Sample records for flow rate sensor

  1. Experimental measurement of oil-water two-phase flow by data fusion of electrical tomography sensors and venturi tube

    NASA Astrophysics Data System (ADS)

    Liu, Yinyan; Deng, Yuchi; Zhang, Maomao; Yu, Peining; Li, Yi

    2017-09-01

    Oil-water two-phase flows are commonly found in the production processes of the petroleum industry. Accurate online measurement of flow rates is crucial to ensure the safety and efficiency of oil exploration and production. A research team from Tsinghua University has developed an experimental apparatus for multiphase flow measurement based on an electrical capacitance tomography (ECT) sensor, an electrical resistance tomography (ERT) sensor, and a venturi tube. This work presents the phase fraction and flow rate measurements of oil-water two-phase flows based on the developed apparatus. Full-range phase fraction can be obtained by the combination of the ECT sensor and the ERT sensor. By data fusion of differential pressures measured by venturi tube and the phase fraction, the total flow rate and single-phase flow rate can be calculated. Dynamic experiments were conducted on the multiphase flow loop in horizontal and vertical pipelines and at various flow rates.

  2. Comparison of Tissue Heat Balance- and Thermal Dissipation-Derived Sap Flow Measurements in Ring-Porous Oaks and a Pine

    PubMed Central

    Renninger, Heidi J.; Schäfer, Karina V. R.

    2012-01-01

    Sap flow measurements have become integral in many physiological and ecological investigations. A number of methods are used to estimate sap flow rates in trees, but probably the most popular is the thermal dissipation (TD) method because of its affordability, relatively low power consumption, and ease of use. However, there have been questions about the use of this method in ring-porous species and whether individual species and site calibrations are needed. We made concurrent measurements of sap flow rates using TD sensors and the tissue heat balance (THB) method in two oak species (Quercus prinus Willd. and Quercus velutina Lam.) and one pine (Pinus echinata Mill.). We also made concurrent measurements of sap flow rates using both 1 and 2-cm long TD sensors in both oak species. We found that both the TD and THB systems tended to match well in the pine individual, but sap flow rates were underestimated by 2-cm long TD sensors in five individuals of the two ring-porous oak species. Underestimations of 20–35% occurred in Q. prinus even when a “Clearwater” correction was applied to account for the shallowness of the sapwood depth relative to the sensor length and flow rates were underestimated by up to 50% in Q. velutina. Two centimeter long TD sensors also underestimated flow rates compared with 1-cm long sensors in Q. prinus, but only at large flow rates. When 2-cm long sensor data in Q. prinus were scaled using the regression with 1-cm long data, daily flow rates matched well with the rates measured by the THB system. Daily plot level transpiration estimated using TD sap flow rates and scaled 1 cm sensor data averaged about 15% lower than those estimated by the THB method. Therefore, these results suggest that 1-cm long sensors are appropriate in species with shallow sapwood, however more corrections may be necessary in ring-porous species. PMID:22661978

  3. Surface-acoustic-wave (SAW) flow sensor

    NASA Astrophysics Data System (ADS)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  4. Surface-acoustic-wave (SAW) flow sensor.

    PubMed

    Joshi, S G

    1991-01-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 degrees rotated Y-cut lithium niobate substrate and heated to 55 degrees C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cm(3)/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves, propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  5. Numerical Investigation of a Novel Microscale Swirling Jet Reactor for Medical Sensor Applications

    NASA Astrophysics Data System (ADS)

    Ogus, G.; Baelmans, M.; Lammertyn, J.; Vanierschot, M.

    2018-03-01

    A microscale swirler and corresponding reactor for a recent detection and analysis tool for healthcare applications, Fiber optic-surface plasmon resonance (FO-SPR), is presented in this study. The sensor is a 400 μm diameter needle that works as a detector for certain particles. Currently, the detection process relies on diffusion of particles towards the sensor and hence diagnostic time is rather long. The aim of this study is to decrease that diagnostic time by introducing convective mixing in the reactor by means of a swirling inlet flow. This will increase the particle deposition on the FO-SPR sensor and hence an increase in detection rate, as this rate strongly depends on the aimed particle concentration near the sensor. As the flow rates are rather low and the length scales are small, the flow in such reactors is laminar. In this study, robustly controllable mixing features of a swirling jet flow is used to increase the particle concentration near the sensor. A numerical analysis (CFD) is performed to characterize the flow and a detailed analysis of flow structures depending on the flow rate are reported.

  6. Simulation Study of Nano Aqueous Flow Sensor Based on Amperometric Measurement

    PubMed Central

    Wu, Jian; Zhou, Qingli; Liu, Jun; Lou, Zhengguo

    2006-01-01

    In this paper, a novel nano aqueous flow sensor which consists of two closely spaced amperometric sensors is investigated by digital simulation. The simulation results indicate that the ratio of the responses of two closely spaced amperometric sensors is only related to flow rates in the channel, insensitive to the analyte concentration in the solution. By comparing the output of two amperometric sensors, the flow rate in the channel can be deduced. It is not necessary to determine the analyte concentration in advance. The simulation results show it is able to detect flow rate by in the range of several nano-liters per minute when the distance between the working electrodes of two amperometric sensors is 200 nm and the cross-section of the channel is 1 μm × 1 μm.

  7. Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications

    NASA Astrophysics Data System (ADS)

    Jang, Jaesung; Wereley, Steven T.

    2007-02-01

    The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both walls. The sensors consist of a pair of capacitive pressure sensors, inlet/outlet and a microchannel. The main microchannel is 128.0 µm wide, 4.64 µm deep and 5680 µm long, and operated under nearly atmospheric conditions where the outlet Knudsen number is 0.0137. The sensor was fabricated using silicon wet etching, ultrasonic drilling, deep reactive ion etching (DRIE) and anodic bonding. The capacitance change of the sensor and the mass flow rate of nitrogen were measured as the inlet-to-outlet pressure ratio was varied from 1.00 to 1.24. The measured maximum mass flow rate was 3.86 × 10-10 kg s-1 (0.019 sccm) at the highest pressure ratio tested. As the pressure difference increased, both the capacitance of the differential pressure sensor and the flow rate through the main microchannel increased. The laminar friction constant f sdot Re, an important consideration in sensor design, varied from the incompressible no-slip case and the mass sensitivity and resolution of this sensor were discussed. Using the current slip flow formulae, a microchannel with much smaller mass flow rates can be designed at the same pressure ratios.

  8. Optical spectral sweep comb liquid flow rate sensor.

    PubMed

    Shen, Changyu; Lian, Xiaokang; Kavungal, Vishnu; Zhong, Chuan; Liu, Dejun; Semenova, Yuliya; Farrell, Gerald; Albert, Jacques; Donegan, John F

    2018-02-15

    In microfluidic chip applications, the flow rate plays an important role. Here we propose a simple liquid flow rate sensor by using a tilted fiber Bragg grating (TFBG) as the sensing element. As the water flows in the vicinity of the TFBG along the fiber axis direction, the TFBG's spectrum changes due to its contact with water. By comparing the time-swept spectra of the TFBG in water to that of the TFBG with water flowing over it, a spectral sweep comb was formed, and the flow rate can be detected by selecting a suitable sweeping frequency. The proposed sensor has a high Q-value of over 17,000 for the lower rate and a large detectable range from 0.0058 mm/s to 3.2 mm/s. And the calculated corresponding lower detectable flow rate of 0.03 nL/s is 3 orders magnitude better than that of the current fiber flowmeter. Meanwhile, the proposed sensor has the temperature self-compensation function for the variation of the external temperature. We believe that this simple configuration will open a research direction of the TFBG-deriving theory and configuration for lower flow rate measurements for microfluidic chip applications.

  9. Chemical preconcentrator with integral thermal flow sensor

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-01-01

    A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

  10. 40 CFR 63.7741 - What are the installation, operation, and maintenance requirements for my monitors?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... paragraphs (a)(1)(i) through (iv) of this section. (i) Locate the flow sensor and other necessary equipment... sensor with a minimum measurement sensitivity of 2 percent of the flow rate. (iii) Conduct a flow sensor... paragraphs (a)(2)(i) through (vi) of this section. (i) Locate the pressure sensor(s) in or as close as...

  11. 40 CFR 63.7741 - What are the installation, operation, and maintenance requirements for my monitors?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... paragraphs (a)(1)(i) through (iv) of this section. (i) Locate the flow sensor and other necessary equipment... sensor with a minimum measurement sensitivity of 2 percent of the flow rate. (iii) Conduct a flow sensor... paragraphs (a)(2)(i) through (vi) of this section. (i) Locate the pressure sensor(s) in or as close as...

  12. 40 CFR 63.7741 - What are the installation, operation, and maintenance requirements for my monitors?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... paragraphs (a)(1)(i) through (iv) of this section. (i) Locate the flow sensor and other necessary equipment... sensor with a minimum measurement sensitivity of 2 percent of the flow rate. (iii) Conduct a flow sensor... paragraphs (a)(2)(i) through (vi) of this section. (i) Locate the pressure sensor(s) in or as close as...

  13. Well logging interpretation of production profile in horizontal oil-water two phase flow pipes

    NASA Astrophysics Data System (ADS)

    Zhai, Lu-Sheng; Jin, Ning-De; Gao, Zhong-Ke; Zheng, Xi-Ke

    2012-03-01

    Due to the complicated distribution of local velocity and local phase hold up along the radial direction of pipe in horizontal oil-water two phase flow, it is difficult to measure the total flow rate and phase volume fraction. In this study, we carried out dynamic experiment in horizontal oil-water two phases flow simulation well by using combination measurement system including turbine flowmeter with petal type concentrating diverter, conductance sensor and flowpassing capacitance sensor. According to the response resolution ability of the conductance and capacitance sensor in different range of total flow rate and water-cut, we use drift flux model and statistical model to predict the partial phase flow rate, respectively. The results indicate that the variable coefficient drift flux model can self-adaptively tone the model parameter according to the oil-water two phase flow characteristic, and the prediction result of partial phase flow rate of oil-water two phase flow is of high accuracy.

  14. Micromachined lab-on-a-tube sensors for simultaneous brain temperature and cerebral blood flow measurements.

    PubMed

    Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A; Wu, Zhizhen; Cheyuo, Cletus; Wang, Ping; LeDoux, David; Shutter, Lori A; Ramaswamy, Bharat Ram; Ahn, Chong H; Narayan, Raj K

    2012-08-01

    This work describes the development of a micromachined lab-on-a-tube device for simultaneous measurement of brain temperature and regional cerebral blood flow. The device consists of two micromachined gold resistance temperature detectors with a 4-wire configuration. One is used as a temperature sensor and the other as a flow sensor. The temperature sensor operates with AC excitation current of 500 μA and updates its outputs at a rate of 5 Hz. The flow sensor employs a periodic heating and cooling technique under constant-temperature mode and updates its outputs at a rate of 0.1 Hz. The temperature sensor is also used to compensate for temperature changes during the heating period of the flow sensor to improve the accuracy of flow measurements. To prevent thermal and electronic crosstalk between the sensors, the temperature sensor is located outside the "thermal influence" region of the flow sensor and the sensors are separated into two different layers with a thin-film Copper shield. We evaluated the sensors for accuracy, crosstalk and long-term drift in human blood-stained cerebrospinal fluid. These in vitro experiments showed that simultaneous temperature and flow measurements with a single lab-on-a-tube device are accurate and reliable over the course of 5 days. It has a resolution of 0.013 °C and 0.18 ml/100 g/min; and achieves an accuracy of 0.1 °C and 5 ml/100 g/min for temperature and flow sensors respectively. The prototype device and techniques developed here establish a foundation for a multi-sensor lab-on-a-tube, enabling versatile multimodality monitoring applications.

  15. Highly Sensitive Hot-Wire Anemometry Based on Macro-Sized Double-Walled Carbon Nanotube Strands.

    PubMed

    Wang, Dingqu; Xiong, Wei; Zhou, Zhaoying; Zhu, Rong; Yang, Xing; Li, Weihua; Jiang, Yueyuan; Zhang, Yajun

    2017-08-01

    This paper presents a highly sensitive flow-rate sensor with carbon nanotubes (CNTs) as sensing elements. The sensor uses micro-size centimeters long double-walled CNT (DWCNT) strands as hot-wires to sense fluid velocity. In the theoretical analysis, the sensitivity of the sensor is demonstrated to be positively related to the ratio of its surface. We assemble the flow sensor by suspending the DWCNT strand directly on two tungsten prongs and dripping a small amount of silver glue onto each contact between the DWCNT and the prongs. The DWCNT exhibits a positive TCR of 1980 ppm/K. The self-heating effect on the DWCNT was observed while constant current was applied between the two prongs. This sensor can evidently respond to flow rate, and requires only several milliwatts to operate. We have, thus far, demonstrated that the CNT-based flow sensor has better sensitivity than the Pt-coated DWCNT sensor.

  16. Fiber-Optic/Photoelastic Flow Sensors

    NASA Technical Reports Server (NTRS)

    Wesson, Laurence N.; Cabato, Nellie L.; Brooks, Edward F.

    1995-01-01

    Simple, rugged, lightweight transducers detect periodic vortices. Fiber-optic-coupled transducers developed to measure flows over wide dynamic ranges and over wide temperature ranges in severe environments. Used to measure flows of fuel in advanced aircraft engines. Feasibility of sensors demonstrated in tests of prototype sensor in water flowing at various temperatures and speeds. Particularly attractive for aircraft applications because optical fibers compact and make possible transmission of sensor signals at high rates with immunity from electromagnetic interference at suboptical frequencies. Sensors utilize optical-to-optical conversion via photoelastic effect.

  17. An electrode polarization impedance based flow sensor for low water flow measurement

    NASA Astrophysics Data System (ADS)

    Yan, Tinghu; Sabic, Darko

    2013-06-01

    This note describes an electrode polarization impedance based flow sensor for low water flow measurement. It consists of two pairs of stainless steel electrodes set apart and inserted into a non-conductive flow tube with each pair of electrodes placed diametrically at the opposite sides. The flow sensor is modeled as a typical four-electrode system of which two electrodes are current-carrying and the other two serve as output pick ups. The polarization impedances of the two current carrying electrodes are affected by water flows resulting in changes of differential potential between the two pick-up electrodes which are separated by the same fluid. The interrogation of the two excitation electrodes with dc biased ac signals offers significantly higher sensor sensitivities to flow. The prototype flow sensor constructed for a 20 mm diameter pipeline was able to measure water flow rate as low as tested at 1.06 l h-1 and remained sensitive at a flow rate of 25.18 l h-1 when it was driven with a sinusoidal voltage at 1000 Hz with a peak ac amplitude of 2 V and a dc offset of +8 V. The nonlinear characteristics of the sensor response indicate that the sensor is more sensitive at low flows and will not be able to measure at very high flows. Additional experiments are needed to evaluate the influences of impurities, chemical species, ions constituents, conductivity and temperature over a practical range of residential water conditions, the effects of fluctuating ground signals, measurement uncertainty, power consumption, compensation of effects and practical operations. The flow sensor (principle) presented may be used as (in) a secondary sensor in combination with an existing electronic water meter to extend the low end of measurement range in residential water metering.

  18. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications.

    PubMed

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-11-04

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA-0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C-1.79 mV/°C in the range 20-300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(V excit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min) -0.1 in the tested range of 0-4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries.

  19. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications †

    PubMed Central

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-01-01

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA–0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C–1.79 mV/°C in the range 20–300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(Vexcit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min)−0.1 in the tested range of 0–4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries. PMID:27827904

  20. An experimental and theoretical study of the flow phenomena within a vortex sink rate sensor

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Patel, D. K.

    1974-01-01

    Tests were conducted to obtain a description of the flow field within a vortex sink rate sensor and to observe the influence of viscous effects on its performance. The characteristics of the sensor are described. The method for conducting the test is reported. It was determined that for a specific mass flow rate and the geometry of the vortex chamber, the flow in the vortex chamber was only affected, locally, by the size of the sink tube diameter. Within the sink tube, all three velocity components were found to be higher for the small sink tube diameters. As the speed of rotation of the sensor was increased, the tangential velocities within the vortex chamber, as well as in the sink tube, increased in proportion to the speed of rotation.

  1. Improvements to a Flow Sensor for Liquid Bismuth-Fed Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Bonds, Kevin; Polzin, Kurt A.

    2010-01-01

    Recently, there has been significant interest in using bismuth metal as a propellant in Hall Thrusters [1, 2]. Bismuth offers some considerable cost, weight, and space savings over the traditional propellant--xenon. Quantifying the performance of liquid metal-fed Hall thrusters requires a very precise measure of the low propellant flow rates [1, 2]. The low flow rates (10 mg/sec) and the temperature at which free flowing liquid bismuth exists (above 300 C) preclude the use of off-the-shelf flow sensing equipment [3]. Therefore a new type of sensor is required. The hotspot bismuth flow sensor, described in Refs. [1-5] is designed to perform a flow rate measurement by measuring the velocity at which a thermal feature moves through a flow chamber. The mass flow rate can be determined from the time of flight of the thermal peak, [4, 5]. Previous research and testing has been concerned mainly with the generation of the thermal peak and it's subsequent detection. In this paper, we present design improvements to the sensor concept; and the results of testing conducted to verify the functionality of these improvements. A ceramic material is required for the sensor body (see Fig. 1), which must allow for active heating of the bismuth flow channel to keep the propellant in a liquid state. The material must be compatible with bismuth and must be bonded to conductive elements to allow for conduction of current into the liquid metal and measurement of the temperature in the flow. The new sensor requires fabrication techniques that will allow for a very small diameter flow chamber, which is required to produce useful measurements. Testing of various materials has revealed several that are potentially compatible with liquid bismuth. Of primary concern in the fabrication and testing of a robust, working prototype, is the compatibility of the selected materials with one another. Specifically, the thermal expansion rates of the materials relative to the ceramic body cannot expand so much as to cause cracks in the body or cause the bond between parts to delaminate. Those parts that will carry the current pulse must be electrically conductive while the sensor body must be an electrical insulator. Generally, the material choices as well as the sensor design must aid to preserve the integrity of the thermal feature to obtain accurate measurements. The present aim is to also incorporate, into the sensor body, an active heating arrangement based on ceramic heater technology similar to that used in semiconductor manufacturing.

  2. Highly sensitive miniature fluidic flowmeter based on an FBG heated by Co2+-doped fiber.

    PubMed

    Liu, Zhengyong; Htein, Lin; Cheng, Lun-Kai; Martina, Quincy; Jansen, Rob; Tam, Hwa-Yaw

    2017-02-20

    In this paper, we present a miniature fluidic flow sensor based on a short fiber Bragg grating inscribed in a single mode fiber and heated by Co2+-doped multimode fibers. The proposed flow sensor was employed to measure the flow rates of oil and water, showing good sensitivity of 0.339 nm/(m/s) and 0.578 nm/(m/s) for water and oil, flowing at v = 0.2 m/s. The sensitivity can be increased with higher laser power launched to the Co2+-doped multimode fibers. A small flow rate of 0.005 m/s and 0.002 m/s can be distinguished for a particular phase of water or oil, respectively, at a certain laser power (i.e. ~1.43W). The flow sensor can measure volume speed up to 30 L/min, which is limited by the test rig. The experimental results show that the sensor can discriminate slight variation of flow rates as small as 0.002m/s.

  3. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    NASA Astrophysics Data System (ADS)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-01

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m3/hr.

  4. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-01

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 5 psi, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.5 GPM.

  5. Flow analysis system and method

    NASA Technical Reports Server (NTRS)

    Hill, Wayne S. (Inventor); Barck, Bruce N. (Inventor)

    1998-01-01

    A non-invasive flow analysis system and method wherein a sensor, such as an acoustic sensor, is coupled to a conduit for transmitting a signal which varies depending on the characteristics of the flow in the conduit. The signal is amplified and there is a filter, responsive to the sensor signal, and tuned to pass a narrow band of frequencies proximate the resonant frequency of the sensor. A demodulator generates an amplitude envelope of the filtered signal and a number of flow indicator quantities are calculated based on variations in amplitude of the amplitude envelope. A neural network, or its equivalent, is then used to determine the flow rate of the flow in the conduit based on the flow indicator quantities.

  6. Theoretical and Experimental Study on Wide Range Optical Fiber Turbine Flow Sensor.

    PubMed

    Du, Yuhuan; Guo, Yingqing

    2016-07-15

    In this paper, a novel fiber turbine flow sensor was proposed and demonstrated for liquid measurement with optical fiber, using light intensity modulation to measure the turbine rotational speed for converting to flow rate. The double-circle-coaxial (DCC) fiber probe was introduced in frequency measurement for the first time. Through the divided ratio of two rings light intensity, the interference in light signals acquisition can be eliminated. To predict the characteristics between the output frequency and flow in the nonlinear range, the turbine flow sensor model was built. Via analyzing the characteristics of turbine flow sensor, piecewise linear equations were achieved in expanding the flow measurement range. Furthermore, the experimental verification was tested. The results showed that the flow range ratio of DN20 turbine flow sensor was improved 2.9 times after using piecewise linear in the nonlinear range. Therefore, combining the DCC fiber sensor and piecewise linear method, it can be developed into a strong anti-electromagnetic interference(anti-EMI) and wide range fiber turbine flowmeter.

  7. Theoretical and Experimental Study on Wide Range Optical Fiber Turbine Flow Sensor

    PubMed Central

    Du, Yuhuan; Guo, Yingqing

    2016-01-01

    In this paper, a novel fiber turbine flow sensor was proposed and demonstrated for liquid measurement with optical fiber, using light intensity modulation to measure the turbine rotational speed for converting to flow rate. The double-circle-coaxial (DCC) fiber probe was introduced in frequency measurement for the first time. Through the divided ratio of two rings light intensity, the interference in light signals acquisition can be eliminated. To predict the characteristics between the output frequency and flow in the nonlinear range, the turbine flow sensor model was built. Via analyzing the characteristics of turbine flow sensor, piecewise linear equations were achieved in expanding the flow measurement range. Furthermore, the experimental verification was tested. The results showed that the flow range ratio of DN20 turbine flow sensor was improved 2.9 times after using piecewise linear in the nonlinear range. Therefore, combining the DCC fiber sensor and piecewise linear method, it can be developed into a strong anti-electromagnetic interference(anti-EMI) and wide range fiber turbine flowmeter. PMID:27428976

  8. Transient response of sap flow to wind speed.

    PubMed

    Chu, Chia R; Hsieh, Cheng-I; Wu, Shen-Yuang; Phillips, Nathan G

    2009-01-01

    Transient responses of sap flow to step changes in wind speed were experimentally investigated in a wind tunnel. A Granier-type sap flow sensor was calibrated and tested in a cylindrical tube for analysis of its transient time response. Then the sensor was used to measure the transient response of a well-watered Pachira macrocarpa plant to wind speed variations. The transient response of sap flow was described using the resistance-capacitance model. The steady sap flow rate increased as the wind speed increased at low wind speeds. Once the wind speed exceeded 8.0 m s(-1), the steady sap flow rate did not increase further. The transpiration rate, measured gravimetrically, showed a similar trend. The response of nocturnal sap flow to wind speed variation was also measured and compared with the results in the daytime. Under the same wind speed, the steady sap flow rate was smaller than that in the daytime, indicating differences between diurnal and nocturnal hydraulic function, and incomplete stomatal closure at night. In addition, it was found that the temporal response of the Granier sensor is fast enough to resolve the transient behaviour of water flux in plant tissue.

  9. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control

    PubMed Central

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-01-01

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved. PMID:28368344

  10. Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor.

    PubMed

    Cheri, Mohammad Sadegh; Latifi, Hamid; Sadeghi, Jalal; Moghaddam, Mohammadreza Salehi; Shahraki, Hamidreza; Hajghassem, Hasan

    2014-01-21

    Real-time and accurate measurement of flow rate is an important reqirement in lab on a chip (LOC) and micro total analysis system (μTAS) applications. In this paper, we present an experimental and numerical investigation of a cantilever-based optofluidic flow sensor for this purpose. Two sensors with thin and thick cantilevers were fabricated by engraving a 2D pattern of cantilever/base on two polymethylmethacrylate (PMMA) slabs using a CO2 laser system and then casting a 2D pattern with polydimethylsiloxane (PDMS). The basic working principle of the sensor is the fringe shift of the Fabry-Pérot (FP) spectrum due to a changing flow rate. A Finite Element Method (FEM) is used to solve the three dimensional (3D) Navier-Stokes and structural deformation equations to simulate the pressure distribution, velocity and cantilever deflection results of the flow in the channel. The experimental results show that the thin and thick cantilevers have a minimum detectable flow change of 1.3 and 4 (μL min(-1)) respectively. In addition, a comparison of the numerical and experimental deflection of the cantilever has been done to obtain the effective Young's modulus of the thin and thick PDMS cantilevers.

  11. An Integrated Instrumentation System for Velocity, Concentration and Mass Flow Rate Measurement of Solid Particles Based on Electrostatic and Capacitance Sensors.

    PubMed

    Li, Jian; Kong, Ming; Xu, Chuanlong; Wang, Shimin; Fan, Ying

    2015-12-10

    The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within -3%-8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.

  12. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    PubMed

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r(2) is equal to 0.997; for the bi-directional configuration, the coefficient of determination r(2) is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty δQ of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l∕min to a maximum of about 9% at -12.0 l∕min.

  13. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    NASA Astrophysics Data System (ADS)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r2 is equal to 0.997; for the bi-directional configuration, the coefficient of determination r2 is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty δQ of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.

  14. A Low-Power Thermal-Based Sensor System for Low Air Flow Detection

    PubMed Central

    Arifuzzman, AKM; Haider, Mohammad Rafiqul; Allison, David B.

    2016-01-01

    Being able to rapidly detect a low air flow rate with high accuracy is essential for various applications in the automotive and biomedical industries. We have developed a thermal-based low air flow sensor with a low-power sensor readout for biomedical applications. The thermal-based air flow sensor comprises a heater and three pairs of temperature sensors that sense temperature differences due to laminar air flow. The thermal-based flow sensor was designed and simulated by using laminar flow, heat transfer in solids and fluids physics in COMSOL MultiPhysics software. The proposed sensor can detect air flow as low as 0.0064 m/sec. The readout circuit is based on a current- controlled ring oscillator in which the output frequency of the ring oscillator is proportional to the temperature differences of the sensors. The entire readout circuit was designed and simulated by using a 130-nm standard CMOS process. The sensor circuit features a small area and low-power consumption of about 22.6 µW with an 800 mV power supply. In the simulation, the output frequency of the ring oscillator and the change in thermistor resistance showed a high linearity with an R2 value of 0.9987. The low-power dissipation, high linearity and small dimensions of the proposed flow sensor and circuit make the system highly suitable for biomedical applications. PMID:28435186

  15. Design and evaluation of a flow-to-frequency converter circuit with thermal feedback

    NASA Astrophysics Data System (ADS)

    Pawlowski, Eligiusz

    2017-05-01

    A novel thermal flow sensor with a frequency output is presented. The sensor provides a pulse-train output whose frequency is related to the fluid flow rate around a self-heating thermistor. The integrating properties of the temperature sensor have been used, which allowed for realization of the pulse frequency modulator with a thermal feedback loop, stabilizing the temperature of the sensor placed in the flowing medium. The system assures a balance of the amount of heat supplied in the impulses to the sensor and the heat given up by the sensor in a continuous way to the flowing medium. Therefore the frequency of output pulse-train is proportional to the medium flow velocity around the sensor. The special feature of the presented solution is the total integration of the thermal sensor with the measurement signal conditioning system. i.e. the sensor and conditioning system are not separate elements of the measurement circuit, but constitute a whole in the form of a thermal heat-balance mode flow-to-frequency converter. The frequency signal from the converter may be directly connected to the microprocessor digital input, which with use of the standard built-in counters may convert the frequency into a numerical value of high precision. The sensor has been experimentally characterized as a function of the average flow velocity of air at room temperature.

  16. Measurement uncertainty budget of an interferometric flow velocity sensor

    NASA Astrophysics Data System (ADS)

    Bermuske, Mike; Büttner, Lars; Czarske, Jürgen

    2017-06-01

    Flow rate measurements are a common topic for process monitoring in chemical engineering and food industry. To achieve the requested low uncertainties of 0:1% for flow rate measurements, a precise measurement of the shear layers of such flows is necessary. The Laser Doppler Velocimeter (LDV) is an established method for measuring local flow velocities. For exact estimation of the flow rate, the flow profile in the shear layer is of importance. For standard LDV the axial resolution and therefore the number of measurement points in the shear layer is defined by the length of the measurement volume. A decrease of this length is accompanied by a larger fringe distance variation along the measurement axis which results in a rise of the measurement uncertainty for the flow velocity (uncertainty relation between spatial resolution and velocity uncertainty). As a unique advantage, the laser Doppler profile sensor (LDV-PS) overcomes this problem by using two fan-like fringe systems to obtain the position of the measured particles along the measurement axis and therefore achieve a high spatial resolution while it still offers a low velocity uncertainty. With this technique, the flow rate can be estimated with one order of magnitude lower uncertainty, down to 0:05% statistical uncertainty.1 And flow profiles especially in film flows can be measured more accurately. The problem for this technique is, in contrast to laboratory setups where the system is quite stable, that for industrial applications the sensor needs a reliable and robust traceability to the SI units, meter and second. Small deviations in the calibration can, because of the highly position depending calibration function, cause large systematic errors in the measurement result. Therefore, a simple, stable and accurate tool is needed, that can easily be used in industrial surroundings to check or recalibrate the sensor. In this work, different calibration methods are presented and their influences to the measurement uncertainty budget of the sensor is discussed. Finally, generated measurement results for the film flow of an impinging jet cleaning experiment are presented.

  17. Miniaturized Water Flow and Level Monitoring System for Flood Disaster Early Warning

    NASA Astrophysics Data System (ADS)

    Ifedapo Abdullahi, Salami; Hadi Habaebi, Mohamed; Surya Gunawan, Teddy; Rafiqul Islam, MD

    2017-11-01

    This study presents the performance of a prototype miniaturised water flow and water level monitoring sensor designed towards supporting flood disaster early warning systems. The design involved selection of sensors, coding to control the system mechanism, and automatic data logging and storage. During the design phase, the apparatus was constructed where all the components were assembled using locally sourced items. Subsequently, under controlled laboratory environment, the system was tested by running water through the inlet during which the flow rate and rising water levels are automatically recorded and stored in a database via Microsoft Excel using Coolterm software. The system is simulated such that the water level readings measured in centimeters is output in meters using a multiplicative of 10. A total number of 80 readings were analyzed to evaluate the performance of the system. The result shows that the system is sensitive to water level rise and yielded accurate measurement of water level. But, the flow rate fluctuates due to the manual water supply that produced inconsistent flow. It was also observed that the flow sensor has a duty cycle of 50% of operating time under normal condition which implies that the performance of the flow sensor is optimal.

  18. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, John C.

    1993-01-01

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  19. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1993-02-16

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  20. Microfluidic flow rate detection based on integrated optical fiber cantilever.

    PubMed

    Lien, Victor; Vollmer, Frank

    2007-10-01

    We demonstrate an integrated microfluidic flow sensor with ultra-wide dynamic range, suitable for high throughput applications such as flow cytometry and particle sorting/counting. A fiber-tip cantilever transduces flow rates to optical signal readout, and we demonstrate a dynamic range from 0 to 1500 microL min(-1) for operation in water. Fiber-optic sensor alignment is guided by preformed microfluidic channels, and the dynamic range can be adjusted in a one-step chemical etch. An overall non-linear response is attributed to the far-field angular distribution of single-mode fiber output.

  1. Demonstration that a new flow sensor can operate in the clinical range for cerebrospinal fluid flow

    PubMed Central

    Raj, Rahul; Lakshmanan, Shanmugamurthy; Apigo, David; Kanwal, Alokik; Liu, Sheng; Russell, Thomas; Madsen, Joseph R.; Thomas, Gordon A.; Farrow, Reginald C.

    2015-01-01

    A flow sensor has been fabricated and tested that is capable of measuring the slow flow characteristic of the cerebrospinal fluid in the range from less than 4 mL/h to above 100 mL/h. This sensor is suitable for long-term implantation because it uses a wireless external spectrometer to measure passive subcutaneous components. The sensors are pressure-sensitive capacitors, in the range of 5 pF with an air gap at atmospheric pressure. Each capacitor is in series with an inductor to provide a resonant frequency that varies with flow rate. At constant flow, the system is steady with drift <0.3 mL/h over a month. At variable flow rate, V̇, the resonant frequency, f0, which is in the 200–400 MHz range, follows a second order polynomial with respect to V̇. For this sensor system the uncertainty in measuring f0 is 30 kHz which corresponds to a sensitivity in measuring flow of ΔV̇= 0.6 mL/hr. Pressures up to 20 cm H2O relative to ambient pressure were also measured. An implantable twin capacitor system is proposed that can measure flow, which is fully compensated for all hydrostatic pressures. For twin capacitors, other sources of systematic variation within clinical range, such as temperature and ambient pressure, are smaller than our sensitivity and we delineate a calibration method that should maintain clinically useful accuracy over long times. PMID:26543321

  2. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-15

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it;more » the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r{sup 2} is equal to 0.997; for the bi-directional configuration, the coefficient of determination r{sup 2} is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty {delta}Q of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.« less

  3. An experimental and theoretical study of the flow phenomena within a vortex sink rate sensor. Ph.D. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Patel, D. K.

    1974-01-01

    A description of the flow field within a vortex sink rate sensor was obtained, and the influence of viscous effects on its performance was observed. The sensor basically consisted of a vortex chamber and a sink tube. The vortex chamber consisted of two circular coaxial disks held apart, at their periphery, by a porous coupling. One circular disk had an opening to permit the mounting of the sink tube, in such a manner that the vortex chamber as well as the sink tube had a common axis of rotation. Air was supplied radially to the sensor through its porous coupling as the sensor was rotated at various speeds. Particular emphasis was directed toward an understanding of the flow field in the sink tube region. Thus velocity measurements at various stations along the length of the sink tube as well as along a given radius at any designated station were taken.

  4. Multisensor data fusion across time and space

    NASA Astrophysics Data System (ADS)

    Villeneuve, Pierre V.; Beaven, Scott G.; Reed, Robert A.

    2014-06-01

    Field measurement campaigns typically deploy numerous sensors having different sampling characteristics for spatial, temporal, and spectral domains. Data analysis and exploitation is made more difficult and time consuming as the sample data grids between sensors do not align. This report summarizes our recent effort to demonstrate feasibility of a processing chain capable of "fusing" image data from multiple independent and asynchronous sensors into a form amenable to analysis and exploitation using commercially-available tools. Two important technical issues were addressed in this work: 1) Image spatial registration onto a common pixel grid, 2) Image temporal interpolation onto a common time base. The first step leverages existing image matching and registration algorithms. The second step relies upon a new and innovative use of optical flow algorithms to perform accurate temporal upsampling of slower frame rate imagery. Optical flow field vectors were first derived from high-frame rate, high-resolution imagery, and then finally used as a basis for temporal upsampling of the slower frame rate sensor's imagery. Optical flow field values are computed using a multi-scale image pyramid, thus allowing for more extreme object motion. This involves preprocessing imagery to varying resolution scales and initializing new vector flow estimates using that from the previous coarser-resolution image. Overall performance of this processing chain is demonstrated using sample data involving complex too motion observed by multiple sensors mounted to the same base. Multiple sensors were included, including a high-speed visible camera, up to a coarser resolution LWIR camera.

  5. Microwave/Sonic Apparatus Measures Flow and Density in Pipe

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Ngo, Phong; Carl, J. R.; Byerly, Kent A.

    2004-01-01

    An apparatus for measuring the rate of flow and the mass density of a liquid or slurry includes a special section of pipe instrumented with microwave and sonic sensors, and a computer that processes digitized readings taken by the sensors. The apparatus was conceived specifically for monitoring a flow of oil-well-drilling mud, but the basic principles of its design and operation are also applicable to monitoring flows of other liquids and slurries.

  6. Integration of a Capacitive EIS Sensor into a FIA System for pH and Penicillin Determination

    PubMed Central

    Rolka, David; Poghossian, Arshak; Schöning, Michael J.

    2004-01-01

    A field-effect based capacitive EIS (electrolyte-insulator-semiconductor) sensor with a p-Si-SiO2-Ta2O5 structure has been successfully integrated into a commercial FIA (flow-injection analysis) system and system performances have been proven and optimised for pH and penicillin detection. A flow-through cell was designed taking into account the requirement of a variable internal volume (from 12 μl up to 48 μl) as well as an easy replacement of the EIS sensor. FIA parameters (sample volume, flow rate, distance between the injection valve and the EIS sensor) have been optimised in terms of high sensitivity and reproducibility as well as a minimum dispersion of the injected sample zone. An acceptable compromise between different FIA parameters has been found. For the cell design used in this study, best results have been achieved with a flow rate of 1.4 ml/min, distance between the injection valve and the EIS sensor of 6.5 cm, probe volume of 0.75 ml, cell internal volume of 12 μl. A sample throughput of at least 15 samples/h was typically obtained.

  7. Investigation of column flotation process on sulphide ore using 2-electrode capacitance sensor: The effect of air flow rate and solid percentage

    NASA Astrophysics Data System (ADS)

    Haryono, Didied; Harjanto, Sri; Wijaya, Rifky; Oediyani, Soesaptri; Nugraha, Harisma; Huda, Mahfudz Al; Taruno, Warsito Purwo

    2018-04-01

    Investigation of column flotation process on sulphide ore using 2-electrode capacitance sensor is presented in this paper. The effect of air flow rate and solid percentage on column flotation process has been experimentally investigated. The purpose of this paper is to understand the capacitance signal characteristic affected by the air flow rate and the solid percentage which can be used to determine the metallurgical performance. Experiments were performed using a laboratory column flotation cell which has a diameter of 5 cm and the total height of 140 cm. The sintered ceramic sparger and wash water were installed at the bottom and above of the column. Two-electrode concave type capacitance sensor was also installed at a distance of 50 cm from the sparger. The sensor was attached to the outer wall of the column, connected to data acquisition system, manufactured by CTECH Labs Edwar Technology and personal computer for further data processing. Feed consisting ZnS and SiO2 with the ratio of 3:2 was mixed with some reagents to make 1 litre of slurry. The slurry was fed into the aerated column at 100 cm above the sparger with a constant rate and the capacitance signals were captured during the process. In this paper, 7.5 and 10% of solid and 2-4 L/min of air flow rate with 0.5 L/min intervals were used as independent variables. The results show that the capacitance signal characteristics between the 7.5 and 10% of solid are different at any given air flow rate in which the 10% solid produced signals higher than those of 7.5%. Metallurgical performance and capacitance signal exhibit a good correlation.

  8. Monitoring probe for groundwater flow

    DOEpatents

    Looney, Brian B.; Ballard, Sanford

    1994-01-01

    A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

  9. Monitoring probe for groundwater flow

    DOEpatents

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  10. Research on MEMS sensor in hydraulic system flow detection

    NASA Astrophysics Data System (ADS)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2011-05-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  11. Research on MEMS sensor in hydraulic system flow detection

    NASA Astrophysics Data System (ADS)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2010-12-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  12. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibilitymore » of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).« less

  13. Apparatus and method for combusting low quality fuel

    DOEpatents

    Brushwood, John Samuel; Pillsbury, Paul; Foote, John; Heilos, Andreas

    2003-11-04

    A gas turbine (12) capable of combusting a low quality gaseous fuel having a ratio of flammability limits less than 2, or a heat value below 100 BTU/SCF. A high quality fuel is burned simultaneously with the low quality fuel to eliminate instability in the combustion flame. A sensor (46) is used to monitor at least one parameter of the flame indicative of instability. A controller (50) having the sensor signal (48) as input is programmed to control the relative flow rates of the low quality and high quality fuels. When instability is detected, the flow rate of high quality fuel is automatically increased in relation to the flow rate of low quality fuel to restore stability.

  14. Corrosion detector apparatus for universal assessment of pollution in data centers

    DOEpatents

    Hamann, Hendrik F.; Klein, Levente I.

    2015-08-18

    A compact corrosion measurement apparatus and system includes an air fan, a corrosion sensor, a temperature sensor, a humidity sensor, a heater element, and an air flow sensor all under control to monitor and maintain constant air parameters in an environment and minimize environmental fluctuations around the corrosion sensor to overcome the variation commonly encountered in corrosion rate measurement. The corrosion measurement apparatus includes a structure providing an enclosure within which are located the sensors. Constant air flow and temperature is maintained within the enclosure where the corrosion sensor is located by integrating a variable speed air fan and a heater with the corresponding feedback loop control. Temperature and air flow control loops ensure that corrosivity is measured under similar conditions in different facilities offering a general reference point that allow a one to one comparison between facilities with similar or different pollution levels.

  15. Self-compensating fiber optic flow sensor having an end of a fiber optics element and a reflective surface within a tube

    DOEpatents

    Peng, Wei; Qi, Bing; Wang, Anbo

    2006-05-16

    A flow rate fiber optic transducer is made self-compensating for both temperature and pressure by using preferably well-matched integral Fabry-Perot sensors symmetrically located around a cantilever-like structure. Common mode rejection signal processing of the outputs allows substantially all effects of both temperature and pressure to be compensated. Additionally, the integral sensors can individually be made insensitive to temperature.

  16. Useful method to monitor the physiological effects of alcohol ingestion by combination of micro-integrated laser Doppler blood flow meter and arm-raising test.

    PubMed

    Iwasaki, Wataru; Nogami, Hirofumi; Ito, Hiroki; Gotanda, Takeshi; Peng, Yao; Takeuchi, Satoshi; Furue, Masutaka; Higurashi, Eiji; Sawada, Renshi

    2012-10-01

    Alcohol has a variety of effects on the human body, affecting both the sympathetic and parasympathetic nervous system. We examined the peripheral blood flow of alcohol drinkers using a micro-integrated laser Doppler blood flow meter (micro-electromechanical system blood flow sensor). An increased heart rate and blood flow was recorded at the earlobe after alcohol ingestion, and we observed strong correlation between blood flow, heart rate, and breath alcohol content in light drinkers; but not heavy drinkers. We also found that the amplitude of pulse waves measured at the fingertip during an arm-raising test significantly decreased on alcohol consumption, regardless of the individual's alcohol tolerance. Our micro-electromechanical system blood flow sensor successfully detected various physiological changes in peripheral blood circulation induced by alcohol consumption.

  17. Segmented wind energy harvester based on contact-electrification and as a self-powered flow rate sensor

    NASA Astrophysics Data System (ADS)

    Su, Yuanjie; Xie, Guangzhong; Xie, Fabiao; Xie, Tao; Zhang, Qiuping; Zhang, Hulin; Du, Hongfei; Du, Xiaosong; Jiang, Yadong

    2016-06-01

    A single-electrode-based segmented triboelectric nanogenerator (S-TENG) was developed. By utilizing the wind-induced vibration of a fluorinated ethylene propylene (FEP) film between two copper electrodes, the S-TENG delivers an open-circuit voltage up to 36 V and a short-circuit current of 11.8 μA, which can simultaneously light up 20 LEDs and charge capacitors. Moreover, the S-TENG holds linearity between output current and flow rate, revealing its feasibility as a self-powered wind speed sensor. This work demonstrates potential applications of S-TENG in wind energy harvester, self-powered gas sensor, high altitude air navigation.

  18. Characterization of Arcjet Flows Using Laser-Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Bamford, Douglas J.; O'Keefe, Anthony; Babikian, Dikran S.; Stewart, David A.; Strawa, Anthony W.

    1995-01-01

    A sensor based on laser-induced fluorescence has been installed at the 20-MW NASA Ames Aerodynamic Heating Facility. The sensor has provided new, quantitative, real-time information about properties of the arcjet flow in the highly dissociated, partially ionized, nonequilibrium regime. Number densities of atomic oxygen, flow velocities, heavy particle translational temperatures, and collisional quenching rates have been measured. These results have been used to test and refine computational models of the arcjet flow. The calculated number densities, translational temperatures, and flow velocities are in moderately good agreement with experiment

  19. Liquid Bismuth Propellant Management System for the Very High Specific Impulse Thruster with Anode Layer

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Markusic, T. E.; Stanojev, B. J.

    2007-01-01

    Two prototype bismuth propellant feed systems were constructed and operated in conjunction with a propellant vaporizer. One system provided bismuth to a vaporizer using gas pressurization but did not include a means to measure the flow rate. The second system incorporated an electromagnetic pump to provide fine control of the hydrostatic pressure and a new type of in-line flow sensor that was developed for accurate, real-time measurement of the mass flow rate. High-temperature material compatibility was a driving design requirement for the pump and flow sensor, leading to the selection of Macor for the main body of both components. Posttest inspections of both components revealed no degradation of the material. The gas pressurization system demonstrated continuous pressure control over a range from zero to 200 torr. In separate proof-of-concept experiments, the electromagnetic pump produced a linear pressure rise as a function of current that compared favorably with theoretical pump pressure predictions, producing a pressure rise of 10 kPa at 30 A. Preliminary flow sensor operation indicated a bismuth flow rate of 6 mg/s with an uncertainty of plus or minus 6%. An electronics suite containing a real-time controller was successfully used to control the entire system, simultaneously monitoring all power supplies and performing data acquisition duties.

  20. The wire-mesh sensor as a two-phase flow meter

    NASA Astrophysics Data System (ADS)

    Shaban, H.; Tavoularis, S.

    2015-01-01

    A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.

  1. 3D modeling and characterization of a calorimetric flow rate sensor for sweat rate sensing applications

    NASA Astrophysics Data System (ADS)

    Iftekhar, Ahmed Tashfin; Ho, Jenny Che-Ting; Mellinger, Axel; Kaya, Tolga

    2017-03-01

    Sweat-based physiological monitoring has been intensively explored in the last decade with the hopes of developing real-time hydration monitoring devices. Although the content of sweat (electrolytes, lactate, urea, etc.) provides significant information about the physiology, it is also very important to know the rate of sweat at the time of sweat content measurements because the sweat rate is known to alter the concentrations of sweat compounds. We developed a calorimetric based flow rate sensor using PolydimethylSiloxane that is suitable for sweat rate applications. Our simple approach on using temperature-based flow rate detection can easily be adapted to multiple sweat collection and analysis devices. Moreover, we have developed a 3D finite element analysis model of the device using COMSOL Multiphysics™ and verified the flow rate measurements. The experiment investigated flow rate values from 0.3 μl/min up to 2.1 ml/min, which covers the human sweat rate range (0.5 μl/min-10 μl/min). The 3D model simulations and analytical model calculations covered an even wider range in order to understand the main physical mechanisms of the device. With a verified 3D model, different environmental heat conditions could be further studied to shed light on the physiology of the sweat rate.

  2. New diesel injection nozzle flow measuring device

    NASA Astrophysics Data System (ADS)

    Marčič, Milan

    2000-04-01

    A new measuring device has been developed for diesel injection nozzle testing, allowing measuring of the steady flow through injection nozzle and the injection rate. It can be best applied for measuring the low and high injection rates of the pintle and single hole nozzle. In steady flow measuring the fuel pressure at the inlet of the injection nozzle is 400 bar. The sensor of the measuring device measures the fuel charge, resulting from fuel rubbing in the fuel injection system, as well as from the temperature gradient in the sensor electrode. The electric charge is led to the charge amplifier, where it is converted into electric current and amplified. The amplifier can be used also to measure the mean injection rate value.

  3. Selective Catalytic Combustion Sensors for Reactive Organic Analysis

    NASA Technical Reports Server (NTRS)

    Innes, W. B.

    1971-01-01

    Sensors involving a vanadia-alumina catalyst bed-thermocouple assembly satisfy requirements for simple, reproducible and rapid continuous analysis or reactive organics. Responses generally increase with temperature to 400 C and increase to a maximum with flow rate/catalyst volume. Selectivity decreases with temperature. Response time decreases with flow rate and increases with catalyst volume. At chosen optimum conditions calculated response which is additive and linear agrees better with photochemical reactivity than other methods for various automotive sources, and response to vehicle exhaust is insensitive to flow rate. Application to measurement of total reactive organics in vehicle exhaust as well as for gas chromatography detection illustrate utility. The approach appears generally applicable to high thermal effect reactions involving first order kinetics.

  4. A catheter-type flow sensor for measurement of aspirated- and inspired-air characteristics in the bronchial region

    NASA Astrophysics Data System (ADS)

    Shikida, M.; Naito, J.; Yokota, T.; Kawabe, T.; Hayashi, Y.; Sato, K.

    2009-10-01

    We developed a novel catheter-type flow sensor for measuring the aspirated- and inspired-air characteristics trans-bronchially. An on-wall in-tube thermal flow sensor is mounted inside the tube, and it is used as a measurement tool in a bronchoscope. The external diameter of the tube is less than a few mm, and therefore, it can evaluate the flow characteristics in the small bronchial region. We newly developed a fabrication process to miniaturize it to less than 2.0 mm in the external diameter by using a heat shrinkable tube. A film sensor fabricated by photolithography was inserted into the tube by hand. By applying a heat shrinking process, the film was automatically mounted on the inner wall surface, and the outer size of the tube was miniaturized to almost half its original size. The final inner and outer diameters of the tube were 1.0 mm and 1.8 mm, respectively. The relationship between the input power of the sensor and the flow rate obeyed King's equation in both forward and reverse flow conditions. The sensor output dependence on ambient temperature was also studied, and the curve obtained at 39.2 °C was used as the calibration curve in animal experiments. The sensor characteristics under reciprocating flow were studied by using a ventilator, and we confirmed that the sensor was able to measure the reciprocating flow at 2.0 Hz. Finally, we successfully measured the aspirated- and inspired-air characteristics in the air passage of a rat.

  5. Development of a high-resolution automatic digital (urine/electrolytes) flow volume and rate measurement system of miniature size

    NASA Technical Reports Server (NTRS)

    Liu, F. F.

    1975-01-01

    To aid in the quantitative analysis of man's physiological rhythms, a flowmeter to measure circadian patterns of electrolyte excretion during various environmental stresses was developed. One initial flowmeter was designed and fabricated, the sensor of which is the approximate size of a wristwatch. The detector section includes a special type of dielectric integrating type sensor which automatically controls, activates, and deactivates the flow sensor data output by determining the presence or absence of fluid flow in the system, including operation under zero-G conditions. The detector also provides qualitative data on the composition of the fluid. A compact electronic system was developed to indicate flow rate as well as total volume per release or the cumulative volume of several releases in digital/analog forms suitable for readout or telemetry. A suitable data readout instrument is also provided. Calibration and statistical analyses of the performance functions required of the flowmeter were also conducted.

  6. Development and evaluation of virtual refrigerant mass flow sensors for fault detection and diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woohyun; Braun, J.

    Refrigerant mass flow rate is an important measurement for monitoring equipment performance and enabling fault detection and diagnostics. However, a traditional mass flow meter is expensive to purchase and install. A virtual refrigerant mass flow sensor (VRMF) uses a mathematical model to estimate flow rate using low-cost measurements and can potentially be implemented at low cost. This study evaluates three VRMFs for estimating refrigerant mass flow rate. The first model uses a compressor map that relates refrigerant flow rate to measurements of inlet and outlet pressure, and inlet temperature measurements. The second model uses an energy-balance method on the compressormore » that uses a compressor map for power consumption, which is relatively independent of compressor faults that influence mass flow rate. The third model is developed using an empirical correlation for an electronic expansion valve (EEV) based on an orifice equation. The three VRMFs are shown to work well in estimating refrigerant mass flow rate for various systems under fault-free conditions with less than 5% RMS error. Each of the three mass flow rate estimates can be utilized to diagnose and track the following faults: 1) loss of compressor performance, 2) fouled condenser or evaporator filter, 3) faulty expansion device, respectively. For example, a compressor refrigerant flow map model only provides an accurate estimation when the compressor operates normally. When a compressor is not delivering the expected flow due to a leaky suction or discharge valve or other internal fault, the energy-balance or EEV model can provide accurate flow estimates. In this paper, the flow differences provide an indication of loss of compressor performance and can be used for fault detection and diagnostics.« less

  7. A fiber-optic water flow sensor based on laser-heated silicon Fabry-Pérot cavity

    NASA Astrophysics Data System (ADS)

    Liu, Guigen; Sheng, Qiwen; Resende Lisboa Piassetta, Geraldo; Hou, Weilin; Han, Ming

    2016-05-01

    A hot-wire fiber-optic water flow sensor based on laser-heated silicon Fabry-Pérot interferometer (FPI) has been proposed and demonstrated in this paper. The operation of the sensor is based on the convective heat loss to water from a heated silicon FPI attached to the cleaved enface of a piece of single-mode fiber. The flow-induced change in the temperature is demodulated by the spectral shifts of the reflection fringes. An analytical model based on the FPI theory and heat transfer analysis has been developed for performance analysis. Numerical simulations based on finite element analysis have been conducted. The analytical and numerical results agree with each other in predicting the behavior of the sensor. Experiments have also been carried to demonstrate the sensing principle and verify the theoretical analysis. Investigations suggest that the sensitivity at low flow rates are much larger than that at high flow rates and the sensitivity can be easily improved by increasing the heating laser power. Experimental results show that an average sensitivity of 52.4 nm/(m/s) for the flow speed range of 1.5 mm/s to 12 mm/s was obtained with a heating power of ~12 mW, suggesting a resolution of ~1 μm/s assuming a wavelength resolution of 0.05 pm.

  8. The feasibility of a fluidic respiratory flow meter

    NASA Technical Reports Server (NTRS)

    Neradka, V. F.; Bray, H. C., Jr.

    1974-01-01

    A study was undertaken to determine the feasibility of adapting a fluidic airspeed sensor for use as a respiratory flowmeter. A Pulmonary Function Testing Flowmeter was developed which should prove useful for mass screening applications. The fluidic sensor threshold level was not reduced sufficiently to permit its adaptation to measuring the low respiratory flow rates encountered in many respiratory disorders.

  9. A Nano-Thin Film-Based Prototype QCM Sensor Array for Monitoring Human Breath and Respiratory Patterns.

    PubMed

    Selyanchyn, Roman; Wakamatsu, Shunichi; Hayashi, Kenshi; Lee, Seung-Woo

    2015-07-31

    Quartz crystal microbalance (QCM) sensor array was developed for multi-purpose human respiration assessment. The sensor system was designed to provide feedback for human respiration. Thorough optimization of measurement conditions: air flow, temperature in the QCM chamber, frequency measurement rate, and electrode position regarding to the gas flow-was performed. As shown, acquisition of respiratory parameters (rate and respiratory pattern) could be achieved even with a single electrode used in the system. The prototype system contains eight available QCM channels that can be potentially used for selective responses to certain breath chemicals. At present, the prototype machine is ready for the assessment of respiratory functions in larger populations in order to gain statistical validation. To the best of our knowledge, the developed prototype is the only respiratory assessment system based on surface modified QCM sensors.

  10. Semiconductor Sensors for Studying the Heterogeneous Destruction of Ozone at Low Concentrations

    NASA Astrophysics Data System (ADS)

    Obvintseva, L. A.; Sharova, T. B.; Avetisov, A. K.; Sukhareva, I. P.

    2018-06-01

    Prospects for the use of semiconductor resistive sensors in studies of the heterogeneous destruction of ozone at low concentrations (5-400 μg/m3) were shown. The influence of various factors (sensor temperature, gas flow rate, ozone concentration) on the results of ozone concentration measurements with sensors of various types was studied. Methods for forming a sensitive layer of In2O3(3% Fe2O3) sensors with specified parameters of calibration curves were proposed. The optimum conditions for the operation of sensors in a flow mode were formulated. The results of the study of heterogeneous destruction of ozone on microfiber polymer and natural disperse (sand, coals) materials obtained by the developed method were presented.

  11. Towards development of a mobile RF Doppler sensor for continuous heart rate variability and blood pressure monitoring.

    PubMed

    Insoo Kim; Bhagat, Yusuf A

    2016-08-01

    The standard in noninvasive blood pressure (BP) measurement is an inflatable cuff device based on the oscillometric method, which poses several practical challenges for continuous BP monitoring. Here, we present a novel ultra-wide band RF Doppler radar sensor for next-generation mobile interface for the purpose of characterizing fluid flow speeds, and for ultimately measuring cuffless blood flow in the human wrist. The system takes advantage of the 7.1~10.5 GHz ultra-wide band signals which can reduce transceiver complexity and power consumption overhead. Moreover, results obtained from hardware development, antenna design and human wrist modeling, and subsequent phantom development are reported. Our comprehensive lab bench system setup with a peristaltic pump was capable of characterizing various speed flow components during a linear velocity sweep of 5~62 cm/s. The sensor holds potential for providing estimates of heart rate and blood pressure.

  12. CRLH-TL Sensors for Flow Inhomogeneties Detection of Pneumatic Conveyed Pulverized Solids

    NASA Astrophysics Data System (ADS)

    Angelovski, Aleksandar; Penirschke, Andreas; Jakoby, Rolf

    2011-08-01

    This paper presents an application of a Composite Right/Left-Handed (CRLH) Transmission Line resonator for a compact mass flow detector which is able to detect inhomogeneous flows. In this concept, series capacitors and shunt inductors are used to synthesize a medium with simultaneously negative permeability and permittivity - the so called metamaterial. The helix shape of the cylindrical CRLH-TL sensor offers the possibility to detect flow inhomogeneities within the pipeline which can be used to correct the detected massflow rate. A combination of two CRLH-TL structures within the same cross-section of the pipeline can improve the angular sensitivity of the sensor. A prototype was realized and tested in a dedicated measurement setup to prove the concept.

  13. Design and analysis on fume exhaust system of blackbody cavity sensor for continuously measuring molten steel temperature

    NASA Astrophysics Data System (ADS)

    Mei, Guohui; Zhang, Jiu; Zhao, Shumao; Xie, Zhi

    2017-03-01

    Fume exhaust system is the main component of the novel blackbody cavity sensor with a single layer tube, which removes the fume by gas flow along the exhaust pipe to keep the light path clean. However, the gas flow may break the conditions of blackbody cavity and results in the poor measurement accuracy. In this paper, we analyzed the influence of the gas flow on the temperature distribution of the measuring cavity, and then calculated the integrated effective emissivity of the non-isothermal cavity based on Monte-Carlo method, accordingly evaluated the sensor measurement accuracy, finally obtained the maximum allowable flow rate for various length of the exhaust pipe to meet the measurement accuracy. These results will help optimize the novel blackbody cavity sensor design and use it better for measuring the temperature of molten steel.

  14. Numerical Study on the Particle Trajectory Tracking in a Micro-UV Bio-Fluorescence Sensor.

    PubMed

    Byeon, Sun-Seok; Cho, Moon-Young; Lee, Jong-Chul; Kim, Youn-Jea

    2015-03-01

    A micro-UV bio-fluorescence sensor was developed to detect primary biological aerosols including bacteria, bacterial spores, fungal spores, pollens, viruses, algae, etc. In order to effectively detect the bio-particles in a micro-UV bio-fluorescence sensor, numerical calculations were performed to adjust for appropriate flow conditions of the sensor by regulating the sample aerosols and sheath flow. In particular, a CFD-based model of hydrodynamic processes was developed by computing the trajectory of particles using commercially available ANSYS CFX-14 software and the Lagrangian tracking model. The established model was evaluated with regard to the variation of sheath flow rate and particle size. Results showed that the sheath flow was changed rapidly at the end of nozzle tip, but the sample particles moved near the center of aerosol jet for aerodynamic focusing with little deviation from the axis.

