumer are developed for reused or remanufactured products (multiple cycle products, MCPs), including fast and slow cycling, short and long-lived products. It is shown that internal flows (reuse and overall consumption) increase proportionally to the dimensionless internal cycle factor (ICF) which is related to environmental impact reduction factors. The combined reuse/recycle (or cycle) rate is shown capable for shortcut, albeit effective, monitoring of environmental performance in terms of waste production, virgin material extraction and manufacturing impacts of all MCPs, a task, which physical variables (lifetime, cycling frequency, mean or total number of return trips) and conventional rates, via which environmental policy has been officially implemented (e.g. recycling rate) cannot accomplish. The cycle rate is shown to be an increasing (hyperbolic) function of ICF. The impact of the stochastic EOC return characteristics on total reuse and consumption flows, as well as on eco-performance, is assessed: symmetric EOC return has a small, positive effect on performance compared to deterministic, while early shifted EOC return is more beneficial. In order to be efficient, environmental policy should set higher minimum reuse targets for higher trippage MCPs. The results may serve for monitoring, flow accounting and comparative eco-assessment of MCPs. They may be useful in identifying reachable and efficient reuse/recycle targets for consumer products and in planning return via appropriate labelling and digital coding for enhancing environmental performance, while satisfying consumer demand. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Continuous monitoring of bacterial attachment

    NASA Technical Reports Server (NTRS)

    Koeing, D. W.; Mishra, S. K.; Pierson, D. L.

    1994-01-01

    A major concern with the Space Station Freedom (SSF) water supply system is the control of longterm microbial contamination and biofilm development in the water storage and distribution systems. These biofilms have the potential for harboring pathogens as well as microbial strains containing resistance factors that could negatively influence crew health. The proposed means for disinfecting the water system on SSF (iodine) may encourage the selection of resistant strains. In fact, biofilm bacteria were observed in water lines from the Space Shuttle Columbia (OV-102); therefore, an alternative remediation method is required to disinfect spacecraft water lines. A thorough understanding of colonization events and the physiological parameters that will influence bacteria adhesion is required. The limiting factor for development of this technology is the ability to continuously monitor adhesion events and the effects of biocides on sessile bacteria. Methods were developed to allow bacterial adhesion and subsequent biocidal treatment to be monitored continuously. This technique couples automated image analysis with a continuous flow of a bacterial suspension through an optical flow cell. A strain of Pseudomonas cepacia isolated from the water supply of the Space Shuttle Discovery (OV-103) during STS-39 was grown in a nitrogen-limited continuous culture. This culture was challenged continuously with iodine during growth, and the adhesion characteristics of this strain was measure with regard to flow rate. Various biocides (ozone, hypochlorite, and iodine) were added to the flow stream to evaluate how well each chemical removed the bacteria. After biocide treatment, a fresh bacterial suspension was introduced into the flow cell, and the attachment rate was evaluated on the previously treated surface. This secondary fouling was again treated with biocide to determine the efficacy of multiple batch chemical treatments in removing biofilm.

  12. Assessing the thermal dissipation sap flux density method for monitoring cold season water transport in seasonally snow-covered forests

    DOE PAGES

    Chan, Allison M.; Bowling, David R.

    2017-05-26

    Productivity of conifers in seasonally snow-covered forests is high before and during snowmelt when environmental conditions are optimal for photosynthesis. Climate change is altering the timing of spring in many locations, and changes in the date of transition from winter dormancy can have large impacts on annual productivity. Sap flow methods provide a promising approach to monitor tree activity during the cold season and the winter–spring and fall–winter transitions. Although sap flow techniques have been widely used, cold season results are generally not reported. Here we examine the feasibility of using the Granier thermal dissipation (TD) sap flux density methodmore » to monitor transpiration and dormancy of evergreen conifers during the cold season. We conducted a laboratory experiment which demonstrated that the TD method reliably detects xylem water transport (when it occurs) both at near freezing temperature and at low flow rate, and that the sensors can withstand repeated freeze–thaw events. However, the dependence between sensor output and water transport rate in these experiments differed from the established TD relation. In field experiments, sensors installed in two Abies forests lasted through two winters and a summer with low failure. The baseline (no-flow) sensor output varied considerably with temperature during the cold season, and a new baseline algorithm was developed to accommodate this variation. The Abies forests differed in elevation (2070 and 2620 m), and there was a clear difference in timing of initiation and cessation of transpiration between them. We conclude that the TD method can be reliably used to examine water transport during cold periods with associated low flow conditions« less

  13. Assessing the thermal dissipation sap flux density method for monitoring cold season water transport in seasonally snow-covered forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Allison M.; Bowling, David R.

    Productivity of conifers in seasonally snow-covered forests is high before and during snowmelt when environmental conditions are optimal for photosynthesis. Climate change is altering the timing of spring in many locations, and changes in the date of transition from winter dormancy can have large impacts on annual productivity. Sap flow methods provide a promising approach to monitor tree activity during the cold season and the winter–spring and fall–winter transitions. Although sap flow techniques have been widely used, cold season results are generally not reported. Here we examine the feasibility of using the Granier thermal dissipation (TD) sap flux density methodmore » to monitor transpiration and dormancy of evergreen conifers during the cold season. We conducted a laboratory experiment which demonstrated that the TD method reliably detects xylem water transport (when it occurs) both at near freezing temperature and at low flow rate, and that the sensors can withstand repeated freeze–thaw events. However, the dependence between sensor output and water transport rate in these experiments differed from the established TD relation. In field experiments, sensors installed in two Abies forests lasted through two winters and a summer with low failure. The baseline (no-flow) sensor output varied considerably with temperature during the cold season, and a new baseline algorithm was developed to accommodate this variation. The Abies forests differed in elevation (2070 and 2620 m), and there was a clear difference in timing of initiation and cessation of transpiration between them. We conclude that the TD method can be reliably used to examine water transport during cold periods with associated low flow conditions« less

  14. Monitoring bedload entrainment and transport in snowmelt-dominated forest streams of the Columbia Mountains, Canada

    NASA Astrophysics Data System (ADS)

    Green, Kim; Brardinoni, Francesco; Alila, Younes

    2014-05-01

    We monitor bedload transport and water discharge at six stations in two forested headwater streams of the Columbia Mountains, Canada. The monitoring network of sediment traps is designed to examine the effects of channel bed texture, and the influence of alluvial (i.e., step pools, and riffle pools) and semi-alluvial morphologies (i.e., boulder cascades and forced step pools) on bedload entrainment and transport. Results suggest that patterns of bedload entrainment are influenced by flow resistance while the value of the critical dimensionless shear stress for mobilization of the surface D50 varies due to channel gradient, grain sheltering effects and, to a less extent, flow resistance. Regardless of channel morphology we observe: (i) equal-threshold entrainment for all mobile grains in channels with high grain and/or form resistance; and (ii) initial equal-threshold entrainment of calibers ≤ 22mm, and subsequent size-selective entrainment of coarser material in channels with low form resistance (e.g. riffle pool). Scaled fractional analysis reveals that in reaches with high flow resistance most bedload transport occurs in partial mobility fashion relative to the available bed material and that only material finer than 16mm attains full mobility during over-bank flows. Equal mobility transport for a wider range of grain sizes is achieved in reaches with reduced flow resistance. Evaluation of bedload rating curves across sites identifies that grain effects predominate with respect to bedload flux whereas morphological effects (i.e. form resistance) play a secondary role. Application of selected empirical formulae developed in steep alpine channels present variable success in predicting transport rates in the study reaches.

  15. Design flow factors for sewerage systems in small arid communities.

    PubMed

    Imam, Emad H; Elnakar, Haitham Y

    2014-09-01

    Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows.

  16. Design flow factors for sewerage systems in small arid communities

    PubMed Central

    Imam, Emad H.; Elnakar, Haitham Y.

    2013-01-01

    Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows. PMID:25685521

  17. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network

    PubMed Central

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T < 10 s). For performance demonstrations, the proposed method was applied to evaluate blood viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for simultaneous measurement of viscosity and flow rate of whole blood circulating in the complex fluid network, with sensorless and label-free detection. Furthermore, the proposed method will be used in evaluating variations in the viscosity of human blood during cardiopulmonary bypass procedures or hemodialysis. PMID:24404074

  18. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network.

    PubMed

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T < 10 s). For performance demonstrations, the proposed method was applied to evaluate blood viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for simultaneous measurement of viscosity and flow rate of whole blood circulating in the complex fluid network, with sensorless and label-free detection. Furthermore, the proposed method will be used in evaluating variations in the viscosity of human blood during cardiopulmonary bypass procedures or hemodialysis.

  19. Heat transfer in a microvascular network: the effect of heart rate on heating and cooling in reptiles (Pogona barbata and Varanus varius).

    PubMed

    Seebacher, F

    2000-03-21

    Thermally-induced changes in heart rate and blood flow in reptiles are believed to be of selective advantage by allowing animal to exert some control over rates of heating and cooling. This notion has become one of the principal paradigms in reptilian thermal physiology. However, the functional significance of changes in heart rate is unclear, because the effect of heart rate and blood flow on total animal heat transfer is not known. I used heat transfer theory to determine the importance of heat transfer by blood flow relative to conduction. I validated theoretical predictions by comparing them with field data from two species of lizard, bearded dragons (Pogona barbata) and lace monitors (Varanus varius). Heart rates measured in free-ranging lizards in the field were significantly higher during heating than during cooling, and heart rates decreased with body mass. Convective heat transfer by blood flow increased with heart rate. Rates of heat transfer by both blood flow and conduction decreased with mass, but the mass scaling exponents were different. Hence, rate of conductive heat transfer decreased more rapidly with increasing mass than did heat transfer by blood flow, so that the relative importance of blood flow in total animal heat transfer increased with mass. The functional significance of changes in heart rate and, hence, rates of heat transfer, in response to heating and cooling in lizards was quantified. For example, by increasing heart rate when entering a heating environment in the morning, and decreasing heart rate when the environment cools in the evening a Pogona can spend up to 44 min longer per day with body temperature within its preferred range. It was concluded that changes in heart rate in response to heating and cooling confer a selective advantage at least on reptiles of mass similar to that of the study animals (0. 21-5.6 kg). Copyright 2000 Academic Press.

  20. Measurement of gas yields and flow rates using a custom flowmeter

    USGS Publications Warehouse

    Circone, S.; Kirby, S.H.; Pinkston, J.C.; Stern, L.A.

    2001-01-01

    A simple gas collection apparatus based on the principles of a Torricelli tube has been designed and built to measure gas volume yields and flow rates. This instrument is routinely used to monitor and collect methane gas released during methane hydrate dissociation experiments. It is easily and inexpensively built, operates at ambient pressures and temperatures, and measures gas volumes of up to 7 L to a precision of about 15 ml (about 0.0025 mol). It is capable of measuring gas flow rates varying from more than 103 to less than 10-1 ml/min during gas evolution events that span minutes to several days. We have obtained a highly reproducible hydrate number of n=5.891 with a propagated uncertainty of ??0.020 for synthetic methane hydrate. ?? 2001 American Institute of Physics.

  1. A hacker's guide to catching a debris flow: Lessons learned from four years of chasing mud in Colorado and southern California

    NASA Astrophysics Data System (ADS)

    Kean, J. W.; McCoy, S. W.; Staley, D. M.; Coe, J.; Leeper, R.; Tucker, G. E.

    2012-12-01

    Direct measurements of natural debris flows provide valuable insights into debris-flow processes and hazards. Yet debris flows are difficult to "catch" because they live in rugged terrain, appear infrequently, and have an appetite for destroying monitoring equipment. We present an overview of some successful (and failed) techniques we have used over the past four years to obtain direct measurements of 40+ debris flows in Colorado and southern California. Following the "MacGyver" theme of the session, we focus on the improvised equipment and methods we use in our hunt for quality data. These include an inexpensive erosion sensor to measure rates of debris-flow entrainment, a custom load cell enclosure for measuring debris-flow normal force, tracer rocks implanted with passive integrated transponders, basic pressure transducers to measure debris-flow timing, and standard digital cameras adapted to obtain high-resolution (1936 x 1288 pixels) video footage of debris flows. These techniques are also suitable for catching data on elusive flash floods. In addition, we also share some practical solutions to the logistical problems associated with installing monitoring equipment in rugged debris-flow terrain, such as suspension of non-contact stage gages high above channels.

  2. Using Self Potential and Multiphase Flow Modeling to Optimize Groundwater Pumping

    NASA Astrophysics Data System (ADS)

    Gasperikova, E.; Zhang, Y.; Hubbard, S.

    2008-12-01

    Numerical and field hydrological and geophysical studies have been conducted to investigate the impact of groundwater pumping on near-river hydrology for a segment of the Russian River at the Wohler Site, California, which is a riverbed filtration system managed by the Sonoma County Water Agency. Groundwater pumping near streams can cause a creation of unsaturated regions and hence reduce the pumping capacity and change the flow paths. A three-dimensional multiphase flow and transport model can be calibrated to the temperature, and water levels at monitoring wells based on known pumping rates, and the river stage. Streaming (self) potential (SP) is one of the electrokinetic processes that describes the coupled behavior of hydraulic and electrical flow within a porous medium, and is easily measured on the surface or in boreholes. Observing temporal and spatial variations in geophysical signatures provides a powerful approach for monitoring changes in the natural systems due to natural or forced (pumping) system perturbations. Geophysical and hydrological data were collected before, during and after a pumping experiment at the Wohler Site. Using this monitoring dataset, we illustrate how loose coupling between hydrogeological and geophysical (SP) processes and data can be used to calibrate the flow model and to optimize pumping schedules as needed to guide sustainable water resource development.

  3. Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry

    DOEpatents

    Sinha, Dipen N.

    2003-11-11

    An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

  4. Non-Invasive Characterization Of A Flowing Multi-Phase Fluid Using Ultrasonic Interferometry

    DOEpatents

    Sinha, Dipen N.

    2005-11-01

    An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

  5. Noninvasive Characterization Of A Flowing Multiphase Fluid Using Ultrasonic Interferometry

    DOEpatents

    Sinha, Dipen N.

    2005-05-10

    An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

  6. Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry

    DOEpatents

    Sinha, Dipen N [Los Alamos, NM

    2007-06-12

    An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

  7. Quantitative passive soil vapor sampling for VOCs--Part 4: Flow-through cell.

    PubMed

    McAlary, Todd; Groenevelt, Hester; Seethapathy, Suresh; Sacco, Paolo; Crump, Derrick; Tuday, Michael; Schumacher, Brian; Hayes, Heidi; Johnson, Paul; Parker, Louise; Górecki, Tadeusz

    2014-05-01

    This paper presents a controlled experiment comparing several quantitative passive samplers for monitoring concentrations of volatile organic compound (VOC) vapors in soil gas using a flow-through cell. This application is simpler than conventional active sampling using adsorptive tubes because the flow rate does not need to be precisely measured and controlled, which is advantageous because the permeability of subsurface materials affects the flow rate and the permeability of geologic materials is highly variable. Using passive samplers in a flow-through cell, the flow rate may not need to be known exactly, as long as it is sufficient to purge the cell in a reasonable time and minimize any negative bias attributable to the starvation effect. An experiment was performed in a 500 mL flow-through cell using a two-factor, one-half fraction fractional factorial test design with flow rates of 80, 670 and 930 mL min(-1) and sample durations of 10, 15 and 20 minutes for each of five different passive samplers (passive Automatic Thermal Desorption Tube, Radiello®, SKC Ultra, Waterloo Membrane Sampler™ and 3M™ OVM 3500). A Summa canister was collected coincident with each passive sampler and analyzed by EPA Method TO-15 to provide a baseline for comparison of the passive sampler concentrations. The passive sampler concentrations were within a factor of 2 of the Summa canister concentrations in 32 of 35 cases. Passive samples collected at the low flow rate and short duration showed low concentrations, which is likely attributable to insufficient purging of the cell after sampler placement.

  8. Estimating Preferential Flow in Karstic Aquifers Using Statistical Mixed Models

    PubMed Central

    Anaya, Angel A.; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J.; Meeker, John D.; Alshawabkeh, Akram N.

    2013-01-01

    Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory-scale Geo-HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless-steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow-dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit-like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the statistical mixed models used in the study. PMID:23802921

  9. Estimating preferential flow in karstic aquifers using statistical mixed models.

    PubMed

    Anaya, Angel A; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J; Meeker, John D; Alshawabkeh, Akram N

    2014-01-01

    Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory-scale Geo-HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models (SMMs) are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow-dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit-like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the SMMs used in the study. © 2013, National Ground Water Association.

  10. Intercomparison of Groundwater Flow Monitoring Technologies at Site OU 1, Former Fort Ord, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daley, P F; Jantos, J; Pedler, W H

    2005-09-20

    This report presents an intercomparison of three groundwater flow monitoring technologies at a trichloroethylene (TCE) groundwater plume at Operational Unit 1 (OU 1) adjacent to the former Fritzsche Army Airfield at the former Fort Ord Army Base, located on Monterey Bay in northern Monterey County, California. Soil and groundwater at this site became contaminated by fuels and solvents that were burned on a portion of OU 1 called the Fire Drill Area (FDA) as part of firefighter training from 1962 and 1985. Cont Contamination is believed to be restricted to the unconfined A-aquifer, where water is reached at a depthmore » of approximately 60 to 80 feet below the ground surface; the aquifer is from 15 to 20 feet in thickness, and is bounded below by a dense clay layer, the Salinas Valley Aquitard. Soil excavation and bioremediation were initiated at the site of fire training activities in the late 1980s. Since that time a pump-and-treat operation has been operated close to the original area of contamination, and this system has been largely successful at reducing groundwater contamination in this source area. However, a trichloroethylene (TCE) groundwater plume extends approximately 3000 ft (900 m) to the northwest away from the FDA. In this report, we have augmented flow monitoring equipment permanently installed in an earlier project (Oldenburg et al., 2002) with two additional flow monitoring devices that could be deployed in existing monitoring wells, in an effort to better understand their performance in a nearly ideal, homogeneous sand aquifer, that we expected would exhibit laminar groundwater flow owing to the site's relatively simple hydrogeology. The three flow monitoring tools were the Hydrotechnics{reg_sign} In In-Situ Permeable Flow Sensor (ISPFS), the RAS Integrated Subsurface Evaluation Hydrophysical Logging tool (HPL), and the Lawrence Livermore National Laboratory Scanning Colloidal Borescope Flow Meter (SCBFM). All three devices produce groundwater flow velocity measurements, and the ISPFS and SCBFM systems also gene generate flow direction rate estimates. The ISPFS probes are permanently installed and are non-retrievable, but produce long-term records with essentially no operator intervention or maintenance. The HPL and SCBFM systems are lightweight, portable logging devices that employ recording of electrical conductivity changes in wells purged with deionized water (HPL), or imaging of colloidal particles traversing the borehole (SCBFM) as the physical basis for estimating the velocity of groundwater flow through monitoring wells. All three devices gave estimates of groundwater velocity that were in reasonable agreement. However, although the ISPFS produced groundwater azimuth data that correlated well with conventional conductivity and gradient analyses of the groundwater flow field, the SCBFM direction data were in poor agreement. Further research into the reasons for this lack of correlation would seem to be warranted, given the ease of deployment of this tool in existing conventional monitoring wells, and its good agreement with the velocity estimates of the other technologies examined.« less

  11. Can low-resolution airborne laser scanning data be used to model stream rating curves?

    USGS Publications Warehouse

    Lyon, Steve; Nathanson, Marcus; Lam, Norris; Dahlke, Helen; Rutzinger, Martin; Kean, Jason W.; Laudon, Hjalmar

    2015-01-01

    This pilot study explores the potential of using low-resolution (0.2 points/m2) airborne laser scanning (ALS)-derived elevation data to model stream rating curves. Rating curves, which allow the functional translation of stream water depth into discharge, making them integral to water resource monitoring efforts, were modeled using a physics-based approach that captures basic geometric measurements to establish flow resistance due to implicit channel roughness. We tested synthetically thinned high-resolution (more than 2 points/m2) ALS data as a proxy for low-resolution data at a point density equivalent to that obtained within most national-scale ALS strategies. Our results show that the errors incurred due to the effect of low-resolution versus high-resolution ALS data were less than those due to flow measurement and empirical rating curve fitting uncertainties. As such, although there likely are scale and technical limitations to consider, it is theoretically possible to generate rating curves in a river network from ALS data of the resolution anticipated within national-scale ALS schemes (at least for rivers with relatively simple geometries). This is promising, since generating rating curves from ALS scans would greatly enhance our ability to monitor streamflow by simplifying the overall effort required.

  12. Monitoring the Dynamics of Water Flow at a High-Mountain Permafrost Site Using Electrical Self-Potential Measurements

    NASA Astrophysics Data System (ADS)

    Kemna, A.; Weigand, M.; Wagner, F.; Hilbich, C.; Hauck, C.

    2016-12-01

    Flow of (liquid) water plays a crucial role in the dynamics of coupled thermo-hydro-mechanical processes in terrestrial permafrost systems. To better understand these processes in the active layer of permafrost regions, with the ultimate goal of adequately incorporating them in numerical models for improved scenario prediction, monitoring approaches offering high spatial and temporal resolution, areal coverage, and especially sensitivity to subsurface water flow, are highly desired. This particularly holds for high-mountain slopes, where strong variability in topography, precipitation, and snow cover, along with significant subsurface soil/rock heterogeneity, gives rise to complex spatio-temporal patterns of water flow during seasonal thawing and freezing periods. The electrical self-potential (SP) method is well known to, in theory, meeting the above monitoring demands by measuring the electrical streaming potential which is generated at the microscopic scale when water flows along electrically non-neutral interfaces. Despite its inherent sensitivity to subsurface water flow, the SP method has not yet been used for the monitoring of high-mountain permafrost sites. We here present first results from an SP monitoring survey conducted at the Schilthorn (2970 m asl) in the Bernese Alps, Switzerland, where SP data have been collected since September 2013 at a sampling rate of 10 min on a permanently installed array of 12 non-polarizing electrodes covering an area of 35 m by 15 m. While the SP time series exhibit systematic daily variations, with part of the signal clearly correlated with temperature, in particular in the snow-free periods, the largest temporal changes in the SP signal occur in spring, when the snow cover melts and thawing sets on in the active layer. The period of higher temporal SP variations continues until autumn, when the signal gradually returns to relatively low variations, coinciding with the freezing of the ground. Our results suggest that the SP method is a suitable tool for the monitoring of seasonal water flow dynamics at high-mountain permafrost sites. Current work is directed towards an improved field setup, as well as the quantitative analysis of the SP data based on laboratory calibration measurements.

  13. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vent. (D) Design analysis based on accepted chemical engineering principles, measurable process.... (i) For the purpose of determining de minimis status for emission points, engineering assessment may... operating conditions expected to yield the highest flow rate and concentration. Engineering assessment...

  14. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vent. (D) Design analysis based on accepted chemical engineering principles, measurable process.... (i) For the purpose of determining de minimis status for emission points, engineering assessment may... operating conditions expected to yield the highest flow rate and concentration. Engineering assessment...

  15. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vent. (D) Design analysis based on accepted chemical engineering principles, measurable process.... (i) For the purpose of determining de minimis status for emission points, engineering assessment may... operating conditions expected to yield the highest flow rate and concentration. Engineering assessment...

  16. 40 CFR 98.447 - Records that must be retained.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Quarterly records of CO2 received, including mass flow rate of contents of containers (mass or volumetric... retention in your EPA-approved MRV plan. (b) You must complete your monitoring plans, as described in § 98.3...

  17. Optical aggregometry of red blood cells associated with the blood-clotting reaction in extracorporeal circulation support.

    PubMed

    Sakota, Daisuke; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu

    2016-09-01

    The aggregability of red blood cell (RBCs) is associated with the contribution of plasma proteins, such as fibrinogen and lipoproteids, to blood-clotting. Hence, we hypothesized that RBC aggregability reflects the blood-clotting reaction. A noninvasive optical monitoring method to measure RBC aggregability for the assessment of blood-clotting stage during mechanical circulatory support was developed. An in vitro thrombogenic test was conducted with a rotary blood pump using heparinized fresh porcine blood. Near-infrared laser light at a wavelength of 785 nm was guided by an optical fiber. The fibers for detecting incident, forward-, and backward-scattered light were fixed on the circuit tubing with an inner diameter of 1/4 inch. Because there is substantial RBC aggregation at low shear flow rates, a pulsatile flow was generated by controlling the pump rotational speed. The flow rate was changed from 0 to 8.5 L/min at a period of 40 s. The intensities of forward- and backward-scattered light changed dramatically when the flow stopped. The aggregability was evaluated by the increase ratio of the transmitted light intensity from the flow stopping in the low-flow condition. The experiment started when the anticoagulation was stopped by the addition of protamine into the circulating blood. Reduction in RBC aggregability was associated with a decrease in the amount of fibrinogen and the number of platelets. Continuous, noninvasive monitoring of thrombosis risk is possible using optical measurements combining pulsatile flow control of a rotary blood pump. RBC aggregometry is a potential label-free method for evaluating blood-clotting risk.

  18. Protein Adsorption and Layer Formation at the Stainless Steel-Solution Interface Mediates Shear-Induced Particle Formation for an IgG1 Monoclonal Antibody.

    PubMed

    Kalonia, Cavan K; Heinrich, Frank; Curtis, Joseph E; Raman, Sid; Miller, Maria A; Hudson, Steven D

    2018-03-05

    Passage of specific protein solutions through certain pumps, tubing, and/or filling nozzles can result in the production of unwanted subvisible protein particles (SVPs). In this work, surface-mediated SVP formation was investigated. Specifically, the effects of different solid interface materials, interfacial shear rates, and protein concentrations on SVP formation were measured for the National Institute of Standards and Technology monoclonal antibody (NISTmAb), a reference IgG1 monoclonal antibody (mAb). A stainless steel rotary piston pump was used to identify formulation and process parameters that affect aggregation, and a flow cell (alumina or stainless steel interface) was used to further investigate the effect of different interface materials and/or interfacial shear rates. SVP particles produced were monitored using flow microscopy or flow cytometry. Neutron reflectometry and a quartz crystal microbalance with dissipation monitoring were used to characterize adsorption and properties of NISTmAb at the stainless steel interface. Pump/shear cell experiments showed that the NISTmAb concentration and interface material had a significant effect on SVP formation, while the effects of interfacial shear rate and passage number were less important. At the higher NISTmAb concentrations, the adsorbed protein became structurally altered at the stainless steel interface. The primary adsorbed layer remained largely undisturbed during flow, suggesting that SVP formation at high NISTmAb concentration was caused by the disruption of patches and/or secondary interactions.

  19. Development of a custom on-line ultrasonic vapour analyzer and flow meter for the ATLAS inner detector, with application to Cherenkov and gaseous charged particle detectors

    NASA Astrophysics Data System (ADS)

    Alhroob, M.; Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Bousson, N.; Boyd, G.; Bozza, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; DiGirolamo, B.; Doubek, M.; Favre, G.; Godlewski, J.; Hallewell, G.; Hasib, A.; Katunin, S.; Langevin, N.; Lombard, D.; Mathieu, M.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Strauss, M.; Vacek, V.; Zwalinski, L.

    2015-03-01

    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom microcontroller-based electronics, currently used in the ATLAS Detector Control System, with numerous potential applications. Three instruments monitor C3F8 and CO2 coolant leak rates into the nitrogen envelopes of the ATLAS silicon microstrip and Pixel detectors. Two further instruments will aid operation of the new thermosiphon coolant recirculator: one of these will monitor air leaks into the low pressure condenser while the other will measure return vapour flow along with C3F8/C2F6 blend composition, should blend operation be necessary to protect the ATLAS silicon tracker under increasing LHC luminosity. We describe these instruments and their electronics.

  20. Non-isothermal crystallization of poly(etheretherketone) aromatic polymer composite

    NASA Technical Reports Server (NTRS)

    Cebe, Peggy

    1988-01-01

    The nonisothermal crystallization kinetics of PEEK APC-2 and of 450G neat resin PEEK material were compared using a differential scanning calorimeter to monitor heat flow during crystallization; the effects of cooling rate on the crystallization temperature, the degree of crystallinity, and the conversion rate were investigated. A modified Avrami (1940) analysis was used to describe nonisothermal crystallization kinetics. It was found that, compared with the 450G neat resin PEEK, the nonisothermal crystallization of the PEEK APC-2 composite is characterized by higher initiation temperature, higher heat flow maximum temperature, and greater relative conversion by primary processes.

  1. [A capillary blood flow velocity detection system based on linear array charge-coupled devices].

    PubMed

    Zhou, Houming; Wang, Ruofeng; Dang, Qi; Yang, Li; Wang, Xiang

    2017-12-01

    In order to detect the flow characteristics of blood samples in the capillary, this paper introduces a blood flow velocity measurement system based on field-programmable gate array (FPGA), linear charge-coupled devices (CCD) and personal computer (PC) software structure. Based on the analysis of the TCD1703C and AD9826 device data sheets, Verilog HDL hardware description language was used to design and simulate the driver. Image signal acquisition and the extraction of the real-time edge information of the blood sample were carried out synchronously in the FPGA. Then a series of discrete displacement were performed in a differential operation to scan each of the blood samples displacement, so that the sample flow rate could be obtained. Finally, the feasibility of the blood flow velocity detection system was verified by simulation and debugging. After drawing the flow velocity curve and analyzing the velocity characteristics, the significance of measuring blood flow velocity is analyzed. The results show that the measurement of the system is less time-consuming and less complex than other flow rate monitoring schemes.

  2. Fuel thermal stability effects on spray characteristics

    NASA Technical Reports Server (NTRS)

    Lefebvre, A. H.; Nickolaus, D.

    1987-01-01

    The propensity of a heated hydrocarbon fuel toward solids deposition within a fuel injector is investigated experimentally. Fuel is arranged to flow through the injector at constant temperature, pressure, and flow rate and the pressure drop across the nozzle is monitored to provide an indication of the amount of deposition. After deposits have formed, the nozzle is removed from the test rig and its spray performance is compared with its performance before deposition. The spray characteristics measured include mean drop size, drop-size distribution, and radial and circumferential fuel distribution. It is found that small amounts of deposition can produce severe distortion of the fuel spray pattern. More extensive deposition restores spray uniformity, but the nozzle flow rate is seriously curtailed.

  3. LAV@HAZARD: a Web-GIS Framework for Real-Time Forecasting of Lava Flow Hazards

    NASA Astrophysics Data System (ADS)

    Del Negro, C.; Bilotta, G.; Cappello, A.; Ganci, G.; Herault, A.

    2014-12-01

    Crucial to lava flow hazard assessment is the development of tools for real-time prediction of flow paths, flow advance rates, and final flow lengths. Accurate prediction of flow paths and advance rates requires not only rapid assessment of eruption conditions (especially effusion rate) but also improved models of lava flow emplacement. Here we present the LAV@HAZARD web-GIS framework, which combines spaceborne remote sensing techniques and numerical simulations for real-time forecasting of lava flow hazards. By using satellite-derived discharge rates to drive a lava flow emplacement model, LAV@HAZARD allows timely definition of parameters and maps essential for hazard assessment, including the propagation time of lava flows and the maximum run-out distance. We take advantage of the flexibility of the HOTSAT thermal monitoring system to process satellite images coming from sensors with different spatial, temporal and spectral resolutions. HOTSAT was designed to ingest infrared satellite data acquired by the MODIS and SEVIRI sensors to output hot spot location, lava thermal flux and discharge rate. We use LAV@HAZARD to merge this output with the MAGFLOW physics-based model to simulate lava flow paths and to update, in a timely manner, flow simulations. Thus, any significant changes in lava discharge rate are included in the predictions. A significant benefit in terms of computational speed was obtained thanks to the parallel implementation of MAGFLOW on graphic processing units (GPUs). All this useful information has been gathered into the LAV@HAZARD platform which, due to the high degree of interactivity, allows generation of easily readable maps and a fast way to explore alternative scenarios. We will describe and demonstrate the operation of this framework using a variety of case studies pertaining to Mt Etna, Sicily. Although this study was conducted on Mt Etna, the approach used is designed to be applicable to other volcanic areas around the world.

  4. Tracking in Real-Time Pyroclastic Flows at Soufriere Hills Volcano, Montserrat, by infrasonic array.

    NASA Astrophysics Data System (ADS)

    Ripepe, M.; de Angelis, S.; Lacanna, G.; Poggi, P.; Williams, C.

    2008-12-01

    Active volcanoes produce infrasonic airwaves, which provide valuable insight into the eruption dynamics and the level of volcanic activity. On open conduit volcanoes, infrasound can be used to monitor the gas overpressure in the magma and the degassing rate of active volcanic vents. On volcanoes characterized by dome growth, infrasound can also be generated by non-explosive sources related to dome collapses and pyroclastic flows. In March 2008, the Department of Earth Science (DST) of Firenze (Italy) in cooperation with Montserrat Volcano Observatory (MVO) has installed a small-aperture infrasonic array at a distance of ~3000 m from the dome of the Soufriere Hill Volcano (SHV). The array has an aperture of 200 m and a "star" geometry, with 3 satellite stations at 100 m distance from the receiving central station. Each element of the array is linked to the receiver station by fiber optics cable, and the signal is acquired with a resolution of 16 bits at a rate of 50 samples/sec. The data collected by the array are sent via a radio modem link to the MVO offices, on Montserrat, where they are archived and processed in real-time. Real-time location of infrasonic events are obtained and displayed on computer monitors for use in monitoring of volcanic activity. After a period of very low levels of activity, starting from the end of May 2008, SHV has produced several small explosions without any short-term precursory sign. Some of these events have generated ash plumes reaching up to a few thousands of meters above the sea level, and were accompanied by moderate-to-large size pyroclastic flows that descended the western flanks of the volcanic edifice. The array was able to detect and locate in real-time the clear infrasound associated both with the explosions and the pyroclastic flows. In the latter case, the array estimated the speed and the direction of the flux revealing the presence of several pulses within the same flow. The variable azimuth of the signal during the flow indicated a mean speed of 160-175 km/h. The ability to detect and track such events in a real-time fashion has a strong impact on understanding the dynamics of pyroclastic flow propagation as well as on monitoring operations and risk management in Montserrat.

