Sample records for flow rate variation

  1. Scram signal generator

    DOEpatents

    Johanson, Edward W.; Simms, Richard

    1981-01-01

    A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

  2. Scram signal generator

    DOEpatents

    Johanson, E.W.; Simms, R.

    A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

  3. Influence of infusion pump operation and flow rate on hemodynamic stability during epinephrine infusion.

    PubMed

    Klem, S A; Farrington, J M; Leff, R D

    1993-08-01

    To determine whether variations in the flow rate of epinephrine solutions administered via commonly available infusion pumps lead to significant variations in blood pressure (BP) in vivo. Prospective, randomized, crossover study with factorial design, using infusion pumps with four different operating mechanisms (pulsatile diaphragm, linear piston/syringe, cyclic piston-valve, and linear peristaltic) and three drug delivery rates (1, 5, and 10 mL/hr). Two healthy, mixed-breed dogs (12 to 16 kg). Dogs were made hypotensive with methohexital bolus and continuous infusion. BP was restored to normal with constant-dose epinephrine infusion via two pumps at each rate. Femoral mean arterial pressure (MAP) was recorded every 10 secs. Pump-flow continuity was quantitated in vitro using a digital gravimetric technique. Variations in MAP and flow continuity were expressed by the coefficient of variation; analysis of variance was used for comparisons. The mean coefficients of variations for MAP varied from 3.8 +/- 3.1% (linear piston/syringe) to 6.1 +/- 6.6% (linear peristaltic), and from 3.4 +/- 2.2% (10 mL/hr) to 7.9 +/- 6.6% (1 mL/hr). The coefficients of variation for in vitro flow continuity ranged from 9 +/- 8% (linear piston-syringe) to 250 +/- 162% (pulsatile diaphragm), and from 35 +/- 44% (10 mL/hr) to 138 +/- 196% (1 mL/hr). Both the type of pump and infusion rate significantly (p < .001) influenced variation in drug delivery rate. The 1 mL/hr infusion rate significantly (p < .01) influenced MAP variation. Cyclic fluctuations in MAP of < or = 30 mm Hg were observed using the pulsatile diaphragm pump at 1 mL/hr. Factors inherent in the operating mechanisms of infusion pumps may result in clinically important hemodynamic fluctuations when administering a concentrated short-acting vasoactive medication at slow infusion rates.

  4. Off-design flow measurements in a centrifugal compressor vaneless diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinarbasi, A.; Johnson, M.W.

    1995-10-01

    Detailed measurements have been taken of the three-dimensional velocity field within the vaneless diffuser of a backswept low speed centrifugal compressor using hot-wire anemometry. A 16% below and an 11% above design flow rate were used in the present study. Results at both flow rates show how the blade wake mixes out more rapidly than the passage wake. Strong secondary flows inherited from the impeller at the higher flow rate delay the mixing out of the circumferential velocity variations, but at both flow rates these circumferential variations are negligible at the last measurement station. The measured tangential/radial flow angle ismore » used to recommend optimum values for the vaneless space and vane angle for design of a vaned diffuser.« less

  5. Impact of typical steady-state conditions and transient conditions on flow ripple and its test accuracy for axial piston pump

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Hu, Min; Zhang, Junhui

    2015-09-01

    The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test accuracy of flow ripple is above 93.07%. The model constructed in this research proposes a method to determine the flow ripple characteristics of pump and its attainable test accuracy under the large-scale and time-variant working conditions. Meanwhile, a discussion about the variation of flow ripple and its obtainable test accuracy with the conditions of the pump working in wide operating ranges is given as well.

  6. [Effects of different irrigations on the water physiological characteristics of Haloxylon ammodendron in Taklimakan Desert hinterland].

    PubMed

    Xie, Ting-ting; Zhang, Xi-ming; Liang, Shao-min; Shan, Li-shan; Yang, Xiao-lin; Hua, Yong-hui

    2008-04-01

    By using heat-balance stem flow gauge and press chamber, the water physiological characteristics of Haloxylon ammodendron under different irrigations in Taklimakan Desert hinterland were measured and analyzed. The results indicated that the diurnal variation curve of H. ammodendron stem sap flow varied with irrigations. When irrigated 35 and 24.5 kg x plant(-1) once time, the diurnal variation of stem sap flow changed in single peak curve and the variation extent was higher; while irrigated 14 kg x plant(-1) once time, the diurnal variation changed in two-peak curve and the variation extent was small. With the decrease of irrigations, the average daily sap flow rate and the daily water consumption of H. ammodendron decreased gradually, the dawn and postmeridian water potential also had a gradual decrease, and the correlations of stem sap flow with total radiation, air temperature, relative humidity, and wind speed enhanced. Under different irrigations, the correlation between stem sap flow rate and total radiation was always the best.

  7. Quantification of the transient mass flow rate in a simplex swirl injector

    NASA Astrophysics Data System (ADS)

    Khil, Taeock; Kim, Sunghyuk; Cho, Seongho; Yoon, Youngbin

    2009-07-01

    When a heat release and acoustic pressure fluctuations are generated in a combustor by irregular and local combustions, these fluctuations affect the mass flow rate of the propellants injected through the injectors. In addition, variations of the mass flow rate caused by these fluctuations bring about irregular combustion, which is associated with combustion instability, so it is very important to identify a mass variation through the pressure fluctuation on the injector and to investigate its transfer function. Therefore, quantification of the variation of the mass flow rate generated in a simplex swirl injector via the injection pressure fluctuation was the subject of an initial study. To acquire the transient mass flow rate in the orifice with time, the axial velocity of flows and the liquid film thickness in the orifice were measured. The axial velocity was acquired through a theoretical approach after measuring the pressure in the orifice. In an effort to understand the flow area in the orifice, the liquid film thickness was measured by an electric conductance method. In the results, the mass flow rate calculated from the axial velocity and the liquid film thickness measured by the electric conductance method in the orifice was in good agreement with the mass flow rate acquired by the direct measuring method in a small error range within 1% in the steady state and within 4% for the average mass flow rate in a pulsated state. Also, the amplitude (gain) of the mass flow rate acquired by the proposed direct measuring method was confirmed using the PLLIF technique in the low pressure fluctuation frequency ranges with an error under 6%. This study shows that our proposed method can be used to measure the mass flow rate not only in the steady state but also in the unsteady state (or the pulsated state). Moreover, this method shows very high accuracy based on the experimental results.

  8. Cyclic variation of ultrasonic backscattering from porcine whole blood under pulsatile flow

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Hong

    1997-10-01

    The cyclic variation of ultrasonic backscattering from blood under pulsatile flow is believed to be related to the change of aggregation state of red cells and is only observed in whole blood. This study was to investigate the phenomenon by an invasive approach which was performed by inserting a 10 MHz catheter mounted transducer into a vessel. For ultrasonic measurement from blood, the most fundamental scheme is the hematocrit dependence. The backscatter maximum location was changed as the blood was stirred or stationary, as well as under steady laminar or turbulent flows. The same trend was also observed under pulsatile flow with 10% to 50% hematocrits in this study, as the backscattering to hematocrit curves were plotted at different times during a flow cycle. When the cyclic variation at 20 beats per minute (BPM) was interpreted in time domain, the enhanced aggregation at the beginning of shearing was observed. At 20 BPM with 40% hematocrit, the amplitude of cyclic variation was reduced when the shear rate was increased and the threshold of 150 s-1 was estimated. The results showed that there was no cyclic variation at 60 BPM. The backscattering was also plotted against the mean flow velocity, which demonstrated the hysteresis loops. The ultrasonic measurements showed that the relationship between the forward and backward paths of the loops were altered as beat rate, hematocrit, and shear rate were varied. Since the pulsatile flow was very complicated, a computational fluid dynamics package, FIDAPTM, was used to compute the shear rate based on the Power Law Model for non-Newtonian fluid viscosity. The non- Newtonian index and consistency in the model were computed from the viscosity to shear rate curves at 10% to 50% hematocrits measured by a cone-plate viscometer. For in vivo measurements, small pigs were used as models. Ultrasonic backscattering measurements were performed in the arteries and veins. The effect of stenosis was also investigated at the site below the renal branch in the artery. The results show that the cyclic variation from whole blood was mediated by the shear rate, hematocrit, beat rate, and fibrinogen concentration.

  9. Effects of variations in flow characteristics through W.P. Franklin Lock and Dam on downstream water quality in the Caloosahatchee River Estuary and in McIntyre Creek in the J.N. “Ding” Darling National Wildlife Refuge, southern Florida, 2010–13

    USGS Publications Warehouse

    Booth, Amanda C.; Soderqvist, Lars E.; Knight, Travis M.

    2016-05-17

    The U.S. Geological Survey studied water-quality trends at the mouth of McIntyre Creek, an entry point to the J.N. “Ding” Darling National Wildlife Refuge, to investigate correlations between flow rates and volumes through the W.P. Franklin Lock and Dam and water-quality constituents inside the refuge from March 2010 to December 2013. Outflow from Lake Okeechobee, and flows from Franklin Lock, tributaries to the Caloosahatchee River Estuary, and the Cape Coral canal system were examined to determine the sources and quantity of water to the study area. Salinity, temperature, dissolved-oxygen concentration, pH, turbidity, and chromophoric dissolved organic matter fluorescence (FDOM) were measured during moving-boat surveys and at a fixed location in McIntyre Creek. Chlorophyll fluorescence was also recorded in McIntyre Creek. Water-quality surveys were completed on 20 dates between 2011 and 2014 using moving-boat surveys.Franklin Lock contributed the majority of flow to the Caloosahatchee River. Between 2010 and 2013, the monthly mean flow rate at Franklin Lock ranged from 29 cubic feet per second in May 2011 to 10,650 cubic feet per second in August 2013. Instantaneous near-surface salinity in McIntyre Creek ranged from 12.9 parts per thousand on September 26, 2013, to 37.9 parts per thousand on June 27, 2011. Salinity in McIntyre Creek decreased with increasing flow rate through Franklin Lock. Flow rates through Franklin Lock explained 61 percent of the variation in salinity in McIntyre Creek. Salinity data from moving-boat surveys also indicate that an increase in flow rate at Franklin Lock decreases salinity in the Caloosahatchee River Estuary, and a reduction or elimination in flow increases salinity. The FDOM in McIntyre Creek was positively correlated with flow at Franklin Lock, and 54 percent of the variation in FDOM can be attributed to the flow rate through Franklin Lock. Data from moving-boat surveys indicate that FDOM increases when flow volume from Franklin Lock increases. The highest FDOM recorded during a survey was at Billy’s Creek. Chlorophyll fluorescence was positively correlated with flow at Franklin Lock, with 23 percent of the variation explained by the flow rate at Franklin Lock. An increase in flow rate at Franklin Lock resulted in a decrease in pH (21 percent of variation explained by flow rates). Data from the pH surveys indicate an increase in pH with distance from Franklin Lock. Turbidity and dissolved oxygen near the surface in McIntyre Creek were not correlated with flow rate at Franklin Lock. Moving-boat surveys did not document a change in turbidity or dissolved oxygen with a change in distance from the Franklin Lock. Correlations between Franklin Lock flow rate and water quality in McIntyre Creek indicate that releases at Franklin Lock affect water quality in the Caloosahatchee River Estuary and Ding Darling Refuge.