  15. FIRE_CI2_CITATN_1HZ

    Atmospheric Science Data Center

    2015-11-25

    ... Flow Angle Sensors Hot-Wire Icing Rate Detector Pressure Transducer Reverse Flow Temperature Probes Spatial ... Condensation Nuclei Dew/Frost Point Temperature Liquid Water Content Nitrogen Dioxide Ozone Pressure Supercooled ...

  16. A novel flow sensor based on resonant sensing with two-stage microleverage mechanism.

    PubMed

    Yang, B; Guo, X; Wang, Q H; Lu, C F; Hu, D

    2018-04-01

    The design, simulation, fabrication, and experiments of a novel flow sensor based on resonant sensing with a two-stage microleverage mechanism are presented in this paper. Different from the conventional detection methods for flow sensors, two differential resonators are adopted to implement air flow rate transformation through two-stage leverage magnification. The proposed flow sensor has a high sensitivity since the adopted two-stage microleverage mechanism possesses a higher amplification factor than a single-stage microleverage mechanism. The modal distribution and geometric dimension of the two-stage leverage mechanism and hair are analyzed and optimized by Ansys simulation. A digital closed-loop driving technique with a phase frequency detector-based coordinate rotation digital computer algorithm is implemented for the detection and locking of resonance frequency. The sensor fabricated by the standard deep dry silicon on a glass process has a device dimension of 5100 μm (length) × 5100 μm (width) × 100 μm (height) with a hair diameter of 1000 μm. The preliminary experimental results demonstrate that the maximal mechanical sensitivity of the flow sensor is approximately 7.41 Hz/(m/s) 2 at a resonant frequency of 22 kHz for the hair height of 9 mm and increases by 2.42 times as hair height extends from 3 mm to 9 mm. Simultaneously, a detection-limit of 3.23 mm/s air flow amplitude at 60 Hz is confirmed. The proposed flow sensor has great application prospects in the micro-autonomous system and technology, self-stabilizing micro-air vehicles, and environmental monitoring.

  17. A novel flow sensor based on resonant sensing with two-stage microleverage mechanism

    NASA Astrophysics Data System (ADS)

    Yang, B.; Guo, X.; Wang, Q. H.; Lu, C. F.; Hu, D.

    2018-04-01

    The design, simulation, fabrication, and experiments of a novel flow sensor based on resonant sensing with a two-stage microleverage mechanism are presented in this paper. Different from the conventional detection methods for flow sensors, two differential resonators are adopted to implement air flow rate transformation through two-stage leverage magnification. The proposed flow sensor has a high sensitivity since the adopted two-stage microleverage mechanism possesses a higher amplification factor than a single-stage microleverage mechanism. The modal distribution and geometric dimension of the two-stage leverage mechanism and hair are analyzed and optimized by Ansys simulation. A digital closed-loop driving technique with a phase frequency detector-based coordinate rotation digital computer algorithm is implemented for the detection and locking of resonance frequency. The sensor fabricated by the standard deep dry silicon on a glass process has a device dimension of 5100 μm (length) × 5100 μm (width) × 100 μm (height) with a hair diameter of 1000 μm. The preliminary experimental results demonstrate that the maximal mechanical sensitivity of the flow sensor is approximately 7.41 Hz/(m/s)2 at a resonant frequency of 22 kHz for the hair height of 9 mm and increases by 2.42 times as hair height extends from 3 mm to 9 mm. Simultaneously, a detection-limit of 3.23 mm/s air flow amplitude at 60 Hz is confirmed. The proposed flow sensor has great application prospects in the micro-autonomous system and technology, self-stabilizing micro-air vehicles, and environmental monitoring.

  18. Design and Analysis of a New Hair Sensor for Multi-Physical Signal Measurement

    PubMed Central

    Yang, Bo; Hu, Di; Wu, Lei

    2016-01-01

    A new hair sensor for multi-physical signal measurements, including acceleration, angular velocity and air flow, is presented in this paper. The entire structure consists of a hair post, a torsional frame and a resonant signal transducer. The hair post is utilized to sense and deliver the physical signals of the acceleration and the air flow rate. The physical signals are converted into frequency signals by the resonant transducer. The structure is optimized through finite element analysis. The simulation results demonstrate that the hair sensor has a frequency of 240 Hz in the first mode for the acceleration or the air flow sense, 3115 Hz in the third and fourth modes for the resonant conversion, and 3467 Hz in the fifth and sixth modes for the angular velocity transformation, respectively. All the above frequencies present in a reasonable modal distribution and are separated from interference modes. The input-output analysis of the new hair sensor demonstrates that the scale factor of the acceleration is 12.35 Hz/g, the scale factor of the angular velocity is 0.404 nm/deg/s and the sensitivity of the air flow is 1.075 Hz/(m/s)2, which verifies the multifunction sensitive characteristics of the hair sensor. Besides, the structural optimization of the hair post is used to improve the sensitivity of the air flow rate and the acceleration. The analysis results illustrate that the hollow circular hair post can increase the sensitivity of the air flow and the II-shape hair post can increase the sensitivity of the acceleration. Moreover, the thermal analysis confirms the scheme of the frequency difference for the resonant transducer can prominently eliminate the temperature influences on the measurement accuracy. The air flow analysis indicates that the surface area increase of hair post is significantly beneficial for the efficiency improvement of the signal transmission. In summary, the structure of the new hair sensor is proved to be feasible by comprehensive simulation and analysis. PMID:27399716

  19. Mass flow rate measurements in gas-liquid flows by means of a venturi or orifice plate coupled to a void fraction sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Jorge Luiz Goes; Passos, Julio Cesar; Verschaeren, Ruud

    Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air-water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi platemore » is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454-457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil-air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601-606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%. (author)« less

  20. Miniature FBG-based fluidic flowmeter to measure hot oil and water

    NASA Astrophysics Data System (ADS)

    Liu, Zhengyong; Htein, Lin; Cheng, Lun-Kai; Martina, Quincy; Jansen, Rob; Tam, Hwa-Yaw

    2017-04-01

    In this paper, we present a miniature fluidic flowmeter based on a packaged FBG and laser-heated fibers. The flow rates of water and hydraulic oil were measured by utilizing the proposed flowmeter. The measured results exhibited good sensitivity of 0.339 nm/(m/s) for water and 0.578 nm/(m/s) for oil flow. Experimental results showed that the sensitivity of the fluidic flow sensor is depending on the heat capacity of the fluids, where the fluid with higher heat capacity has higher sensitivity and lower detection limit at the same measurement condition. The real-time flow rates measured by the proposed sensor and a commercial flowmeter installed in the test rig were also compared, demonstrating good agreement with correlation coefficient of 0.9974.

  1. Development of polyvinyl acetate thin films by electrospinning for sensor applications

    NASA Astrophysics Data System (ADS)

    Veerabhadraiah, Amith; Ramakrishna, Sridhar; Angadi, Gangadhar; Venkatram, Mamtha; Kanivebagilu Ananthapadmanabha, Vishnumurthy; Hebbale NarayanaRao, Narasimha Murthy; Munishamaiah, Krishna

    2017-10-01

    Electrospinning is an effective process for synthesis of polymer fibers with diameters ranging between nanometers and micrometers by employing electrostatic force developed due to application of high voltage. The present work aims to develop an electrospinning system and optimize the process parameters for synthesis of Polyvinyl Acetate thin films used for gas and humidity sensors. Taguchi's Design of Experiment was adopted considering three main factors at three different levels for optimization of process parameters. The factors considered were flow rate (0.5, 0.6 and 0.7 ml/h), voltage (18, 19 and 20 kV) and spinneret to collector distance (8, 9, 10 cm) with fiber diameter as the response factor. The main effect plots and interaction plots of the parameters were studied to determine the most influencing parameter. Flow rate was the most significant factor followed by spinneret to collector distance. Least fiber diameter of 24.83 nm was observed at 19 kV, 0.5 ml/h flow rate and 8 cm spinneret to collector distance. SEM images revealed uniform fiber diameter at lower flow rate while bead formation increased monotonically with rise in flow rate.

  2. A method of calibrating wind velocity sensors with a modified gas flow calibrator

    NASA Technical Reports Server (NTRS)

    Stump, H. P.

    1978-01-01

    A procedure was described for calibrating air velocity sensors in the exhaust flow of a gas flow calibrator. The average velocity in the test section located at the calibrator exhaust was verified from the mass flow rate accurately measured by the calibrator's precision sonic nozzles. Air at elevated pressures flowed through a series of screens, diameter changes, and flow straighteners, resulting in a smooth flow through the open test section. The modified system generated air velocities of 2 to 90 meters per second with an uncertainty of about two percent for speeds below 15 meters per second and four percent for the higher speeds. Wind tunnel data correlated well with that taken in the flow calibrator.

  3. Around Marshall

    NASA Image and Video Library

    1995-06-08

    A rugged, highly accurate, low-temperature sensor is developed by NASA researchers. A new sensor allows accurate, quick low-temperature measurements in rugged environments. This is especially useful in piping with very cold liquids under high pressure, and high flow rate conditions.

  4. IMPROVED BIOSAND FILTERS BY ENHANCED MONITORING AND DATA COLLECTION METHODS

    EPA Science Inventory

    The result of this project will be the development of a sensor that will automatically and accurately record BSF use, flow rate, and volume of water poured in. The quantitative volume and flow rate data output will be used to compare actual BSF frequency and usage patterns ...

  5. A novel fiber-optic measurement system for the evaluation of performances of neonatal pulmonary ventilators

    NASA Astrophysics Data System (ADS)

    Battista, L.; Scorza, A.; Botta, F.; Sciuto, S. A.

    2016-02-01

    Published standards for the performance evaluation of pulmonary ventilators are mainly directed to manufacturers rather than to end-users and often considered inadequate or not comprehensive. In order to contribute to overcome the problems above, a novel measurement system was proposed and tested with waveforms of mechanical ventilation by means of experimental trials carried out with infant ventilators typically used in neonatal intensive care units: the main quantities of mechanical ventilation in newborns are monitored, i.e. air flow rate, differential pressure and volume from infant ventilator are measured by means of two novel fiber-optic sensors (OFSs) developed and characterized by the authors, while temperature and relative humidity of air mass are obtained by two commercial transducers. The proposed fiber-optic sensors (flow sensor Q-OFS, pressure sensor P-OFS) showed measurement ranges of air flow and pressure typically encountered in neonatal mechanical ventilation, i.e. the air flow rate Q ranged from 3 l min-1 to 18 l min-1 (inspiratory) and from  -3 l min-1 to  -18 l min-1 (expiratory), the differential pressure ΔP ranged from  -15 cmH2O to 15 cmH2O. In each experimental trial carried out with different settings of the ventilator, outputs of the OFSs are compared with data from two reference sensors (reference flow sensor RF, reference pressure sensor RP) and results are found consistent: flow rate Q showed a maximum error between Q-OFS and RF up to 13 percent, with an output ratio Q RF/Q OFS of not more than 1.06  ±  0.09 (least square estimation, 95 percent confidence level, R 2 between 0.9822 and 0.9931). On the other hand the maximum error between P-OFS and RP on differential pressure ΔP was lower than 10 percent, with an output ratio ΔP RP/ΔP OFS between 0.977  ±  0.022 and 1.0  ±  0.8 (least square estimation, 95 percent confidence level, R 2 between 0.9864 and 0.9876). Despite the possible improvements, results were encouraging and suggested the proposed measurement system can be considered suitable for performances evaluation of neonatal ventilators and useful for both end-users and manufacturers.

  6. Improved Calibration Of Acoustic Plethysmographic Sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Davis, David C.

    1993-01-01

    Improved method of calibration of acoustic plethysmographic sensors involves acoustic-impedance test conditions like those encountered in use. Clamped aluminum tube holds source of sound (hydrophone) inside balloon. Test and reference sensors attached to outside of balloon. Sensors used to measure blood flow, blood pressure, heart rate, breathing sounds, and other vital signs from surfaces of human bodies. Attached to torsos or limbs by straps or adhesives.

  7. Flow immune photoacoustic sensor for real-time and fast sampling of trace gases

    NASA Astrophysics Data System (ADS)

    Petersen, Jan C.; Balslev-Harder, David; Pelevic, Nikola; Brusch, Anders; Persijn, Stefan; Lassen, Mikael

    2018-02-01

    A photoacoustic (PA) sensor for fast and real-time gas sensing is demonstrated. The PA cell has been designed for flow noise immunity using computational fluid dynamics (CFD) analysis. PA measurements were conducted at different flow rates by exciting molecular C-H stretch vibrational bands of hexane (C6H14) in clean air at 2950cm-1 (3.38 μm) with a custom made mid-infrared interband cascade laser (ICL). The PA sensor will contribute to solve a major problem in a number of industries using compressed air by the detection of oil contaminants in high purity compressed air. We observe a (1σ, standard deviation) sensitivity of 0.4 +/-0.1 ppb (nmol/mol) for hexane in clean air at flow rates up to 2 L/min, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 2.5×10-9 W cm-1 Hz1/2, thus demonstrating high sensitivity and fast and real-time gas analysis. The PA sensor is not limited to molecules with C-H stretching modes, but can be tailored to measure any trace gas by simply changing the excitation wavelength (i.e. the laser source) making it useful for many different applications where fast and sensitive trace gas measurements are needed.

  8. In vitro calibration of a system for measurement of in vivo convective heat transfer coefficient in animals

    PubMed Central

    Tangwongsan, Chanchana; Chachati, Louay; Webster, John G; Farrell, Patrick V

    2006-01-01

    Background We need a sensor to measure the convective heat transfer coefficient during ablation of the heart or liver. Methods We built a minimally invasive instrument to measure the in vivo convective heat transfer coefficient, h in animals, using a Wheatstone-bridge circuit, similar to a hot-wire anemometer circuit. One arm is connected to a steerable catheter sensor whose tip is a 1.9 mm × 3.2 mm thin film resistive temperature detector (RTD) sensor. We used a circulation system to simulate different flow rates at 39°C for in vitro experiments using distilled water, tap water and saline. We heated the sensor approximately 5°C above the fluid temperature. We measured the power consumed by the sensor and the resistance of the sensor during the experiments and analyzed these data to determine the value of the convective heat transfer coefficient at various flow rates. Results From 0 to 5 L/min, experimental values of h in W/(m2·K) were for distilled water 5100 to 13000, for tap water 5500 to 12300, and for saline 5400 to 13600. Theoretical values were 1900 to 10700. Conclusion We believe this system is the smallest, most accurate method of minimally invasive measurement of in vivo h in animals and provides the least disturbance of flow. PMID:17067386

  9. Improved accuracy of solar energy system testing and measurements

    NASA Astrophysics Data System (ADS)

    Waterman, R. E.

    1984-12-01

    A real world example is provided of recovery of data on the performance of a solar collector system in the field. Kalman filters were devised to reconstruct data from sensors which had functioned only intermittently over the 3-day trial period designed to quantify phenomena in the collector loop, i.e., hot water delivered to storage. The filter was configured to account for errors in data on the heat exchanger coil differential temperature and mass flow rate. Data were then generated based on a matrix of state equations, taking into account the presence of time delays due to tank stratification and convective flows. Good correlations were obtained with data from other sensors for the flow rate, system temperatures and the energy delivered to storage.

  10. A Comprehensive Study of a Micro-Channel Heat Sink Using Integrated Thin-Film Temperature Sensors

    PubMed Central

    Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Chen, Xiancai; Zhang, Jian; Lin, Jia

    2018-01-01

    A micro-channel heat sink is a promising cooling method for high power integrated circuits (IC). However, the understanding of such a micro-channel device is not sufficient, because the tools for studying it are very limited. The details inside the micro-channels are not readily available. In this letter, a micro-channel heat sink is comprehensively studied using the integrated temperature sensors. The highly sensitive thin film temperature sensors can accurately monitor the temperature change in the micro-channel in real time. The outstanding heat dissipation performance of the micro-channel heat sink is proven in terms of maximum temperature, cooling speed and heat resistance. The temperature profile along the micro-channel is extracted, and even small temperature perturbations can be detected. The heat source formed temperature peak shifts towards the flow direction with the increasing flow rate. However, the temperature non-uniformity is independent of flow rate, but solely dependent on the heating power. Specific designs for minimizing the temperature non-uniformity are necessary. In addition, the experimental results from the integrated temperature sensors match the simulation results well. This can be used to directly verify the modeling results, helping to build a convincing simulation model. The integrated sensor could be a powerful tool for studying the micro-channel based heat sink. PMID:29351248

  11. Electronic field permeameter

    DOEpatents

    Chandler, Mark A.; Goggin, David J.; Horne, Patrick J.; Kocurek, Gary G.; Lake, Larry W.

    1989-01-01

    For making rapid, non-destructive permeability measurements in the field, a portable minipermeameter of the kind having a manually-operated gas injection tip is provided with a microcomputer system which operates a flow controller to precisely regulate gas flow rate to a test sample, and reads a pressure sensor which senses the pressure across the test sample. The microcomputer system automatically turns on the gas supply at the start of each measurement, senses when a steady-state is reached, collects and records pressure and flow rate data, and shuts off the gas supply immediately after the measurement is completed. Preferably temperature is also sensed to correct for changes in gas viscosity. The microcomputer system may also provide automatic zero-point adjustment, sensor calibration, over-range sensing, and may select controllers, sensors, and set-points for obtaining the most precise measurements. Electronic sensors may provide increased accuracy and precision. Preferably one microcomputer is used for sensing instrument control and data collection, and a second microcomputer is used which is dedicated to recording and processing the data, selecting the sensors and set-points for obtaining the most precise measurements, and instructing the user how to set-up and operate the minipermeameter. To provide mass data collection and user-friendly operation, the second microcomputer is preferably a lap-type portable microcomputer having a non-volatile or battery-backed CMOS memory.

  12. A Comprehensive Study of a Micro-Channel Heat Sink Using Integrated Thin-Film Temperature Sensors.

    PubMed

    Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Chen, Xiancai; Zhang, Jian; Lin, Jia

    2018-01-19

    A micro-channel heat sink is a promising cooling method for high power integrated circuits (IC). However, the understanding of such a micro-channel device is not sufficient, because the tools for studying it are very limited. The details inside the micro-channels are not readily available. In this letter, a micro-channel heat sink is comprehensively studied using the integrated temperature sensors. The highly sensitive thin film temperature sensors can accurately monitor the temperature change in the micro-channel in real time. The outstanding heat dissipation performance of the micro-channel heat sink is proven in terms of maximum temperature, cooling speed and heat resistance. The temperature profile along the micro-channel is extracted, and even small temperature perturbations can be detected. The heat source formed temperature peak shifts towards the flow direction with the increasing flow rate. However, the temperature non-uniformity is independent of flow rate, but solely dependent on the heating power. Specific designs for minimizing the temperature non-uniformity are necessary. In addition, the experimental results from the integrated temperature sensors match the simulation results well. This can be used to directly verify the modeling results, helping to build a convincing simulation model. The integrated sensor could be a powerful tool for studying the micro-channel based heat sink.

  13. Characterising Dynamic Instability in High Water-Cut Oil-Water Flows Using High-Resolution Microwave Sensor Signals

    NASA Astrophysics Data System (ADS)

    Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing

    2018-06-01

    In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.

  14. A High Pressure Flowing Oil Switch For Gigawatt, Repetitive Applications

    DTIC Science & Technology

    2005-06-01

    for testing the high pressure switch concept under repetitive pulse conditions is a 4.8 Ω, 70 ns water pulse forming line (PFL). The water PFL is...Cox Instruments. A pair of Hedland variable area flow sensors monitored relative flow rates in the two oil lines that fed the high pressure switch . High... pressure switch was tested under both single shot and repetitive conditions over a range of pressures, flow rates and temperatures. The primary

  15. Probing mass-transport and binding inhomogeneity in macromolecular interactions by molecular interferometric imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Wang, Xuefeng; Nolte, David

    2009-02-01

    In solid-support immunoassays, the transport of target analyte in sample solution to capture molecules on the sensor surface controls the detected binding signal. Depletion of the target analyte in the sample solution adjacent to the sensor surface leads to deviations from ideal association, and causes inhomogeneity of surface binding as analyte concentration varies spatially across the sensor surface. In the field of label-free optical biosensing, studies of mass-transport-limited reaction kinetics have focused on the average response on the sensor surface, but have not addressed binding inhomogeneities caused by mass-transport limitations. In this paper, we employ Molecular Interferometric Imaging (MI2) to study mass-transport-induced inhomogeneity of analyte binding within a single protein spot. Rabbit IgG binding to immobilized protein A/G was imaged at various concentrations and under different flow rates. In the mass-transport-limited regime, enhanced binding at the edges of the protein spots was caused by depletion of analyte towards the center of the protein spots. The magnitude of the inhomogeneous response was a function of analyte reaction rate and sample flow rate.

  16. Elbow mass flow meter

    DOEpatents

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  17. Development of mediated BOD biosensor system of flow injection mode for shochu distillery wastewater.

    PubMed

    Oota, Shinichi; Hatae, Yuta; Amada, Kei; Koya, Hidekazu; Kawakami, Mitsuyasu

    2010-09-15

    Although microbial biochemical oxygen demand (BOD) sensors utilizing redox mediators have attracted much attention as a rapid BOD measurement method, little attempts have been made to apply the mediated BOD biosensors to the flow injection analysis system. In this work, a mediated BOD sensor system of flow injection mode, constructed by combining an immobilized microbial reactor with an electrochemical flow cell of three electrodes configuration, has been developed to estimate BOD of shochu distillery wastewater (SDW). It was demonstrated consequently that the mediated sensing was realized by employing phosphate buffer containing potassium hexacyanoferrate as the carrier. The output current was found to yield a peak with a sample injection, and to result from reoxidation of reduced mediator at the electrode. By employing the peak area as the sensor response, the effects of flow rate and pH of the carrier on the sensitivity were investigated. The sensor system using a microorganism of high SDW-assimilation capacity showed good performance and proved to be available for estimation of BOD of SDW. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Integrated control system and method

    DOEpatents

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  19. Non-Intrusive Pressure/Multipurpose Sensor and Method

    NASA Technical Reports Server (NTRS)

    Smith, William C. (Inventor)

    2001-01-01

    Method and apparatus are provided for determining pressure using a non-intrusive sensor that is easily attachable to the plumbing of a pressurized system. A bent mode implementation and a hoop mode implementation of the invention are disclosed. Each of these implementations is able to nonintrusively measure pressure while fluid is flowing. As well, each implementation may be used to measure mass flow rate simultaneously with pressure. An ultra low noise control system is provided for making pressure measurements during gas flow. The control system includes two tunable digital bandpass filters with center frequencies that are responsive to a clock frequency. The clock frequency is divided by a factor of N to produce a driving vibrational signal for resonating a metal sensor section.

  20. Modeling and testing of fast response, fiber-optic temperature sensors

    NASA Astrophysics Data System (ADS)

    Tonks, Michael James

    The objective of this work was to design, analyze and test a fast response fiber-optic temperature probe and sensor. The sensor is intended for measuring rapid temperature changes such as produced by a blast wave formed by a detonation. This work was performed in coordination with Luna Innovations Incorporated, and the design is based on extensions of an existing fiber-optic temperature sensor developed by Luna. The sensor consists of a glass fiber with an optical wafer attached to the tip. A basic description of the principles behind the fiber-optic temperature sensor and an accompanying demodulation system is provided. For experimental validation tests, shock tubes were used to simulate the blast wave experienced at a distance of 3.0 m from the detonation of 22.7 kg of TNT. The flow conditions were predicted using idealized shock tube theory. The temperature sensors were tested in three configurations, flush at the end of the shock tube, extended on a probe 2.54 cm into the flow and extended on a probe 12.7 cm into the flow. The total temperature was expected to change from 300 K to 1130 K for the flush wall experiments and from 300 K to 960 K for the probe experiments. During the initial 0.1 milliseconds of the data the temperature only changed 8 K when the sensors were flush in the end of the shock tube. The sensor temperature changed 36 K during the same time when mounted on a probe in the flow. Schlieren pictures were taken of the flow in the shock tube to further understand the shock tube environment. Contrary to ideal shock tube theory, it was discovered that the flow did not remain stagnant in the end of the shock tube after the shock reflects from the end of the shock tube. Instead, the effects of turbulence were recorded with the fiber-optic sensors, and this turbulence was also captured in the schlieren photographs. A fast-response thermocouple was used to collect data for comparison with the fiber-optic sensor, and the fiber-optic sensor was proven to have a faster response time compared to the thermocouple. When the sensors were extended 12.7 cm into the flow, the fiber-optic sensors recorded a temperature change of 143 K compared to 38 K recorded by the thermocouple during the 0.5 millisecond test. This corresponds to 22% of the change of total temperature in the air recorded by the fiber-optic sensor and only 6% recorded by the thermocouple. Put another way, the fiber-optic sensor experience a rate of temperature change equal to 2.9x105 K/s and the thermocouple changed at a rate of 0.79x105 K/s. The data recorded from the fiber-optic sensor also contained much less noise than the thermocouple data. An unsteady finite element thermal model was created using ANSYS to predict the temperature response of the sensor. Test cases with known analytical solutions were used to verify the ANSYS modeling procedures. The shock tube flow environment was also modeled with Fluent, a commercially available CFD code. Fluent was used to determine the heat transfer between the shock tube flow and the sensor. The convection film coefficient for the flow was predicted by Fluent to be 27,150 W/m2K for the front of the wafer and 13,385 W/m2K for the side. The Fluent results were used with the ANSYS model to predict the response of the fiber-optic sensor when exposed to the shock tube flow. The results from the Fluent/ANSYS model were compared to the fiber-optic measurements taken in the shock tube. It was seen that the heat flux to the sensor was slightly over-predicted by the model, and the heat losses from the wafer were also over-predicted. Since the prediction fell within the uncertainty of the measurement, it was found to be in good agreement with the measured values. (Abstract shortened by UMI.)

  1. A Wearable Capacitive Sensor for Monitoring Human Respiratory Rate

    NASA Astrophysics Data System (ADS)

    Kundu, Subrata Kumar; Kumagai, Shinya; Sasaki, Minoru

    2013-04-01

    Realizing an untethered, low-cost, and comfortably wearable respiratory rate sensor for long-term breathing monitoring application still remains a challenge. In this paper, a conductive-textile-based wearable respiratory rate sensing technique based on the capacitive sensing approach is proposed. The sensing unit consists of two conductive textile electrodes that can be easily fabricated, laminated, and integrated in garments. Respiration cycle is detected by measuring the capacitance of two electrodes placed on the inner anterior and posterior sides of a T-shirt at either the abdomen or chest position. A convenient wearable respiratory sensor setup with a capacitance-to-voltage converter has been devised. Respiratory rate as well as breathing mode can be accurately identified using the designed sensor. The sensor output provides significant information on respiratory flow. The effectiveness of the proposed system for different breathing patterns has been evaluated by experiments.

  2. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.

    PubMed

    Abels, C; Qualtieri, A; De Vittorio, M; Megill, W M; Rizzi, F

    2016-06-03

    To enhance today's artificial flow sensing capabilities in aerial and underwater robotics, future robots could be equipped with a large number of miniaturized sensors distributed over the surface to provide high resolution measurement of the surrounding fluid flow. In this work we show a linear array of closely separated bio-inspired micro-electro-mechanical flow sensors whose sensing mechanism is based on a piezoresistive strain-gauge along a stress-driven cantilever beam, mimicking the biological superficial neuromasts found in the lateral line organ of fishes. Aiming to improve state-of-the-art flow sensing capability in autonomously flying and swimming robots, our artificial lateral line system was designed and developed to feature multi-parameter freestream flow measurements which provide information about (1) local flow velocities as measured by the signal amplitudes from the individual cantilevers as well as (2) propagation velocity, (3) linear forward/backward direction along the cantilever beam orientation and (4) periodicity of pulses or pulse trains determined by cross-correlating sensor signals. A real-time capable cross-correlation procedure was developed which makes it possible to extract freestream flow direction and velocity information from flow fluctuations. The computed flow velocities deviate from a commercial system by 0.09 m s(-1) at 0.5 m s(-1) and 0.15 m s(-1) at 1.0 m s(-1) flow velocity for a sampling rate of 240 Hz and a sensor distance of 38 mm. Although experiments were performed in air, the presented flow sensing system can be applied to underwater vehicles as well, once the sensors are embedded in a waterproof micro-electro-mechanical systems package.

  3. Satellite angular velocity estimation based on star images and optical flow techniques.

    PubMed

    Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele

    2013-09-25

    An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components.

  4. Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques

    PubMed Central

    Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele

    2013-01-01

    An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components. PMID:24072023

  5. Design and nonlinear modeling of a sensitive sensor for the measurement of flow in mice.

    PubMed

    Bou Jawde, Samer; Smith, Bradford J; Sonnenberg, Adam; Bates, Jason H T; Suki, Bela

    2018-06-07

    While many studies rely on flow and pressure measurements in small animal models of respiratory disease, such measurements can however be inaccurate and difficult to obtain. Thus, the goal of this study was to design and implement an easy to manufacture and accurate sensor capable of monitoring flow. We designed and 3-D printed a flowmeter and utilized parametric (resistance and inertance) and nonparametric (polynomial and Volterra series) system identification to characterize the device. The sensor was tested in a closed system for apparent flow using the common mode rejection ratio (CMRR). The sensor properly measured tidal volumes and respiratory rates in spontaneously breathing mice. The device was used to evaluate a ventilator's ability to deliver a prescribed volume before and after lung injury. The parametric and polynomial models provided a reasonable prediction of the independently measured flow (Coefficient of determination (Cv)=0.9591 and 0.9147 respectively), but the Volterra series of the 1st, 2nd, and 3rd order with a memory of six time points provided better fits (Cv=0.9775, 0.9787, and 0.9954, respectively). At and below the mouse breathing frequency (1-5 Hz), CMRR was higher than 40 dB. Following lung injury, the sensor revealed a significant drop in delivered tidal volume. We demonstrate that the application of nonparametric nonlinear Volterra series modeling in combination with 3-D printing technology allows the inexpensive and rapid fabrication of an accurate flow sensor for continuously measuring small flows in various physiological conditions. © 2018 Institute of Physics and Engineering in Medicine.

  6. Fabrication and characterization of artificial hair cell sensor based on MWCNT-PDMS composite

    NASA Astrophysics Data System (ADS)

    Kim, Chi Yeon; Lee, Hyun Sup; Cho, Yo Han; Joh, Cheeyoung; Choi, Pyung; Park, Seong Jin

    2011-06-01

    The aim of this work is to design and fabricate a flow sensor using an artificial hair cell (AHC) inspired by biological hair cells of fish. The sensor consists of a single cilium structure with high aspect ratio and a mechanoreceptor using force sensitive resistor (FSR). The cilium structure is designed for capturing a drag force with direction due to flow field around the sensor and the mechanoreceptor is designed for sensing the drag force with direction from the cilium structure and converting it into an electric signal. The mechanoreceptor has a symmetric four electrodes to sense the drag force and its direction. To fabricate the single cilium structure with high aspect ratio, we have proposed a new design concept using a separated micro mold system (SMS) fabricated by the LIGA process. For a successful replication of the cilium structure, we used the hot embossing process with the help of a double-sided mold system. We used a composite of multiwall carbon nanotube and polydimethylsiloxane (MWCNT-PDMS). The performance of the mechanoreceptors was measured by a computer-controlled nanoindenter. We carried out several experiments with the sensor in the different flow rate and direction using the experimental test apparatus. To calibrate the sensor and calculate the velocity with direction based the signal from the sensor, we analyzed the coupled phenomena between flow field and the cilium structure to calculate the deflection of the cilium structure and the drag force applying to the cilium structure due to the flow field around sensor.

  7. Use of a Terrestrial LIDAR Sensor for Drift Detection in Vineyard Spraying

    PubMed Central

    Gil, Emilio; Llorens, Jordi; Llop, Jordi; Fàbregas, Xavier; Gallart, Montserrat

    2013-01-01

    The use of a scanning Light Detection and Ranging (LIDAR) system to characterize drift during pesticide application is described. The LIDAR system is compared with an ad hoc test bench used to quantify the amount of spray liquid moving beyond the canopy. Two sprayers were used during the field test; a conventional mist blower at two air flow rates (27,507 and 34,959 m3·h−1) equipped with two different nozzle types (conventional and air injection) and a multi row sprayer with individually oriented air outlets. A simple model based on a linear function was used to predict spray deposit using LIDAR measurements and to compare with the deposits measured over the test bench. Results showed differences in the effectiveness of the LIDAR sensor depending on the sprayed droplet size (nozzle type) and air intensity. For conventional mist blower and low air flow rate; the sensor detects a greater number of drift drops obtaining a better correlation (r = 0.91; p < 0.01) than for the case of coarse droplets or high air flow rate. In the case of the multi row sprayer; drift deposition in the test bench was very poor. In general; the use of the LIDAR sensor presents an interesting and easy technique to establish the potential drift of a specific spray situation as an adequate alternative for the evaluation of drift potential. PMID:23282583

  8. Designing a Microfluidic Device with Integrated Ratiometric Oxygen Sensors for the Long-Term Control and Monitoring of Chronic and Cyclic Hypoxia

    PubMed Central

    Grist, Samantha M.; Schmok, Jonathan C.; Liu, Meng-Chi (Andy); Chrostowski, Lukas; Cheung, Karen C.

    2015-01-01

    Control of oxygen over cell cultures in vitro is a topic of considerable interest, as chronic and cyclic hypoxia can alter cell behaviour. Both static and transient hypoxic levels have been found to affect tumour cell behaviour; it is potentially valuable to include these effects in early, in vitro stages of drug screening. A barrier to their inclusion is that rates of transient hypoxia can be a few cycles/hour, which is difficult to reproduce in traditional in vitro cell culture environments due to long diffusion distances from control gases to the cells. We use a gas-permeable three-layer microfluidic device to achieve spatial and temporal oxygen control with biologically-relevant switching times. We measure the oxygen profiles with integrated, ratiometric optical oxygen sensors, demonstrate sensor and system stability over multi-day experiments, and characterize a pre-bleaching process to improve sensor stability. We show, with both finite-element modelling and experimental data, excellent control over the oxygen levels by the device, independent of fluid flow rate and oxygenation for the operating flow regime. We measure equilibration times of approximately 10 min, generate complex, time-varying oxygen profiles, and study the effects of oxygenated media flow rates on the measured oxygen levels. This device could form a useful tool for future long-term studies of cell behaviour under hypoxia. PMID:26287202

  9. Seed Cotton Mass Flow Measurement in the Gin

    USDA-ARS?s Scientific Manuscript database

    Seed cotton mass flow measurement is necessary for the development of improved gin process control systems that can increase gin efficiency and improve fiber quality. Previous studies led to the development of a seed cotton mass flow rate sensor based on the static pressure drop across the blowbox, ...

  10. Elbow mass flow meter

    DOEpatents

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  11. Performance of an electrochemical carbon monoxide monitor in the presence of anesthetic gases.

    PubMed

    Dunning, M; Woehlck, H J

    1997-11-01

    The passage of volatile anesthetic agents through accidentally dried CO2 absorbents in anesthesia circuits can result in the chemical breakdown of anesthetics with production of greater than 10000 ppm carbon monoxide (CO). This study was designed to evaluate a portable CO monitor in the presence of volatile anesthetic agents. Two portable CO monitors employing electrochemical sensors were tested to determine the effects of anesthetic agents, gas sample flow rates, and high CO concentrations on their electrochemical sensor. The portable CO monitors were exposed to gas mixtures of 0 to 500 ppm CO in either 70% nitrous oxide, 1 MAC concentrations of contemporary volatile anesthetics, or reacted isoflurane or desflurane (containing CO and CHF3) in oxygen. The CO measurements from the electrochemical sensors were compared to simultaneously obtained samples measured by gas chromatography (GC). Data were analyzed by linear regression. Overall correlation between the portable CO monitors and the GC resulted in an r2 value >0.98 for all anesthetic agents. Sequestered samples produced an exponential decay of measured CO with time, whereas stable measurements were maintained during continuous flow across the sensor. Increasing flow rates resulted in higher CO readings. Exposing the CO sensor to 3000 and 19000 ppm CO resulted in maximum reported concentrations of approximately 1250 ppm, with a prolonged recovery. Decrease in measured concentration of the sequestered samples suggests destruction of the sample by the sensor, whereas a diffusion limitation is suggested by the dependency of measured value upon flow. Any value over 500 ppm must be assumed to represent dangerous concentrations of CO because of the non-linear response of these monitors at very high CO concentrations. These portable electrochemical CO monitors are adequate to measure CO concentrations up to 500 ppm in the presence of typical clinical concentrations of anesthetics.

  12. Design and experimental verification of a photoacoustic flow sensor using computational fluid dynamics.

    PubMed

    Lassen, Mikael; Balslev-Harder, David; Brusch, Anders; Pelevic, Nikola; Persijn, Stefan; Petersen, Jan C

    2018-02-01

    A photoacoustic (PA) sensor for fast and real-time gas sensing is demonstrated. The PA sensor is a stand-alone system controlled by a field-programmable gate array. The PA cell has been designed for flow noise immunity using computational fluid dynamics (CFD) analysis. The aim of the CFD analysis was to investigate and minimize the influence of the gas distribution and flow noise on the PA signal. PA measurements were conducted at different flow rates by exciting molecular C-H stretch vibrational bands of hexane (C 6 H 14 ) and decane (C 10 H 22 ) molecules in clean air at 2950  cm -1 (3.38 μm) with a custom-made mid-infrared interband cascade laser. We observe a (1σ, standard deviation) sensitivity of 0.4±0.1  ppb (nmol/mol) for hexane in clean air at flow rates up to 1.7 L/min, corresponding to a normalized noise equivalent absorption coefficient of 2.5×10 -9   W cm -1   Hz -1/2 , demonstrating high sensitivity and fast real-time gas analysis. An Allan deviation analysis for decane shows that the detection limit at optimum integration time is 0.25 ppbV (nmol/mol).

  13. LAV@HAZARD: a Web-GIS Framework for Real-Time Forecasting of Lava Flow Hazards

    NASA Astrophysics Data System (ADS)

    Del Negro, C.; Bilotta, G.; Cappello, A.; Ganci, G.; Herault, A.

    2014-12-01

    Crucial to lava flow hazard assessment is the development of tools for real-time prediction of flow paths, flow advance rates, and final flow lengths. Accurate prediction of flow paths and advance rates requires not only rapid assessment of eruption conditions (especially effusion rate) but also improved models of lava flow emplacement. Here we present the LAV@HAZARD web-GIS framework, which combines spaceborne remote sensing techniques and numerical simulations for real-time forecasting of lava flow hazards. By using satellite-derived discharge rates to drive a lava flow emplacement model, LAV@HAZARD allows timely definition of parameters and maps essential for hazard assessment, including the propagation time of lava flows and the maximum run-out distance. We take advantage of the flexibility of the HOTSAT thermal monitoring system to process satellite images coming from sensors with different spatial, temporal and spectral resolutions. HOTSAT was designed to ingest infrared satellite data acquired by the MODIS and SEVIRI sensors to output hot spot location, lava thermal flux and discharge rate. We use LAV@HAZARD to merge this output with the MAGFLOW physics-based model to simulate lava flow paths and to update, in a timely manner, flow simulations. Thus, any significant changes in lava discharge rate are included in the predictions. A significant benefit in terms of computational speed was obtained thanks to the parallel implementation of MAGFLOW on graphic processing units (GPUs). All this useful information has been gathered into the LAV@HAZARD platform which, due to the high degree of interactivity, allows generation of easily readable maps and a fast way to explore alternative scenarios. We will describe and demonstrate the operation of this framework using a variety of case studies pertaining to Mt Etna, Sicily. Although this study was conducted on Mt Etna, the approach used is designed to be applicable to other volcanic areas around the world.

  14. Polyvinylidene fluoride film based nasal sensor to monitor human respiration pattern: an initial clinical study.

    PubMed

    Roopa Manjunatha, G; Rajanna, K; Mahapatra, D Roy; Nayak, M M; Krishnaswamy, Uma Maheswari; Srinivasa, R

    2013-12-01

    Design and development of a piezoelectric polyvinylidene fluoride (PVDF) thin film based nasal sensor to monitor human respiration pattern (RP) from each nostril simultaneously is presented in this paper. Thin film based PVDF nasal sensor is designed in a cantilever beam configuration. Two cantilevers are mounted on a spectacle frame in such a way that the air flow from each nostril impinges on this sensor causing bending of the cantilever beams. Voltage signal produced due to air flow induced dynamic piezoelectric effect produce a respective RP. A group of 23 healthy awake human subjects are studied. The RP in terms of respiratory rate (RR) and Respiratory air-flow changes/alterations obtained from the developed PVDF nasal sensor are compared with RP obtained from respiratory inductance plethysmograph (RIP) device. The mean RR of the developed nasal sensor (19.65 ± 4.1) and the RIP (19.57 ± 4.1) are found to be almost same (difference not significant, p > 0.05) with the correlation coefficient 0.96, p < 0.0001. It was observed that any change/alterations in the pattern of RIP is followed by same amount of change/alterations in the pattern of PVDF nasal sensor with k = 0.815 indicating strong agreement between the PVDF nasal sensor and RIP respiratory air-flow pattern. The developed sensor is simple in design, non-invasive, patient friendly and hence shows promising routine clinical usage. The preliminary result shows that this new method can have various applications in respiratory monitoring and diagnosis.

  15. Soft Sensing of Non-Newtonian Fluid Flow in Open Venturi Channel Using an Array of Ultrasonic Level Sensors—AI Models and Their Validations

    PubMed Central

    Viumdal, Håkon; Mylvaganam, Saba

    2017-01-01

    In oil and gas and geothermal installations, open channels followed by sieves for removal of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular) and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and support vector regression algorithms applied to the data from temporal and spatial ultrasonic level measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient reliability, repeatability and uncertainty, providing a novel soft sensing of an important process variable. Simulations, cross-validations and experimental results show that feedforward neural networks with the Bayesian regularization learning algorithm provide the best flow rate estimates. Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open channels are discussed. PMID:29072595

  16. Use of plant woody species electrical potential for irrigation scheduling

    PubMed Central

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological sensor and the EP electrodes connected to the Keithley voltmeter in each irrigation stage. Also, both sensors show a daily cyclical signal (circadian cycle). PMID:25826257

  17. Use of plant woody species electrical potential for irrigation scheduling.

    PubMed

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological sensor and the EP electrodes connected to the Keithley voltmeter in each irrigation stage. Also, both sensors show a daily cyclical signal (circadian cycle).

  18. Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems

    PubMed Central

    Ströbel, Ulrich; Rose-Meierhöfer, Sandra; Öz, Hülya; Brunsch, Reiner

    2013-01-01

    Progress in sensor technique and electronics has led to a decrease in the costs of electronic and sensor components. In modern dairy farms, having udders in good condition, a lower frequency of udder disease and an extended service life of dairy cows will help ensure competitiveness. The objective of this study was to develop a teat-end vacuum control system with individual quarter actor reaction. Based on a review of the literature, this system is assumed to protect the teat tissue. It reduces the mean teat-end vacuum in the maximum vacuum phase (b) to a level of 20 kPa at a flow rate of 0.25 L/min per quarter. At flow rates higher than 1.50 L/min per quarter, the teat-end vacuum can be controlled to a level of 30 kPa, because in this case it is desirable to have a higher vacuum for the transportation of the milk to the receiver. With this system it is possible for the first time to supply the teat end with low vacuum at low flow rates and with higher vacuum at increasing flow rates in a continuous process with a three second reaction-rate on individual quarter level. This system is completely automated. PMID:23765272

  19. A novel ozone sensor for various environmental applications

    NASA Technical Reports Server (NTRS)

    Guesten, H.; Heinrich, G.; Schmidt, R. W. H.; Schurath, U.

    1994-01-01

    A small, lightweight, and fast-response ozone sensor for various environmental applications is described. At a flow rate of 100 l/min(-1) the ozone sensor has a response time of significantly better than 0.1 s with a detection limit lower than 100 pptv. The ozone sensor was successfully tested in various environmental applications, i.e. in measuring directly the vertical ozone flux onto agricultural land utilizing the eddy correlation or covariance technique and in monitoring horizontal and vertical ozone profiles in the troposphere and stratosphere.

  20. A Wearable Microfluidic Sensing Patch for Dynamic Sweat Secretion Analysis.

    PubMed

    Nyein, Hnin Yin Yin; Tai, Li-Chia; Ngo, Quynh Phuong; Chao, Minghan; Zhang, George B; Gao, Wei; Bariya, Mallika; Bullock, James; Kim, Hyungjin; Fahad, Hossain M; Javey, Ali

    2018-05-25

    Wearable sweat sensing is a rapidly rising research area driven by its promising potential in health, fitness, and diagnostic applications. Despite the growth in the field, major challenges in relation to sweat metrics remain to be addressed. These challenges include sweat rate monitoring for its complex relation with sweat compositions and sweat sampling for sweat dynamics studies. In this work, we present a flexible microfluidic sweat sensing patch that enhances real-time electrochemical sensing and sweat rate analysis via sweat sampling. The device contains a spiral-patterned microfluidic component that is embedded with ion-selective sensors and an electrical impedance-based sweat rate sensor on a flexible plastic substrate. The patch is enabled to autonomously perform sweat analysis by interfacing the sensing component with a printed circuit board that is capable of on-site signal conditioning, analysis, and transmission. Progressive sweat flow in the microfluidic device, governed by the pressure induced by the secreted sweat, enhances sweat sampling and electrochemical detection via a defined sweat collection chamber and a directed sweat route. The characteristic of the sweat rate sensor is validated through a theoretical simulation, and the precision and accuracy of the flow rate is verified with a commercial syringe pump and a Macroduct sweat collector. On-body simultaneous monitoring of ion (H + , Na + , K + , Cl - ) concentration and sweat rate is also demonstrated for sensor functionality. This sweat sensing patch provides an integrated platform for a comprehensive sweat secretion analysis and facilitates physiological and clinical investigations by closely monitoring interrelated sweat parameters.

  1. Properties permitting the renal cortex to be the oxygen sensor for the release of erythropoietin: clinical implications.

    PubMed

    Halperin, Mitchell L; Cheema-Dhadli, Surinder; Lin, Shih-Hua; Kamel, Kamel S

    2006-09-01

    The PO2 at this site where erythropoietin release is regulated should vary only when the hemoglobin concentration changes in capillary blood. The kidney cortex is an ideal location for this O2 sensor for four reasons. First, it extracts a small proportion of the oxygen that is delivered in each liter of blood; this makes the PO2 signal easier to recognize. Second, there is a constant ratio of the work performed (consumption of O2) to the renal blood flow rate (delivery of O2). Third, the high renal blood flow rate improves diffusion of O2 from capillaries to this O2 receptor. Fourth, a high renal cortical PCO2 prevents an additional shift of the O2:hemoglobin dissociation curve by other factors from being a confounding variable. This suggests that the GFR and the renal blood flow rate should be examined in patients with unexplained anemia or erythrocytosis.

  2. Clean water billing monitoring system using flow liquid meter sensor and SMS gateway

    NASA Astrophysics Data System (ADS)

    Fahmi, F.; Hizriadi, A.; Khairani, F.; Andayani, U.; Siregar, B.

    2018-03-01

    Public clean water company (PDAM) as a public service is designed and organized to meet the needs of the community. Currently, the number of PDAM subscribers is very big and will continue to grow, but the service and facilities to customers are still done conventionally by visiting the customer’s home to record the last position of the meter. One of the problems of PDAM is the lack of disclosure of PDAM customers’ invoice because it is only done monthly. This, of course, makes PDAM customers difficult to remember the date of payment of water account. Therefore it is difficult to maintain the efficiency. The purpose of this research is to facilitate customers of PDAM water users to know the details of water usage and the time of payment of water bills easily. It also facilitates customers in knowing information related to the form of water discharge data used, payment rates, and time grace payments using SMS Gateway. In this study, Flow Liquid Meter Sensor was used for data retrieval of water flowing in the piping system. Sensors used to require the help of Hall Effect sensor that serves to measure the speed of water discharge and placed on the pipe that has the same diameter size with the sensor diameter. The sensor will take the data from the rate of water discharge it passes; this data is the number of turns of the mill on the sensor. The results of the tests show that the built system works well in helping customers know in detail the amount of water usage in a month and the bill to be paid

  3. Frequency-feature based antistrong-disturbance signal processing method and system for vortex flowmeter with single sensor

    NASA Astrophysics Data System (ADS)

    Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo

    2010-07-01

    Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at τ =0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.

  4. Frequency-feature based antistrong-disturbance signal processing method and system for vortex flowmeter with single sensor.

    PubMed

    Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo

    2010-07-01

    Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at tau=0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.

  5. Measurement of respiratory acoustical signals. Comparison of sensors.

    PubMed

    Pasterkamp, H; Kraman, S S; DeFrain, P D; Wodicka, G R

    1993-11-01

    We assessed the performance of three air-coupled and four contact sensors under standardized conditions of lung sound recording. Recordings were obtained from three of the investigators at the best site on the posterior lower chest as determined by auscultation. Lung sounds were band-pass filtered between 100 and 2,000 Hz and sampled simultaneously with calibrated airflow at a rate of 10 kHz. Fourier techniques were used for power spectral analysis. Average spectra for inspiratory sounds at flows of 2 +/- 0.5 L/s were referenced against background noise at zero flow. Air-coupled and contact sensors had comparable maximum signal-to-noise ratios and gave similar values for most spectral parameters. Unexpectedly, less sensitivity (lower signal-to-noise ratio) at high frequencies was observed in the air-coupled devices. Sensor performance needs to be characterized in studies of lung sounds. We suggest that lung sound spectra should be averaged at known airflows over several breaths and that all measurements should be reported relative to sounds recorded at zero flow.

  6. Flow Cell Design for Effective Biosensing

    PubMed Central

    Pike, Douglas J.; Kapur, Nikil; Millner, Paul A.; Stewart, Douglas I.

    2013-01-01

    The efficiency of three different biosensor flow cells is reported. All three flow cells featured a central channel that expands in the vicinity of the sensing element to provide the same diameter active region, but the rate of channel expansion and contraction varied between the designs. For each cell the rate at which the analyte concentration in the sensor chamber responds to a change in the influent analyte concentration was determined numerically using a finite element model and experimentally using a flow-fluorescence technique. Reduced flow cell efficiency with increasing flow rates was observed for all three designs and was related to the increased importance of diffusion relative to advection, with efficiency being limited by the development of regions of recirculating flow (eddies). However, the onset of eddy development occurred at higher flow rates for the design with the most gradual channel expansion, producing a considerably more efficient flow cell across the range of flow rates considered in this study. It is recommended that biosensor flow cells be designed to minimize the tendency towards, and be operated under conditions that prevent the development of flow recirculation. PMID:23344373

  7. 40 CFR 86.007-17 - On-board Diagnostics for engines used in applications less than or equal to 14,000 pounds GVWR.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... catalytic converter. (ii) Diesel. Lack of cylinder combustion must be detected. (3) Exhaust gas sensors—(i... Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled...; calculated load; air flow rate from mass air flow sensor (if so equipped); fuel rate; and DPF delta pressure...

  8. 40 CFR 86.007-17 - On-board Diagnostics for engines used in applications less than or equal to 14,000 pounds GVWR.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... catalytic converter. (ii) Diesel. Lack of cylinder combustion must be detected. (3) Exhaust gas sensors—(i... Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled...; calculated load; air flow rate from mass air flow sensor (if so equipped); fuel rate; and DPF delta pressure...

  9. Real-Time Variable Rate Spraying in Orchards and Vineyards: A Review

    NASA Astrophysics Data System (ADS)

    Wandkar, Sachin Vilas; Bhatt, Yogesh Chandra; Jain, H. K.; Nalawade, Sachin M.; Pawar, Shashikant G.

    2018-06-01

    Effective and efficient use of pesticides in the orchards is of concern since many years. With the conventional constant rate sprayers, equal dose of pesticide is applied to each tree. Since, there is great variation in size and shape of each tree in the orchard, trees gets either oversprayed or undersprayed. Real-time variable rate spraying technology offers pesticide application in accordance with tree size. With the help of suitable sensors, tree characteristics such as canopy volume, foliage density, etc. can be acquired and with the micro-processing unit coupled with proper algorithm, flow of electronic proportional valves can be controlled thus, controlling the flow rate of nozzles according to tree characteristics. Also, sensors can help in the detection of spaces in-between trees which allows to control the spray in spaces. Variable rate spraying helps in achieving precision in spraying operation especially inside orchards. This paper reviews the real-time variable rate spraying technology and efforts made by the various researchers for real-time variable application in the orchards and vineyards.

  10. Real-Time Variable Rate Spraying in Orchards and Vineyards: A Review

    NASA Astrophysics Data System (ADS)

    Wandkar, Sachin Vilas; Bhatt, Yogesh Chandra; Jain, H. K.; Nalawade, Sachin M.; Pawar, Shashikant G.

    2018-02-01

    Effective and efficient use of pesticides in the orchards is of concern since many years. With the conventional constant rate sprayers, equal dose of pesticide is applied to each tree. Since, there is great variation in size and shape of each tree in the orchard, trees gets either oversprayed or undersprayed. Real-time variable rate spraying technology offers pesticide application in accordance with tree size. With the help of suitable sensors, tree characteristics such as canopy volume, foliage density, etc. can be acquired and with the micro-processing unit coupled with proper algorithm, flow of electronic proportional valves can be controlled thus, controlling the flow rate of nozzles according to tree characteristics. Also, sensors can help in the detection of spaces in-between trees which allows to control the spray in spaces. Variable rate spraying helps in achieving precision in spraying operation especially inside orchards. This paper reviews the real-time variable rate spraying technology and efforts made by the various researchers for real-time variable application in the orchards and vineyards.

  11. Water Pipeline Monitoring and Leak Detection using Flow Liquid Meter Sensor

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Satria, I. S.; Siregar, B.; Budiarto, R.

    2017-04-01

    Water distribution is generally installed through underground pipes. Monitoring the underground water pipelines is more difficult than monitoring the water pipelines located on the ground in open space. This situation will cause a permanent loss if there is a disturbance in the pipeline such as leakage. Leaks in pipes can be caused by several factors, such as the pipe’s age, improper installation, and natural disasters. Therefore, a solution is required to detect and to determine the location of the damage when there is a leak. The detection of the leak location will use fluid mechanics and kinematics physics based on harness water flow rate data obtained using flow liquid meter sensor and Arduino UNO as a microcontroller. The results show that the proposed method is able to work stably to determine the location of the leak which has a maximum distance of 2 metres, and it’s able to determine the leak location as close as possible with flow rate about 10 litters per minute.

  12. In vitro performance of a perfusion and oxygenation optical sensor using a unique liver phantom

    NASA Astrophysics Data System (ADS)

    Akl, Tony J.; King, Travis J.; Long, Ruiqi; Ericson, M. N.; Wilson, Mark A.; McShane, Michael J.; Coté, Gerard L.

    2012-03-01

    Between the years 1999 and 2008, on average 2,052 people died per year on the waiting list for liver transplants. Monitoring perfusion and oxygenation in transplanted organs in the 7 to 14 days period post-transplant can enhance graft and patient survival rates, and resultantly increase the availability of organs. In this work, we present in vitro results using a unique liver phantom that support the ability of our sensor to detect perfusion changes in the portal vein at low levels (50 mL/min . 4.5% of normal level). Our sensor measures diffuse reflection from three wavelengths (735, 805 and 940 nm) around the hemoglobin isobestic point (805 nm) to determine perfusion and oxygenation separately. To assess the sensitivity of our sensor to flow changes in the low range, we used two peristaltic pumps to pump a dye solution mimicking the optical properties of oxygenated blood, at various rates, through a PDMS based phantom mimicking the optical properties of liver tissue. The collected pulsatile signal increased by 120% (2.2X) for every 100 mL/min flow rise for all three wavelengths in the range 50 to 500 mL/min. In addition, we used different dye mixtures to mimic oxygenation changes at constant perfusion/flow levels. The optical properties of the dye mixtures mimic oxygen saturations ranging between 0 and 100%. The sensor was shown to be sensitive to changes in oxygen saturations above 50%.

  13. Creating fast flow channels in paper fluidic devices to control timing of sequential reactions.

    PubMed

    Jahanshahi-Anbuhi, Sana; Chavan, Puneet; Sicard, Clémence; Leung, Vincent; Hossain, S M Zakir; Pelton, Robert; Brennan, John D; Filipe, Carlos D M

    2012-12-07

    This paper reports the development of a method to control the flow rate of fluids within paper-based microfluidic analytical devices. We demonstrate that by simply sandwiching paper channels between two flexible films, it is possible to accelerate the flow of water through paper by over 10-fold. The dynamics of this process are such that the height of the liquid is dependent on time to the power of 1/3. This dependence was validated using three different flexible films (with markedly different contact angles) and three different fluids (water and two silicon oils with different viscosities). These covered channels provide a low-cost method for controlling the flow rate of fluid in paper channels, and can be added following printing of reagents to control fluid flow in selected fluidic channels. Using this method, we redesigned a previously published bidirectional lateral flow pesticide sensor to allow more rapid detection of pesticides while eliminating the need to run the assay in two stages. The sensor is fabricated with sol-gel entrapped reagents (indoxyl acetate in a substrate zone and acetylcholinesterase, AChE, in a sensing zone) present in an uncovered "slow" flow channel, with a second, covered "fast" channel used to transport pesticide samples to the sensing region through a simple paper-flap valve. In this manner, pesticides reach the sensing region first to allow preincubation, followed by delivery of the substrate to generate a colorimetric signal. This format results in a uni-directional device that detects the presence of pesticides two times faster than the original bidirectional sensors.

  14. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.

    PubMed

    Fu, Qiang; Liu, Jie

    2005-07-21

    A method to fabricate integrated single-walled carbon nanotube/microfluidic devices was developed. This simple process could be used to directly prepare nanotube thin film transistors within the microfluidic channel and to register SWNT devices with the microfludic channel without the need of an additional alignment step. The microfluidic device was designed to have several inlets that deliver multiple liquid flows to a single main channel. The location and width of each flow in the main channel could be controlled by the relative flow rates. This capability enabled us to study the effect of the location and the coverage area of the liquid flow that contained charged molecules on the conduction of the nanotube devices, providing important information on the sensing mechanism of carbon nanotube sensors. The results showed that in a sensor based on a nanotube thin film field effect transistor, the sensing signal came from target molecules absorbed on or around the nanotubes. The effect from adsorption on metal electrodes was weak.