  5. Measurement of pressure and flow rates during irrigation of a root canal ex vivo with three endodontic needles.

    PubMed

    Boutsioukis, C; Lambrianidis, T; Kastrinakis, E; Bekiaroglou, P

    2007-07-01

    To monitor ex vivo intra-canal irrigation with three endodontic needles (25, 27 and 30 gauge) and compare them in terms of irrigant flow rate, intra-barrel pressure, duration of irrigation and volume of irrigant delivered. A testing system was constructed to allow measurement of selected variables with pressure and displacement transducers during ex vivo intra-canal irrigation with a syringe and three different needles (groups A, B, C) into a prepared root canal. Ten specialist endodontists performed the irrigation procedure. Each operator performed ten procedures with each needle. Data recorded by the transducers were analysed using Friedman's test, Wilcoxon Signed Rank test, Mann-Whitney U-test and Kendall's T(b) test. The level of significance was set to 95%. Significant differences were detected among the three needles for most variables. Duration of delivery and flow rates significantly decreased as the needle diameter increased, whilst pressure increased up to 400-550 kPa. Gender of the operator had a significant impact on the results. Experience of the operators (years) were negatively correlated to volume of irrigant (all groups), to the duration of delivery (groups A, B) and to the average flow rate (group A). Finer diameter needles require increased effort to deliver the irrigant and result in higher intra-barrel pressure. The syringe and needles used tolerated the pressure developed. Irrigant flow rate should be considered as a factor directly influencing flow beyond the needle. Wide variations of flow rate were observed among operators. Syringe irrigation appears difficult to standardize and control.

  6. A dynamic plug flow reactor model for a vanadium redox flow battery cell

    NASA Astrophysics Data System (ADS)

    Li, Yifeng; Skyllas-Kazacos, Maria; Bao, Jie

    2016-04-01

    A dynamic plug flow reactor model for a single cell VRB system is developed based on material balance, and the Nernst equation is employed to calculate cell voltage with consideration of activation and concentration overpotentials. Simulation studies were conducted under various conditions to investigate the effects of several key operation variables including electrolyte flow rate, upper SOC limit and input current magnitude on the cell charging performance. The results show that all three variables have a great impact on performance, particularly on the possibility of gassing during charging at high SOCs or inadequate flow rates. Simulations were also carried out to study the effects of electrolyte imbalance during long term charging and discharging cycling. The results show the minimum electrolyte flow rate needed for operation within a particular SOC range in order to avoid gassing side reactions during charging. The model also allows scheduling of partial electrolyte remixing operations to restore capacity and also avoid possible gassing side reactions during charging. Simulation results also suggest the proper placement for cell voltage monitoring and highlight potential problems associated with setting the upper charging cut-off limit based on the inlet SOC calculated from the open-circuit cell voltage measurement.

  7. Simulating Nailfold Capillaroscopy Sequences to Evaluate Algorithms for Blood Flow Estimation

    PubMed Central

    Tresadern, P. A.; Berks, M.; Murray, A. K.; Dinsdale, G.; Taylor, C. J.; Herrick, A. L.

    2016-01-01

    The effects of systemic sclerosis (SSc) – a disease of the connective tissue causing blood flow problems that can require amputation of the fingers – can be observed indirectly by imaging the capillaries at the nailfold, though taking quantitative measures such as blood flow to diagnose the disease and monitor its progression is not easy. Optical flow algorithms may be applied, though without ground truth (i.e. known blood flow) it is hard to evaluate their accuracy. We propose an image model that generates realistic capillaroscopy videos with known flow, and use this model to quantify the effect of flow rate, cell density and contrast (among others) on estimated flow. This resource will help researchers to design systems that are robust under real-world conditions. PMID:24110268

  8. Assessing the effusion rate of lava flows from their thermal radiated energy: theoretical study and lab-scale experiments

    NASA Astrophysics Data System (ADS)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2010-12-01

    A quantitative monitoring of lava flow is required to manage a volcanic crisis, in order to assess where the flow will go, and when will it stop. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the lava flow temperature and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger energy radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., 2007) is used to estimate lava flow rate from satellite observations. However, the complete theoretical bases of this technique, especially its domain of validity, remain to be firmly established. Here we propose a theoretical study of the cooling of a viscous axisymmetric gravity current fed at constant flux rate to investigate whether or not this approach can and/or should be refined and/or modify to better assess flow rates. Our study focuses on the influence of boundary conditions at the surface of the flow, where cooling can occur both by radiation and convection, and at the base of the flow. Dimensionless numbers are introduced to quantify the relative interplay between the model parameters, such as the lava flow rate and the efficiency of the various cooling processes (conduction, convection, radiation.) We obtain that the thermal evolution of the flow can be described as a two-stage evolution. After a transient phase of dynamic cooling, the flow reaches a steady state, characterized by a balance between surface and base cooling and heat advection in the flow, in which the surface temperature structure is constant. The duration of the transient phase and the radiated energy in the steady regime are shown to be a function of the dimensionless numbers. In the case of lava flows, we obtain that the steady state regime is reached after a few days. In this regime, a thermal image provides a consistent estimate of the flow rate if the external cooling conditions are reasonably well constrained.

  9. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  10. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  11. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  12. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  13. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  14. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters... purpose of determining de minimis status for emission points, engineering assessment may be used to... expected to yield the highest flow rate and concentration. Engineering assessment includes, but is not...

  15. 40 CFR 63.526 - Monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters... purpose of determining de minimis status for emission points, engineering assessment may be used to... expected to yield the highest flow rate and concentration. Engineering assessment includes, but is not...

  16. Erosive Burning Study Utilizing Ultrasonic Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Furfaro, James A.

    2003-01-01

    A 6-segment subscale motor was developed to generate a range of internal environments from which multiple propellants could be characterized for erosive burning. The motor test bed was designed to provide a high Mach number, high mass flux environment. Propellant regression rates were monitored for each segment utilizing ultrasonic measurement techniques. These data were obtained for three propellants RSRM, ETM- 03, and Castor@ IVA, which span two propellant types, PBAN (polybutadiene acrylonitrile) and HTPB (hydroxyl terminated polybutadiene). The characterization of these propellants indicates a remarkably similar erosive burning response to the induced flow environment. Propellant burnrates for each type had a conventional response with respect to pressure up to a bulk flow velocity threshold. Each propellant, however, had a unique threshold at which it would experience an increase in observed propellant burn rate. Above the observed threshold each propellant again demonstrated a similar enhanced burn rate response corresponding to the local flow environment.

  17. Perilimbal sclera mechanical properties: Impact on intraocular pressure in porcine eyes

    PubMed Central

    Man, Xiaofei; Arroyo, Elizabeth; Dunbar, Martha; Reed, David M.; Shah, Neil; Kagemann, Larry; Kim, Wonsuk; Moroi, Sayoko E.

    2018-01-01

    There is extensive knowledge on the relationship of posterior scleral biomechanics and intraocular pressure (IOP) load on glaucomatous optic neuropathy; however, the role for biomechanical influence of the perilimbal scleral tissue on the aqueous humor drainage pathway, including the distal venous outflow system, and IOP regulation is not fully understood. The purpose of this work is to study the outflow characteristics of perfused porcine eyes relative to the biomechanical properties of the perilimbal sclera, the posterior sclera and the cornea. Enucleated porcine eyes from eleven different animals were perfused with surrogate aqueous at two fixed flow rates while monitoring their IOP. After perfusion, mechanical stress-strain and relaxation tests were conducted on specimens of perilimbal sclera, posterior sclera, and cornea from the same perfused eyes. Statistical analysis of the data demonstrated a strong correlation between increased tangent modulus of the perilimbal sclera tissues and increased perfusion IOP (R2 = 0.74, p = 0.0006 at lower flow rate and R2 = 0.71, p = 0.0011 at higher flow rate). In contrast, there were no significant correlations between IOP and the tangent modulus of the other tissues (Posterior sclera: R2 = 0.17 at lower flow rate and R2 = 0.30 at higher flow rate; cornea: R2 = 0.02 at lower flow rate and R2<0.01 at higher flow rate) nor the viscoelastic properties of any tissue (R2 ≤ 0.08 in all cases). Additionally, the correlation occurred for IOP and not net outflow facility (R2 ≤ 0.12 in all cases). These results provide new evidence that IOP in perfused porcine eyes is strongly influenced by the tangent modulus, sometimes called the tissue stiffness, of the most anterior portion of the sclera, i.e. the limbus. PMID:29718942

  18. What must be the accuracy and target of optical sensor systems for patient monitoring?

    NASA Astrophysics Data System (ADS)

    Frank, Klaus H.; Kessler, Manfred D.

    2002-06-01

    Although the treatment in the intensive care unit has improved in recent years enabling greater surgical engagements and improving patients survival rate, no adequate monitoring is available in imminent severe pathological cases. Otherwise such kind of monitoring is necessary for early or prophylactic treatment in order to avoid or reduce the severity of the disease and protect the patient from sepsis or multiple organ failure. In these cases the common monitoring is limited, because clinical physiological and laboratory parameters indicate either the situation of macro-circulation or late disturbances of microcirculation, which arise previously on sub-cellular level. Optical sensor systems enable to reveal early variations in local capillary flow. The correlation between clinical parameters and changes in condition of oxygenation as a function of capillary flow disturbances is meaningful for the further treatment. The target should be to develop a predictive parameter, which is useful for detection and follow-up of changes in circulation.

  19. Industrial application of ultrasound based in-line rheometry: From stationary to pulsating pipe flow of chocolate suspension in precrystallization process

    NASA Astrophysics Data System (ADS)

    Ouriev, Boris; Windhab, Erich; Braun, Peter; Birkhofer, Beat

    2004-10-01

    In-line visualization and on-line characterization of nontransparent fluids becomes an important subject for process development in food and nonfood industries. In our work, a noninvasive Doppler ultrasound-based technique is introduced. Such a technique is applied for investigation of nonstationary flow in the chocolate precrystallization process. Unstable flow conditions were induced by abrupt flow interruption and were followed up by strong flow pulsations in the piping system. While relying on available process information, such as absolute pressures and temperatures, no analyses of flow conditions or characterization of suspension properties could possibly be done. It is obvious that chocolate flow properties are sensitive to flow boundary conditions. Therefore, it becomes essential to perform reliable structure state monitoring and particularly in application to nonstationary flow processes. Such flow instabilities in chocolate processing can often lead to failed product quality with interruption of the mainstream production. As will be discussed, a combination of flow velocity profiles, on-line fit into flow profiles, and pressure difference measurement are sufficient for reliable analyses of fluid properties and flow boundary conditions as well as monitoring of the flow state. Analyses of the flow state and flow properties of chocolate suspension are based on on-line measurement of one-dimensional velocity profiles across the flow channel and their on-line characterization with the power-law model. Conclusions about flow boundary conditions were drawn from a calculated velocity standard mean deviation, the parameters of power-law fit into velocity profiles, and volumetric flow rate information.

  20. Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends

    NASA Astrophysics Data System (ADS)

    Morawska, L.; Jayaratne, E. R.; Mengersen, K.; Jamriska, M.; Thomas, S.

    Airborne particle number concentrations and size distributions as well as CO and NO x concentrations monitored at a site within the central business district of Brisbane, Australia were correlated with the traffic flow rate on a nearby freeway with the aim of investigating differences between weekday and weekend pollutant characteristics. Observations over a 5-year monitoring period showed that the mean number particle concentration on weekdays was (8.8±0.1)×10 3 cm -3 and on weekends (5.9±0.2)×10 3 cm -3—a difference of 47%. The corresponding mean particle number median diameters during weekdays and weekends were 44.2±0.3 and 50.2±0.2 nm, respectively. The differences in mean particle number concentration and size between weekdays and weekends were found to be statistically significant at confidence levels of over 99%. During a 1-year period of observation, the mean traffic flow rate on the freeway was 14.2×10 4 and 9.6×10 4 vehicles per weekday and weekend day, respectively—a difference of 48%. The mean diurnal variations of the particle number and the gaseous concentrations closely followed the traffic flow rate on both weekdays and weekends (correlation coefficient of 0.86 for particles). The overall conclusion, as to the effect of traffic on concentration levels of pollutant concentration in the vicinity of a major road (about 100 m) carrying traffic of the order of 10 5 vehicles per day, is that about a 50% increase in traffic flow rate results in similar increases of CO and NO x concentrations and a higher increase of about 70% in particle number concentration.

  1. Spacelab uplink/downlink data flow and formats

    NASA Technical Reports Server (NTRS)

    Kandefer, F.

    1978-01-01

    The results of an analysis of the Spacelab (SL) data uplink/downlink structure and those data system elements associated with the support of this data flow are presented. Specific objectives of this report are to present the results of the following analyses: (1) operations of the SL high rate multiplexer, including format structure, data rates, format combinations, format switching, etc.; (2) operations of SL data recorders to include the definition of modes, data rates and forms; (3) operations of the high rate demultiplexer as described above; (4) potential experiment data formats defining formatting parameters to be considered in decommutation analysis; (5) SL computer input/output (I/O) decommutation channels, including the definition of structure, quantity and use of this I/O data; (6) detailed requirements of the data quality monitoring philosophy for this function.

  2. Raspberry Pi in-situ network monitoring system of groundwater flow and temperature integrated with OpenGeoSys

    NASA Astrophysics Data System (ADS)

    Park, Chan-Hee; Lee, Cholwoo

    2016-04-01

    Raspberry Pi series is a low cost, smaller than credit-card sized computers that various operating systems such as linux and recently even Windows 10 are ported to run on. Thanks to massive production and rapid technology development, the price of various sensors that can be attached to Raspberry Pi has been dropping at an increasing speed. Therefore, the device can be an economic choice as a small portable computer to monitor temporal hydrogeological data in fields. In this study, we present a Raspberry Pi system that measures a flow rate, and temperature of groundwater at sites, stores them into mysql database, and produces interactive figures and tables such as google charts online or bokeh offline for further monitoring and analysis. Since all the data are to be monitored on internet, any computers or mobile devices can be good monitoring tools at convenience. The measured data are further integrated with OpenGeoSys, one of the hydrogeological models that is also ported to the Raspberry Pi series. This leads onsite hydrogeological modeling fed by temporal sensor data to meet various needs.

  3. Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array

    NASA Astrophysics Data System (ADS)

    Zang, Arno; Stephansson, Ove; Stenberg, Leif; Plenkers, Katrin; Specht, Sebastian; Milkereit, Claus; Schill, Eva; Kwiatek, Grzegorz; Dresen, Georg; Zimmermann, Günter; Dahm, Torsten; Weber, Michael

    2017-02-01

    In this paper, an underground experiment at the Äspö Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Äspö HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Ävrö granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with frequent phases of depressurization.

  4. Implications of surfactant-induced flow for miscible-displacement estimation of air-water interfacial areas in unsaturated porous media.

    PubMed

    Costanza-Robinson, Molly S; Zheng, Zheng; Henry, Eric J; Estabrook, Benjamin D; Littlefield, Malcolm H

    2012-10-16

    Surfactant miscible-displacement experiments represent a conventional means of estimating air-water interfacial area (A(I)) in unsaturated porous media. However, changes in surface tension during the experiment can potentially induce unsaturated flow, thereby altering interfacial areas and violating several fundamental method assumptions, including that of steady-state flow. In this work, the magnitude of surfactant-induced flow was quantified by monitoring moisture content and perturbations to effluent flow rate during miscible-displacement experiments conducted using a range of surfactant concentrations. For systems initially at 83% moisture saturation (S(W)), decreases of 18-43% S(W) occurred following surfactant introduction, with the magnitude and rate of drainage inversely related to the surface tension of the surfactant solution. Drainage induced by 0.1 mM sodium dodecyl benzene sulfonate, commonly used for A(I) estimation, resulted in effluent flow rate increases of up to 27% above steady-state conditions and is estimated to more than double the interfacial area over the course of the experiment. Depending on the surfactant concentration and the moisture content used to describe the system, A(I) estimates varied more than 3-fold. The magnitude of surfactant-induced flow is considerably larger than previously recognized and casts doubt on the reliability of A(I) estimation by surfactant miscible-displacement.

  5. Urine flow is a novel hemodynamic monitoring tool for the detection of hypovolemia.

    PubMed

    Shamir, Micha Y; Kaplan, Leonid; Marans, Rachel S; Willner, Dafna; Klein, Yoram

    2011-03-01

    Noticeable changes in vital signs indicating hypovolemia occur only after 15% of the blood volume is lost. More sensitive variables (e.g., cardiac output, systolic pressure variation and its Δdown component) are invasive and difficult to obtain in the early phase of bleeding. Lately, a new technology for continuous optical measurements of minute-to-minute urine flow rates has become available. We performed a preliminary evaluation to determine whether urine flow can act as an early and sensitive warning of hypovolemia. Eleven patients (ASA physical status I-II) undergoing posterior spine fusion surgery were studied prospectively. Study variables included heart rate, blood pressure (systolic and diastolic), systolic pressure variation and Δdown, minute urinary flow, hemoglobin, blood and urinary sodium, and creatinine in the blood and urine. Urine flow rate was measured using URINFO 2000™ (FlowSense Medical, Misgav, Israel). After recording baseline variables, 10 mL/kg of the patient's blood was shed and a second set of variables was recorded. Subsequently, hypovolemia was reversed by infusing colloid solution (hetastarch 6%) followed by recording a third set of variables. These 3 observations were then compared. An average of 614 ± 143 mL (mean ± SD) of blood was shed. During phlebotomy, the mean urine flow rate decreased from 5.7 ± 8 mL/min to 1.07 ± 2.5 mL/min. Systolic blood pressure and hemoglobin also decreased. Δdown increased. After rehydration, urine flow, blood pressure, and Δdown values returned to baseline. The hemoglobin concentration decreased whereas other variables did not change significantly. Urine flow rate is a dynamic variable that seems to be a reliable indicator of changes in blood volume. These results justify further investigation.

  6. A comparison of methods for deriving solute flux rates using long-term data from streams in the mirror lake watershed

    USGS Publications Warehouse

    Bukaveckas, P.A.; Likens, G.E.; Winter, T.C.; Buso, D.C.

    1998-01-01

    Calculation of chemical flux rates for streams requires integration of continuous measurements of discharge with discrete measurements of solute concentrations. We compared two commonly used methods for interpolating chemistry data (time-averaging and flow-weighting) to determine whether discrepancies between the two methods were large relative to other sources of error in estimating flux rates. Flux rates of dissolved Si and SO42- were calculated from 10 years of data (1981-1990) for the NW inlet and Outlet of Mirror Lake and for a 40-day period (March 22 to April 30, 1993) during which we augmented our routine (weekly) chemical monitoring with collection of daily samples. The time-averaging method yielded higher estimates of solute flux during high-flow periods if no chemistry samples were collected corresponding to peak discharge. Concentration-discharge relationships should be used to interpolate stream chemistry during changing flow conditions if chemical changes are large. Caution should be used in choosing the appropriate time-scale over which data are pooled to derive the concentration-discharge regressions because the model parameters (slope and intercept) were found to be sensitive to seasonal and inter-annual variation. Both methods approximated solute flux to within 2-10% for a range of solutes that were monitored during the intensive sampling period. Our results suggest that errors arising from interpolation of stream chemistry data are small compared with other sources of error in developing watershed mass balances.

  7. Field Measurements of the 1983 Royal Gardens Lava Flows, Kilauea Volcano, and 1984 Mauna Loa Lava Flow, Hawaii

    NASA Technical Reports Server (NTRS)

    Fink, J.; Zimbelman, J.

    1985-01-01

    Theoretical models used in the remote determination of lava flow rheology and compositions rely on estimates of such geometric and flow parameters as volume flow rates, levee heights, and channel dimensions, as well as morphologic and structural patterns on the flow surfaces. Quantitative measures of these variables are difficult to obtain, even under optimum conditions. Detailed topographic profiles across several Hawaiian lava flows that were carefully monitored by the U.S. Geological Survey during their emplacement in 1983 were surveyed in order to test various flow emplacement models. Twenty two accurate channel cross sections were constructed by combining these profiles with digitized pre-flow topographic measurements. Levee heights, shear zone widths, and flow depths could then be read directly from the cross sections and input into the models. The profiles were also compared with ones constructed for some Martian lava flows.

  8. Distribution and Characterization of Antigens Found in Subcellular Fractions of African Trypanosomes.

    DTIC Science & Technology

    1982-08-01

    CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT 2b. DECLASSIFICATION / DOWNGRADING SCHEDULE 4. PERFORMING ORGANIZATION REPORT NUMBER(S...S. MONITORING ORGANIZATION REPORT NUMBER(S) 6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION University of...was passed through the column using a peristaltic pump adjusted to flow rate of 8.0 ml/h. To allow full binding of sugar residues to lectin the eluent

  9. Capture, Release and Culture of Circulating Tumor Cells from Pancreatic Cancer Patients using an Enhanced Mixing Chip

    PubMed Central

    Sheng, Weian; Ogunwobi, Olorunseun O.; Chen, Tao; Zhang, Jinling; George, Thomas J.; Liu, Chen; Fan, Z. Hugh

    2013-01-01

    Circulating tumor cells (CTCs) from peripheral blood hold important information for cancer diagnosis and disease monitoring. Analysis of this “liquid biopsy” holds the promise to usher in a new era of personalized therapeutic treatments and real-time monitoring for cancer patients. But the extreme rarity of CTCs in blood makes their isolation and characterization technologically challenging. This paper reports the development of a geometrically enhanced mixing (GEM) chip for high-efficiency and high-purity tumor cell capture. We also successfully demonstrated the release and culture of the captured tumor cells, as well as the isolation of CTCs from cancer patients. The high-performance microchip is based on geometrically optimized micromixer structures, which enhance the transverse flow and flow folding, maximizing the interaction between CTCs and antibody-coated surfaces. With the optimized channel geometry and flow rate, the capture efficiency reached >90% with a purity of >84% when capturing spiked tumor cells in buffer. The system was further validated by isolating a wide range of spiked tumor cells (50–50,000) in 1 mL of lysed blood and whole blood. With the combination of trypsinization and high flow rate washing, captured tumor cells were efficiently released. The released cells were viable and able to proliferate, and showed no difference compared with intact cells that were not subjected to the capture and release process. Furthermore, we applied the device for detecting CTCs from metastatic pancreatic cancer patients’ blood; and CTCs were found from 17 out of 18 samples (>94%). We also tested the potential utility of the device in monitoring the response to anti-cancer drug treatment in pancreatic cancer patients, and the CTC numbers correlated with the clinical computed tomograms (CT scans) of tumors. The presented technology shows great promise for accurate CTC enumeration, biological studies of CTCs and cancer metastasis, as well as for cancer diagnosis and treatment monitoring. PMID:24220648

  10. Options and limits of quantitative and qualitative online-monitoring of industrial discharges into municipal sewage systems.

    PubMed

    Hoppe, H; Messmann, S; Giga, A; Grüning, H

    2009-01-01

    In some cities, industrial enterprises' discharges into municipal sewage systems have a major impact on the quantity and quality of inflows to the municipal treatment plants. In many cases, industrial discharges stand out on account of the great fluctuations in their volumetric rates of flow, pollution loads and temperatures. As a result, these discharges put a great strain on the sewage system, the treatment plant, and ultimately the receiving waters. The enterprises concerned have to pay the treatment plant operators fees based on the load and/or volume discharged. In most cases, qualitative monitoring operations merely consist of spot checks. This means that continuously surveillance is not possible and infringements of the permissible limit values are only discovered by accident. If impermissible discharges are carried out that may be susceptible to causing a treatment plant failure, the rapid initiation of countermeasures is not possible. Hence, spectrometer probes and mobile flowmeters were used in order to determine volumetric rates of flow, COD concentrations, and ultimately the loads discharged. The possibilities for, and limits to, online monitoring as well as shortcomings of spot-checks are discussed in the course of this paper, which also includes an uncertainty analysis.

  11. Lava effusion rate definition and measurement: a review

    USGS Publications Warehouse

    Calvari, Sonia; Dehn, Jonathan; Harris, A.

    2007-01-01

    Measurement of effusion rate is a primary objective for studies that model lava flow and magma system dynamics, as well as for monitoring efforts during on-going eruptions. However, its exact definition remains a source of confusion, and problems occur when comparing volume flux values that are averaged over different time periods or spatial scales, or measured using different approaches. Thus our aims are to: (1) define effusion rate terminology; and (2) assess the various measurement methods and their results. We first distinguish between instantaneous effusion rate, and time-averaged discharge rate. Eruption rate is next defined as the total volume of lava emplaced since the beginning of the eruption divided by the time since the eruption began. The ultimate extension of this is mean output rate, this being the final volume of erupted lava divided by total eruption duration. Whether these values are total values, i.e. the flux feeding all flow units across the entire flow field, or local, i.e. the flux feeding a single active unit within a flow field across which many units are active, also needs to be specified. No approach is without its problems, and all can have large error (up to ∼50%). However, good agreement between diverse approaches shows that reliable estimates can be made if each approach is applied carefully and takes into account the caveats we detail here. There are three important factors to consider and state when measuring, giving or using an effusion rate. First, the time-period over which the value was averaged; second, whether the measurement applies to the entire active flow field, or a single lava flow within that field; and third, the measurement technique and its accompanying assumptions.

  12. Eruption mass estimation using infrasound waveform inversion and ash and gas measurements: Evaluation at Sakurajima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Fee, David; Izbekov, Pavel; Kim, Keehoon; Yokoo, Akihiko; Lopez, Taryn; Prata, Fred; Kazahaya, Ryunosuke; Nakamichi, Haruhisa; Iguchi, Masato

    2017-12-01

    Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been applied to the inversion technique. Here we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan. Six infrasound stations deployed from 12-20 February 2015 recorded the explosions. We compute numerical Green's functions using 3-D Finite Difference Time Domain modeling and a high-resolution digital elevation model. The inversion, assuming a simple acoustic monopole source, provides realistic eruption masses and excellent fit to the data for the majority of the explosions. The inversion results are compared to independent eruption masses derived from ground-based ash collection and volcanic gas measurements. Assuming realistic flow densities, our infrasound-derived eruption masses for ash-rich eruptions compare favorably to the ground-based estimates, with agreement ranging from within a factor of two to one order of magnitude. Uncertainties in the time-dependent flow density and acoustic propagation likely contribute to the mismatch between the methods. Our results suggest that realistic and accurate infrasound-based eruption mass and mass flow rate estimates can be computed using the method employed here. If accurate volcanic flow parameters are known, application of this technique could be broadly applied to enable near real-time calculation of eruption mass flow rates and total masses. These critical input parameters for volcanic eruption modeling and monitoring are not currently available.

  13. Droplet trapping and fast acoustic release in a multi-height device with steady-state flow.

    PubMed

    Rambach, Richard W; Linder, Kevin; Heymann, Michael; Franke, Thomas

    2017-10-11

    We demonstrate a novel multilayer polydimethylsiloxane (PDMS) device for selective storage and release of single emulsion droplets. Drops are captured in a microchannel cavity and can be released on-demand through a triggered surface acoustic wave pulse. The surface acoustic wave (SAW) is excited by a tapered interdigital transducer (TIDT) deposited on a piezoelectric lithium niobate (LiNbO 3 ) substrate and inverts the pressure difference across the cavity trap to push a drop out of the trap and back into the main flow channel. Droplet capture and release does not require a flow rate change, flow interruption, flow inversion or valve action and can be achieved in as fast as 20 ms. This allows both on-demand droplet capture for analysis and monitoring over arbitrary time scales, and continuous device operation with a high droplet rate of 620 drops per s. We hence decouple long-term droplet interrogation from other operations on the chip. This will ease integration with other microfluidic droplet operations and functional components.

  14. Debris flow monitoring in the Acquabona watershed on the Dolomites (Italian Alps)

    USGS Publications Warehouse

    Berti, M.; Genevois, R.; LaHusen, R.; Simoni, A.; Tecca, P.R.

    2000-01-01

    In 1997 a field monitoring system was installed in Acquabona Creek in the Dolomites (Eastern Italian Alps) to observe the hydrologic conditions for debris flow occurrence and some dynamic properties of debris flow. The monitoring system consists of three remote stations: an upper one located at the head of a deeply-incised channel and two others located downstream. The system is equipped with sensors for measuring rainfall, pore pressures in the mobile channel bottom, ground vibrations, debris flow depth, total normal stress and fluid pore-pressure at the base of the flow. Two video cameras record events at the upper channel station and one video is installed at the lowermost station. During summer 1998, three debris flows (volumes from less than 1000 m3 up to 9000 m3) occurred at Acquabona. The following results were obtained from a preliminary analysis of the data: 1) All of the flows were triggered by rainfalls of less than 1 hour duration, with peak rainfall intensities ranging from 4.8 to 14.7 mm / 10 minute. 2) Debris flows initiated in several reaches of the channel, including the head of the talus slope. 3) The initial surges of the mature flows had a higher solid concentration and a lower velocity (up to 4 m/s) than succeeding, more dilute surges (more than 7 m/s). 4) Total normal stress and pore fluid pressures measured at the base of the flow (mean depth about 1.1 m) were similar (about 15 kPa), indicating a completely liquefied flow. 5) Peak flows entrained debris at a rate of about 6 m3/m of channel length and channel bed scouring was proportional to the local slope gradient and was still evident in the lower channel where the slope was 7??. ?? 2000 Elsevier Science Ltd. All rights reserved.

  15. Soft Sensing of Non-Newtonian Fluid Flow in Open Venturi Channel Using an Array of Ultrasonic Level Sensors—AI Models and Their Validations

    PubMed Central

    Viumdal, Håkon; Mylvaganam, Saba

    2017-01-01

    In oil and gas and geothermal installations, open channels followed by sieves for removal of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular) and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and support vector regression algorithms applied to the data from temporal and spatial ultrasonic level measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient reliability, repeatability and uncertainty, providing a novel soft sensing of an important process variable. Simulations, cross-validations and experimental results show that feedforward neural networks with the Bayesian regularization learning algorithm provide the best flow rate estimates. Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open channels are discussed. PMID:29072595

  16. Hot water in the Long Valley Caldera—The benefits and hazards of this large natural resource

    USGS Publications Warehouse

    Evans, William C.; Hurwitz, Shaul; Bergfeld, Deborah; Howle, James F.

    2018-03-26

    The volcanic processes that have shaped the Long Valley Caldera in eastern California have also created an abundant supply of natural hot water. This natural resource provides benefits to many users, including power generation at the Casa Diablo Geothermal Plant, warm water for a state fish hatchery, and beautiful scenic areas such as Hot Creek gorge for visitors. However, some features can be dangerous because of sudden and unpredictable changes in the location and flow rate of boiling water. The U.S. Geological Survey monitors several aspects of the hydrothermal system in the Long Valley Caldera including temperature, flow rate, and water chemistry.

  17. Video Voiding Device for Diagnosing Lower Urinary Tract Dysfunction in Men.

    PubMed

    Shokoueinejad, Mehdi; Alkashgari, Rayan; Mosli, Hisham A; Alothmany, Nazeeh; Levin, Jacob M; Webster, John G

    2017-01-01

    We introduce a novel diagnostic Visual Voiding Device (VVD), which has the ability to visually document urinary voiding events and calculate key voiding parameters such as instantaneous flow rate. The observation of the urinary voiding process along with the instantaneous flow rate can be used to diagnose symptoms of Lower Urinary Tract Dysfunction (LUTD) and improve evaluation of LUTD treatments by providing subsequent follow-up documentations of voiding events after treatments. The VVD enables a patient to have a urinary voiding event in privacy while a urologist monitors, processes, and documents the event from a distance. The VVD consists of two orthogonal cameras which are used to visualize urine leakage from the urethral meatus, urine stream trajectory, and its break-up into droplets. A third, lower back camera monitors a funnel topped cylinder where urine accumulates that contains a floater for accurate readings regardless of the urine color. Software then processes the change in level of accumulating urine in the cylinder and the visual flow properties to calculate urological parameters. Video playback allows for reexamination of the voiding process. The proposed device was tested by integrating a mass flowmeter into the setup and simultaneously measuring the instantaneous flow rate of a predetermined voided volume in order to verify the accuracy of VVD compared to the mass flowmeter. The VVD and mass flowmeter were found to have an accuracy of ±2 and ±3% relative to full scale, respectively. A VVD clinical trial was conducted on 16 healthy male volunteers ages 23-65.

  18. Stabilized filter-supported bilayer lipid membranes (BLMs) for automated flow monitoring of compounds of clinical, pharmaceutical, environmental and industrial interest

    PubMed Central

    Siontorou, Christina G.