  10. Surface-acoustic-wave (SAW) flow sensor

    NASA Astrophysics Data System (ADS)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  11. Surface-acoustic-wave (SAW) flow sensor.

    PubMed

    Joshi, S G

    1991-01-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 degrees rotated Y-cut lithium niobate substrate and heated to 55 degrees C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cm(3)/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves, propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  12. IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.

    PubMed

    Zehetner, Claus; Moelgg, Marion; Bechrakis, Emmanouil; Linhart, Caroline; Bechrakis, Nikolaos E

    2017-10-09

    To analyze the performance and flow characteristics of novel double-cutting, open-port, 23-, 25-, and 27-gauge ultrahigh-speed vitrectomy systems. In vitro fluidic measurements were performed to assess the volumetric aspiration profiles of several vitrectomy systems in basic salt solution and egg white. Double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. Increase in cutting frequency to the maximum level resulted in flow reduction of less than 10% (0.0%-9.5%). Commercially available 23-, 25-, and 27-G double-cutting probes exhibited higher egg-white and basic salt solution flow rates at all evaluated cut rates, with aspirational efficiencies being 1.1 to 2.9 times the flow rates of standard single-blade vitrectomy probes of the same caliber at the maximum preset vacuum. The highest relative differences were observed at faster cut rates. The newly introduced double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. The fluidic principle of constant flow even at the highest cut rates and low vacuum levels might impact surgical strategies, especially when performing manipulations close to the retina.

  13. Experimental study of the influence of flow passage subtle variation on mixed-flow pump performance

    NASA Astrophysics Data System (ADS)

    Bing, Hao; Cao, Shuliang

    2014-05-01

    In the mixed-flow pump design, the shape of the flow passage can directly affect the flow capacity and the internal flow, thus influencing hydraulic performance, cavitation performance and operation stability of the mixed-flow pump. However, there is currently a lack of experimental research on the influence mechanism. Therefore, in order to analyze the effects of subtle variations of the flow passage on the mixed-flow pump performance, the frustum cone surface of the end part of inlet contraction flow passage of the mixed-flow pump is processed into a cylindrical surface and a test rig is built to carry out the hydraulic performance experiment. In this experiment, parameters, such as the head, the efficiency, and the shaft power, are measured, and the pressure fluctuation and the noise signal are also collected. The research results suggest that after processing the inlet flow passage, the head of the mixed-flow pump significantly goes down; the best efficiency of the mixed-flow pump drops by approximately 1.5%, the efficiency decreases more significantly under the large flow rate; the shaft power slightly increases under the large flow rate, slightly decreases under the small flow rate. In addition, the pressure fluctuation amplitudes on both the impeller inlet and the diffuser outlet increase significantly with more drastic pressure fluctuations and significantly lower stability of the internal flow of the mixed-flow pump. At the same time, the noise dramatically increases. Overall speaking, the subtle variation of the inlet flow passage leads to a significant change of the mixed-flow pump performance, thus suggesting a special attention to the optimization of flow passage. This paper investigates the influence of the flow passage variation on the mixed-flow pump performance by experiment, which will benefit the optimal design of the flow passage of the mixed-flow pump.

  14. Granular flow through an aperture: influence of the packing fraction.

    PubMed

    Aguirre, M A; De Schant, R; Géminard, J-C

    2014-07-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.

  15. Granular flow through an aperture: Influence of the packing fraction

    NASA Astrophysics Data System (ADS)

    Aguirre, M. A.; De Schant, R.; Géminard, J.-C.

    2014-07-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.

  16. Water-flow variation and pharmacoepidemiology of tetracycline hydrochloride administration via drinking water in swine finishing farms.

    PubMed

    Dorr, Paul M; Nemechek, Megan S; Scheidt, Alan B; Baynes, Ronald E; Gebreyes, Wondwossen A; Almond, Glen W

    2009-08-01

    To evaluate variation of drinking-water flow rates in swine finishing barns and the relationship between drinker flow rate and plasma tetracycline concentrations in pigs housed in different pens. Cross-sectional (phase 1) and cohort (phase 2) studies. 13 swine finishing farms (100 barns with 7,122 drinkers) in phase 1 and 100 finishing-stage pigs on 2 finishing farms (1 barn/farm) in phase 2. In phase 1, farms were evaluated for water-flow variation, taking into account the following variables: position of drinkers within the barn, type of drinker (swing or mounted), pig medication status, existence of designated sick pen, and existence of leakage from the waterline. In phase 2, blood samples were collected from 50 pigs/barn (40 healthy and 10 sick pigs) in 2 farms at 0, 4, 8, 24, 48, and 72 hours after initiation of water-administered tetracycline HCl (estimated dosage, 22 mg/kg [10 mg/lb]). Plasma tetracycline concentrations were measured via ultraperformance liquid chromatography. Mean farm drinker flow rates ranged from 1.44 to 2.77 L/min. Significant differences in flow rates existed according to drinker type and whether tetracycline was included in the water. Mean drinker flow rates and plasma tetracycline concentrations were significantly different between the 2 farms but were not different between healthy and sick pigs. The plasma tetracycline concentrations were typically < 0.3 microg/mL. Many factors affected drinker flow rates and therefore the amount of medication pigs might have received. Medication of pigs with tetracycline through water as performed in this study had questionable therapeutic value.

  17. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network

    PubMed Central

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T < 10 s). For performance demonstrations, the proposed method was applied to evaluate blood viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for simultaneous measurement of viscosity and flow rate of whole blood circulating in the complex fluid network, with sensorless and label-free detection. Furthermore, the proposed method will be used in evaluating variations in the viscosity of human blood during cardiopulmonary bypass procedures or hemodialysis. PMID:24404074

  18. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network.

    PubMed

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T < 10 s). For performance demonstrations, the proposed method was applied to evaluate blood viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for simultaneous measurement of viscosity and flow rate of whole blood circulating in the complex fluid network, with sensorless and label-free detection. Furthermore, the proposed method will be used in evaluating variations in the viscosity of human blood during cardiopulmonary bypass procedures or hemodialysis.

  19. Effects of Temperature and Strain Rate on Tensile Deformation Behavior of 9Cr-0.5Mo-1.8W-VNb Ferritic Heat-Resistant Steel

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Weng, Xiaoxiang; Jiang, Yong; Gong, Jianming

    2017-09-01

    A series of uniaxial tensile tests were carried out at different strain rate and different temperatures to investigate the effects of temperature and strain rate on tensile deformation behavior of P92 steel. In the temperature range of 30-700 °C, the variations of flow stress, average work-hardening rate, tensile strength and ductility with temperature all show three temperature regimes. At intermediate temperature, the material exhibited the serrated flow behavior, the peak in flow stress, the maximum in average work-hardening rate, and the abnormal variations in tensile strength and ductility indicates the occurrence of DSA, whereas the sharp decrease in flow stress, average work-hardening rate as well as strength values, and the remarkable increase in ductility values with increasing temperature from 450 to 700 °C imply that dynamic recovery plays a dominant role in this regime. Additionally, for the temperature ranging from 550 to 650 °C, a significant decrease in flow stress values is observed with decreasing in strain rate. This phenomenon suggests the strain rate has a strong influence on flow stress. Based on the experimental results above, an Arrhenius-type constitutive equation is proposed to predict the flow stress.

  20. Modeling variability in porescale multiphase flow experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Bowen; Bao, Jie; Oostrom, Mart

    Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulationsmore » are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.« less

  1. Spray outputs from a variable-rate sprayer manipulated with PWM solenoid valves

    USDA-ARS?s Scientific Manuscript database

    Pressure fluctuations during variable-rate spray applications can affect nozzle flow rate fluctuations, resulting in spray outputs that do not coincide with the prescribed canopy structure volume. Variations in total flow rate discharged from 40 nozzles, each coupled with a pulse-width-modulated (PW...

  2. Computational modelling of flow and tip variations of aortic cannulae in cardiopulmonary bypass procedure

    NASA Astrophysics Data System (ADS)

    Thomas, Siti A.; Empaling, Shirly; Darlis, Nofrizalidris; Osman, Kahar; Dillon, Jeswant; Taib, Ishkrizat; Khudzari, Ahmad Zahran Md

    2017-09-01

    Aortic cannulation has been the gold standard for maintaining cardiovascular function during open heart surgery while being connected onto the heart lung machine. These cannulation produces high velocity outflow which may lead to adverse effect on patient condition, especially sandblasting effect on aorta wall and blood cells damage. This paper reports a novel design that was able to decrease high velocity outflow. There were three design factors of that was investigated. The design factors consist of the cannula type, the flow rate, and the cannula tip design which result in 12 variations. The cannulae type used were the spiral flow inducing cannula and the standard cannula. The flow rates are varied from three to five litres per minute (lpm). Parameters for each cannula variation included maximum velocity within the aorta, pressure drop, wall shear stress (WSS) area exceeding 15 Pa, and impinging velocity on the aorta wall were evaluated. Based on the result, spiral flow inducing cannulae is proposed as a better alternatives due to its ability to reduce outflow velocity. Meanwhile, the pressure drop of all variations are less than the limit of 100 mmHg, although standard cannulae yielded better result. All cannulae show low reading of wall shear stress which decrease the possibilities for atherogenesis formation. In conclusion, as far as velocity is concerned, spiral flow is better compared to standard flow across all cannulae variations.