  15. Active Control of Surge in Compressors Which Exhibit Abrupt Stall

    DTIC Science & Technology

    2001-06-01

    sensor (of pressure, flow rate, etc.) is fed to a controller which applies a proper control law to drive the actuator (valve, The present paper reports...1993), who analyzed the influence of sensor and numerical simulation shows that: t) the predictions of control acutrsltin o th mxmm sabizd opesr...a sensor of compressor face total pressure), a The present paper considers the active suppression of surge in a butterfly throttle/actuation valve

  16. Response Characteristics of a Stable Mixed Potential Ammonia Sensor in Simulated Diesel Exhaust

    DOE PAGES

    Ramaiyan, Kannan P.; Pihl, Josh A.; Kreller, Cortney R.; ...

    2017-07-15

    A mixed potential sensor using Au and Pt dense wire electrodes embedded between tape-casted layers of 8 mol% yttria stabilized zirconia (YSZ) was tested for application toward NH 3, NO, NO 2, C 3H 6 and C 3H 8. In single-gas testing, the sensor exhibited the highest response toward NH 3, while still exhibiting reasonably high sensitivity toward other interferent gases. We tested the sensor in a high-flow reactor at the National Transportation Research Center (NTRC) in order to simulate exhaust gas constituents and flow rates produced by lean-burn vehicles powered by Compression-Ignition Direct-Injection (CIDI), diesel engines. The sensor wasmore » characterized at 525 and 625°C for NH 3, CO, C 3H 6, C 3H 8, and NO x in a base gas composition of 10% O 2, 5% H 2O, and 5% CO 2 flowing at 15 slpm. The sensor exhibited fast response time equal to the response time of the system's switching valve (T90<0.6s). Furthermore, in simulations of overdosing a selective catalytic reduction (SCR) system, the sensor was able to selectively respond to 20ppm injections of NH 3 slip despite the presence of the interferent gas species at combined concentrations ten times higher than that of the NH 3. The laboratory sensor construct was transitioned to a pre-commercial, automotive stick sensor configuration that was demonstrated to retain the advantageous characteristics of the tape-cast device.« less

  17. Response Characteristics of a Stable Mixed Potential Ammonia Sensor in Simulated Diesel Exhaust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramaiyan, Kannan P.; Pihl, Josh A.; Kreller, Cortney R.

    A mixed potential sensor using Au and Pt dense wire electrodes embedded between tape-casted layers of 8 mol% yttria stabilized zirconia (YSZ) was tested for application toward NH 3, NO, NO 2, C 3H 6 and C 3H 8. In single-gas testing, the sensor exhibited the highest response toward NH 3, while still exhibiting reasonably high sensitivity toward other interferent gases. We tested the sensor in a high-flow reactor at the National Transportation Research Center (NTRC) in order to simulate exhaust gas constituents and flow rates produced by lean-burn vehicles powered by Compression-Ignition Direct-Injection (CIDI), diesel engines. The sensor wasmore » characterized at 525 and 625°C for NH 3, CO, C 3H 6, C 3H 8, and NO x in a base gas composition of 10% O 2, 5% H 2O, and 5% CO 2 flowing at 15 slpm. The sensor exhibited fast response time equal to the response time of the system's switching valve (T90<0.6s). Furthermore, in simulations of overdosing a selective catalytic reduction (SCR) system, the sensor was able to selectively respond to 20ppm injections of NH 3 slip despite the presence of the interferent gas species at combined concentrations ten times higher than that of the NH 3. The laboratory sensor construct was transitioned to a pre-commercial, automotive stick sensor configuration that was demonstrated to retain the advantageous characteristics of the tape-cast device.« less

  18. Assessing the thermal dissipation sap flux density method for monitoring cold season water transport in seasonally snow-covered forests

    DOE PAGES

    Chan, Allison M.; Bowling, David R.

    2017-05-26

    Productivity of conifers in seasonally snow-covered forests is high before and during snowmelt when environmental conditions are optimal for photosynthesis. Climate change is altering the timing of spring in many locations, and changes in the date of transition from winter dormancy can have large impacts on annual productivity. Sap flow methods provide a promising approach to monitor tree activity during the cold season and the winter–spring and fall–winter transitions. Although sap flow techniques have been widely used, cold season results are generally not reported. Here we examine the feasibility of using the Granier thermal dissipation (TD) sap flux density methodmore » to monitor transpiration and dormancy of evergreen conifers during the cold season. We conducted a laboratory experiment which demonstrated that the TD method reliably detects xylem water transport (when it occurs) both at near freezing temperature and at low flow rate, and that the sensors can withstand repeated freeze–thaw events. However, the dependence between sensor output and water transport rate in these experiments differed from the established TD relation. In field experiments, sensors installed in two Abies forests lasted through two winters and a summer with low failure. The baseline (no-flow) sensor output varied considerably with temperature during the cold season, and a new baseline algorithm was developed to accommodate this variation. The Abies forests differed in elevation (2070 and 2620 m), and there was a clear difference in timing of initiation and cessation of transpiration between them. We conclude that the TD method can be reliably used to examine water transport during cold periods with associated low flow conditions« less

  19. Assessing the thermal dissipation sap flux density method for monitoring cold season water transport in seasonally snow-covered forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Allison M.; Bowling, David R.

    Productivity of conifers in seasonally snow-covered forests is high before and during snowmelt when environmental conditions are optimal for photosynthesis. Climate change is altering the timing of spring in many locations, and changes in the date of transition from winter dormancy can have large impacts on annual productivity. Sap flow methods provide a promising approach to monitor tree activity during the cold season and the winter–spring and fall–winter transitions. Although sap flow techniques have been widely used, cold season results are generally not reported. Here we examine the feasibility of using the Granier thermal dissipation (TD) sap flux density methodmore » to monitor transpiration and dormancy of evergreen conifers during the cold season. We conducted a laboratory experiment which demonstrated that the TD method reliably detects xylem water transport (when it occurs) both at near freezing temperature and at low flow rate, and that the sensors can withstand repeated freeze–thaw events. However, the dependence between sensor output and water transport rate in these experiments differed from the established TD relation. In field experiments, sensors installed in two Abies forests lasted through two winters and a summer with low failure. The baseline (no-flow) sensor output varied considerably with temperature during the cold season, and a new baseline algorithm was developed to accommodate this variation. The Abies forests differed in elevation (2070 and 2620 m), and there was a clear difference in timing of initiation and cessation of transpiration between them. We conclude that the TD method can be reliably used to examine water transport during cold periods with associated low flow conditions« less

  20. Impact of the Number of Applied Current Meter Sensors on the Accuracy of Flow Rate Measurements across a Range of Hydroelectric Facilities Indicative of the Domestic Hydroelectric Fleet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, Mark H; Hadjerioua, Boualem; Lee, Kyutae

    2015-01-01

    The following paper represents the results of an investigation into the impact of the number and placement of Current Meter (CM) flow sensors on the accuracy to which they are capable of predicting the overall flow rate. Flow measurement accuracy is of particular importance in multiunit plants because it plays a pivotal role in determining the operational efficiency characteristics of each unit, allowing the operator to select the unit (or combination of units) which most efficiently meet demand. Several case studies have demonstrated that optimization of unit dispatch has the potential to increase plant efficiencies from between 1 to 4.4more » percent [2] [3]. Unfortunately current industry standards do not have an established methodology to measure the flow rate through hydropower units with short converging intakes (SCI); the only direction provided is that CM sensors should be used. The most common application of CM is horizontally, along a trolley which is incrementally lowered across a measurement cross section. As such, the measurement resolution is defined horizontally and vertically by the number of CM and the number of measurement increments respectively. There has not been any published research on the role of resolution in either direction on the accuracy of flow measurement. The work below investigates the effectiveness of flow measurement in a SCI by performing a case study in which point velocity measurements were extracted from a physical plant and then used to calculate a series of reference flow distributions. These distributions were then used to perform sensitivity studies on the relation between the number of CM and the accuracy to which the flow rate was predicted. The following research uncovered that a minimum of 795 plants contain SCI, a quantity which represents roughly 12% of total domestic hydropower capacity. In regards to measurement accuracy, it was determined that accuracy ceases to increase considerably due to strict increases in vertical resolution beyond the application of 49 transects. Moreover the research uncovered that the application of 5 CM (when applied at 49 vertical transects) resulted in an average accuracy of 95.6% and the application of additional sensors resulted in a linear increase in accuracy up to 17 CM which had an average accuracy of 98.5%. Beyond 17 CM incremental increases in accuracy due to the addition of CM was found decrease exponentially. Future work that will be performed in this area will investigate the use of computational fluid dynamics to acquire a broader range of flow fields within SCI.« less

  1. Boundary layer separation and reattachment detection on airfoils by thermal flow sensors.

    PubMed

    Sturm, Hannes; Dumstorff, Gerrit; Busche, Peter; Westermann, Dieter; Lang, Walter

    2012-10-24

    A sensor concept for detection of boundary layer separation (flow separation, stall) and reattachment on airfoils is introduced in this paper. Boundary layer separation and reattachment are phenomena of fluid mechanics showing characteristics of extinction and even inversion of the flow velocity on an overflowed surface. The flow sensor used in this work is able to measure the flow velocity in terms of direction and quantity at the sensor's position and expected to determine those specific flow conditions. Therefore, an array of thermal flow sensors has been integrated (flush-mounted) on an airfoil and placed in a wind tunnel for measurement. Sensor signals have been recorded at different wind speeds and angles of attack for different positions on the airfoil. The sensors used here are based on the change of temperature distribution on a membrane (calorimetric principle). Thermopiles are used as temperature sensors in this approach offering a baseline free sensor signal, which is favorable for measurements at zero flow. Measurement results show clear separation points (zero flow) and even negative flow values (back flow) for all sensor positions. In addition to standard silicon-based flow sensors, a polymer-based flexible approach has been tested showing similar results.

  2. Boundary Layer Separation and Reattachment Detection on Airfoils by Thermal Flow Sensors

    PubMed Central

    Sturm, Hannes; Dumstorff, Gerrit; Busche, Peter; Westermann, Dieter; Lang, Walter

    2012-01-01

    A sensor concept for detection of boundary layer separation (flow separation, stall) and reattachment on airfoils is introduced in this paper. Boundary layer separation and reattachment are phenomena of fluid mechanics showing characteristics of extinction and even inversion of the flow velocity on an overflowed surface. The flow sensor used in this work is able to measure the flow velocity in terms of direction and quantity at the sensor's position and expected to determine those specific flow conditions. Therefore, an array of thermal flow sensors has been integrated (flush-mounted) on an airfoil and placed in a wind tunnel for measurement. Sensor signals have been recorded at different wind speeds and angles of attack for different positions on the airfoil. The sensors used here are based on the change of temperature distribution on a membrane (calorimetric principle). Thermopiles are used as temperature sensors in this approach offering a baseline free sensor signal, which is favorable for measurements at zero flow. Measurement results show clear separation points (zero flow) and even negative flow values (back flow) for all sensor positions. In addition to standard silicon-based flow sensors, a polymer-based flexible approach has been tested showing similar results. PMID:23202160

  3. Cryogenic Flow Sensor

    NASA Technical Reports Server (NTRS)

    Justak, John

    2010-01-01

    An acousto-optic cryogenic flow sensor (CFS) determines mass flow of cryogens for spacecraft propellant management. The CFS operates unobtrusively in a high-pressure, high-flowrate cryogenic environment to provide measurements for fluid quality as well as mass flow rate. Experimental hardware uses an optical plane-of-light (POL) to detect the onset of two-phase flow, and the presence of particles in the flow of water. Acousto-optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. Acousto-optic interaction occurs in all optical media when an acoustic wave and a laser beam are present. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this grating will diffract the laser beam into several orders. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle. If the acoustic wave is traveling in a moving fluid, the fluid velocity will affect the frequency of the traveling wave, relative to a stationary sensor. This frequency shift changes the angle of diffraction, hence, fluid velocity can be determined from the diffraction angle. The CFS acoustic Bragg grating data test indicates that it is capable of accurately determining flow from 0 to 10 meters per second. The same sensor can be used in flow velocities exceeding 100 m/s. The POL module has successfully determined the onset of two-phase flow, and can distinguish vapor bubbles from debris.

  4. Development and simulation of microfluidic Wheatstone bridge for high-precision sensor

    NASA Astrophysics Data System (ADS)

    Shipulya, N. D.; Konakov, S. A.; Krzhizhanovskaya, V. V.

    2016-08-01

    In this work we present the results of analytical modeling and 3D computer simulation of microfluidic Wheatstone bridge, which is used for high-accuracy measurements and precision instruments. We propose and simulate a new method of a bridge balancing process by changing the microchannel geometry. This process is based on the “etching in microchannel” technology we developed earlier (doi:10.1088/1742-6596/681/1/012035). Our method ensures a precise control of the flow rate and flow direction in the bridge microchannel. The advantage of our approach is the ability to work without any control valves and other active electronic systems, which are usually used for bridge balancing. The geometrical configuration of microchannels was selected based on the analytical estimations. A detailed 3D numerical model was based on Navier-Stokes equations for a laminar fluid flow at low Reynolds numbers. We investigated the behavior of the Wheatstone bridge under different process conditions; found a relation between the channel resistance and flow rate through the bridge; and calculated the pressure drop across the system under different total flow rates and viscosities. Finally, we describe a high-precision microfluidic pressure sensor that employs the Wheatstone bridge and discuss other applications in complex precision microfluidic systems.

  5. Design and Implementation of Automatic Air Flow Rate Control System

    NASA Astrophysics Data System (ADS)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  6. Transient Characteristics of a Fluidic Device for Circulatory Jet Flow.

    PubMed

    Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu; Dau, Van Thanh

    2018-03-13

    In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis.

  7. Transient Characteristics of a Fluidic Device for Circulatory Jet Flow

    PubMed Central

    Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu

    2018-01-01

    In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis. PMID:29534014

  8. High- and low-pressure pneumotachometers measure respiration rates accurately in adverse environments

    NASA Technical Reports Server (NTRS)

    Fagot, R. J.; Mc Donald, R. T.; Roman, J. A.

    1968-01-01

    Respiration-rate transducers in the form of pneumotachometers measure respiration rates of pilots operating high performance research aircraft. In each low pressure or high pressure oxygen system a sensor is placed in series with the pilots oxygen supply line to detect gas flow accompanying respiration.

  9. Composition Pulse Time-Of-Flight Mass Flow Sensor

    DOEpatents

    Mosier, Bruce P.; Crocker, Robert W.; Harnett, Cindy K. l

    2004-01-13

    A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 10,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined

  10. Evaluation of automotive mass airflow sensors for animal environment research and control

    USDA-ARS?s Scientific Manuscript database

    Mass air flow is an important parameter to consider in animal research applications, especially for the generation of heat and moisture production data. The high flow rates and low operating pressures in animal research facilities present a unique and costly challenge for measurement of mass air fl...

  11. Quartz Crystal Microbalance Based System for High-Sensitivity Differential Sputter Yield Measurements (Preprint)

    DTIC Science & Technology

    2009-08-20

    at low ion energies require appropriate ion sources. For example, past work using QCM sensors employed a magnetron as an ion source 32,33 . The...and for data logging. Detailed discussion of the QCM sensor is provided in Section IID. Figure 1. Schematic diagram of the experimental set-up...mass flow rate of 0.5 sccm. The PBN was biased negatively relative to ground potential. D. QCM Sensor and Temperature Control In deposition mode

  12. Nano-enabled paper humidity sensor for mobile based point-of-care lung function monitoring.

    PubMed

    Bhattacharjee, Mitradip; Nemade, Harshal B; Bandyopadhyay, Dipankar

    2017-08-15

    The frequency of breathing and peak flow rate of exhaled air are necessary parameters to detect chronic obstructive pulmonary diseases (COPDs) such as asthma, bronchitis, or pneumonia. We developed a lung function monitoring point-of-care-testing device (LFM-POCT) consisting of mouthpiece, paper-based humidity sensor, micro-heater, and real-time monitoring unit. Fabrication of a mouthpiece of optimal length ensured that the exhaled air was focused on the humidity-sensor. The resistive relative humidity sensor was developed using a filter paper coated with nanoparticles, which could easily follow the frequency and peak flow rate of the human breathing. Adsorption followed by condensation of the water molecules of the humid air on the paper-sensor during the forced exhalation reduced the electrical resistance of the sensor, which was converted to an electrical signal for sensing. A micro-heater composed of a copper-coil embedded in a polymer matrix helped in maintaining an optimal temperature on the sensor surface. Thus, water condensed on the sensor surface only during forcible breathing and the sensor recovered rapidly after the exhalation was complete by rapid desorption of water molecules from the sensor surface. Two types of real-time monitoring units were integrated into the device based on light emitting diodes (LEDs) and smart phones. The LED based unit displayed the diseased, critical, and fit conditions of the lungs by flashing LEDs of different colors. In comparison, for the mobile based monitoring unit, an application was developed employing an open source software, which established a wireless connectivity with the LFM-POCT device to perform the tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Wireless programmable electrochemical drug delivery micropump with fully integrated electrochemical dosing sensors.

    PubMed

    Sheybani, Roya; Cobo, Angelica; Meng, Ellis

    2015-08-01

    We present a fully integrated implantable electrolysis-based micropump with incorporated EI dosing sensors. Wireless powering and data telemetry (through amplitude and frequency modulation) were utilized to achieve variable flow control and a bi-directional data link with the sensors. Wireless infusion rate control (0.14-1.04 μL/min) and dose sensing (bolus resolution of 0.55-2 μL) were each calibrated separately with the final circuit architecture and then simultaneous wireless flow control and dose sensing were demonstrated. Recombination detection using the dosing system, as well as, effects of coil separation distance and misalignment in wireless power and data transfer were studied. A custom-made normally closed spring-loaded ball check valve was designed and incorporated at the reservoir outlet to prevent backflow of fluids as a result of the reverse pressure gradient caused by recombination of electrolysis gases. Successful delivery, infusion rate control, and dose sensing were achieved in simulated brain tissue.

  14. System-on-fluidics immunoassay device integrating wireless radio-frequency-identification sensor chips.

    PubMed

    Yazawa, Yoshiaki; Oonishi, Tadashi; Watanabe, Kazuki; Shiratori, Akiko; Funaoka, Sohei; Fukushima, Masao

    2014-09-01

    A simple and sensitive point-of-care-test (POCT) device for chemiluminescence (CL) immunoassay was devised and tested. The device consists of a plastic flow-channel reactor and two wireless-communication sensor chips, namely, a photo-sensor chip and a temperature-sensor chip. In the flow-channel reactor, a target antigen is captured by an antibody immobilized on the inner wall of the flow-channel and detected with enzyme labeled antibody by using CL substrate. The CL signal corresponding to the amount of antigen is measured by a newly developed radio-frequency-identification (RFID) sensor, which enables batteryless operation and wireless data communication with an external reader. As for the POCT device, its usage environment, especially temperature, varies for each measurement. Hence, temperature compensation is a key issue in regard to eliminating dark-signal fluctuation, which is a major factor in deterioration of the precision of the POCT device. A two-stage temperature-compensation scheme was adopted. As for the first stage, the signals of two photodiodes, one with an open window and one with a sealed window, integrated on the photo-sensor chip are differentiated to delete the dark signal. As for the second stage, the differentiated signal fluctuation caused by a temperature variation is compensated by using the other sensor chip (equipped with a temperature sensor). The dark-level fluctuation caused by temperature was reduced from 0.24 to 0.02 pA/°C. The POCT device was evaluated as a CL immunoassay of thyroid-stimulating hormone (TSH). The flow rate of the CL reagent in the flow channel was optimized. As a result, the detection limit of the POCT device was 0.08 ng/ml (i.e., 0.4 μIU/ml). Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Determination of Heritage SSME Pogo Suppressor Resistance and Inertance from Waterflow Pulse Testing

    NASA Technical Reports Server (NTRS)

    McDougal, Chris; Eberhart, Chad; Lee, Erik

    2016-01-01

    Waterflow tests of a heritage Space Shuttle Main Engine pogo suppressor were performed to experimentally quantify the resistance and inertance provided by the suppressor. Measurements of dynamic pressure and flow rate in response to pulsing flow were made throughout the test loop. A unique system identification methodology combined all sensor measurements with a one-dimensional perturbational flow model of the complete water flow loop to spatially translate physical measurements to the device under test. Multiple techniques were then employed to extract the effective resistance and inertance for the pogo suppressor. Parameters such as steady flow rate, perturbational flow rate magnitude, and pulse frequency were investigated to assess their influence on the behavior of the pogo suppressor dynamic response. These results support validation of the RS-25 pogo suppressor performance for use on the Space Launch System Core Stage.

  16. Can post-fire erosion rates be estimated using a novel plastic optical fibre turbidity sensor?

    NASA Astrophysics Data System (ADS)

    Keizer, Jan Jacob; Bilro, Lúcia; Martins, Martinho M. A.; Machado, Ana Isabel; Karine Boulet, Anne; Vieira, Diana C. S.; Sequeira, Filipa; Prats, Sergio A.; Nogueira, Rogério

    2014-05-01

    It is well-established that wildfires can play an important role in the hydrological and erosion response of forested catchments, substantially increasing overland as well as stream flow and associated sediment yield during the earlier stages of the window-of-disturbance. Even so, it continues a major challenge to quantify post-fire erosion rates and their evolution with time-since-fire, both for plot and catchment outlets. This constraint could to some extent be overcome by low-cost turbidity sensors, placed in runoff collection tanks and at multiple points across stream flow sections. Plastic optical fibre turbidity sensors (POF) have, in that respect, much potential, due to their reduced costs, suitability for multiplexing and robustness under adverse monitoring conditions. The present study explores this potential for recently burnt areas, where the characteristics of the transported sediments can be expected to change markedly over time due to exhaustion of ashes. To this end, a large number of plot- and catchment-scale runoff samples were studied that had been collected in the course of 1- to 2-weekly field monitoring of a recently burnt study area in north-central Portugal. Comparison of the sediment and organic matter contents of these samples with turbidity readings obtained with a novel POF sensor suggested that the POF sensor would greatly facilitate obtaining rough estimates of post-fire erosion rates but would not dispense of regular calibration under changing sediment load characteristics.

  17. Long-term flow monitoring of submarine gas emanations

    NASA Astrophysics Data System (ADS)

    Spickenbom, K.; Faber, E.; Poggenburg, J.; Seeger, C.

    2009-04-01

    One of the Carbon Capture and Storage (CCS) strategies currently under study is the sequestration of CO2 in sub-seabed geological formations. Even after a thorough review of the geological setting, there is the possibility of leaks from the reservoirs. As part of the EU-financed project CO2ReMoVe (Research, Monitoring, Verification), which aims to develop innovative research and technologies for monitoring and verification of carbon dioxide geological storage, we are working on the development of submarine long-term gas flow monitoring systems. Technically, however, these systems are not limited to CO2 but can be used for monitoring of any free gas emission (bubbles) on the seafloor. The basic design of the gas flow sensor system was derived from former prototypes developed for monitoring CO2 and CH4 on mud volcanoes in Azerbaijan. This design was composed of a raft floating on the surface above the gas vent to collect the bubbles. Sensors for CO2 flux and concentration and electronics for data storage and transmission were mounted on the raft, together with battery-buffered solar panels for power supply. The system was modified for installation in open sea by using a buoy instead of a raft and a funnel on the seafloor to collect the gas, which is then guided above water level through a flexible tube. Besides some technical problems (condensed water in the tube, movement of the buoys due to waves leading to biased measurement of flow rates), this setup provides a cost-effective solution for shallow waters. However, a buoy interferes with ship traffic, and it is also difficult to adapt this design to greater water depths. These requirements can best be complied by a completely submersed system. To allow unattended long-term monitoring in a submarine environment, such a system has to be extremely durable. Therefore, we focussed on developing a mechanically and electrically as simple setup as possible, which has the additional advantage of low cost. The system consists of gas collector, sensor head and pressure housing for electronics and power supply. The collector is a plastic funnel, enclosed in a stainless-steel frame to add weight and stability. The whole unit is fixed to the sediment by nails or sediment screws. The sensor head is equipped with an "inverted tipping-bucket" sensor, which basically works like a turned upside-down rain gauge. It fills with the collected gas until full, then empties completely and starts again, which allows the calculation of the flow rate by container volume and frequency of the cycle. This sensor type is very robust due to a design nearly without moving parts and suitable for very low to medium flow rates. For higher flow rates different sensor heads using turbine wheels or pressure differences can be used. The pressure housing for this prototype is made of aluminium and contains a Hobo Pendant data logger with integrated battery supply. Since this setup is inexpensive, it can be deployed in numbers to cover larger areas. By addition of multi-channel data loggers, data transmission by acoustic modem or cable, relay stations on the seafloor or buoys etc. the infrastructure can be adapted to the environmental setting and financial budget. Prototype tests under laboratory conditions as well as field tests on natural submarine gas vents as an analogue to leaking storage sites have demonstrated the capabilities and robustness of the systems.

  18. Stream Intermittency Sensors Monitor the Onset and Duration of Stream Flow Along a Channel Network During Storms

    NASA Astrophysics Data System (ADS)

    Jensen, C.; McGuire, K. J.

    2017-12-01

    Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (< 1 hour). The high temporal sampling resolution of the sensors permits a more realistic estimate of flow duration in temporary streams, which field surveys may, otherwise, underestimate. Such continuous datasets on stream network length will allow researchers to more accurately assess the value of headwater reaches for contributions to environmental services such as aquatic habitat, hyporheic exchange, and mass fluxes of solutes.

  19. Parylene MEMS patency sensor for assessment of hydrocephalus shunt obstruction.

    PubMed

    Kim, Brian J; Jin, Willa; Baldwin, Alexander; Yu, Lawrence; Christian, Eisha; Krieger, Mark D; McComb, J Gordon; Meng, Ellis

    2016-10-01

    Neurosurgical ventricular shunts inserted to treat hydrocephalus experience a cumulative failure rate of 80 % over 12 years; obstruction is responsible for most failures with a majority occurring at the proximal catheter. Current diagnosis of shunt malfunction is imprecise and involves neuroimaging studies and shunt tapping, an invasive measurement of intracranial pressure and shunt patency. These patients often present emergently and a delay in care has dire consequences. A microelectromechanical systems (MEMS) patency sensor was developed to enable direct and quantitative tracking of shunt patency in order to detect proximal shunt occlusion prior to the development of clinical symptoms thereby avoiding delays in treatment. The sensor was fabricated on a flexible polymer substrate to eventually allow integration into a shunt. In this study, the sensor was packaged for use with external ventricular drainage systems for clinical validation. Insights into the transduction mechanism of the sensor were obtained. The impact of electrode size, clinically relevant temperatures and flows, and hydrogen peroxide (H2O2) plasma sterilization on sensor function were evaluated. Sensor performance in the presence of static and dynamic obstruction was demonstrated using 3 different models of obstruction. Electrode size was found to have a minimal effect on sensor performance and increased temperature and flow resulted in a slight decrease in the baseline impedance due to an increase in ionic mobility. However, sensor response did not vary within clinically relevant temperature and flow ranges. H2O2 plasma sterilization also had no effect on sensor performance. This low power and simple format sensor was developed with the intention of future integration into shunts for wireless monitoring of shunt state and more importantly, a more accurate and timely diagnosis of shunt failure.

  20. Two phase flow bifurcation due to turbulence: transition from slugs to bubbles

    NASA Astrophysics Data System (ADS)

    Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2015-09-01

    The bifurcation of slugs to bubbles within two-phase flow patterns in a minichannel is analyzed. The two-phase flow (water-air) occurring in a circular horizontal minichannel with a diameter of 1 mm is examined. The sequences of light transmission time series recorded by laser-phototransistor sensor is analyzed using recurrence plots and recurrence quantification analysis. Recurrence parameters allow the two-phase flow patterns to be found. On changing the water flow rate we identified partitioning of slugs or aggregation of bubbles.

  1. Position Corrections for Airspeed and Flow Angle Measurements on Fixed-Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2017-01-01

    This report addresses position corrections made to airspeed and aerodynamic flow angle measurements on fixed-wing aircraft. These corrections remove the effects of angular rates, which contribute to the measurements when the sensors are installed away from the aircraft center of mass. Simplified corrections, which are routinely used in practice and assume small flow angles and angular rates, are reviewed. The exact, nonlinear corrections are then derived. The simplified corrections are sufficient in most situations; however, accuracy diminishes for smaller aircraft that incur higher angular rates, and for flight at high air flow angles. This is demonstrated using both flight test data and a nonlinear flight dynamics simulation of a subscale transport aircraft in a variety of low-speed, subsonic flight conditions.

  2. Two-Phase flow instrumentation for nuclear accidents simulation

    NASA Astrophysics Data System (ADS)

    Monni, G.; De Salve, M.; Panella, B.

    2014-11-01

    The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed.

  3. TheClinical Research Tool: a high-performance microdialysis-based system for reliably measuring interstitial fluid glucose concentration.

    PubMed

    Ocvirk, Gregor; Hajnsek, Martin; Gillen, Ralph; Guenther, Arnfried; Hochmuth, Gernot; Kamecke, Ulrike; Koelker, Karl-Heinz; Kraemer, Peter; Obermaier, Karin; Reinheimer, Cornelia; Jendrike, Nina; Freckmann, Guido

    2009-05-01

    A novel microdialysis-based continuous glucose monitoring system, the so-called Clinical Research Tool (CRT), is presented. The CRT was designed exclusively for investigational use to offer high analytical accuracy and reliability. The CRT was built to avoid signal artifacts due to catheter clogging, flow obstruction by air bubbles, and flow variation caused by inconstant pumping. For differentiation between physiological events and system artifacts, the sensor current, counter electrode and polarization voltage, battery voltage, sensor temperature, and flow rate are recorded at a rate of 1 Hz. In vitro characterization with buffered glucose solutions (c(glucose) = 0 - 26 x 10(-3) mol liter(-1)) over 120 h yielded a mean absolute relative error (MARE) of 2.9 +/- 0.9% and a recorded mean flow rate of 330 +/- 48 nl/min with periodic flow rate variation amounting to 24 +/- 7%. The first 120 h in vivo testing was conducted with five type 1 diabetes subjects wearing two systems each. A mean flow rate of 350 +/- 59 nl/min and a periodic variation of 22 +/- 6% were recorded. Utilizing 3 blood glucose measurements per day and a physical lag time of 1980 s, retrospective calibration of the 10 in vivo experiments yielded a MARE value of 12.4 +/- 5.7. Clarke error grid analysis resulted in 81.0%, 16.6%, 0.8%, 1.6%, and 0% in regions A, B, C, D, and E, respectively. The CRT demonstrates exceptional reliability of system operation and very good measurement performance. The ability to differentiate between artifacts and physiological effects suggests the use of the CRT as a reference tool in clinical investigations. 2009 Diabetes Technology Society.

  4. The Clinical Research Tool: A High-Performance Microdialysis-Based System for Reliably Measuring Interstitial Fluid Glucose Concentration

    PubMed Central

    Ocvirk, Gregor; Hajnsek, Martin; Gillen, Ralph; Guenther, Arnfried; Hochmuth, Gernot; Kamecke, Ulrike; Koelker, Karl-Heinz; Kraemer, Peter; Obermaier, Karin; Reinheimer, Cornelia; Jendrike, Nina; Freckmann, Guido

    2009-01-01

    Background A novel microdialysis-based continuous glucose monitoring system, the so-called Clinical Research Tool (CRT), is presented. The CRT was designed exclusively for investigational use to offer high analytical accuracy and reliability. The CRT was built to avoid signal artifacts due to catheter clogging, flow obstruction by air bubbles, and flow variation caused by inconstant pumping. For differentiation between physiological events and system artifacts, the sensor current, counter electrode and polarization voltage, battery voltage, sensor temperature, and flow rate are recorded at a rate of 1 Hz. Method In vitro characterization with buffered glucose solutions (cglucose = 0 - 26 × 10-3 mol liter-1) over 120 h yielded a mean absolute relative error (MARE) of 2.9 ± 0.9% and a recorded mean flow rate of 330 ± 48 nl/min with periodic flow rate variation amounting to 24 ± 7%. The first 120 h in vivo testing was conducted with five type 1 diabetes subjects wearing two systems each. A mean flow rate of 350 ± 59 nl/min and a periodic variation of 22 ± 6% were recorded. Results Utilizing 3 blood glucose measurements per day and a physical lag time of 1980 s, retrospective calibration of the 10 in vivo experiments yielded a MARE value of 12.4 ± 5.7. Clarke error grid analysis resulted in 81.0%, 16.6%, 0.8%, 1.6%, and 0% in regions A, B, C, D, and E, respectively. Conclusion The CRT demonstrates exceptional reliability of system operation and very good measurement performance. The ability to differentiate between artifacts and physiological effects suggests the use of the CRT as a reference tool in clinical investigations. PMID:20144284

  5. Heat Flux Sensor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A heat flux microsensor developed under a NASP Small Business Innovation Research (SBIR) has a wide range of potential commercial applications. Vatell Corporation originally designed microsensors for use in very high temperatures. The company then used the technology to develop heat flux sensors to measure the rate of heat energy flowing in and out of a surface as well as readings on the surface temperature. Additional major advantages include response to heat flux in less than 10 microseconds and the ability to withstand temperatures up to 1,200 degrees centigrade. Commercial applications are used in high speed aerodynamics, supersonic combustion, blade cooling, and mass flow measurements, etc.

  6. Breath acetone monitoring by portable Si:WO3 gas sensors

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2013-01-01

    Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (~20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702

  7. Measuring Physical Properties of Neuronal and Glial Cells with Resonant Microsensors

    PubMed Central

    2015-01-01

    Microelectromechanical systems (MEMS) resonant sensors provide a high degree of accuracy for measuring the physical properties of chemical and biological samples. These sensors enable the investigation of cellular mass and growth, though previous sensor designs have been limited to the study of homogeneous cell populations. Population heterogeneity, as is generally encountered in primary cultures, reduces measurement yield and limits the efficacy of sensor mass measurements. This paper presents a MEMS resonant pedestal sensor array fabricated over through-wafer pores compatible with vertical flow fields to increase measurement versatility (e.g., fluidic manipulation and throughput) and allow for the measurement of heterogeneous cell populations. Overall, the improved sensor increases capture by 100% at a flow rate of 2 μL/min, as characterized through microbead experiments, while maintaining measurement accuracy. Cell mass measurements of primary mouse hippocampal neurons in vitro, in the range of 0.1–0.9 ng, demonstrate the ability to investigate neuronal mass and changes in mass over time. Using an independent measurement of cell volume, we find cell density to be approximately 1.15 g/mL. PMID:24734874

  8. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio

    2013-02-15

    A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signalmore » proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.« less

  9. Structure and Fabrication of a Microscale Flow-Rate/Skin Friction Sensor

    NASA Technical Reports Server (NTRS)

    Chandrasekharan, Vijay (Inventor); Sells, Jeremy (Inventor); Sheplak, Mark (Inventor); Arnold, David P. (Inventor)

    2014-01-01

    A floating element shear sensor and method for fabricating the same are provided. According to an embodiment, a microelectromechanical systems (MEMS)-based capacitive floating element shear stress sensor is provided that can achieve time-resolved turbulence measurement. In one embodiment, a differential capacitive transduction scheme is used for shear stress measurement. The floating element structure for the differential capacitive transduction scheme incorporates inter digitated comb fingers forming differential capacitors, which provide electrical output proportional to the floating element deflection.

  10. Experimental investigation on mass flow rate measurements using fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Thekkethil, S. R.; Thomas, R. J.; Neumann, H.; Ramalingam, R.

    2017-02-01

    Flow measurement and control of cryogens is one of the major requirements of systems such as superconductor magnets for fusion reactors, MRI magnets etc. They can act as an early diagnostic tool for detection of any faults and ensure correct distribution of cooling load while also accessing thermal performance of the devices. Fibre Bragg Grating (FBG) sensors provide compact and accurate measurement systems which have added advantages such as immunity towards electrical and magnetic interference, low attenuation losses and remote sensing. This paper summarizes the initial experimental investigations and calibration of a novel FBG based mass flow meter. This design utilizes the viscous drag due to the flow to induce a bending strain on the fibre. The strain experienced by the fibre will be proportional to the flowrate and can be measured in terms of Bragg wavelength shift. The flowmeter is initially tested at atmospheric conditions using helium. The results are summarized and the performance parameters of the sensor are estimated. The results were also compared to a numerical model and further results for liquid helium is also reported. An overall sensitivity of 29 pm.(g.s-1)-1 was obtained for a helium flow, with a resolution of 0.2 g.s-1. A hysteresis error of 8 pm was also observed during load-unload cycles. The sensor is suitable for further tests using cryogens.

  11. Noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump.

    PubMed

    Kosaka, Ryo; Fukuda, Kyohei; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2013-01-01

    In order to monitor the condition of a patient using a left ventricular assist system (LVAS), blood flow should be measured. However, the reliable determination of blood-flow rate has not been established. The purpose of the present study is to develop a noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump. The flow meter uses the centrifugal force generated by the flow rate in the curved cannula. Two strain gauges served as sensors. The first gauges were attached to the curved area to measure static pressure and centrifugal force, and the second gauges were attached to straight area to measure static pressure. The flow rate was determined by the differences in output from the two gauges. The zero compensation was constructed based on the consideration that the flow rate could be estimated during the initial driving condition and the ventricular suction condition without using the flow meter. A mock circulation loop was constructed in order to evaluate the measurement performance of the developed flow meter with zero compensation. As a result, the zero compensation worked effectively for the initial calibration and the zero-drift of the measured flow rate. We confirmed that the developed flow meter using a curved cannula with zero compensation was able to accurately measure the flow rate continuously and noninvasively.

  12. High-temperature zirconia microthruster with an integrated flow sensor

    NASA Astrophysics Data System (ADS)

    Lekholm, Ville; Persson, Anders; Palmer, Kristoffer; Ericson, Fredric; Thornell, Greger

    2013-05-01

    This paper describes the design, fabrication and characterization of a ceramic, heated cold-gas microthruster device made with silicon tools and high temperature co-fired ceramic processing. The device contains two opposing thrusters, each with an integrated calorimetric propellant flow sensor and a heater in the stagnation chamber of the nozzle. The exhaust from a thruster was photographed using schlieren imaging to study its behavior and search for leaks. The heater elements were tested under a cyclic thermal load and to the maximum power before failure. The nozzle heater was shown to improve the efficiency of the thruster by 6.9%, from a specific impulse of 66 to 71 s, as calculated from a decrease of the flow rate through the nozzle of 13%, from 44.9 to 39.2 sccm. The sensitivity of the integrated flow sensor was measured to 0.15 mΩ sccm-1 in the region of 0-15 sccm and to 0.04 mΩ sccm-1 above 20 sccm, with a zero-flow sensitivity of 0.27 mΩ sccm-1. The choice of yttria-stabilized zirconia as a material for the devices makes them robust and capable of surviving temperatures locally exceeding 1000 °C.

  13. Cooperative suction by vertical capillary array pump for controlling flow profiles of microfluidic sensor chips.

    PubMed

    Horiuchi, Tsutomu; Hayashi, Katsuyoshi; Seyama, Michiko; Inoue, Suzuyo; Tamechika, Emi

    2012-10-18

    A passive pump consisting of integrated vertical capillaries has been developed for a microfluidic chip as an useful component with an excellent flow volume and flow rate. A fluidic chip built into a passive pump was used by connecting the bottoms of all the capillaries to a top surface consisting of a thin layer channel in the microfluidic chip where the thin layer channel depth was smaller than the capillary radius. As a result the vertical capillaries drew fluid cooperatively rather than independently, thus exerting the maximum suction efficiency at every instance. This meant that a flow rate was realized that exhibited little variation and without any external power or operation. A microfluidic chip built into this passive pump had the ability to achieve a quasi-steady rather than a rapidly decreasing flow rate, which is a universal flow characteristic in an ordinary capillary.

  14. Novel monorail infusion catheter for volumetric coronary blood flow measurement in humans: in vitro validation.

    PubMed

    van 't Veer, Marcel; Adjedj, Julien; Wijnbergen, Inge; Tóth, Gabor G; Rutten, Marcel C M; Barbato, Emanuele; van Nunen, Lokien X; Pijls, Nico H J; De Bruyne, Bernard

    2016-08-20

    The aim of this study is to validate a novel monorail infusion catheter for thermodilution-based quantitative coronary flow measurements. Based on the principles of thermodilution, volumetric coronary flow can be determined from the flow rate of a continuous saline infusion, the temperature of saline when it enters the coronary artery, and the temperature of the blood mixed with the saline in the distal part of the coronary artery. In an in vitro set-up of the systemic and coronary circulation at body temperature, coronary flow values were varied from 50-300 ml/min in steps of 50 ml/min. At each coronary flow value, thermodilution-based measurements were performed at infusion rates of 15, 20, and 30 ml/min. Temperatures and pressures were simultaneously measured with a pressure/temperature sensor-tipped guidewire. Agreement of the calculated flow and the measured flow as well as repeatability were assessed. A total of five catheters were tested, with a total of 180 measurements. A strong correlation (ρ=0.976, p<0.0001) and a difference of -6.5±15.5 ml/min were found between measured and calculated flow. The difference between two repeated measures was 0.2%±8.0%. This novel infusion catheter used in combination with a pressure/temperature sensor-tipped guidewire allows accurate and repeatable absolute coronary flow measurements. This opens a window to a better understanding of the coronary microcirculation.

  15. Hydroball string sensing system

    DOEpatents

    Hurwitz, Michael J.; Ekeroth, Douglas E.; Squarer, David

    1991-01-01

    A hydroball string sensing system for a nuclear reactor that includes stainless tubes positioned to guide hydroball strings into and out of the nuclear reactor core. A sensor such as an ultrasonic transducer transmitter and receiver is positioned outside of the nuclear reactor core and adjacent to the tube. The presence of an object such a bullet member positioned at an end a hydroball string, or any one of the hydroballs interrupts the transmission of ultrasound from the transmitter to the receiver. Alternatively, if the bullet member and hydroballs include a ferritic material, either a Hall effect sensor or other magnetic field sensors such as a magnetic field rate of change sensor can be used to detect the location and position of a hydroball string. Placing two sensors along the tube with a known distance between the sensors enables the velocity of a hydroball string to be determined. This determined velocity can be used to control the flow rate of a fluid within the tube so as to control the velocity of the hydroball string.

  16. Microparticle tracking velocimetry as a tool for microfluidic flow measurements

    NASA Astrophysics Data System (ADS)

    Salipante, Paul; Hudson, Steven D.; Schmidt, James W.; Wright, John D.

    2017-07-01

    The accurate measurement of flows in microfluidic channels is important for commercial and research applications. We compare the accuracy of flow measurement techniques over a wide range flows. Flow measurements made using holographic microparticle tracking velocimetry (µPTV) and a gravimetric flow standard over the range of 0.5-100 nL/s agree within 0.25%, well within the uncertainty of the two flow systems. Two commercial thermal flow sensors were used as the intermediaries (transfer standards) between the two flow measurement systems. The gravimetric flow standard was used to calibrate the thermal flow sensors by measuring the rate of change of the mass of liquid in a beaker on a micro-balance as it fills. The holographic µPTV flow measurements were made in a rectangular channel and the flow was seeded with 1 µm diameter polystyrene spheres. The volumetric flow was calculated using the Hagen-Pouiseille solution for a rectangular channel. The uncertainty of both flow measurement systems is given. For the gravimetric standard, relative uncertainty increased for decreasing flows due to surface tension forces between the pipette carrying the flow and the free surface of the liquid in the beaker. The uncertainty of the holographic µPTV measurements did not vary significantly over the measured flow range, and thus comparatively are especially useful at low flow velocities.

  17. Photonic Low Cost Micro-Sensor for in-Line Wear Particle Detection in Flowing Lube Oils.

    PubMed

    Mabe, Jon; Zubia, Joseba; Gorritxategi, Eneko

    2017-03-14

    The presence of microscopic particles in suspension in industrial fluids is often an early warning of latent or imminent failures in the equipment or processes where they are being used. This manuscript describes work undertaken to integrate different photonic principles with a micro- mechanical fluidic structure and an embedded processor to develop a fully autonomous wear debris sensor for in-line monitoring of industrial fluids. Lens-less microscopy, stroboscopic illumination, a CMOS imager and embedded machine vision technologies have been merged to develop a sensor solution that is able to detect and quantify the number and size of micrometric particles suspended in a continuous flow of a fluid. A laboratory test-bench has been arranged for setting up the configuration of the optical components targeting a static oil sample and then a sensor prototype has been developed for migrating the measurement principles to real conditions in terms of operating pressure and flow rate of the oil. Imaging performance is quantified using micro calibrated samples, as well as by measuring real used lubricated oils. Sampling a large fluid volume with a decent 2D spatial resolution, this photonic micro sensor offers a powerful tool at very low cost and compacted size for in-line wear debris monitoring.

  18. Photonic Low Cost Micro-Sensor for in-Line Wear Particle Detection in Flowing Lube Oils

    PubMed Central

    Mabe, Jon; Zubia, Joseba; Gorritxategi, Eneko

    2017-01-01

    The presence of microscopic particles in suspension in industrial fluids is often an early warning of latent or imminent failures in the equipment or processes where they are being used. This manuscript describes work undertaken to integrate different photonic principles with a micro- mechanical fluidic structure and an embedded processor to develop a fully autonomous wear debris sensor for in-line monitoring of industrial fluids. Lens-less microscopy, stroboscopic illumination, a CMOS imager and embedded machine vision technologies have been merged to develop a sensor solution that is able to detect and quantify the number and size of micrometric particles suspended in a continuous flow of a fluid. A laboratory test-bench has been arranged for setting up the configuration of the optical components targeting a static oil sample and then a sensor prototype has been developed for migrating the measurement principles to real conditions in terms of operating pressure and flow rate of the oil. Imaging performance is quantified using micro calibrated samples, as well as by measuring real used lubricated oils. Sampling a large fluid volume with a decent 2D spatial resolution, this photonic micro sensor offers a powerful tool at very low cost and compacted size for in-line wear debris monitoring. PMID:28335436

  19. Wire-mesh sensor, ultrasound and high-speed videometry applied for the characterization of horizontal gas-liquid slug flow

    NASA Astrophysics Data System (ADS)

    Ofuchi, C. Y.; Morales, R. E. M.; Arruda, L. V. R.; Neves, F., Jr.; Dorini, L.; do Amaral, C. E. F.; da Silva, M. J.

    2012-03-01

    Gas-liquid flows occur in a broad range of industrial applications, for instance in chemical, petrochemical and nuclear industries. Correct understating of flow behavior is crucial for safe and optimized operation of equipments and processes. Thus, measurement of gas-liquid flow plays an important role. Many techniques have been proposed and applied to analyze two-phase flows so far. In this experimental research, data from a wire-mesh sensor, an ultrasound technique and high-speed camera are used to study two-phase slug flows in horizontal pipes. The experiments were performed in an experimental two-phase flow loop which comprises a horizontal acrylic pipe of 26 mm internal diameter and 9 m length. Water and air were used to produce the two-phase flow and their flow rates are separately controlled to produce different flow conditions. As a parameter of choice, translational velocity of air bubbles was determined by each of the techniques and comparatively evaluated along with a mechanistic flow model. Results obtained show good agreement among all techniques. The visualization of flow obtained by the different techniques is also presented.

  20. Performance improvement of IPMC flow sensors with a biologically-inspired cupula structure

    NASA Astrophysics Data System (ADS)

    Lei, Hong; Sharif, Montassar Aidi; Paley, Derek A.; McHenry, Matthew J.; Tan, Xiaobo

    2016-04-01

    Ionic polymer-metal composites (IPMCs) have inherent underwater sensing and actuation properties. They can be used as sensors to collect flow information. Inspired by the hair-cell mediated receptor in the lateral line system of fish, the impact of a flexible, cupula-like structure on the performance of IPMC flow sensors is experimentally explored. The fabrication method to create a silicone-capped IPMC sensor is reported. Experiments are conducted to compare the sensing performance of the IPMC flow sensor before and after the PDMS coating under the periodic flow stimulus generated by a dipole source in still water and the laminar flow stimulus generated in a flow tank. Experimental results show that the performance of IPMC flow sensors is significantly improved under the stimulus of both periodic flow and laminar flow by the proposed silicone-capping.

  1. 40 CFR 63.9921 - What are the installation, operation and maintenance requirements for my monitors?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating limits in § 63.9890(b) for pressure drop and scrubber water flow rate, you must install, operate...) For the pressure drop CPMS, you must: (i) Locate the pressure sensor(s) in or as close to a position... sensitivity of 0.5 inch of water or a transducer with a minimum measurement sensitivity of 1 percent of the...

  2. Sap flow sensors: construction, quality control and comparison.

    PubMed

    Davis, Tyler W; Kuo, Chen-Min; Liang, Xu; Yu, Pao-Shan

    2012-01-01

    This work provides a design for two types of sensors, based on the thermal dissipation and heat ratio methods of sap flow calculation, for moderate to large scale deployments for the purpose of monitoring tree transpiration. These designs include a procedure for making these sensors, a quality control method for the final products, and a complete list of components with vendors and pricing information. Both sensor designs were field tested alongside a commercial sap flow sensor to assess their performance and show the importance for quality controlling the sensor outputs. Results show that for roughly 2% of the cost of commercial sensors, self-made sap flow sensors can provide acceptable estimates of the sap flow measurements compared to the commercial sensors.

  3. High resolution gas volume change sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirckx, Joris J. J.; Aernouts, Jef E. F.; Aerts, Johan R. M.

    2007-05-15

    Changes of gas quantity in a system can be measured either by measuring pressure changes or by measuring volume changes. As sensitive pressure sensors are readily available, pressure change is the commonly used technique. In many physiologic systems, however, buildup of pressure influences the gas exchange mechanisms, thus changing the gas quantity change rate. If one wants to study the gas flow in or out of a biological gas pocket, measurements need to be done at constant pressure. In this article we present a highly sensitive sensor for quantitative measurements of gas volume change at constant pressure. The sensor ismore » based on optical detection of the movement of a droplet of fluid enclosed in a capillary. The device is easy to use and delivers gas volume data at a rate of more than 15 measurements/s and a resolution better than 0.06 {mu}l. At the onset of a gas quantity change the sensor shows a small pressure artifact of less than 15 Pa, and at constant change rates the pressure artifact is smaller than 10 Pa or 0.01% of ambient pressure.« less

  4. Theoretical and experimental analysis of analyte transport in a fiber-optic, protein C immuno-biosensor.

    PubMed

    Tang, Liang; Kwon, Hyun J; Kang, Kyung A

    2004-12-30

    Protein C (PC) is an important anticoagulant in human blood plasma, and early diagnosis of PC deficiency is critical for preventing dangerous thromboembolic complications. A fiber-optic PC immuno-biosensor has been under development in our research group for real-time PC-deficiency diagnosis. The sensor has demonstrated a good sensitivity and specificity for quantifying PC in buffered solutions. However, for plasma samples, with a limited sample reaction time, the sensor produced only 30% of the signal intensity of PC in buffer. The high plasma viscosity (1.9 cP) was speculated as the major reason for signal intensity reduction. In this investigation, the sensing performance of the fiber-optic PC biosensor is systematically characterized in terms of physical and chemical properties of the sample media. Theoretical and experimental analyses indicate that the reduced diffusion rate of PC molecules in viscous samples caused the sensing system to be more mass-transfer-limited. Convective flow of sample/reagent solutions during immunoreactions can increase the rate of the analyte mass transport from the bulk solution to the sensor surface, with reaction kinetics changing from mass-transfer-limited to reaction-limited as flow velocity increases. It was shown that PC sensor performance was significantly improved for plasma samples with convection. The effect of the flow velocity and incubation times for samples and reagents on the sensor performance was also systematically analyzed to optimize the assay protocol for PC sensing. Currently, a 6-cm-long immuno-biosensor is capable of quantifying PC in plasma (1 mL) in the heterozygous PC deficiency range (0.5 to 2.5 microg/mL) within 5 minutes, at an average signal-to-noise ratio of 50. 2004 Wiley Periodicals, Inc.

  5. Portable Unit for Metabolic Analysis

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Pitch, Nancy D.; Lewis, Mark E.; Juergens, Jeffrey R.; Lichter, Michael J.; Stuk, Peter M.; Diedrick, Dale M.; Valentine, Russell W.; Pettegrew, Richard D.

    2007-01-01

    The Portable Unit for Metabolic Analysis (PUMA) is an instrument that measures several quantities indicative of human metabolic function. Specifically, this instrument makes time-resolved measurements of temperature, pressure, flow, and the partial pressures of oxygen and carbon dioxide in breath during both inhalation and exhalation. Portable instruments for measuring these quantities have been commercially available, but the response times of those instruments are too long to enable temporal resolution of phenomena on the time scales of human respiration cycles. In contrast, the response time of the PUMA is significantly shorter than characteristic times of human respiration phenomena, making it possible to analyze varying metabolic parameters, not only on sequential breath cycles but also at successive phases of inhalation and exhalation within the same breath cycle. In operation, the PUMA is positioned to sample breath near the subject s mouth. Commercial off-the-shelf sensors are used for three of the measurements: a miniature pressure transducer for pressure, a thermistor for temperature, and an ultrasonic sensor for flow. Sensors developed at Glenn Research Center are used for measuring the partial pressures of oxygen and carbon dioxide: The carbon dioxide sensor exploits the relatively strong absorption of infrared light by carbon dioxide. Light from an infrared source passes through the stream of inhaled or exhaled gas and is focused on an infrared- sensitive photodetector. The oxygen sensor exploits the effect of oxygen in quenching the fluorescence of ruthenium-doped organic molecules in a dye on the tip of an optical fiber. A blue laser diode is used to excite the fluorescence, and the optical fiber carries the fluorescent light to a photodiode, the temporal variation of the output of which bears a known relationship with the rate of quenching of fluorescence and, hence, with the partial pressure of oxygen. The outputs of the sensors are digitized, preprocessed by a small onboard computer, and then sent wirelessly to a desktop computer, where the collected data are analyzed and displayed. In addition to the raw data on temperature, pressure, flow, and mole fractions of oxygen and carbon dioxide, the display can include volumetric oxygen consumption, volumetric carbon dioxide production, respiratory equivalent ratio, and volumetric flow rate of exhaled gas.

  6. Test Methodologies for Hydrogen Sensor Performance Assessment: Chamber vs. Flow Through Test Apparatus: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttner, William J; Hartmann, Kevin S; Schmidt, Kara

    Certification of hydrogen sensors to standards often prescribes using large-volume test chambers [1, 2]. However, feedback from stakeholders such as sensor manufacturers and end-users indicate that chamber test methods are often viewed as too slow and expensive for routine assessment. Flow through test methods potentially are an efficient, cost-effective alternative for sensor performance assessment. A large number of sensors can be simultaneously tested, in series or in parallel, with an appropriate flow through test fixture. The recent development of sensors with response times of less than 1s mandates improvements in equipment and methodology to properly capture the performance of thismore » new generation of fast sensors; flow methods are a viable approach for accurate response and recovery time determinations, but there are potential drawbacks. According to ISO 26142 [1], flow through test methods may not properly simulate ambient applications. In chamber test methods, gas transport to the sensor can be dominated by diffusion which is viewed by some users as mimicking deployment in rooms and other confined spaces. Alternatively, in flow through methods, forced flow transports the gas to the sensing element. The advective flow dynamics may induce changes in the sensor behaviour relative to the quasi-quiescent condition that may prevail in chamber test methods. One goal of the current activity in the JRC and NREL sensor laboratories [3, 4] is to develop a validated flow through apparatus and methods for hydrogen sensor performance testing. In addition to minimizing the impact on sensor behaviour induced by differences in flow dynamics, challenges associated with flow through methods include the ability to control environmental parameters (humidity, pressure and temperature) during the test and changes in the test gas composition induced by chemical reactions with upstream sensors. Guidelines on flow through test apparatus design and protocols for the evaluation of hydrogen sensor performance are being developed. Various commercial sensor platforms (e.g., thermal conductivity, catalytic and metal semiconductor) were used to demonstrate the advantages and issues with the flow through methodology.« less

  7. Comparative Kinetic Analysis of Closed-Ended and Open-Ended Porous Sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Yiliang; Gaur, Girija; Mernaugh, Raymond L.; Laibinis, Paul E.; Weiss, Sharon M.

    2016-09-01

    Efficient mass transport through porous networks is essential for achieving rapid response times in sensing applications utilizing porous materials. In this work, we show that open-ended porous membranes can overcome diffusion challenges experienced by closed-ended porous materials in a microfluidic environment. A theoretical model including both transport and reaction kinetics is employed to study the influence of flow velocity, bulk analyte concentration, analyte diffusivity, and adsorption rate on the performance of open-ended and closed-ended porous sensors integrated with flow cells. The analysis shows that open-ended pores enable analyte flow through the pores and greatly reduce the response time and analyte consumption for detecting large molecules with slow diffusivities compared with closed-ended pores for which analytes largely flow over the pores. Experimental confirmation of the results was carried out with open- and closed-ended porous silicon (PSi) microcavities fabricated in flow-through and flow-over sensor configurations, respectively. The adsorption behavior of small analytes onto the inner surfaces of closed-ended and open-ended PSi membrane microcavities was similar. However, for large analytes, PSi membranes in a flow-through scheme showed significant improvement in response times due to more efficient convective transport of analytes. The experimental results and theoretical analysis provide quantitative estimates of the benefits offered by open-ended porous membranes for different analyte systems.

  8. A fibre optic oxygen sensor that detects rapid PO2 changes under simulated conditions of cyclical atelectasis in vitro☆

    PubMed Central

    Formenti, Federico; Chen, Rongsheng; McPeak, Hanne; Matejovic, Martin; Farmery, Andrew D.; Hahn, Clive E.W.

    2014-01-01

    Two challenges in the management of Acute Respiratory Distress Syndrome are the difficulty in diagnosing cyclical atelectasis, and in individualising mechanical ventilation therapy in real-time. Commercial optical oxygen sensors can detect PaO2 oscillations associated with cyclical atelectasis, but are not accurate at saturation levels below 90%, and contain a toxic fluorophore. We present a computer-controlled test rig, together with an in-house constructed ultra-rapid sensor to test the limitations of these sensors when exposed to rapidly changing PO2 in blood in vitro. We tested the sensors’ responses to simulated respiratory rates between 10 and 60 breaths per minute. Our sensor was able to detect the whole amplitude of the imposed PO2 oscillations, even at the highest respiratory rate. We also examined our sensor's resistance to clot formation by continuous in vivo deployment in non-heparinised flowing animal blood for 24 h, after which no adsorption of organic material on the sensor's surface was detectable by scanning electron microscopy. PMID:24184746

  9. Design and implementation of a bluetooth-based band-aid pulse rate sensor

    NASA Astrophysics Data System (ADS)

    Kumar, Prashanth S.; Oh, Sechang; Rai, Pratyush; Kwon, Hyeokjun; Banerjee, Nilanjan; Varadan, Vijay K.