    1997-01-01

    This paper describes the results of analytical applications of electrochemical biosensors based on bilayer lipid membranes (BLMs) for the automated rapid and sensitive flow monitoring of substrates of hydrolytic enzymes, antigens and triazine herbicides. BLMs, composed of mixtures of egg phosphatidylcholine (egg PC) and dipalmitoylphosphatidic acid (DPPA), were supported on ultrafiltration membranes (glass microfibre or polycarbonate filters) which were found to enhance their stability for flow experiments. The proteins (enzymes, antibodies) were incorporated into a floating lipid matrix at an air-electrolyte interface, and then a casting procedure was used to deliver the lipid onto the filter supports for BLM formation. Injections of the analyte were made into flowing streams of the carrier electrolyte solution and a current transient signal was obtained with a magnitude related to the analyte concentration. Substrates of hydrolytic enzyme reactions (acetylcholine, urea and penicillin) could be determined at the micromolar level with a maximum rate of 220 samples/h, whereas antigens (thyroxin) and triazine herbicides (simazine, atrazine and propazine) could be monitored at the nanomolar level in less than 2 min. The time of appearance of the transient response obtained for herbicides was increased to the order of simazine, atrazine and propazine which has permitted analysis of these triazines in mixtures. PMID:18924789

  19. Simultaneous estimation of local-scale and flow path-scale dual-domain mass transfer parameters using geoelectrical monitoring

    USGS Publications Warehouse

    Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Curtis, Gary P.; Lane, John W.

    2013-01-01

    Anomalous solute transport, modeled as rate-limited mass transfer, has an observable geoelectrical signature that can be exploited to infer the controlling parameters. Previous experiments indicate the combination of time-lapse geoelectrical and fluid conductivity measurements collected during ionic tracer experiments provides valuable insight into the exchange of solute between mobile and immobile porosity. Here, we use geoelectrical measurements to monitor tracer experiments at a former uranium mill tailings site in Naturita, Colorado. We use nonlinear regression to calibrate dual-domain mass transfer solute-transport models to field data. This method differs from previous approaches by calibrating the model simultaneously to observed fluid conductivity and geoelectrical tracer signals using two parameter scales: effective parameters for the flow path upgradient of the monitoring point and the parameters local to the monitoring point. We use regression statistics to rigorously evaluate the information content and sensitivity of fluid conductivity and geophysical data, demonstrating multiple scales of mass transfer parameters can simultaneously be estimated. Our results show, for the first time, field-scale spatial variability of mass transfer parameters (i.e., exchange-rate coefficient, porosity) between local and upgradient effective parameters; hence our approach provides insight into spatial variability and scaling behavior. Additional synthetic modeling is used to evaluate the scope of applicability of our approach, indicating greater range than earlier work using temporal moments and a Lagrangian-based Damköhler number. The introduced Eulerian-based Damköhler is useful for estimating tracer injection duration needed to evaluate mass transfer exchange rates that range over several orders of magnitude.

  20. 40 CFR 63.1573 - What are my monitoring alternatives?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operate a continuous gas analyzer to measure and record the concentration of carbon dioxide, carbon... control room instrumentations, dscm/min (dscf/min); %CO2 = Carbon dioxide concentration in regenerator... catalytic regenerator atmospheric exhaust gas flow rate for your catalytic reforming unit during the coke...

  1. 40 CFR 63.1573 - What are my monitoring alternatives?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operate a continuous gas analyzer to measure and record the concentration of carbon dioxide, carbon... control room instrumentations, dscm/min (dscf/min); %CO2 = Carbon dioxide concentration in regenerator... catalytic regenerator atmospheric exhaust gas flow rate for your catalytic reforming unit during the coke...

  2. ORGANIC WASTE CONTAMINATION INDICATORS IN SMALL GEORGIA PIEDMONT STREAMS

    EPA Science Inventory

    We monitored concentrations of nitrous oxide, methane, carbon dioxide, nutrients and other parameters (T, conductivity, dissolved oxygen, alkalinity, pH, DOC, DON, flow rate) in 17 headwater streams (watershed sizes from 0.5 to 3.4 kilometers) of the South Fork Broad River waters...

  3. Characterization of arterial traffic congestion through analysis of operational parameters (gap acceptance and lane changing).

    DOT National Transportation Integrated Search

    2010-05-01

    This project monitored an urban arterial highway to characterize recurring congestion. There were two major initiatives in the project. The first one focused on observed variations in gap acceptance and lane changing in relation to traffic flow rates...

  4. Real-time combustion control and diagnostics sensor-pressure oscillation monitor

    DOEpatents

    Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy [Morgantown, WV; Huckaby, E David [Morgantown, WV; Richards, George A [Morgantown, WV

    2009-07-14

    An apparatus and method for monitoring and controlling the combustion process in a combustion system to determine the amplitude and/or frequencies of dynamic pressure oscillations during combustion. An electrode in communication with the combustion system senses hydrocarbon ions and/or electrons produced by the combustion process and calibration apparatus calibrates the relationship between the standard deviation of the current in the electrode and the amplitudes of the dynamic pressure oscillations by applying a substantially constant voltage between the electrode and ground resulting in a current in the electrode and by varying one or more of (1) the flow rate of the fuel, (2) the flow rate of the oxidant, (3) the equivalence ratio, (4) the acoustic tuning of the combustion system, and (5) the fuel distribution in the combustion chamber such that the amplitudes of the dynamic pressure oscillations in the combustion chamber are calculated as a function of the standard deviation of the electrode current. Thereafter, the supply of fuel and/or oxidant is varied to modify the dynamic pressure oscillations.

  5. Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Bagnaninchi, Pierre O.; Yang, Ying; Haj, Alicia El; Hinds, Monica T.; Kirkpatrick, Sean J.; Wang, Ruikang K.

    2009-05-01

    Establishing a relationship between perfusion rate and fluid shear stress in a 3D cell culture environment is an ongoing and challenging task faced by tissue engineers. We explore Doppler optical coherence tomography (DOCT) as a potential imaging tool for in situ monitoring of local fluid flow profiles inside porous chitosan scaffolds. From the measured fluid flow profiles, the fluid shear stresses are evaluated. We examine the localized fluid flow and shear stress within low- and high-porosity chitosan scaffolds, which are subjected to a constant input flow rate of 0.5 ml.min-1. The DOCT results show that the behavior of the fluid flow and shear stress in micropores is strongly dependent on the micropore interconnectivity, porosity, and size of pores within the scaffold. For low-porosity and high-porosity chitosan scaffolds examined, the measured local fluid flow and shear stress varied from micropore to micropore, with a mean shear stress of 0.49+/-0.3 dyn.cm-2 and 0.38+/-0.2 dyn.cm-2, respectively. In addition, we show that the scaffold's porosity and interconnectivity can be quantified by combining analyses of the 3D structural and flow images obtained from DOCT.

  6. Migrants in transit: the importance of monitoring HIV risk among migrant flows at the Mexico-US border.

    PubMed

    Martinez-Donate, Ana P; Hovell, Melbourne F; Rangel, Maria Gudelia; Zhang, Xiao; Sipan, Carol L; Magis-Rodriguez, Carlos; Gonzalez-Fagoaga, J Eduardo

    2015-03-01

    We conducted a probability-based survey of migrant flows traveling across the Mexico-US border, and we estimated HIV infection rates, risk behaviors, and contextual factors for migrants representing 5 distinct migration phases. Our results suggest that the influence of migration is not uniform across genders or risk factors. By considering the predeparture, transit, and interception phases of the migration process, our findings complement previous studies on HIV among Mexican migrants conducted at the destination and return phases. Monitoring HIV risk among this vulnerable transnational population is critical for better understanding patterns of risk at different points of the migration process and for informing the development of protection policies and programs.

  7. Migrants in Transit: The Importance of Monitoring HIV Risk Among Migrant Flows at the Mexico–US Border

    PubMed Central

    Martinez-Donate, Ana P.; Hovell, Melbourne F.; Rangel, Maria Gudelia; Zhang, Xiao; Sipan, Carol L.; Magis-Rodriguez, Carlos; Gonzalez-Fagoaga, J. Eduardo

    2015-01-01

    We conducted a probability-based survey of migrant flows traveling across the Mexico–US border, and we estimated HIV infection rates, risk behaviors, and contextual factors for migrants representing 5 distinct migration phases. Our results suggest that the influence of migration is not uniform across genders or risk factors. By considering the predeparture, transit, and interception phases of the migration process, our findings complement previous studies on HIV among Mexican migrants conducted at the destination and return phases. Monitoring HIV risk among this vulnerable transnational population is critical for better understanding patterns of risk at different points of the migration process and for informing the development of protection policies and programs. PMID:25602882

  8. F-Area Acid/Caustic Basin groundwater monitoring report. Second quarter 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    During second quarter 1995, samples from the FAC monitoring wells at the F-Area Acid/Caustic Basin were collected and analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclide indicators, volatile organic compounds, and other constituents. Piezometer FAC 5P and monitoring well FAC 6 were dry and could not be sampled. New monitoring wells FAC 9C, 10C, 11C, and 12C were completed in the Barnwell/McBean aquifer and were sampled for the first time during third quarter 1994 (second quarter 1995 is the fourth of four quarters of data required to support the closure of the basin). Analytical results that exceeded final Primary Drinkingmore » Water Standards (PDWS) or Savannah River Site (SRS) Flag 2 criteria such as the SRS turbidity standard of 50 NTU during the quarter were as follows: gross alpha exceeded the final PDWS and aluminum, iron, manganese, and radium-226 exceeded the SRS Flag 2 criteria in one or more of the FAC wells. Turbidity exceeded the SRS standard (50 NTU) in well FAC 3. Groundwater flow direction in the water table beneath the F-Area Acid/Caustic Basin was to the west at a rate of 1300 feet per year. Groundwater flow in the Barnwell/McBean was to the northeast at a rate of 50 feet per year.« less

  9. Effects of water drinking test on ocular blood flow waveform parameters: A laser speckle flowgraphy study.

    PubMed

    Bhatti, Mehwish Saba; Tang, Tong Boon; Laude, Augustinus

    2017-01-01

    The water-drinking test (WDT) is a provocative test used in glaucoma research to assess the effects of elevated intraocular pressure (IOP). Defective autoregulation due to changes in perfusion pressure may play a role in the pathophysiology of several ocular diseases. This study aims to examine the effects of WDT on ocular blood flow (in the form of pulse waveform parameters obtained using laser speckle flowgraphy) to gain insight into the physiology of ocular blood flow and its autoregulation in healthy individuals. Changes in pulse waveform parameters of mean blur rate (MBR) in the entire optic nerve head (ONH), the vasculature of the ONH, the tissue area of the ONH, and the avascular tissue area located outside of the ONH were monitored over time. Significant increases in the falling rate of MBR over the entire ONH and its tissue area and decreases in blowout time (BOT) of the tissue area were observed only at 10 minutes after water intake. Significant increases in the skew of the waveform and the falling rate were observed in the vasculature of the ONH at 40 and 50 minutes after water intake, respectively. In the avascular region of the choroid, the average MBR increased significantly up to 30 minutes after water intake. Furthermore, the rising rate in this region increased significantly at 20 and 40 minutes, and the falling rate and acceleration-time index were both significantly increased at 40 minutes after water intake. Our results indicate the presence of effective autoregulation of blood flow at the ONH after WDT. However, in the choroidal region, outside of the ONH, effective autoregulation was not observed until 30 minutes after water intake in healthy study participants. These pulse waveform parameters could potentially be used in the diagnosis and/or monitoring of patients with glaucoma.

  10. Effects of water drinking test on ocular blood flow waveform parameters: A laser speckle flowgraphy study

    PubMed Central

    Bhatti, Mehwish Saba; Laude, Augustinus

    2017-01-01

    The water-drinking test (WDT) is a provocative test used in glaucoma research to assess the effects of elevated intraocular pressure (IOP). Defective autoregulation due to changes in perfusion pressure may play a role in the pathophysiology of several ocular diseases. This study aims to examine the effects of WDT on ocular blood flow (in the form of pulse waveform parameters obtained using laser speckle flowgraphy) to gain insight into the physiology of ocular blood flow and its autoregulation in healthy individuals. Changes in pulse waveform parameters of mean blur rate (MBR) in the entire optic nerve head (ONH), the vasculature of the ONH, the tissue area of the ONH, and the avascular tissue area located outside of the ONH were monitored over time. Significant increases in the falling rate of MBR over the entire ONH and its tissue area and decreases in blowout time (BOT) of the tissue area were observed only at 10 minutes after water intake. Significant increases in the skew of the waveform and the falling rate were observed in the vasculature of the ONH at 40 and 50 minutes after water intake, respectively. In the avascular region of the choroid, the average MBR increased significantly up to 30 minutes after water intake. Furthermore, the rising rate in this region increased significantly at 20 and 40 minutes, and the falling rate and acceleration-time index were both significantly increased at 40 minutes after water intake. Our results indicate the presence of effective autoregulation of blood flow at the ONH after WDT. However, in the choroidal region, outside of the ONH, effective autoregulation was not observed until 30 minutes after water intake in healthy study participants. These pulse waveform parameters could potentially be used in the diagnosis and/or monitoring of patients with glaucoma. PMID:28742142

  11. 40 CFR 75.16 - Special provisions for monitoring emissions from common, bypass, and multiple stacks for SO2...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... maintain an SO2 continuous emission monitoring system and flow monitoring system in the duct to the common... emission monitoring system and flow monitoring system in the common stack and combine emissions for the... continuous emission monitoring system and flow monitoring system in the duct to the common stack from each...

  12. Liquid Bismuth Propellant Management System for the Very High Specific Impulse Thruster with Anode Layer

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Markusic, T. E.; Stanojev, B. J.

    2007-01-01

    Two prototype bismuth propellant feed systems were constructed and operated in conjunction with a propellant vaporizer. One system provided bismuth to a vaporizer using gas pressurization but did not include a means to measure the flow rate. The second system incorporated an electromagnetic pump to provide fine control of the hydrostatic pressure and a new type of in-line flow sensor that was developed for accurate, real-time measurement of the mass flow rate. High-temperature material compatibility was a driving design requirement for the pump and flow sensor, leading to the selection of Macor for the main body of both components. Posttest inspections of both components revealed no degradation of the material. The gas pressurization system demonstrated continuous pressure control over a range from zero to 200 torr. In separate proof-of-concept experiments, the electromagnetic pump produced a linear pressure rise as a function of current that compared favorably with theoretical pump pressure predictions, producing a pressure rise of 10 kPa at 30 A. Preliminary flow sensor operation indicated a bismuth flow rate of 6 mg/s with an uncertainty of plus or minus 6%. An electronics suite containing a real-time controller was successfully used to control the entire system, simultaneously monitoring all power supplies and performing data acquisition duties.

  13. Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering.

    PubMed

    Sakota, Daisuke; Takatani, Setsuo

    2012-05-01

    Optical properties of flowing blood were analyzed using a photon-cell interactive Monte Carlo (pciMC) model with the physical properties of the flowing red blood cells (RBCs) such as cell size, shape, refractive index, distribution, and orientation as the parameters. The scattering of light by flowing blood at the He-Ne laser wavelength of 632.8 nm was significantly affected by the shear rate. The light was scattered more in the direction of flow as the flow rate increased. Therefore, the light intensity transmitted forward in the direction perpendicular to flow axis decreased. The pciMC model can duplicate the changes in the photon propagation due to moving RBCs with various orientations. The resulting RBC's orientation that best simulated the experimental results was with their long axis perpendicular to the direction of blood flow. Moreover, the scattering probability was dependent on the orientation of the RBCs. Finally, the pciMC code was used to predict the hematocrit of flowing blood with accuracy of approximately 1.0 HCT%. The photon-cell interactive Monte Carlo (pciMC) model can provide optical properties of flowing blood and will facilitate the development of the non-invasive monitoring of blood in extra corporeal circulatory systems.

  14. Non-contact flow gauging for the extension and development of rating curves

    NASA Astrophysics Data System (ADS)

    Perks, Matthew; Large, Andy; Russell, Andy

    2015-04-01

    Accurate measurement of river discharge is fundamental to understanding hydrological processes, associated hazards and ecological responses within fluvial systems. Established protocols for determining river discharge are partial, predominantly invasive and logistically difficult during high flows. There is demand for new methods for accurate quantification of flow velocity under high-flow/flood conditions to in turn enable better post-event reconstruction of peak discharge. As a consequence considerable effort has been devoted to the development of innovative technologies for the representation of flow in open channels. Remotely operated fixed and mobile systems capable of providing quantitative estimates of instantaneous and time-averaged flow characteristics using non-contact methods has been a major development. Amongst the new approaches for stand-alone continuous monitoring of surface flows is Large Scale Particle Image Velocimetry (LSPIV). Here we adapt the LSPIV concept, to provide continuous discharge measurements in non-uniform channels with complex flow conditions. High Definition videos (1080p; 30fps) of the water surface are acquired at 5 minute intervals. The image is rectified to correct for perspective distortion using a new, open source tool which minimises errors resulting from oblique image capture. Naturally occurring artefacts on the water surface (e.g. bubbles, debris, etc.) are tracked with the Kanade-Lucas-Tomasi (KLT) algorithm. The data generated is in the form of a complex surface water velocity field which can be interrogated to extract a range of hydrological information such as the streamwise velocity at a cross-section of interest, or even allow the interrogation of hydrodynamic flow structures. Here we demonstrate that this approach is capable of generating river discharge data comparable to concurrent measurements made using existing, accepted technologies (e.g. ADCP). The outcome is better constraint and extension of rating curves. The approach is suited to water management authorities throughout Europe who seek ever-increasingly cost-effective and non-invasive techniques for maximising the monitoring capabilities of their operational network.

  15. UV absorption control of thin film growth

    DOEpatents

    Biefeld, Robert M.; Hebner, Gregory A.; Killeen, Kevin P.; Zuhoski, Steven P.

    1991-01-01

    A system for monitoring and controlling the rate of growth of thin films in an atmosphere of reactant gases measures the UV absorbance of the atmosphere and calculates the partial pressure of the gases. The flow of reactant gases is controlled in response to the partial pressure.

  16. 40 CFR 63.1573 - What are my monitoring alternatives?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic... for your catalytic cracking unit if the unit does not introduce any other gas streams into the... record the hourly average volumetric air flow rate to the catalytic cracking unit or catalytic reforming...

  17. 40 CFR 63.1573 - What are my monitoring alternatives?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic... for your catalytic cracking unit if the unit does not introduce any other gas streams into the... record the hourly average volumetric air flow rate to the catalytic cracking unit or catalytic reforming...

  18. 40 CFR 63.1573 - What are my monitoring alternatives?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... continuous gas analyzer to measure and record the concentration of carbon dioxide, carbon monoxide, and... instrumentations, dscm/min (dscf/min); %CO2 = Carbon dioxide concentration in regenerator exhaust, percent by... regenerator atmospheric exhaust gas flow rate for your catalytic reforming unit during the coke burn and...

  19. The role of hydrodynamics, matrix and sampling duration in passive sampling of polar compounds with Empore SDB-RPS disks.

    PubMed

    Vermeirssen, Etiënne L M; Asmin, Josef; Escher, Beate I; Kwon, Jung-Hwan; Steimen, Irene; Hollender, Juliane

    2008-01-01

    There is an increasing need to monitor concentrations of polar organic contaminants in the aquatic environment. Integrative passive samplers can be used to assess time weighted average aqueous concentrations, provided calibration data are available and sampling rates are known. The sampling rate depends on environmental factors, such as temperature and water flow rate. Here we introduce an apparatus to investigate the sampling properties of passive samplers using river-like flow conditions and ambient environmental matrices: river water and treated sewage effluent. As a model sampler we selected Empore SDB-RPS disks in a Chemcatcher housing. The disks were exposed for 1 to 8 days at flow rates between 0.03 and 0.4 m s(-1). Samples were analysed using a bioassay for estrogenic activity and by LC-MS-MS target analysis of the pharmaceuticals sulfamethoxazole, carbamazepine and clarithromycin. In order to assess sampling rates of SDB disks, we also measured aqueous concentrations of the pharmaceuticals. Sampling rates increased with increasing flow rate and this relationship was not affected by the environmental matrix. However, SDB disks were only sampling in the integrative mode at low flow rates <0.1 m s(-1) and/or for short sampling times. The duration of linear uptake was particularly short for sulfamethoxazole (1 day) and longer for clarithromycin (5 days). At 0.03 m s(-1) and 12-14 degrees C, the sampling rate of SDB disks was 0.09 L day(-1) for clarithromycin, 0.14 L day(-1) for sulfamethoxazole and 0.25 L day(-1) for carbamazepine. The results show that under controlled conditions, SDB disks can be effectively used as passive sampling devices.

  20. 46 CFR Appendix D to Subpart C to... - Sampling and Analytical Methods for Benzene Monitoring-Measurement Procedures

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... chromatograph. Detection limit: 0.04 ppm. Recommended air volume and sampling rate: 10 liter at 0.2 liter/min. 1... tube must be less than one inch of mercury at a flow rate of one liter per minute. 3.3. Gas... passed through any hose or tubing before entering the charcoal tube. 5.3.5. A sample size of 10 liters is...

  1. 46 CFR Appendix D to Subpart C to... - Sampling and Analytical Methods for Benzene Monitoring-Measurement Procedures

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... chromatograph. Detection limit: 0.04 ppm. Recommended air volume and sampling rate: 10 liter at 0.2 liter/min. 1... tube must be less than one inch of mercury at a flow rate of one liter per minute. 3.3. Gas... passed through any hose or tubing before entering the charcoal tube. 5.3.5. A sample size of 10 liters is...

  2. Strengthening Borehole Configuration from the Retaining Roadway for Greenhouse Gas Reduction: A Case Study

    PubMed Central

    Xue, Fei; Zhang, Nong; Feng, Xiaowei; Zheng, Xigui; Kan, Jiaguang

    2015-01-01

    A monitoring trial was carried out to investigate the effect of boreholes configuration on the stability and gas production rate. These boreholes were drilled from the retaining roadway at longwall mining panel 1111(1) of the Zhuji Coalmine, in China. A borehole camera exploration device and multiple gas parameter measuring device were adopted to monitor the stability and gas production rate. Research results show that boreholes 1~8 with low intensity and thin casing thickness were broken at the depth of 5~10 m along the casing and with a distance of 2~14 m behind the coal face, while boreholes 9~11 with a special thick-walled high-strength oil casing did not fracture during the whole extraction period. The gas extraction volume is closely related to the boreholes stability. After the stability of boreholes 9~11 being improved, the average gas flow rate increased dramatically 16-fold from 0.13 to 2.21 m3/min, and the maximum gas flow rate reached 4.9 m3/min. Strengthening boreholes configuration is demonstrated to be a good option to improve gas extraction effect. These findings can make a significant contribution to the reduction of greenhouse gas emissions from the coal mining industry. PMID:25633368

  3. Method and apparatus for acoustically monitoring the flow of suspended solid particulate matter. [Patent application; monitoring char flow in coal gasifier

    DOEpatents

    Roach, P.D.; Raptis, A.C.

    1980-11-24

    A method and apparatus for monitoring char flow in a coal gasifier system includes flow monitor circuits which measure acoustic attenuation caused by the presence of char in a char line and provides a char flow/no flow indication and an indication of relative char density. The flow monitor circuits compute the ratio of signals in two frequency bands, a first frequency band representative of background noise, and a second higher frequency band in which background noise is attenuated by the presence of char. Since the second frequency band contains higher frequencies, the ratio can be used to provide a flow/no flow indication. The second band can also be selected so that attenuation is monotonically related to particle concentration, providing a quantitative measure of char concentration.

  4. The Oxidation of CVD Silicon Carbide in Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Nguyen, QuynchGiao N.

    1997-01-01

    Chemically-vapor-deposited silicon carbide (CVD SiC) was oxidized in carbon dioxide (CO2) at temperatures of 1200-1400 C for times between 100 and 500 hours at several gas flow rates. Oxidation weight gains were monitored by thermogravimetric analysis (TGA) and were found to be very small and independent of temperature. Possible rate limiting kinetic laws are discussed. Oxidation of SiC by CO2 is negligible compared to the rates measured for other oxidants typically found in combustion environments: oxygen and water vapor.

  5. Characterization of bedload transport in steep-slope streams

    NASA Astrophysics Data System (ADS)

    Mettra, F.; Heyman, J.; Ancey, C.

    2012-04-01

    Large fluctuations in the sediment transport rate are observed in rivers, particularly in mountain streams at intermediate flow rates. These fluctuations seem to be, to some degree, correlated to the formation and migration of bedforms. Today the central question is still how to understand and account for the strong bedload variability. Recent experimental studies shed new light on the processes. The objective of this presentation is to show some of our results. To understand the behavior and the origins of sediment transport rate fluctuations in the case of steep-slope streams, we conducted laboratory experiments in a 3-m long, 8-cm wide, transparent flume. The experimental parameters are the flume inclination, flow rate and sediment input rate. Well-sorted natural gravel (8.5 mm mean diameter) were used. We focused on two-dimensional flows and incipient bedforms (i.e., for flow rates just above the threshold of incipient motion). A technique based on accelerometers was developed to record every particle passing through the flume outlet (more specifically, we measured the vibrations of a metallic slab, which was impacted by the falling particles). Analysis of bedload transport rates was then possible on all time scales. Moreover, the bed and flow were monitored using 2 cameras. We computed bed elevation, water depth and erosion/deposition at high temporal and spatial rates from camera shots (one image per second during several hours or days). In our laboratory experiments, the fluctuations of the sediment rate were large even for steady flow conditions involving well-sorted particles. Time series exhibited fluctuations at all scales and displayed long range correlations with a Hurst exponent close to 0.8. The results were compared for different input solid discharges. The main bedforms observed in our flume were anti-dunes migrating upstream. Bedform formation and propagation showed intermittency with pulses (high activity) followed by long sequences of low activity. We tried to interpret our results (bedform behavior, bed scouring) in terms of sediment outflow rate.

  6. Unstable plastic deformation of ultrafine-grained copper at 0.5 K

    NASA Astrophysics Data System (ADS)

    Isaev, N. V.; Grigorova, T. V.; Shumilin, S. E.; Polishchuk, S. S.; Davydenko, O. A.

    2017-12-01

    We investigate the relation between the strain-hardening rate and flow instability of polycrystalline Cu-OF deformed by tension at a constant rate in a liquid 3He atmosphere. The microstructure of the ultrafine-grained crystal, obtained by the equal-channel angular hydro-extrusion method, was varied by annealing at recovery and recrystallization temperatures and was monitored by x-ray diffraction. It is shown that that the flow instability, manifesting itself as macroscopic stress serrations on the tension curve, appears at a threshold tension sufficient for activation of a dynamic recovery that leads to a decrease of the strain-hardening coefficient. We discuss the effect of grain size and the initial dislocation density on the evolution of the dislocation structure that determines the scale and the statistical properties of the flow instability in the investigated crystals at low temperature.

  7. Automated contrast medium monitoring system for computed tomography--Intra-institutional audit.

    PubMed

    Lauretti, Dario Luca; Neri, Emanuele; Faggioni, Lorenzo; Paolicchi, Fabio; Caramella, Davide; Bartolozzi, Carlo

    2015-12-01

    The aim of this study was to analyze the usage and the data recorded by a RIS-PACS-connected contrast medium (CM) monitoring system (Certegra(®), Bayer Healthcare, Leverkusen, Germany) over 19 months of CT activity. The system used was connected to two dual syringe power injectors (each associated with a 16-row and a high definition 64-row multidetector CT scanner, respectively), allowing to manage contrast medium injection parameters and to send and retrieve CT study-related information via RIS/PACS for any scheduled contrast-enhanced CT examination. The system can handle up to 64 variables and can be accessed via touchscreen by CT operators as well as via a web interface by registered users with three different hierarchy levels. Data related to CM injection parameters (i.e. iodine concentration, volume and flow rate of CM, iodine delivery rate and iodine dose, CM injection pressure, and volume and flow rate of saline), patient weight and height, and type of CT study over a testing period spanning from 1 June 2013 to 10 January 2015 were retrieved from the system. Technical alerts occurred for each injection event (such as system disarm due to technical failure, disarm due to operator's stop, incomplete filling of patient data fields, or excessively high injection pressure), as well as interoperability issues related to data sending and receiving to/from the RIS/PACS were also recorded. During the testing period, the CM monitoring system generated a total of 8609 reports, of which 7629 relative to successful injection events (88.6%). 331 alerts were generated, of which 40 resulted in injection interruption and 291 in CM flow rate limitation due to excessively high injection pressure (>325 psi). Average CM volume and flow rate were 93.73 ± 17.58 mL and 3.53 ± 0.89 mL/s, and contrast injection pressure ranged between 5 and 167 psi. A statistically significant correlation was found between iodine concentration and peak IDR (rs=0.2744, p<0.0001), as well as between iodine concentration and iodine dose (rs=0.3862, p<0.0001) for all CT studies. Automated contrast management systems can provide a full report of contrast use with the possibility to systematically compare different contrast injection protocols, minimize errors, and optimize organ-specific contrast enhancement for any given patient and clinical application. This can be useful to improve and harmonize the quality and consistency of contrast CT procedures within the same radiological department and across the hospital, as well as to monitor potential adverse events and overall costs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The effect of bed roughness on the free surface of an open channel flow and implications for remotely monitoring river discharge

    NASA Astrophysics Data System (ADS)

    Johnson, Erika; Cowen, Edwin

    2013-11-01

    The effect of increased bed roughness on the free surface turbulence signature of an open channel flow is investigated with the goal of incorporating the findings into a methodology to remotely monitor volumetric flow rates. Half of a wide (B = 2 m) open channel bed is covered with a 3 cm thick layer of loose gravel (D50 = 0.6 cm). Surface PIV (particle image velocimetry) experiments are conducted for a range of flow depths (B/H = 10-30) and Reynolds numbers (ReH = 10,000-60,000). It is well established that bed roughness in wall-bounded flows enhances the vertical velocity fluctuations (e.g. Krogstad et al. 1992). When the vertical velocity fluctuations approach the free surface they are redistributed (e.g. Cowen et al. 1995) to the surface parallel component directions. It is anticipated and confirmed that the interaction of these two phenomena result in enhanced turbulence at the free surface. The effect of the rough bed on the integral length scales and the second order velocity structure functions calculated at the free surface are investigated. These findings have important implications for developing new technologies in stream gaging.

  9. Methane emissions and airflow patterns on a longwall face: Potential influences from longwall gob permeability distributions on a bleederless longwall panel.

    PubMed

    Schatzel, S J; Krog, R B; Dougherty, H

    2017-01-01

    Longwall face ventilation is an important component of the overall coal mine ventilation system. Increased production rates due to higher-capacity mining equipment tend to also increase methane emission rates from the coal face, which must be diluted by the face ventilation. Increases in panel length, with some mines exceeding 6,100 m (20,000 ft), and panel width provide additional challenges to face ventilation designs. To assess the effectiveness of current face ventilation practices at a study site, a face monitoring study with continuous monitoring of methane concentrations and automated recording of longwall shearer activity was combined with a tracer gas test on a longwall face. The study was conducted at a U.S. longwall mine operating in a thick, bituminous coal seam and using a U-type, bleederless ventilation system. Multiple gob gas ventholes were located near the longwall face. These boreholes had some unusual design concepts, including a system of manifolds to modify borehole vacuum and flow and completion depths close to the horizon of the mined coalbed that enabled direct communication with the mine atmosphere. The mine operator also had the capacity to inject nitrogen into the longwall gob, which occurred during the monitoring study. The results show that emission rates on the longwall face showed a very limited increase in methane concentrations from headgate to tailgate despite the occurrence of methane delays during monitoring. Average face air velocities were 3.03 m/s (596 fpm) at shield 57 and 2.20 m/s (433 fpm) at shield 165. The time required for the sulfur hexafluoride (SF 6 ) peak to occur at each monitoring location has been interpreted as being representative of the movement of the tracer slug. The rate of movement of the slug was much slower in reaching the first monitoring location at shield 57 compared with the other face locations. This lower rate of movement, compared with the main face ventilation, is thought to be the product of a flow path within and behind the shields that is moving in the general direction of the headgate to the tailgate. Barometric pressure variations were pronounced over the course of the study and varied on a diurnal basis.

  10. Does an Open Recirculation Line Affect the Flow Rate and Pressure in a Neonatal Extracorporeal Life Support Circuit With a Centrifugal or Roller Pump?

    PubMed

    Wang, Shigang; Spencer, Shannon B; Woitas, Karl; Glass, Kristen; Kunselman, Allen R; Ündar, Akif

    2017-01-01

    The objective of this study is to evaluate the impact of an open or closed recirculation line on flow rate, circuit pressure, and hemodynamic energy transmission in simulated neonatal extracorporeal life support (ECLS) systems. The two neonatal ECLS circuits consisted of a Maquet HL20 roller pump (RP group) or a RotaFlow centrifugal pump (CP group), Quadrox-iD Pediatric oxygenator, and Biomedicus arterial and venous cannulae (8 Fr and 10 Fr) primed with lactated Ringer's solution and packed red blood cells (hematocrit 35%). Trials were conducted at flow rates ranging from 200 to 600 mL/min (200 mL/min increments) with a closed or open recirculation line at 36°C. Real-time pressure and flow data were recorded using a custom-based data acquisition system. In the RP group, the preoxygenator flow did not change when the recirculation line was open while the prearterial cannula flow decreased by 15.7-20.0% (P < 0.01). Circuit pressure, total circuit pressure drop, and hemodynamic energy delivered to patients also decreased (P < 0.01). In the CP group, the prearterial cannula flow did not change while preoxygenator flow increased by 13.6-18.8% (P < 0.01). Circuit pressure drop and hemodynamic energy transmission remained the same. The results showed that the shunt of an open recirculation line could decrease perfusion flow in patients in the ECLS circuit using a roller pump, but did not change perfusion flow in the circuit using a centrifugal pump. An additional flow sensor is needed to monitor perfusion flow in patients if any shunts exist in the ECLS circuit. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  11. Feasibility study of hidden flow imaging based on laser speckle technique using multiperspectives contrast images

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Moshe, Tomer

    2014-11-01

    This paper demonstrates the insertion of lens array in the front of a CCD camera in a laser speckle imaging (LSI) like-technique to acquire multiple speckle reflectance projections for imaging blood flow in an intact biological tissue. In some of LSI applications, flow imaging is obtained by thinning or removing of the upper tissue layers to access blood vessels. In contrast, with the proposed approach flow imaging can be achieved while the tissue is intact. In the system, each lens from an hexagonal lens array observed the sample from slightly different perspectives and captured with a CCD camera. In the computer, these multiview raw images are converted to speckled contrast maps. Then, a self-deconvolution shift-and-add algorithm is employed for processing yields high contrast flow information. The method is experimentally validated first with a plastic tube filled with scattering liquid running at different controlled flow rates hidden in a biological tissue and then extensively tested for imaging of cerebral blood flow in an intact rodent head experience different conditions. A total of fifteen mice were used in the experiments divided randomly into three groups as follows: Group 1 (n=5) consisted of injured mice experience hypoxic ischemic brain injury monitored for ~40 min. Group 2 (n=5) injured mice experience anoxic brain injury monitored up to 20 min. Group 3 (n=5) experience functional activation monitored up to ~35 min. To increase tissue transparency and the penetration depth of photons through head tissue layers, an optical clearing method was employed. To our knowledge, this work presents for the first time the use of lens array in LSI scheme.