  3. SEASONAL VARIATIONS IN HUMAN PAROTID FLUID FLOW RATE IN A SUBTROPICAL CLIMATE.

    DTIC Science & Technology

    Parotid fluid was collected under conditions of very minimal stimulation from 3,868 systemically healthy young adult males over a period of two...calendar years. The study was carried out in a subtropical climate in which the only thermal discomfort resulted from the summer heat. Parotid flow rate...fall. During the summer months the mean rate of parotid flow was 0.031 ml./minute; during the winter the flow rate mean increased by 35% to 0.042 ml

  4. Spatial Variation of Pressure in the Lyophilization Product Chamber Part 1: Computational Modeling.

    PubMed

    Ganguly, Arnab; Varma, Nikhil; Sane, Pooja; Bogner, Robin; Pikal, Michael; Alexeenko, Alina

    2017-04-01

    The flow physics in the product chamber of a freeze dryer involves coupled heat and mass transfer at different length and time scales. The low-pressure environment and the relatively small flow velocities make it difficult to quantify the flow structure experimentally. The current work presents the three-dimensional computational fluid dynamics (CFD) modeling for vapor flow in a laboratory scale freeze dryer validated with experimental data and theory. The model accounts for the presence of a non-condensable gas such as nitrogen or air using a continuum multi-species model. The flow structure at different sublimation rates, chamber pressures, and shelf-gaps are systematically investigated. Emphasis has been placed on accurately predicting the pressure variation across the subliming front. At a chamber set pressure of 115 mtorr and a sublimation rate of 1.3 kg/h/m 2 , the pressure variation reaches about 9 mtorr. The pressure variation increased linearly with sublimation rate in the range of 0.5 to 1.3 kg/h/m 2 . The dependence of pressure variation on the shelf-gap was also studied both computationally and experimentally. The CFD modeling results are found to agree within 10% with the experimental measurements. The computational model was also compared to analytical solution valid for small shelf-gaps. Thus, the current work presents validation study motivating broader use of CFD in optimizing freeze-drying process and equipment design.

  5. Self-regulating flow control device

    DOEpatents

    Humphreys, Duane A.

    1984-01-01

    A variable, self-regulating valve having a hydraulic loss coefficient proportional to a positive exponential power of the flow rate. The device includes two objects in a flow channel and structure which assures that the distance between the two objects is an increasing function of the flow rate. The range of spacing between the objects is such that the hydraulic resistance of the valve is an increasing function of the distance between the two objects so that the desired hydraulic loss coefficient as a function of flow rate is obtained without variation in the flow area.

  6. Transient response of sap flow to wind speed.

    PubMed

    Chu, Chia R; Hsieh, Cheng-I; Wu, Shen-Yuang; Phillips, Nathan G

    2009-01-01

    Transient responses of sap flow to step changes in wind speed were experimentally investigated in a wind tunnel. A Granier-type sap flow sensor was calibrated and tested in a cylindrical tube for analysis of its transient time response. Then the sensor was used to measure the transient response of a well-watered Pachira macrocarpa plant to wind speed variations. The transient response of sap flow was described using the resistance-capacitance model. The steady sap flow rate increased as the wind speed increased at low wind speeds. Once the wind speed exceeded 8.0 m s(-1), the steady sap flow rate did not increase further. The transpiration rate, measured gravimetrically, showed a similar trend. The response of nocturnal sap flow to wind speed variation was also measured and compared with the results in the daytime. Under the same wind speed, the steady sap flow rate was smaller than that in the daytime, indicating differences between diurnal and nocturnal hydraulic function, and incomplete stomatal closure at night. In addition, it was found that the temporal response of the Granier sensor is fast enough to resolve the transient behaviour of water flux in plant tissue.

  7. Quantification aspects of constant pressure (ultra) high pressure liquid chromatography using mass-sensitive detectors with a nebulizing interface.

    PubMed

    Verstraeten, M; Broeckhoven, K; Lynen, F; Choikhet, K; Landt, K; Dittmann, M; Witt, K; Sandra, P; Desmet, G

    2013-01-25

    The present contribution investigates the quantitation aspects of mass-sensitive detectors with nebulizing interface (ESI-MSD, ELSD, CAD) in the constant pressure gradient elution mode. In this operation mode, the pressure is controlled and maintained at a set value and the liquid flow rate will vary according to the inverse mobile phase viscosity. As the pressure is continuously kept at the allowable maximum during the entire gradient run, the average liquid flow rate is higher compared to that in the conventional constant flow rate operation mode, thus shortening the analysis time. The following three mass-sensitive detectors were investigated: mass spectrometry detector (MS), evaporative light scattering detector (ELSD) and charged aerosol detector (CAD) and a wide variety of samples (phenones, polyaromatic hydrocarbons, wine, cocoa butter) has been considered. It was found that the nebulizing efficiency of the LC-interfaces of the three detectors under consideration changes with the increasing liquid flow rate. For the MS, the increasing flow rate leads to a lower peak area whereas for the ELSD the peak area increases compared to the constant flow rate mode. The peak area obtained with a CAD is rather insensitive to the liquid flow rate. The reproducibility of the peak area remains similar in both modes, although variation in system permeability compromises the 'long-term' reproducibility. This problem can however be overcome by running a flow rate program with an optimized flow rate and composition profile obtained from the constant pressure mode. In this case, the quantification remains reproducibile, despite any occuring variations of the system permeability. Furthermore, the same fragmentation pattern (MS) has been found in the constant pressure mode compared to the customary constant flow rate mode. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Liquid Jet Cavitation via Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Ashurst, W. T.

    1997-11-01

    A two-dimensional molecular dynamics simulation of a liquid jet is used to investigate cavitation in a diesel-like fuel injector. A channel with a length four times its width has been examined at various system sizes (widths of 20 to 160 σ, where σ is the zero energy location in the Lennard-Jones potential). The wall boundary condition is Maxwell's diffuse reflection, similar to the work by Sun & Ebner (Phys. Rev A 46, 4813, 1992). Currently, the jet exhausts into a vacuum, but a second, low density gas will be incorporated to represent the compressed air in a diesel chamber. Four different flow rates are examined. With ρ U equal to √mɛ/σ^2 (the largest flow rate) the static pressure decreases by a factor of twenty between the channel entrance and exit. The largest flow rate has a parabolic velocity profile with almost constant density across the channel. The smallest flow rate has the same velocity profile but the density exhibits a large variation, with the minimum value in the channel center. Thus, the product ρ U is nearly constant across the channel at this flow rate. The discharge coefficient CD has a small variation with flow rate, but the velocity coefficient CV varies with the amount of two-phase fluid within the channel. The ratio of CV to CD varies from 1.3 (largest flow rate) to 2.0 (the smallest flow rate, which is one-eighth of the largest).

  9. Heterogeneous photocatalytic oxidation of atmospheric trace contaminants

    NASA Technical Reports Server (NTRS)

    Ollis, David F.

    1994-01-01

    Research was conducted on: (1) design and construction of a continuous flow photoreactor to study oxidation of trace atmospheric contaminants; (2) kinetics of acetone oxidation including adsorption equilibrium, variation of oxidatiin rate with acetone concentration and water, and variation of rate and apparent quantum yield with light intensity, and (3) kinetics of butanol oxidation, including rate variations; and (4) kinetics of catalyst deactivation including deactivation rate, influence of dark conditions, and photocatalytic regeneration in alcohol-free air.

  10. Self-regulating valve

    DOEpatents

    Humphreys, D.A.

    1982-07-20

    A variable, self-regulating valve having a hydraulic loss coefficient proportional to a positive exponential power of the flow rate. The device includes two objects in a flow channel and structure which assures that the distance between the two objects is an increasing function of the flow rate. The range of spacing between the objects is such that the hydraulic resistance of the valve is an increasing function of the distance between the two objects so that the desired hydraulic loss coefficient as a function of flow rate is obtained without variation in the flow area.

  11. Simple microfluidic stagnation point flow geometries

    PubMed Central

    Dockx, Greet; Verwijlen, Tom; Sempels, Wouter; Nagel, Mathias; Moldenaers, Paula; Hofkens, Johan; Vermant, Jan

    2016-01-01

    A geometrically simple flow cell is proposed to generate different types of stagnation flows, using a separation flow and small variations of the geometric parameters. Flows with high local deformation rates can be changed from purely rotational, over simple shear flow, to extensional flow in a region surrounding a stagnation point. Computational fluid dynamic calculations are used to analyse how variations of the geometrical parameters affect the flow field. These numerical calculations are compared to the experimentally obtained streamlines of different designs, which have been determined by high speed confocal microscopy. As the flow type is dictated predominantly by the geometrical parameters, such simple separating flow devices may alleviate the requirements for flow control, while offering good stability for a wide variety of flow types. PMID:27462382

  12. Dual Rate Adaptive Control for an Industrial Heat Supply Process Using Signal Compensation Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Tianyou; Jia, Yao; Wang, Hong

    The industrial heat supply process (HSP) is a highly nonlinear cascaded process which uses a steam valve opening as its control input, the steam flow-rate as its inner loop output and the supply water temperature as its outer loop output. The relationship between the heat exchange rate and the model parameters, such as steam density, entropy, and fouling correction factor and heat exchange efficiency are unknown and nonlinear. Moreover, these model parameters vary in line with steam pressure, ambient temperature and the residuals caused by the quality variations of the circulation water. When the steam pressure and the ambient temperaturemore » are of high values and are subjected to frequent external random disturbances, the supply water temperature and the steam flow-rate would interact with each other and fluctuate a lot. This is also true when the process exhibits unknown characteristic variations of the process dynamics caused by the unexpected changes of the heat exchange residuals. As a result, it is difficult to control the supply water temperature and the rates of changes of steam flow-rate well inside their targeted ranges. In this paper, a novel compensation signal based dual rate adaptive controller is developed by representing the unknown variations of dynamics as unmodeled dynamics. In the proposed controller design, such a compensation signal is constructed and added onto the control signal obtained from the linear deterministic model based feedback control design. Such a compensation signal aims at eliminating the unmodeled dynamics and the rate of changes of the currently sample unmodeled dynamics. A successful industrial application is carried out, where it has been shown that both the supply water temperature and the rate of the changes of the steam flow-rate can be controlled well inside their targeted ranges when the process is subjected to unknown variations of its dynamics.« less

  13. Characterizing Strength of Chaotic Dynamics and Numerical Simulation Relevant to Modified Taylor-Couette Flow with Hourglass Geometry

    NASA Astrophysics Data System (ADS)

    Hou, Yu; Kowalski, Adam; Schroder, Kjell; Halmstad, Andrew; Olsen, Thomas; Wiener, Richard

    2006-05-01

    We characterize the strength of chaos in two different regimes of Modified Taylor-Couette flow with Hourglass Geometry: the formation of Taylor Vortices with laminar flow and with turbulent flow. We measure the strength of chaos by calculating the correlation dimension and the Kaplan-Yorke dimension based upon the Lyapunov Exponents of each system. We determine the reliability of our calculations by considering data from a chaotic electronic circuit. In order to predict the behavior of the Modified Taylor-Couette flow system, we employ simulations based upon an idealized Reaction-Diffusion model with a third order non-linearity in the reaction rate. Variation of reaction rate with length corresponds to variation of the effective Reynolds Number along the Taylor-Couette apparatus. We present preliminary results and compare to experimental data.