    2011-04-01

    Remote patient monitoring systems capable of collecting vital patient data such as blood pressure readings, Electrocardiograph (ECG) waveforms, and heart rate can obviate the need for repeated visits to the hospital. Moreover, such systems that continuously monitor the human physiology can provide valuable data to prognosticate the onset of critical health problems. The key to such remote health diagnostics is the design of minimally intrusive, low cost sensors that do not impede a patient's quotidian life but at the same time collect reliable noise free data. To this end, in this paper, we design and implement a Bluetooth-based wireless sensor system with a disposable sensor element and a reusable wireless component that can be worn as a "band-aid". The sensor is a piezoelectric polymer film placed on the wrist in proximity to the radial artery. The band-aid sized sensor allows non-intrusive monitoring of the pulsatile flow of blood in the artery. The sensor, using the Bluetooth module, can communicate with any Bluetooth enabled computer, mobile phone, or PDA. The data collected from the patient can be remotely viewed and analyzed by a physician.

  10. Flexible micro flow sensor for micro aerial vehicles

    NASA Astrophysics Data System (ADS)

    Zhu, Rong; Que, Ruiyi; Liu, Peng

    2017-12-01

    This article summarizes our studies on micro flow sensors fabricated on a flexible polyimide circuit board by a low-cost hybrid process of thin-film deposition and circuit printing. The micro flow sensor has merits of flexibility, structural simplicity, easy integrability with circuits, and good sensing performance. The sensor, which adheres to an object surface, can detect the surface flow around the object. In our study, we install the fabricated micro flow sensors on micro aerial vehicles (MAVs) to detect the surface flow variation around the aircraft wing and deduce the aerodynamic parameters of the MAVs in flight. Wind tunnel experiments using the sensors integrated with the MAVs are also conducted.

  11. Fiber optic liquid mass flow sensor and method

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Gregory, Don Allen (Inventor); Wiley, John T. (Inventor); Pedersen, Kevin W. (Inventor)

    2010-01-01

    A method and apparatus are provided for sensing the mass flow rate of a fluid flowing through a pipe. A light beam containing plural individual wavelengths is projected from one side of the pipe across the width of the pipe so as to pass through the fluid under test. Fiber optic couplers located at least two positions on the opposite side of the pipe are used to detect the light beam. A determination is then made of the relative strengths of the light beam for each wavelength at the at least two positions and based at least in part on these relative strengths, the mass flow rate of the fluid is determined.

  12. Composition pulse time-of-flight mass flow sensor

    DOEpatents

    Harnett, Cindy K [Livermore, CA; Crocker, Robert W [Fremont, CA; Mosier, Bruce P [San Francisco, CA; Caton, Pamela F [Berkeley, CA; Stamps, James F [Livermore, CA

    2007-06-05

    A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 2,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined. A pair of spaced apart electrodes can be used to produce the electrochemical pulse. In those instances where it is desired to measure a wide range of fluid flow rates a three electrode configuration in which the electrodes are spaced at unequal distances has been found to be desirable.

  13. A computerized system to evaluate volumetric infusion pumps.

    PubMed

    Kobayashi, S; Ogata, T

    1992-01-01

    A computerized system was developed to examine the performance characteristics of infusion pumps. This system collects solution delivered by an infusion pump through an intravenous needle into a collection vessel. Using an inductor-type weight sensor and a semiconductor type of strain-gauge pressure sensor, the weight of the collection vessel and the pressure at the needle were monitored over a specific period (the sampling time), and changes in pressure, flow rate, and volume of fluid were calculated. This system was applied to five volumetric infusion pumps with different pumping mechanisms. Test conditions involved two different solutions, two sizes of needle gauge, and seven flow rates, for a total of 28 measurements per pump. Results showed considerable variation in the infusion pumps' performances based on differences in these indices. Use of an inductance weight sensor as a means to evaluate gravimetric performance appears to be an improvement over conventional methods, which use analytical balances for data generation. The results indicate that this system will be useful in evaluating the performances of commercially available infusion pumps as well as those in development.

  14. A high selective cataluminescence sensor for the determination of tetrahydrofuran vapor

    NASA Astrophysics Data System (ADS)

    Cao, Xiaoan; Dai, Huimei; Chen, Suilin; Zeng, Jiayi; Zhang, Keke; Sun, Yan

    2013-02-01

    A novel tetrahydrofuran (THF) vapor sensor was designed based on the cataluminescence (CTL) of THF on nanosized γ-Al2O3/MgO (mol ratio = 1.5:1). SEM and XRD were applied for its characterization. We found that the CTL was strongly produced when THF vapor flowed through a nanosized Al-Mg mixed-metal oxide surface, while the CTL was weakly generated when THF vapor flowed through a single nanosized γ-Al2O3 or MgO surface. Quantitative analysis was performed at an optimal temperature of 279 °C, a wavelength of 460 nm and a flow rate of 360 mL min-1. The linear range of the CTL intensity versus concentrations of THF vapor was 1.0-3000 mL m-3 with a detection limit of 0.67 mL m-3. No (or only very low) interference was observed by formaldehyde, methanol, ethanol, benzene, toluene, ethyl acetate, ammonia, cyclohexane, chloroform, glycol armour ether, glycol ether, isopropyl ether and n-butyl ether or acetic acid. Since the response of the sensor was rapid and the system was easy to handle, we believe that the sensor has great potential for real-world use.

  15. Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network

    PubMed Central

    Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N.

    2015-01-01

    Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead. PMID:26426701

  16. Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network.

    PubMed

    Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N

    2015-01-01

    Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead.

  17. A water-powered Energy Harvesting system with Bluetooth Low Energy interface

    NASA Astrophysics Data System (ADS)

    Kroener, M.; Allinger, K.; Berger, M.; Grether, E.; Wieland, F.; Heller, S.; Woias, P.

    2016-11-01

    This paper reports the design, and testing of a water turbine generator system for typical flow rates in domestic applications, with an integrated power management and a Bluetooth low energy (BLE) based RF data transmission interface. It is based on a commercially available low cost hydro generator. The generator is built into a housing with optimized reduced fluidic resistance to enable operation with flow rates as low as 6 l/min. The power management combines rectification, buffering, defined start-up, and circuit protection. An MSP430FR5949 microcontroller is used for data acquisition and processing. The data are transmitted via RF, using a Bluegiga BLE112 module in advertisement mode, to a PC where the measured flow rate is stored and displayed. The transmission rate of the wireless sensor node (WSN) is set to 1 Hz if enough power is available, which is the case for flow rates above 5.5 l/min. The electronics power demand is calculated to be 340 μW in average, while the generator is capable of delivering more than 200 mW for flow rates above 15 l/min.

  18. Assessment of actual transpiration rate in olive tree field combining sap-flow, leaf area index and scintillometer measurements

    NASA Astrophysics Data System (ADS)

    Agnese, C.; Cammalleri, C.; Ciraolo, G.; Minacapilli, M.; Provenzano, G.; Rallo, G.; de Bruin, H. A. R.

    2009-09-01

    Models to estimate the actual evapotranspiration (ET) in sparse vegetation area can be fundamental for agricultural water managements, especially when water availability is a limiting factor. Models validation must be carried out by considering in situ measurements referred to the field scale, which is the relevant scale of the modelled variables. Moreover, a particular relevance assumes to consider separately the components of plant transpiration (T) and soil evaporation (E), because only the first is actually related to the crop stress conditions. Objective of the paper was to assess a procedure aimed to estimate olive trees actual transpiration by combining sap flow measurements with the scintillometer technique at field scale. The study area, located in Western Sicily (Italy), is mainly cultivated with olive crop and is characterized by typical Mediterranean semi-arid climate. Measurements of sap flow and crop actual evapotranspiration rate were carried out during 2008 irrigation season. Crop transpiration fluxes, measured on some plants by means of sap flow sensors, were upscaled considering the leaf area index (LAI). The comparison between evapotranspiration values, derived by displaced-beam small-aperture scintillometer (DBSAS-SLS20, Scintec AG), with the transpiration fluxes obtained by the sap flow sensors, also allowed to evaluate the contribute of soil evaporation in an area characterized by low vegetation coverage.

  19. A mid-infrared flow-through sensor for label-free monitoring of enzyme inhibition.

    PubMed

    Armenta, S; Tomischko, W; Lendl, B

    2008-12-01

    Label-free monitoring of acetylcholinesterase (AChE) activity was achieved with a mid-infrared flow-through sensor. The flow-through sensor comprised agarose beads, carrying covalently immobilized AChE, which were placed in a temperature-controlled (37 degrees C) CaF(2) flow cell with an optical path of 60 mum. The sensor was incorporated into a computer-controlled sequential injection (SI) system for automated liquid handling. Different mixtures of enzyme substrate acetylcholine (ACh) and inhibitor (tacrine) were prepared and fed into the flow-through sensor. The flow was stopped as soon as the prepared mixtures reached the sensor. Enzymatic hydrolysis of ACh by AChE was directly monitored as it took place in the flow-through sensor. The inhibition effect of tacrine was calculated from the reaction-induced spectral changes, revealing an important decrease in the activity of AChE, approaching zero when the inhibitor concentration is high enough. The developed mid-infrared flow-through sensor is flexible and can be used to study the inhibitor activity of different target molecules as well as different enzymes.

  20. A novel automatic regulatory device for continuous bladder irrigation based on wireless sensor in patients after transurethral resection of the prostate: A prospective investigation.

    PubMed

    Ding, Aimin; Cao, Huling; Wang, Lihua; Chen, Jiangang; Wang, Jian; He, Bosheng

    2016-12-01

    Benign prostatic hyperplasia is a common progressive disease in aging men, which leads to a significant impact on daily lives of patients. Continuous bladder irrigation (CBI) is a supplementary option for preventing the adverse events following transurethral resection of the prostate (TURP). Regulation of the flow rate based on the color of drainage bag is significant to prevent the clot formation and retention, which is controlled manually at present. To achieve a better control of flow rate and reduce inappropriate flow rate-related adverse effects, we designed an automatic flow rate controller for CBI applied with wireless sensor and evaluated its clinical efficacy. The therapeutic efficacy was evaluated in patients receiving the novel automatic bladder irrigation post-TURP in the experimental group compared with controls receiving traditional bladder irrigation in the control group. A total of 146 patients were randomly divided into 2 groups-the experimental group (n = 76) and the control group (n = 70). The mean irrigation volume of the experimental group (24.2 ± 3.8 L) was significantly lower than that of the controls (54.6 ± 5.4 L) (P < 0.05). Patients treated with automatic irrigation device had significantly decreased incidence of clot retention (8/76) and cystospasm (12/76) compared to controls (21/70; 39/70, P < 0.05). There was no significant difference between the 2 groups with regard to irrigation time (28.6 ± 2.7 vs 29.5 ± 3.4 hours, P = 0.077). The study suggests that the automatic regulating device applied with wireless sensor for CBI is safe and effective for patients after TURP. However, studies with a large population of patients and a long-term follow-up should be conducted to validate our findings.

  1. 1 kHz 2D Visual Motion Sensor Using 20 × 20 Silicon Retina Optical Sensor and DSP Microcontroller.

    PubMed

    Liu, Shih-Chii; Yang, MinHao; Steiner, Andreas; Moeckel, Rico; Delbruck, Tobi

    2015-04-01

    Optical flow sensors have been a long running theme in neuromorphic vision sensors which include circuits that implement the local background intensity adaptation mechanism seen in biological retinas. This paper reports a bio-inspired optical motion sensor aimed towards miniature robotic and aerial platforms. It combines a 20 × 20 continuous-time CMOS silicon retina vision sensor with a DSP microcontroller. The retina sensor has pixels that have local gain control and adapt to background lighting. The system allows the user to validate various motion algorithms without building dedicated custom solutions. Measurements are presented to show that the system can compute global 2D translational motion from complex natural scenes using one particular algorithm: the image interpolation algorithm (I2A). With this algorithm, the system can compute global translational motion vectors at a sample rate of 1 kHz, for speeds up to ±1000 pixels/s, using less than 5 k instruction cycles (12 instructions per pixel) per frame. At 1 kHz sample rate the DSP is 12% occupied with motion computation. The sensor is implemented as a 6 g PCB consuming 170 mW of power.

  2. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study.

    PubMed

    Pennell, Thomas; Yi, Juneyoung L; Kaufman, Bruce A; Krishnamurthy, Satish

    2016-03-01

    OBJECT Mechanical failure-which is the primary cause of CSF shunt malfunction-is not readily diagnosed, and the specific reasons for mechanical failure are not easily discerned. Prior attempts to measure CSF flow noninvasively have lacked the ability to either quantitatively or qualitatively obtain data. To address these needs, this preliminary study evaluates an ultrasonic transit time flow sensor in pediatric and adult patients with external ventricular drains (EVDs). One goal was to confirm the stated accuracy of the sensor in a clinical setting. A second goal was to observe the sensor's capability to record real-time continuous CSF flow. The final goal was to observe recordings during instances of flow blockage or lack of flow in order to determine the sensor's ability to identify these changes. METHODS A total of 5 pediatric and 11 adult patients who had received EVDs for the treatment of hydrocephalus were studied in a hospital setting. The primary EVD was connected to a secondary study EVD that contained a fluid-filled pressure transducer and an in-line transit time flow sensor. Comparisons were made between the weight of the drainage bag and the flow measured via the sensor in order to confirm its accuracy. Data from the pressure transducer and the flow sensor were recorded continuously at 100 Hz for a period of 24 hours by a data acquisition system, while the hourly CSF flow into the drip chamber was recorded manually. Changes in the patient's neurological status and their time points were noted. RESULTS The flow sensor demonstrated a proven accuracy of ± 15% or ± 2 ml/hr. The flow sensor allowed real-time continuous flow waveform data recordings. Dynamic analysis of CSF flow waveforms allowed the calculation of the pressure-volume index. Lastly, the sensor was able to diagnose a blocked catheter and distinguish between the blockage and lack of flow. CONCLUSIONS The Transonic flow sensor accurately measures CSF output within ± 15% or ± 2 ml/hr, diagnoses the blockage or lack of flow, and records real-time continuous flow data in patients with EVDs. Calculations of a wide variety of diagnostic parameters can be made from the waveform recordings, including resistance and compliance of the ventricular catheters and the compliance of the brain. The sensor's clinical applications may be of particular importance to the noninvasive diagnosis of shunt malfunctions with the development of an implantable device.

  3. Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: Method development

    USGS Publications Warehouse

    Hatch, Christine E; Fisher, Andrew T.; Revenaugh, Justin S.; Constantz, Jim; Ruehl, Chris

    2006-01-01

    We present a method for determining streambed seepage rates using time series thermal data. The new method is based on quantifying changes in phase and amplitude of temperature variations between pairs of subsurface sensors. For a reasonable range of streambed thermal properties and sensor spacings the time series method should allow reliable estimation of seepage rates for a range of at least ±10 m d−1 (±1.2 × 10−2 m s−1), with amplitude variations being most sensitive at low flow rates and phase variations retaining sensitivity out to much higher rates. Compared to forward modeling, the new method requires less observational data and less setup and data handling and is faster, particularly when interpreting many long data sets. The time series method is insensitive to streambed scour and sedimentation, which allows for application under a wide range of flow conditions and allows time series estimation of variable streambed hydraulic conductivity. This new approach should facilitate wider use of thermal methods and improve understanding of the complex spatial and temporal dynamics of surface water–groundwater interactions.

  4. Thermal Flow Sensors for Harsh Environments.

    PubMed

    Balakrishnan, Vivekananthan; Phan, Hoang-Phuong; Dinh, Toan; Dao, Dzung Viet; Nguyen, Nam-Trung

    2017-09-08

    Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application.

  5. Thermal Flow Sensors for Harsh Environments

    PubMed Central

    Dinh, Toan; Dao, Dzung Viet

    2017-01-01

    Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application. PMID:28885595

  6. Mass flow meter using the triboelectric effect for measurement in cryogenics

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Henry; Cunningham, Jock; Wolff, Steve

    1987-01-01

    The use of triboelectric charge to measure the mass flow rate of cryogens for the Space Shuttle Main Engine was investigated. Cross correlation of the triboelectric charge signals was used to determine the transit time of the cryogen between two sensor locations in a .75-in tube. The ring electrode sensors were mounted in a removable spool piece. Three spool pieces were constructed for delivery, each with a different design. One set of electronics for implementation of the cross correlation and flow calculation was constructed for delivery. Tests were made using a laboratory flow loop using liquid freon and transformer oil. The measured flow precision was 1 percent and the response was linear. The natural frequency distribution of the triboelectric signal was approximately 1/f. The sensor electrodes should have an axial length less than approximately one/tenth pipe diameter. The electrode spacing should be less than approximately one pipe diameter. Tests using liquid nitrogen demonstrated poor tribo-signal to noise ratio. Most of the noise was microphonic and common to both electrode systems. The common noise rejection facility of the correlator was successful in compensating for this noise but the signal was too small to enable reliable demonstration of the technique in liquid nitrogen.

  7. Time-of-Travel Methods for Measuring Optical Flow on Board a Micro Flying Robot

    PubMed Central

    Vanhoutte, Erik; Mafrica, Stefano; Ruffier, Franck; Bootsma, Reinoud J.; Serres, Julien

    2017-01-01

    For use in autonomous micro air vehicles, visual sensors must not only be small, lightweight and insensitive to light variations; on-board autopilots also require fast and accurate optical flow measurements over a wide range of speeds. Using an auto-adaptive bio-inspired Michaelis–Menten Auto-adaptive Pixel (M2APix) analog silicon retina, in this article, we present comparative tests of two optical flow calculation algorithms operating under lighting conditions from 6×10−7 to 1.6×10−2 W·cm−2 (i.e., from 0.2 to 12,000 lux for human vision). Contrast “time of travel” between two adjacent light-sensitive pixels was determined by thresholding and by cross-correlating the two pixels’ signals, with measurement frequency up to 5 kHz for the 10 local motion sensors of the M2APix sensor. While both algorithms adequately measured optical flow between 25 ∘/s and 1000 ∘/s, thresholding gave rise to a lower precision, especially due to a larger number of outliers at higher speeds. Compared to thresholding, cross-correlation also allowed for a higher rate of optical flow output (99 Hz and 1195 Hz, respectively) but required substantially more computational resources. PMID:28287484

  8. Low-gravity sensing of liquid/vapor interface and transient liquid flow

    NASA Astrophysics Data System (ADS)

    Jacobson, Saul A.; Korba, James M.; Lynnworth, Lawrence C.; Nguyen, Toan H.; Orton, George F.

    1987-03-01

    The work reported here deals mainly with tests on internally vaned cylindrical shell acrylic containers capped by hemispherical acrylic or aluminum end domes. Three different ultrasonic sensor techniques and one nucleonic technique presently are evaluated as possible solutions to the low-gravity liquid gauging problem. The ultrasonic techniques are as follows: use of a torsional wave sensor in which transit time is proportional to the integral of wetted distance x liquid density; integration of the flow rate output signal of a fast-response ultrasonic flowmeter; and use of multiplexed externally mounted 'point-sensor' transducers that sense transit times to liquid-gas interfaces. Using two commercial flowmeters and a thickness gauge modified for this particular project, bench tests were conducted at 1 g on liquids such as water, freon, and solvent 140, including both steady flow and pulsating flow with 40, 80, and 120 ms flow pulses. Subsequently, flight tests were conducted in the NASA KC-135 aircraft in which nearly 0-g conditions are obtainable for up to about 5 s in each of a number of repetitive parabolic flight trajectories. In some of these brief low-gravity flight tests freon was replaced with a higher-viscosity fuel to reduce sloshing and thereby obtain settled surfaces more quickly.

  9. Handheld chemiresistive gas sensor readout system

    NASA Astrophysics Data System (ADS)

    Joubert, Trudi-Heleen; du Toit, Jurie; Mkwakikunga, Bonex; Bosscha, Peter

    2016-02-01

    Low-cost and non-invasive diabetes diagnosis is increasingly important [1], and this paper presents a handheld readout system for chemiresistive gas sensors in a breath acetone diagnostic application. The sensor contains reference and detection devices, used for the detection of gas concentration. Fabrication is by dropcasting a metaloxide nanowire solution onto gold interdigitated electrodes, which had been manufactured on silicon. The resulting layer is a wide bandgap n-type semiconductor material sensitive to acetone, producing a change in resistance between the electrode terminals [2]. Chemiresistive sensors typically require temperatures of 300-500 °C, while variation of sensing temperature is also employed for selective gas detection. The nano-structured functional material requires low temperatures due to large surface area, but heating is still required for acceptable recovery kinetics. Furthermore, UV illumination improves the sensor recovery [3], and is implemented in this system. Sensor resistances range from 100 Ω to 50 MΩ, while the sensor response time require a sampling frequency of 10Hz. Sensor resistance depends on temperature, humidity, and barometric pressure. The GE CC2A23 temperature sensor is used over a range of -10°C to 60°C, the Honeywell HIH5031 humidity sensor operates up to 85% over this temperature range, and the LPS331AP barometric pressure sensor measures up to 1.25 bar. Honeywell AWM43300V air flow sensors monitor the flow rate up to 1000 sccm. An LCD screen displays all the sensor data, as well as real time date and time, while all measurements are also logged in CSV-format. The system operates from a rechargeable battery.

  10. Optical Sensors for Monitoring Gamma and Neutron Radiation

    NASA Technical Reports Server (NTRS)

    Boyd, Clark D.

    2011-01-01

    For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.

  11. A simple microfluidic Coriolis effect flowmeter for operation at high pressure and high temperature.

    PubMed

    Harrison, Christopher; Jundt, Jacques

    2016-08-01

    We describe a microfluidic Coriolis effect flowmeter that is simple to assemble, operates at elevated temperature and pressure, and can be operated with a lock-in amplifier. The sensor has a flow rate sensitivity greater than 2° of phase shift per 1 g/min of mass flow and is benchmarked with flow rates ranging from 0.05 to 2.0 g/min. The internal volume is 15 μl and uses off-the-shelf optical components to measure the tube motion. We demonstrate that fluid density can be calculated from the frequency of the resonating element with proper calibration.

  12. A Networked Sensor System for the Analysis of Plot-Scale Hydrology.

    PubMed

    Villalba, German; Plaza, Fernando; Zhong, Xiaoyang; Davis, Tyler W; Navarro, Miguel; Li, Yimei; Slater, Thomas A; Liang, Yao; Liang, Xu

    2017-03-20

    This study presents the latest updates to the Audubon Society of Western Pennsylvania (ASWP) testbed, a $50,000 USD, 104-node outdoor multi-hop wireless sensor network (WSN). The network collects environmental data from over 240 sensors, including the EC-5, MPS-1 and MPS-2 soil moisture and soil water potential sensors and self-made sap flow sensors, across a heterogeneous deployment comprised of MICAz, IRIS and TelosB wireless motes. A low-cost sensor board and software driver was developed for communicating with the analog and digital sensors. Innovative techniques (e.g., balanced energy efficient routing and heterogeneous over-the-air mote reprogramming) maintained high success rates (>96%) and enabled effective software updating, throughout the large-scale heterogeneous WSN. The edaphic properties monitored by the network showed strong agreement with data logger measurements and were fitted to pedotransfer functions for estimating local soil hydraulic properties. Furthermore, sap flow measurements, scaled to tree stand transpiration, were found to be at or below potential evapotranspiration estimates. While outdoor WSNs still present numerous challenges, the ASWP testbed proves to be an effective and (relatively) low-cost environmental monitoring solution and represents a step towards developing a platform for monitoring and quantifying statistically relevant environmental parameters from large-scale network deployments.

  13. A Networked Sensor System for the Analysis of Plot-Scale Hydrology

    PubMed Central

    Villalba, German; Plaza, Fernando; Zhong, Xiaoyang; Davis, Tyler W.; Navarro, Miguel; Li, Yimei; Slater, Thomas A.; Liang, Yao; Liang, Xu

    2017-01-01

    This study presents the latest updates to the Audubon Society of Western Pennsylvania (ASWP) testbed, a $50,000 USD, 104-node outdoor multi-hop wireless sensor network (WSN). The network collects environmental data from over 240 sensors, including the EC-5, MPS-1 and MPS-2 soil moisture and soil water potential sensors and self-made sap flow sensors, across a heterogeneous deployment comprised of MICAz, IRIS and TelosB wireless motes. A low-cost sensor board and software driver was developed for communicating with the analog and digital sensors. Innovative techniques (e.g., balanced energy efficient routing and heterogeneous over-the-air mote reprogramming) maintained high success rates (>96%) and enabled effective software updating, throughout the large-scale heterogeneous WSN. The edaphic properties monitored by the network showed strong agreement with data logger measurements and were fitted to pedotransfer functions for estimating local soil hydraulic properties. Furthermore, sap flow measurements, scaled to tree stand transpiration, were found to be at or below potential evapotranspiration estimates. While outdoor WSNs still present numerous challenges, the ASWP testbed proves to be an effective and (relatively) low-cost environmental monitoring solution and represents a step towards developing a platform for monitoring and quantifying statistically relevant environmental parameters from large-scale network deployments. PMID:28335534

  14. A Nano-Thin Film-Based Prototype QCM Sensor Array for Monitoring Human Breath and Respiratory Patterns

    PubMed Central

    Selyanchyn, Roman; Wakamatsu, Shunichi; Hayashi, Kenshi; Lee, Seung-Woo

    2015-01-01

    Quartz crystal microbalance (QCM) sensor array was developed for multi-purpose human respiration assessment. The sensor system was designed to provide feedback for human respiration. Thorough optimization of measurement conditions: air flow, temperature in the QCM chamber, frequency measurement rate, and electrode position regarding to the gas flow—was performed. As shown, acquisition of respiratory parameters (rate and respiratory pattern) could be achieved even with a single electrode used in the system. The prototype system contains eight available QCM channels that can be potentially used for selective responses to certain breath chemicals. At present, the prototype machine is ready for the assessment of respiratory functions in larger populations in order to gain statistical validation. To the best of our knowledge, the developed prototype is the only respiratory assessment system based on surface modified QCM sensors. PMID:26263994

  15. New intravascular flow sensor using fiber optics

    NASA Astrophysics Data System (ADS)

    Stenow, Erik N. D.

    1994-12-01

    A new sensor using fiber optics is suggested for blood flow measurements in small vessels. The sensor principle and a first evaluation on a flow model are presented. The new sensor uses small CO2 gas bubbles as flow markers for optical detection. When the bubbles pass an optical window, light emitted from one fiber is reflected and scattered into another fiber. The sensor has been proven to work in a 3 mm flow model using two 110 micrometers optical fibers and a 100 micrometers steel capillary inserted into a 1 mm guide wire. The evaluation of a sensor archetype shows that the new sensor provides a promising method for intravascular blood flow measurement in small vessels. The linearity for steady state flow is studied in the flow interval 30 - 130 ml/min. comparison with ultrasound Doppler flowmetry was performed for pulsatile flow in the interval 25 - 125 ml/min. with a pulse length between 0.5 and 2 s. The use of intravascular administered CO2 in small volumes is harmless because the gas is rapidly dissolved in whole blood.

  16. Passive Wearable Skin Patch Sensor Measures Limb Hemodynamics Based on Electromagnetic Resonance.

    PubMed

    Cluff, Kim; Becker, Ryan; Jayakumar, Balakumar; Han, Kiyun; Condon, Ernie; Dudley, Kenneth; Szatkowski, George; Pipinos, Iraklis I; Amick, Ryan Z; Patterson, Jeremy

    2018-04-01

    The objectives of this study were to design and develop an open-circuit electromagnetic resonant skin patch sensor, characterize the fluid volume and resonant frequency relationship, and investigate the sensor's ability to measure limb hemodynamics and pulse volume waveform features. The skin patch was designed from an open-circuit electromagnetic resonant sensor comprised of a single baseline trace of copper configured into a square planar spiral which had a self-resonating response when excited by an external radio frequency sweep. Using a human arm phantom with a realistic vascular network, the sensor's performance to measure limb hemodynamics was evaluated. The sensor was able to measure pulsatile blood flow which registered as shifts in the sensor's resonant frequencies. The time-varying waveform pattern of the resonant frequency displayed a systolic upstroke, a systolic peak, a dicrotic notch, and a diastolic down stroke. The resonant frequency waveform features and peak systolic time were validated against ultrasound pulse wave Doppler. A statistical correlation analysis revealed a strong correlation () between the resonant sensor peak systolic time and the pulse wave Doppler peak systolic time. The sensor was able to detect pulsatile flow, identify hemodynamic waveform features, and measure heart rate with 98% accuracy. The open-circuit resonant sensor design leverages the architecture of a thin planar spiral which is passive (does not require batteries), robust and lightweight (does not have electrical components or electrical connections), and may be able to wirelessly monitor cardiovascular health and limb hemodynamics.

  17. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    PubMed Central

    Reges, José E. O.; Salazar, A. O.; Maitelli, Carla W. S. P.; Carvalho, Lucas G.; Britto, Ursula J. B.

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  18. Water outlet control mechanism for fuel cell system operation in variable gravity environments

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo (Inventor); McCurdy, Kerri L. (Inventor); Bradley, Karla F. (Inventor)

    2007-01-01

    A self-regulated water separator provides centrifugal separation of fuel cell product water from oxidant gas. The system uses the flow energy of the fuel cell's two-phase water and oxidant flow stream and a regulated ejector or other reactant circulation pump providing the two-phase fluid flow. The system further uses a means of controlling the water outlet flow rate away from the water separator that uses both the ejector's or reactant pump's supply pressure and a compressibility sensor to provide overall control of separated water flow either back to the separator or away from the separator.

  19. Dynamics of a two-phase flow through a minichannel: Transition from churn to slug flow

    NASA Astrophysics Data System (ADS)

    Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2016-04-01

    The churn-to-slug flow bifurcations of two-phase (air-water) flow patterns in a 2mm diameter minichannel were investigated. With increasing a water flow rate, we observed the transition of slugs to bubbles of different sizes. The process was recorded by a digital camera. The sequences of light transmission time series were recorded by a laser-phototransistor sensor, and then analyzed using the recurrence plots and recurrence quantification analysis (RQA). Due to volume dependence of bubbles velocities, we observed the formation of periodic modulations in the laser signal.

  20. Geometric scaling of artificial hair sensors for flow measurement under different conditions

    NASA Astrophysics Data System (ADS)

    Su, Weihua; Reich, Gregory W.

    2017-03-01

    Artificial hair sensors (AHSs) have been developed for prediction of the local flow speed and aerodynamic force around an airfoil and subsequent application in vibration control of the airfoil. Usually, a specific sensor design is only sensitive to the flow speeds within its operating flow measurement region. This paper aims at expanding this flow measurement concept of using AHSs to different flow speed conditions by properly sizing the parameters of the sensors, including the dimensions of the artificial hair, capillary, and carbon nanotubes (CNTs) that make up the sensor design, based on a baseline sensor design and its working flow condition. In doing so, the glass fiber hair is modeled as a cantilever beam with an elastic foundation, subject to the distributed aerodynamic drag over the length of the hair. Hair length and diameter, capillary depth, and CNT height are scaled by keeping the maximum compressive strain of the CNTs constant for different sensors under different speed conditions. Numerical studies will demonstrate the feasibility of the geometric scaling methodology by designing AHSs for aircraft with different dimensions and flight conditions, starting from the same baseline sensor. Finally, the operating bandwidth of the scaled sensors are explored.

  1. Active thermal isolation for temperature responsive sensors

    NASA Technical Reports Server (NTRS)

    Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)

    1994-01-01

    The detection of flow transition between laminar and turbulent flow and of shear stress or skin friction of airfoils is important in basic research for validation of airfoil theory and design. These values are conventionally measured using hot film nickel sensors deposited on a polyimide substrate. The substrate electrically insulates the sensor and underlying airfoil but is prevented from thermally isolating the sensor by thickness constraints necessary to avoid flow contamination. Proposed heating of the model surface is difficult to control, requires significant energy expenditures, and may alter the basic flow state of the airfoil. A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specific surface of the body. The total thickness of the isolator and sensor avoid any contamination of the flow. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes (1) operating the isolator at the same temperature as the constant temperature of the sensor; and (2) establishing a fixed boundary temperature which is either less than or equal to, or slightly greater than the sensor constant temperature. The present invention accordingly thermally isolates a temperature responsive sensor in an energy efficient, controllable manner while avoiding any contamination of the flow.

  2. Bluetooth-based distributed measurement system

    NASA Astrophysics Data System (ADS)

    Tang, Baoping; Chen, Zhuo; Wei, Yuguo; Qin, Xiaofeng

    2007-07-01

    A novel distributed wireless measurement system, which is consisted of a base station, wireless intelligent sensors and relay nodes etc, is established by combining of Bluetooth-based wireless transmission, virtual instrument, intelligent sensor, and network. The intelligent sensors mounted on the equipments to be measured acquire various parameters and the Bluetooth relay nodes get the acquired data modulated and sent to the base station, where data analysis and processing are done so that the operational condition of the equipment can be evaluated. The establishment of the distributed measurement system is discussed with a measurement flow chart for the distributed measurement system based on Bluetooth technology, and the advantages and disadvantages of the system are analyzed at the end of the paper and the measurement system has successfully been used in Daqing oilfield, China for measurement of parameters, such as temperature, flow rate and oil pressure at an electromotor-pump unit.

  3. Experimental and analytical studies of a true airspeed sensor

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Shen, J. Y.

    1983-01-01

    A true airspeed sensor based on the precession of a vortex whistle for sensing airspeeds up to 321.9 km/hr (200 mph). In an attempt to model the complicated fluid mechanics of the vortex precession, three dimensional, inviscid, unsteady, incompressible fluid flow was studied by using the hydrodynamical linearized stability theory. The temporal stability approach was used to derive the relationship between the true airspeed and frequency response. The results show that the frequency response is linearly proportional to the airspeed. A computer program was developed to obtain the numerical solution. Computational results for various parameters were obtained. The designed sensor basically consisted of a vortex tube, a swirler, and a transducer system. A microphone converted the audible tone to an electronic frequency signal. Measurements for both the closed conduit tests and wind tunnel tests were recorded. For a specific flow rate or airspeed, larger exit swirler angles produced higher frequencies. For a smaller cross sectional area in the precessional flow region, the frequency was higher. It was observed that as the airspeed was increased the Strouhal number remained constant.

  4. Phloem-sap-dynamics sensor device for monitoring photosynthates transportation in plant shoots

    NASA Astrophysics Data System (ADS)

    Yano, Yuya; Ono, Akihito; Terao, Kyohei; Suzuki, Takaaki; Takao, Hidekuni; Kobayashi, Tsuyoshi; Kataoka, Ikuo; Shimokawa, Fusao

    2018-06-01

    We propose a microscale phloem-sap-dynamics sensor device to obtain the index of an internal plant condition regarding the transportation of primary photosynthates in phloem, which is an essential indicator of stable crop production under controlled-growth environments. In detail, we integrated a conventional Granier sensor with a thermal-flow sensor and devised an improved sensor device to quantify such index, including the information on velocity and direction of the phloem-sap flow using the microelectromechanical systems (MEMS) technology. The experimental results showed that although the proposed sensor device was approximately only 1/10 the size of the conventional Granier sensor, it could generate an output nearly equal to that of the conventional sensor. Furthermore, experiments using mimicked plants demonstrated that the proposed device could measure minute flow velocities in the range of 0–200 µm/s, which are generally known as the phloem-sap flow velocity, and simultaneously detect the flow direction.

  5. Quantifying the flow rate of the Deepwater Horizon Macondo Well oil spill

    NASA Astrophysics Data System (ADS)

    Camilli, R.; Bowen, A.; Yoerger, D. R.; Whitcomb, L. L.; Techet, A. H.; Reddy, C. M.; Sylva, S.; Seewald, J.; di Iorio, D.; Whoi Flow Rate Measurement Group

    2010-12-01

    The Deepwater Horizon blowout in the Mississippi Canyon block 252 of the Gulf of Mexico created the largest recorded offshore oil spill. The well outflow’s multiple leak sources, turbulent multiphase flow, tendency for hydrate formation, and extreme source depth of 1500 m below the sea surface complicated the quantitative estimation of oil and gas leakage rates. We present methods and results from a U.S. Coast Guard sponsored flow assessment study of the Deepwater Horizon’s damaged blow out preventer and riser. This study utilized a remotely operated vehicle equipped with in-situ acoustic sensors (a Doppler sonar and an imaging multibeam sonar) and isobaric gas-tight fluid samplers to measure directly outflow from the damaged well. Findings from this study indicate oil release rates and total release volume estimates that corroborate estimates made by the federal government’s Flow Rate Technical Group using non-acoustic techniques. The acoustic survey methods reported here provides a means for estimating fluid flow rates in subsurface environments, and are potentially useful for a diverse range of oceanographic applications. Photograph of the Discoverer Enterprise burning natural gas collected from the Macondo well blowout preventer during flow measurement operations. Copyright Wood Hole Oceanographic Institution.

  6. Design of river height and speed monitoring system by using Arduino

    NASA Astrophysics Data System (ADS)

    Nasution, T. H.; Siagian, E. C.; Tanjung, K.; Soeharwinto

    2018-02-01

    River is one part of the hydrologic cycle. Water in rivers is generally collected from precipitation, such as rain, dew, springs, underground runoff, and in certain countries also comes from melt ice/snow. The height and speed of water in a river is always changing. Changes in altitude and speed of water can affect the surrounding environment. In this paper, we will design a system to measure the altitude and speed of the river. In this work we use Arduino Uno, ultrasonic sensors and flow rate sensors. Ultrasonic sensor HC-SR04 is used as a river height meter. Based on the test results, this sensor has an accuracy of 96.6%.

  7. A screen-printed flexible flow sensor

    NASA Astrophysics Data System (ADS)

    Moschos, A.; Syrovy, T.; Syrova, L.; Kaltsas, G.

    2017-04-01

    A thermal flow sensor was printed on a flexible plastic substrate using exclusively screen-printing techniques. The presented device was implemented with custom made screen-printed thermistors, which allows simple, cost-efficient production on a variety of flexible substrates while maintaining the typical advantages of thermal flow sensors. Evaluation was performed for both static (zero flow) and dynamic conditions using a combination of electrical measurements and IR imaging techniques in order to determine important characteristics, such as temperature response, output repeatability, etc. The flow sensor was characterized utilizing the hot-wire and calorimetric principles of operation, while the preliminary results appear to be very promising, since the sensor was successfully evaluated and displayed adequate sensitivity in a relatively wide flow range.

  8. Omega Design and FEA Based Coriolis Mass Flow Sensor (CMFS) Analysis Using Titanium Material

    NASA Astrophysics Data System (ADS)

    Patil, Pravin P.; Kumar, Ashwani; Ahmad, Faraz

    2018-02-01

    The main highlight of this research work is evaluation of resonant frequency for titanium omega type coriolis mass flow sensor. Coriolis mass flow sensor is used for measuring direct mass flow in pipe useful for various industrial applications. It works on the principle of Coriolis effect. Finite Element Analysis (FEA) simulation of omega flow sensor was performed using Ansys 14.5 and Solid Edge, Pro-E was used for modelling of omega tube. Titanium was selected as omega tube material. Experimental setup was prepared for omega tube coriolis flow sensor for performing different test. Experimental setup was used for investigation of different parameters effect on CMFS and validation of simulation results.

  9. Relative Humidity in Limited Streamer Tubes for Stanford Linear Accelerator Center's BaBar Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, M.I.; /MIT; Convery, M.

    2005-12-15

    The BABAR Detector at the Stanford Linear Accelerator Center studies the decay of B mesons created in e{sup +}e{sup -} collisions. The outermost layer of the detector, used to detect muons and neutral hadrons created during this process, is being upgraded from Resistive Plate Chambers (RPCs) to Limited Streamer Tubes (LSTs). The standard-size LST tube consists of eight cells, where a silver-plated wire runs down the center of each. A large potential difference is placed between the wires and ground. Gas flows through a series of modules connected with tubing, typically four. LSTs must be carefully tested before installation, asmore » it will be extremely difficult to repair any damage once installed in the detector. In the testing process, the count rate in most modules showed was stable and consistent with cosmic ray rate over an approximately 500 V operating range between 5400 to 5900 V. The count in some modules, however, was shown to unexpectedly spike near the operation point. In general, the modules through which the gas first flows did not show this problem, but those further along the gas chain were much more likely to do so. The suggestion was that this spike was due to higher humidity in the modules furthest from the fresh, dry inflowing gas, and that the water molecules in more humid modules were adversely affecting the modules' performance. This project studied the effect of humidity in the modules, using a small capacitive humidity sensor (Honeywell). The sensor provided a humidity-dependent output voltage, as well as a temperature measurement from a thermistor. A full-size hygrometer (Panametrics) was used for testing and calibrating the Honeywell sensors. First the relative humidity of the air was measured. For the full calibration, a special gas-mixing setup was used, where relative humidity of the LST gas mixture could be varied from almost dry to almost fully saturated. With the sensor calibrated, a set of sensors was used to measure humidity vs. time in the LSTs. The sensors were placed in two sets of LST modules, one gas line flowing through each set. These modules were tested for count rate v. voltage while simultaneously measuring relative humidity in each module. One set produced expected readings, while the other showed the spike in count rate. The relative humidity in the two sets of modules looked very similar, but it rose significantly for modules further along the gas chain.« less

  10. Self-assembled PEG monolayer based SPR immunosensor for label-free detection of insulin.

    PubMed

    Gobi, K Vengatajalabathy; Iwasaka, Hiroyuki; Miura, Norio

    2007-02-15

    A simple and rapid continuous-flow immunosensor based on surface plasmon resonance (SPR) has been developed for detection of insulin as low as 1 ng ml-1 (ppb) with a response time of less than 5 min. At first, a heterobifunctional oligo(ethyleneglycol)-dithiocarboxylic acid derivative (OEG-DCA) containing dithiol and carboxyl end groups was used to functionalize the thin Au-film of SPR chip. Insulin was covalently bound to the Au-thiolate monolayer of OEG-DCA for activating the sensor surface to immunoaffinity interactions. An on-line competitive immunosensing principle is examined for detection of insulin, in which the direct affinity binding of anti-insulin antibody to the insulin on sensor surface is examined in the presence and absence of various concentrations of insulin. Immunoreaction of anti-insulin antibody with the sensor surface was optimized with reference to antibody concentration, sample analysis time and flow-rate to provide the desired detection limit and determination range. With the immunosensor developed, the lowest detectable concentration of insulin is 1 ng ml-1 and the determination range covers a wide concentration of 1-300 ng ml-1. The developed OEG-monolayer based sensor chip exhibited high resistance to non-specific adsorption of proteins, and an uninterrupted highly sensitive detection of insulin from insulin-impregnated serum samples has been demonstrated. After an immunoreaction cycle, active sensor surface was regenerated simply by a brief flow of an acidic buffer (glycine.HCl; pH 2.0) for less than 1 min. A same sensor chip was found reusable for more than 25 cycles without an appreciable change in the original sensor activity.

  11. Sensor chip and apparatus for tactile and/or flow sensing

    NASA Technical Reports Server (NTRS)

    Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)

    2008-01-01

    A sensor chip, comprising a flexible, polymer-based substrate, and at least one microfabricated sensor disposed on the substrate and including a conductive element. The at least one sensor comprises at least one of a tactile sensor and a flow sensor. Other embodiments of the present invention include sensors and/or multi-modal sensor nodes.

  12. Sensor chip and apparatus for tactile and/or flow sensing

    NASA Technical Reports Server (NTRS)

    Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)

    2009-01-01

    A sensor chip, comprising a flexible, polymer-based substrate, and at least one microfabricated sensor disposed on the substrate and including a conductive element. The at least one sensor comprises at least one of a tactile sensor and a flow sensor. Other embodiments of the present invention include sensors and/or multi-modal sensor nodes.

  13. The Subglacial Access and Fast Ice Research Experiment - SAFIRE - on Store Glacier, West Greenland

    NASA Astrophysics Data System (ADS)

    Christoffersen, P.; Hubbard, B. P.; Doyle, S. H.; Young, T. J.; Hofstede, C. M.; Bougamont, M. H.; Todd, J.; Toberg, N.; Nicholls, K. W.; Box, J.; Walter, J. I.; Hubbard, A.

    2015-12-01

    Marine-terminating outlet glaciers drain 90 percent of the Greenland Ice Sheet and are responsible for about half of the ice sheet's net annual mass loss, which currently raises global sea level by 1 mm per year. The basal controls on these fast-flowing glaciers are, however, poorly understood, with the implication that numerical ice sheet models needed to predict future dynamic ice loss from Greenland relies on uncertain and often untested basal parameterizations. The Subglacial Access and Fast Ice Research Experiment - SAFIRE - is addressing this paucity of observational constraints by drilling to the bed of Store Glacier, a fast-flowing outlet glacier terminating in Uummannaq Fjord, West Greenland. In 2014, we gained access to the bed in four boreholes drilled to depths of 603-616 m near the center of the glacier, 30 km inland from the calving terminus where ice flows at a rate of 700 m/year. A seismic survey showed the glacier bed to consist of water-saturated, soft sediment. The water level in all four boreholes nevertheless dropped rapidly to 80 m below the ice surface when the drill connected with a basal water system, indicating effective drainage over a sedimentary bed. We were able to install wired sensor strings at the bed (water pressure, temperature, electrical conductivity and turbidity) and within the glacier (temperature and tilt) in three boreholes. The sensors operated for up to 80+ days before cables stretched and ultimately snapped due to high internal strain. The data collected during this sensor deployment show ice as cold as -21 degrees Celcius; yet, temperature of water in the basal water system was persistently above the local freezing point. With diurnal variations detected in several sensor records, we hypothesise that surface water lubricates the ice flow while also warming basal ice. The fast basal motion of Store Glacier not only occurs by basal sliding, but from high rates of concentrated strain in the bottom third of the glacier. Deployment of an autonomous phase-sensitive radar near the drill site complements the data collected by sensors installed in boreholes, as internal reflectors measured at hourly timescale show very high, and highly variable internal strain within the glacier. In 2016, we plan to install new sensors while also sampling cores from the bed.

  14. Demonstration of a Fiber Optic Regression Probe in a High-Temperature Flow

    NASA Technical Reports Server (NTRS)

    Korman, Valentin; Polzin, Kurt

    2011-01-01

    The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over an operating envelope could also be useful in the modeling detailed physical processes. The sensor has been embedded in many regressing media to demonstrate the capabilities in a number of regressing environments. In the present work, sensors were installed in the eroding/regressing throat region of a converging-diverging flow, with the working gas heated to high temperatures by means of a high-pressure arc discharge at steady-state discharge power levels up to 500 kW. The amount of regression observed in each material sample was quantified using a later profilometer, which was compared to the in-situ erosion measurements to demonstrate the efficacy of the measurement technique in very harsh, high-temperature environments.

  15. A portable gas sensor based on cataluminescence.

    PubMed

    Kang, C; Tang, F; Liu, Y; Wu, Y; Wang, X

    2013-01-01

    We describe a portable gas sensor based on cataluminescence. Miniaturization of the gas sensor was achieved by using a miniature photomultiplier tube, a miniature gas pump and a simple light seal. The signal to noise ratio (SNR) was considered as the evaluation criteria for the design and testing of the sensor. The main source of noise was from thermal background. Optimal working temperature and flow rate were determined experimentally from the viewpoint of improvement in SNR. A series of parameters related to analytical performance was estimated. The limitation of detection of the sensor was 7 ppm (SNR = 3) for ethanol and 10 ppm (SNR = 3) for hydrogen sulphide. Zirconia and barium carbonate were respectively selected as nano-sized catalysts for ethanol and hydrogen sulphide. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Redesigned Gas Mass Flow Sensors for Space Shuttle Pressure Control System and Fuel Cell System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A program was conducted to determine if a state of the art micro-machined silicon solid state flow sensor could be used to replace the existing space shuttle orbiter flow sensors. The rather aggressive goal was to obtain a new sensor which would also be a multi-gas sensor and operate over a much wider flow range and with a higher degree of accuracy than the existing sensors. Two types of sensors were tested. The first type was a venturi throat design and the second was a bypass design. The accuracy of venturi design was found to be marginally acceptable. The bypass sensor was much better although it still did not fully reach the accuracy goal. Two main problems were identified which would require further work.

  17. Evaluation of a mass flow sensor at a gin

    USDA-ARS?s Scientific Manuscript database

    As part of a system to optimize the cotton ginning process, a custom-built mass flow sensor was evaluated at USDA-ARS Cotton Ginning Research Unit at Stoneville, Mississippi. The mass flow sensor was fabricated based on the principle of the sensor patented by Thomasson and Sui. The optical and ele...

  18. Flight calibration tests of a nose-boom-mounted fixed hemispherical flow-direction sensor

    NASA Technical Reports Server (NTRS)

    Armistead, K. H.; Webb, L. D.

    1973-01-01

    Flight calibrations of a fixed hemispherical flow angle-of-attack and angle-of-sideslip sensor were made from Mach numbers of 0.5 to 1.8. Maneuvers were performed by an F-104 airplane at selected altitudes to compare the measurement of flow angle of attack from the fixed hemispherical sensor with that from a standard angle-of-attack vane. The hemispherical flow-direction sensor measured differential pressure at two angle-of-attack ports and two angle-of-sideslip ports in diametrically opposed positions. Stagnation pressure was measured at a center port. The results of these tests showed that the calibration curves for the hemispherical flow-direction sensor were linear for angles of attack up to 13 deg. The overall uncertainty in determining angle of attack from these curves was plus or minus 0.35 deg or less. A Mach number position error calibration curve was also obtained for the hemispherical flow-direction sensor. The hemispherical flow-direction sensor exhibited a much larger position error than a standard uncompensated pitot-static probe.

  19. Method of measuring cross-flow vortices by use of an array of hot-film sensors

    NASA Technical Reports Server (NTRS)

    Agarwal, Aval K. (Inventor); Maddalon, Dal V. (Inventor); Mangalam, Siva M. (Inventor)

    1993-01-01

    The invention is a method for measuring the wavelength of cross-flow vortices of air flow having streamlines of flow traveling across a swept airfoil. The method comprises providing a plurality of hot-film sensors. Each hot-film sensor provides a signal which can be processed, and each hot-film sensor is spaced in a straight-line array such that the distance between successive hot-film sensors is less than the wavelength of the cross-flow vortices being measured. The method further comprises determining the direction of travel of the streamlines across the airfoil and positioning the straight-line array of hot film sensors perpendicular to the direction of travel of the streamlines, such that each sensor has a spanwise location. The method further comprises processing the signals provided by the sensors to provide root-mean-square values for each signal, plotting each root-mean-square value as a function of its spanwise location, and determining the wavelength of the cross-flow vortices by noting the distance between two maxima or two minima of root-mean-square values.

  20. Smart catheter flow sensor for real-time continuous regional cerebral blood flow monitoring

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A.; Wu, Zhizhen; Ahn, Chong H.; LeDoux, David; Shutter, Lori A.; Narayan, Raj K.

    2011-12-01

    We present a smart catheter flow sensor for real-time, continuous, and quantitative measurement of regional cerebral blood flow using in situ temperature and thermal conductivity compensation. The flow sensor operates in a constant-temperature mode and employs a periodic heating and cooling technique. This approach ensures zero drift and provides highly reliable data with microelectromechanical system-based thin film sensors. The developed flow sensor has a sensitivity of 0.973 mV/ml/100 g/min in the range from 0 to 160 ml/100 g/min with a linear correlation coefficient of R2 = 0.9953. It achieves a resolution of 0.25 ml/100 g/min and an accuracy better than 5 ml/100 g/min.

  1. Non-invasive classification of gas-liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

    NASA Astrophysics Data System (ADS)

    Musa Abbagoni, Baba; Yeung, Hoi

    2016-08-01

    The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas-liquid flow regimes objectively with the gas-liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase flow. Experimental data is obtained on a horizontal test rig with a total pipe length of 21 m and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes. Multilayer perceptron neural networks (MLPNNs) are used to develop the classification model. The classifier requires features as an input which is representative of the signals. Ultrasound signal features are extracted by applying both power spectral density (PSD) and discrete wavelet transform (DWT) methods to the flow signals. A classification scheme of ‘1-of-C coding method for classification’ was adopted to classify features extracted into one of four flow regime categories. To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using the output of a first level networks feature as an input feature. The addition of the two network models provided a combined neural network model which has achieved a higher accuracy than single neural network models. Classification accuracies are evaluated in the form of both the PSD and DWT features. The success rates of the two models are: (1) using PSD features, the classifier missed 3 datasets out of 24 test datasets of the classification and scored 87.5% accuracy; (2) with the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy. This approach has demonstrated the success of a clamp-on ultrasound sensor for flow regime classification that would be possible in industry practice. It is considerably more promising than other techniques as it uses a non-invasive and non-radioactive sensor.

  2. Integrated Liquid Bismuth Propellant Feed System

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.

    2006-01-01

    A prototype bismuth propellant feed and control system was constructed and tested. An electromagnetic pump was used in this system to provide fine control of the hydrostatic pressure, and a new type of in-line flow sensor was developed to provide an accurate, real-time measurement of the mass flow rate. High-temperature material compatibility was a driving design requirement for the pump and flow sensor, leading to the selection of macor for the main body of both components. Post-test inspections of both components revealed no cracks or leaking in either. In separate proof-of-concept experiments, the pump produced a linear pressure rise as a function of current that compared favorably with theoretical pump pressure predictions, with a pressure of 10 kPa at 30 A. Flow sensing was successfully demonstrated in a bench-top test using gallium as a substitute liquid metal. A real-time controller was successfully used to control the entire system, simultaneously monitoring all power supplies and performing data acquisition duties.

  3. A wireless monitoring system for Hydrocephalus shunts.

    PubMed

    Narayanaswamy, A; Nourani, M; Tamil, L; Bianco, S

    2015-08-01

    Patients with Hydrocephalus are usually treated by diverting the excess Cerebrospinal Fluid (CSF) to other parts of the body using shunts. More than 40 percentage of shunts implanted fail within the first two years. Obstruction in the shunts is one of the major causes of failure (45 percent) and the detection of obstruction reduces the complexity of the revision surgery. This paper describes a proposed wireless monitoring system for clog detection and flow measurement in shunts. A prototype was built using multiple pressure sensors along the shunt catheters for sensing the location of clog and flow rate. Regular monitoring of flow rates can be used to adjust the valve in the shunt to prevent over drainage or under drainage of CSF. The accuracy of the flow measurement is more than 90 percent.

  4. Simultaneous Moisture Content and Mass Flow Measurements in Wood Chip Flows Using Coupled Dielectric and Impact Sensors.

    PubMed

    Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John

    2016-12-23

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor's tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor's performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful.

  5. Highly efficient evaluation of a gas mixer using a hollow waveguide based laser spectral sensor

    NASA Astrophysics Data System (ADS)

    Du, Z.; Yang, X.; Li, J.; Yang, Y.; Qiao, C.

    2017-05-01

    This paper aims to provide a fast, sensitive, and accurate characterization of a Mass Flow Controller (MFC) based gas mixer. The gas mixer was evaluated by using a hollow waveguide based laser spectral sensor with high efficiency. Benefiting from the sensor's fast response, high sensitivity and continuous operation, multiple key parameters of the mixer, including mixing uncertainty, linearity, and response time, were acquired by a one-round test. The test results show that the mixer can blend multi-compound gases quite efficiently with an uncertainty of 1.44% occurring at a flow rate of 500 ml/min, with the linearity of 0.998 43 and the response time of 92.6 s. The results' reliability was confirmed by the relative measurement of gas concentration, in which the isolation of the sensor's uncertainty was conducted. The measured uncertainty has shown well coincidence with the theoretical uncertainties of the mixer, which proves the method to be a reliable characterization. Consequently, this sort of laser based characterization's wide appliance on gas analyzer's evaluations is demonstrated.

  6. Highly efficient evaluation of a gas mixer using a hollow waveguide based laser spectral sensor.

    PubMed

    Du, Z; Yang, X; Li, J; Yang, Y; Qiao, C

    2017-05-01

    This paper aims to provide a fast, sensitive, and accurate characterization of a Mass Flow Controller (MFC) based gas mixer. The gas mixer was evaluated by using a hollow waveguide based laser spectral sensor with high efficiency. Benefiting from the sensor's fast response, high sensitivity and continuous operation, multiple key parameters of the mixer, including mixing uncertainty, linearity, and response time, were acquired by a one-round test. The test results show that the mixer can blend multi-compound gases quite efficiently with an uncertainty of 1.44% occurring at a flow rate of 500 ml/min, with the linearity of 0.998 43 and the response time of 92.6 s. The results' reliability was confirmed by the relative measurement of gas concentration, in which the isolation of the sensor's uncertainty was conducted. The measured uncertainty has shown well coincidence with the theoretical uncertainties of the mixer, which proves the method to be a reliable characterization. Consequently, this sort of laser based characterization's wide appliance on gas analyzer's evaluations is demonstrated.

  7. Porous silicon structures with high surface area/specific pore size

    DOEpatents

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  8. Process for forming a porous silicon member in a crystalline silicon member

    DOEpatents

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  9. Porous silicon structures with high surface area/specific pore size

    DOEpatents

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  10. Visualizing dissolved oxygen transport for liquid ventilation in an in vitro model of the human airways

    NASA Astrophysics Data System (ADS)

    Janke, T.; Bauer, K.

    2017-04-01

    Up until to now, the measurement of dissolved oxygen concentrations during liquid ventilation is limited to the determination of averaged concentrations of the liquid entering or leaving the body. The work presented in this paper aims to extend the possible measurement techniques in the research of liquid ventilation. Therefore optical measurements of the dissolved oxygen concentration, using a luminescent sensor dye, are performed. The preparation of a suitable sensor liquid, based on the metal complex Dichlorotris(1,10)-(phenanthroline)ruthenium(II), is presented. A transparent simplified human lung geometry is used for conducting the experiments. Inspiratory as well as expiratory flow at three different constant flow rates is investigated, covering the flow regimes \\text{Re}=83 -333 and \\text{Pe}=33 300 -133 000. The applied measurement technique is capable to reveal distinctive concentration patterns during inspiration and expiration caused by the laminar flow characteristics. Allowing a sufficiently long flow duration, local concentration inhomogeneities disappear and an exponential rise and decay of the mean values can be observed for inspiration and expiration.

  11. The Development of a Gas–Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus

    PubMed Central

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-01-01

    The measurement of wellbore annulus gas–liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas–liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work. PMID:27869708

  12. The Development of a Gas-Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus.

    PubMed

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-11-18

    The measurement of wellbore annulus gas-liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas-liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work.