  12. The effect of saline groundwater exchange, evaporation and variable river flows and on stable isotopes (18O and 2H) and major ion concentrations along the Darling River, NSW, Australia

    NASA Astrophysics Data System (ADS)

    Meredith, K. T.; Hughes, C. E.; Hollins, S. E.; Cendón, D. I.; Hankin, S.

    2009-04-01

    Australia's longest river, the Darling River, faces extreme pressure from drought and over extraction of water from its catchment. The lack of detailed baseline hydrochemical and isotopic data for the Darling River has prompted research aimed at using hydrological tracers to assess water gains and losses within the Darling River Drainage Basin. This study uses temporal hydrochemical and stable isotope data (18O and 2H) that has been monitored from gauging stations along the Barwon-Darling catchment over a five-year period from 2002 to 2007 as part of the Global Network for Isotopes in Rivers (GNIR) monitoring programme. Stream flow data, monthly δ18O and δ2H values and major ion chemistry is presented. Individual flow events were found to be isotopically distinct but the LELs that develop after these events have a very similar slope indicating similar climatic conditions across this region. During low flow conditions, salt concentrations increase systematically, δ18O and δ2H become enriched and d-excess becomes more negative indicating significant evaporation. Flow events input isotopically depleted fresh waters to the system and the d-excess returns towards the local meteoric water line. The major ions increase in concentration at a greater rate at Louth than they do at upstream at Bourke or downstream at Wilcannia, despite similar decreases in flow rates for all three sites. The hydrological response of the river to drought has had detrimental affects on the surface water system because it provides a pathway for saline groundwater to discharge into the river system.

  13. MaxEnt analysis of a water distribution network in Canberra, ACT, Australia

    NASA Astrophysics Data System (ADS)

    Waldrip, Steven H.; Niven, Robert K.; Abel, Markus; Schlegel, Michael; Noack, Bernd R.

    2015-01-01

    A maximum entropy (MaxEnt) method is developed to infer the state of a pipe flow network, for situations in which there is insufficient information to form a closed equation set. This approach substantially extends existing deterministic methods for the analysis of engineered flow networks (e.g. Newton's method or the Hardy Cross scheme). The network is represented as an undirected graph structure, in which the uncertainty is represented by a continuous relative entropy on the space of internal and external flow rates. The head losses (potential differences) on the network are treated as dependent variables, using specified pipe-flow resistance functions. The entropy is maximised subject to "observable" constraints on the mean values of certain flow rates and/or potential differences, and also "physical" constraints arising from the frictional properties of each pipe and from Kirchhoff's nodal and loop laws. A numerical method is developed in Matlab for solution of the integral equation system, based on multidimensional quadrature. Several nonlinear resistance functions (e.g. power-law and Colebrook) are investigated, necessitating numerical solution of the implicit Lagrangian by a double iteration scheme. The method is applied to a 1123-node, 1140-pipe water distribution network for the suburb of Torrens in the Australian Capital Territory, Australia, using network data supplied by water authority ACTEW Corporation Limited. A number of different assumptions are explored, including various network geometric representations, prior probabilities and constraint settings, yielding useful predictions of network demand and performance. We also propose this methodology be used in conjunction with in-flow monitoring systems, to obtain better inferences of user consumption without large investments in monitoring equipment and maintenance.

  14. 40 CFR 60.265 - Monitoring of operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fan. The fan power consumption and pressure drop measurements must be synchronized to allow real time... operating ranges. (f) The volumetric flow rate through each fan of the capture system must be determined... quantity, by weight. (3) Time and duration of each tapping period and the identification of material tapped...

  15. 40 CFR 60.265 - Monitoring of operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fan. The fan power consumption and pressure drop measurements must be synchronized to allow real time... operating ranges. (f) The volumetric flow rate through each fan of the capture system must be determined... quantity, by weight. (3) Time and duration of each tapping period and the identification of material tapped...

  16. 40 CFR 60.265 - Monitoring of operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fan. The fan power consumption and pressure drop measurements must be synchronized to allow real time... operating ranges. (f) The volumetric flow rate through each fan of the capture system must be determined... quantity, by weight. (3) Time and duration of each tapping period and the identification of material tapped...

  17. 40 CFR 60.265 - Monitoring of operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fan. The fan power consumption and pressure drop measurements must be synchronized to allow real time... operating ranges. (f) The volumetric flow rate through each fan of the capture system must be determined... quantity, by weight. (3) Time and duration of each tapping period and the identification of material tapped...

  18. 75 FR 5261 - Waybill Data Reporting for Toxic Inhalation Hazards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... monitor traffic flows and rate trends in the industry, and to develop evidence in Board proceedings. The... submitted to include all traffic movements designated as a TIH (Toxic Inhalation Hazard). The revised... Board to assess more accurately TIH traffic within the United States, and specifically would be...

  19. 40 CFR 98.354 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... digester, or lagoon) from which biogas is recovered, you must make the measurements or determinations specified in paragraphs (f)(1) through (f)(3) of this section. (1) You must continuously measure the biogas flow rate as specified in paragraph (h) of this section and determine the cumulative volume of biogas...

  20. 40 CFR 98.354 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... digester, or lagoon) from which biogas is recovered, you must make the measurements or determinations specified in paragraphs (f)(1) through (f)(3) of this section. (1) You must continuously measure the biogas flow rate as specified in paragraph (h) of this section and determine the cumulative volume of biogas...

  1. 40 CFR 98.354 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... digester, or lagoon) from which biogas is recovered, you must make the measurements or determinations specified in paragraphs (f)(1) through (f)(3) of this section. (1) You must continuously measure the biogas flow rate as specified in paragraph (h) of this section and determine the cumulative volume of biogas...

  2. 40 CFR 60.265 - Monitoring of operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quantity, by weight. (3) Time and duration of each tapping period and the identification of material tapped... only the volumetric flow rate through the capture system for control of emissions from the tapping... performance test. If emissions due to tapping are captured and ducted separately from emissions of the...

  3. 40 CFR 60.63 - Monitoring of operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... assurance or quality control activities (including, as applicable, calibration checks and required zero and... period. (7) The flow rate sensor must have provisions to determine the daily zero and upscale calibration... chapter for a discussion of CD). (i) Conduct the CD tests at two reference signal levels, zero (e.g., 0 to...

  4. 40 CFR 60.63 - Monitoring of operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... assurance or quality control activities (including, as applicable, calibration checks and required zero and... period. (7) The flow rate sensor must have provisions to determine the daily zero and upscale calibration... chapter for a discussion of CD). (i) Conduct the CD tests at two reference signal levels, zero (e.g., 0 to...

  5. 40 CFR 63.1350 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alkali bypass PMCDs. (i) The temperature recorder response range must include zero and 1.5 times the... provide output of relative or absolute particulate matter loadings. (v) The bag leak detection system must... period. (7) The flow rate sensor must have provisions to determine the daily zero and upscale calibration...

  6. 109. EAST WALL OF MECHANICAL EQUIPMENT ROOM (201), LSB (BLDG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    109. EAST WALL OF MECHANICAL EQUIPMENT ROOM (201), LSB (BLDG. 751): TEMPERATURE, FLOW RATE, AND HUMIDITY MONITORING CONTROLS FOR SYSTEM 1 AND SYSTEM 2 AIR HANDLING - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. 92. EAST WALL OF MECHANICAL EQUIPMENT ROOM (101), LSB (BLDG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. EAST WALL OF MECHANICAL EQUIPMENT ROOM (101), LSB (BLDG. 770). TEMPERATURE, FLOW RATE, AND HUMIDITY MONITORING CONTROLS FOR SYSTEM 1 AND SYSTEM 2 AIR HANDLING. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. BIOGEOCHEMICAL INDICATORS OF ORGANIC WASTE CONTAMINATION IN SMALL STREAMS OF THE GEORGIA PIEDMONT

    EPA Science Inventory

    We monitored concentrations of nitrous oxide, methane, carbon dioxide, nutrients and other parameters (T, conductivity, dissolved oxygen, alkalinity, pH, DOC, DON, flow rate) in 17 headwater streams (watershed sizes from 0.5 to 3.4 km2) of the South Fork Broad River, Georgia wate...

  9. BIOGEOCHEMICAL INDICATORS OF ORGANIC WASTE CONTAMINATION IN GEORGIA PIEDMONT STREAMS

    EPA Science Inventory

    We monitored concentrations of nitrous oxide, methane, carbon dioxide, nutrients and other parameters (T, conductivity, dissolved oxygen, alkalinity, pH, DOC, DON, flow rate) in 17 headwater streams (watershed sizes from 0.5 to 3.4 km2) of the South Fork Broad River, Georgia wate...

  10. Use of a parallel path nebulizer for capillary-based microseparation techniques coupled with an inductively coupled plasma mass spectrometer for speciation measurements

    NASA Astrophysics Data System (ADS)

    Yanes, Enrique G.; Miller-Ihli, Nancy J.

    2004-06-01

    A low flow, parallel path Mira Mist CE nebulizer designed for capillary electrophoresis (CE) was evaluated as a function of make-up solution flow rate, composition, and concentration, as well as the nebulizer gas flow rate. This research was conducted in support of a project related to the separation and quantification of cobalamin (vitamin B-12) species using microseparation techniques combined with inductively coupled plasma mass spectrometry (ICP-MS) detection. As such, Co signals were monitored during the nebulizer characterization process. Transient effects in the ICP were studied to evaluate the suitability of using gradients for microseparations and the benefit of using methanol for the make-up solution was demonstrated. Co signal response changed significantly as a function of changing methanol concentrations of the make-up solution and maximum signal enhancement was seen at 20% methanol with a 15 μl/min flow rate. Evaluation of the effect of changing the nebulizer gas flow rates showed that argon flows from 0.8 to 1.2 l/min were equally effective. The Mira Mist CE parallel path nebulizer was then evaluated for interfacing capillary microseparation techniques including capillary electrophoresis (CE) and micro high performance liquid chromatography (μHPLC) to inductively coupled plasma mass spectrometry (ICP-MS). A mixture of four cobalamin species standards (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5' deoxyadenosylcobalamin) and the corrinoid analogue cobinamide dicyanide were successfully separated using both CE-ICP-MS and μHPLC-ICP-MS using the parallel path nebulizer with a make-up solution containing 20% methanol with a flow rate of 15 μl/min.

  11. Anodic oxidation of benzoquinone using diamond anode.

    PubMed

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature.

  12. An experiment to evaluate liquid hydrogen storage in space

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Fester, D. A.; Johns, W. A.; Marino, J. S.

    1981-01-01

    The design and verification of a Cryogenic Fluid Management Experiment for orbital operation on the Shuttle is described. The experiment will furnish engineering data to establish design criteria for storage and supply of cryogenic fluids, mainly hydrogen, for use in low gravity environments. The apparatus comprises an LAD (liquid acquisition device) and a TVS (thermodynamic vent system). The hydrogen will be either vented or forced out by injected helium and the flow rates will be monitored. The data will be compared with ground-based simulations to determine optimal flow rates for the pressurizing gas and the release of the cryogenic fluid. It is noted that tests on a one-g, one-third size LAD system are under way.

  13. Using high-resolution satellite radar to measure lava flow morphology, rheology, effusion rate and subsidence at El Reventador Volcano, Ecuador.

    NASA Astrophysics Data System (ADS)

    Biggs, J.; Arnold, D. W. D.; Mothes, P. A.; Anderson, K. R.; Albino, F.; Wadge, G.; Vallejo Vargas, S.; Ebmeier, S. K.

    2017-12-01

    There are relatively few studies of active lava flows of an andesitic rather than basaltic composition. The flow field at El Reventador volcano, Ecuador is a good example, but observations are hampered by persistent cloud cover. We use high resolution satellite radar from Radarsat-2 and TanDEM-X to map the dimensions of 43 lava flows extruded between 9 Feb 2012 and 24 Aug 2016. Flow height is measured using the width of radar shadow cast by steep sided features, or the difference in radar phase between two sensors separated in space. The cumulative volume of erupted material was 44.8M m3 dense rock equivalent with an average rate of 0.31 ± 0.02 m3s-1, similar to the long term average. The flows were mostly emplaced over durations shorter than the satellite repeat interval of 24 days and ranged in length from 0.3 to 1.7 km. We use the dimensions of the levees to estimate the flow yield strengths and compare measurements of diversions around barriers with observations from laboratory experiments. The rate of effusion, flow length and flow volume all decrease with time, and simple physics-based models can be equally well fit by a closed reservoir depressurising during the eruption with no magma recharge, or an open reservoir with a time-constant magma recharge rate of up to 0.35 ± 0.01 m3s-1. We propose that the conduit acts as magma capacitor and individual flows are volume-limited. Emplaced flows are subsiding at rates proportional to lava thickness that decay with time following a square-root relationship. Radar observations, such as those presented here, could be used to map and measure properties of evolving lava flow fields at other remote or difficult to monitor volcanoes. Physics-based models can be run into the future, but a sudden increase in flow length in 2017 seen by Sentinel illustrates that changes in magma supply can cause rapid changes in behavior, which remain challenging to forecast.

  14. Development and evaluation of an instantaneous atmospheric corrosion rate monitor

    NASA Astrophysics Data System (ADS)

    Mansfeld, F.; Jeanjaquet, S. L.; Kendig, M. W.; Roe, D. K.

    1985-06-01

    A research program was carried out in which a new instantaneous atmospheric corrosion rate monitor (ACRM) was developed and evaluated, and equipment was constructed which will allow the use of many sensors in an economical way in outdoor exposures. In the first task, the ACRM was developed and tested in flow chambers in which relative humidity and gaseous and particulate pollutant levels can be controlled. Diurnal cycles and periods of rain were simulated. The effects of aerosols were studied. A computerized system was used for collection, storage, and analysis of the electrochemical data. In the second task, a relatively inexpensive electronics system for control of the ACRM and measurement of atmospheric corrosion rates was designed and built. In the third task, calibration of deterioration rates of various metallic and nonmetallic materials with the response of the ACRMs attached to these materials was carried out under controlled environmental conditions using the system developed in the second task. A Quality Assurance project plan was prepared with inputs from the Rockwell International Environmental Monitoring and Service Center and Quality Assurance System audits were performed.

  15. A Real-Time Wireless Sweat Rate Measurement System for Physical Activity Monitoring.

    PubMed

    Brueck, Andrew; Iftekhar, Tashfin; Stannard, Alicja B; Yelamarthi, Kumar; Kaya, Tolga

    2018-02-10

    There has been significant research on the physiology of sweat in the past decade, with one of the main interests being the development of a real-time hydration monitor that utilizes sweat. The contents of sweat have been known for decades; sweat provides significant information on the physiological condition of the human body. However, it is important to know the sweat rate as well, as sweat rate alters the concentration of the sweat constituents, and ultimately affects the accuracy of hydration detection. Towards this goal, a calorimetric based flow-rate detection system was built and tested to determine sweat rate in real time. The proposed sweat rate monitoring system has been validated through both controlled lab experiments (syringe pump) and human trials. An Internet of Things (IoT) platform was embedded, with the sensor using a Simblee board and Raspberry Pi. The overall prototype is capable of sending sweat rate information in real time to either a smartphone or directly to the cloud. Based on a proven theoretical concept, our overall system implementation features a pioneer device that can truly measure the rate of sweat in real time, which was tested and validated on human subjects. Our realization of the real-time sweat rate watch is capable of detecting sweat rates as low as 0.15 µL/min/cm², with an average error in accuracy of 18% compared to manual sweat rate readings.

  16. Serial Network Flow Monitor

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    Using a commercial software CD and minimal up-mass, SNFM monitors the Payload local area network (LAN) to analyze and troubleshoot LAN data traffic. Validating LAN traffic models may allow for faster and more reliable computer networks to sustain systems and science on future space missions. Research Summary: This experiment studies the function of the computer network onboard the ISS. On-orbit packet statistics are captured and used to validate ground based medium rate data link models and enhance the way that the local area network (LAN) is monitored. This information will allow monitoring and improvement in the data transfer capabilities of on-orbit computer networks. The Serial Network Flow Monitor (SNFM) experiment attempts to characterize the network equivalent of traffic jams on board ISS. The SNFM team is able to specifically target historical problem areas including the SAMS (Space Acceleration Measurement System) communication issues, data transmissions from the ISS to the ground teams, and multiple users on the network at the same time. By looking at how various users interact with each other on the network, conflicts can be identified and work can begin on solutions. SNFM is comprised of a commercial off the shelf software package that monitors packet traffic through the payload Ethernet LANs (local area networks) on board ISS.

  17. Rock Island Dam Smolt Monitoring; 1994-1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truscott, Keith B.; Fielder, Paul C.

    1995-10-01

    Downstream migrating salmon and steelhead trout (Oncorhynchus spp.) smolts were monitored at the Rock Island Dam bypass trap from April 1 - August 31, 1954. This was the tenth consecutive year that the bypass trap was monitored. Data collected included: (1) number of fish caught by species, (2) number of adipose clipped and/or Passive Integrated Transponder (PIT) tagged fish caught by species, (3) daily average riverflow, (4) daily average powerhouse No. 1 and No. 2 flows and daily average spill. These data were transmitted to the Fish Passage Center, which manages the Smolt Monitoring Program throughout the Columbia River Basin.more » The Smolt Monitoring Program is used to manage the {open_quotes}water budget{close_quotes}, releasing upstream reservoir water storage allocated to supplement river flows to enhance survival of downstream migrating juvenile salmonids. The Rock Island Dam trapping facility collected 37,795 downstream migrating salmonids in 1994. Collected fish included 4 yearling and 4 sub-yearling chinook salmon (O. tshawytscha) that had been previously PIT tagged to help determine migration rates. Additionally, 1,132 sub-yearling chinook, 4,185 yearling chinook, 6,627 steelhead, (O. mykiss) and 422 sockeye (O. nerka) with clipped adipose fins were collected. The middle 80% of the 1994 spring migration (excluding sub-yearling chinooks) passed Rock Island Dam during a 34 day period, April 25 - May 28. Passage rates of chinook and steelhead smolts released from hatcheries and the downstream migration timing of all salmonids are presented. The spring migration timing of juvenile salmonids is strongly influenced by hatchery releases above Rock Island Dam.« less

  18. Surface flow observations from a gauge-cam station on the Tiber river

    NASA Astrophysics Data System (ADS)

    Tauro, Flavia; Porfiri, Maurizio; Petroselli, Andrea; Grimaldi, Salvatore

    2016-04-01

    Understanding the kinematic organization of natural water bodies is central to hydrology and environmental engineering practice. Reliable and continuous flow observations are essential to comprehend flood generation and propagation mechanisms, erosion dynamics, sediment transport, and drainage network evolution. In engineering practice, flood warning systems largely rely on real-time discharge measurements, and flow velocity monitoring is important for the design and management of hydraulic structures, such as reservoirs and hydropower plants. Traditionally, gauging stations have been equipped with water level meters, and stage-discharge relationships (rating curves) have been established through few direct discharge measurements. Only in rare instances, monitoring stations have integrated radar technology for local measurement of surface flow velocity. Establishing accurate rating curves depends on the availability of a comprehensive range of discharge values, including measurements recorded during extreme events. However, discharge values during high-flow events are often difficult or even impossible to obtain, thereby hampering the reliability of discharge predictions. Fully remote observations have been enabled in the past ten years through optics-based velocimetry techniques. Such methodologies enable the estimation of the surface flow velocity field over extended regions from the motion of naturally occurring debris or floaters dragged by the current. Resting on the potential demonstrated by such approaches, here, we present a novel permanent gauge-cam station for the observation of the flow velocity field in the Tiber river. This new station captures one-minute videos every 10 minutes over an area of up to 20.6 × 15.5m2. In a feasibility study, we demonstrate that experimental images analyzed via particle tracking velocimetry and particle image velocimetry can be used to obtain accurate surface flow velocity estimations in close agreement with radar records. Future efforts will be devoted to the development of a comprehensive testbed infrastructure for investigating the potential of multiple optics-based approaches for surface hydrology.

  19. Estimating pesticide sampling rates by the polar organic chemical integrative sampler (POCIS) in the presence of natural organic matter and varying hydrodynamic conditions

    USGS Publications Warehouse

    Charlestra, Lucner; Amirbahman, Aria; Courtemanch, David L.; Alvarez, David A.; Patterson, Howard

    2012-01-01

    The polar organic chemical integrative sampler (POCIS) was calibrated to monitor pesticides in water under controlled laboratory conditions. The effect of natural organic matter (NOM) on the sampling rates (Rs) was evaluated in microcosms containing -1 of total organic carbon (TOC). The effect of hydrodynamics was studied by comparing Rs values measured in stirred (SBE) and quiescent (QBE) batch experiments and a flow-through system (FTS). The level of NOM in the water used in these experiments had no effect on the magnitude of the pesticide sampling rates (p > 0.05). However, flow velocity and turbulence significantly increased the sampling rates of the pesticides in the FTS and SBE compared to the QBE (p < 0.001). The calibration data generated can be used to derive pesticide concentrations in water from POCIS deployed in stagnant and turbulent environmental systems without correction for NOM.

  20. Experimental study of the surface thermal signature of gravity currents: application to the assessment of lava flow effusion rate

    NASA Astrophysics Data System (ADS)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2011-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flows advance and its velocity. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the heat flux lost by the lava at its surface and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger power radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., Bull. Volc. 2007) is currently used to estimate lava flow rate from satellite surveys yielding the surface temperatures and area of the lava flow field. However, this approach is derived from a static thermal budget of the lava flow and does not explicitly model the time-evolution of the surface thermal signal. Here we propose laboratory experiments and theoretical studies of the cooling of a viscous axisymmetric gravity current fed at constant flux rate. We first consider the isoviscous case, for which the spreading is well-know. The experiments using silicon oil and the theoretical model both reveal the establishment of a steady surface thermal structure after a transient time. The steady state is a balance between surface cooling and heat advection in the flow. The radiated heat flux in the steady regime, a few days for a basaltic lava flow, depends mainly on the effusion rate rather than on the viscosity. In this regime, one thermal survey of the radiated power could provide a consistent estimate of the flow rate if the external cooling conditions (wind) are reasonably well constrained. We continue to investigate the relationship between the thermal radiated heat flux and the effusion rate by using in the experiments fluids with temperature-dependent viscosity (glucose syrup) or undergoing solidification while cooling (PEG wax). We observe a transient evolution of the radiated heat flux closely related to the variations of the flow area. The study of experiments with time-variable effusion rates finally gives first leads on the inertia of the thermal surface structure. This is to be related to the time-period over which the thermal proxy averages the actual effusion rate, hence to the acquisition frequency appropriate for a thermal monitoring of effusive volcanic eruptions.

  1. On the derivation of flow rating curves in data-scarce environments

    NASA Astrophysics Data System (ADS)

    Manfreda, Salvatore

    2018-07-01

    River monitoring is a critical issue for hydrological modelling that relies strongly on the use of flow rating curves (FRCs). In most cases, these functions are derived by least-squares fitting which usually leads to good performance indices, even when based on a limited range of data that especially lack high flow observations. In this context, cross-section geometry is a controlling factor which is not fully exploited in classical approaches. In fact, river discharge is obtained as the product of two factors: 1) the area of the wetted cross-section and 2) the cross-sectionally averaged velocity. Both factors can be expressed as a function of the river stage, defining a viable alternative in the derivation of FRCs. This makes it possible to exploit information about cross-section geometry limiting, at least partially, the uncertainty in the extrapolation of discharge at higher flow values. Numerical analyses and field data confirm the reliability of the proposed procedure for the derivation of FRCs.

  2. Alpha-environmental continuous air monitor inlet

    DOEpatents

    Rodgers, John C.

    2003-01-01

    A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

  3. A Wearable Capacitive Sensor for Monitoring Human Respiratory Rate

    NASA Astrophysics Data System (ADS)

    Kundu, Subrata Kumar; Kumagai, Shinya; Sasaki, Minoru

    2013-04-01

    Realizing an untethered, low-cost, and comfortably wearable respiratory rate sensor for long-term breathing monitoring application still remains a challenge. In this paper, a conductive-textile-based wearable respiratory rate sensing technique based on the capacitive sensing approach is proposed. The sensing unit consists of two conductive textile electrodes that can be easily fabricated, laminated, and integrated in garments. Respiration cycle is detected by measuring the capacitance of two electrodes placed on the inner anterior and posterior sides of a T-shirt at either the abdomen or chest position. A convenient wearable respiratory sensor setup with a capacitance-to-voltage converter has been devised. Respiratory rate as well as breathing mode can be accurately identified using the designed sensor. The sensor output provides significant information on respiratory flow. The effectiveness of the proposed system for different breathing patterns has been evaluated by experiments.

  4. Reduction of exposure to ultrafine particles by kitchen exhaust hoods: the effects of exhaust flow rates, particle size, and burner position.

    PubMed

    Rim, Donghyun; Wallace, Lance; Nabinger, Steven; Persily, Andrew

    2012-08-15

    Cooking stoves, both gas and electric, are one of the strongest and most common sources of ultrafine particles (UFP) in homes. UFP have been shown to be associated with adverse health effects such as DNA damage and respiratory and cardiovascular diseases. This study investigates the effectiveness of kitchen exhaust hoods in reducing indoor levels of UFP emitted from a gas stove and oven. Measurements in an unoccupied manufactured house monitored size-resolved UFP (2 nm to 100 nm) concentrations from the gas stove and oven while varying range hood flow rate and burner position. The air change rate in the building was measured continuously based on the decay of a tracer gas (sulfur hexafluoride, SF(6)). The results show that range hood flow rate and burner position (front vs. rear) can have strong effects on the reduction of indoor levels of UFP released from the stove and oven, subsequently reducing occupant exposure to UFP. Higher range hood flow rates are generally more effective for UFP reduction, though the reduction varies with particle diameter. The influence of the range hood exhaust is larger for the back burner than for the front burner. The number-weighted particle reductions for range hood flow rates varying between 100 m(3)/h and 680 m(3)/h range from 31% to 94% for the front burner, from 54% to 98% for the back burner, and from 39% to 96% for the oven. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Transmissivity interpolation using Fluid Flow Log data at different depth level in Liwa Aquifer, UAE.

    NASA Astrophysics Data System (ADS)

    Gülşen, Esra; Kurtulus, Bedri; Necati Yaylim, Tolga; Avsar, Ozgur

    2017-04-01

    In groundwater studies, quantification and detection of fluid flows in borehole is an important part of assessment aquifer characteristic at different depths. Monitoring wells disturbs the natural flow field and this disturbance creates different flow paths to an aquifer. Vertical flow fluid analyses are one of the important techniques to deal with the detection and quantification of these vertical flows in borehole/monitoring wells. Liwa region is located about 146 km to the south west of Abu Dhabi city and about 36 km southwest of Madinat Zayed. SWSR (Strategic Water Storage & Recovery Project) comprises three Schemes (A, B and C) and each scheme contains an infiltration basin in the center, 105 recovery wells, 10 clusters and each cluster comprises 3 monitoring wells with different depths; shallow ( 50 m), intermediate ( 75 m) and deep ( 100 m). The scope of this study is to calculate the transmissivity values at different depth and evaluate the Fluid Flow Log (FFL) data for Scheme A (105 recovery wells) in order to understand the aquifer characteristic at different depths. The transmissivity values at different depth levels are calculated using Razack and Huntley (1991) equation for vertical flow rates of 30 m3 /h, 60 m3 /h, 90 m3 /h, 120 m3 /h and then Empirical Bayesian Kriging is used for interpolation in Scheme A using ArcGIS 10.2 software. FFL are drawn by GeODin software. Derivative analysis of fluid flow data are done by Microsoft Office: Excel software. All statistical analyses are calculated by IBMSPSS software. The interpolation results show that the transmissivity values are higher at the top of the aquifer. In other word, the aquifer is found more productive at the upper part of the Liwa aquifer. We are very grateful for financial support and providing us the data to ZETAS Dubai Inc.

  6. 40 CFR 75.10 - General operating requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... continuous emission monitoring system and a flow monitoring system with an automated data acquisition and handling system for measuring and recording SO2 concentration (in ppm), volumetric gas flow (in scfh), and... emission monitoring system and a flow monitoring system with an automated data acquisition and handling...

  7. Improving Ecological Response Monitoring of Environmental Flows

    NASA Astrophysics Data System (ADS)

    King, Alison J.; Gawne, Ben; Beesley, Leah; Koehn, John D.; Nielsen, Daryl L.; Price, Amina

    2015-05-01

    Environmental flows are now an important restoration technique in flow-degraded rivers, and with the increasing public scrutiny of their effectiveness and value, the importance of undertaking scientifically robust monitoring is now even more critical. Many existing environmental flow monitoring programs have poorly defined objectives, nonjustified indicator choices, weak experimental designs, poor statistical strength, and often focus on outcomes from a single event. These negative attributes make them difficult to learn from. We provide practical recommendations that aim to improve the performance, scientific robustness, and defensibility of environmental flow monitoring programs. We draw on the literature and knowledge gained from working with stakeholders and managers to design, implement, and monitor a range of environmental flow types. We recommend that (1) environmental flow monitoring programs should be implemented within an adaptive management framework; (2) objectives of environmental flow programs should be well defined, attainable, and based on an agreed conceptual understanding of the system; (3) program and intervention targets should be attainable, measurable, and inform program objectives; (4) intervention monitoring programs should improve our understanding of flow-ecological responses and related conceptual models; (5) indicator selection should be based on conceptual models, objectives, and prioritization approaches; (6) appropriate monitoring designs and statistical tools should be used to measure and determine ecological response; (7) responses should be measured within timeframes that are relevant to the indicator(s); (8) watering events should be treated as replicates of a larger experiment; (9) environmental flow outcomes should be reported using a standard suite of metadata. Incorporating these attributes into future monitoring programs should ensure their outcomes are transferable and measured with high scientific credibility.

  8. Point-of-care optical tool to detect early stage of hemorrhage and shock

    NASA Astrophysics Data System (ADS)

    Gurjar, Rajan S.; Riccardi, Suzannah L.; Johnson, Blair D.; Johnson, Christopher P.; Paradis, Norman A.; Joyner, Michael J.; Wolf, David E.

    2014-02-01

    There is a critical unmet clinical need for a device that can monitor and predict the onset of shock: hemorrhagic shock or bleeding to death, septic shock or systemic infection, and cardiogenic shock or blood flow and tissue oxygenation impairment due to heart attack. Together these represent 141 M patients per year. We have developed a monitor for shock based on measuring blood flow in peripheral (skin) capillary beds using diffuse correlation spectroscopy, a form of dynamic light scattering, and have demonstrated proof-of-principle both in pigs and humans. Our results show that skin blood flow measurement, either alone or in conjunction with other hemodynamic properties such as heart rate variability, pulse pressure variability, and tissue oxygenation, can meet this unmet need in a small self-contained patch-like device in conjunction with a hand-held processing unit. In this paper we describe and discuss the experimental work and the multivariate statistical analysis performed to demonstrate proof-of-principle of the concept.

  9. Multi-payload Multi-platform Tactical Monitoring and Evaluation of the 2014 Eruption of Fogo, Cabo Verde

    NASA Astrophysics Data System (ADS)

    Ferrucci, Fabrizio; Day, Simon; Hirn, Barbara; Faria, Bruno; Zoffoli, Simona

    2015-04-01

    The 2014 eruption on the flank of Pico volcano on the island of Fogo (Cape Verde), started ca. 11h30 UTC on November 23rd. It gave rise to a three-branch lava flow running ca. 4 km to the north, 3 to the west and 2 to the south, totaling about 10 million cubic meters in one month, that destroyed two villages and left about 1,000 homeless among the ca. 37,000 inhabitants of Fogo. This mostly effusive event differs from the much better-known, simultaneous Holuhraun eruption in northern Iceland as its instant (thermal) Radiant Flux barely exceeded 10 GW, whereas the latter peaked over 100 GW. Conversely, whereas the Holuhraun lavas have flowed over uninhabited land, and the associated risk is negligible, the Fogo lavas impacted a populated area and would have produced even greater damage had they escaped the confines of the Mt.Amarelo lateral collapse scar within which Pico do Fogo is located, and flowed down the populated outer slopes of Fogo. Upon request of INMG in the second day of eruption, we brought immediate remote sensing and modelling support, based on all observation means able to provide estimates of physical parameters related to power released, lava effusion rates and flow distance to run, along with also quantitative evaluations of eruptive trends and styles. As needs were scaled on the immediate near-daily release of coherent information concerning ongoing lava effusion, we considered that multispectral electro-optical sensors were more useful than radar sensors. We chose to run in parallel a 'tactical' observation line, based on the automated analytical solving of subresolution equation systems in multispectral data with top revisit rates (15 minutes with SEVIRI onboard the geostationary MSG-3, and 4 to 8 hours with MODIS onboard the polar Terra and Aqua) along with a 'strategic' line centred on the automated equation solving in high-to-very high spatial resolution LEO data provided by CEOS (multispectral pixel footprints ranging from 4 m2 of Pleiades-1A HRI, to 900 m2 of Landsat-8 OLI and EO-1 ALI) at low revisit rates, with supervised post-processing. Overall, about 2,800 images were processed, for total 1 TB in 36 days of 24/7 monitoring, during which : (i) instant effusion rates were analyzed in the light of the largest possible distance to run, leading us to conclude that flow propagation outside the collapse scar was unlikely after November 30, (ii) the analysis of accumulated erupted volumes allowed forerunning by a few days every following phase of declining effusion rate and lava invasion risk. Here, we present the challenges, the solutions and the achievements in monitoring and interpreting a major volcano emergency from abroad, by spaceborne Earth Observation, along with the simultaneous flow of information by the same system from/to three eruptive crises occurring at the same time in distant areas (Holuhraun, Etna, Nyiragongo). These operations are paradigmatic of the possible scientific intelligence support in eruptive crises happening at over 90% of the ca. 1,500 subaerial active (Holocene) volcanoes on Earth, where ground-based monitoring capacities alone are insufficient to support effective crisis management.