  14. Oxygen-Mass-Flow Calibration Cell

    NASA Technical Reports Server (NTRS)

    Martin, Robert E.

    1996-01-01

    Proposed calibration standard for mass flow rate of oxygen based on conduction of oxygen ions through solid electrolyte membrane made of zirconia and heated to temperature of 1,000 degrees C. Flow of oxygen ions proportional to applied electric current. Unaffected by variations in temperature and pressure, and requires no measurement of volume. Calibration cell based on concept used to calibrate variety of medical and scientific instruments required to operate with precise rates of flow of oxygen.

  15. Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico

    USGS Publications Warehouse

    Pool, D.R.; Dickinson, Jesse

    2007-01-01

    A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.

  16. A Day in the Life of the Suwannee River: Lagrangian Sampling of Process Rates Along the River Continuum

    NASA Astrophysics Data System (ADS)

    Cohen, M. J.; Hensley, R. T.; Spangler, M.; Gooseff, M. N.

    2017-12-01

    A key organizing idea in stream ecology is the river continuum concept (RCC) which makes testable predictions about network-scale variation in metabolic and community attributes. Using high resolution (ca. 0.1 Hz) Lagrangian sampling of a wide suite of solutes - including nitrate, fDOM, dissolved oyxgen and specific conductance, we sampled the river continuum from headwaters to the sea in the Suwannee River (Florida, USA). We specifically sought to test two predictions that follow from the RCC: first, that changes in metabolism and hydraulics lead to progressive reduction in total N retention but greater diel variation with increasing stream order; and second, that variation in metabolic and nutrient processing rates is larger across stream orders than between low order streams. In addition to providing a novel test of theory, these measurements enabled new insights into the evolution of water quality through a complex landscape, in part because main-stem profiles were obtained for both high and historically low flow conditions. We observed strong evidence of metabolism and nutrient retention at low flow. Both the rate of uptake velocity and the mass retention per unit area declined with increasing stream order, and declined dramatically at high flow. Clear evidence for time varying retention (i.e., diel variation) was observed at low flow, but was masked or absent at high flow. In this geologically complex river - with alluvial, spring-fed, and blackwater headwater streams - variation across low-order streams was large, suggesting the presence of many river continuua across the network. This application of longitudinal sampling and inference underscores the utility of changing reference frames to draw new insights, but also highlights some of the challenges that need to be considered and, where possible, controlled.

  17. Dynamic Characteristics of The DSI-Type Constant-Flow Valves

    NASA Astrophysics Data System (ADS)

    Kang, Yuan; Hu, Sheng-Yan; Chou, Hsien-Chin; Lee, Hsing-Han

    Constant flow valves have been presented in industrial applications or academic studies, which compensate recess pressures of a hydrostatic bearing to resist load fluctuating. The flow rate of constant-flow valves can be constant in spite of the pressure changes in recesses, however the design parameters must be specified. This paper analyzes the dynamic responses of DSI-type constant-flow valves that is designed as double pistons on both ends of a spool with single feedback of working pressure and regulating restriction at inlet. In this study the static analysis presents the specific relationships among design parameters for constant flow rate and the dynamic analyses give the variations around the constant flow rate as the working pressure fluctuates.

  18. TheClinical Research Tool: a high-performance microdialysis-based system for reliably measuring interstitial fluid glucose concentration.

    PubMed

    Ocvirk, Gregor; Hajnsek, Martin; Gillen, Ralph; Guenther, Arnfried; Hochmuth, Gernot; Kamecke, Ulrike; Koelker, Karl-Heinz; Kraemer, Peter; Obermaier, Karin; Reinheimer, Cornelia; Jendrike, Nina; Freckmann, Guido

    2009-05-01

    A novel microdialysis-based continuous glucose monitoring system, the so-called Clinical Research Tool (CRT), is presented. The CRT was designed exclusively for investigational use to offer high analytical accuracy and reliability. The CRT was built to avoid signal artifacts due to catheter clogging, flow obstruction by air bubbles, and flow variation caused by inconstant pumping. For differentiation between physiological events and system artifacts, the sensor current, counter electrode and polarization voltage, battery voltage, sensor temperature, and flow rate are recorded at a rate of 1 Hz. In vitro characterization with buffered glucose solutions (c(glucose) = 0 - 26 x 10(-3) mol liter(-1)) over 120 h yielded a mean absolute relative error (MARE) of 2.9 +/- 0.9% and a recorded mean flow rate of 330 +/- 48 nl/min with periodic flow rate variation amounting to 24 +/- 7%. The first 120 h in vivo testing was conducted with five type 1 diabetes subjects wearing two systems each. A mean flow rate of 350 +/- 59 nl/min and a periodic variation of 22 +/- 6% were recorded. Utilizing 3 blood glucose measurements per day and a physical lag time of 1980 s, retrospective calibration of the 10 in vivo experiments yielded a MARE value of 12.4 +/- 5.7. Clarke error grid analysis resulted in 81.0%, 16.6%, 0.8%, 1.6%, and 0% in regions A, B, C, D, and E, respectively. The CRT demonstrates exceptional reliability of system operation and very good measurement performance. The ability to differentiate between artifacts and physiological effects suggests the use of the CRT as a reference tool in clinical investigations. 2009 Diabetes Technology Society.

  19. The Clinical Research Tool: A High-Performance Microdialysis-Based System for Reliably Measuring Interstitial Fluid Glucose Concentration

    PubMed Central

    Ocvirk, Gregor; Hajnsek, Martin; Gillen, Ralph; Guenther, Arnfried; Hochmuth, Gernot; Kamecke, Ulrike; Koelker, Karl-Heinz; Kraemer, Peter; Obermaier, Karin; Reinheimer, Cornelia; Jendrike, Nina; Freckmann, Guido

    2009-01-01

    Background A novel microdialysis-based continuous glucose monitoring system, the so-called Clinical Research Tool (CRT), is presented. The CRT was designed exclusively for investigational use to offer high analytical accuracy and reliability. The CRT was built to avoid signal artifacts due to catheter clogging, flow obstruction by air bubbles, and flow variation caused by inconstant pumping. For differentiation between physiological events and system artifacts, the sensor current, counter electrode and polarization voltage, battery voltage, sensor temperature, and flow rate are recorded at a rate of 1 Hz. Method In vitro characterization with buffered glucose solutions (cglucose = 0 - 26 × 10-3 mol liter-1) over 120 h yielded a mean absolute relative error (MARE) of 2.9 ± 0.9% and a recorded mean flow rate of 330 ± 48 nl/min with periodic flow rate variation amounting to 24 ± 7%. The first 120 h in vivo testing was conducted with five type 1 diabetes subjects wearing two systems each. A mean flow rate of 350 ± 59 nl/min and a periodic variation of 22 ± 6% were recorded. Results Utilizing 3 blood glucose measurements per day and a physical lag time of 1980 s, retrospective calibration of the 10 in vivo experiments yielded a MARE value of 12.4 ± 5.7. Clarke error grid analysis resulted in 81.0%, 16.6%, 0.8%, 1.6%, and 0% in regions A, B, C, D, and E, respectively. Conclusion The CRT demonstrates exceptional reliability of system operation and very good measurement performance. The ability to differentiate between artifacts and physiological effects suggests the use of the CRT as a reference tool in clinical investigations. PMID:20144284

  20. Development of a Small Area Sniffer

    NASA Technical Reports Server (NTRS)

    Meade, Laurie A.

    1995-01-01

    The aim of this project is to develop and implement a sniffer that is capable of measuring the mass flow rate of air through a small area of pinholes whose diameters are on the magnitude of thousandths of an inch. The sniffer is used to scan a strip of a leading edge panel, which is being used in a hybrid laminar flow control experiment, in order to survey the variations in the amount of air that passes through the porous surface at different locations. Spanwise scans are taken at different chord locations by increasing the pressure in a control volume that is connected to the sniffer head, and recording the drop in pressure as the air is allowed to flow through the tiny holes. This information is used to obtain the mass flow through the structure. More importantly, the deviations from the mean flow rate are found and used to determine whether there are any significant variations in the flow rate from one area to the next. The preliminary results show little deviation in the spanwise direction. These results are important when dealing with the location and amount of suction that will be applied to the leading edge in the active laminar flow control experiment.

  1. Water balance in irrigation districts. Uncertainty in on-demand pressurized networks

    NASA Astrophysics Data System (ADS)

    Sánchez-Calvo, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco Vicente

    2015-04-01

    In on-demand pressurized irrigation distribution networks, applied water volume is usually controlled opening a valve during a calculated time interval, and assuming constant flow rate. In general, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of pressure conditions. A pressure regulating valve PRV is the commonly used pressure regulating device in a hydrant, which, also, executes the open and close function. A hydrant feeds several irrigation units, requiring a wide range in flow rate. In addition, some flow meters are also available, one as a component of the hydrant and the rest are placed downstream. Every land owner has one flow meter for each group of field plots downstream the hydrant. Ideal PRV performance would maintain a constant downstream pressure. However, the true performance depends on both upstream pressure and the discharged flow rate. Theoretical flow rates values have been introduced into a PRV behavioral model, validated in laboratory, coupled with an on-demand irrigation district waterworks, composed by a distribution network and a multi-pump station. Variations on flow rate are simulated by taking into account the consequences of variations on climate conditions and also decisions in irrigation operation, such us duration and frequency application. The model comprises continuity, dynamic and energy equations of the components of both the PRV and the water distribution network. In this work the estimation of water balance terms during the irrigation events in an irrigation campaign has been simulated. The effect of demand concentration peaks has been estimated.