  13. A novel automatic regulatory device for continuous bladder irrigation based on wireless sensor in patients after transurethral resection of the prostate

    PubMed Central

    Ding, Aimin; Cao, Huling; Wang, Lihua; Chen, Jiangang; Wang, Jian; He, Bosheng

    2016-01-01

    Abstract Background: Benign prostatic hyperplasia is a common progressive disease in aging men, which leads to a significant impact on daily lives of patients. Continuous bladder irrigation (CBI) is a supplementary option for preventing the adverse events following transurethral resection of the prostate (TURP). Regulation of the flow rate based on the color of drainage bag is significant to prevent the clot formation and retention, which is controlled manually at present. To achieve a better control of flow rate and reduce inappropriate flow rate–related adverse effects, we designed an automatic flow rate controller for CBI applied with wireless sensor and evaluated its clinical efficacy. Methods: The therapeutic efficacy was evaluated in patients receiving the novel automatic bladder irrigation post-TURP in the experimental group compared with controls receiving traditional bladder irrigation in the control group. Results: A total of 146 patients were randomly divided into 2 groups—the experimental group (n = 76) and the control group (n = 70). The mean irrigation volume of the experimental group (24.2 ± 3.8 L) was significantly lower than that of the controls (54.6 ± 5.4 L) (P < 0.05). Patients treated with automatic irrigation device had significantly decreased incidence of clot retention (8/76) and cystospasm (12/76) compared to controls (21/70; 39/70, P < 0.05). There was no significant difference between the 2 groups with regard to irrigation time (28.6 ± 2.7 vs 29.5 ± 3.4 hours, P = 0.077). Conclusion: The study suggests that the automatic regulating device applied with wireless sensor for CBI is safe and effective for patients after TURP. However, studies with a large population of patients and a long-term follow-up should be conducted to validate our findings. PMID:28033276

  14. Flow Webs: Mechanism and Architecture for the Implementation of Sensor Webs

    NASA Astrophysics Data System (ADS)

    Gorlick, M. M.; Peng, G. S.; Gasster, S. D.; McAtee, M. D.

    2006-12-01

    The sensor web is a distributed, federated infrastructure much like its predecessors, the internet and the world wide web. It will be a federation of many sensor webs, large and small, under many distinct spans of control, that loosely cooperates and share information for many purposes. Realistically, it will grow piecemeal as distinct, individual systems are developed and deployed, some expressly built for a sensor web while many others were created for other purposes. Therefore, the architecture of the sensor web is of fundamental import and architectural strictures that inhibit innovation, experimentation, sharing or scaling may prove fatal. Drawing upon the architectural lessons of the world wide web, we offer a novel system architecture, the flow web, that elevates flows, sequences of messages over a domain of interest and constrained in both time and space, to a position of primacy as a dynamic, real-time, medium of information exchange for computational services. The flow web captures; in a single, uniform architectural style; the conflicting demands of the sensor web including dynamic adaptations to changing conditions, ease of experimentation, rapid recovery from the failures of sensors and models, automated command and control, incremental development and deployment, and integration at multiple levels—in many cases, at different times. Our conception of sensor webs—dynamic amalgamations of sensor webs each constructed within a flow web infrastructure—holds substantial promise for earth science missions in general, and of weather, air quality, and disaster management in particular. Flow webs, are by philosophy, design and implementation a dynamic infrastructure that permits massive adaptation in real-time. Flows may be attached to and detached from services at will, even while information is in transit through the flow. This concept, flow mobility, permits dynamic integration of earth science products and modeling resources in response to real-time demands. Flows are the connective tissue of flow webs—massive computational engines organized as directed graphs whose nodes are semi-autonomous components and whose edges are flows. The individual components of a flow web may themselves be encapsulated flow webs. In other words, a flow web subgraph may be presented to a yet larger flow web as a single, seamless component. Flow webs, at all levels, may be edited and modified while still executing. Within a flow web individual components may be added, removed, started, paused, halted, reparameterized, or inspected. The topology of a flow web may be changed at will. Thus, flow webs exhibit an extraordinary degree of adaptivity and robustness as they are explicitly designed to be modified on the fly, an attribute well suited for dynamic model interactions in sensor webs. We describe our concept for a sensor web, implemented as a flow web, in the context of a wildfire disaster management system for the southern California region. Comprehensive wildfire management requires cooperation among multiple agencies. Flow webs allow agencies to share resources in exactly the manner they choose. We will explain how to employ flow webs and agents to integrate satellite remote sensing data, models, in-situ sensors, UAVs and other resources into a sensor web that interconnects organizations and their disaster management tools in a manner that simultaneously preserves their independence and builds upon the individual strengths of agency-specific models and data sources.

  15. Comparison of Engine/Inlet Distortion Measurements with MEMS and ESP Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Soto, Hector L.; Hernandez, Corey D.

    2004-01-01

    A study of active-flow control in a small-scale boundary layer ingestion inlet was conducted at the NASA Langley Basic Aerodynamic Research Tunnel (BART). Forty MEMS pressure sensors, in a rake style configuration, were used to examine both the mean (DC) and high frequency (AC) components of the total pressure across the inlet/engine interface plane. The mean component was acquired and used to calculate pressure distortion. The AC component was acquired separately, at a high sampling rate, and is used to study the unsteady effects of the active-flow control. An identical total pressure rake, utilizing an Electronically Scanned Pressure (ESP) system, was also used to calculate distortion; a comparison of the results obtained using the two rakes is presented.

  16. A MEMS SOI-based piezoresistive fluid flow sensor

    NASA Astrophysics Data System (ADS)

    Tian, B.; Li, H. F.; Yang, H.; Song, D. L.; Bai, X. W.; Zhao, Y. L.

    2018-02-01

    In this paper, a SOI (silicon-on-insulator)-based piezoresistive fluid flow sensor is presented; the presented flow sensor mainly consists of a nylon sensing head, stainless steel cantilever beam, SOI sensor chip, printed circuit board, half-cylinder gasket, and stainless steel shell. The working principle of the sensor and some detailed contrastive analysis about the sensor structure were introduced since the nylon sensing head and stainless steel cantilever beam have distinct influence on the sensor performance; the structure of nylon sensing head and stainless steel cantilever beam is also discussed. The SOI sensor chip was fabricated using micro-electromechanical systems technologies, such as reactive ion etching and low pressure chemical vapor deposition. The designed fluid sensor was packaged and tested; a calibration installation system was purposely designed for the sensor experiment. The testing results indicated that the output voltage of the sensor is proportional to the square of the fluid flow velocity, which is coincident with the theoretical derivation. The tested sensitivity of the sensor is 3.91 × 10-4 V ms2/kg.

  17. 40 CFR 60.5200 - How do I develop a site-specific monitoring plan for my continuous monitoring, bag leak detection...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the flow sensor and other necessary equipment in a position that provides a representative flow. (2) Use a flow sensor with a measurement sensitivity of no greater than 2 percent of the expected process... sensor(s) in a position that provides a representative measurement of the pressure (e.g., particulate...

  18. Velocity Profile measurements in two-phase flow using multi-wave sensors

    NASA Astrophysics Data System (ADS)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  19. 40 CFR 63.5385 - How do I measure the quantity of finish applied to the leather?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) of this section: (i) Locate the flow sensor and other necessary equipment such as straightening vanes in or as close to a position that provides a representative flow. (ii) Use a flow sensor with a... distributions due to upstream and downstream disturbances. (iv) Conduct a flow sensor calibration check at least...

  20. 40 CFR 63.5385 - How do I measure the quantity of finish applied to the leather?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) of this section: (i) Locate the flow sensor and other necessary equipment such as straightening vanes in or as close to a position that provides a representative flow. (ii) Use a flow sensor with a... distributions due to upstream and downstream disturbances. (iv) Conduct a flow sensor calibration check at least...

  1. 40 CFR 63.5385 - How do I measure the quantity of finish applied to the leather?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) through (v) of this section: (i) Locate the flow sensor and other necessary equipment such as straightening vanes in or as close to a position that provides a representative flow. (ii) Use a flow sensor... distributions due to upstream and downstream disturbances. (iv) Conduct a flow sensor calibration check at least...

  2. 40 CFR 63.5385 - How do I measure the quantity of finish applied to the leather?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) through (v) of this section: (i) Locate the flow sensor and other necessary equipment such as straightening vanes in or as close to a position that provides a representative flow. (ii) Use a flow sensor... distributions due to upstream and downstream disturbances. (iv) Conduct a flow sensor calibration check at least...

  3. 40 CFR 63.5385 - How do I measure the quantity of finish applied to the leather?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) through (v) of this section: (i) Locate the flow sensor and other necessary equipment such as straightening vanes in or as close to a position that provides a representative flow. (ii) Use a flow sensor... distributions due to upstream and downstream disturbances. (iv) Conduct a flow sensor calibration check at least...

  4. In-line wear monitor. Final report, July 1988-April 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pieper, K.A.; Taylor, I.J.

    This report describes construction and test results of an in-line monitor for critical ferrous and nonferrous metal debris in turbine engine lubrication systems. The in-line wear monitor (ILWM) uses the X-ray fluorescence principle for detecting metal debris on a continuous basis while the engine is running. The sensor portion of the system is engine mounted and contains a radioactive X-ray source, a flow cell to direct the oil across an X-ray permeable window, a proportional counter X-ray detector and its associated preamplifier and amplifier electronics. The data acquisition electronics is mounted on the airframe and contains a microprocessor based systemmore » for inputting pulses from the sensor, classifying and counting them according to energy bands, and analyzing the data and outputting metal concentration values to the engine monitoring system. The sensor portion of the system is designed to fit on a TF41 turbine engine in place of a tube between the oil tank and the oil pump. A TF41 engine monitoring system has been modified to accept the new signals from the ILWM on spare inputs so that none of the existing functions were disturbed. The ILWM has been flow tested at various flow rates, concentration levels, oil temperatures, and aerations. The wear monitor detected iron, copper, and both iron and copper together with less than 2 ppm one sigma statistical uncertainty for 30 minute count times over the 0-50 ppm range. There was no significant effect of flow rate or aeration on accuracy. The system is developed to the point that it can be tested in an actual flight environment.« less

  5. A low cost strategy to monitor the expansion and contraction of the flowing stream network in mountainous headwater catchments

    NASA Astrophysics Data System (ADS)

    Assendelft, Rick; van Meerveld, Ilja; Seibert, Jan

    2017-04-01

    Streams are dynamic features in the landscape. The flowing stream network expands and contracts, connects and disconnects in response to rainfall events and seasonal changes in catchment wetness. Sections of the river system that experience these wet and dry cycles are often referred to as temporary streams. Temporary streams are abundant and widely distributed freshwater ecosystems. They account for more than half of the total length of the global stream network, are unique habitats and form important hydrological and ecological links between the uplands and perennial streams. However, temporary streams have been largely unstudied, especially in mountainous headwater catchments. The dynamic character of these systems makes it difficult to monitor them. We describe a low-cost, do-it-yourself strategy to monitor the occurrence of water and flow in temporary streams. We evaluate this strategy in two headwater catchments in Switzerland. The low cost sensor network consists of electrical resistivity sensors, water level switches, temperature sensors and flow sensors. These sensors are connected to Arduino microcontrollers and data loggers, which log the data every 5 minutes. The data from the measurement network are compared with observations (mapping of the temporary stream network) as well as time lapse camera data to evaluate the performance of the sensors. We look at how frequently the output of the sensors (presence and absence of water from the ER and water level data, and flow or no-flow from the flow sensors) corresponds to the observed channel state. This is done for each sensor, per sub-catchment, per precipitation event and per sensor location to determine the best sensor combination to monitor temporary streams in mountainous catchments and in which situation which sensor combination works best. The preliminary results show that the sensors and monitoring network work well. The data from the sensors corresponds with the observations and provides information on the expansion of the stream network pattern.

  6. Measurement of Glucose in Blood with a Phenylboronic Acid Optical Sensor

    PubMed Central

    Worsley, Graham J.; Tourniaire, Guilhem A.; Medlock, Kathryn E. S.; Sartain, Felicity K.; Harmer, Hazel E.; Thatcher, Michael; Horgan, Adrian M.; Pritchard, John

    2008-01-01

    Background Current methods of glucose monitoring rely predominantly on enzymes such as glucose oxidase for detection. Phenylboronic acid receptors have been proposed as alternative glucose binders. A unique property of these molecules is their ability to bind glucose in a fully reversible covalent manner that facilitates direct continuous measurements. We examined (1) the ability of a phenylboronic-based sensor to measure glucose in blood and blood plasma and (2) the effect on measurement accuracy of a range of potential interferents. We also showed that the sensor is able to track glucose fluctuations occurring at rates mimicking those experienced in vivo. Method In vitro static measurements of glucose in blood and blood plasma were conducted using holographic sensors containing acrylamide, N,N′-methylenebisacrylamide, 3-acrylamidophenylboronic acid, and (3-acrylamidopropyl) trimethylammonium chloride. The same sensors were also used for in vitro measurements performed under flow conditions. Results The opacity of the liquid had no affect on the ability of the optical sensor to measure glucose in blood or blood plasma. The presence of common antibiotics, diabetic drugs, pain killers, and endogenous substances did not affect the measurement accuracy, as shown by error grid analysis. Ex vivo flow experiments showed that the sensor is able to track changes accurately in concentration occurring in real time without lag or evidence of hysteresis. Conclusions The ability of phenylboronic acid sensors to measure glucose in whole blood was demonstrated for the first time. Holographic sensors are ideally suited to continuous blood glucose measurements, being physically and chemically robust and potentially calibration free. PMID:19885345

  7. Numerical Modeling of the Transient Chilldown Process of a Cryogenic Propellant Transfer Line

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason; Vera, Jerry

    2015-01-01

    Before cryogenic fuel depots can be fully realized, efficient methods with which to chill down the spacecraft transfer line and receiver tank are required. This paper presents numerical modeling of the chilldown of a liquid hydrogen tank-to-tank propellant transfer line using the Generalized Fluid System Simulation Program (GFSSP). To compare with data from recently concluded turbulent LH2 chill down experiments, seven different cases were run across a range of inlet liquid temperatures and mass flow rates. Both trickle and pulse chill down methods were simulated. The GFSSP model qualitatively matches external skin mounted temperature readings, but large differences are shown between measured and predicted internal stream temperatures. Discrepancies are attributed to the simplified model correlation used to compute two-phase flow boiling heat transfer. Flow visualization from testing shows that the initial bottoming out of skin mounted sensors corresponds to annular flow, but that considerable time is required for the stream sensor to achieve steady state as the system moves through annular, churn, and bubbly flow. The GFSSP model does adequately well in tracking trends in the data but further work is needed to refine the two-phase flow modeling to better match observed test data.

  8. Mixed-mode VLSI optic flow sensors for in-flight control of a micro air vehicle

    NASA Astrophysics Data System (ADS)

    Barrows, Geoffrey L.; Neely, C.

    2000-11-01

    NRL is developing compact optic flow sensors for use in a variety of small-scale navigation and collision avoidance tasks. These sensors are being developed for use in micro air vehicles (MAVs), which are autonomous aircraft whose maximum dimension is on the order of 15 cm. To achieve desired weight specifications of 1 - 2 grams, mixed-signal VLSI circuitry is being used to develop compact focal plane sensors that directly compute optic flow. As an interim proof of principle, we have constructed a sensor comprising a focal plane sensor head with on-chip processing and a back-end PIC microcontroller. This interim sensors weighs approximately 25 grams and is able to measure optic flow with real-world and low-contrast textures. Variations of this sensor have been used to control the flight of a glider in real-time to avoid collisions with walls.

  9. Blood flow measurement in extracorporeal circulation using self-mixing laser diode

    NASA Astrophysics Data System (ADS)

    Cattini, Stefano; Norgia, Michele; Pesatori, Alessandro; Rovati, Luigi

    2010-02-01

    To measure blood flow rate in ex-vivo circulation, we propose an optical Doppler flowmeter based on the self-mixing effect within a laser diode (SM-LD). Advantages in adopting SM-LD techniques derive from reduced costs, ease of implementation and limited size. Moreover, the provided contactless sensing allows sensor reuse, hence further cost reduction. Preliminary measurements performed on bovine blood are reported, thus demonstrating the applicability of the proposed measurement method.

  10. 40 CFR 60.4880 - How do I develop a site-specific monitoring plan for my continuous monitoring, bag leak detection...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... this section. (1) Install the flow sensor and other necessary equipment in a position that provides a representative flow. (2) Use a flow sensor with a measurement sensitivity of no greater than 2 percent of the...) Install the pressure sensor(s) in a position that provides a representative measurement of the pressure (e...

  11. Experimental investigation of 20 K two-stage layered active magnetic regenerative refrigerator

    NASA Astrophysics Data System (ADS)

    Park, Inmyong; Jeong, Sangkwon

    2015-12-01

    The performance of a two-stage layered AMRR is experimentally investigated. The test apparatus includes two-stage layered AMRs, low temperature superconducting (LTS) magnet which generates maximum magnetic field of 4 T, and the helium gas flow system. The helium compressor with the tandem rotary valve is employed to generate the oscillating flow of the helium gas minimizing the pressure swing effect. The mass flow rate of working fluid is controlled separately at the first and second stages of the AMR by solenoid valves. The mass flow rate of the AMRs is measured by the mass flow meter and the cryogenic hot-film sensor which is calibrated at cryogenic temperature range from 20 K to 77 K. In order to reduce the heat leak by shuttle heat transfer of the working fluid, void volumes have been implemented and connected to the cold ends of the AMR1 and AMR2. The temperature span of the AMR is recorded as 52 K and the performance of the AMR with the variation of the mass flow rate is analysed. The results show that the mass flow rate and the heat leak due to the shuttle heat transfer by oscillating working fluid are crucial factors in the AMR performance.

  12. Interfacing of differential-capacitive biomimetic hair flow-sensors for optimal sensitivity

    NASA Astrophysics Data System (ADS)

    Dagamseh, A. M. K.; Bruinink, C. M.; Wiegerink, R. J.; Lammerink, T. S. J.; Droogendijk, H.; Krijnen, G. J. M.

    2013-03-01

    Biologically inspired sensor-designs are investigated as a possible path to surpass the performance of more traditionally engineered designs. Inspired by crickets, artificial hair sensors have shown the ability to detect minute flow signals. This paper addresses developments in the design, fabrication, interfacing and characterization of biomimetic hair flow-sensors towards sensitive high-density arrays. Improvement of the electrode design of the hair sensors has resulted in a reduction of the smallest hair movements that can be measured. In comparison to the arrayed hairs-sensor design, the detection-limit was arguably improved at least twelve-fold, down to 1 mm s-1 airflow amplitude at 250 Hz as measured in a bandwidth of 3 kHz. The directivity pattern closely resembles a figure-of-eight. These sensitive hair-sensors open possibilities for high-resolution spatio-temporal flow pattern observations.

  13. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas.

    PubMed

    Zaidi, Nayyer Abbas; Tahir, Muhammad Waseem; Vellekoop, Michael J; Lang, Walter

    2017-10-07

    Ethylene gas is a naturally occurring gas that has an influence on the shelf life of fruit during their transportation in cargo ships. An unintentional exposure of ethylene gas during transportation results in a loss of fruit. A gas chromatographic system is presented here for the detection of ethylene gas. The gas chromatographic system was assembled using a preconcentrator, a printed 3D printed gas chromatographic column, a humidity sensor, solenoid valves, and an electrochemical ethylene gas sensor. Ambient air was used as a carrier gas in the gas chromatographic system. The flow rate was fixed to 10 sccm. It was generated through a mini-pump connected in series with a mass flow controller. The metal oxide gas sensor is discussed with its limitation in ambient air. The results show the chromatogram obtained from metal oxide gas sensor has low stability, drifts, and has uncertain peaks, while the chromatogram from the electrochemical sensor is stable and precise. Furthermore, ethylene gas measurements at higher ppb concentration and at lower ppb concentration were demonstrated with the electrochemical ethylene gas sensor. The system separates ethylene gas and humidity. The chromatograms obtained from the system are stable, and the results are 1.2% repeatable in five similar measurements. The statistical calculation of the gas chromatographic system shows that a concentration of 2.3 ppb of ethylene gas can be detected through this system.

  14. Development of an optical fiber flow velocity sensor.

    PubMed

    Harada, Toshio; Kamoto, Kenji; Abe, Kyutaro; Izumo, Masaki

    2009-01-01

    A new optical fiber flow velocity sensor was developed by using an optical fiber information network system in sewer drainage pipes. The optical fiber flow velocity sensor operates without electric power, and the signals from the sensor can be transmitted over a long distance through the telecommunication system in the optical fiber network. Field tests were conducted to check the performance of the sensor in conduits in the pumping station and sewage pond managed by the Tokyo Metropolitan Government. Test results confirmed that the velocity sensor can be used for more than six months without any trouble even in sewer drainage pipes.

  15. Long-Period Fiber Grating Sensors for the Measurement of Liquid Level and Fluid-Flow Velocity

    PubMed Central

    Wang, Jian-Neng; Luo, Ching-Ying

    2012-01-01

    This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO2-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1–5 were in the range of 1.35–9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7–12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds. PMID:22666046

  16. Long-period fiber grating sensors for the measurement of liquid level and fluid-flow velocity.

    PubMed

    Wang, Jian-Neng; Luo, Ching-Ying

    2012-01-01

    This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO(2)-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1-5 were in the range of 1.35-9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7-12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds.

  17. Delay times of a LiDAR-guided precision sprayer control system

    USDA-ARS?s Scientific Manuscript database

    Accurate flow control systems in triggering sprays against detected targets are needed for precision variable-rate sprayer development. System delay times due to the laser-sensor data buffer, software operation, and hydraulic-mechanical component response were determined for a control system used fo...

  18. The Influence of Pinus brutia on the Water Balance of Fractured Mediterranean Mountain Environments

    NASA Astrophysics Data System (ADS)

    Eliades, Marinos; Bruggeman, Adriana; Lubczynski, Maciek; Christou, Andreas

    2016-04-01

    In dry Mediterranean environments, both rainfall and temperature vary throughout the year and frequent droughts occur. The mountainous topography is characterized by steep slopes, often leading to shallow soil layers with limited water storage capacity. While for most of the tree species, these conditions can be characterized as unfavourable, Pinus brutia trees manage to survive and thrive. The main objective of this study is to define and quantify the water balance components of a Pinus brutia forest at tree level. Our study was conducted from 30/12/2014 until 31/09/2015 in an 8966-m2 fenced area of Pinus brutia forest. The site is located on the northern foothills of Troodos mountain at 620 m elevation, in Cyprus. The slope of the site ranged between 0 and 82%. The average daily minimum temperature is 5 0C in January and the average daily maximum temperature is 35 oC in August. The mean annual rainfall is 425 mm. We measured the diameter at breast height (DBH) from a total of 122 trees. Based on the average DBH, four trees were selected for monitoring (two were above the average DBH and two were below). We measured soil depth in a 1-m grid around each of the four selected trees. We processed soil depths in ArcGIS software (ESRI) to create a soil depth map. We used a Total Station and a differential GPS for the creation of a high resolution DEM of the area covering the four selected trees. We installed soil moisture sensors at 15-cm depth at distances of 1 and 2 m from the selected trees and a second sensor at 30-cm depth when the soil was deeper than 20 cm.. We randomly installed four metric manual rain gauges under each trees' canopy to measure throughfall and for stemflow we installed a plastic tube around each tree trunk and connected it to a manual rain gauge. We used six sap flow heat ratio method instruments to determine sap flow rates of the Pinus brutia trees. Two trees had one sensor installed at 1.3 m height facing north. The remaining trees had two sap flow sensors facing north and south for examining azimuthal variations. Hourly meteorological conditions were observed by an automatic meteorological station. Results showed high linear correlation between rainfall and throughfall in the four trees (R2= 0.95-0.98). Stem flow was negligible (below 1%). Interception varied from 5% to 27% of the total rainfall. Sap flow rates were not depended on the tree size. The transpiration of the four trees on average was 90% of the rainfall. The water balance of each tree revealed that most of the water needed for transpiration is provided by the bedrock fractures. Reverse sap flow rates were measured, indicating that Pinus Brutia trees use hydraulic redistribution mechanisms. Pinus brutia adapt to the seasonal variations in climatic conditions by regulating their transpiration rates according to water availability. Competition among trees and sunlight exposure affect their transpiration rates.

  19. Systems and Sensors for Debris-flow Monitoring and Warning

    PubMed Central

    Arattano, Massimo; Marchi, Lorenzo

    2008-01-01

    Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows), their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and non-structural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall) and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche pendulums, photocells, trip wires etc. Event warning systems for debris flows have a strong linkage with debris-flow monitoring that is carried out for research purposes: the same sensors are often used for both monitoring and warning, although warning systems have higher requirements of robustness than monitoring systems. The paper presents a description of the sensors employed for debris-flow monitoring and event warning systems, with attention given to advantages and drawbacks of different types of sensors. PMID:27879828

  20. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells.

    PubMed

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-09-17

    The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the "water film phenomenon" produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor.

  1. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells

    PubMed Central

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-01-01

    The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the “water film phenomenon” produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor. PMID:27649206

  2. Unsteady Heat Transfer in Channel Flow using Small-Scale Vorticity Concentrations Effected by a Vibrating Reed

    NASA Astrophysics Data System (ADS)

    Hidalgo, Pablo; Glezer, Ari

    2011-11-01

    Heat transfer enhancement by small-scale vorticity concentrations that are induced within the core flow of a mm-scale heated channel are investigated experimentally. These small-scale motions are engendered by the cross stream vibrations of a streamwise cantilevered reed that spans most of the channel's width. The interactions between the reed the core flow over a range of flow rates lead to the formation, shedding, and advection of time-periodic vorticity concentrations that interact with the wall boundary layers, and increase cross stream mixing of the core flow. Heating of the channel walls is controlled using microfabricated serpentine resistive heaters embedded with streamwise arrays of temperature sensors. It is shown that the actuation disrupts the thermal boundary layers and result in significant enhancement of the local and global heat transfer along the channel compared to the baseline flow in the absence of the reed. The effect of the reed on the cross flow is measured using high resolution particle image velocimetry (PIV), and the reed motion is characterized using a laser-based position sensor. The blockage induced by the presence of the reed and its cross stream motion is characterized using detailed streamwise pressure distributions. Supported by DARPA and UTRC.

  3. Unsteady flow sensing and optimal sensor placement using machine learning

    NASA Astrophysics Data System (ADS)

    Semaan, Richard

    2016-11-01

    Machine learning is used to estimate the flow state and to determine the optimal sensor placement over a two-dimensional (2D) airfoil equipped with a Coanda actuator. The analysis is based on flow field data obtained from 2D unsteady Reynolds averaged Navier-Stokes (uRANS) simulations with different jet blowing intensities and actuation frequencies, characterizing different flow separation states. This study shows how the "random forests" algorithm is utilized beyond its typical usage in fluid mechanics estimating the flow state to determine the optimal sensor placement. The results are compared against the current de-facto standard of maximum modal amplitude location and against a brute force approach that scans all possible sensor combinations. The results show that it is possible to simultaneously infer the state of flow and to determine the optimal sensor location without the need to perform proper orthogonal decomposition. Collaborative Research Center (CRC) 880, DFG.

  4. A Two-Dimensional Flow Sensor with Integrated Micro Thermal Sensing Elements and a Back Propagation Neural Network

    PubMed Central

    Que, Ruiyi; Zhu, Rong

    2014-01-01

    This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD) mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s–30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°. PMID:24385032

  5. A two-dimensional flow sensor with integrated micro thermal sensing elements and a back propagation neural network.

    PubMed

    Que, Ruiyi; Zhu, Rong

    2013-12-31

    This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD) mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s-30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°.

  6. Photonic crystal biosensor microplates with integrated fluid networks for high throughput applications in drug discovery

    NASA Astrophysics Data System (ADS)

    Choi, Charles J.; Chan, Leo L.; Pineda, Maria F.; Cunningham, Brian T.

    2007-09-01

    Assays used in pharmaceutical research require a system that can not only detect biochemical interactions with high sensitivity, but that can also perform many measurements in parallel while consuming low volumes of reagents. While nearly all label-free biosensor transducers to date have been interfaced with a flow channel, the liquid handling system is typically aligned and bonded to the transducer for supplying analytes to only a few sensors in parallel. In this presentation, we describe a fabrication approach for photonic crystal biosensors that utilizes nanoreplica molding to produce a network of sensors that are automatically self-aligned with a microfluidic network in a single process step. The sensor/fluid network is inexpensively produced on large surface areas upon flexible plastic substrates, allowing the device to be incorporated into standard format 96-well microplates. A simple flow scheme using hydrostatic pressure applied through a single control point enables immobilization of capture ligands upon a large number of sensors with 220 nL of reagent, and subsequent exposure of the sensors to test samples. A high resolution imaging detection instrument is capable of monitoring the binding within parallel channels at rates compatible with determining kinetic binding constants between the immobilized ligands and the analytes. The first implementation of this system is capable of monitoring the kinetic interactions of 11 flow channels at once, and a total of 88 channels within an integrated biosensor microplate in rapid succession. The system was initially tested to characterize the interaction between sets of proteins with known binding behavior.

  7. Smart Sensing Strip Using Monolithically Integrated Flexible Flow Sensor for Noninvasively Monitoring Respiratory Flow

    PubMed Central

    Jiang, Peng; Zhao, Shuai; Zhu, Rong

    2015-01-01

    This paper presents a smart sensing strip for noninvasively monitoring respiratory flow in real time. The monitoring system comprises a monolithically-integrated flexible hot-film flow sensor adhered on a molded flexible silicone case, where a miniaturized conditioning circuit with a Bluetooth4.0 LE module are packaged, and a personal mobile device that wirelessly acquires respiratory data transmitted from the flow sensor, executes extraction of vital signs, and performs medical diagnosis. The system serves as a wearable device to monitor comprehensive respiratory flow while avoiding use of uncomfortable nasal cannula. The respiratory sensor is a flexible flow sensor monolithically integrating four elements of a Wheatstone bridge on single chip, including a hot-film resistor, a temperature-compensating resistor, and two balancing resistors. The monitor takes merits of small size, light weight, easy operation, and low power consumption. Experiments were conducted to verify the feasibility and effectiveness of monitoring and diagnosing respiratory diseases using the proposed system. PMID:26694401

  8. Transformer current sensor for superconducting magnetic coils

    DOEpatents

    Shen, Stewart S.; Wilson, C. Thomas

    1988-01-01

    A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

  9. Micromachined magnetohydrodynamic actuators and sensors

    DOEpatents

    Lee, Abraham P.; Lemoff, Asuncion V.

    2000-01-01

    A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.

  10. The use of laminar tube flow in the study of hydrodynamic and chemical influences on polymer flocculation of Escherichia coli.

    PubMed

    Whittington, P N; George, N

    1992-08-05

    The optimization of microbial flocculation for subsequent biomass separation must relate the floc properties to separation process criteria. The effects of flocculant type, dose, and hydrodynamic conditions on floc formation in laminar tube flow were determined for an Escherichia coli system. Combined with an on-line aggregation sensor, this technique allows the flocculation process to be rapidly optimized. This is important, because interbatch variation in fermentation broth has consequences for flocculation control and subsequent downstream processing. Changing tube diameter and length while maintaining a constant flow rate allowed independent study of the effects of shear and time on the flocculation rate and floc characteristics. Tube flow at higher shear rates increased the rate and completeness of flocculation, but reduced the maximum floc size attained. The mechanism for this size limitation does not appear to be fracture or erosion of existing flocs. Rearrangement of particles within the flocs appears to be most likely. The Camp number predicted the extent of flocculation obtained in terms of the reduction in primary particle number, but not in terms of floc size.

  11. Fluid pipeline leak detection and location with miniature RF tags

    DOEpatents

    McIntyre, Timothy J.

    2017-05-16

    Sensors locate troublesome leaks in pipes or conduits that carry a flowing medium. These sensors, through tailored physical and geometric properties, preferentially seek conduit leaks or breaches due to flow streaming. The sensors can be queried via transceivers outside the conduit or located and interrogated inside by submersible unmanned vehicle to identify and characterize the nature of a leak. The sensors can be functionalized with other capabilities for additional leak and pipeline characterization if needed. Sensors can be recovered from a conduit flow stream and reused for future leak detection activities.

  12. Structural integrated sensor and actuator systems for active flow control

    NASA Astrophysics Data System (ADS)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shifeng; Wang, Shuyu; Lu, Ming

    In this paper, vanadium thin films were deposited on sapphire substrates by DC magnetron sputtering and then oxidized in a tube furnace filled with oxygen under different temperatures and oxygen flow rates. The significant influence of the oxygen flow rate and oxidation temperature on the electrical and structural properties of the vanadium oxide thin films were investigated systematically. It shows the pure vanadium dioxide (VO 2) state can only be obtained in a very narrow temperature and oxygen flow rate range. The resistivity change during the metal-insulator transition varies from 0.2 to 4 orders of magnitude depending on the oxidationmore » condition. Large thermal hysteresis during the metal-insulator phase transition was observed during the transition compared to the results in literature. Proper oxidation conditions can significantly reduce the thermal hysteresis. Finally, the fabricated VO 2 thin films showed the potential to be applied in the development of electrical sensors and other smart devices.« less

  14. Efficacious insect and disease control with laser-guided air-assisted sprayer

    USDA-ARS?s Scientific Manuscript database

    Efficacy of a newly developed air-assisted variable-rate sprayer was investigated for the control of arthropod pests and plant diseases in six commercial fields. The sprayer was integrated with a high-speed laser scanning sensor, a custom-designed signal processing program, an automatic flow control...

  15. 40 CFR 60.63 - Monitoring of operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... assurance or quality control activities (including, as applicable, calibration checks and required zero and... period. (7) The flow rate sensor must have provisions to determine the daily zero and upscale calibration... chapter for a discussion of CD). (i) Conduct the CD tests at two reference signal levels, zero (e.g., 0 to...

  16. 40 CFR 60.63 - Monitoring of operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... assurance or quality control activities (including, as applicable, calibration checks and required zero and... period. (7) The flow rate sensor must have provisions to determine the daily zero and upscale calibration... chapter for a discussion of CD). (i) Conduct the CD tests at two reference signal levels, zero (e.g., 0 to...

  17. 40 CFR 63.1350 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alkali bypass PMCDs. (i) The temperature recorder response range must include zero and 1.5 times the... provide output of relative or absolute particulate matter loadings. (v) The bag leak detection system must... period. (7) The flow rate sensor must have provisions to determine the daily zero and upscale calibration...

  18. Review of recent advances in analytical techniques for the determination of neurotransmitters

    PubMed Central

    Perry, Maura; Li, Qiang; Kennedy, Robert T.

    2009-01-01

    Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluable gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest. PMID:19800472

  19. Novel Bio-inspired Aquatic Flow Sensors

    DTIC Science & Technology

    2012-06-18

    Novel Bio-inspired Aquatic Flow Sensors Preston Albert Pinto Thesis submitted to the Faculty of the Virginia Polytechnic Institute and...Leo, Chair Stephen A. Sarles Michael K. Philen Pavlos Vlachos June 18th, 2012 Blacksburg, Virginia Keywords: artificial hair cell, flow ...Aquatic Flow Sensors 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT

  20. System and method for improving performance of a fluid sensor for an internal combustion engine

    DOEpatents

    Kubinski, David [Canton, MI; Zawacki, Garry [Livonia, MI

    2009-03-03

    A system and method for improving sensor performance of an on-board vehicle sensor, such as an exhaust gas sensor, while sensing a predetermined substance in a fluid flowing through a pipe include a structure for extending into the pipe and having at least one inlet for receiving fluid flowing through the pipe and at least one outlet generally opposite the at least one inlet, wherein the structure redirects substantially all fluid flowing from the at least one inlet to the sensor to provide a representative sample of the fluid to the sensor before returning the fluid through the at least one outlet.

  1. Hillslope-channel coupling in a steep Hawaiian catchment accelerates erosion rates over 100-fold

    NASA Astrophysics Data System (ADS)

    Stock, J. D.; Hanshaw, M. N.; Rosener, M.; Schmidt, K. M.; Brooks, B. A.; Tribble, G.; Jacobi, J.

    2009-12-01

    In tropical watersheds, hillslope changes are producing increasing amounts of fine sediment that can be quickly carried to reefs by channels. Suspended sediment concentrations off the reefs of Molokai, Hawaii, chronically exceed a toxic level of 10 mg/L, threatening reef ecosystems. We hypothesize that historic conversion of watersheds from soil creep to overland flow erosion increased both magnitude and frequency of sediment flooding adjacent reefs. We combined surficial and ecological mapping, hillslope and stream gages, and novel sensors to locate, quantify and model the generation of fine sediments polluting the Molokai reef. Ecological and geomorphic mapping from LiDAR and multi-spectral imagery located a subset of overland flow areas with vegetation cover below a threshold value preventing erosion. Here, feral goat grazing exposed cohesive volcanic soils whose low matrix hydraulic conductivities (1-20 mm/hour) promote Horton overland flow erosion. We instrumented steep, barren hillslopes with soil moisture sensors, overland flow meters, Parshall flumes, ISCO sediment samplers, and a rain gage and conducted repeat Tripod LiDAR and infiltration tests. To characterize soil resistance here and elsewhere to overland flow erosion, we deployed a Cohesive Strength Meter (CSM) to simulate the stresses of flowing water. At the 13.5 km 2 watershed mouth we used a USGS stream gage and ISCO sediment sampler to estimate total load. Over 2 years, storms triggered overland flow during rainfall intensities above 10-15 mm/hr. Overland flow meters indicate such flows can be up to 3 cm deep, with a tendency to deepen downslope. CSM tests indicate that these depths are insufficient to erode soils where vegetation is dense, but far above threshold values of 2-3 mm depth for bare soil erosion. Sediment ratings curves for both hillslope and downstream catchment gages show strong clock-wise hysteresis during the first intense storms in the Fall, becoming linear later in the rainy season. During Fall storms, sediment concentration is often 10X higher at a given stage. During intense Fall storms, we measured erosion rates using erosion pins (1.0 cm/a), suspended sediment flux (1.5 cm/a) and repeat tripod LiDAR (1.7 cm/a). These rates are at least 100-fold greater than the long-term lowering rate of 0.13 mm/a. A sediment budget constructed by extrapolating hillslope lowering rates to the portions of the catchments mapped as overland flow hotspots predicts a total yearly flux of ~ 6500 t, in agreement with the measured total of ~6200 t. A decadal record illustrates that rainfall intensities sufficient to generate overland flow occur for at least 8-10 hours every year, coincident with 1-3 large storm events. We hypothesize that high lowering rates reflect a combination of long-duration overland flow events, and availability of weathered soils that can be entrained by thin flows. It appears that the generation of loose, seasonally weathered silt is a 1st order control on the amount of sediment exported to the reef. If climate change increases storm frequency or duration, or decreases vegetation cover, sediment loading rates to the reef here could increase dramatically.

  2. Accounting for sensor calibration, data validation, measurement and sampling uncertainties in monitoring urban drainage systems.

    PubMed

    Bertrand-Krajewski, J L; Bardin, J P; Mourad, M; Béranger, Y

    2003-01-01

    Assessing the functioning and the performance of urban drainage systems on both rainfall event and yearly time scales is usually based on online measurements of flow rates and on samples of influent effluent for some rainfall events per year. In order to draw pertinent scientific and operational conclusions from the measurement results, it is absolutely necessary to use appropriate methods and techniques in order to i) calibrate sensors and analytical methods, ii) validate raw data, iii) evaluate measurement uncertainties, iv) evaluate the number of rainfall events to sample per year in order to determine performance indicator with a given uncertainty. Based an previous work, the paper gives a synthetic review of required and techniques, and illustrates their application to storage and settling tanks. Experiments show that, controlled and careful experimental conditions, relative uncertainties are about 20% for flow rates in sewer pipes, 6-10% for volumes, 25-35% for TSS concentrations and loads, and 18-276% for TSS removal rates. In order to evaluate the annual pollutant interception efficiency of storage and settling tanks with a given uncertainty, efforts should first be devoted to decrease the sampling uncertainty by increasing the number of sampled events.

  3. Ionophore-Based Potentiometric Sensors for the Flow-Injection Determination of Promethazine Hydrochloride in Pharmaceutical Formulations and Human Urine

    PubMed Central

    Hassan, Ahmed Khudhair; Saad, Bahruddin; Ghani, Sulaiman Ab; Adnan, Rohana; Rahim, Afidah Abdul; Ahmad, Norariza; Mokhtar, Marina; Ameen, Suham Tawfiq; Al-Araji, Suad Mustafa

    2011-01-01

    Plasticised poly(vinyl chloride)-based membranes containing the ionophores (α-, β- and γ-cyclodextrins (CD), dibenzo-18-crown-6 (DB18C6) and dibenzo-30-crown-10 (DB30C10) were evaluated for their potentiometric response towards promethazine (PM) in a flow injection analysis (FIA) set-up. Good responses were obtained when β- and γ-CDs, and DB30C10 were used. The performance characteristics were further improved when tetrakis(4-chlorophenyl) borate (KTPB) was added to the membrane. The sensor based on β-CD, bis(2-ethylhexyl) adipate (BEHA) and KTPB exhibited the best performance among the eighteen sensor compositions that were tested. The response was linear from 1 × 10−5 to 1 × 10−2 M, slope was 61.3 mV decade−1, the pH independent region ranged from 4.5 to 7.0, a limit of detection of 5.3 × 10−6 M was possible and a lifetime of more than a month was observed when used in the FIA system. Other plasticisers such as dioctyl phenylphosphonate and tributyl phosphate do not show significant improvements in the quality of the sensors. The promising sensors were further tested for the effects of foreign ions (Li+, Na+, K+, Mg2+, Ca2+, Co2+, Cu2+, Cr3+, Fe3+, glucose, fructose). FIA conditions (e.g., effects of flow rate, injection volume, pH of the carrier stream) were also studied when the best sensor was used (based on β-CD). The sensor was applied to the determination of PM in four pharmaceutical preparations and human urine that were spiked with different levels of PM. Good agreement between the sensor and the manufacturer’s claimed values (for pharmaceutical preparations) was obtained, while mean recoveries of 98.6% were obtained for spiked urine samples. The molecular recognition features of the sensors as revealed by molecular modelling were rationalised by the nature of the interactions and complexation energies between the host and guest molecules. PMID:22346617

  4. A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks

    PubMed Central

    Costa, Daniel G.; Guedes, Luiz Affonso

    2011-01-01

    Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks. PMID:22163908

  5. Fluid flow sensing with ionic polymer-metal composites

    NASA Astrophysics Data System (ADS)

    Stalbaum, Tyler; Trabia, Sarah; Shen, Qi; Kim, Kwang J.

    2016-04-01

    Ionic polymer-metal composite (IPMC) actuators and sensors have been developed and modeled over the last two decades for use as soft-robotic deformable actuators and sensors. IPMC devices have been suggested for application as underwater actuators, energy harvesting devices, and medical devices such as in guided catheter insertion. Another interesting application of IPMCs in flow sensing is presented in this study. IPMC interaction with fluid flow is of interest to investigate the use of IPMC actuators as flow control devices and IPMC sensors as flow sensing devices. An organized array of IPMCs acting as interchanging sensors and actuators could potentially be designed for both flow measurement and control, providing an unparalleled tool in maritime operations. The underlying physics for this system include the IPMC ion transport and charge fundamental framework along with fluid dynamics to describe the flow around IPMCs. An experimental setup for an individual rectangular IPMC sensor with an externally controlled fluid flow has been developed to investigate this phenomenon and provide further insight into the design and application of this type of device. The results from this portion of the study include recommendations for IPMC device designs in flow control.

  6. In-Situ Measurement of Hall Thruster Erosion Using a Fiber Optic Regression Probe

    NASA Technical Reports Server (NTRS)

    Polzink, Kurt A.; Korman, Valentin

    2008-01-01

    One potential life-limiting mechanism in a Hall thruster is the erosion of the ceramic material comprising the discharge channel. This is especially true for missions that require long thrusting periods and can be problematic for lifetime qualification, especially when attempting to qualify a thruster by analysis rather than a test lasting the full duration of the mission. In addition to lifetime, several analytical and numerical models include electrode erosion as a mechanism contributing to enhanced transport properties. However, there is still a great deal of dispute over the importance of erosion to transport in Hall thrusters. The capability to perform an in-situ measurement of discharge channel erosion is useful in addressing both the lifetime and transport concerns. An in-situ measurement would allow for real-time data regarding the erosion rates at different operating points, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over a thruster's operating envelope would also be useful in the modeling of the detailed physics inside the discharge chamber. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor was tested using a linear Hall thruster geometry, which served as a means of producing plasma erosion of a ceramic discharge chamber. The mass flow rate, discharge voltage, and applied magnetic field strength could be varied, allowing for erosion measurements over a broad thruster operating envelope. Results are presented demonstrating the ability of the REAST sensor to capture not only the insulator erosion rates but also changes in these rates as a function of the discharge parameters.

  7. Piezoelectric energy harvesting in internal fluid flow.

    PubMed

    Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim

    2015-10-14

    We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph's clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well.

  8. Piezoelectric Energy Harvesting in Internal Fluid Flow

    PubMed Central

    Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim

    2015-01-01

    We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph’s clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well. PMID:26473879

  9. Flow energizers. Task A

    NASA Technical Reports Server (NTRS)

    Ward, D.; Binford, R.; Vonlavante, E.; Paul, B.

    1985-01-01

    The effects of a propeller slipstream on the wing laminar boundary are being investigated. Hot-wire velocity sensor measurements have been performed in flight and in a wind tunnel. It is shown that the boundary layer cycles between a laminar state and a turbulent state at the propeller blade passage rate. The cyclic length of the turbulent state increases with decreasing laminar stability. Analyses of the time-varying velocity profiles show the turbulent state to lie in a transition region between fully laminar and fully turbulent. The observed cyclic boundary layer has characteristics similar to relaminarizing flow and laminar flow with external turbulence.

  10. Thermal heat-balance mode flow-to-frequency converter

    NASA Astrophysics Data System (ADS)

    Pawlowski, Eligiusz

    2016-11-01

    This paper presents new type of thermal flow converter with the pulse frequency output. The integrating properties of the temperature sensor have been used, which allowed for realization of pulse frequency modulator with thermal feedback loop, stabilizing temperature of sensor placed in the flowing medium. The system assures balancing of heat amount supplied in impulses to the sensor and heat given up by the sensor in a continuous way to the flowing medium. Therefore the frequency of output impulses is proportional to the heat transfer coefficient from sensor to environment. According to the King's law, the frequency of those impulses is a function of medium flow velocity around the sensor. The special feature of presented solution is total integration of thermal sensor with the measurement signal conditioning system. Sensor and conditioning system are not the separate elements of the measurement circuit, but constitute a whole in form of thermal heat-balance mode flow-to-frequency converter. The advantage of such system is easiness of converting the frequency signal to the digital form, without using any additional analogue-to-digital converters. The frequency signal from the converter may be directly connected to the microprocessor input, which with use of standard built-in counters may convert the frequency into numerical value of high precision. Moreover, the frequency signal has higher resistance to interference than the voltage signal and may be transmitted to remote locations without the information loss.

  11. Microfluidic biosensing systems. Part I. Development and optimisation of enzymatic chemiluminescent micro-biosensors based on silicon microchips.

    PubMed

    Davidsson, Richard; Genin, Frédéric; Bengtsson, Martin; Laurell, Thomas; Emnéus, Jenny

    2004-10-01

    Chemiluminescent (CL) enzyme-based flow-through microchip biosensors (micro-biosensors) for detection of glucose and ethanol were developed for the purpose of monitoring real-time production and release of glucose and ethanol from microchip immobilised yeast cells. Part I of this study focuses on the development and optimisation of the micro-biosensors in a microfluidic sequential injection analysis (microSIA) system. Glucose oxidase (GOX) or alcohol oxidase (AOX) was co-immobilised with horseradish peroxidase (HRP) on porous silicon flow through microchips. The hydrogen peroxide produced from oxidation of the corresponding analyte (glucose or ethanol) took part in the chemiluminescent (CL) oxidation of luminol catalysed by HRP enhanced by addition of p-iodophenol (PIP). All steps in the microSIA system, including control of syringe pump, multiposition valve (MPV) and data readout, were computer controlled. The influence of flow rate and luminol- and PIP concentration were investigated using a 2(3)-factor experiment using the GOX-HRP sensor. It was found that all estimated single factors and the highest order of interaction were significant. The optimum was found at 250 microM luminol and 150 microM PIP at a flow rate of 18 microl min(-1), the latter as a compromise between signal intensity and analysis time. Using the optimised system settings one sample was processed within 5 min. Two different immobilisation chemistries were investigated for both micro-biosensors based on 3-aminopropyltriethoxsilane (APTS)- or polyethylenimine (PEI) functionalisation followed by glutaraldehyde (GA) activation. GOX-HRP micro-biosensors responded linear in a log-log format within the range 10-1000 microM glucose. Both had an operational stability of at least 8 days, but the PEI-GOX-HRP sensor was more sensitive. The AOX-HRP micro-biosensors responded linear (log-log) in the range between 1 and 10 mM ethanol, but the PEI-AOX-HRP sensor was in general more sensitive. Both sensors had an operational stability of at least 8 h, but with a half-life of 2-3 days.

  12. Using a Novel Optical Sensor to Characterize Methane Ebullition Processes

    NASA Astrophysics Data System (ADS)

    Delwiche, K.; Hemond, H.; Senft-Grupp, S.

    2015-12-01

    We have built a novel bubble size sensor that is rugged, economical to build, and capable of accurately measuring methane bubble sizes in aquatic environments over long deployment periods. Accurate knowledge of methane bubble size is important to calculating atmospheric methane emissions from in-land waters. By routing bubbles past pairs of optical detectors, the sensor accurately measures bubbles sizes for bubbles between 0.01 mL and 1 mL, with slightly reduced accuracy for bubbles from 1 mL to 1.5 mL. The sensor can handle flow rates up to approximately 3 bubbles per second. Optional sensor attachments include a gas collection chamber for methane sampling and volume verification, and a detachable extension funnel to customize the quantity of intercepted bubbles. Additional features include a data-cable running from the deployed sensor to a custom surface buoy, allowing us to download data without disturbing on-going bubble measurements. We have successfully deployed numerous sensors in Upper Mystic Lake at depths down to 18 m, 1 m above the sediment. The resulting data gives us bubble size distributions and the precise timing of bubbling events over a period of several months. In addition to allowing us to characterize typical bubble size distributions, this data allows us to draw important conclusions about temporal variations in bubble sizes, as well as bubble dissolution rates within the water column.

  13. A Fault Tolerance Mechanism for On-Road Sensor Networks

    PubMed Central

    Feng, Lei; Guo, Shaoyong; Sun, Jialu; Yu, Peng; Li, Wenjing

    2016-01-01

    On-Road Sensor Networks (ORSNs) play an important role in capturing traffic flow data for predicting short-term traffic patterns, driving assistance and self-driving vehicles. However, this kind of network is prone to large-scale communication failure if a few sensors physically fail. In this paper, to ensure that the network works normally, an effective fault-tolerance mechanism for ORSNs which mainly consists of backup on-road sensor deployment, redundant cluster head deployment and an adaptive failure detection and recovery method is proposed. Firstly, based on the N − x principle and the sensors’ failure rate, this paper formulates the backup sensor deployment problem in the form of a two-objective optimization, which explains the trade-off between the cost and fault resumption. In consideration of improving the network resilience further, this paper introduces a redundant cluster head deployment model according to the coverage constraint. Then a common solving method combining integer-continuing and sequential quadratic programming is explored to determine the optimal location of these two deployment problems. Moreover, an Adaptive Detection and Resume (ADR) protocol is deigned to recover the system communication through route and cluster adjustment if there is a backup on-road sensor mismatch. The final experiments show that our proposed mechanism can achieve an average 90% recovery rate and reduce the average number of failed sensors at most by 35.7%. PMID:27918483

  14. Evaluation of a novel wind tunnel for the measurement of the kinetics of odour emissions from piggery effluent.

    PubMed

    Sohn, J H; Smith, R; Yoong, E; Hudson, N; Kim, T I

    2004-01-01

    A novel laboratory wind tunnel, with the capability to control factors such as air flow-rate, was developed to measure the kinetics of odour emissions from liquid effluent. The tunnel allows the emission of odours and other volatiles under an atmospheric transport system similar to ambient conditions. Sensors for wind speed, temperature and humidity were installed and calibrated. To calibrate the wind tunnel, trials were performed to determine the gas recovery efficiency under different air flow-rates (ranging from 0.001 to 0.028m3/s) and gas supply rates (ranging from 2.5 to 10.0 L/min) using a standard CO gas mixture. The results have shown gas recovery efficiencies ranging from 61.7 to 106.8%, while the average result from the trials was 81.14%. From statistical analysis, it was observed that the highest, most reliable gas recovery efficiency of the tunnel was 88.9%. The values of air flow-rate and gas supply rate corresponding to the highest gas recovery efficiency were 0.028 m3/s and 10.0 L/min respectively. This study suggested that the wind tunnel would provide precise estimates of odour emission rate. However, the wind tunnel needs to be calibrated to compensate for errors caused by different air flow-rates.

  15. New Mexico Liquid Metal αω -dynamo experiment: Most Recent Progress

    NASA Astrophysics Data System (ADS)

    Si, Jiahe; Sonnenfeld, Richard; Colgate, Art; Li, Hui

    2017-10-01

    The goal of the New Mexico Liquid Metal αω -dynamo experiment is to demonstrate a galactic dynamo can be generated through two phases, the ω-phase and α-phase by two semi-coherent flows in laboratory. We have demonstrated an 8-fold poloidal-to-toroidal flux amplification from differential rotation (the ω-effect) by minimizing turbulence in our apparatus. To demonstrate the α-effect, major upgrades are needed. The upgrades include building a helicity injection facility, mounting new 100hp motors and new sensors, designing a new data acquisition system capable of transmitting data from about 80 sensors in a high speed rotating frame with an overall 200kS/sec sampling rate. We hope the upgrade can be utilized to answer the question of whether a self-sustaining αω -dynamo can be implemented with a realistic lab fluid flow field, as well as to obtain more details to understand dynamo action in highly turbulent Couette flow.

  16. Evaluation of an experimental mass-flow sensor of cotton-lint at the gin

    USDA-ARS?s Scientific Manuscript database

    As part of a system to optimize the cotton ginning process, a custom built mass-flow sensor was evaluated at USDA-ARS Cotton Ginning Research Unit at Stoneville, Mississippi. The mass-flow sensor was fabricated based on the principle of the senor patented by Thomasson and Sui (2004). The optical a...

  17. Detection of the dynamics of odour emissions from pig farms using dynamic olfactometry and an electronic odour sensor.

    PubMed

    Brose, G; Gallmann, E; Hartung, E; Jungbluth, T

    2001-01-01

    The dynamics of odour emissions from a pig house was investigated by olfactometry and using an electronic odour sensor. In addition, several suggested influencing factors on the odour emission were measured to get insight into the reasons for the fluctuation of the odour emission. Odour emission tended to increase over the fattening period f rom August to November 2000 by a factor of two to three, although temperature and air-flow rate decreased according to the seasons. Feeding caused a significant temporary rise in animal activity, dust and odour concentration resulting in an increase of odour emission. The sensor signals of an electronic odour sensor increased simultaneously and showed a good relation to the odour concentration. There is a promising potential of electronic odour sensors to detect the dynamic and the level of odour concentrations. Further investigation will be done, to ensure a standardised measuring protocol and to obtain a calibration of electronic odour sensor signals direct to odour concentrations.

  18. Pressure sensor to determine spatial pressure distributions on boundary layer flows

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Piroozan, Parham; Corke, Thomas C.

    1997-03-01

    The determination of pressures along the surface of a wind tunnel proves difficult with methods that must introduce devices into the flow stream. This paper presents a sensor that is part of the wall. A special interferometric reflection moire technique is developed and used to produce signals that measures pressure both in static and dynamic settings. The sensor developed is an intelligent sensor that combines optics and electronics to analyze the pressure patterns. The sensor provides the input to a control system that is capable of modifying the shape of the wall and preserve the stability of the flow.

  19. Mixed-mode VLSI optic flow sensors for micro air vehicles

    NASA Astrophysics Data System (ADS)

    Barrows, Geoffrey Louis

    We develop practical, compact optic flow sensors. To achieve the desired weight of 1--2 grams, mixed-mode and mixed-signal VLSI techniques are used to develop compact circuits that directly perform computations necessary to measure optic flow. We discuss several implementations, including a version fully integrated in VLSI, and several "hybrid sensors" in which the front end processing is performed with an analog chip and the back end processing is performed with a microcontroller. We extensively discuss one-dimensional optic flow sensors based on the linear competitive feature tracker (LCFT) algorithm. Hardware implementations of this algorithm are shown able to measure visual motion with contrast levels on the order of several percent. We argue that the development of one-dimensional optic flow sensors is therefore reduced to a problem of engineering. We also introduce two related two-dimensional optic flow algorithms that are amenable to implementation in VLSI. This includes the planar competitive feature tracker (PCFT) algorithm and the trajectory method. These sensors are being developed to solve small-scale navigation problems in micro air vehicles, which are autonomous aircraft whose maximum dimension is on the order of 15 cm. We obtain a proof-of-principle of small-scale navigation by mounting a prototype sensor onto a toy glider and programming the sensor to control a rudder or an elevator to affect the glider's path during flight. We demonstrate the determination of altitude by measuring optic flow in the downward direction. We also demonstrate steering to avoid a collision with a wall, when the glider is tossed towards the wall at a shallow angle, by measuring the optic flow in the direction of the glider's left and right side.

  20. Flow-rate control for managing communications in tracking and surveillance networks

    NASA Astrophysics Data System (ADS)

    Miller, Scott A.; Chong, Edwin K. P.

    2007-09-01

    This paper describes a primal-dual distributed algorithm for managing communications in a bandwidth-limited sensor network for tracking and surveillance. The algorithm possesses some scale-invariance properties and adaptive gains that make it more practical for applications such as tracking where the conditions change over time. A simulation study comparing this algorithm with a priority-queue-based approach in a network tracking scenario shows significant improvement in the resulting track quality when using flow control to manage communications.

  1. Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring

    NASA Astrophysics Data System (ADS)

    Dinh, Toan; Phan, Hoang-Phuong; Nguyen, Tuan-Khoa; Qamar, Afzaal; Woodfield, Peter; Zhu, Yong; Nguyen, Nam-Trung; Viet Dao, Dzung

    2017-06-01

    In this paper, we report on a low-cost, environment-friendly and wearable thermal flow sensor, which can be manufactured in-house using pencil graphite as a sensing hot film and biodegradable printing paper as a substrate, without using any toxic solvents or cleanroom facilities. The hot film flow sensor offers excellent performance such as high signal-to-noise ratio (≥slant 40 for an air flow velocity of 1 m s-1), high sensitivity to airflow (53.7 mV(m s-1)-0.8) and outstanding long-term stability (almost no drift in 24 h). The sensor can be comfortably affixed to the philtrum of patients and measures human respiration in realtime. The results indicate that the wearable thermal flow sensors fabricated by this solvent-free and user-friendly method could be employed in human respiratory monitoring.

  2. Groundwater flow velocity measurements in a sinkhole at the Weeks Island Strategic Petroleum Reserve Facility, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballard, S.; Gibson, J.