  10. Hydrologic and geochemical dynamics of vadose zone recharge in a mantled karst aquifer: Results of monitoring drip waters in Mystery Cave, Minnesota

    USGS Publications Warehouse

    Doctor, Daniel H.; Alexander, E. Calvin; Jameson, Roy A.; Alexander, Scott C.

    2015-01-01

    Caves provide direct access to flows through the vadose zone that recharge karst aquifers. Although many recent studies have documented the highly dynamic processes associated with vadose zone flows in karst settings, few have been conducted in mantled karst settings, such as that of southeastern Minnesota. Here we present some results of a long-term program of cave drip monitoring conducted within Mystery Cave, Minnesota. In this study, two perennial ceiling drip sites were monitored between 1997 and 2001. The sites were located about 90 m (300 ft) apart along the same cave passage approximately 18 m (60 ft) below the surface; 7 to 9 m (20 to 30 ft) of loess and 12 m (40 ft) of flat-lying carbonate bedrock strata overlie the cave. Records of drip rate, electrical conductivity, and water temperature were obtained at 15 minute intervals, and supplemented with periodic sampling for major ion chemistry and water stable isotopes. Patterns in flow and geochemistry emerged at each of the two drip sites that were repeated year after year. Although one site responded relatively quickly (within 2-7 hours) to surface recharge events while the other responded more slowly (within 2-5 days), thresholds of antecedent moisture needed to be overcome in order to produce a discharge response at both sites. The greatest amount of flow was observed at both sites during the spring snowmelt period. Rainfall events less than 10 mm (0.4 in) during the summer months generally did not produce a drip discharge response, yet rapid drip responses were observed following intense storm events after periods of prolonged rainfall. The chemical data from both sites indicate that reservoirs of vadose zone water with distinct chemical signatures mixed during recharge events, and drip chemistry returned to a baseline composition during low flow periods. A reservoir with elevated chloride and sulfate concentrations impacts the slow-response drip site with each recharge event, but does not similarly affect the fast-response drip site. Nitrate concentrations in drip waters were generally less than 4.0 mg/L as NO3- (or less than 1 mg/L as N). Nitrate was either stable or slightly increased with drip rate at the fast-response drip site; in contrast, nitrate concentrations decreased with drip rate at the slow-response drip site.

  11. Discharge Oscillations in a Permanent Magnet Cylindrical Hall-Effect Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Sooby, E. S.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    Measurements of the discharge current in a cylindrical Hall thruster are presented to quantify plasma oscillations and instabilities without introducing an intrusive probe into the plasma. The time-varying component of the discharge current is measured using a current monitor that possesses a wide frequency bandwidth and the signal is Fourier transformed to yield the frequency spectra present, allowing for the identification of plasma oscillations. The data show that the discharge current oscillations become generally greater in amplitude and complexity as the voltage is increased, and are reduced in severity with increasing flow rate. The breathing mode ionization instability is identified, with frequency as a function of discharge voltage not increasing with discharge voltage as has been observed in some traditional Hall thruster geometries, but instead following a scaling similar to a large-amplitude, nonlinear oscillation mode recently predicted in for annular Hall thrusters. A transition from lower amplitude oscillations to large relative fluctuations in the oscillating discharge current is observed at low flow rates and is suppressed as the mass flow rate is increased. A second set of peaks in the frequency spectra are observed at the highest propellant flow rate tested. Possible mechanisms that might give rise to these peaks include ionization instabilities and interactions between various oscillatory modes.

  12. Quantifying exchange between groundwater and surface water in rarely measured organic sediments

    NASA Astrophysics Data System (ADS)

    Rosenberry, D. O.; Cavas, M.; Keith, D.; Gefell, M. J.; Jones, P. M.

    2016-12-01

    Transfer of water and chemicals between poorly competent organic sediments and surface water in low-energy riverine and lentic settings depends on several factors, including rate and direction of flow, redox state, number and type of benthic invertebrates, and chemical gradients at and near the sediment-water interface. In spite of their commonly large areal extent, direct measurements of flow in soft, organic sediments are rarely made and little is known about flux direction, rate, or heterogeneity. Commonly used monitoring wells are difficult to install and suffer from slow response to changing hydraulic head due to the low permeability of these sediments. Seepage meters can directly quantify seepage flux if several challenges can be overcome. Meters are difficult to install and operate where water is deep, visibility is poor, and the position of the sediment-water interface is not readily apparent. Soft, easily eroded sediment can be displaced during meter installation, creating bypass flow beneath the bottom of the seepage cylinder. Poorly competent sediments often cannot support the weight of the meters; they slowly sink into the bed and displace water inside the seepage cylinder, which leads to the interpretation of large upward flow. Decaying organic material within the sediment generates gas that can displace water and corrupt seepage-meter measurements. Several inexpensive modifications to a standard seepage meter, as well as precautions during installation and operation, can minimize these sources of error. Underwater video cameras can be mounted to the meter to remotely observe sediment disturbance during sensor installation and monitor the stability of the meter insertion depth during the period of deployment. Anchor rods can be driven a meter or more into the sediment until refusal, firmly anchoring the seepage meter at a constant sediment insertion depth. Data collected from modified seepage meters installed in Minnesota and New York demonstrate the importance of quantifying flows in these challenging settings where biogeochemistry is complex and seepage rates commonly have been assumed to be insignificantly small.

  13. [A new method for safety monitoring of natural dietary supplements--quality profile].

    PubMed

    Wang, Juan; Wang, Li-Ping; Yang, Da-Jin; Chen, Bo

    2008-07-01

    A new method for safety monitoring of natural dietary supplements--quality profile was proposed. It would convert passive monitoring of synthetic drug to active, and guarantee the security of natural dietary supplements. Preliminary research on quality profile was completed by high performance liquid chromatography (HPLC) and mass spectrometry (MS). HPLC was employed to analyze chemical constituent profiles of natural dietary supplements. The separation was completed on C18 column with acetonitrile and water (0.05% H3PO4) as mobile phase, the detection wavelength was 223 nm. Based on HPLC, stability of quality profile had been studied, and abnormal compounds in quality profile had been analyzed after addition of phenolphthalein, sibutramine, rosiglitazone, glibenclamide and gliclazide. And by MS, detector worked with ESI +, capillary voltage: 3.5 kV, cone voltage: 30 V, extractor voltage: 4 V, RF lens voltage: 0.5 V, source temperature: 105 degrees C, desolvation temperature: 300 degrees C, desolvation gas flow rate: 260 L/h, cone gas flow rate: 50 L/h, full scan mass spectra: m/z 100-600. Abnormal compound in quality profile had been analyzed after addition of N-mono-desmethyl sibutramine. Quality profile based on HPLC had good stability (Similarity > 0.877). Addition of phenolphthalein, sibutramine, rosiglitazone, glibenclamide and gliclazide in natural dietary supplements could be reflected by HPLC, and addition of N-mono-desmethyl sibutramine in natural dietary supplements could be reflected by MS. Quality profile might monitor adulteration of natural dietary supplements, and prevent addition of synthetic drug after "approval".

  14. Modelling rating curves using remotely sensed LiDAR data

    USGS Publications Warehouse

    Nathanson, Marcus; Kean, Jason W.; Grabs, Thomas J.; Seibert, Jan; Laudon, Hjalmar; Lyon, Steve W.

    2012-01-01

    Accurate stream discharge measurements are important for many hydrological studies. In remote locations, however, it is often difficult to obtain stream flow information because of the difficulty in making the discharge measurements necessary to define stage-discharge relationships (rating curves). This study investigates the feasibility of defining rating curves by using a fluid mechanics-based model constrained with topographic data from an airborne LiDAR scanning. The study was carried out for an 8m-wide channel in the boreal landscape of northern Sweden. LiDAR data were used to define channel geometry above a low flow water surface along the 90-m surveyed reach. The channel topography below the water surface was estimated using the simple assumption of a flat streambed. The roughness for the modelled reach was back calculated from a single measurment of discharge. The topographic and roughness information was then used to model a rating curve. To isolate the potential influence of the flat bed assumption, a 'hybrid model' rating curve was developed on the basis of data combined from the LiDAR scan and a detailed ground survey. Whereas this hybrid model rating curve was in agreement with the direct measurements of discharge, the LiDAR model rating curve was equally in agreement with the medium and high flow measurements based on confidence intervals calculated from the direct measurements. The discrepancy between the LiDAR model rating curve and the low flow measurements was likely due to reduced roughness associated with unresolved submerged bed topography. Scanning during periods of low flow can help minimize this deficiency. These results suggest that combined ground surveys and LiDAR scans or multifrequency LiDAR scans that see 'below' the water surface (bathymetric LiDAR) could be useful in generating data needed to run such a fluid mechanics-based model. This opens a realm of possibility to remotely sense and monitor stream flows in channels in remote locations.

  15. Characterization of local fluid flow in 3D porous construct characterized by Fourier domain Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bagnaninchi, P. O.; Yang, Y.; El Haj, A.; Hinds, M. T.; Wang, R. K.

    2007-02-01

    In order to achieve functional tissue with the correct biomechanical properties it is critical to stimulate mechanically the cells. Perfusion bioreactor induces fluid shear stress that has been well characterized for two-dimensional culture where both simulation and experimental data are available. However these results can't be directly translated to tissue engineering that makes use of complex three-dimensional porous scaffold. Moreover, stimulated cells produce extensive extra-cellular matrix (ECM) that alter dramatically the micro-architecture of the constructs, changing the local flow dynamic. In this study a Fourier domain Doppler optical coherent tomography (FD-DOCT) system working at 1300nm with a bandwidth of 50nm has been used to determine the local flow rate inside different types of porous scaffolds used in tissue engineering. Local flow rates can then be linearly related, for Newtonian fluid, to the fluid shear stress occurring on the pores wall. Porous chitosan scaffolds (\\fgr 1.5mm x 3mm) with and without a central 250 μm microchannel have been produced by a freeze-drying technique. This techniques allow us to determine the actual shear stress applied to the cells and to optimise the input flow rate consequently, but also to relate the change of the flow distribution to the amount of ECM production allowing the monitoring of tissue formation.

  16. (BOREAS) BOREAS TE-7 Sap Flow Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Hogg, E. H.; Hurdle, P. A.

    2000-01-01

    The BOREAS TE-7 team collected data sets in support of its efforts to characterize and interpret information on the sap flow of boreal vegetation. The heat pulse method was used to monitor sap flow and to estimate rates of transpiration from aspen, black spruce, and mixed wood forests at the SSAOA, MIX, SSA-OBS. and Batoche sites in Saskatchewan, Canada. Measurements were made at the various sites from May to October 1994, May to October 1995, and April to October 1996. A scaling procedure was used to estimate canopy transpiration rates from the sap flow measurements. The data were stored in tabular ASCII files. Analyses to date show a tendency for sap flow in aspen to remain remarkably constant over a wide range of environmental conditions VPD from 1.0 to 4.8 kPa and solar radiation less than 400 W/sq m). For forests with high aerodynamic conductance, the results would indicate an inverse relationship between stomatal conductance and VPD, for VPD greater than 1 kPa. A possible interpretation is that stomata are operating to maintain leaf water potentials above a critical minimum value, which in turn places a maximum value on the rate of sap flow that can be sustained by the tree. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  17. Quantitative Validation of the Presto Blue Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System.

    PubMed

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P; Schrooten, Jan Ir

    2015-06-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required.

  18. Quantitative Validation of the Presto Blue™ Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System

    PubMed Central

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P.

    2015-01-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue™, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required. PMID:25336207

  19. Effects of heat and mass transfer on unsteady boundary layer flow of a chemical reacting Casson fluid

    NASA Astrophysics Data System (ADS)

    Khan, Kashif Ali; Butt, Asma Rashid; Raza, Nauman

    2018-03-01

    In this study, an endeavor is to observe the unsteady two-dimensional boundary layer flow with heat and mass transfer behavior of Casson fluid past a stretching sheet in presence of wall mass transfer by ignoring the effects of viscous dissipation. Chemical reaction of linear order is also invoked here. Similarity transformation have been applied to reduce the governing equations of momentum, energy and mass into non-linear ordinary differential equations; then Homotopy analysis method (HAM) is applied to solve these equations. Numerical work is done carefully with a well-known software MATHEMATICA for the examination of non-dimensional velocity, temperature, and concentration profiles, and then results are presented graphically. The skin friction (viscous drag), local Nusselt number (rate of heat transfer) and Sherwood number (rate of mass transfer) are discussed and presented in tabular form for several factors which are monitoring the flow model.

  20. Size-dependent survival of brook trout Salvelinus fontinalis in summer: effects of water temperature and stream flow.

    PubMed

    Xu, C L; Letcher, B H; Nislow, K H

    2010-06-01

    A 5 year individual-based data set was used to estimate size-specific survival rates in a wild brook trout Salvelinus fontinalis population in a stream network encompassing a mainstem and three tributaries (1.5-6 m wetted width), western Massachusetts, U.S.A. The relationships between survival in summer and temperature and flow metrics derived from continuous monitoring data were then tested. Increased summer temperatures significantly reduced summer survival rates for S. fontinalis in almost all size classes in all four sites throughout the network. In contrast, extreme low summer flows reduced survival of large fish, but only in small tributaries, and had no significant effects on fish in smaller size classes in any location. These results provide direct evidence of a link between season-specific survival and environmental factors likely to be affected by climate change and have important consequences for the management of both habitats and populations.

  1. Tree recruitment and survival in rivers: Influence of hydrological process

    USGS Publications Warehouse

    Dorava, J.M.; Milner, A.M.

    2000-01-01

    The findings of a 14-year study of tree reproduction and survival in the Platte River, Nebraska, are presented. The study was initiated in 1985 to determine the causes and remedies of woodland expansion and channel narrowing, which have reduced potential roosting habitat for migratory avifauna such as the whooping crane and sandhill crane. A total of 296 relocatable sites, constituting some 600 plots with Populus and Salix seedlings, was selected and sampled within two reaches near Shelton and Odessa, Nebraska. The fate of some 37 000 tree seedlings was monitored within the plot network. Tree recruitment is controlled largely by stream flow in June. Populus and Salix produce large numbers of seedlings in the river bed in most years, indicating the potential for high rates of woodland expansion. On average, in only 1 year in 7 is stream flow in June high enough to preclude Populus and Salix recruitment. Seedling mortality is dominated by two environmental factors: summer stream flow pulses from thunderstorms, which erode or bury new germinants, and river bed restructuring by moving ice in winter. A third factor, seedling mortality by desiccation during summer droughts, does occur but at a low frequency. Plots of seedlings had extremely low survival rates over the course of the study. Forty-two per cent of the plots lost all seedlings by the first remeasurement (July to September), 36% by the second measurement (May), and 10% by the third remeasurement (July). Thus nearly 90% of the plots had lost all tree seedlings by the end of the first year. These results explain why the Platte River has come into dynamic equilibrium with respect to the balance between active channel and woodland area. Low rates of new woodland expansion are counterbalanced by erosion of established woodland. The demographic approach to studying ecohydrology can be adapted to monitor the effectiveness of prescribed flows as insurance against future narrowing. Flows prescribed at key times to raise seedling mortality rates are recommended to maintain or widen channels, rather than mechanical clearing of established woodland. Copyright ?? 2000 John Wiley & Sons, Ltd.

  2. Tree recruitment and survival in rivers: influence of hydrological processes

    NASA Astrophysics Data System (ADS)

    Carter Johnson, W.

    2000-10-01

    The findings of a 14-year study of tree reproduction and survival in the Platte River, Nebraska, are presented. The study was initiated in 1985 to determine the causes and remedies of woodland expansion and channel narrowing, which have reduced potential roosting habitat for migratory avifauna such as the whooping crane and sandhill crane.A total of 296 relocatable sites, constituting some 600 plots with Populus and Salix seedlings, was selected and sampled within two reaches near Shelton and Odessa, Nebraska. The fate of some 37 000 tree seedlings was monitored within the plot network.Tree recruitment is controlled largely by stream flow in June. Populus and Salix produce large numbers of seedlings in the river bed in most years, indicating the potential for high rates of woodland expansion. On average, in only 1 year in 7 is stream flow in June high enough to preclude Populus and Salix recruitment.Seedling mortality is dominated by two environmental factors: summer stream flow pulses from thunderstorms, which erode or bury new germinants, and river bed restructuring by moving ice in winter. A third factor, seedling mortality by desiccation during summer droughts, does occur but at a low frequency.Plots of seedlings had extremely low survival rates over the course of the study. Forty-two per cent of the plots lost all seedlings by the first remeasurement (July to September), 36% by the second measurement (May), and 10% by the third remeasurement (July). Thus nearly 90% of the plots had lost all tree seedlings by the end of the first year.

  3. Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis.

    PubMed

    Carp, Stefan A; Farzam, Parisa; Redes, Norin; Hueber, Dennis M; Franceschini, Maria Angela

    2017-09-01

    Frequency domain near infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS) have emerged as synergistic techniques for the non-invasive assessment of tissue health. Combining FD-NIRS oximetry with DCS measures of blood flow, the tissue oxygen metabolic rate can be quantified, a parameter more closely linked to underlying physiology and pathology than either NIRS or DCS estimates alone. Here we describe the first commercially available integrated instrument, called the "MetaOx", designed to enable simultaneous FD-NIRS and DCS measurements at rates of 10 + Hz, and offering real-time data evaluation. We show simultaneously acquired characterization data demonstrating performance equivalent to individual devices and sample in vivo measurements of pulsation resolved blood flow, forearm occlusion hemodynamic changes and muscle oxygen metabolic rate monitoring during stationary bike exercise.

  4. Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis

    PubMed Central

    Carp, Stefan A.; Farzam, Parisa; Redes, Norin; Hueber, Dennis M.; Franceschini, Maria Angela

    2017-01-01

    Frequency domain near infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS) have emerged as synergistic techniques for the non-invasive assessment of tissue health. Combining FD-NIRS oximetry with DCS measures of blood flow, the tissue oxygen metabolic rate can be quantified, a parameter more closely linked to underlying physiology and pathology than either NIRS or DCS estimates alone. Here we describe the first commercially available integrated instrument, called the “MetaOx”, designed to enable simultaneous FD-NIRS and DCS measurements at rates of 10 + Hz, and offering real-time data evaluation. We show simultaneously acquired characterization data demonstrating performance equivalent to individual devices and sample in vivo measurements of pulsation resolved blood flow, forearm occlusion hemodynamic changes and muscle oxygen metabolic rate monitoring during stationary bike exercise. PMID:29026684

  5. Smart Sensing Strip Using Monolithically Integrated Flexible Flow Sensor for Noninvasively Monitoring Respiratory Flow

    PubMed Central

    Jiang, Peng; Zhao, Shuai; Zhu, Rong

    2015-01-01

    This paper presents a smart sensing strip for noninvasively monitoring respiratory flow in real time. The monitoring system comprises a monolithically-integrated flexible hot-film flow sensor adhered on a molded flexible silicone case, where a miniaturized conditioning circuit with a Bluetooth4.0 LE module are packaged, and a personal mobile device that wirelessly acquires respiratory data transmitted from the flow sensor, executes extraction of vital signs, and performs medical diagnosis. The system serves as a wearable device to monitor comprehensive respiratory flow while avoiding use of uncomfortable nasal cannula. The respiratory sensor is a flexible flow sensor monolithically integrating four elements of a Wheatstone bridge on single chip, including a hot-film resistor, a temperature-compensating resistor, and two balancing resistors. The monitor takes merits of small size, light weight, easy operation, and low power consumption. Experiments were conducted to verify the feasibility and effectiveness of monitoring and diagnosing respiratory diseases using the proposed system. PMID:26694401

  6. Wavelength-agile diode-laser sensing strategies for monitoring gas properties in optically harsh flows: application in cesium-seeded pulse detonation

    NASA Astrophysics Data System (ADS)

    Sanders, Scott Thomas; Mattison, Daniel W.; Ma, Lin; Jeffries, Jay B.; Hanson, Ronald K.

    2002-06-01

    The rapid, broad wavelength scanning capabilities of advanced diode lasers allow extension of traditional diode-laser absorption techniques to high pressure, transient, and generally hostile environments. Here, we demonstrate this extension by applying a vertical cavity surface-emitting laser (VCSEL) to monitor gas temperature and pressure in a pulse detonation engine (PDE). Using aggressive injection current modulation, the VCSEL is scanned through a 10 cm-1 spectral window at megahertz rates roughly 10 times the scanning range and 1000 times the scanning rate of a conventional diode laser. The VCSEL probes absorption lineshapes of the ~ 852 nm D2 transition of atomic Cs, seeded at ~ 5 ppm into the feedstock gases of a PDE. Using these lineshapes, detonated-gas temperature and pressure histories, spanning 2000 4000 K and 0.5 30 atm, respectively, are recorded with microsecond time response. The increasing availability of wavelength-agile diode lasers should support the development of similar sensors for other harsh flows, using other absorbers such as native H2O.

  7. Real-time electronic monitoring of a pitted and leaking gas gathering pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asperger, R.G.; Hewitt, P.G.

    1986-08-01

    Hydrogen patch, flush electrical resistance, and flush linear polarization proves wre used with flush coupons to monitor corrosion rates in a pitted and leaking sour gas gathering line. Four inhibitors were evaluated in stopping the leaks. Inhibitor residuals and the amount and ratio of water and condensate in the lines were measured at five locations along the line. The best inhibitor reduced reduced the pit-leak frequency by over a factor of 10. Inhibitor usage rate was optimized using the hydrogen patch current as a measure of the instantaneous corrosion rate. Improper pigging was identified as a cause of corrosion transients.more » This problem is discussed in relation to the pigging of pipelines in stratified flow where moving fluids are the carriers for continuously injected corrosion inhibitors.« less

  8. 78 FR 65306 - Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams AGENCY: Environmental... Monitoring of Temperature and Flow in Wadeable Streams'' (EPA/600/R-13/170). The EPA also is announcing that... Development. The report describes best practices for the deployment of continuous temperature and flow sensors...

  9. Carbon-dioxide flow measurement in geodynamically active area of West Bohemia

    NASA Astrophysics Data System (ADS)

    Vlcek, Josef; Fischer, Tomas; Heinicke, Jens

    2016-04-01

    Geodynamically active area of West Bohemia is interesting not only due to its earthquake swarms occurrence but also due to degassing flux of magmatic origin occurring in natural moffettes and mineral springs. While monitoring of earthquakes is done by a standard local seismic network, monitoring of amount of CO2 is at its initial stage. Despite lack of data, the 2014 earthquake swarm showed also very interesting increase in CO2 flow. This correlation with seismicity motivated us to develop robust and reliable methods of CO2 flow measurement, which would be sufficient to create denser monitoring network. Standard usage of gas-flowmeter for the purpose of gas flow measurement is dependent on the weather and device conditions, which makes the measurement instable in time and unreliable. Although gas-flowmeter is also accompanied with measurement of the gas pressure in the well to check flow rate value, reliability of this method is still low. This problematic behavior of the flow measurement was the reason to test new methods to measure CO2 amount - the first is based on measuring the density water with bubbles in the well by differential pressure gauge. The second one utilizes electric conductivity measurement to determine the density of bubbles in the water-gas mixture. Advantage of these methods is that their probes are directly in the well or moffette, where the concentration is measured. This approach is free of the influence of moving parts and assures the independence of measurements of environmental conditions. In this paper we show examples of obtained data series from selected sites and compare the trend of the curves, the mutual relations of the measured quantities and the influence of environmental conditions.

  10. Oxidation of Chemically-Vapor-Deposited Silicon Carbide in Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Nguyen, QuynhGiao N.

    1998-01-01

    Chemically-vapor-deposited silicon carbide (CVD SiC) was oxidized in carbon dioxide (CO2) at temperatures of 1200-1400 C for times between 96 and 500 h at several gas flow rates. Oxidation weight gains were monitored by thermogravimetric analysis (TGA) and were found to be very small and independent of temperature. Possible rate limiting kinetic mechanisms are discussed. Passive oxidation of SiC by CO2 is negligible compared to the rates measured for other oxidants that are also found in combustion environments, oxygen and water vapor.

  11. TheClinical Research Tool: a high-performance microdialysis-based system for reliably measuring interstitial fluid glucose concentration.

    PubMed

    Ocvirk, Gregor; Hajnsek, Martin; Gillen, Ralph; Guenther, Arnfried; Hochmuth, Gernot; Kamecke, Ulrike; Koelker, Karl-Heinz; Kraemer, Peter; Obermaier, Karin; Reinheimer, Cornelia; Jendrike, Nina; Freckmann, Guido

    2009-05-01

    A novel microdialysis-based continuous glucose monitoring system, the so-called Clinical Research Tool (CRT), is presented. The CRT was designed exclusively for investigational use to offer high analytical accuracy and reliability. The CRT was built to avoid signal artifacts due to catheter clogging, flow obstruction by air bubbles, and flow variation caused by inconstant pumping. For differentiation between physiological events and system artifacts, the sensor current, counter electrode and polarization voltage, battery voltage, sensor temperature, and flow rate are recorded at a rate of 1 Hz. In vitro characterization with buffered glucose solutions (c(glucose) = 0 - 26 x 10(-3) mol liter(-1)) over 120 h yielded a mean absolute relative error (MARE) of 2.9 +/- 0.9% and a recorded mean flow rate of 330 +/- 48 nl/min with periodic flow rate variation amounting to 24 +/- 7%. The first 120 h in vivo testing was conducted with five type 1 diabetes subjects wearing two systems each. A mean flow rate of 350 +/- 59 nl/min and a periodic variation of 22 +/- 6% were recorded. Utilizing 3 blood glucose measurements per day and a physical lag time of 1980 s, retrospective calibration of the 10 in vivo experiments yielded a MARE value of 12.4 +/- 5.7. Clarke error grid analysis resulted in 81.0%, 16.6%, 0.8%, 1.6%, and 0% in regions A, B, C, D, and E, respectively. The CRT demonstrates exceptional reliability of system operation and very good measurement performance. The ability to differentiate between artifacts and physiological effects suggests the use of the CRT as a reference tool in clinical investigations. 2009 Diabetes Technology Society.

  12. The Clinical Research Tool: A High-Performance Microdialysis-Based System for Reliably Measuring Interstitial Fluid Glucose Concentration

    PubMed Central

    Ocvirk, Gregor; Hajnsek, Martin; Gillen, Ralph; Guenther, Arnfried; Hochmuth, Gernot; Kamecke, Ulrike; Koelker, Karl-Heinz; Kraemer, Peter; Obermaier, Karin; Reinheimer, Cornelia; Jendrike, Nina; Freckmann, Guido

    2009-01-01

    Background A novel microdialysis-based continuous glucose monitoring system, the so-called Clinical Research Tool (CRT), is presented. The CRT was designed exclusively for investigational use to offer high analytical accuracy and reliability. The CRT was built to avoid signal artifacts due to catheter clogging, flow obstruction by air bubbles, and flow variation caused by inconstant pumping. For differentiation between physiological events and system artifacts, the sensor current, counter electrode and polarization voltage, battery voltage, sensor temperature, and flow rate are recorded at a rate of 1 Hz. Method In vitro characterization with buffered glucose solutions (cglucose = 0 - 26 × 10-3 mol liter-1) over 120 h yielded a mean absolute relative error (MARE) of 2.9 ± 0.9% and a recorded mean flow rate of 330 ± 48 nl/min with periodic flow rate variation amounting to 24 ± 7%. The first 120 h in vivo testing was conducted with five type 1 diabetes subjects wearing two systems each. A mean flow rate of 350 ± 59 nl/min and a periodic variation of 22 ± 6% were recorded. Results Utilizing 3 blood glucose measurements per day and a physical lag time of 1980 s, retrospective calibration of the 10 in vivo experiments yielded a MARE value of 12.4 ± 5.7. Clarke error grid analysis resulted in 81.0%, 16.6%, 0.8%, 1.6%, and 0% in regions A, B, C, D, and E, respectively. Conclusion The CRT demonstrates exceptional reliability of system operation and very good measurement performance. The ability to differentiate between artifacts and physiological effects suggests the use of the CRT as a reference tool in clinical investigations. PMID:20144284

  13. Neuroprotective effect of pressure-oriented flow regulation and pH-stat management in selective antegrade brain perfusion during total aortic arch repair.

    PubMed

    Ito, Hisato; Mizumoto, Toru; Sawada, Yasuhiro; Fujinaga, Kazuya; Tempaku, Hironori; Yamamoto, Yasunori; Tsutsui, Katsuhiro; Shimpo, Hideto

    2017-10-01

    The aim of this study was to assess the safety and effectiveness of our selective antegrade brain perfusion (SABP) strategy, which is characterized by moderate hypothermic and low-pressure management under pH-stat using a completely closed cardiopulmonary bypass circuit with a single centrifugal pump. Forty-nine consecutive patients (median age, 74) underwent total aortic arch replacement using a 4-branched graft. SABP was conducted with individual cannulation in all arch vessels. The SABP flow rate was monitored, and the flow rates of each arch vessel were also measured in patients with available data. One patient died of cerebral infarction, and 7 had transient neurological deficits without apparent findings on postoperative imaging studies and without residual sequels at hospital discharge. The operation, cardiopulmonary bypass, cardiac arrest, circulatory arrest and SABP times were 327 min (interquartile range, 292-381), 211 (184-247), 107 (84.8-138.3), 54.0 (48-68) and 137 (114-158), respectively. The total flow of the SABP was 18.1 ml/kg/min (15.7-20.9). The flow rates of the brachiocephalic, the left carotid and the left subclavian arteries were 9.5 ml/kg/min (7.7-11.5), 4.2 (2.8-5.7) and 4.5 (3.7-5.5), respectively. Only the flow rate of the brachiocephalic artery was significantly correlated with the total SABP flow rate (Spearman rank correlation coefficient, r = 0.58, P < 0.01). The moderate hypothermic, high-flow, low-pressure SABP strategy with pH-stat management can be applied in adult aortic surgery; however, the feasibility and effectiveness of this concept need further evaluation in a prospective controlled study. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  14. Monitoring of surface velocity of hyper-concentrated flow in a laboratory flume by means of fully-digital PIV

    NASA Astrophysics Data System (ADS)

    Termini, Donatella; Di Leonardo, Alice

    2016-04-01

    High flow conditions, which are generally characterized by high sediment concentrations, do not permit the use of traditional measurement equipment. Traditional techniques usually are based on the intrusive measure of the vertical profile of flow velocity and on the linking of water depth with the discharge through the rating curve. The major disadvantage of these measurement techniques is that they are difficult to use and not safe for operators especially in high flow conditions. The point is that, as literature shows (see as an example Moramarco and Termini, 2015), especially in such conditions, the measurement of surface velocity distribution is important to evaluate the mean flow velocity and, thus, the flow discharge. In the last decade, image-based techniques have been increasingly used for surface velocity measurements (among others Joeau et al., 2008). Experimental program has been recently conducted at the Hydraulic laboratory of the Department of Civil, Environmental, Aerospatial and of Materials Engineering (DICAM) - University of Palermo (Italy) in order to analyze the propagation phenomenon of hyper-concentrated flow in a defense channel. The experimental apparatus includes a high-precision camera and a system allowing the images recording. This paper investigates the utility and the efficiency of the digital image-technique for remote monitoring of surface velocity in hyper-concentrated flow by the aid of data collected during experiments conducted in the laboratory flume. In particular the present paper attention is focused on the estimation procedure of the velocity vectors and on their sensitivity with parameters (number of images, spatial resolution of interrogation area,) of the images processing procedure. References Jodeau M., A. Hauet, A. Paquier, Le Coz J., Dramais G., Application and evaluation of LS-PIV technique for the monitoring of river surface in high flow conditions, Flow Measurements and Instrumentation, Vol.19, No.2, 2008, pp.117-127. Moramarco T., Termini D., Entropic approach to estimate the mean flow velocity: experimental investigation in laboratory flumes, Environmental Fluid mechanics, Vol. 15, No.1, 2015.

  15. Monitoring Changing Eruption Styles of Kilauea Volcano Over the Summer of 2007 With Spaceborne Infrared Data

    NASA Astrophysics Data System (ADS)

    Ramsey, M.; Wessels, R.