  2. Cosmic ray exposure dating with in situ produced cosmogenic 3He: results from young Hawaiian lava flows

    USGS Publications Warehouse

    Kurz, M.D.; Colodner, D.; Trull, T.W.; Moore, R.B.; O'Brien, K.

    1990-01-01

    In an effort to determine the in situ production rate of spallation-produced cosmogenic 3He, and evaluate its use as a surface exposure chronometer, we have measured cosmogenic helium contents in a suite of Hawaiian radiocarbon-dated lava flows. The lava flows, ranging in age from 600 to 13,000 years, were collected from Hualalai and Mauna Loa volcanoes on the island of Hawaii. Because cosmic ray surface-exposure dating requires the complete absence of erosion or soil cover, these lava flows were selected specifically for this purpose. The 3He production rate, measured within olivine phenocrysts, was found to vary significantly, ranging from 47 to 150 atoms g-1 yr-1 (normalized to sea level). Although there is considerable scatter in the data, the samples younger than 10,000 years are well-preserved and exposed, and the production rate variations are therefore not related to erosion or soil cover. Data averaged over the past 2000 years indicate a sea-level 3He production rate of 125 ?? 30 atoms g-1 yr-1, which agrees well with previous estimates. The longer record suggests a minimum in sea level normalized 3He production rate between 2000 and 7000 years (55 ?? 15 atoms g-1 yr-1), as compared to samples younger than 2000 years (125 ?? 30 atoms g-1 yr-1), and those between 7000 and 10,000 years (127 ?? 19 atoms g-1 yr-1). The minimum in production rate is similar in age to that which would be produced by variations in geomagnetic field strength, as indicated by archeomagnetic data. However, the production rate variations (a factor of 2.3 ?? 0.8) are poorly determined due to the large uncertainties in the youngest samples and questions of surface preservation for the older samples. Calculations using the atmospheric production model of O'Brien (1979) [35], and the method of Lal and Peters (1967) [11], predict smaller production rate variations for similar variation in dipole moment (a factor of 1.15-1.65). Because the production rate variations, archeomagnetic data, and theoretical estimates are not well determined at present, the relationship between dipole moment and production rate will require further study. Precise determination of the production rate is an important uncertainty in the surface-exposure technique, but the data demonstrate that it is feasible to date samples as young as 600 years of age providing that there has been no erosion or soil cover. Therefore, the technique will have important applications for volcanology, glacial geology, geomorphology and archaeology. ?? 1990.

  3. Improved analysis of transient temperature data from permanent down-hole gauges (PDGs)

    NASA Astrophysics Data System (ADS)

    Zhang, Yiqun; Zheng, Shiyi; Wang, Qi

    2017-08-01

    With the installation of permanent down-hole gauges (PDGs) during oil field development, large volumes of high resolution and continuous down-hole information are obtainable. The interpretation of these real-time temperature and pressure data can optimize well performance, provide information about the reservoir and continuously calibrate the reservoir model. Although the dynamic temperature data have been interpreted in practice to predict flow profiling and provide characteristic information of the reservoir, almost all of the approaches rely on established non-isothermal models which depend on thermodynamic parameters. Another problem comes from the temperature transient analysis (TTA), which is underutilized compared with pressure transient analysis (PTA). In this study, several model-independent methods of TTA were performed. The entire set of PDG data consists of many flow events. By utilizing the wavelet transform, the exact points of flow-rate changes can be located. The flow regime changes, for example, from early time linear flow to later time pseudo-radial flow, among every transient period with constant flow-rate. For the early time region (ETR) that is caused by flow-rate change operations, the TTA, along with the PTA can greatly reduce the uncertainties in flow regime diagnosis. Then, the temperature variations during ETR were examined to infer the true reservoir temperature history, and the relationships between the wavelet detailed coefficients and the flow-rate changes were analysed. For the scenarios with constant reservoir-well parameters, the detailed flow-rate history can be generated by calculating the coefficient of relationship in advance. For later times, the flow regime changes to pseudo-radial flow. An analytical solution was introduced to describe the sand-face temperature. The formation parameters, such as permeability and skin factor, were estimated with the previously calculated flow-rate. It is necessary to analyse temperature variation to overcome data limitation problems when information from other down-hole tools (e.g. expensive but unstable flow meters) is insufficient. This study shows the success in wellbore storage regime diagnosis, flow-rate history reconstruction, and formation parameters estimation using transient temperature data.

  4. Mathematical and physical model of gravity-fed infusion outflow: application to soft-bag-packed solutions.

    PubMed

    Simon, N; Décaudin, B; Lannoy, D; Barthélémy, C; Lemdani, M; Odou, P

    2011-12-01

    Gravity-fed infusion (GFI) systems are acknowledged as being unable to keep their flow-rate constant. This may affect drug plasma levels such as aminoglycosides. Numerous factors have previously been cited, but their relative importance has never been quantified so far. The objective of this work is to identify the main factors that influence GFI in vitro outflow and to propose a mathematical model of flow-rate evolution as a function of time. In this model, pressure loss and infusion device creep have been considered as the main variation factors. Concomitantly, two experiments were undertaken. Firstly, the flow-rate evolution of an in vitro infusion of 250 mL of dextrose 5% was assessed. Secondly, the creep occurring on an infusion device was measured through a stress relaxation experiment. The experimental infusion flow-rate decreased by as much as 28.5% over 1 h. Simulated and experimental data are well correlated (r = 0.987; P < 0.0001). The maximum creep effect happens during the first 15 min of infusion. In this work, height of the liquid in the bag and tube creep were found to be the main variation factors in GFI flow-rate. This new mathematical model should help to explain the differences observed in drug plasma levels with gravity-fed devices.

  5. Ascraeus Mons

    NASA Image and Video Library

    2003-04-16

    The surface textures observed in this NASA Mars Odyssey image of Ascraeus Mons are due to different volcanic flow types. Textural variations can be produced under a variety of different conditions such as varying cooling and flow rates.

  6. Performance of a restrictive flow device and an electronic syringe driver for continuous subcutaneous infusion.

    PubMed

    Capes, D; Martin, K; Underwood, R

    1997-10-01

    The aim of this study was to investigate the flow performance of the mechanical Springfusor 30 short model and the electronic Graseby MS16A. Flow rate was measured gravimetrically in a temperature-controlled cabinet. There was no statistically significant difference between the Graseby and Springfusor syringe drivers in the flow rate error at 25 degrees C. The percentage of flow rates within +/-20% accuracy during a 35-min periods at 25 degrees C was significantly less with the Graseby, being 91.9% compared with 100% for the Springfusor. Only 58.2% of flow rates with the Graseby were within the manufacturer claimed accuracy of +/-5%. The flow rate of the Springfusor was affected by temperature; at 30 degrees C the mean flow rate was 10.8% greater than at 25 degrees C. These results indicate that the Springfusor 30 had less flow rate variation than the Graseby MS16A. However, this would not be expected to cause noticeable clinical effects when used for opioid infusion in palliative care.

  7. Heterogeneous photocatalytic oxidation of atmospheric trace contaminants

    NASA Technical Reports Server (NTRS)

    Ollis, David F.; Peral, Jose

    1991-01-01

    The following subject areas are covered: (1) design and construction of continuous flow photoreactor for study of oxidation of trace atmospheric contaminants; (2) establishment of kinetics of acetone oxidation including adsorption equilibration, variation of oxidation rate with acetone concentration and water (inhibitor), and variation of rate and apparent quantum yield with light intensity; (3) exploration of kinetics of butanol oxidation, including rate variation with concentration of butanol, and lack of inhibition by water; and (4) exploration of kinetics of catalyst deactivation during oxidation of butanol, including deactivation rate, influence of dark conditions, and establishment of photocatalytic regeneration of activity in alcohol-free air.

  8. Variations from morning to afternoon of middle cerebral and umbilical artery blood flow, and fetal heart rate variability, and fetal characteristics in the normally developing fetus.

    PubMed

    Avitan, Tehila; Sanders, Ari; Brain, Ursula; Rurak, Dan; Oberlander, Tim F; Lim, Ken

    2018-05-01

    To determine if there are changes in maternal uterine blood flow, fetal brain blood flow, fetal heart rate variability, and umbilical blood flow between morning (AM) and afternoon (PM) in healthy, uncomplicated pregnancies. In this prospective study, 68 uncomplicated singleton pregnancies (mean 35 + 0.7 weeks gestation) underwent a standard observational protocol at both 08:00 (AM) and 13:30 (PM) of the same day. This protocol included Doppler measurements of uterine, umbilical, and fetal middle cerebral artery (MCA) volume flow parameters (flow, HR, peak systolic velocity [PSV], PI, and RI) followed by computerized cardiotocography. Standard descriptive statistics, χ 2 and t tests were used where appropriate. P < .05 was considered significant. A significant increase in MCA flow and MCA PSV was observed in the PM compared to the AM. This was accompanied by a fall in MCA resistance. Higher umbilical artery resistance indices were also observed in the PM compared to AM. In contrast, fetal heart rate characteristics, maternal uterine artery Doppler flow and resistance indices did not vary significantly between the AM and PM. In normal pregnancies, variations in fetal cerebral and umbilical blood flow parameters were observed between AM and PM independent of other fetal movements or baseline fetal heart rate. In contrast, uterine flow parameters remained stable across the day. These findings may have implications for the use of serial Doppler parameters used to guide clinical management in high-risk pregnancies. © 2017 Wiley Periodicals, Inc.

  9. Inhibition of viscous fluid fingering: A variational scheme for optimal flow rates

    NASA Astrophysics Data System (ADS)

    Miranda, Jose; Dias, Eduardo; Alvarez-Lacalle, Enrique; Carvalho, Marcio

    2012-11-01

    Conventional viscous fingering flow in radial Hele-Shaw cells employs a constant injection rate, resulting in the emergence of branched interfacial shapes. The search for mechanisms to prevent the development of these bifurcated morphologies is relevant to a number of areas in science and technology. A challenging problem is how best to choose the pumping rate in order to restrain growth of interfacial amplitudes. We use an analytical variational scheme to look for the precise functional form of such an optimal flow rate. We find it increases linearly with time in a specific manner so that interface disturbances are minimized. Experiments and nonlinear numerical simulations support the effectiveness of this particularly simple, but not at all obvious, pattern controlling process. J.A.M., E.O.D. and M.S.C. thank CNPq/Brazil for financial support. E.A.L. acknowledges support from Secretaria de Estado de IDI Spain under project FIS2011-28820-C02-01.