    1995-02-01

    In 1992, a sinkhole was discovered above a Strategic Petroleum Reserve storage facility at Weeks Island, Louisiana. The oil is stored in an old salt mine located within a salt dome. In order to assess the hydrologic significance of the sink hole, an In Situ Permeable Flow Sensor was deployed within a sand-filled conduit in the salt dome directly beneath the sinkhole. The flow sensor is a recently developed instrument which uses a thermal perturbation technique to measure the magnitude and direction of the full 3-dimensional groundwater flow velocity vector in saturated, permeable materials. The flow sensor measured substantial groundwatermore » flow directed vertically downward into the salt dome. The data obtained with the flow sensor provided critical evidence which was instrumental in assessing the significance of the sinkhole in terms of the integrity of the oil storage facility.« less

  3. Design and Use of a Full Flow Sampling System (FFS) for the Quantification of Methane Emissions

    PubMed Central

    Johnson, Derek R.; Covington, April N.; Clark, Nigel N.

    2016-01-01

    The use of natural gas continues to grow with increased discovery and production of unconventional shale resources. At the same time, the natural gas industry faces continued scrutiny for methane emissions from across the supply chain, due to methane's relatively high global warming potential (25-84x that of carbon dioxide, according to the Energy Information Administration). Currently, a variety of techniques of varied uncertainties exists to measure or estimate methane emissions from components or facilities. Currently, only one commercial system is available for quantification of component level emissions and recent reports have highlighted its weaknesses. In order to improve accuracy and increase measurement flexibility, we have designed, developed, and implemented a novel full flow sampling system (FFS) for quantification of methane emissions and greenhouse gases based on transportation emissions measurement principles. The FFS is a modular system that consists of an explosive-proof blower(s), mass airflow sensor(s) (MAF), thermocouple, sample probe, constant volume sampling pump, laser based greenhouse gas sensor, data acquisition device, and analysis software. Dependent upon the blower and hose configuration employed, the current FFS is able to achieve a flow rate ranging from 40 to 1,500 standard cubic feet per minute (SCFM). Utilization of laser-based sensors mitigates interference from higher hydrocarbons (C2+). Co-measurement of water vapor allows for humidity correction. The system is portable, with multiple configurations for a variety of applications ranging from being carried by a person to being mounted in a hand drawn cart, on-road vehicle bed, or from the bed of utility terrain vehicles (UTVs). The FFS is able to quantify methane emission rates with a relative uncertainty of ± 4.4%. The FFS has proven, real world operation for the quantification of methane emissions occurring in conventional and remote facilities. PMID:27341646

  4. Design and Use of a Full Flow Sampling System (FFS) for the Quantification of Methane Emissions.

    PubMed

    Johnson, Derek R; Covington, April N; Clark, Nigel N

    2016-06-12

    The use of natural gas continues to grow with increased discovery and production of unconventional shale resources. At the same time, the natural gas industry faces continued scrutiny for methane emissions from across the supply chain, due to methane's relatively high global warming potential (25-84x that of carbon dioxide, according to the Energy Information Administration). Currently, a variety of techniques of varied uncertainties exists to measure or estimate methane emissions from components or facilities. Currently, only one commercial system is available for quantification of component level emissions and recent reports have highlighted its weaknesses. In order to improve accuracy and increase measurement flexibility, we have designed, developed, and implemented a novel full flow sampling system (FFS) for quantification of methane emissions and greenhouse gases based on transportation emissions measurement principles. The FFS is a modular system that consists of an explosive-proof blower(s), mass airflow sensor(s) (MAF), thermocouple, sample probe, constant volume sampling pump, laser based greenhouse gas sensor, data acquisition device, and analysis software. Dependent upon the blower and hose configuration employed, the current FFS is able to achieve a flow rate ranging from 40 to 1,500 standard cubic feet per minute (SCFM). Utilization of laser-based sensors mitigates interference from higher hydrocarbons (C2+). Co-measurement of water vapor allows for humidity correction. The system is portable, with multiple configurations for a variety of applications ranging from being carried by a person to being mounted in a hand drawn cart, on-road vehicle bed, or from the bed of utility terrain vehicles (UTVs). The FFS is able to quantify methane emission rates with a relative uncertainty of ± 4.4%. The FFS has proven, real world operation for the quantification of methane emissions occurring in conventional and remote facilities.

  5. Time-resolved flowmetering of gas-liquid two-phase pipe flow by ultrasound pulse Doppler method

    NASA Astrophysics Data System (ADS)

    Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi

    2012-03-01

    Ultrasound pulse Doppler method is applied for componential volumetric flow rate measurement in multiphase pipe flow consisted of gas and liquid phases. The flowmetering is realized with integration of measured velocity profile over the cross section of the pipe within liquid phase. Spatio-temporal position of interface is detected also with the same ultrasound pulse, which further gives cross sectional void fraction. A series of experimental demonstration was shown by applying this principle of measurement to air-water two-phase flow in a horizontal tube of 40 mm in diameter, of which void fraction ranges from 0 to 90% at superficial velocity from 0 to 15 m/s. The measurement accuracy is verified with a volumetric type flowmeter. We also analyze the accuracy of area integration of liquid velocity distribution for many different patterns of ultrasound measurement lines assigned on the cross section of the tube. The present method is also identified to be pulsation sensor of flow rate that fluctuates with complex gas-liquid interface behavior.

  6. Sediment budget for a polluted Hawaiian reef using hillslope monitoring and process mapping (Invited)

    NASA Astrophysics Data System (ADS)

    Stock, J. D.; Rosener, M.; Schmidt, K. M.; Hanshaw, M. N.; Brooks, B. A.; Tribble, G.; Jacobi, J.

    2010-12-01

    Pollution from coastal watersheds threatens the ecology of the nearshore, including tropical reefs. Suspended sediment concentrations off the reefs of Molokai, Hawaii, chronically exceed a toxic 10 mg/L, threatening reef ecosystems. We hypothesize that historic conversion of hillslope processes from soil creep to overland flow increased both magnitude and frequency of erosion. To create a process sediment budget, we used surficial and ecological mapping, hillslope and stream gages, and novel sensors to locate, quantify and model the generation of fine sediments polluting the reef. Ecological and geomorphic mapping from LiDAR and multi-spectral imagery located overland flow areas with vegetation cover below a threshold preventing erosion. Here, feral goat grazing exposed volcanic soils whose low matrix hydraulic conductivities (1-25 mm/hour) promote Horton overland flow. We instrumented steep, barren hillslopes with soil moisture sensors, overland flow meters, Parshal flumes, ISCO sediment samplers, and a rain gage and conducted repeat Tripod LiDAR and infiltration tests. To characterize soil resistance to overland flow erosion, we used a Cohesive Strength Meter (CSM) to simulate water stress. At the 13.5 km 2 watershed mouth we used a USGS stream gage with an ISCO sediment sampler to estimate total load. Over 3 years, storms triggered overland flow during rainfall intensities above 10-15 mm/hr. Overland flow meters indicate such flows can be up to 3 cm deep, with a tendency to deepen downslope. CSM tests indicate that these depths are insufficient to erode soils where vegetation is dense, but far above threshold values of 2-3 mm for bare soils. Sediment ratings curves for both hillslope and downstream catchment gages show clock-wise hysteresis during the first intense storms in the fall, becoming linear later in the season. During fall storms, sediment concentration is often 10X higher at a given stage. Revised annual lowering rates from experimental hillslopes are 1.5 cm/a (erosion pins), 1.4 cm/a (suspended sediment) and 1.6 cm/a (repeat Tripod LiDAR). These rates are at least 100-fold greater than the long-term river lowering rate of 0.13 mm/a. A sediment budget constructed by extrapolating hillslope lowering rates to the portions of the catchments mapped as unvegetated overland flow predicts a total yearly flux of ~ 6500 t, in agreement with the measured total of ~6200 t. Decadal records illustrate that rainfall intensities sufficient to generate overland flow occur for at least 8-10 hours every year, coincident with 1-3 large storm events. We hypothesize that high lowering rates reflect a combination of long-duration overland flow events, and availability of weathered soils that can be entrained by thin flow. It appears that generation of loose, seasonally weathered silt is a 1st order control on the amount of sediment exported to the reef. If climate change increases storm frequency or duration, or decreases vegetation cover, sediment loading to reefs could increase dramatically.

  7. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas

    PubMed Central

    Zaidi, Nayyer Abbas; Tahir, Muhammad Waseem; Vellekoop, Michael J.; Lang, Walter

    2017-01-01

    Ethylene gas is a naturally occurring gas that has an influence on the shelf life of fruit during their transportation in cargo ships. An unintentional exposure of ethylene gas during transportation results in a loss of fruit. A gas chromatographic system is presented here for the detection of ethylene gas. The gas chromatographic system was assembled using a preconcentrator, a printed 3D printed gas chromatographic column, a humidity sensor, solenoid valves, and an electrochemical ethylene gas sensor. Ambient air was used as a carrier gas in the gas chromatographic system. The flow rate was fixed to 10 sccm. It was generated through a mini-pump connected in series with a mass flow controller. The metal oxide gas sensor is discussed with its limitation in ambient air. The results show the chromatogram obtained from metal oxide gas sensor has low stability, drifts, and has uncertain peaks, while the chromatogram from the electrochemical sensor is stable and precise. Furthermore, ethylene gas measurements at higher ppb concentration and at lower ppb concentration were demonstrated with the electrochemical ethylene gas sensor. The system separates ethylene gas and humidity. The chromatograms obtained from the system are stable, and the results are 1.2% repeatable in five similar measurements. The statistical calculation of the gas chromatographic system shows that a concentration of 2.3 ppb of ethylene gas can be detected through this system. PMID:28991173

  8. An Autonomous Sensor System Architecture for Active Flow and Noise Control Feedback

    NASA Technical Reports Server (NTRS)

    Humphreys, William M, Jr.; Culliton, William G.

    2008-01-01

    Multi-channel sensor fusion represents a powerful technique to simply and efficiently extract information from complex phenomena. While the technique has traditionally been used for military target tracking and situational awareness, a study has been successfully completed that demonstrates that sensor fusion can be applied equally well to aerodynamic applications. A prototype autonomous hardware processor was successfully designed and used to detect in real-time the two-dimensional flow reattachment location generated by a simple separated-flow wind tunnel model. The success of this demonstration illustrates the feasibility of using autonomous sensor processing architectures to enhance flow control feedback signal generation.

  9. Development of Conductivity Sensors for Multi-Phase Flow Local Measurements at the Polytechnic University of Valencia (UPV) and University Jaume I of Castellon (UJI).

    PubMed

    Muñoz-Cobo, José Luis; Chiva, Sergio; Méndez, Santos; Monrós, Guillem; Escrivá, Alberto; Cuadros, José Luis

    2017-05-10

    This paper describes all the procedures and methods currently used at UPV (Universitat Politécnica de Valencia) and UJI (University Jaume I) for the development and use of sensors for multi-phase flow analysis in vertical pipes. This paper also describes the methods that we use to obtain the values of the two-phase flow magnitudes from the sensor signals and the validation and cross-verification methods developed to check the consistency of the results obtained for these magnitudes with the sensors. First, we provide information about the procedures used to build the multi-sensor conductivity probes and some of the tests performed with different materials to avoid sensor degradation issues. In addition, we provide information about the characteristics of the electric circuits that feed the sensors. Then the data acquisition of the conductivity probe, the signal conditioning and the data processing including the device that have been designed to automatize all the measurement process of moving the sensors inside the channels by means of stepper electric motors controlled by computer are shown in operation. Then, we explain the methods used for bubble identification and categorization. Finally, we describe the methodology used to obtain the two-phase flow information from the sensor signals. This includes the following items: void fraction, gas velocity, Sauter mean diameter and interfacial area concentration. The last part of this paper is devoted to the conductance probes developed for the annular flow analysis, which includes the analysis of the interfacial waves produced in annular flow and that requires a different type of sensor.

  10. Development of Conductivity Sensors for Multi-Phase Flow Local Measurements at the Polytechnic University of Valencia (UPV) and University Jaume I of Castellon (UJI)

    PubMed Central

    Muñoz-Cobo, José Luis; Chiva, Sergio; Méndez, Santos; Monrós, Guillem; Escrivá, Alberto; Cuadros, José Luis

    2017-01-01

    This paper describes all the procedures and methods currently used at UPV (Universitat Politécnica de Valencia) and UJI (University Jaume I) for the development and use of sensors for multi-phase flow analysis in vertical pipes. This paper also describes the methods that we use to obtain the values of the two-phase flow magnitudes from the sensor signals and the validation and cross-verification methods developed to check the consistency of the results obtained for these magnitudes with the sensors. First, we provide information about the procedures used to build the multi-sensor conductivity probes and some of the tests performed with different materials to avoid sensor degradation issues. In addition, we provide information about the characteristics of the electric circuits that feed the sensors. Then the data acquisition of the conductivity probe, the signal conditioning and the data processing including the device that have been designed to automatize all the measurement process of moving the sensors inside the channels by means of stepper electric motors controlled by computer are shown in operation. Then, we explain the methods used for bubble identification and categorization. Finally, we describe the methodology used to obtain the two-phase flow information from the sensor signals. This includes the following items: void fraction, gas velocity, Sauter mean diameter and interfacial area concentration. The last part of this paper is devoted to the conductance probes developed for the annular flow analysis, which includes the analysis of the interfacial waves produced in annular flow and that requires a different type of sensor. PMID:28489035

  11. Study of dynamics of two-phase flow through a minichannel by means of recurrences

    NASA Astrophysics Data System (ADS)

    Litak, Grzegorz; Górski, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2017-05-01

    By changing air and water flow rates in the two-phase (air-water) flow through a minichannel, we observed the evolution of air bubbles and slugs patterns. This spatiotemporal behaviour was identified qualitatively by using a digital camera. Simultaneously, we provided a detailed analysis of these phenomena by using the corresponding sequences of light transmission time series recorded with a laser-phototransistor sensor. To distinguish particular patterns, we used recurrence plots and recurrence quantification analysis. Finally, we showed that the maxima of various recurrence quantificators obtained from the laser time series could follow the bubble and slugs patterns in studied ranges of air and water flows.

  12. Effects of sensor location and the atmospheric stability on the accuracy of an inverse-dispersion technique for lagoon gas emission measurements

    USDA-ARS?s Scientific Manuscript database

    Measuring gas emission rates from wastewater lagoons and storage ponds using currently available micrometeorological techniques can be an arduous task because typical lagoon environments contain a variety of obstructions (e.g., berm, trees, buildings) to wind flow. These non-homogeneous terrain cond...

  13. Convergence Rate Analysis of Distributed Gossip (Linear Parameter) Estimation: Fundamental Limits and Tradeoffs

    NASA Astrophysics Data System (ADS)

    Kar, Soummya; Moura, José M. F.

    2011-08-01

    The paper considers gossip distributed estimation of a (static) distributed random field (a.k.a., large scale unknown parameter vector) observed by sparsely interconnected sensors, each of which only observes a small fraction of the field. We consider linear distributed estimators whose structure combines the information \\emph{flow} among sensors (the \\emph{consensus} term resulting from the local gossiping exchange among sensors when they are able to communicate) and the information \\emph{gathering} measured by the sensors (the \\emph{sensing} or \\emph{innovations} term.) This leads to mixed time scale algorithms--one time scale associated with the consensus and the other with the innovations. The paper establishes a distributed observability condition (global observability plus mean connectedness) under which the distributed estimates are consistent and asymptotically normal. We introduce the distributed notion equivalent to the (centralized) Fisher information rate, which is a bound on the mean square error reduction rate of any distributed estimator; we show that under the appropriate modeling and structural network communication conditions (gossip protocol) the distributed gossip estimator attains this distributed Fisher information rate, asymptotically achieving the performance of the optimal centralized estimator. Finally, we study the behavior of the distributed gossip estimator when the measurements fade (noise variance grows) with time; in particular, we consider the maximum rate at which the noise variance can grow and still the distributed estimator being consistent, by showing that, as long as the centralized estimator is consistent, the distributed estimator remains consistent.

  14. Development of viscosity sensor with long period fiber grating technology

    NASA Astrophysics Data System (ADS)

    Lin, Jyh-Dong; Wang, Jian-Neng; Chen, Shih-Huang; Wang, Juei-Mao

    2009-03-01

    In this paper, we describe the development of a viscosity sensing system using a simple and low-cost long-period fiber grating (LPFG) sensor. The LPFG sensor was extremely sensitive to the refractive index of the medium surrounding the cladding surface of the sensing grating, thus allowing it to be used as an ambient index sensor or chemical concentration indicator. Viscosity can be simply defined as resistance to flow of a liquid. We have measured asphalt binder, 100-190000 centistokes, in comparison with optical sensing results. The system sensing asphalt binders exhibited increase trend in the resonance wavelength shift when the refractive index of the medium changed. The prototype sensor consisted of a LPFG sensing component and a cone-shaped reservoir where gravitational force can cause asphalt binders flow through the capillary. Thus the measured time for a constant volume of asphalt binders can be converted into either absolute or kinematic viscosity. In addition, a rotational viscometer and a dynamic shear rheometer were also used to evaluate the viscosity of this liquid, the ratio between the applied shear stress and rate of shear, as well as the viscoelastic property including complex shear modulus and phase angle. The measured time could be converted into viscosity of asphalt binder based on calculation. This simple LPFG viscosity sensing system is hopefully expected to benefit the viscosity measurement for the field of civil, mechanical and aerospace engineering.

  15. Optical flows method for lightweight agile remote sensor design and instrumentation

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Xing, Fei; Wang, Hongjian; You, Zheng

    2013-08-01

    Lightweight agile remote sensors have become one type of the most important payloads and were widely utilized in space reconnaissance and resource survey. These imaging sensors are designed to obtain the high spatial, temporary and spectral resolution imageries. Key techniques in instrumentation include flexible maneuvering, advanced imaging control algorithms and integrative measuring techniques, which are closely correlative or even acting as the bottle-necks for each other. Therefore, mutual restrictive problems must be solved and optimized. Optical flow is the critical model which to be fully represented in the information transferring as well as radiation energy flowing in dynamic imaging. For agile sensors, especially with wide-field-of view, imaging optical flows may distort and deviate seriously when they perform large angle attitude maneuvering imaging. The phenomena are mainly attributed to the geometrical characteristics of the three-dimensional earth surface as well as the coupled effects due to the complicated relative motion between the sensor and scene. Under this circumstance, velocity fields distribute nonlinearly, the imageries may badly be smeared or probably the geometrical structures are changed since the image velocity matching errors are not having been eliminated perfectly. In this paper, precise imaging optical flow model is established for agile remote sensors, for which optical flows evolving is factorized by two forms, which respectively due to translational movement and image shape changing. Moreover, base on that, agile remote sensors instrumentation was investigated. The main techniques which concern optical flow modeling include integrative design with lightweight star sensors along with micro inertial measurement units and corresponding data fusion, the assemblies of focal plane layout and control, imageries post processing for agile remote sensors etc. Some experiments show that the optical analyzing method is effective to eliminate the limitations for the performance indexes, and succeeded to be applied for integrative system design. Finally, a principle prototype of agile remote sensor designed by the method is discussed.

  16. Novel Air Flow Meter for an Automobile Engine Using a Si Sensor with Porous Si Thermal Isolation

    PubMed Central

    Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G.

    2012-01-01

    An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine. PMID:23202189

  17. Novel air flow meter for an automobile engine using a Si sensor with porous Si thermal isolation.

    PubMed

    Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G

    2012-11-02

    An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine.

  18. Video sensor architecture for surveillance applications.

    PubMed

    Sánchez, Jordi; Benet, Ginés; Simó, José E

    2012-01-01

    This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%.

  19. Video Sensor Architecture for Surveillance Applications

    PubMed Central

    Sánchez, Jordi; Benet, Ginés; Simó, José E.

    2012-01-01

    This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%. PMID:22438723

  20. Three-dimensional flow measurements in a vaneless radial turbine scroll

    NASA Technical Reports Server (NTRS)

    Tabakoff, W.; Wood, B.; Vittal, B. V. R.

    1982-01-01

    The flow behavior in a vaneless radial turbine scroll was examined experimentally. The data was obtained using the slant sensor technique of hot film anemometry. This method used the unsymmetric heat transfer characteristics of a constant temperature hot film sensor to detect the flow direction and magnitude. This was achieved by obtaining a velocity vector measurement at three sensor positions with respect to the flow. The true magnitude and direction of the velocity vector was then found using these values and a Newton-Raphson numerical technique. The through flow and secondary flow velocity components are measured at various points in three scroll sections.

  1. Triaxial thermopile array geo-heat-flow sensor

    DOEpatents

    Carrigan, C.R.; Hardee, H.C.; Reynolds, G.D.; Steinfort, T.D.

    1990-01-01

    A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings. 6 figs.

  2. Three-dimensional particle tracking velocimetry using dynamic vision sensors

    NASA Astrophysics Data System (ADS)

    Borer, D.; Delbruck, T.; Rösgen, T.

    2017-12-01

    A fast-flow visualization method is presented based on tracking neutrally buoyant soap bubbles with a set of neuromorphic cameras. The "dynamic vision sensors" register only the changes in brightness with very low latency, capturing fast processes at a low data rate. The data consist of a stream of asynchronous events, each encoding the corresponding pixel position, the time instant of the event and the sign of the change in logarithmic intensity. The work uses three such synchronized cameras to perform 3D particle tracking in a medium sized wind tunnel. The data analysis relies on Kalman filters to associate the asynchronous events with individual tracers and to reconstruct the three-dimensional path and velocity based on calibrated sensor information.

  3. Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow

    NASA Technical Reports Server (NTRS)

    Singh, Jagdish P.; Yueh, Fang-Yu; Kalluru, Rajamohan R.; Harrison, Louie

    2012-01-01

    An integrated fiber-optic Raman sensor has been designed for real-time, nonintrusive detection of liquid nitrogen in liquid oxygen (LOX) at high pressures and high flow rates in order to monitor the quality of LOX used during rocket engine ground testing. The integrated sensor employs a high-power (3-W) Melles Griot diode-pumped, solid-state (DPSS), frequency-doubled Nd:YAG 532- nm laser; a modified Raman probe that has built-in Raman signal filter optics; two high-resolution spectrometers; and photomultiplier tubes (PMTs) with selected bandpass filters to collect both N2 and O2 Raman signals. The PMT detection units are interfaced with National Instruments Lab- VIEW for fast data acquisition. Studies of sensor performance with different detection systems (i.e., spectrometer and PMT) were carried out. The concentration ratio of N2 and O2 can be inferred by comparing the intensities of the N2 and O2 Raman signals. The final system was fabricated to measure N2 and O2 gas mixtures as well as mixtures of liquid N2 and LOX

  4. Results from On-Board CSA-CP and CDM Sensor Readings During the Burning and Suppression of Solids II (BASS-II) Experiment in the Microgravity Science Glovebox (MSG)

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Ferkul, Paul V.; Bhattacharjee, Subrata; Miller, Fletcher J.; Fernandez-Pello, Carlos; Link, Shmuel; T'ien, James S.; Wichman, Indrek

    2015-01-01

    For the first time on ISS, BASS-II utilized MSG working volume dilution with gaseous nitrogen (N2). We developed a perfectly stirred reactor model to determine the N2 flow time and flow rate to obtain the desired reduced oxygen concentration in the working volume for each test. We calibrated the model with CSA-CP oxygen readings offset using the Mass Constituents Analyzer reading of the ISS ambient atmosphere data for that day. This worked out extremely well for operations, and added a new vital variable, ambient oxygen level, to our test matrices. The main variables tested in BASS-II were ambient oxygen concentration, ventilation flow velocity, and fuel type, thickness, and geometry. BASS-II also utilized the on-board CSA-CP for oxygen and carbon monoxide readings, and the CDM for carbon dioxide readings before and after each test. Readings from these sensors allow us to evaluate the completeness of the combustion. The oxygen and carbon dioxide readings before and after each test were analyzed and compared very well to stoichiometric ratios for a one step gas-phase reaction. The CO versus CO2 followed a linear trend for some datasets, but not for all the different geometries of fuel and flow tested. Lastly, we calculated the heat release rates during each test from the oxygen consumption and burn times, using the constant 13.1 kJ of heat released per gram of oxygen consumed. The results showed that the majority of the tests had heat release rates well below 100 Watts.

  5. Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sensors

    PubMed Central

    Dagamseh, Ahmad; Wiegerink, Remco; Lammerink, Theo; Krijnen, Gijs

    2013-01-01

    In Nature, fish have the ability to localize prey, school, navigate, etc., using the lateral-line organ. Artificial hair flow sensors arranged in a linear array shape (inspired by the lateral-line system (LSS) in fish) have been applied to measure airflow patterns at the sensor positions. Here, we take advantage of both biomimetic artificial hair-based flow sensors arranged as LSS and beamforming techniques to demonstrate dipole-source localization in air. Modelling and measurement results show the artificial lateral-line ability to image the position of dipole sources accurately with estimation error of less than 0.14 times the array length. This opens up possibilities for flow-based, near-field environment mapping that can be beneficial to, for example, biologists and robot guidance applications. PMID:23594816

  6. In-situ response time testing of thermocouples

    NASA Astrophysics Data System (ADS)

    Hashemian, H. M.; Petersen, K. M.; Hashemian, M.; Beverly, D. D.; Miller, L. F.

    The Loop Current Step Response (LCSR) method has been developed for in situ response time testing of thermocouples and resistance thermometers. A means for measuring the sensor response for actual operating conditions and installation details is provided. This technology is ready to be assembled into an instrument for use in aerospace, nuclear, chemical and other industries where transient temperature measurements are important. The method provides time constant results within better than about 20 percent of value obtained from plunge tests. These results are based on tests performed in water at low flow rates (1M/sec) and in air flow rates ranging from a few meters per second to over a hundred kilometers per hour.

  7. Acoustic sand detector for fluid flowstreams

    DOEpatents

    Beattie, Alan G.; Bohon, W. Mark

    1993-01-01

    The particle volume and particle mass production rate of particulate solids entrained in fluid flowstreams such as formation sand or fracture proppant entrained in oil and gas production flowstreams is determined by a system having a metal probe interposed in a flow conduit for transmitting acoustic emissions created by particles impacting the probe to a sensor and signal processing circuit which produces discrete signals related to the impact of each of the particles striking the probe. The volume or mass flow rate of particulates is determined from making an initial particle size distribution and particle energy distribution and comparing the initial energy distribution and/or the initial size distribution with values related to the impact energies of a predetermined number of recorded impacts. The comparison is also used to recalibrate the system to compensate for changes in flow velocity.

  8. Multi-phase-fluid discrimination with local fibre-optical probes: III. Three-phase flows

    NASA Astrophysics Data System (ADS)

    Fordham, E. J.; Ramos, R. T.; Holmes, A.; Simonian, S.; Huang, S.-M.; Lenn, C. P.

    1999-12-01

    Local fibre-optical sensors (or `local probes') for immiscible-fluid discrimination are demonstrated in three-phase (oil/water/gas) flows. The probes are made from standard silica fibres with plane oblique facets polished at the fibre tip, with surface treatment for wettability control. They use total internal reflection to distinguish among drops, bubbles and other regions of fluid in multi-phase flows, on the basis of refractive-index contrast. Dual probes, using two sensors each with a quasi-binary output, are used to determine profiles of three-phase volume fraction in a flow of kerosene, water and air in a pipe. The individual sensors used discriminate oil from `not-oil' and gas from liquid; their logical combination discriminates among the three phases. Companion papers deal with the sensor designs used and quantitative results achieved in the simpler two-phase cases of liquid/liquid flows and gas/liquid flows.

  9. Methods of blood flow measurement in the arterial circulatory system.

    PubMed

    Tabrizchi, R; Pugsley, M K

    2000-01-01

    The most commonly employed techniques for the in vivo measurement of arterial blood flow to individual organs involve the use of flow probes or sensors. Commercially available systems for the measurement of in vivo blood flow can be divided into two categories: ultrasonic and electromagnetic. Two types of ultrasonic probes are used. The first type of flow probe measures blood flow-mediated Doppler shifts (Doppler flowmetry) in a vessel. The second type of flow probe measures the "transit time" required by an emitted ultrasound wave to traverse the vessel and are transit-time volume flow sensors. Measurement of blood flow in any vessel requires that the flow probe or sensor be highly accurate and exhibit signal linearity over the flow range in the vessel of interest. Moreover, additional desirable features include compact design, size, and weight. An additional important feature for flow probes is that they exhibit good biocompatability; it is imperative for the sensor to behave in an inert manner towards the biological system. A sensitive and reliable method to assess blood flow in individual organs in the body, other than by the use of probes/sensors, is the reference sample method that utilizes hematogeneously delivered microspheres. This method has been utilized to a large extend to assess regional blood flow in the entire body. Obviously, the purpose of measuring blood flow is to determine the amount of blood delivered to a given region per unit time (milliliters per minute) and it is desirable to achieve this goal by noninvasive methodologies. This, however, is not always possible. This review attempts to offer an overview of some of the techniques available for the assessment of regional blood flow in the arterial circulatory system and discusses advantages and disadvantages of these common techniques.

  10. Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow

    DOEpatents

    Armstrong, William D [Laramie, WY; Naughton, Jonathan [Laramie, WY; Lindberg, William R [Laramie, WY

    2008-09-02

    A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

  11. Jet Interactions in a Feedback-Free Fluidic Oscillator in the Transition Region

    NASA Astrophysics Data System (ADS)

    Tomac, Mehmet; Gregory, James

    2013-11-01

    The details of the jet interactions and oscillation mechanism of a feedback-free type fluidic oscillator are studied in this work. Flow rate-frequency measurements indicate the existence of three distinct operating regimes: low flow rate, transition, and high flow rate regions. This study presents results from the transition regime, extracted by using refractive index-matched particle image velocimetry (PIV). A newly-developed sensor configuration for frequency measurements in the refractive index-matched fluid and a phase-averaging method that minimizes jitter will be discussed. Experimental results indicate that the interactions of the two jets create three main vortices in the mixing chamber. One vortex vanishes and forms depending on the oscillation phase and plays a key role in the oscillation mechanism. The other two vortices sustain their existence throughout the oscillation cycle; however, both continuously change their size and strength. The resulting complex flow field with self-sustained oscillations is a result of the combination of many interesting phenomena such as jet interactions and bifurcations, viscous effects, vortex-shear layer interactions, vortex-wall interactions, instabilities, and saddle point creations.

  12. Integrated microfluidic flowmeter based on a micro-FBG inscribed in Co²⁺-doped optical fiber.

    PubMed

    Liu, Zhengyong; Tse, Ming-Leung Vincent; Zhang, A Ping; Tam, Hwa-Yaw

    2014-10-15

    A novel microfluidic flowmeter integrated with microfiber Bragg grating (µFBG) is presented. Two glass capillaries and a short length of high-light-absorption Co²⁺-doped optical fiber were stacked inside a larger outer capillary tube. The stack was then drawn into a tapered device. Two microchannels with the diameter of ~50  μm were formed inside the capillaries for flowing of microfluidics. An FBG was inscribed in the tapered Co²⁺-doped fiber with waist diameter of ~70  μm, and acts as a flow-rate sensor. A pump laser with wavelength of 1480 nm was utilized to locally heat the µFBG, rendering the µFBG as miniature "hot-wire" flowmeter. The flow rate of the liquid in the microchannels is determined by the induced wavelength shift of the µFBG. The experimental results achieve a minimum detectable change of ~16  nL/s in flow rate, which is very promising in the use as part of biochips.

  13. Isolating Gas Sensor From Pressure And Temperature Effects

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chen, Tony T. D.; Chaturvedi, Sushi K.

    1994-01-01

    Two-stage flow system enables oxygen sensor in system to measure oxygen content of low-pressure, possibly-high-temperature atmosphere in test environment while protecting sensor against possibly high temperature and fluctuations in pressure of atmosphere. Sensor for which flow system designed is zirconium oxide oxygen sensor sampling atmospheres in high-temperature wind tunnels. Also adapted to other gas-analysis instruments that must be isolated from pressure and temperature effects of test environments.

  14. Microwave fluid flow meter

    DOEpatents

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  15. Diode laser absorption sensors for gas-dynamic and combustion flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.

    1998-01-01

    Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room-temperature mid-IR materials and broadly tunable multisection devices is reviewed to suggest new sensor possibilities.

  16. Sensing of minute airflow motions near walls using pappus-type nature-inspired sensors

    PubMed Central

    Mikulich, Vladimir

    2017-01-01

    This work describes the development and use of pappus-like structures as sensitive sensors to detect minute air-flow motions. We made such sensors from pappi taken from nature-grown seed, whose filiform hairs’ length-scale is suitable for the study of large-scale turbulent convection flows. The stem with the pappus on top is fixated on an elastic membrane on the wall and tilts under wind-load proportional to the velocity magnitude in direction of the wind, similar as the biological sensory hairs found in spiders, however herein the sensory hair has multiple filiform protrusions at the tip. As the sensor response is proportional to the drag on the tip and a low mass ensures a larger bandwidth, lightweight pappus structures similar as those found in nature with documented large drag are useful to improve the response of artificial sensors. The pappus of a Dandelion represents such a structure which has evolved to maximize wind-driven dispersion, therefore it is used herein as the head of our sensor. Because of its multiple hairs arranged radially around the stem it generates uniform drag for all wind directions. While still being permeable to the flow, the hundreds of individual hairs on the tip of the sensor head maximize the drag and minimize influence of pressure gradients or shear-induced lift forces on the sensor response as they occur in non-permeable protrusions. In addition, the flow disturbance by the sensor itself is limited. The optical recording of the head-motion allows continuously remote-distance monitoring of the flow fluctuations in direction and magnitude. Application is shown for the measurement of a reference flow under isothermal conditions to detect the early occurrence of instabilities. PMID:28658272

  17. Quantitative evaluation of hand cranking a roller pump in a crisis management drill.

    PubMed

    Tomizawa, Yasuko; Tokumine, Asako; Ninomiya, Shinji; Momose, Naoki; Matayoshi, Toru

    2008-01-01

    The heart-lung machines for open-heart surgery have improved over the past 50 years; they rarely break down and are almost always equipped with backup batteries. The hand-cranking procedure only becomes necessary when a pump breaks down during perfusion or after the batteries have run out. In this study, the performance of hand cranking a roller pump was quantitatively assessed by an objective method using the ECCSIM-Lite educational simulator system. A roller pump connected to an extracorporeal circuit with an oxygenator and with gravity venous drainage was used. A flow sensor unit consisting of electromagnetic sensors was used to measure arterial and venous flow rates, and a built-in pressure sensor was used to measure the water level in the reservoir. A preliminary study of continuous cranking by a team of six people was conducted as a surprise drill. This system was then used at a perfusion seminar. At the seminar, 1-min hand-cranking drills were conducted by volunteers according to a prepared scenario. The data were calculated on site and trend graphs of individual performances were given to the participants as a handout. Preliminary studies showed that each person's performance was different. Results from 1-min drills showed that good performance was not related to the number of clinical cases experienced, years of practice, or experience in hand cranking. Hand cranking to maintain the target flow rate could be achieved without practice; however, manipulating the venous return clamp requires practice. While the necessity of performing hand cranking during perfusion due to pump failure is rare, we believe that it is beneficial for perfusionists and patients to include hand-cranking practice in periodic extracorporeal circulation crisis management drills because a drill allows perfusionists to mentally rehearse the procedures should such a crisis occur.

  18. Sidetone generator flowmeter

    DOEpatents

    Fritz, Robert J.

    1986-01-01

    A flowmeter is provided which uses the sidetones generated in a cavity formed in the wall of a flowpipe or the like in response to fluid flowing past the cavity to provide a measure of the flow velocity of that fluid. The dimensions of the cavity are such as to provide a dominant vibratory frequency which is sensed by a pressure sensor. The flowmeter is adapted for use for a range of frequencies in which the Strouhal number is constant and under these conditions the vibratory frequency is directly related to the flow rate. The tone generator cavity and pressure transducer form a unit which is connected in-line in the flowpipe.

  19. Sidetone generator flowmeter

    DOEpatents

    Fritz, R.J.

    1983-11-03

    A flowmeter is provided which uses the sidetones generated in a cavity formed in the wall of a flowpipe or the like in response to fluid flowing past the cavity to provide a measure of the flow velocity of that fluid. The dimensions of the cavity are such as to provide a dominant vibratory frequency which is sensed by a pressure sensor. The flowmeter is adapted for use for a range of frequencies in which the Strouhal number is constant and under these conditions the vibratory frequency is directly related to the flow rate. The tone generator cavity and pressure transducer form a unit which is connected in-line in the flowpipe.

  20. Uncertainly Analysis of Two Types of Humidity Sensors by a Humidity Generator with a Divided-Flow System.

    PubMed

    Chen, Ling-Hsi; Chen, Chiachung

    2018-02-21

    Humidity measurement is an important technique for the agricultural, foods, pharmaceuticals, and chemical industries. For the sake of convenience, electrical relative humidity (RH) sensors have been widely used. These sensors need to be calibrated to ensure their accuracy and the uncertainty measurement of these sensors has become a major concern. In this study, a self-made divided-flow generator was established to calibrate two types of electrical humidity sensors. The standard reference humidity was calculated from dew-point temperature and air dry-bulb temperature measured by a chilled mirror monitor. This divided-flow generator could produce consistent result of RH measurement results. The uncertainty of the reference standard increased with the increase of RH values. The combined uncertainty with the adequate calibration equations were ranged from 0.82% to 1.45% RH for resistive humidity sensors and 0.63% to 1.4% for capacitive humidity sensors, respectively. This self-made, divided-flow generator, and calibration method are cheap, time-saving, and easy to be used. Thus, the proposed approach can easily be applied in research laboratories.

  1. Uncertainly Analysis of Two Types of Humidity Sensors by a Humidity Generator with a Divided-Flow System

    PubMed Central

    Chen, Ling-Hsi

    2018-01-01

    Humidity measurement is an important technique for the agricultural, foods, pharmaceuticals, and chemical industries. For the sake of convenience, electrical relative humidity (RH) sensors have been widely used. These sensors need to be calibrated to ensure their accuracy and the uncertainty measurement of these sensors has become a major concern. In this study, a self-made divided-flow generator was established to calibrate two types of electrical humidity sensors. The standard reference humidity was calculated from dew-point temperature and air dry-bulb temperature measured by a chilled mirror monitor. This divided-flow generator could produce consistent result of RH measurement results. The uncertainty of the reference standard increased with the increase of RH values. The combined uncertainty with the adequate calibration equations were ranged from 0.82% to 1.45% RH for resistive humidity sensors and 0.63% to 1.4% for capacitive humidity sensors, respectively. This self-made, divided-flow generator, and calibration method are cheap, time-saving, and easy to be used. Thus, the proposed approach can easily be applied in research laboratories. PMID:29466313

  2. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field

    DOE PAGES

    Lomperski, Stephen; Gerardi, Craig; Pointer, William David

    2015-03-04

    In this paper, we introduce the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70°C discharging from 136 mm hexagonal channels into a 1 × 1 × 1.7 m tank at atmospheric pressure. A 40 m-long, Φ155 µm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points overmore » a 0.76 × 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. In conclusion, sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both.« less

  3. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomperski, Stephen; Gerardi, Craig; Pointer, William David

    In this paper, we introduce the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70°C discharging from 136 mm hexagonal channels into a 1 × 1 × 1.7 m tank at atmospheric pressure. A 40 m-long, Φ155 µm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points overmore » a 0.76 × 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. In conclusion, sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both.« less

  4. Measurement of Gas-Liquid Two-Phase Flow in Micro-Pipes by a Capacitance Sensor

    PubMed Central

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-01-01

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes. PMID:25587879

  5. Measurement of gas-liquid two-phase flow in micro-pipes by a capacitance sensor.

    PubMed

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-11-26

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes.

  6. Emission current control system for multiple hollow cathode devices

    NASA Technical Reports Server (NTRS)

    Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)

    1988-01-01

    An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.

  7. TECHNOLOGY EVALUATION REPORT, HYDROTECHNICS IN SITU FLOW SENSOR

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program evaluated performance of HydroTechnics, Inc. flow sensors in measuring the three-dimensional flow pattern created by operation of the Wasatch Environmental, Inc. (WEI) ground...

  8. Precise nanoliter fluid handling system with integrated high-speed flow sensor.

    PubMed

    Haber, Carsten; Boillat, Marc; van der Schoot, Bart

    2005-04-01

    A system for accurate low-volume delivery of liquids in the micro- to nanoliter range makes use of an integrated miniature flow sensor as part of an intelligent feedback control loop driving a micro-solenoid valve. The flow sensor is hydraulically connected with the pressurized system liquid in the dispensing channel and located downstream from the pressure source, above the solenoid valve. The sensor operates in a differential mode and responds in real-time to the internal flow-pulse resulting from the brief opening interval of the solenoid valve leading to a rapid ejection of a fluid droplet. The integral of the flow-pulse delivered by the sensor is directly proportional to the volume of the ejected droplet from the nozzle. The quantitative information is utilized to provide active control of the effectively dispensed or aspirated volume by adjusting the solenoid valve accordingly. This process significantly enhances the precision of the fluid delivery. The system furthermore compensates automatically for any changes in the viscosity of the dispensed liquid. The data delivered by the flow sensor can be saved and backtracked in order to confirm and validate the aspiration and dispensing process in its entirety. The collected dispense information can be used for quality control assessments and automatically be made part of an electronic record.

  9. NIMBUS-7 ERB MATGEN Science Document

    NASA Technical Reports Server (NTRS)

    Soule, H. V.

    1983-01-01

    The ERB algorithms and computer software data flow used to convert sensor data into equivalent radiometric data are described in detail. The NIMBUS satellite location, orientation and sensor orientation algorithms are given. The computer housekeeping and data flow and sensor/data status algorithms are also given.

  10. Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.

    PubMed

    He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P

    2013-09-18

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  11. Absorbance characteristics of a liquid-phase gas sensor based on gas-permeable liquid core waveguides.

    PubMed

    Peng, Pei; Wang, Wei; Zhang, Li; Su, Shiguang; Wang, Jiahui

    2013-12-04

    The absorbance characteristics and influential factors on these characteristics for a liquid-phase gas sensor, which is based on gas-permeable liquid core waveguides (LCWs), are studied from theoretical and experimental viewpoints in this paper. According to theory, it is predicted that absorbance is proportional to the analyte concentration, sampling time, analyte diffusion coefficient, and geometric factor of this device when the depletion layer of the analyte is ignored. The experimental results are in agreement with the theoretical hypothesis. According to the experimental results, absorbance is time-dependent and increasing linearly over time after the requisite response time with a linear correlation coefficient r(2)>0.999. In the linear region, the rate of absorbance change (RAC) indicates improved linearity with sample concentration and a relative higher sensitivity than instantaneous absorbance does. By using a core liquid that is more affinitive to the analyte, reducing wall thickness and the inner diameter of the tubing, or increasing sample flow rate limitedly, the response time can be decreased and the sensitivity can be increased. However, increasing the LCW length can only enhance sensitivity and has no effect on response time. For liquid phase detection, there is a maximum flow rate, and the absorbance will decrease beyond the stated limit. Under experimental conditions, hexane as the LCW core solvent, a tubing wall thickness of 0.1 mm, a length of 10 cm, and a flow rate of 12 mL min(-1), the detection results for the aqueous benzene sample demonstrate a response time of 4 min. Additionally, the standard curve for the RAC versus concentration is RAC=0.0267c+0.0351 (AU min(-1)), with r(2)=0.9922 within concentrations of 0.5-3.0 mg L(-1). The relative error for 0.5 mg L(-1) benzene (n=6) is 7.4±3.7%, and the LOD is 0.04 mg L(-1). This research can provide theoretical and practical guides for liquid-phase gas sensor design and development based on a gas-permeable Teflon AF 2400 LCW. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Triaxial thermopile array geo-heat-flow sensor

    DOEpatents

    Carrigan, Charles R.; Hardee, Harry C.; Reynolds, Gerald D.; Steinfort, Terry D.

    1992-01-01

    A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers arranged in a vertical string. The transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings.

  13. Method and apparatus for sampling low-yield wells

    DOEpatents

    Last, George V.; Lanigan, David C.

    2003-04-15

    An apparatus and method for collecting a sample from a low-yield well or perched aquifer includes a pump and a controller responsive to water level sensors for filling a sample reservoir. The controller activates the pump to fill the reservoir when the water level in the well reaches a high level as indicated by the sensor. The controller deactivates the pump when the water level reaches a lower level as indicated by the sensors. The pump continuously activates and deactivates the pump until the sample reservoir is filled with a desired volume, as indicated by a reservoir sensor. At the beginning of each activation cycle, the controller optionally can select to purge an initial quantity of water prior to filling the sample reservoir. The reservoir can be substantially devoid of air and the pump is a low volumetric flow rate pump. Both the pump and the reservoir can be located either inside or outside the well.

  14. Development of an automated on-line electrochemical chlorite ion sensor.

    PubMed

    Myers, John N; Steinecker, William H; Sandlin, Zechariah D; Cox, James A; Gordon, Gilbert; Pacey, Gilbert E

    2012-05-30

    A sensor system for the automatic, in-line, determination of chlorite ion is reported. Electroanalytical measurements were performed in electrolyte-free liquids by using an electrochemical probe (EC), which enables in-line detection in high-resistance media such as disinfected water. Cyclic voltammetry scan rate studies suggest that the current arising from the oxidation of chlorite ion at an EC probe is mass-transfer limited. By coupling FIA with an EC probe amperometric cell, automated analysis was achieved. This sensor is intended to fulfill the daily monitoring requirements of the EPA DBP regulations for chlorite ion. Detection limits of 0.02-0.13 mg/L were attained, which is about one order of magnitude below the MRDL. The sensor showed no faradaic signal for perchlorate, chlorate, or nitrate. The lifetime and stability of the sensor were investigated by measuring calibration curves over time under constant-flow conditions. Detection limits of <0.1 mg/L were repeatedly achieved over a period of three weeks. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Ultrahigh Temperature Capacitive Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Harsh, Kevin

    2014-01-01

    Robust, miniaturized sensing systems are needed to improve performance, increase efficiency, and track system health status and failure modes of advanced propulsion systems. Because microsensors must operate in extremely harsh environments, there are many technical challenges involved in developing reliable systems. In addition to high temperatures and pressures, sensing systems are exposed to oxidation, corrosion, thermal shock, fatigue, fouling, and abrasive wear. In these harsh conditions, sensors must be able to withstand high flow rates, vibration, jet fuel, and exhaust. In order for existing and future aeropropulsion turbine engines to improve safety and reduce cost and emissions while controlling engine instabilities, more accurate and complete sensor information is necessary. High-temperature (300 to 1,350 C) capacitive pressure sensors are of particular interest due to their high measurement bandwidth and inherent suitability for wireless readout schemes. The objective of this project is to develop a capacitive pressure sensor based on silicon carbon nitride (SiCN), a new class of high-temperature ceramic materials, which possesses excellent mechanical and electric properties at temperatures up to 1,600 C.

  16. A PMMA microfluidic dielectric sensor for blood coagulation monitoring at the point-of-care.

    PubMed

    Maji, Debnath; Suster, Michael A; Kucukal, Erdem; Gurkan, Umut A; Stavrou, Evi X; Mohseni, Pedram

    2016-08-01

    This paper describes the design and construct of a fully biocompatible, microfluidic, dielectric sensor targeted at monitoring human whole blood coagulation at the point-of-care (POC). The sensor assembly procedure involves using sputtered electrodes in a microfluidic channel with a physiologically relevant height of 50μm to create a three-dimensional (3D), parallel-plate, capacitive sensing area. The sensor is constructed with biocompatible materials of polymethyl methacrylate (PMMA) for the substrate and titanium nitride (TiN) for the sensing and floating electrodes. The real part of the complex relative dielectric permittivity of human whole blood is measured from 10kHz to 100MHz using an impedance analyzer and under static conditions. The temporal variation in dielectric permittivity at 1MHz for human whole blood undergoing coagulation shows a peak in permittivity at 5 minutes, which closely matches our previously established results. This sensor can pave the way for monitoring blood coagulation under physiologically relevant shear flow rates in the future.

  17. Optical Sensor of Thermal Gas Flow Based on Fiber Bragg Grating.

    PubMed

    Jiang, Xu; Wang, Keda; Li, Junqing; Zhan, Hui; Song, Zhenan; Che, Guohang; Lyu, Guohui

    2017-02-15

    This paper aims at solving the problem of explosion proof in measurement of thermal gas flow using electronic sensor by presenting a new type of flow sensor by optical fiber heating. A measuring unit based on fiber Bragg grating (FBG) for fluid temperature and a unit for heat dissipation are designed to replace the traditional electronic sensors. The light in C band from the amplified spontaneous emission (ASE) light source is split, with one part used to heat the absorbing coating and the other part used in the signal processing unit. In the heating unit, an absorbing coating is introduced to replace the traditional resistance heating module to minimize the risk of explosion. The measurement results demonstrate a fine consistency between the flow and temperature difference in simulation. The method to enhance the measurement resolution of flow is also discussed.

  18. Simultaneous moisture content and mass flow measurements in wood chip flows using coupled dielectric and impact sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Pengmin; McDonald, Timothy; Fulton, John

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Testsmore » were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. As a result, in situations where flows could not be impeded, however, the tomographic approach would likely be more useful.« less

  19. Simultaneous moisture content and mass flow measurements in wood chip flows using coupled dielectric and impact sensors

    DOE PAGES

    Pan, Pengmin; McDonald, Timothy; Fulton, John; ...

    2016-12-23

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Testsmore » were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. As a result, in situations where flows could not be impeded, however, the tomographic approach would likely be more useful.« less

  20. Simultaneous Moisture Content and Mass Flow Measurements in Wood Chip Flows Using Coupled Dielectric and Impact Sensors

    PubMed Central

    Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John

    2016-01-01

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful. PMID:28025536

  1. Performance of WPA Conductivity Sensor during Two-Phase Fluid Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Carter, Layne; O'Connor, Edward W.; Snowdon, Doug

    2003-01-01

    The Conductivity Sensor designed for use in the Node 3 Water Processor Assembly (WPA) was based on the existing Space Shuttle application for the fuel cell water system. However, engineering analysis has determined that this sensor design is potentially sensitive to two-phase fluid flow (gadliquid) in microgravity. The source for this sensitivity is the fact that gas bubbles will become lodged between the sensor probe and the wall of the housing without the aid of buoyancy in l-g. Once gas becomes lodged in the housing, the measured conductivity will be offset based on the volume of occluded gas. A development conductivity sensor was flown on the NASA Microgravity Plan to measure the offset, which was determined to range between 0 and 50%. Based on these findings, a development program was initiated at the sensor s manufacturer to develop a sensor design fully compatible with two-phase fluid flow in microgravity.

  2. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    NASA Astrophysics Data System (ADS)

    Candel, I.; Bunea, F.; Dunca, G.; Bucur, D. M.; Ioana, C.; Reeb, B.; Ciocan, G. D.

    2014-03-01

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system's reaction time is reduced, resulting in a faster detection of the unwanted effects. The paper will present an example of this new investigation technique on a vortex generator in the test facility that belongs to ICPE- CA.

  3. A metal-insulator transition study of VO 2 thin films grown on sapphire substrates

    DOE PAGES

    Yu, Shifeng; Wang, Shuyu; Lu, Ming; ...

    2017-12-15

    In this paper, vanadium thin films were deposited on sapphire substrates by DC magnetron sputtering and then oxidized in a tube furnace filled with oxygen under different temperatures and oxygen flow rates. The significant influence of the oxygen flow rate and oxidation temperature on the electrical and structural properties of the vanadium oxide thin films were investigated systematically. It shows the pure vanadium dioxide (VO 2) state can only be obtained in a very narrow temperature and oxygen flow rate range. The resistivity change during the metal-insulator transition varies from 0.2 to 4 orders of magnitude depending on the oxidationmore » condition. Large thermal hysteresis during the metal-insulator phase transition was observed during the transition compared to the results in literature. Proper oxidation conditions can significantly reduce the thermal hysteresis. Finally, the fabricated VO 2 thin films showed the potential to be applied in the development of electrical sensors and other smart devices.« less

  4. Compact and Integrated Liquid Bismuth Propellant Feed System

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Stanojev, Boris; Korman, Valentin; Gross, Jeffrey T.

    2007-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions [1]. There has been considerable effort in the past three years aimed at resuscitating this promising technology and validating earlier experimental results indicating the advantages of a bismuth-fed Hall thruster. A critical element of the present effort is the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre./post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work is to develop a precision liquid bismuth Propellant Management System (PMS) that provides hot, molten bismuth to the thruster while simultaneously monitoring in real-time the propellant mass flow rate. The system is a derivative of our previous propellant feed system [2], but the present system represents a more compact design. In addition, all control electronics are integrated into a single unit and designed to reside on a thrust stand and operate in the relevant vacuum environment where the thruster is operating, significantly increasing the present technology readiness level of liquid metal propellant feed systems. The design of various critical components in a bismuth PMS are described. These include the bismuth reservoir and pressurization system, 'hotspot' flow sensor, power system and integrated control system. Particular emphasis is given to selection of the electronics employed in this system and the methods that were used to isolate the power and control systems from the high-temperature portions of the feed system and thruster. Open loop calibration test results from the 'hotspot' flow sensor are reported, and results of integrated thruster/PMS tests demonstrate operation of the feed system in the relevant environment.

  5. Sensor data as a measure of native freshwater mussel impact on nitrate formation and food digestion in continuous-flow mesocosms

    USGS Publications Warehouse

    Bril, Jeremy S.; Durst, Jonathan J.; Hurley, Brion M.; Just, Craig L.; Newton, Teresa J.

    2014-01-01

    Native freshwater mussels can influence the aquatic N cycle, but the mechanisms and magnitude of this effect are not fully understood. We assessed the effects of Amblema plicata and Lampsilis cardium on N transformations over 72 d in 4 continuous-flow mesocosms, with 2 replicates of 2 treatments (mesocosms with and without mussels), equipped with electronic water-chemistry sensors. We compared sensor data to discrete sample data to assess the effect of additional sensor measurements on the ability to detect mussel-related effects on NO3– formation. Analysis of 624 sensor-based data points detected a nearly 6% increase in NO3– concentration in overlying water of mesocosms with mussels relative to mesocosms without mussels (p 3– between treatments. Mussels also significantly increased NO2– concentrations in the overlying water, but no significant difference in total N was observed. We used the sensor data for phytoplankton-N and NH4+ to infer that digestion times in mussels were 13 ± 6 h. The results suggest that rapid increases in phytoplankton-N levels in the overlying water can lead to decreased lag times between phytoplankton-N and NH4+ maxima. This result indicates that mussels may adjust their digestion rates in response to increased levels of food. The adjustment in digestion time suggests that mussels have a strong response to food availability that can disrupt typical circadian rhythms. Use of sensor data to measure directly and to infer mussel effects on aquatic N transformations at the mesocosm scale could be useful at larger scales in the future.

  6. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    NASA Astrophysics Data System (ADS)

    Francioso, L.; De Pascali, C.; Pescini, E.; De Giorgi, M. G.; Siciliano, P.

    2016-06-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0-100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa-1 for the best devices.

  7. A Rotary Flow Channel for Shear Stress Sensor Calibration

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Scott, Michael A.

    2004-01-01

    A proposed shear sensor calibrator consists of a rotating wheel with the sensor mounted tangential to the rim and positioned in close proximity to the rim. The shear stress generated by the flow at the sensor position is simply tau(sub omega) = (mu)r(omega)/h, where mu is the viscosity of the ambient gas, r the wheel radius, omega the angular velocity of the wheel, and h the width of the gap between the wheel rim and the sensor. With numerical values of mu = 31 (mu)Pa s (neon at room temperature), r = 0.5 m, omega = 754 /s (7200 rpm), and h = 50.8 m, a shear stress of tau(sub omega) = 231 Pa can be generated. An analysis based on one-dimensional flow, with the flow velocity having only an angular component as a function of the axial and radial coordinates, yields corrections to the above simple formula for the curvature of the wheel, flatness of the sensor, and finite width of the wheel. It is assumed that the sensor mount contains a trough (sidewalls) to render a velocity release boundary condition at the edges of the rim. The Taylor number under maximum flow conditions is found to be 62.3, sufficiently low to obviate flow instability. The fact that the parameters entering into the evaluation of the shear stress can be measured to high accuracy with well-defined uncertainties makes the proposed calibrator suitable for a physical standard for shear stress calibration.

  8. A 3D CFD Simulation and Analysis of Flow-Induced Forces on Polymer Piezoelectric Sensors in a Chinese Liquors Identification E-Nose.

    PubMed

    Gu, Yu; Wang, Yang-Fu; Li, Qiang; Liu, Zu-Wu

    2016-10-20

    Chinese liquors can be classified according to their flavor types. Accurate identification of Chinese liquor flavors is not always possible through professional sommeliers' subjective assessment. A novel polymer piezoelectric sensor electric nose (e-nose) can be applied to distinguish Chinese liquors because of its excellent ability in imitating human senses by using sensor arrays and pattern recognition systems. The sensor, based on the quartz crystal microbalance (QCM) principle is comprised of a quartz piezoelectric crystal plate sandwiched between two specific gas-sensitive polymer coatings. Chinese liquors are identified by obtaining the resonance frequency value changes of each sensor using the e-nose. However, the QCM principle failed to completely account for a particular phenomenon: we found that the resonance frequency values fluctuated in the stable state. For better understanding the phenomenon, a 3D Computational Fluid Dynamics (CFD) simulation using the finite volume method is employed to study the influence of the flow-induced forces to the resonance frequency fluctuation of each sensor in the sensor box. A dedicated procedure was developed for modeling the flow of volatile gas from Chinese liquors in a realistic scenario to give reasonably good results with fair accuracy. The flow-induced forces on the sensors are displayed from the perspective of their spatial-temporal and probability density distributions. To evaluate the influence of the fluctuation of the flow-induced forces on each sensor and ensure the serviceability of the e-nose, the standard deviation of resonance frequency value (SD F ) and the standard deviation of resultant forces (SD Fy ) in y-direction (F y ) are compared. Results show that the fluctuations of F y are bound up with the resonance frequency values fluctuations. To ensure that the sensor's resonance frequency values are steady and only fluctuate slightly, in order to improve the identification accuracy of Chinese liquors using the e-nose, the sensors in the sensor box should be in the proper place, i.e., where the fluctuations of the flow-induced forces is relatively small. This plays a significant reference role in determining the optimum design of the e-nose for accurately identifying Chinese liquors.

  9. Mean velocities and Reynolds stresses in a juncture flow

    NASA Technical Reports Server (NTRS)

    Mcmahon, H.; Hubbartt, J.; Kubendran, L.

    1982-01-01

    Values of three mean velocity components and six turbulence stresses measured in a juncture flow are presented and discussed. The juncture flow is generated by a constant thickness body, having an elliptical leading edge, which is mounted perpendicular to a large flat plate along which a turbulent boundary layer is growing. The measurements were carried out at two streamwise stations in the juncture and were made using two single sensor hot-wire probes. The secondary flow in the juncture results in a considerable distortion in the mean velocity profiles. The secondary flow also transports turbulence in the juncture flow and has a large effect on the turbulence stresses. From visual inspection of the results, there is considerable evidence of similarity between the turbulent shear stresses and the mean flow strain rates. There is some evidence of similarity between the variations in the turbulent stress components.