    2007-12-01

    On June 19, 2007 episode 56 (the Father's Day intrusion) of the ongoing eruption at Kilauea Volcano culminated with a small eruption of lava from a 250 m long fissure approximately 6 km west of Pu'u 'O'o. The event was preceded by an earthquake swarm and attributed to the intrusion of magma. This intrusion was also associated with cessation of activity at Pu'u 'O'o and deflation of its summit region. On July 21, 2007 new lava then erupted along a set of fissures that extended eastward from Pu'u 'O'o toward the old Kupaianaha vent. By early September, this eruption continued to supply a lava channel approximately 1 km long, which has fed two 'a'a flow lobes advancing to the northeast and southeast. We describe the application of spaceborne imaging data from the visible to the thermal infrared (TIR) wavelengths for monitoring activity throughout this period. Satellite thermal infrared (TIR) data with low spatial resolution (i.e., kms/pixel) have been used for years to monitor changes in surface thermal features such as volcanic flows. However, the use of higher spatial resolution data allows for the extraction of physical parameters at meter to sub-meter scales. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) provides TIR, shortwave infrared (SWIR), and visible-near infrared (VNIR) data ideal for this type of analysis, hazard assessment, and smaller-scale monitoring of active lava flows. From June-August of 2007, ASTER was scheduled 23 times and collected 11 independent scenes of the new flow activity at Kilauea. Of these, 7 were clear to partly-cloudy and show excellent coverage of the activity following the Father's Day intrusion. TIR and SWIR data, converted to atmospherically corrected emitted surface radiance, have been used to extract flow extent, areal coverage, flow advance rate, and maximum brightness temperature. These data correlate well with descriptions of the flow activity documented by Hawaiian Volcano Observatory field crews. For example, the ASTER night time image collected on July 19 (22:42:56 HST) had a maximum SWIR-derived temperature of 305 C, and a total thermally-elevated area of 0.19 sq. km. Within that region, 3 distinctly hotter zones were identified as most likely the West Gap pit craters, which were described as intermittently overflowing to form a small lava lake at the time. Following the July 21 fissure eruption, ASTER observations were augmented with non-standard approaches such as collecting visible night time data in order to accurately extract the higher temperature of the open lava channel. Although clouds partially obscure the August 30 night image, a maximum pixel-integrated temperature of 750 C was detected using the VNIR night- time data for the first time. Such a monitoring program coordinated between NASA and a USGS volcano observatory can provide important data on hot spot detection, eruption rate, and flow advance at times where it may be too costly or risky to send scientists into the field.

  16. Method and apparatus for acoustically monitoring the flow of suspended solid particulate matter

    DOEpatents

    Roach, Paul D.; Raptis, Apostolos C.

    1982-01-01

    A method and apparatus for monitoring char flow in a coal gasifier system cludes flow monitor circuits which measure acoustic attenuation caused by the presence of char in a char line and provide a char flow/no flow indication and an indication of relative char density. The flow monitor circuits compute the ratio of signals in two frequency bands, a first frequency band representative of background noise, and a second higher frequency band in which background noise is attenuated by the presence of char. Since the second frequency band contains higher frequencies, the ratio can be used to provide a flow/no flow indication. The second band can also be selected so that attenuation is monotonically related to particle concentration, providing a quantitative measure of char concentration.

  17. Neural-fuzzy control system application for monitoring process response and control of anaerobic hybrid reactor in wastewater treatment and biogas production.

    PubMed

    Waewsak, Chaiwat; Nopharatana, Annop; Chaiprasert, Pawinee

    2010-01-01

    Based on the developed neural-fuzzy control system for anaerobic hybrid reactor (AHR) in wastewater treatment and biogas production, the neural network with backpropagation algorithm for prediction of the variables pH, alkalinity (Alk) and total volatile acids (TVA) at present day time t was used as input data for the fuzzy logic to calculate the influent feed flow rate that was applied to control and monitor the process response at different operations in the initial, overload influent feeding and the recovery phases. In all three phases, this neural-fuzzy control system showed great potential to control AHR in high stability and performance and quick response. Although in the overloading operation phase II with two fold calculating influent flow rate together with a two fold organic loading rate (OLR), this control system had rapid response and was sensitive to the intended overload. When the influent feeding rate was followed by the calculation of control system in the initial operation phase I and the recovery operation phase III, it was found that the neural-fuzzy control system application was capable of controlling the AHR in a good manner with the pH close to 7, TVA/Alk < 0.4 and COD removal > 80% with biogas and methane yields at 0.45 and 0.30 m3/kg COD removed.

  18. Evaluating the capabilities of aerosol-to-liquid particle extraction system (ALPXS)/ICP-MS for monitoring trace metals in indoor air.

    PubMed

    Jayawardene, Innocent; Rasmussen, Pat E; Chenier, Marc; Gardner, H David

    2014-09-01

    This study investigates the application of the Aerosol-to-Liquid Particle Extraction System (ALPXS), which uses wet electrostatic precipitation to collect airborne particles, for multi-element indoor stationary monitoring. Optimum conditions are determined for capturing airborne particles for metal determination by inductively coupled plasma-mass spectrometry (ICP-MS), for measuring field blanks, and for calculating limits of detection (LOD) and quantification (LOQ). Due to the relatively high flow rate (300 L min(-1)), a sampling duration of 1 hr to 2 hr was adequate to capture airborne particle-bound metals under the investigated experimental conditions. The performance of the ALPXS during a building renovation demonstrated signal-to-noise ratios appropriate for sampling airborne particles in environments with elevated metal concentrations, such as workplace settings. The ALPXS shows promise as a research tool for providing useful information on short-term variations (transient signals) and for trapping particles into aqueous solutions where needed for subsequent characterization. As the ALPXS does not provide size-specific samples, and its efficiency at different flow rates has yet to be quantified, the ALPXS would not replace standard filter-based protocols accepted for regulatory applications (e.g., exposure measurements), but rather would provide additional information if used in conjunction with filter based methods. Implications: This study investigates the capability of the Aerosol-to-Liquid Particle Extraction System (ALPXS) for stationary sampling of airborne metals in indoor workplace environments, with subsequent analysis by ICP-MS. The high flow rate (300 L/min) permits a short sampling duration (< 2 hr). Results indicated that the ALPXS was capable of monitoring short-term changes in metal emissions during a renovation activity. This portable instrument may prove to be advantageous in occupational settings as a qualitative indicator of elevated concentrations of airborne metals at short time scales.

  19. Multishell encapsulation using a triple coaxial electrospray system.

    PubMed

    Kim, Woojin; Kim, Sang Soo

    2010-06-01

    To overcome the limitations of the conventional encapsulation methods and improve the potential use of the electrospray method as a drug delivery system, an electrospray system using a triple coaxial nozzle was developed to generate multishell capsules. Two conducting fluids, ethylene glycol and 4-hydroxybutyl acrylate, and one nonconducting fluid, olive oil, were chosen to manufacture the multishell capsules. The capsules were solidified by a photopolymerization device. We investigated the size distributions and visualized the capsules changing fluid flow rates. Dispersive Raman spectra were also monitored to determine the chemical composition of the capsules. The multishell capsules were generated in the overlapped cone-jet mode regime of the conducting fluids, and the sizes and shell thicknesses were controlled by the flow rates and applied voltages.

  20. How Hot are Your Ions in TWAVE Ion Mobility Spectrometry?

    PubMed Central

    Merenbloom, Samuel I.; Flick, Tawnya G.; Williams, Evan R.

    2012-01-01

    Effective temperatures of ions during traveling wave ion mobility spectrometry (TWIMS) analysis were measured using singly protonated leucine enkephalin dimer as a chemical thermometer by monitoring dissociation of the dimer into monomer, as well as the subsequent dissociation of monomer into a-, b-, and y-ions, as a function of instrumental parameters. At fixed helium cell and TWIMS cell gas flow rates, the extent of dissociation does not vary significantly with either the wave velocity or wave height, except at low (<500 m/s) wave velocities that are not commonly used. Increasing the flow rate of nitrogen gas into the TWIMS cell and decreasing the flow rate of helium gas into the helium cell resulted in greater dissociation. However, the mobility distributions of the fragment ions formed by dissociation of the dimer upon injection into the TWIMS cell are nearly indistinguishable from those of fragment ions formed in the collision cell prior to TWIMS analysis for all TWIMS experiments. These results indicate that heating and dissociation occur when ions are injected into the TWIMS cell, and that the effective temperature subsequently decreases to a point at which no further dissociation is observed during the TWIMS analysis. An upper limit to the effective ion temperature of 449 K during TWIMS analysis is obtained at a helium flow rate of 180 mL/min, TWIMS flow rate of 80 mL/min and traveling wave height of 40 V, which is well below previously reported values. Effects of ion heating in TWIMS on gas-phase protein conformation are presented. PMID:22203576

  1. Development of monitoring and control system for a mine main fan based on frequency converter

    NASA Astrophysics Data System (ADS)

    Zhang, Y. C.; Zhang, R. W.; Kong, X. Z.; Y Gong, J.; Chen, Q. G.

    2013-12-01

    In the process of mine exploitation, the requirement of air flow rate often changes. The procedure of traditional control mode of the fan is complex and it is hard to meet the worksite requirement for air. This system is based on Principal Computer (PC) monitoring system and high performance PLC control system. In this system, the frequency converter is adapted to adjust the fan speed and the air of worksite can be regulated steplessly. The function of the monitoring and control system contains on-line monitoring and centralized control. The system can monitor the parameters of fan in real-time, control the operation of frequency converter, as well as, control the fan and its accessory equipments. At the same time, the automation level of the system is highly, the field equipments can be monitored and controlled automatically. So, the system is an important safeguard for mine production.

  2. A Real-Time Wireless Sweat Rate Measurement System for Physical Activity Monitoring

    PubMed Central

    Brueck, Andrew; Iftekhar, Tashfin; Stannard, Alicja B.; Kaya, Tolga

    2018-01-01

    There has been significant research on the physiology of sweat in the past decade, with one of the main interests being the development of a real-time hydration monitor that utilizes sweat. The contents of sweat have been known for decades; sweat provides significant information on the physiological condition of the human body. However, it is important to know the sweat rate as well, as sweat rate alters the concentration of the sweat constituents, and ultimately affects the accuracy of hydration detection. Towards this goal, a calorimetric based flow-rate detection system was built and tested to determine sweat rate in real time. The proposed sweat rate monitoring system has been validated through both controlled lab experiments (syringe pump) and human trials. An Internet of Things (IoT) platform was embedded, with the sensor using a Simblee board and Raspberry Pi. The overall prototype is capable of sending sweat rate information in real time to either a smartphone or directly to the cloud. Based on a proven theoretical concept, our overall system implementation features a pioneer device that can truly measure the rate of sweat in real time, which was tested and validated on human subjects. Our realization of the real-time sweat rate watch is capable of detecting sweat rates as low as 0.15 µL/min/cm2, with an average error in accuracy of 18% compared to manual sweat rate readings. PMID:29439398

  3. Hydrograph monitoring and analysis for sustainable karst water management in Nyadeng Spring, East Borneo

    NASA Astrophysics Data System (ADS)

    Widyastuti, M.; Fatchurohman, H.; Fathoni, W. A.; Hakim, A. A.; Haryono, E.

    2018-04-01

    Karst aquifer stores abundant water resources within its matrix, conduits, and intergranular pores. Karst aquifer plays an important role in providing water supply, especially in the areas nearby that commonly dry and lack of surface water resources. Karst spring hydrograph analysis is very fundamental step to–assess and determines the condition of the catchment area in karst terrain. Recession curve is believed to be the most stable part in single flood hydrograph that represents the aquifer characteristics. Nyadeng is one of the most significant karst springs that located in Merabu Karst Area, East Borneo. Villagers in Merabu highly depend on Nyadeng Spring for fulfilled their freshwater need. Hydrograph monitoring has been initiated for one year in Nyadeng Spring as a preliminary action for karst water management in Merabu. Water level data series obtained using automatic water level data logger and then correlated with manual discharge measurement to generate stage-discharge rating curve. The stage-discharge rating curve formula for Nyadeng Spring calculated as y = 0,0102e5,8547x with r2 value = 0.8759. From the combination of several single flood events, Master Recession Curve (MRC) was generated to determine flow regime as the main consideration for karstification degree calculation. From the MRC result, flow regimes formula determined as Qt = 3.2-0.001t + 1.2(1-0.012t)+1.6(1-0.035t) indicated that one sub-regime with laminar flow and two sub-regimes with turbulent flow existed. From the MRC formula, the degree of karstification in Nyadeng Spring classified at seventh scale (developed karstification of the aquifer) based on Malik’s karstification degree (2012). The degree of karstification in Nyadeng Spring indicates that the aquifer formed by large conduit channels, fissures, and macro fissures which are able to provide significant water sources that can be utilized for multi purposes. Therefore, it is concluded that spring hydrograph monitoring provide essential information in order to establish a careful water resources management actions.

  4. Nano-enabled paper humidity sensor for mobile based point-of-care lung function monitoring.

    PubMed

    Bhattacharjee, Mitradip; Nemade, Harshal B; Bandyopadhyay, Dipankar

    2017-08-15

    The frequency of breathing and peak flow rate of exhaled air are necessary parameters to detect chronic obstructive pulmonary diseases (COPDs) such as asthma, bronchitis, or pneumonia. We developed a lung function monitoring point-of-care-testing device (LFM-POCT) consisting of mouthpiece, paper-based humidity sensor, micro-heater, and real-time monitoring unit. Fabrication of a mouthpiece of optimal length ensured that the exhaled air was focused on the humidity-sensor. The resistive relative humidity sensor was developed using a filter paper coated with nanoparticles, which could easily follow the frequency and peak flow rate of the human breathing. Adsorption followed by condensation of the water molecules of the humid air on the paper-sensor during the forced exhalation reduced the electrical resistance of the sensor, which was converted to an electrical signal for sensing. A micro-heater composed of a copper-coil embedded in a polymer matrix helped in maintaining an optimal temperature on the sensor surface. Thus, water condensed on the sensor surface only during forcible breathing and the sensor recovered rapidly after the exhalation was complete by rapid desorption of water molecules from the sensor surface. Two types of real-time monitoring units were integrated into the device based on light emitting diodes (LEDs) and smart phones. The LED based unit displayed the diseased, critical, and fit conditions of the lungs by flashing LEDs of different colors. In comparison, for the mobile based monitoring unit, an application was developed employing an open source software, which established a wireless connectivity with the LFM-POCT device to perform the tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Experimental study of the solid-liquid interface in a yield-stress fluid flow upstream of a step

    NASA Astrophysics Data System (ADS)

    Luu, Li-Hua; Pierre, Philippe; Guillaume, Chambon

    2014-11-01

    We present an experimental study where a yield-stress fluid is implemented to carefully examine the interface between a liquid-like unyielded region and a solid-like yielded region. The studied hydrodynamics consists of a rectangular pipe-flow disturbed by the presence of a step. Upstream of the step, a solid-liquid interface between a dead zone and a flow zone appears. This configuration can both model geophysical erosion phenomenon in debris flows or find applications for industrial extrusion processes. We aim to investigate the dominant physical mechanism underlying the formation of the static domain, by combining the rheological characterization of the yield-stress fluid with local measurements of the related hydrodynamic parameters. In this work, we use a model fluid, namely polymer micro-gel Carbopol, that exhibits a Hershel-Bulkley viscoplastic rheology. Exploiting the fluid transparency, the flow is monitored by Particle Image Velocimetry thanks to internal visualization technique. In particular, we demonstrate that the flow above the dead zone roughly behaves as a plug flow whose velocity profile can successfully be described by a Poiseuille equation including a Hershel-Bulkley rheology (PHB theory), with exception of a thin zone at the close vicinity of the static domain. The border inside the flow zone above which the so-called PHB flow starts, is found to be the same regardless of the flow rate and to move with a constant velocity that increases with the flow rate. We interpret this feature as a slip frontier.

  6. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio

    2013-02-15

    A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signalmore » proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.« less

  7. The Science and Policy of the First Environmental Flows to the Colorado River Delta

    NASA Astrophysics Data System (ADS)

    Flessa, K. W.; Kendy, E.; Schlatter, K.

    2014-12-01

    The first transboundary flow of water for the environment was delivered to the Colorado River Delta in spring of 2014. This engineered mini-spring flood of 130 million cubic meters (105,000 acre-feet) was implemented as part of Minute 319, an addition to the 1944 U.S.-Mexico Water Treaty. Minute 319 is a temporary agreement, expiring in 2017. Teams of scientists from government agencies, universities, and environmental NGOs from both the U.S. and Mexico are measuring the surface flow rates, inundation, ground water recharge, ground water levels and subsurface flows, geomorphic change, recruitment, survival and health of vegetation, and avian response to the environmental flow. Monitoring includes on-the-ground observations and measurements and remote sensing. Surface water from the pulse flow reached restoration sites, prompted germination of both native and non-native vegetation, recharged groundwater and reached the Gulf of California - the first reconnection of the Colorado River and the sea in 16 years. People in local communities joyously welcomed the return of the river; extensive media coverage was overwhelmingly positive - despite widespread drought in the West. After about ten weeks, most of the pulse flow had infiltrated the subsurface, ponded in a few cut-off meanders, or run to the sea. The river no longer flows. Monitoring of seedling survival, groundwater, vegetation and wildlife will continue through 2017. Results of this landscape-scale experiment will play a role in negotiations to renew the agreement, help model and design future flows and guide the efficient use of water for restoration in semi-arid river systems.

  8. Effective contaminant detection networks in uncertain groundwater flow fields.

    PubMed

    Hudak, P F

    2001-01-01

    A mass transport simulation model tested seven contaminant detection-monitoring networks under a 40 degrees range of groundwater flow directions. Each monitoring network contained five wells located 40 m from a rectangular landfill. The 40-m distance (lag) was measured in different directions, depending upon the strategy used to design a particular monitoring network. Lagging the wells parallel to the central flow path was more effective than alternative design strategies. Other strategies allowed higher percentages of leaks to migrate between monitoring wells. Results of this study suggest that centrally lagged groundwater monitoring networks perform most effectively in uncertain groundwater-flow fields.

  9. Measurement of liner slips, milking time, and milk yield.

    PubMed

    O'Callaghan, E J

    1996-03-01

    Liner slip or rapid air leakage past the mouthpiece of the milking machine liner is related to high rates of new cases of mastitis. A real time technique was developed to monitor the air flow into the milking machine cluster during liner slips as well as to monitor milking time and milk yield using a commercial type pipeline milking system. The air flow into the cluster was measured by recording the pressure differences across an orifice plate placed in the air bypass of an air-milk separator using a differential pressure transducer. Milk yield was recorded by counting the number of milk releases from an electronic milk meter. The release solenoids of the milk meter were linked to a computer. The start and end of milking were manually recorded by switching a two-pole switch connected to a digital input card on the computer, which was programmed to record air flow, milk yield, and milking time. Milk yield, milking time, and air flows during liner slips were recorded simultaneously at each milking unit in an 11-unit herringbone parlor. The system was tested with an experiment with a 4 x 4 Latin square design using four treatments (clusters) and four treatment groups (22 cows per group).

  10. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-06-01

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology-fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01-0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.

  11. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions

    PubMed Central

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-01-01

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology–fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01–0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics. PMID:27352840

  12. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions.

    PubMed

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-06-29

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology-fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01-0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.

  13. High Resolution Pre-Clinical CT and SPECT Imaging Techniques for Investigating Flow and Transport Mechanisms in Porous Media

    NASA Astrophysics Data System (ADS)

    Dogan, M.; Moysey, S. M.; Mamun, A. A.; DeVol, T. A.; Powell, B. A.; Murdoch, L. C.

    2017-12-01

    Single Photon Emission Computed Tomography (SPECT) and x-ray Computed Tomography (CT) are both high-resolution imaging methods for investigating laboratory scale samples. We have recently conducted several experiments to determine the capabilities of two preclinical imaging systems; the imaging resolution of the two systems studied were found to be 0.2 mm for CT and 2-4 mm for SPECT depending on the tracer and scan times. While the resolution of these instruments is not sufficient for imaging the pore structure of most soils, it is sufficient to resolve macropore structures such as cracks and root channels and to observe their impact on transport. For example, we have used CT scans to monitor the formation of desiccation cracks within soils obtained from the Savannah River Site. We were then able to observe the interaction between the crack network and pore matrix during an infiltration experiment by spiking the infiltrating water with an iodide contrast agent as a tracer. We found a complex interaction between the flow systems, where flow shifted from matrix dominated at low flow rates to macropore dominated at high flow rates. SPECT imaging is capable of monitoring the distribution of gamma-ray emitting radionuclides in 3D. It is therefore also a useful tool for monitoring transport processes, but is particularly powerful when a redox sensitive isotope like 99mTc is used as the tracer. We show an example of a transport experiment where a 99mTc solution is passed through a column containing zones with different redox properties, i.e., a zone amended with titanomagnetite, another with anatase, and a third with silica flour. The 99mTc is captured by the strongly reducing materials, but not the zone with silica flour. The example illustrates how these imaging modalities can be used to discriminate between chemical and physical processes controlling fate and transport of the radionuclide. In particular, CT and SPECT can be used to image contaminant transport in lab scale columns by combining the structural information obtained from CT with the concentration distributions from SPECT.

  14. Effects of treatment on respiratory rate, serum natriuretic peptide concentration, and Doppler echocardiographic indices of left ventricular filling pressure in dogs with congestive heart failure secondary to degenerative mitral valve disease and dilated cardiomyopathy.

    PubMed

    Schober, Karsten E; Hart, Taye M; Stern, Joshua A; Li, Xiaobai; Samii, Valerie F; Zekas, Lisa J; Scansen, Brian A; Bonagura, John D

    2011-08-15

    To evaluate the effects of treatment on respiratory rate, serum natriuretic peptide concentrations, and Doppler echocardiographic indices of left ventricular filling pressure in dogs with congestive heart failure (CHF) secondary to degenerative mitral valve disease (MVD) and dilated cardiomyopathy (DCM). Prospective cohort study. 63 client-owned dogs. Physical examination, thoracic radiography, analysis of natriuretic peptide concentrations, and Doppler echocardiography were performed twice, at baseline (examination 1) and 5 to 14 days later (examination 2). Home monitoring of respiratory rate was performed by the owners between examinations. In dogs with MVD, resolution of CHF was associated with a decrease in respiratory rate, serum N-terminal probrain natriuretic peptide (NT-proBNP) concentration, and diastolic functional class and an increase of the ratio of peak velocity of early diastolic transmitral flow to peak velocity of early diastolic lateral mitral annulus motion (E:Ea Lat). In dogs with DCM, resolution of CHF was associated with a decrease in respiratory rate and serum NT-proBNP concentration and significant changes in 7 Doppler echocardiographic variables, including a decrease of E:Ea Lat and the ratio of peak velocity of early diastolic transmitral flow to isovolumic relaxation time. Only respiratory rate predicted the presence of CHF at examination 2 with high accuracy. Resolution of CHF was associated with predictable changes in respiratory rate, serum NT-proBNP concentration, and selected Doppler echocardiographic variables in dogs with DCM and MVD. Home monitoring of respiratory rate was simple and was the most useful in the assessment of successful treatment of CHF.

  15. Fine scale monitoring of ice ablation following convective heat transfer: case study based on ice-wedge thermo-erosion on Bylot Island (Canadian High Arctic) and laboratory observations

    NASA Astrophysics Data System (ADS)

    Godin, E.; Fortier, D.

    2011-12-01

    Thermo-erosion gullies often develop in ice-wedge polygons terrace and contribute to the dynamic evolution of the periglacial landscape. When snowmelt surface run-off concentrated into streams and water tracks infiltrate frost cracks, advective heat flow and convective thermal transfer from water to the ice-wedge ice enable the rapid development of tunnels and gullies in the permafrost (Fortier et al. 2007). Fine scale monitoring of the physical interaction between flowing water and ice rich permafrost had already been studied in a context of thermal erosion of a large river banks in Russia (Costard et al. 2003). Ice wedge polygons thermo-erosion process leading to gullying remains to be physically modelled and quantified. The present paper focus on the fine scale monitoring of thermo-erosion physical parameters both in the field and in laboratory. The physical model in laboratory was elaborated using a fixed block of ice monitored by a linear voltage differential transducer (LVDT) and temperature sensors connected to a logger. A water container with controlled discharge and temperature provided the fluid which flowed over the ice through a hose. Water discharge (Q), water temperature (Tw), ice melting temperature (Ti) and ice ablation rate (Ar) were measured. In laboratory, water at 281 Kelvin (K) flowing on the ice (Ti 273 K) made the ice melt at a rate Ar of 0.002 m min-1, under a continuous discharge of ≈ 8 x 10-7 m3 s-1. In the field, a small channel was dug between a stream and an exposed ice-wedge in a pre-existing active gully, where in 2010 large quantities of near zero snowmelt run-off water contributed to several meters of ice wedge ablation and gully development. Screws were fastened into the ice and a ruler was used to measure the ablation rate every minute. The surface temperature of the ice wedge was monitored with thermocouples connected to a logger to obtain the condition of the ice boundary layer. Discharge and water temperature were measured in the excavated channel just before the water got in contact with the ice surface. The field experiment where flowing water at Tw = 277 K, Ti = 273 K with a water discharge of 0.01 m3 s-1 resulted in a measured Ar of 0.01 to 0.02 m min-1. Water discharge and temperature difference between water and the melting ice were fundamental to ice ablation rate. The recent climate warming in the Canadian High Arctic will likely strongly contribute to the interaction and importance of the thermo-erosion and gullying processes in the High Arctic. Combined factors such as earlier or faster snowmelt, precipitation changes during the summer and positive feedback effects will probably increase the hydrological input to gullies and therefore enhance their development by thermo-erosion. Costard F. et al. 2003. Fluvial thermal erosion investigations along a rapidly eroding river bank: Application to the Lena River (central Siberia). Earth Surface Processes and Landforms 28: 1349-1359. Fortier D. et al. 2007. Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot island, Canadian Arctic Archipelago. Permafrost and Periglacial Processes 18: 229-243.

  16. Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow

    NASA Astrophysics Data System (ADS)

    Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.

    2000-09-01

    We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.

  17. Visceral Blood Flow Modulation: Potential Therapy for Morbid Obesity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Tyler J., E-mail: tjharris@gmail.com; Murphy, Timothy P.; Jay, Bryan S.

    We present this preliminary investigation into the safety and feasibility of endovascular therapy for morbid obesity in a swine model. A flow-limiting, balloon-expandable covered stent was placed in the superior mesenteric artery of three Yorkshire swine after femoral arterial cutdown. The pigs were monitored for between 15 and 51 days after the procedure and then killed, with weights obtained at 2-week increments. In the two pigs in which the stent was flow limiting, a reduced rate of weight gain (0.42 and 0.53 kg/day) was observed relative to the third pig (0.69 kg/day), associated with temporary food aversion and signs ofmore » mesenteric ischemia in one pig.« less

  18. NEXIS Reservoir Cathode 2000 Hour Life Test

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason; Schneider, Todd; Polk, Jay; Goebel, Dan; Ohlinger, Wayne; Hill, D. Norm

    2004-01-01

    The current design of the Nuclear Electric Xenon Ion System (NEXIS) employs a reservoir cathode as both the discharge and neutralizer cathode to meet the 10 yr thruster design life. The main difference between a reservoir cathode and a conventional discharge cathode is the source material (barium-containing compound) is contained within a reservoir instead of in an impregnated insert in the hollow tube. However, reservoir cathodes do not have much life test history associated with them. In order to demonstrate the feasibility of using a reservoir cathode as an integral part of the NEXIS ion thruster, a 2000 hr life test was performed. Several proof-of-concept (POC) reservoir cathodes were built early in the NEXIS program to conduct performance testing as well as life tests. One of the POC cathodes was sent to Marshall Space Flight Center (MSFC) where it was tested for 2000 hrs in a vacuum chamber. The cathode was operated at the NEXIS design point of 25 A discharge current and a xenon flow rate of 5.5 sccm during the 2000 hr test. The cathode performance parameters, including discharge current, discharge voltage, keeper current; keeper voltage, and flow rate were monitored throughout test. Also, the temperature upstream of cathode heater, the temperature downstream of the cathode heater, and the temperature of the orifice plate were monitored throughout the life of the test. The results of the 2000 hr test will be described in this paper. Included in the results will be time history of discharge current, discharge voltage, and flow rate. Also, a time history of the cathode temperature will be provided.

  19. Optimization of the secondary drying step in freeze drying using TDLAS technology.

    PubMed

    Schneid, Stefan C; Gieseler, Henning; Kessler, William J; Luthra, Suman A; Pikal, Michael J

    2011-03-01

    The secondary drying phase in freeze drying is mostly developed on a trial-and-error basis due to the lack of appropriate noninvasive process analyzers. This study describes for the first time the application of Tunable Diode Laser Absorption Spectroscopy, a spectroscopic and noninvasive sensor for monitoring secondary drying in laboratory-scale freeze drying with the overall purpose of targeting intermediate moisture contents in the product. Bovine serum albumin/sucrose mixtures were used as a model system to imitate high concentrated antibody formulations. First, the rate of water desorption during secondary drying at constant product temperatures (-22 °C, -10 °C, and 0 °C) was investigated for three different shelf temperatures. Residual moisture contents of sampled vials were determined by Karl Fischer titration. An equilibration step was implemented to ensure homogeneous distribution of moisture (within 1%) in all vials. The residual moisture revealed a linear relationship to the water desorption rate for different temperatures, allowing the evaluation of an anchor point from noninvasive flow rate measurements without removal of samples from the freeze dryer. The accuracy of mass flow integration from this anchor point was found to be about 0.5%. In a second step, the concept was successfully tested in a confirmation experiment. Here, good agreement was found for the initial moisture content (anchor point) and the subsequent monitoring and targeting of intermediate moisture contents. The present approach for monitoring secondary drying indicated great potential to find wider application in sterile operations on production scale in pharmaceutical freeze drying. © 2011 American Association of Pharmaceutical Scientists

  20. The advantages of wearable green reflected photoplethysmography.

    PubMed

    Maeda, Yuka; Sekine, Masaki; Tamura, Toshiyo

    2011-10-01

    This report evaluates the efficacy of reflected-type green light photoplethysmography (green light PPG). Transmitted infrared light was used for PPG and the arterial pulse was monitored transcutaneously. The reflected PPG signal contains AC components based on the heartbeat-related signal from the arterial blood flow and DC components, which include reflectance and scattering from tissue. Generally, changes in AC components are monitored, but the DC components play an important role during heat stress. In this study, we compared the signal of green light PPG to infrared PPG and ECG during heat stress. The wavelengths of the green and infrared light were 525 nm and 880 nm, respectively. Experiments were performed on young healthy subjects in cold (10°C), hot (45°C), and normal environments. The pulse rates were compared among three measurement devices and the AC and DC components of the PPG signal were evaluated during heat stress. The pulse rates obtained from green light PPG were strongly correlated with the R-R interval of an electrocardiogram in all environments, but those obtained from infrared light PPG displayed a weaker correlation with cold exposure. The AC components were of similar signal output for both wavelengths during heat stress. Also, the DC components for green light PPG were similar during heat stress, but showed less signal output for infrared light PPG during hot exposure. The main reason for the reduced DC components was speculated to be the increased blood flow at the vascular bed. Therefore, reflected green light PPG can be useful for pulse rate monitoring because it is less influenced by the tissue and vein region.

  1. Development of a silicone-membrane passive sampler for monitoring cylindrospermopsin and microcystin LR-YR-RR in natural waters

    NASA Astrophysics Data System (ADS)

    Nyoni, Hlengilizwe; Mamba, Bhekie B.; Msagati, Titus A. M.

    2017-08-01

    Silicone membrane tubes were functionalised by filling them with synthesised γ-Fe2O3 nanoparticles and used as a passive sampling device for monitoring microcystins and cylindrospermopsin in aquatic environments. This novel device was calibrated for the measurement of microcystin and cylindrospermopsin concentrations in water. The effect of temperature and hydrodynamics on the sampler performance was studied in a flow-through system under controlled conditions. The chemical uptake of microcystins (MCs) and cylindrospermopsin (CYN) into the passive sampler remained linear and integrative throughout the exposure period. The rate of accumulation of most of the MC compounds tested was dependent on temperature and flow velocity. The use of 13C labelled polychlorinated biphenyls as performance reference compounds (PRCs) in silicone membrane/γ-Fe2O3 nanoparticle passive sampler, Chemcatcher and polar organic chemical integrative sampler (POCIS) was evaluated. The majority of PRCs improved the semi quantitative nature of water concentration estimated by the three samplers. The corrected sampling rate values of model biotoxin compounds were used to estimate the time-weighted average concentrations in natural cyanobacterial water blooms of the Hartbeespoort dam. The corrected sampling rates RScorr values varied from 0.1140 to 0.5628 Ld-1 between samplers with silicone membrane having the least RScorr values compared to the Chemcatcher and POCIS. The three passive sampling devises provided a more relevant picture of the biotoxin concentration in the Hartbeespoort dam. The results suggested that the three sampling devices are suitable for use in monitoring microcystins and cylindrospermopsin concentrations in aquatic environments.

  2. Assessment of the viability of skin grafts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahner, H.W.

    1988-07-01

    A number of tests are available to monitor the blood flow in free and distant pedicle skin grafts. The information from these tests aids in the development of measures to enhance vascularization and is occasionally needed to make clinical decisions in patients with distant pedicle grafts. Measurements of the disappearance of an intradermally injected small amount of /sup 133/Xe allows determination of a clearance rate and blood flow before and after clamping the original blood supply through the base. With /sup 99m/Tc, which is generally more readily available, a flow index and block index can be determined. Clinically both proceduresmore » give equally good results in determining a safe time for pedicle base separation. The fluorescein test allows assessment of regional blood flow distribution within the pedicle.« less

  3. Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method

    DOEpatents

    Sinha, Dipen N.