  10. Development of Design Review Procedures for Army Air Pollution Abatement Projects. Volume II. Appendices.

    DTIC Science & Technology

    1980-07-01

    flow rate wet based on %02 (ACFMWX) RAO RGWO2 (Ts + 460 ) 29.92 2 2 x 530 (Pb + Ps/13.6) OPTION TWO 25. Percent oxygen in flue gas as calculated from...Flow Characteristics of Gas Stream A-29 A.3.5.1 Flow Rate A-29 A.3.5.2 Variations in Flow Rate A-30 A.3.5.3 Changes in Properties A-30 A.3.5.4 Control ...Size and Concentration B-3 B.l.l.2 Electrical Conditions B-5 B.1.1.3 Reentrainment of Dust B-7 B.l.l.4 Gas Flow Uniformity B-7 B.1.2 Flue Gas

  11. The cooling rates of pahoehoe flows: The importance of lava porosity

    NASA Technical Reports Server (NTRS)

    Jones, Alun C.

    1993-01-01

    Many theoretical models have been put forward to account for the cooling history of a lava flow; however, only limited detailed field data exist to validate these models. To accurately model the cooling of lava flows, data are required, not only on the heat loss mechanisms, but also on the surface skin development and the causes of differing cooling rates. This paper argues that the cause of such variations in the cooling rates are attributed, primarily, to the vesicle content and degassing history of the lava.

  12. Urine flow is a novel hemodynamic monitoring tool for the detection of hypovolemia.

    PubMed

    Shamir, Micha Y; Kaplan, Leonid; Marans, Rachel S; Willner, Dafna; Klein, Yoram

    2011-03-01

    Noticeable changes in vital signs indicating hypovolemia occur only after 15% of the blood volume is lost. More sensitive variables (e.g., cardiac output, systolic pressure variation and its Δdown component) are invasive and difficult to obtain in the early phase of bleeding. Lately, a new technology for continuous optical measurements of minute-to-minute urine flow rates has become available. We performed a preliminary evaluation to determine whether urine flow can act as an early and sensitive warning of hypovolemia. Eleven patients (ASA physical status I-II) undergoing posterior spine fusion surgery were studied prospectively. Study variables included heart rate, blood pressure (systolic and diastolic), systolic pressure variation and Δdown, minute urinary flow, hemoglobin, blood and urinary sodium, and creatinine in the blood and urine. Urine flow rate was measured using URINFO 2000™ (FlowSense Medical, Misgav, Israel). After recording baseline variables, 10 mL/kg of the patient's blood was shed and a second set of variables was recorded. Subsequently, hypovolemia was reversed by infusing colloid solution (hetastarch 6%) followed by recording a third set of variables. These 3 observations were then compared. An average of 614 ± 143 mL (mean ± SD) of blood was shed. During phlebotomy, the mean urine flow rate decreased from 5.7 ± 8 mL/min to 1.07 ± 2.5 mL/min. Systolic blood pressure and hemoglobin also decreased. Δdown increased. After rehydration, urine flow, blood pressure, and Δdown values returned to baseline. The hemoglobin concentration decreased whereas other variables did not change significantly. Urine flow rate is a dynamic variable that seems to be a reliable indicator of changes in blood volume. These results justify further investigation.

  13. FLOWMETER

    DOEpatents

    November, G.S.; Schute, F.

    1962-02-20

    A fluid flowmeter is designed in which a standing pressure wave is established. The amplitude of this standing wave is a function of the fluid flow rate so that pressure sensing devices may be used to indicate fluid flow and variations thereof. (AEC)

  14. A survey of the role of thermodynamic stability in viscous flow

    NASA Technical Reports Server (NTRS)

    Horne, W. C.; Smith, C. A.; Karamcheti, K.

    1991-01-01

    The stability of near-equilibrium states has been studied as a branch of the general field of nonequilibrium thermodynamics. By treating steady viscous flow as an open thermodynamic system, nonequilibrium principles such as the condition of minimum entropy-production rate for steady, near-equilibrium processes can be used to generate flow distributions from variational analyses. Examples considered in this paper are steady heat conduction, channel flow, and unconstrained three-dimensional flow. The entropy-production-rate condition has also been used for hydrodynamic stability criteria, and calculations of the stability of a laminar wall jet support this interpretation.

  15. The flow structure of jets from transient sources and implications for modeling short-duration explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Chojnicki, K. N.; Clarke, A. B.; Adrian, R. J.; Phillips, J. C.

    2014-12-01

    We used laboratory experiments to examine the rise process in neutrally buoyant jets that resulted from an unsteady supply of momentum, a condition that defines plumes from discrete Vulcanian and Strombolian-style eruptions. We simultaneously measured the analog-jet discharge rate (the supply rate of momentum) and the analog-jet internal velocity distribution (a consequence of momentum transport and dilution). Then, we examined the changes in the analog-jet velocity distribution over time to assess the impact of the supply-rate variations on the momentum-driven rise dynamics. We found that the analog-jet velocity distribution changes significantly and quickly as the supply rate varied, such that the whole-field distribution at any instant differed considerably from the time average. We also found that entrainment varied in space and over time with instantaneous entrainment coefficient values ranging from 0 to 0.93 in an individual unsteady jet. Consequently, we conclude that supply-rate variations exert first-order control over jet dynamics, and therefore cannot be neglected in models without compromising their capability to predict large-scale eruption behavior. These findings emphasize the fundamental differences between unsteady and steady jet dynamics, and show clearly that: (i) variations in source momentum flux directly control the dynamics of the resulting flow; (ii) impulsive flows driven by sources of varying flux cannot reasonably be approximated by quasi-steady flow models. New modeling approaches capable of describing the time-dependent properties of transient volcanic eruption plumes are needed before their trajectory, dilution, and stability can be reliably computed for hazards management.

  16. Deep Zonal Flow and Time Variation of Jupiter’s Magnetic Field

    NASA Astrophysics Data System (ADS)

    Cao, Hao; Stevenson, David J.

    2017-10-01

    All four giant planets in the Solar System feature zonal flows on the order of 100 m/s in the cloud deck, and large-scale intrinsic magnetic fields on the order of 1 Gauss near the surface. The vertical structure of the zonal flows remains obscure. The end-member scenarios are shallow flows confined in the radiative atmosphere and deep flows throughout the entire planet. The electrical conductivity increases rapidly yet smoothly as a function of depth inside Jupiter and Saturn. Deep zonal flows will advect the non-axisymmetric component of the magnetic field, at depth with even modest electrical conductivity, and create time variations in the magnetic field.The observed time variations of the geomagnetic field has been used to derive surface flows of the Earth’s outer core. The same principle applies to Jupiter, however, the connection between the time variation of the magnetic field (dB/dt) and deep zonal flow (Uphi) at Jupiter is not well understood due to strong radial variation of electrical conductivity. Here we perform a quantitative analysis of the connection between dB/dt and Uphi for Jupiter adopting realistic interior electrical conductivity profile, taking the likely presence of alkali metals into account. This provides a tool to translate expected measurement of the time variation of Jupiter’s magnetic field to deep zonal flows. We show that the current upper limit on the dipole drift rate of Jupiter (3 degrees per 20 years) is compatible with 10 m/s zonal flows with < 500 km vertical scale height below 0.972 Rj. We further demonstrate that fast drift of resolved magnetic features (e.g. magnetic spots) at Jupiter is a possibility.

  17. Milk Flow Rates from bottle nipples used after hospital discharge.

    PubMed

    Pados, Britt Frisk; Park, Jinhee; Thoyre, Suzanne M; Estrem, Hayley; Nix, W Brant

    To test the milk flow rates and variability in flow rates of bottle nipples used after hospital discharge. Twenty-six nipple types that represented 15 common brands as well as variety in price per nipple and store location sold (e.g., Babies R' Us, Walmart, Dollar Store) were chosen for testing. Ten of each nipple type (n = 260 total) were tested by measuring the amount of infant formula expressed in 1 minute using a breast pump. Mean milk flow rate (mL/min) and coefficient of variation (CV) were calculated. Flow rates of nipples within brand were compared statistically. Milk flow rates varied from 1.68 mL/min for the Avent Natural Newborn Flow to 85.34 mL/min for the Dr. Brown's Standard Y-cut. Variability between nipple types also varied widely, from .03 for the Dr. Brown's Standard Level 3 to .37 for MAM Nipple 1 Slow Flow. The extreme range of milk flow rates found may be significant for medically fragile infants being discharged home who are continuing to develop oral feeding skills. The name of the nipple does not provide clear information about the flow rate to guide parents in decision making. Variability in flow rates within nipples of the same type may complicate oral feeding for the medically fragile infant who may not be able to adapt easily to change in flow rates. Both flow rate and variability should be considered when guiding parents to a nipple choice.

  18. Nonlinear flow affects hydrodynamic forces and neutrophil adhesion rates in cone-plate viscometers.

    PubMed Central

    Shankaran, H; Neelamegham, S

    2001-01-01

    We present a theoretical and experimental analysis of the effects of nonlinear flow in a cone-plate viscometer. The analysis predicts that flow in the viscometer is a function of two parameters, the Reynolds number and the cone angle. Nonlinear flow occurs at high shear rates and causes spatial variations in wall shear stress, collision frequency, interparticle forces and attachment times within the viscometer. We examined the effect of these features on cellular adhesion kinetics. Based on recent data (Taylor, A. D., S. Neelamegham, J. D. Hellums, et al. 1996. Biophys. J. 71:3488-3500), we modeled neutrophil homotypic aggregation as a process that is integrin-limited at low shear and selectin-limited at high shear. Our calculations suggest that selectin and integrin on-rates lie in the order of 10(-2)-10(-4)/s. They also indicate that secondary flow causes positional variations in adhesion efficiency in the viscometer, and that the overall efficiency is dependent not only on the shear rate, but also the sample volume and the cone angle. Experiments performed with isolated neutrophils confirmed these predictions. In these experiments, enhancing secondary flow by increasing the sample volume from 100 to 1000 microl at 1500/s for a 2 degrees cone caused up to an approximately 45% drop in adhesion efficiency. Our results suggest that secondary flow may significantly influence cellular aggregation, platelet activation, and endothelial cell mechanotransduction measurements made in the viscometer over the range of conditions applied in typical biological studies. PMID:11371440

  19. Invited article: Time accurate mass flow measurements of solid-fueled systems.

    PubMed

    Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  20. Invited Article: Time accurate mass flow measurements of solid-fueled systems

    NASA Astrophysics Data System (ADS)

    Olliges, Jordan D.; Lilly, Taylor C.; Joslyn, Thomas B.; Ketsdever, Andrew D.