  10. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.

    PubMed

    Gregory, Shaun D; Stevens, Michael C; Pauls, Jo P; Schummy, Emma; Diab, Sara; Thomson, Bruce; Anderson, Ben; Tansley, Geoff; Salamonsen, Robert; Fraser, John F; Timms, Daniel

    2016-09-01

    Preventing ventricular suction and venous congestion through balancing flow rates and circulatory volumes with dual rotary ventricular assist devices (VADs) configured for biventricular support is clinically challenging due to their low preload and high afterload sensitivities relative to the natural heart. This study presents the in vivo evaluation of several physiological control systems, which aim to prevent ventricular suction and venous congestion. The control systems included a sensor-based, master/slave (MS) controller that altered left and right VAD speed based on pressure and flow; a sensor-less compliant inflow cannula (IC), which altered inlet resistance and, therefore, pump flow based on preload; a sensor-less compliant outflow cannula (OC) on the right VAD, which altered outlet resistance and thus pump flow based on afterload; and a combined controller, which incorporated the MS controller, compliant IC, and compliant OC. Each control system was evaluated in vivo under step increases in systemic (SVR ∼1400-2400 dyne/s/cm(5) ) and pulmonary (PVR ∼200-1000 dyne/s/cm(5) ) vascular resistances in four sheep supported by dual rotary VADs in a biventricular assist configuration. Constant speed support was also evaluated for comparison and resulted in suction events during all resistance increases and pulmonary congestion during SVR increases. The MS controller reduced suction events and prevented congestion through an initial sharp reduction in pump flow followed by a gradual return to baseline (5.0 L/min). The compliant IC prevented suction events; however, reduced pump flows and pulmonary congestion were noted during the SVR increase. The compliant OC maintained pump flow close to baseline (5.0 L/min) and prevented suction and congestion during PVR increases. The combined controller responded similarly to the MS controller to prevent suction and congestion events in all cases while providing a backup system in the event of single controller failure. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  11. An Experimental Study on the Fabrication of Glass-based Acceleration Sensor Body Using Micro Powder Blasting Method

    PubMed Central

    Park, Dong-Sam; Yun, Dae-Jin; Cho, Myeong-Woo; Shin, Bong-Cheol

    2007-01-01

    This study investigated the feasibility of the micro powder blasting technique for the micro fabrication of sensor structures using the Pyrex glass to replace the existing silicon-based acceleration sensor fabrication processes. As the preliminary experiments, the effects of the blasting pressure, the mass flow rate of abrasive and the number of nozzle scanning times on erosion depth of the Pyrex and the soda lime glasses were examined. From the experimental results, optimal blasting conditions were selected for the Pyrex glass machining. The dimensions of the designed glass sensor was 1.7×1.7×0.6mm for the vibrating mass, and 2.9×0.7×0.2mm for the cantilever beam. The machining results showed that the dimensional errors of the machined glass sensor ranged from 3 μm in minimum to 20 μm in maximum. These results imply that the micro powder blasting method can be applied for the micromachining of glass-based acceleration sensors to replace the exiting method.

  12. E-bra with nanosensors, smart electronics and smart phone communication network for heart rate monitoring

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Kumar, Prashanth S.; Oh, Sechang; Mathur, Gyanesh N.; Rai, Pratyush; Kegley, Lauren

    2011-04-01

    Heart related ailments have been a major cause for deaths in both men and women in United States. Since 1985, more women than men have died due to cardiac or cardiovascular ailments for reasons that are not well understood as yet. Lack of a deterministic understanding of this phenomenon makes continuous real time monitoring of cardiovascular health the best approach for both early detection of pathophysiological changes and events indicative of chronic cardiovascular diseases in women. This approach requires sensor systems to be seamlessly mounted on day to day clothing for women. With this application in focus, this paper describes a e-bra platform for sensors towards heart rate monitoring. The sensors, nanomaterial or textile based dry electrodes, capture the heart activity signals in form Electrocardiograph (ECG) and relay it to a compact textile mountable amplifier-wireless transmitter module for relay to a smart phone. The ECG signal, acquired on the smart phone, can be transmitted to the cyber space for post processing. As an example, the paper discusses the heart rate estimation and heart rate variability. The data flow from sensor to smart phone to server (cyber infrastructure) has been discussed. The cyber infrastructure based signal post processing offers an opportunity for automated emergency response that can be initiated from the server or the smartphone itself. Detailed protocols for both the scenarios have been presented and their relevance to the present emergency healthcare response system has been discussed.

  13. Nanomaterial based detection and degradation of biological and chemical contaminants in a microfluidic system

    NASA Astrophysics Data System (ADS)

    Jayamohan, Harikrishnan

    Monitoring and remediation of environmental contaminants (biological and chemical) form the crux of global water resource management. There is an extant need to develop point-of-use, low-power, low-cost tools that can address this problem effectively with minimal environmental impact. Nanotechnology and microfluidics have made enormous advances during the past decade in the area of biosensing and environmental remediation. The "marriage" of these two technologies can effectively address some of the above-mentioned needs. In this dissertation, nanomaterials were used in conjunction with microfluidic techniques to detect and degrade biological and chemical pollutants. In the first project, a point-of-use sensor was developed for detection of trichloroethylene (TCE) from water. A self-organizing nanotubular titanium dioxide (TNA) synthesized by electrochemical anodization and functionalized with photocatalytically deposited platinum (Pt/TNA) was applied to the detection. The morphology and crystallinity of the Pt/TNA sensor was characterized using field emission scanning electron microscope, energy dis- persive x-ray spectroscopy, and X-ray diffraction. The sensor could detect TCE in the concentrations ranging from 10 to 1000 ppm. The room-temperature operation capability of the sensor makes it less power intensive and can potentially be incorporated into a field-based sensor. In the second part, TNA synthesized on a foil was incorporated into a flow-based microfluidic format and applied to degradation of a model pollutant, methylene blue. The system was demonstrated to have enhanced photocatalytic performance at higher flow rates (50-200 muL/min) over the same microfluidic format with TiO2 nanoparticulate (commercial P25) catalyst. The microfluidic format with TNA catalyst was able to achieve 82% fractional conversion of 18 mM methylene blue in comparison to 55% in the case of the TiO2 nanoparticulate layer at a flow rate of 200 L/min. The microfluidic device was fabricated using non-cleanroom-based methods, making it suitable for economical large-scale manufacture. A computational model of the microfluidic format was developed in COMSOL MultiphysicsRTM finite element software to evaluate the effect of diffusion coefficient and rate constant on the photocatalytic performance. To further enhance the photocatalytic performance of the microfluidic device, TNA synthesized on a mesh was used as the catalyst. The new system was shown to have enhanced photocatalytic performance in comparison to TNA on a foil. The device was then employed in the inactivation of E. coli O157:H7 at different flow rates and light intensities (100, 50, 20, 10 mW/cm2). In the second project, a protocol for ultra-sensitive indirect electrochemical detection of E. coli O157:H7 was reported. The protocol uses antibody functionalized primary (magnetic) beads for capture and polyguanine (polyG) oligonucleotide functionalized secondary (polystyrene) beads as an electrochemical tag. The method was able to detect concentrations of E. coli O157:H7 down to 3 CFU/100 mL (S/N=3). We also demonstrate the use of the protocol for detection of E. coli O157:H7 seeded in wastewater effluent samples.

  14. Measurement of crossflow vortices, attachment-line flow, and transition using microthin hot films

    NASA Technical Reports Server (NTRS)

    Mangalam, S. M.; Agarwal, N. K.; Maddalon, D. V.; Saric, W. S.

    1990-01-01

    A flow diagnostic experiment was conducted on a 45-deg swept-wing model using surface-mounted, multielement, microthin, hot-film sensors. The cross-flow vortex spacing, the attachment-line flow characteristics, and the transition region were all determined using an advanced data acquisition and instrumentation system. In addition to the frequencies of traveling waves predicted by linear stability theory, amplified disturbances at much higher frequencies were observed. Simultaneous measurements from sensors located at a number of chord and span locations highlighted the strong three-dimensionality of the boundary-layer flow in the presence of cross-flow vortices. The state of the attachment-line boundary layer was determined using a multielement sensor wrapped around the wing leading edge. The transition region flow characteristics were also identified.

  15. A novel multisensor traffic state assessment system based on incomplete data.

    PubMed

    Zeng, Yiliang; Lan, Jinhui; Ran, Bin; Jiang, Yaoliang

    2014-01-01

    A novel multisensor system with incomplete data is presented for traffic state assessment. The system comprises probe vehicle detection sensors, fixed detection sensors, and traffic state assessment algorithm. First of all, the validity checking of the traffic flow data is taken as preprocessing of this method. And then a new method based on the history data information is proposed to fuse and recover the incomplete data. According to the characteristics of space complementary of data based on the probe vehicle detector and fixed detector, a fusion model of space matching is presented to estimate the mean travel speed of the road. Finally, the traffic flow data include flow, speed and, occupancy rate, which are detected between Beijing Deshengmen bridge and Drum Tower bridge, are fused to assess the traffic state of the road by using the fusion decision model of rough sets and cloud. The accuracy of experiment result can reach more than 98%, and the result is in accordance with the actual road traffic state. This system is effective to assess traffic state, and it is suitable for the urban intelligent transportation system.

  16. A Novel Multisensor Traffic State Assessment System Based on Incomplete Data

    PubMed Central

    Zeng, Yiliang; Lan, Jinhui; Ran, Bin; Jiang, Yaoliang

    2014-01-01

    A novel multisensor system with incomplete data is presented for traffic state assessment. The system comprises probe vehicle detection sensors, fixed detection sensors, and traffic state assessment algorithm. First of all, the validity checking of the traffic flow data is taken as preprocessing of this method. And then a new method based on the history data information is proposed to fuse and recover the incomplete data. According to the characteristics of space complementary of data based on the probe vehicle detector and fixed detector, a fusion model of space matching is presented to estimate the mean travel speed of the road. Finally, the traffic flow data include flow, speed and, occupancy rate, which are detected between Beijing Deshengmen bridge and Drum Tower bridge, are fused to assess the traffic state of the road by using the fusion decision model of rough sets and cloud. The accuracy of experiment result can reach more than 98%, and the result is in accordance with the actual road traffic state. This system is effective to assess traffic state, and it is suitable for the urban intelligent transportation system. PMID:25162055

  17. A New Technique For Quantifying Effusive Volcanic Activity at Tolbachik Volcano Using Multiple Remote Sensing Platforms

    NASA Astrophysics Data System (ADS)

    McAlpin, D. B.; Meyer, F. J.; Dehn, J.; Webley, P. W.

    2016-12-01

    In 1976, "The Great Tolbachik Fissure Eruption," became the largest basaltic eruption in the recorded history of the Kamchatka Peninsula. In November 2012, after thirty-six years of quiescence, Tolbachik again erupted, and continued for nine months until its end in August, 2013. Observers of the 2012-13 eruption reported a mostly effusive eruption from two main fissures, long, rapidly moving lava flows, and ash clouds of up to 6 km. Initial estimates of effusive activity reported an approximate volume of 0.52 km³ over an area of more than 35 km². In this analysis, we provide updated effusion estimates for the Tolbachik eruption, determined by thermal data acquired by the Advanced Very High Resolution Radiometer (AVHRR) satellites. Each of the four AVHRR satellites carries a broad-band, five channel sensor that acquires data in the visible and infrared portions of the electromagnetic spectrum, with each satellite completing 14 daily Earth orbits. A critical component to the volume estimates is a determination of fissure size and the area of lava flow at different times during the eruption. For this purpose, we acquired optical satellite images obtained from three orbiting platforms: the Advanced Land Imager (ALI),) aboard the Earth Observer-1 (EO-1) satellite, the Operational Land Imager (OLI) aboard Landsat 8, and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard NASA's Terra satellite. From these multiple platforms, lava flow maps were prepared from repeat acquisitions over the course of the eruption. Periodic lava flow measurements clarify effusion rates as instantaneous discharge rates, mean effusion rates over time, and an overall effusion rate over the entire eruption. Given the natural limitations of effusion estimates derived from thermal data, our results are compared to effusion estimates derived by DEM differencing to evaluate accuracy. This analysis is a true multi-sensor technique that affords a method to rapidly quantify effusive volcanic activity in terms of flow temperature, lava volume, and area on a basis coeval to the eruption, and has important implications for scientific and hazard analyses of future volcanic episodes.

  18. Design and Fabrication of a MEMS Flow Sensor and Its Application in Precise Liquid Dispensing

    PubMed Central

    Liu, Yaxin; Chen, Liguo; Sun, Lining

    2009-01-01

    A high speed MEMS flow sensor to enhance the reliability and accuracy of a liquid dispensing system is proposed. Benefitting from the sensor information feedback, the system can self-adjust the open time of the solenoid valve to accurately dispense desired volumes of reagent without any pre-calibration. First, an integrated high-speed liquid flow sensor based on the measurement of the pressure difference across a flow channel is presented. Dimensions of the micro-flow channel and two pressure sensors have been appropriately designed to meet the static and dynamic requirements of the liquid dispensing system. Experiments results show that the full scale (FS) flow measurement ranges up to 80 μL/s, with a nonlinearity better than 0.51% FS. Secondly, a novel closed-loop control strategy is proposed to calculate the valve open time in each dispensing cycle, which makes the system immune to liquid viscosity, pressure fluctuation, and other sources of error. Finally, dispensing results show that the system can achieve better dispensing performance, and the coefficient of variance (CV) for liquid dispensing is below 3% at 1 μL and below 4% at 100 nL. PMID:22408517

  19. Design and Fabrication of a MEMS Flow Sensor and Its Application in Precise Liquid Dispensing.

    PubMed

    Liu, Yaxin; Chen, Liguo; Sun, Lining

    2009-01-01

    A high speed MEMS flow sensor to enhance the reliability and accuracy of a liquid dispensing system is proposed. Benefitting from the sensor information feedback, the system can self-adjust the open time of the solenoid valve to accurately dispense desired volumes of reagent without any pre-calibration. First, an integrated high-speed liquid flow sensor based on the measurement of the pressure difference across a flow channel is presented. Dimensions of the micro-flow channel and two pressure sensors have been appropriately designed to meet the static and dynamic requirements of the liquid dispensing system. Experiments results show that the full scale (FS) flow measurement ranges up to 80 μL/s, with a nonlinearity better than 0.51% FS. Secondly, a novel closed-loop control strategy is proposed to calculate the valve open time in each dispensing cycle, which makes the system immune to liquid viscosity, pressure fluctuation, and other sources of error. Finally, dispensing results show that the system can achieve better dispensing performance, and the coefficient of variance (CV) for liquid dispensing is below 3% at 1 μL and below 4% at 100 nL.

  20. Two-Dimensional Automatic Measurement for Nozzle Flow Distribution Using Improved Ultrasonic Sensor

    PubMed Central

    Zhai, Changyuan; Zhao, Chunjiang; Wang, Xiu; Wang, Ning; Zou, Wei; Li, Wei

    2015-01-01

    Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultrasonic sensor to limit its beam angle in order to measure the liquid level in the small troughs. System performance tests were conducted to verify the designed functions and measurement accuracy. A commercial spray nozzle was also used to measure its flow distribution. The test results showed that the relative error on volume measurement was less than 7.27% when the liquid volume was 2 mL in trough, while the error was less than 4.52% when the liquid volume was 4 mL or more. The developed system was also used to evaluate the flow distribution of a commercial nozzle. It was able to provide the shape and the spraying width of the flow distribution accurately. PMID:26501288

  1. Wind-tunnel investigation of the flow correction for a model-mounted angle of attack sensor at angles of attack from -10 deg to 110 deg. [Langley 12-foot low speed wind tunnel test

    NASA Technical Reports Server (NTRS)

    Moul, T. M.

    1979-01-01

    A preliminary wind tunnel investigation was undertaken to determine the flow correction for a vane angle of attack sensor over an angle of attack range from -10 deg to 110 deg. The sensor was mounted ahead of the wing on a 1/5 scale model of a general aviation airplane. It was shown that the flow correction was substantial, reaching about 15 deg at an angle of attack of 90 deg. The flow correction was found to increase as the sensor was moved closer to the wing or closer to the fuselage. The experimentally determined slope of the flow correction versus the measured angle of attack below the stall angle of attack agreed closely with the slope of flight data from a similar full scale airplane.

  2. Exhaled nitric oxide monitoring by quantum cascade laser: comparison with chemiluminescent and electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Mandon, Julien; Högman, Marieann; Merkus, Peter J. F. M.; van Amsterdam, Jan; Harren, Frans J. M.; Cristescu, Simona M.

    2012-01-01

    Fractional exhaled nitric oxide (FENO) is considered an indicator in the diagnostics and management of asthma. In this study we present a laser-based sensor for measuring FENO. It consists of a quantum cascade laser (QCL) combined with a multi-pass cell and wavelength modulation spectroscopy for the detection of NO at the sub-part-per-billion by volume (ppbv, 1∶10-9) level. The characteristics and diagnostic performance of the sensor were assessed. A detection limit of 0.5 ppbv was demonstrated with a relatively simple design. The QCL-based sensor was compared with two market sensors, a chemiluminescent analyzer (NOA 280, Sievers) and a portable hand-held electrochemical analyzer (MINO®, Aerocrine AB, Sweden). FENO from 20 children diagnosed with asthma and treated with inhaled corticosteroids were measured. Data were found to be clinically acceptable within 1.1 ppbv between the QCL-based sensor and chemiluminescent sensor and within 1.7 ppbv when compared to the electrochemical sensor. The QCL-based sensor was tested on healthy subjects at various expiratory flow rates for both online and offline sampling procedures. The extended NO parameters, i.e. the alveolar region, airway wall, diffusing capacity, and flux were calculated and showed a good agreement with the previously reported values.

  3. Exhaled nitric oxide monitoring by quantum cascade laser: comparison with chemiluminescent and electrochemical sensors.

    PubMed

    Mandon, Julien; Högman, Marieann; Merkus, Peter J F M; van Amsterdam, Jan; Harren, Frans J M; Cristescu, Simona M

    2012-01-01

    Fractional exhaled nitric oxide (F(E)NO) is considered an indicator in the diagnostics and management of asthma. In this study we present a laser-based sensor for measuring F(E)NO. It consists of a quantum cascade laser (QCL) combined with a multi-pass cell and wavelength modulation spectroscopy for the detection of NO at the sub-part-per-billion by volume (ppbv, 110(-9)) level. The characteristics and diagnostic performance of the sensor were assessed. A detection limit of 0.5 ppbv was demonstrated with a relatively simple design. The QCL-based sensor was compared with two market sensors, a chemiluminescent analyzer (NOA 280, Sievers) and a portable hand-held electrochemical analyzer (MINO, Aerocrine AB, Sweden). F(E)NO from 20 children diagnosed with asthma and treated with inhaled corticosteroids were measured. Data were found to be clinically acceptable within 1.1 ppbv between the QCL-based sensor and chemiluminescent sensor and within 1.7 ppbv when compared to the electrochemical sensor. The QCL-based sensor was tested on healthy subjects at various expiratory flow rates for both online and offline sampling procedures. The extended NO parameters, i.e. the alveolar region, airway wall, diffusing capacity, and flux were calculated and showed a good agreement with the previously reported values.

  4. Sensors, Volume 4, Thermal Sensors

    NASA Astrophysics Data System (ADS)

    Scholz, Jorg; Ricolfi, Teresio

    1996-12-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume describes the construction and applicational aspects of thermal sensors while presenting a rigorous treatment of the underlying physical principles. It provides a unique overview of the various categories of sensors as well as of specific groups, e.g. temperature sensors (resistance thermometers, thermocouples, and radiation thermometers), noise and acoustic thermometers, heat-flow and mass-flow sensors. Specific facettes of applications are presented by specialists from different fields including process control, automotive technology and cryogenics. This volume is an indispensable reference work and text book for both specialists and newcomers, researchers and developers.

  5. A microfluidic circulatory system integrated with capillary-assisted pressure sensors.

    PubMed

    Chen, Yangfan; Chan, Ho Nam; Michael, Sean A; Shen, Yusheng; Chen, Yin; Tian, Qian; Huang, Lu; Wu, Hongkai

    2017-02-14

    The human circulatory system comprises a complex network of blood vessels interconnecting biologically relevant organs and a heart driving blood recirculation throughout this system. Recreating this system in vitro would act as a bridge between organ-on-a-chip and "body-on-a-chip" and advance the development of in vitro models. Here, we present a microfluidic circulatory system integrated with an on-chip pressure sensor to closely mimic human systemic circulation in vitro. A cardiac-like on-chip pumping system is incorporated in the device. It consists of four pumping units and passive check valves, which mimic the four heart chambers and heart valves, respectively. Each pumping unit is independently controlled with adjustable pressure and pump rate, enabling users to control the mimicked blood pressure and heartbeat rate within the device. A check valve is located downstream of each pumping unit to prevent backward leakage. Pulsatile and unidirectional flow can be generated to recirculate within the device by programming the four pumping units. We also report an on-chip capillary-assisted pressure sensor to monitor the pressure inside the device. One end of the capillary was placed in the measurement region, while the other end was sealed. Time-dependent pressure changes were measured by recording the movement of the liquid-gas interface in the capillary and calculating the pressure using the ideal gas law. The sensor covered the physiologically relevant blood pressure range found in humans (0-142.5 mmHg) and could respond to 0.2 s actuation time. With the aid of the sensor, the pressure inside the device could be adjusted to the desired range. As a proof of concept, human normal left ventricular and arterial pressure profiles were mimicked inside this device. Human umbilical vein endothelial cells (HUVECs) were cultured on chip and cells can respond to mechanical forces generated by arterial-like flow patterns.

  6. Biomimetic micromechanical adaptive flow-sensor arrays

    NASA Astrophysics Data System (ADS)

    Krijnen, Gijs; Floris, Arjan; Dijkstra, Marcel; Lammerink, Theo; Wiegerink, Remco

    2007-05-01

    We report current developments in biomimetic flow-sensors based on flow sensitive mechano-sensors of crickets. Crickets have one form of acoustic sensing evolved in the form of mechanoreceptive sensory hairs. These filiform hairs are highly perceptive to low-frequency sound with energy sensitivities close to thermal threshold. In this work we describe hair-sensors fabricated by a combination of sacrificial poly-silicon technology, to form silicon-nitride suspended membranes, and SU8 polymer processing for fabrication of hairs with diameters of about 50 μm and up to 1 mm length. The membranes have thin chromium electrodes on top forming variable capacitors with the substrate that allow for capacitive read-out. Previously these sensors have been shown to exhibit acoustic sensitivity. Like for the crickets, the MEMS hair-sensors are positioned on elongated structures, resembling the cercus of crickets. In this work we present optical measurements on acoustically and electrostatically excited hair-sensors. We present adaptive control of flow-sensitivity and resonance frequency by electrostatic spring stiffness softening. Experimental data and simple analytical models derived from transduction theory are shown to exhibit good correspondence, both confirming theory and the applicability of the presented approach towards adaptation.

  7. Respiration and heartbeat signal detection from airflow at airway in rat by catheter flow sensor with temperature compensation function

    NASA Astrophysics Data System (ADS)

    Hasegawa, Y.; Kawaoka, H.; Yamada, T.; Matsushima, M.; Kawabe, T.; Shikida, M.

    2017-12-01

    We previously proposed an evaluation method for detecting both respiration and heartbeat signals from the airflow at the mouth (Kawaoka et al 201518th Int. Conf. on Solid-State Sensors, Actuators and Microsystems; Kawaoka et al 2015 IEEE Sensors; Kawaoka et al 2016 Technical Digest IEEE Micro Electro Mechanical Systems Conf.). In the current study, we developed a catheter flow sensor with temperature compensation that uses MEMS technologies and used it to directly detect the breathing airflow in the airway of a rat. The temperature sensors were integrated with the catheter flow sensor. Heaters working as airflow and temperature sensors were produced on polymer film by using the same fabrication process so that the temperature coefficients of their resistances would coincide. As a result, the variation in sensor outputs due to the airflow temperature changes ranging from 20 °C to 34 °C was suppressed to less than 2.5%. The developed catheter flow sensor was inserted into the airway of a rat to detect both respiration and heartbeat signals. The accuracy of the breathing airflow measurements was improved thanks to the temperature compensation. The tidal volume variations between the expired and inspired air were suppressed to within 5%. Heartbeat signal information was extracted from the measured breathing waveforms by applying a discrete Fourier transform.

  8. Seabed Motion During Sediment Density Flows as Recorded by Displaced Man-Made Motion-Recording Boulders and a Heavy Instrument Platform

    NASA Astrophysics Data System (ADS)

    Gwiazda, R.; Paull, C. K.; Kieft, B.; Bird, L.; Klimov, D.; Herlien, R.; Sherman, A.; McCann, M. P.; Sumner, E.; Talling, P.; Xu, J.; Parsons, D. R.; Maier, K. L.; Barry, J.

    2017-12-01

    Over a period of 18 months the Coordinated Canyon Experiment documented the passage of at least 15 sediment density flows in Monterey Canyon, offshore California, with an array of moorings and sensors placed from 200 m to 1,850 m water depths. Free-standing `smart' boulders (Benthic Event Detectors, BED) and a 1,000 Kg tripod with an Acoustic Monitoring Transponder (AMT) and a BED attached to it were deployed in the upper canyon to detect seabed motions during sediment density flows. BEDs consist of spheres made of a combination of metal, plastic and syntactic foam ballasted to 2.1 g/cm3 density, containing accelerometers along three orthogonal axes, a time recorder, and a pressure sensor inside a pressure case rated to 500 m water depth. Acceleration of ≥ 0.008 G triggers data collection at a recording rate of 50 Hz until motion stops. Built-in acoustic beacons and modems allow for BEDs to be relocated, and data to be downloaded, even when BEDs are buried in sediment to depths of >1 m. Over the course of the study, depth changes and velocities of 24 BED movements during 9 events were recorded. BEDs moved at the velocity of the propagation of the flows down canyon, as documented by the time of arrival of the flow at successive sensors, but sometimes travelled at lower speeds. Seven movements of the AMT tripod were also recorded. In the largest of these, the heavy AMT tripod was transported over a distance of 4.1 Km. For at least four of these seven motions the AMT temperature record indicates that the movements were initiated while the tripod was buried. In one particular event simultaneous movements of five BEDs over a 100 m depth range indicate that the entire seabed was in motion at the same time over a canyon distance of 3.5 Km. Reconstructions of instrument motions in this event from their internally recorded acceleration data show that the AMT displacement was at the front of the event and had no rotational component. In contrast, free standing BEDs at the same depth advanced through a combination of translational and rotational motion. These data are consistent with sediment density flows involving fluidization and motion of a segment of the seafloor over long distances.

  9. In vitro validation of a Pitot-based flow meter for the measurement of respiratory volume and flow in large animal anaesthesia.

    PubMed

    Moens, Yves P S; Gootjes, Peter; Ionita, Jean-Claude; Heinonen, Erkki; Schatzmann, Urs

    2009-05-01

    To remodel and validate commercially available monitors and their Pitot tube-based flow sensors for use in large animals, using in vitro techniques. Prospective, in vitro experiment. Both the original and the remodelled sensor were studied with a reference flow generator. Measurements were taken of the static flow-pressure relationship and linearity of the flow signal. Sensor airway resistance was calculated. Following recalibration of the host monitor, volumes ranging from 1 to 7 L were generated by a calibration syringe, and bias and precision of spirometric volume was determined. Where manual recalibration was not available, a conversion factor for volume measurement was determined. The influence of gas composition mixture and peak flow on the conversion factor was studied. Both the original and the remodelled sensor showed similar static flow-pressure relationships and linearity of the flow signal. Mean bias (%) of displayed values compared with the reference volume of 3, 5 and 7 L varied between -0.4% and +2.4%, and this was significantly smaller than that for 1 L (4.8% to +5.0%). Conversion factors for 3, 5 and 7 L were very similar (mean 6.00 +/- 0.2, range 5.91-6.06) and were not significantly influenced by the gas mixture used. Increasing peak flow caused a small decrease in the conversion factor. Volume measurement error and conversion factors for inspiration and expiration were close to identity. The combination of the host monitor with the remodelled flow sensor allowed accurate in vitro measurement of flows and volumes in a range expected during large animal anaesthesia. This combination has potential as a reliable spirometric monitor for use during large animal anaesthesia.

  10. Characteristics Study of In-Situ Capacitive Sensor for Monitoring Lubrication Oil Debris.

    PubMed

    Han, Zhibin; Wang, Yishou; Qing, Xinlin

    2017-12-08

    As an essential part of engine health monitoring (EHM), online lubrication oil debris monitoring has recently received great attention for the assessment of rotating and reciprocating parts in aero-engines, due to its high integration, low cost and safe characteristics. However, it is be a challenge to find a suitable sensor operating in such a complex environment. We present an unconventional novel approach, in which a cylinder capacitive sensor is designed and integrated with the pipeline of an engine lubrication system, so that the capacitive sensor can effectively detect changes in the lubrication oil condition. In this paper, an attempt to illustrate the performance characteristics of the developed cylinder capacitive sensor is made, through an experiment system that simulates a real scenario of a lubrication oil system. The main aim of the research was to qualitatively describe the relationship between the sensor parameter and the lubrication oil debris. In addition, the effect of the temperature and flow rate of the lubrication oil on capacitance change was performed by several experiments and we figured out a compensation method. The experimental results demonstrated that the cylinder capacitive sensor can potentially be used for lubrication oil debris monitoring of the health condition of an aero-engine.

  11. Mid-Infrared Spectroscopic Method for the Identification and Quantification of Dissolved Oil Components in Marine Environments.

    PubMed

    Stach, Robert; Pejcic, Bobby; Crooke, Emma; Myers, Matthew; Mizaikoff, Boris

    2015-12-15

    The use of mid-infrared sensors based on conventional spectroscopic equipment for oil spill monitoring and fingerprinting in aqueous systems has to date been mainly confined to laboratory environments. This paper presents a portable-based mid-infrared attenuated total reflectance (MIR-ATR) sensor system that was used to quantify a number of environmentally relevant hydrocarbon contaminants in marine water. The sensor comprises a polymer-coated diamond waveguide in combination with a room-temperature operated pyroelectric detector, and the analytical performance was optimized by evaluating the influence of polymer composition, polymer film thickness, and solution flow rate on the sensor response. Uncertainties regarding the analytical performance and instrument specifications for dissolved oil detection were investigated using real-world seawater matrices. The reliability of the sensor was tested by exposition to known volumes of different oils; crude oil and diesel samples were equilibrated with seawater and then analyzed using the developed MIR-ATR sensor system. For validation, gas chromatographic measurements were performed revealing that the MIR-ATR sensor is a promising on-site monitoring tool for determining the concentration of a range of dissolved oil components in seawater at ppb to ppm levels.

  12. Variational optical flow estimation for images with spectral and photometric sensor diversity

    NASA Astrophysics Data System (ADS)

    Bengtsson, Tomas; McKelvey, Tomas; Lindström, Konstantin

    2015-03-01

    Motion estimation of objects in image sequences is an essential computer vision task. To this end, optical flow methods compute pixel-level motion, with the purpose of providing low-level input to higher-level algorithms and applications. Robust flow estimation is crucial for the success of applications, which in turn depends on the quality of the captured image data. This work explores the use of sensor diversity in the image data within a framework for variational optical flow. In particular, a custom image sensor setup intended for vehicle applications is tested. Experimental results demonstrate the improved flow estimation performance when IR sensitivity or flash illumination is added to the system.

  13. Diode Laser Sensors for Arc-Jet Characterization

    NASA Technical Reports Server (NTRS)

    Hanson, Ronald K.

    2005-01-01

    The development and application of tunable diode laser (TDL) absorption sensors to monitor the health and operating conditions in the large-scale 60 MW arc-heated- plasma wind-tunnel at NASA Ames Research Center is reported. The interactive heating facility (THF) produces re-entry flow conditions by expanding the gas heated in a constricted plasma arc-heater to flow at high velocity over a model located in a test cabin. This facility provides the conditions needed to test thermal protective systems for spacecraft re-entering the earth s atmosphere. TDL sensors are developed to monitor gas flows in both the high-temperature constricted flow and the supersonic expansion flow into test cabin. These sensors utilize wavelength-tuned diode lasers to measure absorption transitions of atomic oxygen near 777.2 nm, atomic nitrogen near 856.8 nm, and atomic copper near 793.3 nm. The oxygen and nitrogen sensors measure the population density in exited electronic states of these atoms. The measurements combined with the assumption of local thermal and chemical equilibrium yield gas temperature (typically near 7,000K). The nitrogen and oxygen population temperatures are redundant, and their close agreement provides an important test of the local thermal equilibrium assumption. These temperature sensors provide time-resolved monitors of the operating conditions of the arc-heater and can be used to verify and control the test conditions. An additional TDL sensor was developed to monitor the copper concentration in the arc-heater flow yielding values as high as 13 ppm. Measurements of copper in the flow can identify flow conditions with unacceptably rapid electrode erosion, and hence this sensor provides valuable information needed to schedule maintenance to avoid costly arc-heater failure. TDL sensors were also developed for measurements in the test cabin, where absorption measurements of the populations of argon and molecular nitrogen in excited metastable electronic states established that the number density of these excited species is much lower than estimated using frozen-chemistry approximations. This key finding suggests that in the post-expansion region there is not a significant energy sequestration in electronically excited species. Finally, TDL measurements of atomic potassium seeded into the test cabin flow were used to directly measure the static temperature of the test gas. The results of this study illustrate the high potential of time-resolved TDL measurements for routine and economical sensing of arc-heater health (gas temperature and electrode erosion) as well as the time-resolved test-cabin-flow conditions in front of the model.

  14. The Effect of Initial Irrigation Conditions on Heap Leaching Efficiency

    NASA Astrophysics Data System (ADS)

    Briseño Arellano, A. D.; Milczarek, M.; Yao, M.; Brusseau, M. L. L.

    2017-12-01

    Heap leaching is an unsaturated flow metal recovery process, in which mined ore is irrigated with a lixiviant to dissolve metal contained in the ore. The metal is then extracted from solution. Large scale operations involve stacking ore to depths of 6 to 18 meters on pads that may be hundreds of hectares in area. Heterogeneities within the stacked ore can lead to uneven wetting and the formation of preferential flow pathways, which reduces solution contact and lowers metal recovery. Furthermore, mineral dissolution can cause alteration of the porous media structure and loss of ore permeability. Many mine operators believe that slow initial irrigation rates help minimize permeability loss and increase metal recovery rates. However, this phenomenon has not been studied in detail. Experiments were conducted to investigate the effect of varying initial irrigation rates on leach ore stability. These were conducted with large columns (1.5 m high, 0.5 m in diameter) packed with crushed ore samples that are known to have permeability constraints. The columns were highly instrumented to assess potential changes in material properties both spatially and temporally. Water content was measured with three different methods: capacitance soil moisture sensors placed at 20-cm intervals; a neutron probe to periodically log every 30 cm from four different directions; and electrical resistivity sensors to create a 2-dimensional tomography profile of water content over time. Tensiometers were paired with the soil moisture sensors to measure matric suction and characterize moisture retention characteristics. A non-reactive tracer was used to characterize advective-dispersive transport under unsaturated conditions. A dye solution was introduced at the end of each experiment to map preferential pathways. Continuous monitoring of settling at the surface assisted in measuring consolidation and loss in permeability.

  15. Sensor transition failure in the high flow sampler: Implications for methane emission inventories of natural gas infrastructure.

    PubMed

    Howard, Touché; Ferrara, Thomas W; Townsend-Small, Amy

    2015-07-01

    Quantification of leaks from natural gas (NG) infrastructure is a key step in reducing emissions of the greenhouse gas methane (CH4), particularly as NG becomes a larger component of domestic energy supply. The U.S. Environmental Protection Agency (EPA) requires measurement and reporting of emissions of CH4 from NG transmission, storage, and processing facilities, and the high-flow sampler (or high-volume sampler) is one of the tools approved for this by the EPA. The Bacharach Hi-Flow Sampler (BHFS) is the only commercially available high-flow instrument, and it is also used throughout the NG supply chain for directed inspection and maintenance, emission factor development, and greenhouse gas reduction programs. Here we document failure of the BHFS to transition from a catalytic oxidation sensor used to measure low NG (~5% or less) concentrations to a thermal conductivity sensor for higher concentrations (from ~5% to 100%), resulting in underestimation of NG emission rates. Our analysis includes both our own field testing and analysis of data from two other studies (Modrak et al., 2012; City of Fort Worth, 2011). Although this failure is not completely understood, and although we do not know if all BHFS models are similarly affected, sensor transition failure has been observed under one or more of these conditions: (1) Calibration is more than ~2 weeks old; (2) firmware is out of date; or (3) the composition of the NG source is less than ~91% CH4. The extent to which this issue has affected recent emission studies is uncertain, but the analysis presented here suggests that the problem could be widespread. Furthermore, it is critical that this problem be resolved before the onset of regulations on CH4 emissions from the oil and gas industry, as the BHFS is a popular instrument for these measurements. An instrument commonly used to measure leaks in natural gas infrastructure has a critical sensor transition failure issue that results in underestimation of leaks, with implications for greenhouse gas emissions estimates as well as safety.

  16. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency.

    PubMed

    Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng

    2015-12-15

    The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth.

  17. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency

    PubMed Central

    Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng

    2015-01-01

    The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth. PMID:26694393

  18. Physics Simulation Software for Autonomous Propellant Loading and Gas House Autonomous System Monitoring

    NASA Technical Reports Server (NTRS)

    Regalado Reyes, Bjorn Constant

    2015-01-01

    1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.

  19. Control of a Quadcopter Aerial Robot Using Optic Flow Sensing

    NASA Astrophysics Data System (ADS)

    Hurd, Michael Brandon

    This thesis focuses on the motion control of a custom-built quadcopter aerial robot using optic flow sensing. Optic flow sensing is a vision-based approach that can provide a robot the ability to fly in global positioning system (GPS) denied environments, such as indoor environments. In this work, optic flow sensors are used to stabilize the motion of quadcopter robot, where an optic flow algorithm is applied to provide odometry measurements to the quadcopter's central processing unit to monitor the flight heading. The optic-flow sensor and algorithm are capable of gathering and processing the images at 250 frames/sec, and the sensor package weighs 2.5 g and has a footprint of 6 cm2 in area. The odometry value from the optic flow sensor is then used a feedback information in a simple proportional-integral-derivative (PID) controller on the quadcopter. Experimental results are presented to demonstrate the effectiveness of using optic flow for controlling the motion of the quadcopter aerial robot. The technique presented herein can be applied to different types of aerial robotic systems or unmanned aerial vehicles (UAVs), as well as unmanned ground vehicles (UGV).

  20. The augmentation of heat transfer in a pipe flow using a swirling perforated twisted (SPT) tape insert

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahrokh; Oishe, Sadia Noon; Rahman, Md. Lutfor

    2017-12-01

    The purpose of this research work is to increase the heat transfer coefficient by operating the heat exchangers at smaller revolution per minute. This signifies an achievement of reduction of pressure drop corresponding to less operating cost. This study has used two types of SPT tape insert to observe the various heat transfer coefficient, heat transfer rate and heat transfer augmentation efficiency. One tape was fully twisted and another tape was partially twisted. The shape of the SPT tape creates turbulence effect. The turbulence flow (swirl flow) generated by SPT tape promotes greater mixing and high heat transfer coefficients. An arrangement scheme has been developed for the experimental investigation. For remarking the rate of change of heat transfer, temperature has been measured numerically through the temperature sensors with various flow rates and RPM. The volume flow rate was varied from 10.3448276 LPM to 21.045574 LPM and the rotation of the perforated twisted tape was varied from 50 RPM to 400 RPM. Finally the research study demonstrates the effectiveness of the results of the proposed approaches. It is observed that the suggested method of heat transfer augmentations is much more effective than existing methods, since it results in an increase in heat transfer area and also an increase in the heat transfer coefficient and reduction of cost in the industrial sectors.

  1. The development of a microprocessor-controlled linearly-actuated valve assembly

    NASA Technical Reports Server (NTRS)

    Wall, R. H.

    1984-01-01

    The development of a proportional fluid control valve assembly is presented. This electromechanical system is needed for space applications to replace the current proportional flow controllers. The flow is controlled by a microprocessor system that monitors the control parameters of upstream pressure and requested volumetric flow rate. The microprocessor achieves the proper valve stem displacement by means of a digital linear actuator. A linear displacement sensor is used to measure the valve stem position. This displacement is monitored by the microprocessor system as a feedback signal to close the control loop. With an upstream pressure between 15 and 47 psig, the developed system operates between 779 standard CU cm/sec (SCCS) and 1543 SCCS.

  2. Experimental Investigation of Turbulent Flames in Hypersonic Flows

    DTIC Science & Technology

    2015-09-01

    kg and 1 MPa at a stagnation condition. A settling chamber upstream of the C/D nozzle has a pressure sensor and an optical access window for...are recorded by a pressure sensor attached on the reservoir. Overall fuel equivalence ratio () in the combustor is estimated by the ratio of...freestream flow direction and 22.5° ramp (back step) angle. Five pressure sensors (Kulite) and five temperature sensors (MEDTHERM coaxial thermocouple

  3. A film-based wall shear stress sensor for wall-bounded turbulent flows

    NASA Astrophysics Data System (ADS)

    Amili, Omid; Soria, Julio

    2011-07-01

    In wall-bounded turbulent flows, determination of wall shear stress is an important task. The main objective of the present work is to develop a sensor which is capable of measuring surface shear stress over an extended region applicable to wall-bounded turbulent flows. This sensor, as a direct method for measuring wall shear stress, consists of mounting a thin flexible film on the solid surface. The sensor is made of a homogeneous, isotropic, and incompressible material. The geometry and mechanical properties of the film are measured, and particles with the nominal size of 11 μm in diameter are embedded on the film's surface to act as markers. An optical technique is used to measure the film deformation caused by the flow. The film has typically deflection of less than 2% of the material thickness under maximum loading. The sensor sensitivity can be adjusted by changing the thickness of the layer or the shear modulus of the film's material. The paper reports the sensor fabrication, static and dynamic calibration procedure, and its application to a fully developed turbulent channel flow at Reynolds numbers in the range of 90,000-130,000 based on the bulk velocity and channel full height. The results are compared to alternative wall shear stress measurement methods.

  4. A flowing liquid test system for assessing the linearity and time-response of rapid fibre optic oxygen partial pressure sensors.

    PubMed

    Chen, R; Hahn, C E W; Farmery, A D

    2012-08-15

    The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Bio-inspired multi-mode optic flow sensors for micro air vehicles

    NASA Astrophysics Data System (ADS)

    Park, Seokjun; Choi, Jaehyuk; Cho, Jihyun; Yoon, Euisik

    2013-06-01

    Monitoring wide-field surrounding information is essential for vision-based autonomous navigation in micro-air-vehicles (MAV). Our image-cube (iCube) module, which consists of multiple sensors that are facing different angles in 3-D space, can be applied to the wide-field of view optic flows estimation (μ-Compound eyes) and to attitude control (μ- Ocelli) in the Micro Autonomous Systems and Technology (MAST) platforms. In this paper, we report an analog/digital (A/D) mixed-mode optic-flow sensor, which generates both optic flows and normal images in different modes for μ- Compound eyes and μ-Ocelli applications. The sensor employs a time-stamp based optic flow algorithm which is modified from the conventional EMD (Elementary Motion Detector) algorithm to give an optimum partitioning of hardware blocks in analog and digital domains as well as adequate allocation of pixel-level, column-parallel, and chip-level signal processing. Temporal filtering, which may require huge hardware resources if implemented in digital domain, is remained in a pixel-level analog processing unit. The rest of the blocks, including feature detection and timestamp latching, are implemented using digital circuits in a column-parallel processing unit. Finally, time-stamp information is decoded into velocity from look-up tables, multiplications, and simple subtraction circuits in a chip-level processing unit, thus significantly reducing core digital processing power consumption. In the normal image mode, the sensor generates 8-b digital images using single slope ADCs in the column unit. In the optic flow mode, the sensor estimates 8-b 1-D optic flows from the integrated mixed-mode algorithm core and 2-D optic flows with an external timestamp processing, respectively.

  6. Does an Open Recirculation Line Affect the Flow Rate and Pressure in a Neonatal Extracorporeal Life Support Circuit With a Centrifugal or Roller Pump?

    PubMed

    Wang, Shigang; Spencer, Shannon B; Woitas, Karl; Glass, Kristen; Kunselman, Allen R; Ündar, Akif

    2017-01-01

    The objective of this study is to evaluate the impact of an open or closed recirculation line on flow rate, circuit pressure, and hemodynamic energy transmission in simulated neonatal extracorporeal life support (ECLS) systems. The two neonatal ECLS circuits consisted of a Maquet HL20 roller pump (RP group) or a RotaFlow centrifugal pump (CP group), Quadrox-iD Pediatric oxygenator, and Biomedicus arterial and venous cannulae (8 Fr and 10 Fr) primed with lactated Ringer's solution and packed red blood cells (hematocrit 35%). Trials were conducted at flow rates ranging from 200 to 600 mL/min (200 mL/min increments) with a closed or open recirculation line at 36°C. Real-time pressure and flow data were recorded using a custom-based data acquisition system. In the RP group, the preoxygenator flow did not change when the recirculation line was open while the prearterial cannula flow decreased by 15.7-20.0% (P < 0.01). Circuit pressure, total circuit pressure drop, and hemodynamic energy delivered to patients also decreased (P < 0.01). In the CP group, the prearterial cannula flow did not change while preoxygenator flow increased by 13.6-18.8% (P < 0.01). Circuit pressure drop and hemodynamic energy transmission remained the same. The results showed that the shunt of an open recirculation line could decrease perfusion flow in patients in the ECLS circuit using a roller pump, but did not change perfusion flow in the circuit using a centrifugal pump. An additional flow sensor is needed to monitor perfusion flow in patients if any shunts exist in the ECLS circuit. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Sensory-based expert monitoring and control

    NASA Astrophysics Data System (ADS)

    Yen, Gary G.

    1999-03-01

    Field operators use their eyes, ears, and nose to detect process behavior and to trigger corrective control actions. For instance: in daily practice, the experienced operator in sulfuric acid treatment of phosphate rock may observe froth color or bubble character to control process material in-flow. Or, similarly, (s)he may use acoustic sound of cavitation or boiling/flashing to increase or decrease material flow rates in tank levels. By contrast, process control computers continue to be limited to taking action on P, T, F, and A signals. Yet, there is sufficient evidence from the fields that visual and acoustic information can be used for control and identification. Smart in-situ sensors have facilitated potential mechanism for factory automation with promising industry applicability. In respond to these critical needs, a generic, structured health monitoring approach is proposed. The system assumes a given sensor suite will act as an on-line health usage monitor and at best provide the real-time control autonomy. The sensor suite can incorporate various types of sensory devices, from vibration accelerometers, directional microphones, machine vision CCDs, pressure gauges to temperature indicators. The decision can be shown in a visual on-board display or fed to the control block to invoke controller reconfigurration.

  8. Temporal variation of indoor air quality in an enclosed swine confinement building.

    PubMed

    O'Shaughnessy, P T; Achutan, C; Karsten, A W

    2002-11-01

    Human health hazards can exist in swine confinement buildings due to poor indoor air quality (IAQ). During this study, airborne dust and ammonia concentrations were monitored within a working farrowing facility as indicators of IAQ. The purposes of this study were to assess the temporal variability of the airborne dust and ammonia levels over both a daily and seasonal basis, and to determine the accuracy of real-time sensors relative to actively sampled data. An ammonia sensor, aerosol photometer, indoor relative humidity sensor, and datalogger containing an indoor temperature sensor were mounted on a board 180 cm above the floor in the center of a room in the facility. Sensor readings were taken once every 4 minutes during animal occupancy (3-week intervals). Measurements of total and respirable dust concentrations by standard method, aerosol size distribution, and ammonia concentrations were taken once per week, in addition to temperature and relative humidity measurements using a thermometer and sling psychrometer, respectively. Samples were taken between September 1999 and August 2000. Diurnal variations in airborne dust revealed an inverse relationship with changes in indoor temperature and, by association, changes in airflow rate. Ammonia levels changed despite relatively stable internal temperatures. This change may be related to both changes in flow rates and in volatility rates. As expected, contaminant concentrations increased during the cold weather months, but these differences were not significantly different from other seasons. However, total dust concentrations were very low (geometric mean = 0.8 mg/m3) throughout the year. Likewise, ammonia concentrations averaged only 3.6 ppm in the well-maintained study site.

  9. Experimental study on rotating instability mode characteristics of axial compressor tip flow

    NASA Astrophysics Data System (ADS)

    Tian, Jie; Yao, Dan; Wu, Yadong; Ouyang, Hua

    2018-04-01

    This paper investigates the rotating instabilities that occurred on the single-stage axial compressor designed for aerodynamic performance validation, which was tested with two sets of circumferential measuring points in combination. Circumferential mode characteristics of compressors are usually too high to be captured experimentally, and aliasing of the circumferential mode order occurs when not enough sensors are used. A calibration and prediction method to capture the higher circumferential mode of unsteady flow in a compressor was proposed. Unsteady pressure fluctuations near the tip region in an axial compressor were studied, and high circumferential mode characteristics were captured on both the blade passing frequency (BPF) and the rotational instability frequency (RIF) under different flow rate conditions based on this novel method. The characteristic RI spectrum with a broadband hump was present in a large range of flow conditions. Both the frequency range and the dominant circumferential mode order decreased as the flow rate decreased. Based on the calibrated mode characteristics, a rotating aerodynamic source model is used to explain the side-by-side peak of RIF spectrum and rotating characteristics of RI. The calibration and prediction method of the high circumferential mode is beneficial for the research of unsteady flow in an axial compressor.

  10. Thermal-dissipation sap flow sensors may not yield consistent sap-flux estimates over multiple years

    Treesearch

    Georgianne W. Moore; Barbara J. Bond; Julia A. Jones; Frederick C. Meinzer

    2010-01-01

    Sap flow techniques, such as thermal dissipation, involve an empirically derived relationship between sap flux and the temperature differential between a heated thermocouple and a nearby reference thermocouple inserted into the sapwood. This relationship has been widely tested but mostly with newly installed sensors. Increasingly, sensors are used for extended periods...

  11. MEMS-Based Flexible Force Sensor for Tri-Axial Catheter Contact Force Measurement

    PubMed Central

    Sheng, Jun; Desai, Jaydev P.

    2016-01-01

    Atrial fibrillation (AFib) is a significant healthcare problem caused by the uneven and rapid discharge of electrical signals from pulmonary veins (PVs). The technique of radiofrequency (RF) ablation can block these abnormal electrical signals by ablating myocardial sleeves inside PVs. Catheter contact force measurement during RF ablation can reduce the rate of AFib recurrence, since it helps to determine effective contact of the catheter with the tissue, thereby resulting in effective power delivery for ablation. This paper presents the development of a three-dimensional (3D) force sensor to provide the real-time measurement of tri-axial catheter contact force. The 3D force sensor consists of a plastic cubic bead and five flexible force sensors. Each flexible force sensor was made of a PEDOT:PSS strain gauge and a PDMS bump on a flexible PDMS substrate. Calibration results show that the fabricated sensor has a linear response in the force range required for RF ablation. To evaluate its working performance, the fabricated sensor was pressed against gelatin tissue by a micromanipulator and also integrated on a catheter tip to test it within deionized water flow. Both experiments simulated the ventricular environment and proved the validity of applying the 3D force sensor in RF ablation. PMID:28190945

  12. Microparticle Flow Sensor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    2005-01-01

    The microparticle flow sensor (MFS) is a system for identifying and counting microscopic particles entrained in a flowing liquid. The MFS includes a transparent, optoelectronically instrumented laminar-flow chamber (see figure) and a computer for processing instrument-readout data. The MFS could be used to count microparticles (including micro-organisms) in diverse applications -- for example, production of microcapsules, treatment of wastewater, pumping of industrial chemicals, and identification of ownership of liquid products.

  13. Recent Electrochemical and Optical Sensors in Flow-Based Analysis

    PubMed Central

    Chailapakul, Orawon; Ngamukot, Passapol; Yoosamran, Alongkorn; Siangproh, Weena; Wangfuengkanagul, Nattakarn

    2006-01-01

    Some recent analytical sensors based on electrochemical and optical detection coupled with different flow techniques have been chosen in this overview. A brief description of fundamental concepts and applications of each flow technique, such as flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA), and multipumped FIA (MPFIA) were reviewed.

  14. Evaluating the potential of a novel dual heat-pulse sensor to measure volumetric water use in grapevines under a range of flow conditions

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to validate dual sap flow sensors that combine two heat pulse techniques to measure volumetric water use over the full range of sap flows found in grapevines. The heat ratio method (HRM), which works well at measuring low and reverse flows, was combined with the compensati...

  15. System and method for bidirectional flow and controlling fluid flow in a conduit

    DOEpatents

    Ortiz, Marcos German

    1999-01-01

    A system for measuring bidirectional flow, including backflow, of fluid in a conduit. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit.

  16. Development of Electrical Capacitance Sensors for Accident Tolerant Fuel (ATF) Testing at the Transient Reactor Test (TREAT) Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Maolong; Ryals, Matthew; Ali, Amir

    2016-08-01

    A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentallymore » investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.« less

  17. Density and Cavitating Flow Results from a Full-Scale Optical Multiphase Cryogenic Flowmeter

    NASA Technical Reports Server (NTRS)

    Korman, Valentin

    2007-01-01

    Liquid propulsion systems are hampered by poor flow measurements. The measurement of flow directly impacts safe motor operations, performance parameters as well as providing feedback from ground testing and developmental work. NASA Marshall Space Flight Center, in an effort to improve propulsion sensor technology, has developed an all optical flow meter that directly measures the density of the fluid. The full-scale sensor was tested in a transient, multiphase liquid nitrogen fluid environment. Comparison with traditional density models shows excellent agreement with fluid density with an error of approximately 0.8%. Further evaluation shows the sensor is able to detect cavitation or bubbles in the flow stream and separate out their resulting effects in fluid density.

  18. The MEMS process of a micro friction sensor

    NASA Astrophysics Data System (ADS)

    Yuan, Ming-Quan; Lei, Qiang; Wang, Xiong

    2018-02-01

    The research and testing techniques of friction sensor is an important support for hypersonic aircraft. Compared with the conventional skin friction sensor, the MEMS skin friction sensor has the advantages of small size, high sensitivity, good stability and dynamic response. The MEMS skin friction sensor can be integrated with other flow field sensors whose process is compatible with MEMS skin friction sensor to achieve multi-physical measurement of the flow field; and the micro-friction balance sensor array enable to achieve large area and accurate measurement for the near-wall flow. A MEMS skin friction sensor structure is proposed, which sensing element not directly contacted with the flow field. The MEMS fabrication process of the sensing element is described in detail. The thermal silicon oxide is used as the mask to solve the selection ratio problem of silicon DRIE. The optimized process parameters of silicon DRIE: etching power 1600W/LF power 100 W; SF6 flux 360 sccm; C4F8 flux 300 sccm; O2 flux 300 sccm. With Cr/Au mask, etch depth of glass shallow groove can be controlled in 30°C low concentration HF solution; the spray etch and wafer rotate improve the corrosion surface quality of glass shallow groove. The MEMS skin friction sensor samples were fabricated by the above MEMS process, and results show that the error of the length and width of the elastic cantilever is within 2 μm, the depth error of the shallow groove is less than 0.03 μm, and the static capacitance error is within 0.2 pF, which satisfy the design requirements.

  19. Fluidic angular velocity sensor

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  20. Single-ended mid-infrared laser-absorption sensor for simultaneous in situ measurements of H2O, CO2, CO, and temperature in combustion flows.

    PubMed

    Peng, Wen Yu; Goldenstein, Christopher S; Mitchell Spearrin, R; Jeffries, Jay B; Hanson, Ronald K

    2016-11-20

    The development and demonstration of a four-color single-ended mid-infrared tunable laser-absorption sensor for simultaneous measurements of H2O, CO2, CO, and temperature in combustion flows is described. This sensor operates by transmitting laser light through a single optical port and measuring the backscattered radiation from within the combustion device. Scanned-wavelength-modulation spectroscopy with second-harmonic detection and first-harmonic normalization (scanned-WMS-2f/1f) was used to account for variable signal collection and nonabsorption losses in the harsh environment. Two tunable diode lasers operating near 2551 and 2482 nm were utilized to measure H2O concentration and temperature, while an interband cascade laser near 4176 nm and a quantum cascade laser near 4865 nm were used for measuring CO2 and CO, respectively. The lasers were modulated at either 90 or 112 kHz and scanned across the peaks of their respective absorption features at 1 kHz, leading to a measurement rate of 2 kHz. A hybrid demultiplexing strategy involving both spectral filtering and frequency-domain demodulation was used to decouple the backscattered radiation into its constituent signals. Demonstration measurements were made in the exhaust of a laboratory-scale laminar methane-air flat-flame burner at atmospheric pressure and equivalence ratios ranging from 0.7 to 1.2. A stainless steel reflective plate was placed 0.78 cm away from the sensor head within the combustion exhaust, leading to a total absorption path length of 1.56 cm. Detection limits of 1.4% H2O, 0.6% CO2, and 0.4% CO by mole were reported. To the best of the authors' knowledge, this work represents the first demonstration of a mid-infrared laser-absorption sensor using a single-ended architecture in combustion flows.

  1. Nanofibril scaffold assisted MEMS artificial hydrogel neuromasts for enhanced sensitivity flow sensing

    PubMed Central

    Kottapalli, Ajay Giri Prakash; Bora, Meghali; Asadnia, Mohsen; Miao, Jianmin; Venkatraman, Subbu S.; Triantafyllou, Michael

    2016-01-01

    We present the development and testing of superficial neuromast-inspired flow sensors that also attain high sensitivity and resolution through a biomimetic hyaulronic acid-based hydrogel cupula dressing. The inspiration comes from the spatially distributed neuromasts of the blind cavefish that live in completely dark undersea caves; the sensors enable the fish to form three-dimensional flow and object maps, enabling them to maneuver efficiently in cluttered environments. A canopy shaped electrospun nanofibril scaffold, inspired by the cupular fibrils, assists the drop-casting process allowing the formation of a prolate spheroid-shaped artificial cupula. Rheological and nanoindentation characterizations showed that the Young’s modulus of the artificial cupula closely matches the biological cupula (10–100 Pa). A comparative experimental study conducted to evaluate the sensitivities of the naked hair cell sensor and the cupula-dressed sensor in sensing steady-state flows demonstrated a sensitivity enhancement by 3.5–5 times due to the presence of hydrogel cupula. The novel strategies of sensor development presented in this report are applicable to the design and fabrication of other biomimetic sensors as well. The developed sensors can be used in the navigation and maneuvering of underwater robots, but can also find applications in biomedical and microfluidic devices. PMID:26763299

  2. Numerical analysis of flow about a total temperature sensor

    NASA Technical Reports Server (NTRS)

    Von Lavante, Ernst; Bruns, Russell L., Jr.; Sanetrik, Mark D.; Lam, Tim

    1989-01-01

    The unsteady flowfield about an airfoil-shaped inlet temperature sensor has been investigated using the thin-layer and full Navier-Stokes equations. A finite-volume formulation of the governing equations was used in conjunction with a Runge-Kutta time stepping scheme to analyze the flow about the sensor. Flow characteristics for this configuration were established at Mach numbers of 0.5 and 0.8 for different Reynolds numbers. The results were obtained for configurations of increasing complexity; important physical phenomena such as shock formation, boundary-layer separation, and unsteady wake formation were noted. Based on the computational results, recommendations for further study and refinement of the inlet temperature sensor were made.