    2016-01-12

    An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.

  4. Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method

    DOEpatents

    Sinha, Dipen N

    2014-02-04

    An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.

  5. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, C.; Aldrich, R.; Arena, L.

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  6. Remote sensing of volcanos and volcanic terrains

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Francis, Peter W.; Wilson, Lionel; Pieri, David C.; Self, Stephen; Rose, William I.; Wood, Charles A.

    1989-01-01

    The possibility of using remote sensing to monitor potentially dangerous volcanoes is discussed. Thermal studies of active volcanoes are considered along with using weather satellites to track eruption plumes and radar measurements to study lava flow morphology and topography. The planned use of orbiting platforms to study emissions from volcanoes and the rate of change of volcanic landforms is considered.

  7. Hypergolic oxidizer and fuel scrubber emissions

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F.; Barile, Ronald G.; Curran, Dan; Hodge, Tim; Lueck, Dale E.; Young, Rebecca C.

    1995-01-01

    Hypergolic fuels and oxidizer are emitted to the environment during fueling and deservicing shuttle and other spacecraft. Such emissions are difficult to measure due to the intermittent purge flow and to the presence of suspended scrubber liquor. A new method for emissions monitoring was introduced in a previous paper. This paper is a summary of the results of a one-year study of shuttle launch pads and orbiter processing facilities (OPF's) which proved that emissions can be determined from field scrubbers without direct measurement of vent flow rate and hypergol concentration. This new approach is based on the scrubber efficiency, which was measured during normal operations, and on the accumulated weight of hypergol captured in the scrubber liquor, which is part of the routine monitoring data of scrubber liquors. To validate this concept, three qualification tests were performed, logs were prepared for each of 16 hypergol scrubbers at KSC, the efficiencies of KSC scrubbers were measured during normal operations, and an estimate of the annual emissions was made based on the efficiencies and the propellant buildup data. The results have confirmed that the emissions from the KSC scrubbers can be monitored by measuring the buildup of hypergol propellant in the liquor, and then using the appropriate efficiency to calculate the emissions. There was good agreement between the calculated emissions based on outlet concentration and flow rate, and the emissions calculated from the propellant buildup and efficiency. The efficiencies of 12 KSC scrubbers, measured under actual servicing operations and special test conditions, were assumed to be valid for all subsequent operations until a significant change in hardware occurred. An estimate of the total emissions from 16 scrubbers for three years showed that 0.3 kg/yr of fuel and 234 kg/yr of oxidizer were emitted.

  8. Monitoring the condition of the fetus during delivery.

    PubMed

    Sarvilinna, Nanna; Isaksson, Camilla; Kokljuschkin, Henrica; Timonen, Susanna; Halmesmäki, Erja

    Uterine contractions during delivery increase the resistance to flow in the blood vessels of the placenta and decreases placental blood circulation, possibly subjecting the fetus to hypoxia. Several methods have been developed for monitoring the condition of the fetus during delivery. Cardiotocography is used to monitor the fetus's heart rate and variability in relation to the mother's contractions. A change in cardiotocography recording due to stimulation of the presenting part is an indication of a healthy fetus. ST analysis of fetal ECG depicts the oxygenation of fetal cardiac muscle during delivery. In addition to cardiotocography and ST analysis, analysis of blood gases and lactate determination are used in assessing the condition of the fetus.

  9. Evaluation of wireless sensor networks (WSNs) for remote wetland monitoring: design and initial results.

    PubMed

    Watras, Carl J; Morrow, Michael; Morrison, Ken; Scannell, Sean; Yaziciaglu, Steve; Read, Jordan S; Hu, Yu-Hen; Hanson, Paul C; Kratz, Tim

    2014-02-01

    Here, we describe and evaluate two low-power wireless sensor networks (WSNs) designed to remotely monitor wetland hydrochemical dynamics over time scales ranging from minutes to decades. Each WSN (one student-built and one commercial) has multiple nodes to monitor water level, precipitation, evapotranspiration, temperature, and major solutes at user-defined time intervals. Both WSNs can be configured to report data in near real time via the internet. Based on deployments in two isolated wetlands, we report highly resolved water budgets, transient reversals of flow path, rates of transpiration from peatlands and the dynamics of chromophoric-dissolved organic matter and bulk ionic solutes (specific conductivity)-all on daily or subdaily time scales. Initial results indicate that direct precipitation and evapotranspiration dominate the hydrologic budget of both study wetlands, despite their relatively flat geomorphology and proximity to elevated uplands. Rates of transpiration from peatland sites were typically greater than evaporation from open waters but were more challenging to integrate spatially. Due to the high specific yield of peat, the hydrologic gradient between peatland and open water varied with precipitation events and intervening periods of dry out. The resultant flow path reversals implied that the flux of solutes across the riparian boundary varied over daily time scales. We conclude that WSNs can be deployed in remote wetland-dominated ecosystems at relatively low cost to assess the hydrochemical impacts of weather, climate, and other perturbations.

  10. Design and initial evaluation of a portable in situ runoff and sediment monitoring device

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Cruse, Richard M.; Chen, Qiang; Li, Hao; Song, Chunyu; Zhang, Xingyi

    2014-11-01

    An inexpensive portable runoff and sediment monitoring device (RSMD) requiring no external electric power was developed for measuring water runoff and associated sediment loss from field plots ranging from 0.005 to 0.1 ha. The device consists of runoff gauge, sediment mixing and sectional subsampling assemblies. The runoff hydrograph is determined using a calibrated tipping bucket. The sediment mixing assembly minimizes fluid splash while mixing the runoff water/sediment mixture prior to subsampling this material. Automatic flow-proportional sampling utilizes mechanical power supplied by the tipping bucket action, with power transmitted to the sample collection assembly via the tipping bucket pivot bar. Runoff is well-mixed and subdivided twice before subsamples are collected for analysis. The resolution of this device for a 100 m2 plot is 0.025 mm of runoff; the device is able to capture maximum flow rates up to 82 mm h-1 in a plot of the same dimension. Calibration results indicated the maximum error is 2.1% for estimating flow rate and less than 10% for sediment concentration in most of the flow range. The RSMD was assessed by measuring field runoff and soil loss from different tillage and slope treatments for a single natural rainfall event. Results were in close agreement with those in published literature, giving additional evidence that this device is performing acceptably well. The RSMD is uniquely adapted for a wide range of field sites, especially for those without electric power, making it a useful tool for studying soil management strategies.

  11. Electromagnetic Monitoring of Lava Tubes: Numerical Modeling and Instrument Testing

    NASA Astrophysics Data System (ADS)

    Sly, Michael K.

    Currently the only method to measure the flow rates of lava in lava tubes is through the use of a skylight. This means that only a fraction of lava tubes can be measured. It is important to know the flow rate throughout a lava tube to know how much lava is being produced by a volcano at a given time. In order to measure the flow rate without using a skylight we can utilize the electromagnetic properties of flowing lava and the Lorentz force. Theoretical as well as numerical methods have been used to model an expected response using this technique. The experimental results will be compared to these models to discern accuracy. The main difficulty involved in this experiment is the high resistivity of the basalt that surrounds the lava tube. In order to obtain measurements in this environment high impedance electrodes are needed. After months of development and testing, multiple high impedance electrodes are available to be used on any surface including basalt. These electrodes are able to measure electric signals through any highly resistive surface including concrete, asphalt, basalt, and ice. Currently no tests have been done or are planned to measure flowing lava. Instead we will measure flowing sea water in pipes on the SIO campus. These pipes provide a good analog to the lava tubes. These tests have provided useful information about the noise floor for this system, telling us that a response from a full size lava tube could most likely be seen.

  12. Effect of various refining processes for Kenaf Bast non-wood pulp fibers suspensions on heat transfer coefficient in circular pipe heat exchanger

    NASA Astrophysics Data System (ADS)

    Ahmed, Syed Muzamil; Kazi, S. N.; Khan, Ghulamullah; Sadri, Rad; Dahari, Mahidzal; Zubir, M. N. M.; Sayuti, M.; Ahmad, Pervaiz; Ibrahim, Rushdan

    2018-03-01

    Heat transfer coefficients were obtained for a range of non-wood kenaf bast pulp fiber suspensions flowing through a circular pipe heat exchanger test loop. The data were produced over a selected temperature and range of flow rates from the flow loop. It was found that the magnitude of the heat transfer coefficient of a fiber suspension is dependent on characteristics, concentration and pulping method of fiber. It was observed that at low concentration and high flow rates, the heat transfer coefficient values of suspensions were observed higher than that of the heat transfer coefficient values of water, on the other hand the heat transfer coefficient values of suspensions decreases at low flow rates and with the increase of their concentration. The heat transfer were affected by varying fiber characteristics, such as fiber length, fiber flexibility, fiber chemical and mechanical treatment as well as different pulping methods used to liberate the fibers. Heat transfer coefficient was decreased with the increase of fiber flexibility which was also observed by previous researchers. In the present work, the characteristics of fibers are correlated with the heat transfer coefficient of suspensions of the fibers. Deviations in fiber properties can be monitored from the flowing fiber suspensions by measuring heat transfer coefficient to adjust the degree of fiber refining treatment so that papers made from those fibers will be more uniform, consistent, within the product specification and retard the paper production loss.

  13. Measurement uncertainty budget of an interferometric flow velocity sensor

    NASA Astrophysics Data System (ADS)

    Bermuske, Mike; Büttner, Lars; Czarske, Jürgen

    2017-06-01

    Flow rate measurements are a common topic for process monitoring in chemical engineering and food industry. To achieve the requested low uncertainties of 0:1% for flow rate measurements, a precise measurement of the shear layers of such flows is necessary. The Laser Doppler Velocimeter (LDV) is an established method for measuring local flow velocities. For exact estimation of the flow rate, the flow profile in the shear layer is of importance. For standard LDV the axial resolution and therefore the number of measurement points in the shear layer is defined by the length of the measurement volume. A decrease of this length is accompanied by a larger fringe distance variation along the measurement axis which results in a rise of the measurement uncertainty for the flow velocity (uncertainty relation between spatial resolution and velocity uncertainty). As a unique advantage, the laser Doppler profile sensor (LDV-PS) overcomes this problem by using two fan-like fringe systems to obtain the position of the measured particles along the measurement axis and therefore achieve a high spatial resolution while it still offers a low velocity uncertainty. With this technique, the flow rate can be estimated with one order of magnitude lower uncertainty, down to 0:05% statistical uncertainty.1 And flow profiles especially in film flows can be measured more accurately. The problem for this technique is, in contrast to laboratory setups where the system is quite stable, that for industrial applications the sensor needs a reliable and robust traceability to the SI units, meter and second. Small deviations in the calibration can, because of the highly position depending calibration function, cause large systematic errors in the measurement result. Therefore, a simple, stable and accurate tool is needed, that can easily be used in industrial surroundings to check or recalibrate the sensor. In this work, different calibration methods are presented and their influences to the measurement uncertainty budget of the sensor is discussed. Finally, generated measurement results for the film flow of an impinging jet cleaning experiment are presented.

  14. The Impact of the Flow Field Heterogeneity and of the Injection Rate on the Effective Reaction Rates in Carbonates: a Study at the Pore Scale

    NASA Astrophysics Data System (ADS)

    Nunes, J. P. P.; Bijeljic, B.; Blunt, M. J.

    2015-12-01

    Carbonate rocks are notoriously difficult to characterize. Their abrupt facies variations give rise to drastic changes in the petrophysical properties of the reservoir. Such heterogeneity, when further associated with variations in rock mineralogy due to diagenetic processes, result in a challenging scenario to model from the pore to the field scale. Micro-CT imaging is one of the most promising technologies to characterize porous rocks. The understanding at the pore scale of reactive and non-reactive transport is being pushed forward by recent developments in both imaging capability - 3D images with resolution of a few microns - and in modeling techniques - flow simulations in giga-cell models. We will present a particle-based method capable of predicting the evolution of petrophysical properties of carbonate cores subjected to CO2 injection at reservoir conditions (i.e. high pressures and temperatures). Reactive flow is simulated directly on the voxels of high resolution micro-CT images of rocks. Reactants are tracked using a semi-analytical streamline tracing algorithm and rock-fluid interaction is controlled by the diffusive flux of particles from the pores to the grains. We study the impact of the flow field heterogeneity and of the injection rate on the sample-averaged (i.e. effective) reaction rate of calcite dissolution in three rocks of increasing complexity: a beadpack, an oolitic limestone and a bioclastic limestone. We show how decreases in the overall dissolution rate depend on both the complexity of the pore space and also on the flow rate. This occurs even in chemically homogenous rocks. Our results suggest that the large differences observed between laboratory and field scale rates could, in part, be explained by the inhomogeneity in the flow field at the pore scale and the consequent transport-limited flux of reactants at the solid surface. Our results give valuable insight into the processes governing carbonate dissolution and provide a starting point to the refinement of upscaling techniques for reactive flows. Potential impacts for reservoir development and monitoring will also be discussed.

  15. Influence of the South-to-North Water Transfer and the Yangtze River Mitigation Projects on the water quality of Han River, China

    NASA Astrophysics Data System (ADS)

    Liu, W.; Kuo, Y. M.

    2016-12-01

    The Middle Route of China's South-to-North Water Transfer (MSNW) and Yangtze-Han River Water Diversion (YHWD) Projects have been operated since 2014, which may deteriorate water quality in Han River. The 11 water sampling sites distributed from the middle and down streams of Han River watershed were monitored monthly between July 2014 and December 2015. Factor analysis and cluster analysis were applied to investigate the major pollution types and main variables influencing water quality in Han River. The factor analysis distinguishes three main pollution types (agricultural nonpoint source, organic, and phosphorus point source pollution) affecting water quality of Han River. Cluster analysis classified all sampling sites into four groups and determined their pollution source for both Dry and Wet seasons. The sites located at central city receive point source pollution in both seasons. The water quality in downstream Han River (excluding central city sites) was influenced by nonpoint source pollution from Jianghan Plain. Variations of water qualities are associated with hydrological conditions varied from operations of engineering projects and seasonal variability especially in Dry season. Good water quality as Class III mainly occurred when flow rate is greater than 800 cms in Dry season. The low average flow rate below 583 cms will degrade water quality as Class V at almost all sites. Elevating the flow rate discharged from MSNW and YHWD Projects to Han River can avoid degrading water quality especially in low flow conditions and may decrease the probability of algal bloom occurrence in Han River. Increasing the flow rate from 400 cms to 700 cms in main Han River can obviously improve the water quality of Han River. The investigation of relationships between water quality and flow rate in both projects can provide management strategies of water quality for various flow conditions.

  16. Dual role of cerebral blood flow in regional brain temperature control in the healthy newborn infant.

    PubMed

    Iwata, Sachiko; Tachtsidis, Ilias; Takashima, Sachio; Matsuishi, Toyojiro; Robertson, Nicola J; Iwata, Osuke

    2014-10-01

    Small shifts in brain temperature after hypoxia-ischaemia affect cell viability. The main determinants of brain temperature are cerebral metabolism, which contributes to local heat production, and brain perfusion, which removes heat. However, few studies have addressed the effect of cerebral metabolism and perfusion on regional brain temperature in human neonates because of the lack of non-invasive cot-side monitors. This study aimed (i) to determine non-invasive monitoring tools of cerebral metabolism and perfusion by combining near-infrared spectroscopy and echocardiography, and (ii) to investigate the dependence of brain temperature on cerebral metabolism and perfusion in unsedated newborn infants. Thirty-two healthy newborn infants were recruited. They were studied with cerebral near-infrared spectroscopy, echocardiography, and a zero-heat flux tissue thermometer. A surrogate of cerebral blood flow (CBF) was measured using superior vena cava flow adjusted for cerebral volume (rSVC flow). The tissue oxygenation index, fractional oxygen extraction (FOE), and the cerebral metabolic rate of oxygen relative to rSVC flow (CMRO₂ index) were also estimated. A greater rSVC flow was positively associated with higher brain temperatures, particularly for superficial structures. The CMRO₂ index and rSVC flow were positively coupled. However, brain temperature was independent of FOE and the CMRO₂ index. A cooler ambient temperature was associated with a greater temperature gradient between the scalp surface and the body core. Cerebral oxygen metabolism and perfusion were monitored in newborn infants without using tracers. In these healthy newborn infants, cerebral perfusion and ambient temperature were significant independent variables of brain temperature. CBF has primarily been associated with heat removal from the brain. However, our results suggest that CBF is likely to deliver heat specifically to the superficial brain. Further studies are required to assess the effect of cerebral metabolism and perfusion on regional brain temperature in low-cardiac output conditions, fever, and with therapeutic hypothermia. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Sediment mobility and bedload transport rates in a high-elevation glacier-fed stream (Saldur river, Eastern Italian Alps)

    NASA Astrophysics Data System (ADS)

    Dell'Agnese, A.; Mao, L.; Comiti, F.

    2012-04-01

    The assessment of bedload transport in high-gradient streams is necessary to evaluate and mitigate flood hazards and to understand morphological processes taking place in the whole river network. Bedload transport in steep channels is particularly difficult to predict due to the complex and varying types of flow resistance, the very coarse and heterogeneous sediments, and the activity and connections of sediment sources at the basin scale. Yet, bedload measurements in these environments are still relatively scarce, and long-term monitoring programs are highly valuable to explore spatial and temporal variability of bedload processes. Even fewer are investigations conducted in high-elevation glaciarized basins, despite their relevance in many regions worldwide. The poster will present bedload transport measurements in a newly established (spring 2011) monitoring station in the Saldur basin (Eastern Italian Alps), which presents a 3.3 km2 glacier in its upper part. At 2100 m a.s.l. (20 km2 drainage area), a pressure transducer measures flow stage and bedload transport is monitored continuously by means of a hydrophone (a cylindrical steel pipe with microphones registering particle collisions) and by 4 fixed antennas for tracing clasts equipped with PITs (Passive Integrated Transponders). At the same location bedload samples are collected by using both a "Bunte" bedload trap and a "Helley-Smith" sampler at 5 positions along a 5 m wide cross-section. Bedload was measured from June to August 2011 during daily discharge fluctuations due to snow- and ice- melt flows. Samples were taken at a large range of discharges (1.1 to 4.6 m3 s-1) and bedload rates (0.01 to 700 g s-1 m-1). As expected, samples taken using the two samplers are not directly comparable even if taken virtually at the same time and at the same location across the section. Results indicate that the grain size of the transported material increases with the shear stress acting on the channel bed and with the bedload transport rate. The coarsest particles collected reached the median diameter of the bed surface (around 100 mm), and exponent of the relationship between the dimensionless critical shear stress and the relative transported size is about -0.80. This indicates that size-selective mobility conditions dominate within the range of explored discharges, and this evidence is confirmed by the analysis of the fractional transport rates of the collected sediment samples. The mobility of coarser (from 50 to 500 mm) sediment particles was explored using 360 PITs; the passage of 176 of them (from 50 to 250 mm in size) have been recorded by the fixed antennas. However, clasts up to about the D84 of the bed surface were seen mobilized after the larger snow/ice melt flows, but relevant morphological changes were observed only after a rainfall flood (favored by a preceding high ice-melt flow) featuring a peak discharge of about 14 m3s-1 (above bankfull stage). A preliminary analysis of PITs data shows a lesser degree of transport selectivity, suggesting that at medium to high flow rates sediments are transported at conditions closer to equal-mobility.

  18. 40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...

  19. 40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...

  20. 40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...

  1. Development of a subsurface gas flow probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cutler, R.P.; Ballard, S.; Barker, G.T.

    1997-04-01

    This report describes a project to develop a flow probe to monitor gas movement in the vadose zone due to passive venting or active remediation efforts such as soil vapor extraction. 3-D and 1-D probes were designed, fabricated, tested in known flow fields under laboratory conditions, and field tested. The 3-D pores were based on technology developed for ground water flow monitoring. The probes gave excellent agreement with measured air velocities in the laboratory tests. Data processing software developed for ground water flow probes was modified for use with air flow, and to accommodate various probe designs. Modifications were mademore » to decrease the cost of the probes, including developing a downhole multiplexer. Modeling indicated problems with flow channeling due to the mode of deployment. Additional testing was conducted and modifications were made to the probe and to the deployment methods. The probes were deployed at three test sites: a large outdoor test tank, a brief vapor extraction test at the Chemical Waste landfill, and at an active remediation site at a local gas station. The data from the field tests varied markedly from the laboratory test data. All of the major events such as vapor extraction system turn on and turn off, as well as changes in the flow rate, could be seen in the data. However, there were long term trends in the data which were much larger than the velocity signals, which made it difficult to determine accurate air velocities. These long term trends may be due to changes in soil moisture content and seasonal ground temperature variations.« less

  2. Long Range Effect of The M7.8 April 2015 Nepal Earth Quake on the Deep Groudwater Outflow in a Thousand-Mile-Away Geothermal Field in Southern China's Guangdong

    NASA Astrophysics Data System (ADS)

    Lu, G.; Yu, S.; Xu, F.; Wang, X.; Yan, K.; Yuen, D. A.

    2015-12-01

    Deep ground waters sustain high temperature and pressure and are susceptible to impact from an earthquake. How an earthquake would have been associated with long-range effect on geological environment of deep groundwater is a question of interest to the scientific community and general public. The massive Richter 8.1 Nepal Earthquake (on April 25, 2015) provided a rare opportunity to test the response of deep groundwater systems. Deep ground waters at elevated temperature would naturally flow to ground surface along preferential flow path such as a deep fault, forming geothermal water flows. Geothermal water flows are susceptible to stress variation and can reflect the physical conditions of supercritical hot water kilometers deep down inside the crust. This paper introduces the monitoring work on the outflow in Xijiang Geothermal Field of Xinyi City, Guangdong Province in southern China. The geothermal field is one of typical geothermal fields with deep faults in Guangdong. The geothermal spring has characteristic daily variation of up to 72% in flow rate, which results from being associated with a north-south run deep fault susceptible to earthquake event. We use year-long monitoring data to illustrate how the Nepal earthquake would have affected the flows at the field site over 2.5 thousand kilometers away. The irregularity of flow is judged by deviation from otherwise good correlation of geothermal spring flow with solid earth tidal waves. This work could potentially provide the basis for further study of deep groundwater systems and insight to earthquake prediction.

  3. Microvascular flow estimation by contrast-assisted ultrasound B-scan and statistical parametric images.

    PubMed

    Tsui, Po-Hsiang; Yeh, Chih-Kuang; Chang, Chien-Cheng

    2009-05-01

    The microbubbles destruction/replenishment technique has been previously applied to estimating blood flow in the microcirculation. The rate of increase of the time-intensity curve (TIC) due to microbubbles flowing into the region of interest (ROI), as measured from B-mode images, closely reflects the flow velocity. In previous studies, we proposed a new approach called the time-Nakagami-parameter curve (TNC) obtained from Nakagami images to monitor microbubble replenishment for quantifying the microvascular flow velocity. This study aimed to further explore some effects that may affect the TNC to estimate the microflow, including microbubble concentration, ultrasound transmitting energy, attenuation, intrinsic noise, and tissue clutter. In order to well control each effect production, we applied a typical simulation method to investigate the TIC and TNC. The rates of increase of the TIC and TNC were expressed by the rate constants beta(I) and beta(N), respectively, of a monoexponential model. The results show that beta(N) quantifies the microvascular flow velocity similarly to the conventional beta(I) . Moreover, the measures of beta(I) and beta(N) are not influenced by microbubble concentration, transducer excitation energy, and attenuation effect. Although the effect of intrinsic signals contributed by noise and blood would influence the TNC behavior, the TNC method has a better tolerance of tissue clutter than the TIC does, allowing the presence of some clutter components in the ROI. The results suggest that the TNC method can be used as a complementary tool for the conventional TIC to reduce the wall filter requirements for blood flow measurement in the microcirculation.

  4. Estimating pesticide sampling rates by the polar organic chemical integrative sampler (POCIS) in the presence of natural organic matter and varying hydrodynamic conditions.

    PubMed

    Charlestra, Lucner; Amirbahman, Aria; Courtemanch, David L; Alvarez, David A; Patterson, Howard

    2012-10-01

    The polar organic chemical integrative sampler (POCIS) was calibrated to monitor pesticides in water under controlled laboratory conditions. The effect of natural organic matter (NOM) on the sampling rates (R(s)) was evaluated in microcosms containing <0.1-5 mg L(-1) of total organic carbon (TOC). The effect of hydrodynamics was studied by comparing R(s) values measured in stirred (SBE) and quiescent (QBE) batch experiments and a flow-through system (FTS). The level of NOM in the water used in these experiments had no effect on the magnitude of the pesticide sampling rates (p > 0.05). However, flow velocity and turbulence significantly increased the sampling rates of the pesticides in the FTS and SBE compared to the QBE (p < 0.001). The calibration data generated can be used to derive pesticide concentrations in water from POCIS deployed in stagnant and turbulent environmental systems without correction for NOM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Colloidal Asphaltene Deposition and Aggregation in Capillary Flow: Experiments and Mesoscopic Simulation

    NASA Astrophysics Data System (ADS)

    Boek, Edo S.; Ladva, Hemant K.; Crawshaw, John P.; Padding, Johan T.

    2008-07-01

    The aggregation and deposition of colloidal asphaltene in reservoir rock is a significant problem in the oil industry. To obtain a fundamental understanding of this phenomenon, we have studied the deposition and aggregation of colloidal asphaltene in capillary flow by experiment and simulation. For the simulation, we have used the stochastic rotation dynamics (SRD) method, in which the solvent hydrodynamic emerges from the collisions between the solvent particles, while the Brownian motion emerges naturally from the interactions between the colloidal asphaltene particles and the solvent. The asphaltene colloids interact through a screened Coulomb potential. We vary the well depth ɛ∝ and the flow rate v to obtain Peflow≫1 (hydrodynamic interactions dominate) and Re≪1 (Stokes flow). In the simulations, we impose a pressure drop over the capillary length and measure the corresponding solvent flow rate. We observe that the transient solvent flow rate decreases when the asphaltene particles become more "sticky". For a well depth ɛ∝ = 2kBT, a monolayer deposits on the capillary wall. With an increasing well depth, the capillary becomes totally blocked. The clogging is transient for ɛ∝ = 5kBT, but appears to be permanent for ɛ∝ = 10-20 kBT. We compare our simulation results with flow experiments in glass capillaries, where we use extracted asphaltenes in toluene, reprecipitated with n-heptane. In the experiments, the dynamics of asphaltene precipitation and deposition were monitored in a slot capillary using optical microscopy under flow conditions similar to those used in the simulation. Maintaining a constant flow rate of 5 μL min-1, we found that the pressure drop across the capillary first increased slowly, followed by a sharp increase, corresponding to a complete local blockage of the capillary. Doubling the flow rate to 10 μL min-1, we observe that the initial deposition occurs faster but the deposits are subsequently entrained by the flow. We calculate the change in the dimensionless permeability as a function of time for both experiment and simulation. By matching the experimental and simulation results, we obtain information about (1) the interaction potential well depth for the particular asphaltenes used in the experiments and (2) the flow conditions associated with the asphaltene deposition process.

  6. Monitoring of stage and velocity, for computation of discharge in the Summit Conduit near Summit, Illinois, 2010-2012

    USGS Publications Warehouse

    Johnson, Kevin K.; Goodwin, Greg E.

    2013-01-01

    Lake Michigan diversion accounting is the process used by the U. S. Army Corps of Engineers to quantify the amount of water that is diverted from the Lake Michigan watershed into the Illinois and Mississippi River Basins. A network of streamgages within the Chicago area waterway system monitor tributary river flows and the major river flow on the Chicago Sanitary and Ship Canal near Lemont as one of the instrumental tools used for Lake Michigan diversion accounting. The mean annual discharges recorded by these streamgages are used as additions or deductions to the mean annual discharge recorded by the main stream gaging station currently used in the Lake Michigan diversion accounting process, which is the Chicago Sanitary and Ship Canal near Lemont, Illinois (station number 05536890). A new stream gaging station, Summit Conduit near Summit, Illinois (station number 414757087490401), was installed on September 23, 2010, for the purpose of monitoring stage, velocity, and discharge through the Summit Conduit for the U.S. Army Corps of Engineers in accordance with Lake Michigan diversion accounting. Summit Conduit conveys flow from a small part of the lower Des Plaines River watershed underneath the Des Plaines River directly into the Chicago Sanitary and Ship Canal. Because the Summit Conduit discharges into the Chicago Sanitary and Ship Canal upstream from the stream gaging station at Lemont, Illinois, but does not contain flow diverted from the Lake Michigan watershed, it is considered a flow deduction to the discharge measured by the Lemont stream gaging station in the Lake Michigan diversion accounting process. This report offers a technical summary of the techniques and methods used for the collection and computation of the stage, velocity, and discharge data at the Summit Conduit near Summit, Illinois stream gaging station for the 2011 and 2012 Water Years. The stream gaging station Summit Conduit near Summit, Illinois (station number 414757087490401) is an example of a nonstandard stream gage. Traditional methods of equating stage to discharge historically were not effective. Examples of the nonstandard conditions include the converging tributary flows directly upstream of the gage; the trash rack and walkway near the opening of the conduit introducing turbulence and occasionally entraining air bubbles into the flow; debris within the conduit creating conditions of variable backwater and the constant influx of smaller debris that escapes the trash rack and catches or settles in the conduit and on the equipment. An acoustic Doppler velocity meter was installed to measure stage and velocity to compute discharge. The stage is used to calculate area based the stage-area rating. The index-velocity from the acoustic Doppler velocity meter is applied to the velocity-velocity rating and the product of the two rated values is a rated discharge by the index-velocity method. Nonstandard site conditions prevalent at the Summit Conduit stream gaging station generally are overcome through the index-velocity method. Despite the difficulties in gaging and measurements, improvements continue to be made in data collection, transmission, and measurements. Efforts to improve the site and to improve the ratings continue to improve the quality and quantity of the data available for Lake Michigan diversion accounting.

  7. Link Performance Analysis and monitoring - A unified approach to divergent requirements

    NASA Astrophysics Data System (ADS)

    Thom, G. A.

    Link Performance Analysis and real-time monitoring are generally covered by a wide range of equipment. Bit Error Rate testers provide digital link performance measurements but are not useful during real-time data flows. Real-time performance monitors utilize the fixed overhead content but vary widely from format to format. Link quality information is also present from signal reconstruction equipment in the form of receiver AGC, bit synchronizer AGC, and bit synchronizer soft decision level outputs, but no general approach to utilizing this information exists. This paper presents an approach to link tests, real-time data quality monitoring, and results presentation that utilizes a set of general purpose modules in a flexible architectural environment. The system operates over a wide range of bit rates (up to 150 Mbs) and employs several measurement techniques, including P/N code errors or fixed PCM format errors, derived real-time BER from frame sync errors, and Data Quality Analysis derived by counting significant sync status changes. The architecture performs with a minimum of elements in place to permit a phased update of the user's unit in accordance with his needs.

  8. Pump and Flow Control Subassembly of Thermal Control Subsystem for Photovoltaic Power Module

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Santen, Mark A.

    1993-01-01

    The pump and flow control subassembly (PFCS) is an orbital replacement unit (ORU) on the Space Station Freedom photovoltaic power module (PVM). The PFCS pumps liquid ammonia at a constant rate of approximately 1170 kg/hr while providing temperature control by flow regulation between the radiator and the bypass loop. Also, housed within the ORU is an accumulator to compensate for fluid volumetric changes as well as the electronics and firmware for monitoring and control of the photovoltaic thermal control system (PVTCS). Major electronic functions include signal conditioning, data interfacing and motor control. This paper will provide a description of each major component within the PFCS along with performance test data. In addition, this paper will discuss the flow control algorithm and describe how the nickel hydrogen batteries and associated power electronics will be thermally controlled through regulation of coolant flow to the radiator.

  9. A continuous sampler with background suppression for monitoring alpha-emitting aerosol particles.

    PubMed

    McFarland, A R; Rodgers, J C; Ortiz, C A; Moore, M E

    1992-05-01

    A continuous air monitor has been developed that includes provisions for improving the detection of alpha-emitting aerosol particles in the presence of radon/thoron progeny that are unattached to ambient aerosol particles. Wind tunnel tests show that 80% of 10-microns aerodynamic equivalent diameter particles penetrate the flow system from the ambient air to the collection filter when the flow rate is 57 L min-1 (2 cfm) and the wind speed is 1 m s-1. Uniformity of aerosol collection on the filter, as characterized by the coefficient of variation of the areal density deposits, is less than 15% for 10-microns aerodynamic-equivalent-diameter aerosol particles. Tests with unattached radon daughters in a flow-through chamber showed that approximately 99% of the 218Po was removed by an inlet screen that is designed to collect radon daughters that are in the size range of molecular clusters. The inlet screen offers the opportunity to improve the signal-to-noise ratio of energy spectra in the regions of interest (subranges of the energy spectrum) of transuranic elements and thereby enhance the performance of background compensation algorithms.

  10. From nanoparticles to large aerosols: Ultrafast measurement methods for size and concentration

    NASA Astrophysics Data System (ADS)

    Keck, Lothar; Spielvogel, Jürgen; Grimm, Hans

    2009-05-01

    A major challenge in aerosol technology is the fast measurement of number size distributions with good accuracy and size resolution. The dedicated instruments are frequently based on particle charging and electric detection. Established fast systems, however, still feature a number of shortcomings. We have developed a new instrument that constitutes of a high flow Differential Mobility Analyser (high flow DMA) and a high sensitivity Faraday Cup Electrometer (FCE). The system enables variable flow rates of up to 150 lpm, and the scan time for size distribution can be shortened considerably due to the short residence time of the particles in the DMA. Three different electrodes can be employed in order to cover a large size range. First test results demonstrate that the scan time can be reduced to less than 1 s for small particles, and that the results from the fast scans feature no significant difference to the results from established slow method. The fields of application for the new instrument comprise the precise monitoring of fast processes with nanoparticles, including monitoring of engine exhaust in automotive research.