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  1. Estimating perceived phonatory pressedness in singing from flow glottograms.

    PubMed

    Sundberg, Johan; Thalén, Margareta; Alku, Paavo; Vilkman, Erkki

    2004-03-01

    The normalized amplitude quotient (NAQ), defined as the ratio between the peak-to-peak amplitude of the flow pulse and the negative peak amplitude of the differentiated flow glottogram and normalized with respect to period time, has been shown to be related to glottal adduction. Glottal adduction, in turn, affects mode of phonation and hence perceived phonatory pressedness. The relationship between NAQ and perceived phonatory pressedness was analyzed in a material collected from a professional female singer and singing teacher who sang a triad pattern in breathy, flow, neutral, and pressed phonation in three different loudness conditions (soft, middle, loud). In addition, she also sang the same triad pattern in four different styles of singing, classical, pop, jazz, and blues, in the same three loudness conditions. A panel of experts rated the degree of perceived phonatory press along visual analogue scales. Comparing the obtained mean rated pressedness ratings with the mean NAQ values for the various triads showed that about 73% of the variation in perceived pressedness could be accounted for by variations of NAQ.

  2. Exercise intensity and its impact on relationships between salivary immunoglobulin A, saliva flow rate and plasma cortisol concentration.

    PubMed

    Leicht, Christof A; Goosey-Tolfrey, Victoria L; Bishop, Nicolette C

    2018-06-01

    Salivary secretory immunoglobulin A (sIgA), saliva flow rate and plasma cortisol concentrations have been shown to be influenced by exercise, particularly the intensity exercise is performed at, and circadian variation. The autonomic nervous system partly regulates salivary secretion, but it is not yet known whether cortisol also explains some variation in salivary parameters. Twelve moderately trained male individuals ([Formula: see text] peak legs : 46.2 ± 6.8 mL·kg -1 ·min -1 ) performed three 45-min constant load exercise trials in the morning: arm cranking exercise at 60%[Formula: see text] peak arms ; moderate cycling at 60%[Formula: see text] peak legs ; and easy cycling at 60%[Formula: see text] peak arms . Timed saliva samples and blood samples for plasma cortisol concentration determination were obtained before, post, 2 h post, and 4 h post-exercise. Saliva was collected in an additional resting trial at the same time points. At each time point for each exercise trial, negative correlations between cortisol and saliva flow rate (explaining 25 ± 17% of the variance, R 2  = 0.002-0.46) and positive correlations between cortisol and sIgA concentration (explaining 8 ± 8% of the variance R 2  = 0.002-0.24) were found. Saliva flow rate increased over time, whereas sIgA concentration and cortisol decreased over time for all trials (P < 0.05), there was no effect of time for sIgA secretion rate (P = 0.16). These results show a relationship between cortisol and saliva flow rate, which directly impacts on the concentration of salivary analytes. This study further confirms circadian variations in salivary parameters which must be acknowledged when standardising salivary data collection.

  3. Sediment Transport Dynamics and Bedform Evolution During Unsteady Flows

    NASA Astrophysics Data System (ADS)

    Hu, H.; Parsons, D. R.; Ockelford, A.; Hardy, R. J.; Ashworth, P. J.; Best, J.

    2016-12-01

    Dunes are ubiquitous features in sand bed rivers and estuaries, and their formation, growth and kinematics play a dominant role in boundary flow structure, flow resistance and sediment transport processes. However, bedform evolution and dynamics during the rising/falling limb of a flood wave remain poorly understood. Herein, we report on a series of flume experiments, undertaken at the University of Hull's Total Environment Simulator flume/wave tank facility, with imposed flow variations and different hydrographs: i) a sudden (shock) change, ii) a fast flood wave and iii) a slow flood wave. Our analysis shows that, because of changes of sediment transport mechanisms with discharge, the sediment flux rather than bedform migration rate is a more appropriate parameter to relate to transport stage. This is particularly the case during bedload transport dominated periods at lower flow discharge, where a strong power law relationship was detected. In terms of varying processes across the hydrograph limbs, bedform evolution during the rising limb is dominated not only by bedform amalgamation but also by the washing out of smaller-scale bedforms. Furthermore, bedform growth is independent of the rising rate of the hydrograph limb, while evolution of bedform decay is affected by the rate of discharge decrease. This results in an anticlockwise hysteresis between transport stage and total flux was found in fast wave experiment, indicating a significant role of the change in sediment transport mechanisms on bedform evolution. Moreover, analysis on the variation of deformation fraction (F, ratio of the deformation flux to the total bed material flux) suggests that net degradation of the bed enhances bedform deformation and leads to a higher F ( 0.65). This work extends our knowledge on how dunes generate and develop under variable flows and has begun to explore how variations in transport stage can be coupled with the variation in sediment transport mechanisms, and/or sediment supply which can help improve the modelling of sediment transport processes.

  4. Erosion by an Alpine glacier.

    PubMed

    Herman, Frédéric; Beyssac, Olivier; Brughelli, Mattia; Lane, Stuart N; Leprince, Sébastien; Adatte, Thierry; Lin, Jiao Y Y; Avouac, Jean-Philippe; Cox, Simon C

    2015-10-09

    Assessing the impact of glaciation on Earth's surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes and the difficulty of examining the ice/bedrock interface of contemporary glaciers. We demonstrate that the glacial erosion rate is proportional to the ice-sliding velocity squared, by quantifying spatial variations in ice-sliding velocity and the erosion rate of a fast-flowing Alpine glacier. The nonlinear behavior implies a high erosion sensitivity to small variations in topographic slope and precipitation. A nonlinear rate law suggests that abrasion may dominate over other erosion processes in fast-flowing glaciers. It may also explain the wide range of observed glacial erosion rates and, in part, the impact of glaciation on mountainous landscapes during the past few million years. Copyright © 2015, American Association for the Advancement of Science.

  5. Influence of the variation potential on photosynthetic flows of light energy and electrons in pea.

    PubMed

    Sukhova, Ekaterina; Mudrilov, Maxim; Vodeneev, Vladimir; Sukhov, Vladimir

    2018-05-01

    Local damage (mainly burning, heating, and mechanical wounding) induces propagation of electrical signals, namely, variation potentials, which are important signals during the life of plants that regulate different physiological processes, including photosynthesis. It is known that the variation potential decreases the rate of CO 2 assimilation by the Calvin-Benson cycle; however, its influence on light reactions has been poorly investigated. The aim of our work was to investigate the influence of the variation potential on the light energy flow that is absorbed, trapped and dissipated per active reaction centre in photosystem II and on the flow of electrons through the chloroplast electron transport chain. We analysed chlorophyll fluorescence in pea leaves using JIP-test and PAM-fluorometry; we also investigated delayed fluorescence. The electrical signals were registered using extracellular electrodes. We showed that the burning-induced variation potential stimulated a nonphotochemical loss of energy in photosystem II under dark conditions. It was also shown that the variation potential gradually increased the flow of light energy absorbed, trapped and dissipated by photosystem II. These changes were likely caused by an increase in the fraction of absorbed light distributed to photosystem II. In addition, the variation potential induced a transient increase in electron flow through the photosynthetic electron transport chain. Some probable mechanisms for the influence of the variation potential on the light reactions of photosynthesis (including the potential role of intracellular pH decrease) are discussed in the work.

  6. An experimental study of the fluid mechanics associated with porous walls

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Heaman, J.; Smith, A.

    1992-01-01

    The fluid mechanics of air exiting from a porous material is investigated. The experiments are filter rating dependent, as porous walls with filter ratings differing by about three orders of magnitude are studied. The flow behavior is investigated for its spatial and temporal stability. The results from the investigation are related to jet behavior in at least one of the following categories: (1) jet coalescence effects with increasing flow rate; (2) jet field decay with increasing distance from the porous wall; (3) jet field temporal turbulence characteristics; and (4) single jet turbulence characteristics. The measurements show that coalescence effects cause jet development, and this development stage can be traced by measuring the pseudoturbulence (spatial velocity variations) at any flow rate. The pseudoturbulence variation with increasing mass flow reveals an initial increasing trend followed by a leveling trend, both of which are directly proportional to the filter rating. A critical velocity begins this leveling trend and represents the onset of fully developed jetting action in the flow field. A correlation is developed to predict the onset of fully developed jets in the flow emerging from a porous wall. The data further show that the fully developed jet dimensions are independent of the filter rating, thus providing a length scale for this type of flow field (1 mm). Individual jet characteristics provide another unifying trend with similar velocity decay behavior with distance; however, the respective turbulence magnitudes show vast differences between jets from the same sample. Measurements of the flow decay with distance from the porous wall show that the higher spatial frequency components of the jet field dissipate faster than the lower frequency components. Flow turbulence intensity measurements show an out of phase behavior with the velocity field and are generally found to increase as the distance from the wall is increased.

  7. Optical spectral sweep comb liquid flow rate sensor.

    PubMed

    Shen, Changyu; Lian, Xiaokang; Kavungal, Vishnu; Zhong, Chuan; Liu, Dejun; Semenova, Yuliya; Farrell, Gerald; Albert, Jacques; Donegan, John F

    2018-02-15

    In microfluidic chip applications, the flow rate plays an important role. Here we propose a simple liquid flow rate sensor by using a tilted fiber Bragg grating (TFBG) as the sensing element. As the water flows in the vicinity of the TFBG along the fiber axis direction, the TFBG's spectrum changes due to its contact with water. By comparing the time-swept spectra of the TFBG in water to that of the TFBG with water flowing over it, a spectral sweep comb was formed, and the flow rate can be detected by selecting a suitable sweeping frequency. The proposed sensor has a high Q-value of over 17,000 for the lower rate and a large detectable range from 0.0058 mm/s to 3.2 mm/s. And the calculated corresponding lower detectable flow rate of 0.03 nL/s is 3 orders magnitude better than that of the current fiber flowmeter. Meanwhile, the proposed sensor has the temperature self-compensation function for the variation of the external temperature. We believe that this simple configuration will open a research direction of the TFBG-deriving theory and configuration for lower flow rate measurements for microfluidic chip applications.