  3. Time varying voltage combustion control and diagnostics sensor

    DOEpatents

    Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy D [Morgantown, WV; Huckaby, E David [Morgantown, WV; Fincham, William [Fairmont, WV

    2011-04-19

    A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.

  4. Diastolic time – frequency relation in the stress echo lab: filling timing and flow at different heart rates

    PubMed Central

    Bombardini, Tonino; Gemignani, Vincenzo; Bianchini, Elisabetta; Venneri, Lucia; Petersen, Christina; Pasanisi, Emilio; Pratali, Lorenza; Alonso-Rodriguez, David; Pianelli, Mascia; Faita, Francesco; Giannoni, Massimo; Arpesella, Giorgio; Picano, Eugenio

    2008-01-01

    A cutaneous force-frequency relation recording system based on first heart sound amplitude vibrations has been recently validated. Second heart sound can be simultaneously recorded in order to quantify both systole and diastole duration. Aims 1- To assess the feasibility and extra-value of operator-independent, force sensor-based, diastolic time recording during stress. Methods We enrolled 161 patients referred for stress echocardiography (exercise 115, dipyridamole 40, pacing 6 patients). The sensor was fastened in the precordial region by a standard ECG electrode. The acceleration signal was converted into digital and recorded together with ECG signal. Both systolic and diastolic times were acquired continuously during stress and were displayed by plotting times vs. heart rate. Diastolic filling rate was calculated as echo-measured mitral filling volume/sensor-monitored diastolic time. Results Diastolic time decreased during stress more markedly than systolic time. At peak stress 62 of the 161 pts showed reversal of the systolic/diastolic ratio with the duration of systole longer than diastole. In the exercise group, at 100 bpm HR, systolic/diastolic time ratio was lower in the 17 controls (0.74 ± 0.12) than in patients (0.86 ± 0.10, p < 0.05 vs. controls). Diastolic filling rate increased from 101 ± 36 (rest) to 219 ± 92 ml/m2* s-1 at peak stress (p < 0.5 vs. rest). Conclusion Cardiological systolic and diastolic duration can be monitored during stress by using an acceleration force sensor. Simultaneous calculation of stroke volume allows monitoring diastolic filling rate. Stress-induced "systolic-diastolic mismatch" can be easily quantified and is associated to several cardiac diseases, possibly expanding the spectrum of information obtainable during stress. PMID:18426559

  5. An electrical sensor for long-term monitoring of ultrafine particles in workplaces

    NASA Astrophysics Data System (ADS)

    Lanki, Timo; Tikkanen, Juha; Janka, Kauko; Taimisto, Pekka; Lehtimäki, Matti

    2011-07-01

    Pegasor Oy Ltd. (Finland) has developed a diffusion charging measurement device that enables continuous monitoring of fine particle concentration at a low initial and lifecycle cost. The innovation, for which an international process and apparatus patent has been applied for, opens doors for monitoring nanoparticle concentrations in workplaces. The Pegasor Particle Sensor (PPS) operates by electrostatically charging particles passing through the sensor and then measuring the current caused by the charged particles as they leave the sensor. The particles never touch the sensor and so never accumulate on its surfaces or need to be cleaned off. The sensor uses an ejector pump to draw a constant sample flow into the sensing area where it is mixed with the clean, charged pump flow air (provided by an external source). The sample flow containing charged particles passes through the sensor. The current generated by the charge leaving the detection volume is measured and related to the particle surface area. This system is extremely simple and reliable - no contact, no moving parts, and all critical parts of the sensor are constantly cleaned by a stream of fresh, filtered air. Due to the ejector pump, the sample flow, and respectively the sensor response is independent of the flow and pressure conditions around the sampling inlet. Tests with the Pegasor Particle Sensor have been conducted in a laboratory, and at a workplace producing nanoparticles for glass coatings. A new measurement protocol has been designed to ensure that process workers are not exposed to unusually high nanoparticle concentrations at any time during their working day. One sensor is placed inside the process line, and a light alarm system indicates the worker not to open any protective shielding or ventilation systems before concentration inside has reached background levels. The benefits of PPS in industrial hygiene are that the same monitoring technology can be used at the source as well as at the worker breathing zone. Up to eight sensors can be installed in series for centralized monitoring of the whole process in real time.

  6. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis

    PubMed Central

    Ojeda, Catalina Bosch; Rojas, Fuensanta Sánchez

    2006-01-01

    Optical techniques for chemical analysis are well established and sensors based on these techniques are now attracting considerable attention because of their importance in applications such as environmental monitoring, biomedical sensing, and industrial process control. On the other hand, flow injection analysis (FIA) is advisable for the rapid analysis of microliter volume samples and can be interfaced directly to the chemical process. The FIA has become a widespread automatic analytical method for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, and ease of assembling. In this paper, an overview of flow injection determinations by using optical chemical sensors is provided, and instrumentation, sensor design, and applications are discussed. This work summarizes the most relevant manuscripts from 1980 to date referred to analysis using optical chemical sensors in FIA.

  7. Fiber Fabry-Perot Interferometric Sensor for the Measurement of Electric Current Flowing through a Fuse

    NASA Astrophysics Data System (ADS)

    Park, Jaehee

    2007-06-01

    A fiber Fabry-Perot inteferometric sensor bonded close to a fusing element has been studied for the measurement of electric current flowing through a fuse. The phase shift of the sensor output signal is proportional to the square of the electric current passing through the fuse and the sensitivity is 0.827°/mA2.

  8. Smart monolithic integration of inkjet printed thermal flow sensors with fast prototyping polymer microfluidics

    NASA Astrophysics Data System (ADS)

    Etxebarria, Ikerne; Elizalde, Jorge; Pacios, Roberto

    2016-08-01

    There is an increasing demand for built-in flow sensors in order to effectively control microfluidic processes due to the high number of available microfluidic applications. The possible solutions should be inexpensive and easy to connect to both, the microscale features and the macro setup. In this paper, we present a novel approach to integrate a printed thermal flow sensor with polymeric microfluidic channels. This approach is focused on merging two high throughput production processes, namely inkjet printing and fast prototyping technologies, in order to produce trustworthy and low cost devices. These two technologies are brought together to obtain a sensor located outside the microfluidic device. This avoids the critical contact between the sensor material and the fluids through the microchannels that can seriously damage the conducting paths under continuous working regimes. In this way, we ensure reliable and stable operation modes. For this application, a silver nanoparticle based ink and cyclic olefin polymer were used. This flow sensor operates linearly in the range of 0-10 μl min-1 for water and 0-20 μl min-1 for ethanol in calorimetric mode. Switching to anemometric mode, the range can be expanded up to 40 μl min-1.

  9. Development of a Non-Contact, Inductive Depth Sensor for Free-Surface, Liquid-Metal Flows

    NASA Astrophysics Data System (ADS)

    Bruhaug, Gerrit; Kolemen, Egemen; Fischer, Adam; Hvasta, Mike

    2017-10-01

    This paper details a non-contact based, inductive depth measurement system that can sit behind a layer of steel and measure the depth of the liquid metal flowing over the steel. Free-surface liquid metal depth measurement is usually done with invasive sensors that impact the flow of the liquid metal, or complex external sensors that require lasers and precise alignment. Neither of these methods is suitable for the extreme environment encountered in the diverter region of a nuclear fusion reactor, where liquid metal open channel flows are being investigated for future use. A sensor was developed that used the inductive coupling of a coil to liquid metal to measure the height of the liquid metal present. The sensor was built and tested experimentally, and modeled with finite element modeling software to further understand the physics involved. Future work will attempt to integrate the sensor into the Liquid Metal eXperiment (LMX) at the Princeton Plasma Physics Laboratory for more refined testing. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466.

  10. Using high-resolution satellite radar to measure lava flow morphology, rheology, effusion rate and subsidence at El Reventador Volcano, Ecuador.

    NASA Astrophysics Data System (ADS)

    Biggs, J.; Arnold, D. W. D.; Mothes, P. A.; Anderson, K. R.; Albino, F.; Wadge, G.; Vallejo Vargas, S.; Ebmeier, S. K.

    2017-12-01

    There are relatively few studies of active lava flows of an andesitic rather than basaltic composition. The flow field at El Reventador volcano, Ecuador is a good example, but observations are hampered by persistent cloud cover. We use high resolution satellite radar from Radarsat-2 and TanDEM-X to map the dimensions of 43 lava flows extruded between 9 Feb 2012 and 24 Aug 2016. Flow height is measured using the width of radar shadow cast by steep sided features, or the difference in radar phase between two sensors separated in space. The cumulative volume of erupted material was 44.8M m3 dense rock equivalent with an average rate of 0.31 ± 0.02 m3s-1, similar to the long term average. The flows were mostly emplaced over durations shorter than the satellite repeat interval of 24 days and ranged in length from 0.3 to 1.7 km. We use the dimensions of the levees to estimate the flow yield strengths and compare measurements of diversions around barriers with observations from laboratory experiments. The rate of effusion, flow length and flow volume all decrease with time, and simple physics-based models can be equally well fit by a closed reservoir depressurising during the eruption with no magma recharge, or an open reservoir with a time-constant magma recharge rate of up to 0.35 ± 0.01 m3s-1. We propose that the conduit acts as magma capacitor and individual flows are volume-limited. Emplaced flows are subsiding at rates proportional to lava thickness that decay with time following a square-root relationship. Radar observations, such as those presented here, could be used to map and measure properties of evolving lava flow fields at other remote or difficult to monitor volcanoes. Physics-based models can be run into the future, but a sudden increase in flow length in 2017 seen by Sentinel illustrates that changes in magma supply can cause rapid changes in behavior, which remain challenging to forecast.

  11. Long-term hydrothermal temperature and pressure monitoring equipped with a Kuroko cultivation apparatus on the deep-sea artificial hydrothermal vent at the middle Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Masaki, Y.; Nozaki, T.; Saruhashi, T.; Kyo, M.; Sakurai, N.; Yokoyama, T.; Akiyama, K.; Watanabe, M.; Kumagai, H.; Maeda, L.; Kinoshita, M.

    2017-12-01

    The middle Okinawa Trough, located along the Ryukyu- arc on the margin of the East China Sea, has several active hydrothermal fields. From February to March 2016, Cruise CK16-01 by D/V Chikyu targeted the Iheya-North Knoll and southern flank of the Iheya Minor Ridge to comprehend sub-seafloor geological structure and polymetallic sulfide mineralization. In this cruise, we installed two Kuroko cultivation apparatuses equipped with P/T sensors, flowmeter and load cell to monitor pressure, temperature and flow rate of hydrothermal fluid discharged from the artificial hydrothermal vent together with weight of hydrothermal precipitate. During Cruise KR16-17 in January 2017, two cultivation cells with sensor loggers were successfully recovered by ROV Kaiko MK-IV and R/V Kairei. We report these physical sensor data obtained by more than 10 months monitoring at two deep-sea artificial hydrothermal vents through many first and challenging operations.Hole C9017B at southern flank of the Iheya Minor Ridge (water depth of 1,500 mbsl), fluid temperature was constant ca. 75 ºC for 5 months from the beginning of monitoring. Then temperature gradually decrease to be 40 ºC. In November 2016, temperature and pressure suddenly dropped and quickly recovered due to the disturbance of subseafloor hydrology, induced by another drilling operation at Hole C9017A which is 10.8 meters northeastward from Hole C9017B during Cruise CK16-05. Temperature data exhibit conspicuous periodic 12.4hour cycles and this is attributable to oceanic tidal response. The amplitude of temperature variations increased along with decline of the temperature variations increased along with decline of the temperature. The average flow rate was 67 L/min for 9 hours from the onset of monitoring.Hole C9024A at the Iheya-North Knoll (water depth of 1,050 msl), the maximum temperature reached 308 ºC, which is similar to the maximum value of 311 ºC obtained from the ROV thermometer. The average flow rate was 289 L/min for 8 days from onset of monitoring.

  12. In vitro and in vivo comparison of optics and performance of a distal sensor ureteroscope versus a standard fiberoptic ureteroscope.

    PubMed

    Lusch, Achim; Abdelshehid, Corollos; Hidas, Guy; Osann, Kathryn E; Okhunov, Zhamshid; McDougall, Elspeth; Landman, Jaime

    2013-07-01

    Recent advances in distal sensor technologies have made distal sensor ureteroscopes both commercially and technically feasible. We evaluated performance characteristics and optics of a new generation distal sensor Flex-X(C) (X(C)) and a standard flexible fiberoptic ureteroscope Flex-X(2) (X(2)), both from Karl Storz, Tuttlingen, Germany. The ureteroscopes were compared for active deflection, irrigation flow, and optical characteristics. Each ureteroscope was evaluated with an empty working channel and with various accessories. Optical characteristics (resolution, grayscale imaging, and color representation) were measured using United States Air Force test targets. We digitally recorded a renal porcine ureteroscopy and laser ablation of a stone with the X(2) and with the X(C). Edited footage of the recorded procedure was shown to different expert surgeons (n=8) on a high-definition monitor for evaluation by questionnaire for image quality and performance. The X(C) had a higher resolution than the X(2) at 20 and 10 mm 3.17 lines/mm vs 1.41 lines/mm, 10.1 vs 3.56, respectively (P=0.003, P=0.002). Color representation was better in the X(C). There was no difference in contrast quality between the two ureteroscopes. For each individual ureteroscope, the upward deflection was greater than the downward deflection both with and without accessories. When compared with the X(2), the X(C) manifested superior deflection and flow (P<0.0005, P<0.05) with and without accessory present in the working channel. Observers deemed the distal sensor ureteroscope superior in visualization in clear and bloody fields, as well as for illumination (P=0.0005, P=0.002, P=0.0125). In this in vitro and porcine evaluation, the distal sensor ureteroscope provided significantly improved resolution, color representation, and visualization in the upper urinary tract compared with a standard fiberoptic ureteroscope. The overall deflection was also better in the X(C), and deflection as well as flow rate was less impaired by the various accessories.

  13. A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe

    PubMed Central

    Lee, Yeon-Gun; Won, Woo-Youn; Lee, Bo-An; Kim, Sin

    2017-01-01

    In this study, a new and improved electrical conductance sensor is proposed for application not only to a horizontal pipe, but also an inclined one. The conductance sensor was designed to have a dual layer, each consisting of a three-electrode set to obtain two instantaneous conductance signals in turns, so that the area-averaged void fraction and structure velocity could be measured simultaneously. The optimum configuration of the electrodes was determined through numerical analysis, and the calibration curves for stratified and annular flow were obtained through a series of static experiments. The fabricated conductance sensor was applied to a 45 mm inner diameter U-shaped downward inclined pipe with an inclination angle of 3° under adiabatic air-water flow conditions. In the tests, the superficial velocities ranged from 0.1 to 3.0 m/s for water and from 0.1 to 18 m/s for air. The obtained mean void fraction and the structure velocity from the conductance sensor were validated against the measurement by the wire-mesh sensor and the cross-correlation technique for the visualized images, respectively. The results of the flow regime classification and the corresponding time series of the void fraction at a variety of flow velocities were also discussed. PMID:28481308

  14. “Development of an Automated On-line Electrochemical Chlorite Ion Sensor”

    PubMed Central

    Myers, John N.; Steinecker, William H.; Sandlin, Zechariah D.; Cox, James A.; Gordon, Gilbert; Pacey, Gilbert E.

    2012-01-01

    A sensor system for the automatic, in-line, determination of chlorite ion is reported. Electroanalytical measurements were performed in electrolyte-free liquids by using an electrochemical probe (EC), which enables in-line detection in high-resistance media such as disinfected water. Cyclic voltammetry scan rate studies suggest that the current arising from the oxidation of chlorite ion at an EC probe is mass-transfer limited. By coupling FIA with an EC probe amperometric cell, automated analysis was achieved. This sensor is intended to fulfill the daily monitoring requirements of the EPA DBP regulations for chlorite ion. Detection limits of 0.02-0.13 mg/L were attained, which is about one order of magnitude below the MRDL. The sensor showed no faradaic signal for perchlorate, chlorate, or nitrate. The lifetime and stability of the sensor were investigated by measuring calibration curves over time under constant-flow conditions. Detection limits of <0.1 mg/L were repeatedly achieved over a period of three weeks. PMID:22608440

  15. Flight test to determine feasibility of a proposed airborne wake vortex detection concept

    NASA Technical Reports Server (NTRS)

    Branstetter, James R.; Hastings, E. C., Jr.; Patterson, James C., Jr.

    1991-01-01

    This investigation was conducted to determine the radial extent at which aircraft mounted flow vanes or roll rate gyros can sense the circulatory flow field that exists around the lift induced vortex system generated by an aircraft in flight. The probe aircraft was equipped with wingtip sensors for measuring angle of attack and angle of sideslip, and with a fuselage mounted gyroscope for measuring roll rate. Analysis of flight test data indicated that the vortex was detectable at a lateral distance of about 105 feet (best results) using unsophisticated equipment. Measurements were made from the centerline of the probe aircraft to the center of the nearest vortex with the probe aircraft flying between one half and one and one half miles behind the vortex generating aircraft.

  16. New Gas Polarographic Hydrogen Sensor

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Barile, Ron

    2004-01-01

    Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor. is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H+ ions or protons; H+ ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic 02 sensors are commercially available; a gas polarographic 02 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.

  17. Sensors for Using Times of Flight to Measure Flow Velocities

    NASA Technical Reports Server (NTRS)

    Fralick, Gutave; Wrbanek, John D.; Hwang, Danny; Turso, James

    2006-01-01

    Thin-film sensors for measuring flow velocities in terms of times of flight are undergoing development. These sensors are very small and can be mounted flush with surfaces of airfoils, ducts, and other objects along which one might need to measure flows. Alternatively or in addition, these sensors can be mounted on small struts protruding from such surfaces for acquiring velocity measurements at various distances from the surfaces for the purpose of obtaining boundary-layer flow-velocity profiles. These sensors are related to, but not the same as, hot-wire anemometers. Each sensor includes a thin-film, electrically conductive loop, along which an electric current is made to flow to heat the loop to a temperature above that of the surrounding fluid. Instantaneous voltage fluctuations in segments of the loop are measured by means of electrical taps placed at intervals along the loop. These voltage fluctuations are caused by local fluctuations in electrical resistance that are, in turn, caused by local temperature fluctuations that are, in turn, caused by fluctuations in flow-induced cooling and, hence, in flow velocity. The differential voltage as a function of time, measured at each pair of taps, is subjected to cross-correlation processing with the corresponding quantities measured at other pairs of taps at different locations on the loop. The cross-correlations yield the times taken by elements of fluid to travel between the pairs of taps. Then the component of velocity along the line between any two pairs of taps is calculated simply as the distance between the pairs of taps divided by the travel time. Unlike in the case of hot-wire anemometers, there is no need to obtain calibration data on voltage fluctuations versus velocity fluctuations because, at least in principle, the correlation times are independent of the calibration data.

  18. Damage Propagation Modeling for Aircraft Engine Prognostics

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai; Simon, Don; Eklund, Neil

    2008-01-01

    This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are generated via a thermo-dynamical simulation model for the engine as a function of variations of flow and efficiency of the modules of interest. An exponential rate of change for flow and efficiency loss was imposed for each data set, starting at a randomly chosen initial deterioration set point. The rate of change of the flow and efficiency denotes an otherwise unspecified fault with increasingly worsening effect. The rates of change of the faults were constrained to an upper threshold but were otherwise chosen randomly. Damage propagation was allowed to continue until a failure criterion was reached. A health index was defined as the minimum of several superimposed operational margins at any given time instant and the failure criterion is reached when health index reaches zero. Output of the model was the time series (cycles) of sensed measurements typically available from aircraft gas turbine engines. The data generated were used as challenge data for the Prognostics and Health Management (PHM) data competition at PHM 08.

  19. A novel low profile wireless flow sensor to monitor hemodynamic changes in cerebral aneurysm

    NASA Astrophysics Data System (ADS)

    Chen, Yanfei; Jankowitz, Brian T.; Cho, Sung Kwon; Chun, Youngjae

    2015-03-01

    A proof of concept of low-profile flow sensor has been designed, fabricated, and subsequently tested to demonstrate its feasibility for monitoring hemodynamic changes in cerebral aneurysm. The prototype sensor contains three layers, i.e., a thin polyurethane layer was sandwiched between two sputter-deposited thin film nitinol layers (6μm thick). A novel superhydrophilic surface treatment was used to create hemocompatible surface of thin nitinol electrode layers. A finite element model was conducted using ANSYS Workbench 15.0 Static Structural to optimize the dimensions of flow sensor. A computational fluid dynamics calculations were performed using ANSYS Workbench Fluent to assess the flow velocity patterns within the aneurysm sac. We built a test platform with a z-axis translation stage and an S-beam load cell to compare the capacitance changes of the sensors with different parameters during deformation. Both LCR meter and oscilloscope were used to measure the capacitance and the resonant frequency shifts, respectively. The experimental compression tests demonstrated the linear relationship between the capacitance and applied compression force and decreasing the length, width and increasing the thickness improved the sensor sensitivity. The experimentally measured resonant frequency dropped from 12.7MHz to 12.48MHz, indicating a 0.22MHz shift with 200g ( 2N) compression force while the theoretical resonant frequency shifted 0.35MHz with 50g ( 0.5N). Our recent results demonstrated a feasibility of the low-profile flow sensor for monitoring haemodynamics in cerebral aneurysm region, as well as the efficacy of the use of the surface treated thin film nitinol for the low-profile sensor materials.

  20. Heat Transport upon River-Water Infiltration investigated by Fiber-Optic High-Resolution Temperature Profiling

    NASA Astrophysics Data System (ADS)

    Vogt, T.; Schirmer, M.; Cirpka, O. A.

    2010-12-01

    Infiltrating river water is of high relevance for drinking water supply by river bank filtration as well as for riparian groundwater ecology. Quantifying flow patterns and velocities, however, is hampered by temporal and spatial variations of exchange fluxes. In recent years, heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. Nevertheless, field investigations are often limited by insufficient sensors spacing or simplifying assumptions such as one-dimensional flow. Our interest lies in a detailed local survey of river water infiltration at a restored river section at the losing river Thur in northeast Switzerland. Here, we measured three high-resolution temperature profiles along an assumed flow path by means of distributed temperature sensing (DTS) using fiber optic cables wrapped around poles. Moreover, piezometers were equipped with standard temperature sensors for a comparison to the DTS data. Diurnal temperature oscillations were tracked in the river bed and the riparian groundwater and analyzed by means of dynamic harmonic regression and subsequent modeling of heat transport with sinusoidal boundary conditions to quantify seepage velocities and thermal diffusivities. Compared to the standard temperature sensors, the DTS data give a higher vertical resolution, facilitating the detection of process- and structure-dependent patterns of the spatiotemporal temperature field. This advantage overcompensates the scatter in the data due to instrument noise. In particular, we could demonstrate the impact of heat conduction through the unsaturated zone on the riparian groundwater by the high resolution temperature profiles.

  1. Intelligent detection and identification in fiber-optical perimeter intrusion monitoring system based on the FBG sensor network

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Qian, Ya; Zhang, Wei; Li, Hanyu; Xie, Xin

    2015-12-01

    A real-time intelligent fiber-optic perimeter intrusion detection system (PIDS) based on the fiber Bragg grating (FBG) sensor network is presented in this paper. To distinguish the effects of different intrusion events, a novel real-time behavior impact classification method is proposed based on the essential statistical characteristics of signal's profile in the time domain. The features are extracted by the principal component analysis (PCA), which are then used to identify the event with a K-nearest neighbor classifier. Simulation and field tests are both carried out to validate its effectiveness. The average identification rate (IR) for five sample signals in the simulation test is as high as 96.67%, and the recognition rate for eight typical signals in the field test can also be achieved up to 96.52%, which includes both the fence-mounted and the ground-buried sensing signals. Besides, critically high detection rate (DR) and low false alarm rate (FAR) can be simultaneously obtained based on the autocorrelation characteristics analysis and a hierarchical detection and identification flow.

  2. Statistical properties of gravity-driven granular discharge flow under the influence of an obstacle

    NASA Astrophysics Data System (ADS)

    Endo, Keita; Katsuragi, Hiroaki

    2017-06-01

    Two-dimensional granular discharge flow driven by gravity under the influence of an obstacle is experimentally investigated. A horizontal exit of width W is opened at the bottom of vertical Hele-Shaw cell filled with stainless-steel particles to start the discharge flow. In this experiment, a circular obstacle is placed in front of the exit. Thus, the distance between the exit and obstacle L is also an important parameter. During the discharge, granular-flow state is acquired by a high-speed camera. The bulk discharge-flow rate is also measured by load cell sensors. The obtained high-speed-image data are analyzed to clarify the particle-level granular-flow dynamics. Using the measured data, we find that the obstacle above the exit affects the granular- flow field. Specifically, the existence of obstacle results in large horizontal granular temperature and small packing fraction. This tendency becomes significant when L is smaller than approximately 6Dg when W ≃ 4Dg, where Dg is diameter of particles.

  3. A High-Temperature MEMS Surface Fence for Wall-Shear-Stress Measurement in Scramjet Flow

    PubMed Central

    Ma, Binghe; Deng, Jinjun; Yuan, Weizheng; Zhou, Zitong; Zhang, Han

    2017-01-01

    A new variant of MEMS surface fence is proposed for shear-stress estimation under high-speed, high-temperature flow conditions. Investigation of high-temperature resistance including heat-resistant mechanism and process, in conjunction with high-temperature packaging design, enable the sensor to be used in environment up to 400 °C. The packaged sensor is calibrated over a range of ~65 Pa and then used to examine the development of the transient flow of the scramjet ignition process (Mach 2 airflow, stagnation pressure, and a temperature of 0.8 MPa and 950 K, respectively). The results show that the sensor is able to detect the transient flow conditions of the scramjet ignition process including shock impact, flow correction, steady state, and hydrogen off. PMID:29065498

  4. A High-Temperature MEMS Surface Fence for Wall-Shear-Stress Measurement in Scramjet Flow.

    PubMed

    Ma, Chengyu; Ma, Binghe; Deng, Jinjun; Yuan, Weizheng; Zhou, Zitong; Zhang, Han

    2017-10-22

    A new variant of MEMS surface fence is proposed for shear-stress estimation under high-speed, high-temperature flow conditions. Investigation of high-temperature resistance including heat-resistant mechanism and process, in conjunction with high-temperature packaging design, enable the sensor to be used in environment up to 400 °C. The packaged sensor is calibrated over a range of ~65 Pa and then used to examine the development of the transient flow of the scramjet ignition process (Mach 2 airflow, stagnation pressure, and a temperature of 0.8 MPa and 950 K, respectively). The results show that the sensor is able to detect the transient flow conditions of the scramjet ignition process including shock impact, flow correction, steady state, and hydrogen off.

  5. Development of heat flux sensors for turbine airfoils

    NASA Astrophysics Data System (ADS)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-10-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  6. Development of heat flux sensors for turbine airfoils

    NASA Technical Reports Server (NTRS)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-01-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  7. A nano cold-wire for velocity measurements

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Chun; Fu, Matthew; Fan, Yuyang; Byers, Clayton; Hultmark, Marcus

    2016-11-01

    We introduce a novel, strain-based sensor for both gaseous and liquid flows. The sensor consists of a free-standing, electrically conductive, nanoscale ribbon suspended between silicon supports. Due to its size, the nanoribbon deflects in flow under viscously dominated fluid forcing, which induces axial strain and a resistance change in the sensing element. The change in resistance can then be measured by a Wheatstone bridge, resulting in straightforward design and operation of the sensor. Since its operating principle is based on viscous fluid forcing, the sensor has high sensitivity especially in liquid or other highly viscous flows. A simple analytical model to understand the relation between forcing and strain is derived from the geometric and material constraints, and preliminary analysis using a low order model of the dynamic systems suggests that the sensor has a high frequency response. Lastly, a cylindrical structure to house the sensor with an axial and ventral channel to generate a pressure differential is being considered for typical velocimetry applications.

  8. A novel methanol sensor based on gas-penetration through a porous polypyrrole-coated polyacrylonitrile nanofiber mat.

    PubMed

    Jun, Tae-Sun; Ho, Thi Anh; Rashid, Muhammad; Kim, Yong Shin

    2013-09-01

    In this work, we propose a novel chemoresistive gas sensor operated under a vertical analyte flow passing through a permeable sensing membrane. Such a configuration is different from the use of a planar sensor implemented under a conventional horizontal flow. A highly porous core-shell polyacrylonitrile-polypyrrole (PAN@PPy) nanofiber mat was prepared as the sensing element via electrospinning and two-step vapor-phase polymerization (VPP). Various analysis methods such as SEM, TEM, FT-IR and XPS measurements were employed in order to characterize structural features of the porous sensing mat. These analyses confirmed that very thin (ca. 10 nm) conductive PPy sheath layers were deposited by VPP on electrospun PAN nanofibers with an average diameter of 258 nm. Preliminary results revealed that the gas penetration-type PAN@PPy sensor had a higher sensor response and shorter detection and recovery times upon exposure to methanol analyte when compared with a conventional horizontal flow sensor due to efficient and fast analyte transfer into the sensing layer.

  9. System and method for bidirectional flow and controlling fluid flow in a conduit

    DOEpatents

    Ortiz, M.G.

    1999-03-23

    A system for measuring bidirectional flow, including backflow, of fluid in a conduit is disclosed. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit. 3 figs.

  10. Scanning Mode Sensor for Detection of Flow Inhomogeneities

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor)

    1998-01-01

    A scanning mode sensor and method is provided for detection of flow inhomogeneities such as shock. The field of use of this invention is ground test control and engine control during supersonic flight. Prior art measuring techniques include interferometry. Schlieren, and shadowgraph techniques. These techniques. however, have problems with light dissipation. The present method and sensor utilizes a pencil beam of energy which is passed through a transparent aperture in a flow inlet in a time-sequential manner so as to alter the energy beam. The altered beam or its effects are processed and can be studied to reveal information about flow through the inlet which can in turn be used for engine control.

  11. Scanning Mode Sensor for Detection of Flow Inhomogeneities

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor)

    1996-01-01

    A scanning mode sensor and method is provided for detection of flow inhomogeneities such as shock. The field of use of this invention is ground test control and engine control during supersonic flight. Prior art measuring techniques include interferometry, Schlieren, and shadowgraph techniques. These techniques, however, have problems with light dissipation. The present method and sensor utilizes a pencil beam of energy which is passed through a transparent aperture in a flow inlet in a time-sequential manner so as to alter the energy beam. The altered beam or its effects are processed and can be studied to reveal information about flow through the inlet which can in turn be used for engine control.

  12. Microfabricated silicon biosensors for microphysiometry

    NASA Technical Reports Server (NTRS)

    Bousse, L. J.; Libby, J. M.; Parce, J. W.

    1993-01-01

    Microphysiometers are biosensor devices that measure the metabolic rate of living cells by detecting the rate of extracellular acidification caused by a small number of cells. The cells are entrapped in a microvolume chamber, whose bottom surface is a silicon sensor chip. In a further miniaturization step, we have recently fabricated multichannel flow-through chips that will allow greater throughput and multiplicity. Microphysiometer technology can be applied to the detection of microorganisms. We describe the sensitive detection of bacteria and yeast. Further applications of microphysiometry to the characterization of microorganisms can be anticipated.

  13. An innovative design for cardiopulmonary resuscitation manikins based on a human-like thorax and embedded flow sensors.

    PubMed

    Thielen, Mark; Joshi, Rohan; Delbressine, Frank; Bambang Oetomo, Sidarto; Feijs, Loe

    2017-03-01

    Cardiopulmonary resuscitation manikins are used for training personnel in performing cardiopulmonary resuscitation. State-of-the-art cardiopulmonary resuscitation manikins are still anatomically and physiologically low-fidelity designs. The aim of this research was to design a manikin that offers high anatomical and physiological fidelity and has a cardiac and respiratory system along with integrated flow sensors to monitor cardiac output and air displacement in response to cardiopulmonary resuscitation. This manikin was designed in accordance with anatomical dimensions using a polyoxymethylene rib cage connected to a vertebral column from an anatomical female model. The respiratory system was composed of silicon-coated memory foam mimicking lungs, a polyvinylchloride bronchus and a latex trachea. The cardiovascular system was composed of two sets of latex tubing representing the pulmonary and aortic arteries which were connected to latex balloons mimicking the ventricles and lumped abdominal volumes, respectively. These balloons were filled with Life/form simulation blood and placed inside polyether foam. The respiratory and cardiovascular systems were equipped with flow sensors to gather data in response to chest compressions. Three non-medical professionals performed chest compressions on this manikin yielding data corresponding to force-displacement while the flow sensors provided feedback. The force-displacement tests on this manikin show a desirable nonlinear behaviour mimicking chest compressions during cardiopulmonary resuscitation in humans. In addition, the flow sensors provide valuable data on the internal effects of cardiopulmonary resuscitation. In conclusion, scientifically designed and anatomically high-fidelity designs of cardiopulmonary resuscitation manikins that embed flow sensors can improve physiological fidelity and provide useful feedback data.

  14. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.

    PubMed

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S

    2015-10-06

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. © 2015 The Author(s).

  15. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena

    PubMed Central

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S.

    2015-01-01

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow ‘vision’ and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr0.52Ti0.48)O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s−1) and 8.2 µm s−1, respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. PMID:26423435

  16. What must be the accuracy and target of optical sensor systems for patient monitoring?

    NASA Astrophysics Data System (ADS)

    Frank, Klaus H.; Kessler, Manfred D.

    2002-06-01

    Although the treatment in the intensive care unit has improved in recent years enabling greater surgical engagements and improving patients survival rate, no adequate monitoring is available in imminent severe pathological cases. Otherwise such kind of monitoring is necessary for early or prophylactic treatment in order to avoid or reduce the severity of the disease and protect the patient from sepsis or multiple organ failure. In these cases the common monitoring is limited, because clinical physiological and laboratory parameters indicate either the situation of macro-circulation or late disturbances of microcirculation, which arise previously on sub-cellular level. Optical sensor systems enable to reveal early variations in local capillary flow. The correlation between clinical parameters and changes in condition of oxygenation as a function of capillary flow disturbances is meaningful for the further treatment. The target should be to develop a predictive parameter, which is useful for detection and follow-up of changes in circulation.

  17. Stream Tracker: Crowd sourcing and remote sensing to monitor stream flow intermittence

    NASA Astrophysics Data System (ADS)

    Puntenney, K.; Kampf, S. K.; Newman, G.; Lefsky, M. A.; Weber, R.; Gerlich, J.

    2017-12-01

    Streams that do not flow continuously in time and space support diverse aquatic life and can be critical contributors to downstream water supply. However, these intermittent streams are rarely monitored and poorly mapped. Stream Tracker is a community powered stream monitoring project that pairs citizen contributed observations of streamflow presence or absence with a network of streamflow sensors and remotely sensed data from satellites to track when and where water is flowing in intermittent stream channels. Citizens can visit sites on roads and trails to track flow and contribute their observations to the project site hosted by CitSci.org. Data can be entered using either a mobile application with offline capabilities or an online data entry portal. The sensor network provides a consistent record of streamflow and flow presence/absence across a range of elevations and drainage areas. Capacitance, resistance, and laser sensors have been deployed to determine the most reliable, low cost sensor that could be mass distributed to track streamflow intermittence over a larger number of sites. Streamflow presence or absence observations from the citizen and sensor networks are then compared to satellite imagery to improve flow detection algorithms using remotely sensed data from Landsat. In the first two months of this project, 1,287 observations have been made at 241 sites by 24 project members across northern and western Colorado.

  18. Autonomous sensor particle for parameter tracking in large vessels

    NASA Astrophysics Data System (ADS)

    Thiele, Sebastian; Da Silva, Marco Jose; Hampel, Uwe

    2010-08-01

    A self-powered and neutrally buoyant sensor particle has been developed for the long-term measurement of spatially distributed process parameters in the chemically harsh environments of large vessels. One intended application is the measurement of flow parameters in stirred fermentation biogas reactors. The prototype sensor particle is a robust and neutrally buoyant capsule, which allows free movement with the flow. It contains measurement devices that log the temperature, absolute pressure (immersion depth) and 3D-acceleration data. A careful calibration including an uncertainty analysis has been performed. Furthermore, autonomous operation of the developed prototype was successfully proven in a flow experiment in a stirred reactor model. It showed that the sensor particle is feasible for future application in fermentation reactors and other industrial processes.

  19. MEMS based hair flow-sensors as model systems for acoustic perception studies

    NASA Astrophysics Data System (ADS)

    Krijnen, Gijs J. M.; Dijkstra, Marcel; van Baar, John J.; Shankar, Siripurapu S.; Kuipers, Winfred J.; de Boer, Rik J. H.; Altpeter, Dominique; Lammerink, Theo S. J.; Wiegerink, Remco

    2006-02-01

    Arrays of MEMS fabricated flow sensors inspired by the acoustic flow-sensitive hairs found on the cerci of crickets have been designed, fabricated and characterized. The hairs consist of up to 1 mm long SU-8 structures mounted on suspended membranes with normal translational and rotational degrees of freedom. Electrodes on the membrane and on the substrate form variable capacitors, allowing for capacitive read-out. Capacitance versus voltage, frequency dependence and directional sensitivity measurements have been successfully carried out on fabricated sensor arrays, showing the viability of the concept. The sensors form a model system allowing for investigations on sensory acoustics by their arrayed nature, their adaptivity via electrostatic interaction (frequency tuning and parametric amplification) and their susceptibility to noise (stochastic resonance).

  20. Application of Optical Flow Sensors for Dead Reckoning, Heading Reference, Obstacle Detection, and Obstacle Avoidance

    DTIC Science & Technology

    2015-09-01

    OPTICAL FLOW SENSORS FOR DEAD RECKONING, HEADING REFERENCE, OBSTACLE DETECTION, AND OBSTACLE AVOIDANCE by Tarek M. Nejah September 2015...SENSORS FOR DEAD RECKONING, HEADING REFERENCE, OBSTACLE DETECTION, AND OBSTACLE AVOIDANCE 5. FUNDING NUMBERS 6. AUTHOR(S) Nejah, Tarek M. 7...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) A novel approach for dead reckoning, heading reference, obstacle detection, and obstacle

  1. Characteristics Study of In-Situ Capacitive Sensor for Monitoring Lubrication Oil Debris

    PubMed Central

    Han, Zhibin; Wang, Yishou; Qing, Xinlin

    2017-01-01

    As an essential part of engine health monitoring (EHM), online lubrication oil debris monitoring has recently received great attention for the assessment of rotating and reciprocating parts in aero-engines, due to its high integration, low cost and safe characteristics. However, it is be a challenge to find a suitable sensor operating in such a complex environment. We present an unconventional novel approach, in which a cylinder capacitive sensor is designed and integrated with the pipeline of an engine lubrication system, so that the capacitive sensor can effectively detect changes in the lubrication oil condition. In this paper, an attempt to illustrate the performance characteristics of the developed cylinder capacitive sensor is made, through an experiment system that simulates a real scenario of a lubrication oil system. The main aim of the research was to qualitatively describe the relationship between the sensor parameter and the lubrication oil debris. In addition, the effect of the temperature and flow rate of the lubrication oil on capacitance change was performed by several experiments and we figured out a compensation method. The experimental results demonstrated that the cylinder capacitive sensor can potentially be used for lubrication oil debris monitoring of the health condition of an aero-engine. PMID:29292748

  2. Design and Characterization of a High Resolution Microfluidic Heat Flux Sensor with Thermal Modulation

    PubMed Central

    Nam, Sung-Ki; Kim, Jung-Kyun; Cho, Sung-Cheon; Lee, Sun-Kyu

    2010-01-01

    A complementary metal-oxide semiconductor-compatible process was used in the design and fabrication of a suspended membrane microfluidic heat flux sensor with a thermopile for the purpose of measuring the heat flow rate. The combination of a thirty-junction gold and nickel thermoelectric sensor with an ultralow noise preamplifier, a low pass filter, and a lock-in amplifier can yield a resolution 20 nW with a sensitivity of 461 V/W. The thermal modulation method is used to eliminate low-frequency noise from the sensor output, and various amounts of fluidic heat were applied to the sensor to investigate its suitability for microfluidic applications. For sensor design and analysis of signal output, a method of modeling and simulating electro-thermal behavior in a microfluidic heat flux sensor with an integrated electronic circuit is presented and validated. The electro-thermal domain model was constructed by using system dynamics, particularly the bond graph. The electro-thermal domain system model in which the thermal and the electrical domains are coupled expresses the heat generation of samples and converts thermal input to electrical output. The proposed electro-thermal domain system model is in good agreement with the measured output voltage response in both the transient and the steady state. PMID:22163568

  3. A design of spectrophotometric microfluidic chip sensor for analyzing silicate in seawater

    NASA Astrophysics Data System (ADS)

    Cao, X.; Zhang, S. W.; Chu, D. Z.; Wu, N.; Ma, H. K.; Liu, Y.

    2017-08-01

    High quality and continuous in situ silicate data are required to investigate the mechanism of the biogeochemical cycles and the formation of red tide. There is an urgently growing need for autonomous in situ silicate instruments that perform determination on various platforms. However, due to the high reagents and power consumption, as well as high system complexity leading to low reliability and robustness, the performance of the commercially available silicate sensors is not satisfactory. With these problems, here we present a new generation of microfluidic continuous flow analysis silicate sensor with sufficient analytical performance and robustness, for in situ determination of soluble silicate in seawater. The reaction mechanism of this sensor is based on the reaction of silicate with ammonium molybdate to form a yellow silicomolybdate complex and further reduction to silicomoIybdenum blue by ascorbic acid. The minimum limit of detection was 45.1 nmol L-1, and the linear determination range of the sensor is 0-400 μmol L-1. The recovery rate of the actual water is between 98.1%-104.0%, and the analyzing cycle of the sensor is about 5 minutes. This sensor has the advantages of high accuracy, high integration, low water consumption, and strong anti-interference ability. It has been successfully applied to measuring the silicate in seawater in Jiaozhou Bay.

  4. Reproducible fashion of the HSP70B' promoter-induced cytotoxic response on a live cell-based biosensor by cell cycle synchronization.

    PubMed

    Migita, Satoshi; Wada, Ken-Ichi; Taniguchi, Akiyoshi

    2010-10-15

    Live cell-based sensors potentially provide functional information about the cytotoxic effect of reagents on various signaling cascades. Cells transfected with a reporter vector derived from a cytotoxic response promoter can be used as intelligent cytotoxicity sensors (i.e., sensor cells). We have combined sensor cells and a microfluidic cell culture system that can achieve several laminar flows, resulting in a reliable high-throughput cytotoxicity detection system. These sensor cells can also be applied to single cell arrays. However, it is difficult to detect a cellular response in a single cell array, due to the heterogeneous response of sensor cells. The objective of this study was cell homogenization with cell cycle synchronization to enhance the response of cell-based biosensors. Our previously established stable sensor cells were brought into cell cycle synchronization under serum-starved conditions and we then investigated the cadmium chloride-induced cytotoxic response at the single cell level. The GFP positive rate of synchronized cells was approximately twice as high as that of the control cells, suggesting that cell homogenization is an important step when using cell-based biosensors with microdevices, such as a single cell array. Copyright 2010 Wiley Periodicals, Inc.

  5. Data-driven sensor placement from coherent fluid structures

    NASA Astrophysics Data System (ADS)

    Manohar, Krithika; Kaiser, Eurika; Brunton, Bingni W.; Kutz, J. Nathan; Brunton, Steven L.

    2017-11-01

    Optimal sensor placement is a central challenge in the prediction, estimation and control of fluid flows. We reinterpret sensor placement as optimizing discrete samples of coherent fluid structures for full state reconstruction. This permits a drastic reduction in the number of sensors required for faithful reconstruction, since complex fluid interactions can often be described by a small number of coherent structures. Our work optimizes point sensors using the pivoted matrix QR factorization to sample coherent structures directly computed from flow data. We apply this sampling technique in conjunction with various data-driven modal identification methods, including the proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). In contrast to POD-based sensors, DMD demonstrably enables the optimization of sensors for prediction in systems exhibiting multiple scales of dynamics. Finally, reconstruction accuracy from pivot sensors is shown to be competitive with sensors obtained using traditional computationally prohibitive optimization methods.

  6. Determination of corrections to flow direction measurements obtained with a wing-tip mounted sensor. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Moul, T. M.

    1983-01-01

    The nature of corrections for flow direction measurements obtained with a wing-tip mounted sensor was investigated. Corrections for the angle of attack and sideslip, measured by sensors mounted in front of each wing tip of a general aviation airplane, were determined. These flow corrections were obtained from both wind-tunnel and flight tests over a large angle-of-attack range. Both the angle-of-attack and angle-of-sideslip flow corrections were found to be substantial. The corrections were a function of the angle of attack and angle of sideslip. The effects of wing configuration changes, small changes in Reynolds number, and spinning rotation on the angle-of-attack flow correction were found to be small. The angle-of-attack flow correction determined from the static wind-tunnel tests agreed reasonably well with the correction determined from flight tests.

  7. Extraction and evaluation of gas-flow-dependent features from dynamic measurements of gas sensors array

    NASA Astrophysics Data System (ADS)

    Kalinowski, Paweł; Woźniak, Łukasz; Jasiński, Grzegorz; Jasiński, Piotr

    2016-11-01

    Gas analyzers based on gas sensors are the devices which enable recognition of various kinds of volatile compounds. They have continuously been developed and investigated for over three decades, however there are still limitations which slow down the implementation of those devices in many applications. For example, the main drawbacks are the lack of selectivity, sensitivity and long term stability of those devices caused by the drift of utilized sensors. This implies the necessity of investigations not only in the field of development of gas sensors construction, but also the development of measurement procedures or methods of analysis of sensor responses which compensate the limitations of sensors devices. One of the fields of investigations covers the dynamic measurements of sensors or sensor-arrays response with the utilization of flow modulation techniques. Different gas delivery patterns enable the possibility of extraction of unique features which improves the stability and selectivity of gas detecting systems. In this article three utilized flow modulation techniques are presented, together with the proposition of the evaluation method of their usefulness and robustness in environmental pollutants detecting systems. The results of dynamic measurements of an commercially available TGS sensor array in the presence of nitrogen dioxide and ammonia are shown.

  8. (Bio)Sensing Using Nanoparticle Arrays: On the Effect of Analyte Transport on Sensitivity.

    PubMed

    Lynn, N Scott; Homola, Jiří

    2016-12-20

    There has recently been an extensive amount of work regarding the development of optical, electrical, and mechanical (bio)sensors employing planar arrays of surface-bound nanoparticles. The sensor output for these systems is dependent on the rate at which analyte is transported to, and interacts with, each nanoparticle in the array. There has so far been little discussion on the relationship between the design parameters of an array and the interplay of convection, diffusion, and reaction. Moreover, current methods providing such information require extensive computational simulation. Here we demonstrate that the rate of analyte transport to a nanoparticle array can be quantified analytically. We show that such rates are bound by both the rate to a single NP and that to a planar surface (having equivalent size as the array), with the specific rate determined by the fill fraction: the ratio between the total surface area used for biomolecular capture with respect to the entire sensing area. We characterize analyte transport to arrays with respect to changes in numerous parameters relevant to experiment, including variation of the nanoparticle shape and size, packing density, flow conditions, and analyte diffusivity. We also explore how analyte capture is dependent on the kinetic parameters related to an affinity-based biosensor, and furthermore, we classify the conditions under which the array might be diffusion- or reaction-limited. The results obtained herein are applicable toward the design and optimization of all (bio)sensors based on nanoparticle arrays.

  9. A new approach for flow-through respirometry measurements in humans

    PubMed Central

    Ingebrigtsen, Jan P.; Bergouignan, Audrey; Ohkawara, Kazunori; Kohrt, Wendy M.; Lighton, John R. B.

    2010-01-01

    Indirect whole room calorimetry is commonly used in studies of human metabolism. These calorimeters can be configured as either push or pull systems. A major obstacle to accurately calculating gas exchange rates in a pull system is that the excurrent flow rate is increased above the incurrent flow rate, because the organism produces water vapor, which also dilutes the concentrations of respiratory gasses in the excurrent sample. A common approach to this problem is to dry the excurrent gasses prior to measurement, but if drying is incomplete, large errors in the calculated oxygen consumption will result. The other major potential source of error is fluctuations in the concentration of O2 and CO2 in the incurrent airstream. We describe a novel approach to measuring gas exchange using a pull-type whole room indirect calorimeter. Relative humidity and temperature of the incurrent and excurrent airstreams are measured continuously using high-precision, relative humidity and temperature sensors, permitting accurate measurement of water vapor pressure. The excurrent flow rates are then adjusted to eliminate the flow contribution from water vapor, and respiratory gas concentrations are adjusted to eliminate the effect of water vapor dilution. In addition, a novel switching approach is used that permits constant, uninterrupted measurement of the excurrent airstream while allowing frequent measurements of the incurrent airstream. To demonstrate the accuracy of this approach, we present the results of validation trials compared with our existing system and metabolic carts, as well as the results of standard propane combustion tests. PMID:20200135

  10. Fully Integrated, Miniature, High-Frequency Flow Probe Utilizing MEMS Leadless SOI Technology

    NASA Technical Reports Server (NTRS)

    Ned, Alex; Kurtz, Anthony; Shang, Tonghuo; Goodman, Scott; Giemette. Gera (d)

    2013-01-01

    This work focused on developing, fabricating, and fully calibrating a flowangle probe for aeronautics research by utilizing the latest microelectromechanical systems (MEMS), leadless silicon on insulator (SOI) sensor technology. While the concept of angle probes is not new, traditional devices had been relatively large due to fabrication constraints; often too large to resolve flow structures necessary for modern aeropropulsion measurements such as inlet flow distortions and vortices, secondary flows, etc. Mea surements of this kind demanded a new approach to probe design to achieve sizes on the order of 0.1 in. (.3 mm) diameter or smaller, and capable of meeting demanding requirements for accuracy and ruggedness. This approach invoked the use of stateof- the-art processing techniques to install SOI sensor chips directly onto the probe body, thus eliminating redundancy in sensor packaging and probe installation that have historically forced larger probe size. This also facilitated a better thermal match between the chip and its mount, improving stability and accuracy. Further, the leadless sensor technology with which the SOI sensing element is fabricated allows direct mounting and electrical interconnecting of the sensor to the probe body. This leadless technology allowed a rugged wire-out approach that is performed at the sensor length scale, thus achieving substantial sensor size reductions. The technology is inherently capable of high-frequency and high-accuracy performance in high temperatures and harsh environments.

  11. Development of a prototype sensor system for ultra-high-speed LDA-PIV

    NASA Astrophysics Data System (ADS)

    Griffiths, Jennifer A.; Royle, Gary J.; Bohndiek, Sarah E.; Turchetta, Renato; Chen, Daoyi

    2008-04-01

    Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PIV) are commonly used in the analysis of particulates in fluid flows. Despite the successes of these techniques, current instrumentation has placed limitations on the size and shape of the particles undergoing measurement, thus restricting the available data for the many industrial processes now utilising nano/micro particles. Data for spherical and irregularly shaped particles down to the order of 0.1 µm is now urgently required. Therefore, an ultra-fast LDA-PIV system is being constructed for the acquisition of this data. A key component of this instrument is the PIV optical detection system. Both the size and speed of the particles under investigation place challenging constraints on the system specifications: magnification is required within the system in order to visualise particles of the size of interest, but this restricts the corresponding field of view in a linearly inverse manner. Thus, for several images of a single particle in a fast fluid flow to be obtained, the image capture rate and sensitivity of the system must be sufficiently high. In order to fulfil the instrumentation criteria, the optical detection system chosen is a high-speed, lensed, digital imaging system based on state-of-the-art CMOS technology - the 'Vanilla' sensor developed by the UK based MI3 consortium. This novel Active Pixel Sensor is capable of high frame rates and sparse readout. When coupled with an image intensifier, it will have single photon detection capabilities. An FPGA based DAQ will allow real-time operation with minimal data transfer.

  12. Expert system for surveillance and diagnosis of breach fuel elements

    DOEpatents

    Gross, K.C.

    1988-01-21

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil area of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor. 2 figs.

  13. Expert system for surveillance and diagnosis of breach fuel elements

    DOEpatents

    Gross, Kenny C.

    1989-01-01

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil areas of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor.

  14. In-Flight Capability for Evaluating Skin-Friction Gages and Other Near-Wall Flow Sensors

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Pipitone, Brett J.; Krake, Keith L.; Richwine, Dave (Technical Monitor)

    2003-01-01

    An 8-in.-square boundary-layer sensor panel has been developed for in-flight evaluation of skin-friction gages and other near-wall flow sensors on the NASA Dryden Flight Research Center F-15B/Flight Test Fixture (FTF). Instrumentation on the sensor panel includes a boundary-layer rake, temperature sensors, static pressure taps, and a Preston tube. Space is also available for skin-friction gages or other near-wall flow sensors. Pretest analysis of previous F-15B/FTF flight data has identified flight conditions suitable for evaluating skin-friction gages. At subsonic Mach numbers, the boundary layer over the sensor panel closely approximates the two-dimensional (2D), law-of-the-wall turbulent boundary layer, and skin-friction estimates from the Preston tube and the rake (using the Clauser plot method) can be used to evaluate skin-friction gages. At supersonic Mach numbers, the boundary layer over the sensor panel becomes complex, and other means of measuring skin friction are needed to evaluate the accuracy of new skin-friction gages. Results from the flight test of a new rubber-damped skin-friction gage confirm that at subsonic Mach numbers, nearly 2D, law-of-the-wall turbulent boundary layers exist over the sensor panel. Sensor panel data also show that this new skin-friction gage prototype does not work in flight.

  15. Aerodynamic parameters from distributed heterogeneous CNT hair sensors with a feedforward neural network.

    PubMed

    Magar, Kaman Thapa; Reich, Gregory W; Kondash, Corey; Slinker, Keith; Pankonien, Alexander M; Baur, Jeffery W; Smyers, Brian

    2016-11-10

    Distributed arrays of artificial hair sensors have bio-like sensing capabilities to obtain spatial and temporal surface flow information which is an important aspect of an effective fly-by-feel system. The spatiotemporal surface flow measurement enables further exploration of additional flow features such as flow stagnation, separation, and reattachment points. Due to their inherent robustness and fault tolerant capability, distributed arrays of hair sensors are well equipped to assess the aerodynamic and flow states in adverse conditions. In this paper, a local flow measurement from an array of artificial hair sensors in a wind tunnel experiment is used with a feedforward artificial neural network to predict aerodynamic parameters such as lift coefficient, moment coefficient, free-stream velocity, and angle of attack on an airfoil. We find the prediction error within 6% and 10% for lift and moment coefficients. The error for free-stream velocity and angle of attack were within 0.12 mph and 0.37 degrees. Knowledge of these parameters are key to finding the real time forces and moments which paves the way for effective control design to increase flight agility, stability, and maneuverability.

  16. Flow line sampler

    DOEpatents

    Nicholls, Colin I.

    1992-07-14

    An on-line product sampling apparatus and method for measuring product samples from a product stream (12) in a flow line (14) having a sampling aperture (11), includes a sampling tube (18) for containing product samples removed from flow line (14). A piston (22) removes product samples from the product stream (12) through the sampling aperture (11) and returns samples to product stream (12). A sensor (20) communicates with sample tube (18), and senses physical properties of samples while the samples are within sample tube (18). In one embodiment, sensor (20) comprises a hydrogen transient nuclear magnetic resonance sensor for measuring physical properties of hydrogen molecules.

  17. Investigation of gas-solids flow in a circulating fluidized bed using 3D electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-09-01

    The hydrodynamics of gas-solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s-1 to 3.0 m s-1 with a step of 0.2 m s-1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas-solids bubbling flows.

  18. Development of a wall-shear-stress sensor and measurements in mini-channels with partial blockages

    NASA Astrophysics Data System (ADS)

    Afara, Samer; Medvescek, James; Mydlarski, Laurent; Baliga, Bantwal R.; MacDonald, Mark

    2014-05-01

    The design, construction, operation and validation of a wall-shear-stress sensor, and measurements obtained using this sensor in air flows downstream of partial blockages in a mini-channel are presented. The sensor consisted of a hot wire mounted over a small rectangular slot and operated using a constant-temperature anemometer. It was used to investigate flows similar to those within the mini-channels inside notebook computers. The overall goal of the present work was to develop a sensor suitable for measurements of the wall-shear stress in such flows, which can be used to validate corresponding numerical simulations, as the latter are known to be often surprisingly inaccurate. To this end, measurements of the wall-shear stress, and the corresponding statistical moments and power spectral densities, were obtained at different distances downstream of the partial blockage, with blockage ratios of 39.7, 59.2, and 76.3 %. The Reynolds number (based on average velocity and hydraulic diameter) ranged from 100 to 900. The results confirmed the presence of unsteadiness, separation, reattachment, and laminar-turbulent transition in the ostensibly laminar flow of air in mini-channels with partial blockages. The present results demonstrate why accurate numerical predictions of cooling air flows in laptop and notebook computers remain a challenging task.

  19. Inertial navigation sensor integrated obstacle detection system

    NASA Technical Reports Server (NTRS)

    Bhanu, Bir (Inventor); Roberts, Barry A. (Inventor)

    1992-01-01

    A system that incorporates inertial sensor information into optical flow computations to detect obstacles and to provide alternative navigational paths free from obstacles. The system is a maximally passive obstacle detection system that makes selective use of an active sensor. The active detection typically utilizes a laser. Passive sensor suite includes binocular stereo, motion stereo and variable fields-of-view. Optical flow computations involve extraction, derotation and matching of interest points from sequential frames of imagery, for range interpolation of the sensed scene, which in turn provides obstacle information for purposes of safe navigation.

  20. Variable Deflection Response of Sensitive CNT-on-Fiber Artificial Hair Sensors from CNT Synthesis in High Aspect Ratio Microcavities (Postprint)

    DTIC Science & Technology

    2015-04-01

    sensors are suitable flow sensor candidates for insect to bird scale low-Reynolds-number flyers due to their low power consumption, light weight, high...elastic measurements and modeling,” Carbon, 66(0), 377-386 (2014). [14] M. R. Maschmann, G. J. Ehlert, S. J. Park et al., “Visualizing Strain Evolution ...Maschmann, and J. Baur, " Morphology control in hierarchical fibers for applications in hair flow sensors." [20] N. Yamamoto, A. John Hart, E. J

Top