  11. Rayleigh Scattering Diagnostic for Measurement of Temperature, Velocity, and Density Fluctuation Spectra

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen; Panda, Jayanta

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 10 kHz. A high power CW laser beam is focused at a point in a heated air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature, velocity, and density of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. Power spectral density calculations of temperature, velocity, and density fluctuations, as well as mean and fluctuating quantities are demonstrated for various radial locations in the jet flow at a fixed axial distance from the jet exit plane. Results are compared with constant current anemometry and pitot probe measurements at the same locations.

  12. DSM-flux: A new technology for reliable Combined Sewer Overflow discharge monitoring with low uncertainties.

    PubMed

    Maté Marín, Ainhoa; Rivière, Nicolas; Lipeme Kouyi, Gislain

    2018-06-01

    In the past ten years, governments from the European Union have been encouraged to collect volume and quality data for all the effluent overflows from separated stormwater and combined sewer systems that result in a significant environmental impact on receiving water bodies. Methods to monitor and control these flows require improvements, particularly for complex Combined Sewer Overflow (CSO) structures. The DSM-flux (Device for Stormwater and combined sewer flows Monitoring and the control of pollutant fluxes) is a new pre-designed and pre-calibrated channel that provides appropriate hydraulic conditions suitable for measurement of overflow rates and volumes by means of one water level gauge. In this paper, a stage-discharge relation for the DSM-flux is obtained experimentally and validated for multiple inflow hydraulic configurations. Uncertainties in CSO discharges and volumes are estimated within the Guide to the expression of Uncertainty in Measurement (GUM) framework. Whatever the upstream hydraulic conditions are, relative uncertainties are lower than 15% and 2% for the investigated discharges and volumes, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Gas Flow Detection System

    NASA Technical Reports Server (NTRS)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at thermal equilibrium with the test flow of GN2. The temperature drop of each branch from its "no flow" stable temperature peak to its stable "with flow" temperature will allow the operator to determine whether a minimum level of flow exists. An alternative operation has the operator turning on the software only long enough to record the ambient temperature of the tubing before turning on the heaters and initiating GN2 flow. The stable temperature of the heated tubing with GN2 flow is then compared with the ambient tubing temperature to determine if flow is present in each branch. To help quantify the level of flow in the manifolds, each branch will be bench calibrated to establish its thermal properties using the flow detection system and different flow rates. These calibration values can then be incorporated into the software application to provide more detailed flow rate information.

  14. Automatic dilution gaging of rapidly varying flow

    USGS Publications Warehouse

    Duerk, M.D.

    1983-01-01

    The analysis showed that the discharges measured by dye-dilution techniques were generally within ± 10 percent of the discharges determined from ratings established by current-meter measurements. Larger differences were noted at the start of and on the rising limb of four hydrographs. Of the 20 storms monitored, dilution measurements on 17 were of acceptable accuracy. Peak discharges from the open-channel site ranged from 0 to 12 percent departures from the existing rating whereas the comparison of peak discharge at the storm sewer site ranged from 0 to 5 percent departures from the existing rating.

  15. Plasma treatments of wool fiber surface for microfluidic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, So-Hyoun; Hwang, Ki-Hwan; Lee, Jin Su

    Highlights: • We used atmospheric plasma for tuning the wettability of wool fibers. • The wicking rates of the wool fibers increased with increasing treatment time. • The increasing of wettability results in removement of fatty acid on the wool surface. - Abstract: Recent progress in health diagnostics has led to the development of simple and inexpensive systems. Thread-based microfluidic devices allow for portable and inexpensive field-based technologies enabling medical diagnostics, environmental monitoring, and food safety analysis. However, controlling the flow rate of wool thread, which is a very important part of thread-based microfluidic devices, is quite difficult. For thismore » reason, we focused on thread-based microfluidics in the study. We developed a method of changing the wettability of hydrophobic thread, including wool thread. Thus, using natural wool thread as a channel, we demonstrate herein that the manipulation of the liquid flow, such as micro selecting and micro mixing, can be achieved by applying plasma treatment to wool thread. In addition to enabling the flow control of the treated wool channels consisting of all natural substances, this procedure will also be beneficial for biological sensing devices. We found that wools treated with various gases have different flow rates. We used an atmospheric plasma with O{sub 2}, N{sub 2} and Ar gases.« less

  16. Flow zone characterisation in a fractured aquifer using spring and open-well T and EC monitoring.

    NASA Astrophysics Data System (ADS)

    Agbotui, Prodeo; West, Landis; Bottrell, Simon

    2017-04-01

    The Cretaceous Chalk is a very important aquifer in England, and its relatively high transmissivity derives essentially from a well-developed network of solutionally-enhanced fractures and conduits. Like other fractured aquifers, characterisation and delineation of flow pathways and hence catchment boundaries is important. Determination of flow pathways for source catchment delineation (e.g. identification of safeguarding zones around wells) is critical for the effective management and protection of the groundwater resource. It also determines the areal extent of contamination from known sources, and enables the targeted sampling of flow zones e.g. for monitored natural attenuation (MNA). A rather simplistic conceptualisation of the unconfined chalk aquifer of East Yorkshire is currently used as a basis for numerical simulations: linearly reducing hydraulic conductivity (K) with depth below the maximum groundwater elevation, reducing to a minimum value below the zone of groundwater table fluctuation. This study represents an attempt to improve this conceptualisation via improved characterisation of permeable zones within the aquifer. The methods used are: pumping test drawdown analyses for transmissivity, ambient open-well dilution testing; rainfall, groundwater head, and spring / open-well specific electrical conductance (SEC) and temperature monitoring. Pumping test analyses yield overall well transmissivity; the open-well dilution/monitoring approach identifies inflow, outflow, crossflow zones and direction and rate of flow in wells; seasonal changes in flows in wells and springs reflect the annual recharge and recession cycle and the impact of seasonal hydraulic head variation on the activation/deactivation of permeable pathways. Variations in spring and well-water electrical conductivity / temperature provide insight into groundwater residence times and the degree of isolation of groundwater from atmospheric and soil zone sources of CO2. The results of the study combined with stratigraphic information on the aquifer, allows the characterisation of the development of bedding-controlled features such as solutionally-enhanced fractures or conduits, and the role of steeply inclined normal faults. The results have implications for catchment management because it will inform a refinement and improvement of the regulatory body) groundwater model for assessment, evaluation and protection of groundwater resource. The method and techniques used can be applicable for characterising fractured aquifers in other jurisdictions.

  17. Real-time measurement of renal blood flow in healthy subjects using contrast-enhanced ultrasound.

    PubMed

    Kalantarinia, Kambiz; Belcik, J Todd; Patrie, James T; Wei, Kevin

    2009-10-01

    Current methods for measuring renal blood flow (RBF) are time consuming and not widely available. Contrast-enhanced ultrasound (CEU) is a safe and noninvasive imaging technique suitable for assessment of tissue blood flow, which has been used clinically to assess myocardial blood flow. We tested the utility of CEU in monitoring changes in RBF in healthy volunteers. We utilized CEU to monitor the expected increase in RBF following a high protein meal in healthy adults. Renal cortical perfusion was assessed by CEU using low mechanical index (MI) power modulation Angio during continuous infusions of Definity. Following destruction of tissue microbubbles using ultrasound at a MI of 1.0, the rate of tissue replenishment with microbubbles and the plateau acoustic intensity (AI) were used to estimate the RBF velocity and cortical blood volume, respectively. Healthy adults (n = 19, mean age 26.6 yr) were enrolled. The A.beta parameter of CEU, representing mean RBF increased by 42.8%from a baseline of 17.05 +/- 6.23 to 23.60 +/- 6.76 dB/s 2 h after the ingestion of the high-protein meal (P = 0.002). Similarly, there was a 37.3%increase in the beta parameter, representing the geometric mean of blood velocity after the high protein meal (P < 0.001). The change in cortical blood volume was not significant (P = 0.89). Infusion time of Definity was 6.3 +/- 2.0 min. The ultrasound contrast agent was tolerated well with no serious adverse events. CEU is a fast, noninvasive, and practical imaging technique that may be useful for monitoring renal blood velocity, volume, and flow.

  18. Effect of ventilation velocity on hexavalent chromium and isocyanate exposures in aircraft paint spraying.

    PubMed

    Bennett, James; Marlow, David; Nourian, Fariba; Breay, James; Feng, Amy; Methner, Mark

    2018-03-01

    Exposure control system performance was evaluated during aircraft paint spraying at a military facility. Computational fluid dynamics (CFD) modeling, tracer gas testing, and exposure monitoring examined contaminant exposure vs. crossflow ventilation velocity. CFD modeling using the RNG k-ϵ turbulence model showed exposures to simulated methyl isobutyl ketone of 294 and 83.6 ppm, as a spatial average of five worker locations, for velocities of 0.508 and 0.381 m/s (100 and 75 fpm), respectively. In tracer gas experiments, observed supply/exhaust velocities of 0.706/0.503 m/s (136/99 fpm) were termed full-flow, and reduced velocities were termed 3/4-flow and half-flow. Half-flow showed higher tracer gas concentrations than 3/4-flow, which had the lowest time-averaged concentration, with difference in log means significant at the 95% confidence level. Half-flow compared to full-flow and 3/4-flow compared to full-flow showed no statistically significant difference. CFD modeling using these ventilation conditions agreed closely with the tracer results for the full-flow and 3/4-flow comparison, yet not for the 3/4-flow and half-flow comparison. Full-flow conditions at the painting facility produced a velocity of 0.528 m/s (104 fpm) midway between supply and exhaust locations, with the supply rate of 94.4 m 3 /s (200,000 cfm) exceeding the exhaust rate of 68.7 m 3 /s (146,000 cfm). Ventilation modifications to correct this imbalance created a midhangar velocity of 0.406 m/s (80.0 fpm). Personal exposure monitoring for two worker groups-sprayers and sprayer helpers ("hosemen")-compared process duration means for the two velocities. Hexavalent chromium (Cr[VI]) exposures were 500 vs. 360 µg/m 3 for sprayers and 120 vs. 170 µg/m 3 for hosemen, for 0.528 m/s (104 fpm) and 0.406 m/s (80.0 fpm), respectively. Hexamethylene diisocyanate (HDI) monomer means were 32.2 vs. 13.3 µg/m 3 for sprayers and 3.99 vs. 8.42 µg/m 3 for hosemen. Crossflow velocities affected exposures inconsistently, and local work zone velocities were much lower. Aircraft painting contaminant control is accomplished better with the unidirectional crossflow ventilation presented here than with other observed configurations. Exposure limit exceedances for this ideal condition reinforce continued use of personal protective equipment.

  19. Influence of liquid and gas flow rates on sulfuric acid mist removal from air by packed bed tower

    PubMed Central

    2012-01-01

    The possible emission of sulfuric acid mists from a laboratory scale, counter-current packed bed tower operated with a caustic scrubbing solution was studied. Acid mists were applied through a local exhaust hood. The emissions from the packed bed tower were monitored in three different categories of gas flow rate as well as three liquid flow rates, while other influencing parameters were kept almost constant. Air sampling and sulfuric acid measurement were carried out iso-kinetically using USEPA method 8. The acid mists were measured by the barium-thorin titration method. According to the results when the gas flow rate increased from 10 L/s to 30 L/s, the average removal efficiency increased significantly (p < 0.001) from 76.8 ± 1.8% to 85.7 ± 1.2%. Analysis of covariance method followed by Tukey post-hoc test of 92 tests did not show a significant change in removal efficiency between liquid flow rates of 1.5, 2.5 and 3.5 L/min (p = 0.811). On the other hand, with fixed pressure loss across the tower, by increasing the liquid/gas (L/G) mass ratio, the average removal efficiency decreased significantly (p = 0.001) from 89.9% at L/G of <2 to 83.1% at L/G of 2–3 and further to 80.2% at L/G of >3, respectively. L/G of 2–3 was recommended for designing purposes of a packed tower for sulfuric acid mists and vapors removal from contaminated air stream. PMID:23369487

  20. Method and Apparatus for Measuring Fluid Flow

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Than X. (Inventor); Carl, James R. (Inventor)

    1995-01-01

    The invention is a method and apparatus for monitoring the presence, concentration, and the movement of fluids. It is based on utilizing electromagnetic measurements of the complex permittivity of the fluids for detecting and monitoring the fluid. More particularly the apparatus uses one or more microwave probes which are placed at the locations where the measurements are to be made. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids, based on their dielectric constant at the probe. The apparatus can be used for multiple purposes including measures of flow rates, turbulence, dispersion, fluid identification, and changes in flow conditions of multiple fluids or multiple states of a single fluid in a flowline or a holding container. The apparatus includes a probe consisting of two electrical conductors separated by an insulator. A radio frequency signal is communicated to the probe and is reflected back from the portion of the probe exposed to the fluid. The radio frequency signal also provides a reference signal. An oscillator generates a second signal which combined with each of the reference signal and the reflected signal to produce signals of lower frequencies to facilitate filtering and amplifying those signals. The two signals are then mixed in a detector to produce an output signal that is representative of the phase and amplitude change caused by the reflection of the signal at the probe exposed to the fluid. The detector may be a dual phase detector that provides two such output signals that are in phase quadrature. A phase shifter may be provided for selectively changing the phase of the reference signal to improve the sensitivity of at least one of the output signals for more accurate readings and/or for calibration purposes. The two outputs that are in quadrature with respect to each other may be simultaneously monitored to account for drift errors. The output signals are digitized and provided to a computer at a sample rate which may be very high. The computer is operable to identify the fluid based on its complex permittivity as may be useful for identifying the flow rates, determining the fluid mixture ratio, detecting impurities in the fluid, and so forth. Novelty is believed to reside in the use of the real part of complex permittivity to measure small difference in permittivity of the fluid.

  1. Systems and Sensors for Debris-flow Monitoring and Warning

    PubMed Central

    Arattano, Massimo; Marchi, Lorenzo

    2008-01-01

    Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows), their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and non-structural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall) and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche pendulums, photocells, trip wires etc. Event warning systems for debris flows have a strong linkage with debris-flow monitoring that is carried out for research purposes: the same sensors are often used for both monitoring and warning, although warning systems have higher requirements of robustness than monitoring systems. The paper presents a description of the sensors employed for debris-flow monitoring and event warning systems, with attention given to advantages and drawbacks of different types of sensors. PMID:27879828

  2. [Studies on a sequential injection renewable surface reflectance spectrophotometric system using a microchip flow cell].

    PubMed

    Wang, Jian-ya; Fang, Zhao-lun

    2002-02-01

    A microchip flow cell was developed for flow injection renewable surface assay by reflectance spectrophotometry. The flow cell was coupled to a sequential injection system and optical fiber photometric detection system. The flow cell featured a three-layer structure. The flow channel was cut into a silicone rubber membrance which formed the middle layer, and a porous filter was inlayed across a widened section of the channel to trap microbeads introduced into the flow cell. The area of the detection window of the flow cell was approximately 3.6 mm2, the volume of the bead trapped in the flow cell was 2.2 microL, the depth of the bead layer was 600 microns. A multistrand bifurcated optical fiber was coupled with incident light, detector and flow cell. The chromogenic reaction of Cr(VI) with 1,5-diphenylcarbohydrazide (DPC) which was adsorbed on trapped Polysorb C-18 beads was used as a model reaction to optimize the flow cell design and the experimental system. The reflectance of the renewable reaction surface was monitored at 540 nm. With 100 microL sample loaded and 1.0 mL.min-1 carrier flow rate, the linear response range was 0-0.6 microgram.mL-1 Cr(VI). A detection limit (3 sigma) of 6 ng.mL-1, precision of 1.5% RSD(n = 11), and a throughput of 64 samples per hour were achieved. Considerations in system and flow cell design, the influence of depth of the bead layer, weight of beads used, and the flow rates of carrier stream on the performance were discussed.

  3. An isotopic and modelling study of flow paths and storage in Quaternary calcarenite, SW Australia: implications for speleothem paleoclimate records

    NASA Astrophysics Data System (ADS)

    Treble, Pauline C.; Bradley, Chris; Wood, Anne; Baker, Andy; Jex, Catherine N.; Fairchild, Ian J.; Gagan, Michael K.; Cowley, Joan; Azcurra, Cecilia

    2013-03-01

    We investigated the distinctive shallow sub-surface hydrology of the southwest Western Australia (SWWA) dune calcarenite using observed rainfall and rainfall δ18O; soil moisture, cave drip rate and dripwater δ18O over a six-year period: August 2005-March 2012. A lumped parameter hydrological model is developed to describe water fluxes and drip δ18O. Comparison of observed data and model output allow us to assess the critical non-climatic karst hydrological processes that modify the precipitation δ18O signal and discuss the implications for speleothem paleoclimate records from this cave and those with a similar karst setting. Our findings include evidence of multiple reservoirs, characterised by distinct δ18O values and recharge responses ('low' and 'high' flow sites). Dripwaters exhibit δ18O variations in wet versus dry years at low-flow sites receiving diffuse seepage from the epikarst with an attenuated isotopic composition that approximates mean rainfall. Recharge from high-magnitude rain events is stored in a secondary reservoir which is associated with high-flow dripwater that is 1‰ lower than our monitored low-flow sites (δ18O). One drip site is characterised by mixed-flow behaviour and exhibits a non-linear threshold response after the cessation of drainage from a secondary reservoir following a record dry year (2006). Additionally, our results yield a better understanding of the vadose zone hydrology and dripwater characteristics in Quaternary age dune limestones. We show that flow to our monitored sites is dominated by diffuse flow with inferred transit times of less than one year. Diffuse flow appears to follow vertical preferential paths through the limestone reflecting differences in permeability and deep recharge into the host rock.

  4. Determination of infiltration and percolation rates along a reach of the Santa Fe River near La Bajada, New Mexico

    USGS Publications Warehouse

    Thomas, Carole L.; Stewart, Amy E.; Constantz, Jim E.

    2000-01-01

    Two methods, one a surface-water method and the second a ground-water method, were used to determine infiltration and percolation rates along a 2.5-kilometer reach of the Santa Fe River near La Bajada, New Mexico. The surface-water method uses streamflow measurements and their differences along a stream reach, streamflow-loss rates, stream surface area, and evaporation rates to determine infiltration rates. The ground-water method uses heat as a tracer to monitor percolation through shallow streambed sediments. Data collection began in October 1996 and continued through December 1997. During that period the stream reach was instrumented with three streamflow gages, and temperature profiles were monitored from the stream-sediment interface to about 3 meters below the streambed at four sites along the reach. Infiltration is the downward flow of water through the stream- sediment interface. Infiltration rates ranged from 92 to 267 millimeters per day for an intense measurement period during June 26- 28, 1997, and from 69 to 256 millimeters per day during September 27-October 6, 1997. Investigators calculated infiltration rates from streamflow loss, stream surface-area measurements, and evaporation-rate estimates. Infiltration rates may be affected by unmeasured irrigation-return flow in the study reach. Although the amount of irrigation-return flow was none to very small, it may result in underestimation of infiltration rates. The infiltration portion of streamflow loss was much greater than the evaporation portion. Infiltration accounted for about 92 to 98 percent of streamflow loss. Evaporation-rate estimates ranged from 3.4 to 7.6 millimeters per day based on pan-evaporation data collected at Cochiti Dam, New Mexico, and accounted for about 2 to 8 percent of streamflow loss. Percolation is the movement of water through saturated or unsaturated sediments below the stream-sediment interface. Percolation rates ranged from 40 to 109 millimeters per day during June 26-28, 1997. Percolation rates were not calculated for the September 27-October 6, 1997, period because a late summer flood removed the temperature sensors from the streambed. Investigators used a heat-and-water flow model, VS2DH (variably saturated, two- dimensional heat), to calculate near-surface streambed infiltration and percolation rates from temperatures measured in the stream and streambed. Near the stream-sediment interface, infiltration and percolation rates are comparable. Comparison of infiltration and percolation rates showed that infiltration rates were greater than percolation rates. The method used to calculate infiltration rates accounted for net loss or gain over the entire stream reach, whereas the method used to calculate percolation was dependent on point measurements and, as applied in this study, neglected the nonvertical component of heat and water fluxes. In general, using the ground-water method was less labor intensive than making a series of streamflow measurements and relied on temperature, an easily measured property. The ground-water method also eliminated the difficulty of measuring or estimating evaporation from the water surface and was therefore more direct. Both methods are difficult to use during periods of flood flow. The ground-water method has problems with the thermocouple-wire temperature sensors washing out during flood events. The surface- water method often cannot be used because of safety concerns for personnel making wading streamflow measurements.

  5. Optical Sensors for Monitoring Gamma and Neutron Radiation

    NASA Technical Reports Server (NTRS)

    Boyd, Clark D.

    2011-01-01

    For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.

  6. Vertical-Deformation, Water-Level, Microgravity, Geodetic, Water-Chemistry, and Flow-Rate Data Collected During Injection, Storage, and Recovery Tests at Lancaster, Antelope Valley, California, September 1995 Through September 1998

    DTIC Science & Technology

    2002-01-01

    63 Tiltmeter Network...71 34. Map showing locations of tiltmeters used to monitor the magnitude and direction of ground tilting associated with direct well injection...during cycle 2 at Lancaster, Antelope Valley, California .............................. 72 35. Photograph showing typical tiltmeter installation for

  7. COMPARISON OF 24H AVERAGE VOC MONITORING RESULTS FOR RESIDENTIAL INDOOR AND OUTDOOR AIR USING CARBOPACK X-FILLED DIFFUSIVE SAMPLERS AND ACTIVE SAMPLING - A PILOT STUDY

    EPA Science Inventory

    Analytical results obtained by thermal desorption GC/MS for 24h diffusive sampling of 11 volatile organic compounds (VOCs) are compared with results of time-averaged active sampling at a known constant flow rate. Air samples were collected with co-located duplicate diffusive samp...

  8. 40 CFR Table 3 to Subpart Hhh of... - Operating Parameters To Be Monitored and Minimum Measurement and Recording Frequencies

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rural HMIWI HMIWI a with dry scrubber followed by fabric filter HMIWI a with wet scrubber HMIWI a with dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge... mercury (Hg) sorbent flow rate Hourly Once per hour ✔ ✔ Minimum pressure drop across the wet scrubber or...

  9. NaK Plugging Meter Design for the Feasibility Test Loops

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise; Godfroy, Thomas J.; Reid, Robert S.; Polzin, Kurt A.

    2008-01-01

    The design and predicted performance of a plugging meter for use in the measurement of NaK impurity levels are presented. The plugging meter is incorporated into a Feasibility Test Loop (FTL), which is a small pumped-NaK loop designed to enable the rapid, small-scale evaluation of techniques such as in situ purification methods and to permit the measurement of bulk material transport effects (not mechanisms) under flow conditions that are representative of a fission surface power reactor. The FTL operates at temperatures similar to those found in a reactor, with a maximum hot side temperature of 900 K and a corresponding cold side temperature of 860 K. In the plugging meter a low flow rate bypass loop is cooled until various impurities (primarily oxides) precipitate out of solution. The temperatures at which these impurities precipitate are indicative of the level of impurities in the NaK. The precipitates incrementally plug a small orifice in the bypass loop, which is detected by monitoring changes in the liquid metal flow rate.

  10. Electrospin-coating of nitrocellulose membrane enhances sensitivity in nucleic acid-based lateral flow assay.

    PubMed

    Yew, Chee-Hong Takahiro; Azari, Pedram; Choi, Jane Ru; Li, Fei; Pingguan-Murphy, Belinda

    2018-06-07

    Point-of-care biosensors are important tools developed to aid medical diagnosis and testing, food safety and environmental monitoring. Paper-based biosensors, especially nucleic acid-based lateral flow assays (LFA), are affordable, simple to produce and easy to use in remote settings. However, the sensitivity of such assays to infectious diseases has always been a restrictive challenge. Here, we have successfully electrospun polycaprolactone (PCL) on nitrocellulose (NC) membrane to form a hydrophobic coating to reduce the flow rate and increase the interaction rate between the targets and gold nanoparticles-detecting probes conjugates, resulting in the binding of more complexes to the capture probes. With this approach, the sensitivity of the PCL electrospin-coated test strip has been increased by approximately ten-fold as compared to the unmodified test strip. As a proof of concept, this approach holds great potential for sensitive detection of targets at point-of-care testing. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1967-01-01

    The oxygen production of a photosynthetic gas exchanger containing Chlorella pyrenoidosa (1% packed cell volume) was measured when various concentrations of carbon dioxide were present within the culture unit. The internal carbon dioxide concentrations were obtained by manipulating the entrance gas concentration and the flow rate. Carbon dioxide percentages were monitored by means of electrodes placed directly in the nutrient medium. The concentration of carbon dioxide in the nutrient medium which produced maximal photosynthesis was in the range of 1.5 to 2.5% by volume. Results were unaffected by either the level of carbon dioxide in the entrance gas or the rate of gas flow. Entrance gases containing 2% carbon dioxide flowing at 320 ml/min, 3% carbon dioxide at 135 ml/min, and 4% carbon dioxide at 55 ml/min yielded optimal carbon dioxide concentrations in the particular unit studied. By using carbon dioxide electrodes implanted directly in the gas exchanger to optimize the carbon dioxide concentration throughout the culture medium, it should be possible to design more efficient large-scale units. PMID:4382391

  12. Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography.

    PubMed

    Kim, Jongwook; Michelin, Sébastien; Hilbers, Michiel; Martinelli, Lucio; Chaudan, Elodie; Amselem, Gabriel; Fradet, Etienne; Boilot, Jean-Pierre; Brouwer, Albert M; Baroud, Charles N; Peretti, Jacques; Gacoin, Thierry

    2017-09-01

    Rare-earth phosphors exhibit unique luminescence polarization features originating from the anisotropic symmetry of the emitter ion's chemical environment. However, to take advantage of this peculiar property, it is necessary to control and measure the ensemble orientation of the host particles with a high degree of precision. Here, we show a methodology to obtain the photoluminescence polarization of Eu-doped LaPO 4 nanorods assembled in an electrically modulated liquid-crystalline phase. We measure Eu 3+ emission spectra for the three main optical configurations (σ, π and α, depending on the direction of observation and the polarization axes) and use them as a reference for the nanorod orientation analysis. Based on the fact that flowing nanorods tend to orient along the shear strain profile, we use this orientation analysis to measure the local shear rate in a flowing liquid. The potential of this approach is then demonstrated through tomographic imaging of the shear rate distribution in a microfluidic system.

  13. Automatic Pedestrian Crossing Detection and Impairment Analysis Based on Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, Y.; Li, Q.

    2017-09-01

    Pedestrian crossing, as an important part of transportation infrastructures, serves to secure pedestrians' lives and possessions and keep traffic flow in order. As a prominent feature in the street scene, detection of pedestrian crossing contributes to 3D road marking reconstruction and diminishing the adverse impact of outliers in 3D street scene reconstruction. Since pedestrian crossing is subject to wearing and tearing from heavy traffic flow, it is of great imperative to monitor its status quo. On this account, an approach of automatic pedestrian crossing detection using images from vehicle-based Mobile Mapping System is put forward and its defilement and impairment are analyzed in this paper. Firstly, pedestrian crossing classifier is trained with low recall rate. Then initial detections are refined by utilizing projection filtering, contour information analysis, and monocular vision. Finally, a pedestrian crossing detection and analysis system with high recall rate, precision and robustness will be achieved. This system works for pedestrian crossing detection under different situations and light conditions. It can recognize defiled and impaired crossings automatically in the meanwhile, which facilitates monitoring and maintenance of traffic facilities, so as to reduce potential traffic safety problems and secure lives and property.

  14. On radon emanation as a possible indicator of crustal deformation

    USGS Publications Warehouse

    King, C.-Y.

    1979-01-01

    Radon emanation has been monitored in shallow capped holes by a Tracketch method along several active faults and in the vicinity of some volcanoes and underground nuclear explosions. The measured emanation shows large temporal variations that appear to be partly related to crustal strain changes. This paper proposes a model that may explain the observed tectonic variations in radon emanation, and explores the possibility of using radon emanation as an indicator of crustal deformation. In this model the emanation variation is assumed to be due to the perturbation of near-surface profile of radon concentration in the soil gas caused by a change in the vertical flow rate of the soil gas which, in turn, is caused by the crustal deformation. It is shown that, for a typical soil, a small change in the flow rate (3 ?? 10-4 cm sec-1) can effect a significant change (a factor of 2) in radon emanation detected at a fixed shallow depth (0.7 m). The radon concentration profile has been monitored at several depths at a selected site to test the model. The results appear to be in satisfactory agreement. ?? 1979.

  15. Colloidal-facilitated transport of inorganic contaminants in ground water: part 1, sampling considerations

    USGS Publications Warehouse

    Puls, Robert W.; Eychaner, James H.; Powell, Robert M.

    1996-01-01

    Investigations at Pinal Creek, Arizona, evaluated routine sampling procedures for determination of aqueous inorganic geochemistry and assessment of contaminant transport by colloidal mobility. Sampling variables included pump type and flow rate, collection under air or nitrogen, and filter pore diameter. During well purging and sample collection, suspended particle size and number as well as dissolved oxygen, temperature, specific conductance, pH, and redox potential were monitored. Laboratory analyses of both unfiltered samples and the filtrates were performed by inductively coupled argon plasma, atomic absorption with graphite furnace, and ion chromatography. Scanning electron microscopy with Energy Dispersive X-ray was also used for analysis of filter particulates. Suspended particle counts consistently required approximately twice as long as the other field-monitored indicators to stabilize. High-flow-rate pumps entrained normally nonmobile particles. Difference in elemental concentrations using different filter-pore sizes were generally not large with only two wells having differences greater than 10 percent in most wells. Similar differences (>10%) were observed for some wells when samples were collected under nitrogen rather than in air. Fe2+/Fe3+ ratios for air-collected samples were smaller than for samples collected under a nitrogen atmosphere, reflecting sampling-induced oxidation.

  16. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation

    NASA Astrophysics Data System (ADS)

    Sutton, Patrick T.; Ginn, Timothy R.

    2014-12-01

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5 h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater.

  17. Vertical-deformation, water-level, microgravity, geodetic, water-chemistry, and flow-rate data collected during injection, storage, and recovery tests at Lancaster, Antelope Valley, California, September 1995 through September 1998

    USGS Publications Warehouse

    Metzger, Loren F.; Ikehara, Marti E.; Howle, James F.

    2001-01-01

    A series of freshwater injection, storage, and recovery tests were conducted from September 1995 through September 1998 to evaluate the feasibility of artificially recharging ground water in the Lancaster area of the Antelope Valley, California. The tests used two production wells at a well field located in the southern part of the city of Lancaster. Monitoring networks were established at or in the vicinity of the test site to measure vertical deformation of the aquifer system, water-level fluctuations, land-surface deformation, water chemistry, and injection well flow rates during water injection and recovery. Data presented in this report were collected from a dual extensometer; 10 piezometers; 1 barometer; 27 active or abandoned production wells; 31 gravity stations; 124 bench marks; 1 permanent and 1 temporary continuous Global Positioning System (GPS) station; 3 tiltmeters; and 2 electromagnetic flowmeters from September 1995 through September 1998. This report discusses the location and design of the monitoring networks and the methods used to collect and process the data, and presents the data in tables and graphs.

  18. Continuous monitoring of blood volume changes in humans

    NASA Technical Reports Server (NTRS)

    Hinghofer-Szalkay, H.; Greenleaf, J. E.

    1987-01-01

    Use of on-line high-precision mass densitometry for the continuous monitoring of blood volume changes in humans was demonstrated by recording short-term blood volume alterations produced by changes in body position. The mass density of antecubital venous blood was measured continuously for 80 min per session with 0.1 g/l precision at a flow rate of 1.5 ml/min. Additional discrete plasma density and hematocrit measurements gave linear relations between all possible combinations of blood density, plasma density, and hematocrit. Transient filtration phenomena were revealed that are not amenable to discontinuous measurements.

  19. Engineering considerations for corrosion monitoring of gas gathering pipeline systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braga, T.G.; Asperger, R.G.

    1987-01-01

    Proper corrosion monitoring of gas gathering pipelines requires a system review to determine the appropriate monitor locations and types of monitoring techniques. This paper develops and discusses a classification of conditions such as flow regime and gas composition. Also discussed are junction categories which, for corrosion monitoring, need to be considered from two points of view. The first is related to fluid flow in the line and the second is related corrosion inhibitor movement along the pipeline. The appropriate application of the various monitoring techniques such as coupons, hydrogen detectors, electrical resistance probe and linear polarization probes are discussed inmore » relation to flow regime and gas composition. Problems caused by semi-conduction from iron sulfide are considered. Advantages and disadvantages of fluid gathering methods such as pots and flow-through drips are discussed in relation to their reliability as on-line monitoring locations.« less

  20. Development of a Pulsed Combustion Actuator For High-Speed Flow Control

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Beck, B. Terry; Wilkes, Jennifer A.; Drummond, J. Philip; Alderfer, David W.; Danehy, Paul M.

    2005-01-01

    This paper describes the flow within a prototype actuator, energized by pulsed combustion or detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant chamber, and the products exit the device as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. The combustion chamber has been constructed with windows, and the flow inside it has been visualized using Planar Laser-Induced Fluorescence (PLIF). The pulsed jet at the exit of the device has been observed using schlieren.

Top