  8. Composition Pulse Time-Of-Flight Mass Flow Sensor

    DOEpatents

    Mosier, Bruce P.; Crocker, Robert W.; Harnett, Cindy K. l

    2004-01-13

    A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 10,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined

  9. Paving the seafloor: Volcanic emplacement processes during the 2005-2006 eruptions at the fast spreading East Pacific Rise, 9°50‧N

    NASA Astrophysics Data System (ADS)

    Fundis, A. T.; Soule, S. A.; Fornari, D. J.; Perfit, M. R.

    2010-08-01

    The 2005-2006 eruptions near 9°50'N at the East Pacific Rise (EPR) marked the first observed repeat eruption at a mid-ocean ridge and provided a unique opportunity to deduce the emplacement dynamics of submarine lava flows. Since these new flows were documented in April 2006, a total of 40 deep-towed imaging surveys have been conducted with the Woods Hole Oceanographic Institution's (WHOI) TowCam system. More than 60,000 digital color images and high-resolution bathymetric profiles of the 2005-2006 flows from the TowCam surveys were analyzed for lava flow morphology and for the presence of kipukas, collapse features, faults and fissures. We use these data to quantify the spatial distributions of lava flow surface morphologies and to investigate how they relate to the physical characteristics of the ridge crest, such as seafloor slope, and inferred dynamics of flow emplacement. We conclude that lava effusion rate was the dominant factor controlling the observed morphological variations in the 2005-2006 flows. We also show that effusion rates were higher than in previously studied eruptions at this site and varied systematically along the length of the eruptive fissure. This is the first well-documented study in which variations in seafloor lava morphology can be directly related to a well documented ridge-crest eruption where effusion rate varied significantly.

  10. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.

    PubMed

    Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric

    2012-03-07

    We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.

  11. Milk flow rates from bottle nipples used after hospital discharge

    PubMed Central

    Pados, Britt Frisk; Park, Jinhee; Thoyre, Suzanne M.; Estrem, Hayley; Nix, W. Brant

    2016-01-01

    Purpose To test the milk flow rates and variability in flow rates of bottle nipples used after hospital discharge. Study Design and Methods Twenty-six nipple types that represented 15 common brands as well as variety in price per nipple and store location sold (e.g., Babies R’ Us, Walmart, Dollar Store) were chosen for testing. Ten of each nipple type (n=260 total) were tested by measuring the amount of infant formula expressed in one minute using a breast pump. Mean milk flow rate (mL/min) and coefficient of variation (CV) were calculated. Flow rates of nipples within brand were compared statistically. Results Milk flow rates varied from 1.68 mL/min for the Avent Natural Newborn Flow to 85.34 mL/min for the Dr. Brown’s Standard Y-cut. Variability between nipple types also varied widely, from .03 for the Dr. Brown’s Standard Level 3 to .37 for MAM Nipple 1 Slow Flow. Clinical Implications The extreme range of milk flow rates found may be significant for medically fragile infants being discharged home who are continuing to develop oral feeding skills. The name of the nipple does not provide clear information about the flow rate to guide parents in decision-making. Variability in flow rates within nipples of the same type may complicate oral feeding for the medically fragile infant who may not be able to adapt easily to change in flow rates. Both flow rate and variability should be considered when guiding parents to a nipple choice. PMID:27008466

  12. Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: Method development

    USGS Publications Warehouse

    Hatch, Christine E; Fisher, Andrew T.; Revenaugh, Justin S.; Constantz, Jim; Ruehl, Chris

    2006-01-01

    We present a method for determining streambed seepage rates using time series thermal data. The new method is based on quantifying changes in phase and amplitude of temperature variations between pairs of subsurface sensors. For a reasonable range of streambed thermal properties and sensor spacings the time series method should allow reliable estimation of seepage rates for a range of at least ±10 m d−1 (±1.2 × 10−2 m s−1), with amplitude variations being most sensitive at low flow rates and phase variations retaining sensitivity out to much higher rates. Compared to forward modeling, the new method requires less observational data and less setup and data handling and is faster, particularly when interpreting many long data sets. The time series method is insensitive to streambed scour and sedimentation, which allows for application under a wide range of flow conditions and allows time series estimation of variable streambed hydraulic conductivity. This new approach should facilitate wider use of thermal methods and improve understanding of the complex spatial and temporal dynamics of surface water–groundwater interactions.

  13. The variation of magma discharge during basaltic eruptions

    NASA Technical Reports Server (NTRS)

    Wadge, G.

    1981-01-01

    The different types of magmatic flow in basaltic eruptions are discussed, and processes explaining the eruptive history of specific volcanoes are investigated. The effusion rate curve is divided into waxing and waning flow parts, and the ideal, elastic response of the reservoir in the waning phase is analytically shown. Historical eruption rates of Mauna Loa, Kilauea, and Etna are presented, demonstrating that for each volcano there is a trend of decreasing rate with increasing duration of eruption, a relationship not predicted by a simple elastic model of magma release. The eruptive histories of these volcanoes is explained by the processes of modification of the eruptive conduits and the continued supply of magma from depth during eruption. Discharge variations from Paricutin, Hekla, and Kilauea Iki are discussed in detail.

  14. Heart rate and blood pressure variations after transvascular patent ductus arteriosus occlusion in dogs.

    PubMed

    De Monte, Valentina; Staffieri, Francesco; Caivano, Domenico; Nannarone, Sara; Birettoni, Francesco; Porciello, Francesco; Di Meo, Antonio; Bufalari, Antonello

    2017-08-01

    The objective of the study was to retrospectively analyse the cardiovascular effects that occurs following the transvascular occlusion of patent ductus arteriosus in dogs. Sixteen anaesthesia records were included. Variables were recorded at the time of placing the arterial introducer, occlusion of the ductus, and from 5 to 60min thereafter, including, among the other, heart rate, systolic, diastolic and mean arterial blood pressure. The maximal percentage variation of the aforementioned physiological parameters within 60min of occlusion, compared with the values recorded at the introducer placing, was calculated. The time at which maximal variation occurred was also computed. Correlations between maximal percentage variation of physiological parameters and the diameter of the ductus and systolic and diastolic flow velocity through it were evaluated with linear regression analysis. Heart rate decreased after occlusion of the ductus with a mean maximal percentage variation of 41.0±14.8% after 21.2±13.7min. Mean and diastolic arterial blood pressure increased after occlusion with a mean maximal percentage variation of 30.6±18.1 and 55.4±27.1% after 19.6±12.1 and 15.7±10.8min, respectively. Mean arterial blood pressure variation had a significant and moderate inverse correlation with diastolic and systolic flow velocity through the ductus. Transvascular patent ductus arteriosus occlusion in anaesthetised dogs causes a significant reduction in heart rate and an increase in diastolic and mean blood arterial pressure within 20min of closure of the ductus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Population dynamics of brown trout (Salmo trutta) in Spruce Creek Pennsylvania: A quarter-century perspective

    USGS Publications Warehouse

    Grossman, Gary D.; Carline, Robert F.; Wagner, Tyler

    2017-01-01

    We examined the relationship between density-independent and density-dependent factors on the demography of a dense, relatively unexploited population of brown trout in Spruce Creek Pennsylvania between 1985 and 2011.Individual PCAs of flow and temperature data elucidated groups of years with multiple high flow versus multiple low flow characteristics and high versus low temperature years, although subtler patterns of variation also were observed.Density and biomass displayed similar temporal patterns, ranging from 710 to 1,803 trout/ha and 76–263 kg/ha. We detected a significantly negative linear stock-recruitment relationship (R2 = .39) and there was no evidence that flow or water temperature affected recruitment.Both annual survival and the per-capita rate of increase (r) for the population varied over the study, and density-dependent mechanisms possessed the greatest explanatory power for annual survival data. Temporal trends in population r suggested it displayed a bounded equilibrium with increases observed in 12 years and decreases detected in 13 years.Model selection analysis of per-capita rate of increase data for age 1, and adults (N = eight interpretable models) indicated that both density-dependent (five of eight) and negative density-independent processes (five of eight, i.e. high flows or temperatures), affected r. Recruitment limitation also was identified in three of eight models. Variation in the per-capita rate of increase for the population was most strongly affected by positive density independence in the form of increasing spring–summer temperatures and recruitment limitation.Model selection analyses describing annual variation in both mean length and mass data yielded similar results, although maximum wi values were low ranging from 0.09 to 0.23 (length) and 0.13 to 0.22 (mass). Density-dependence was included in 15 of 15 interpretable models for length and all ten interpretable models for mass. Similarly, positive density-independent effects in the form of increasing autumn–winter flow were present in seven of 15 interpretable models for length and five of ten interpretable models for mass. Negative density independent effects also were observed in the form of high spring–summer flows or temperatures (N = 4), or high autumn–winter temperatures (N = 1).Our analyses of the factors affecting population regulation in an introduced population of brown trout demonstrate that density-dependent forces affected every important demographic characteristic (recruitment, survivorship, the rate of increase, and size) within this population. However, density-independent forces in the form of seasonal variations in flow and temperature also helped explain annual variation in the per-capita rate of increase, and mean length and mass data. Consequently, population regulation within this population is driven by a complex of biotic and environmental factors, although it seems clear that density-dependent factors play a dominant role.

  16. Comparative study of laminar and turbulent flow model with different operating parameters for radio frequency-inductively coupled plasma torch working at 3  MHz frequency at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punjabi, Sangeeta B., E-mail: p.sangeeta@gmail.com; Department of Physics, University of Mumbai, Kalina, Santacruz; Sahasrabudhe, S. N.

    2014-01-15

    This paper provides 2D comparative study of results obtained using laminar and turbulent flow model for RF (radio frequency) Inductively Coupled Plasma (ICP) torch. The study was done for the RF-ICP torch operating at 50 kW DC power and 3 MHz frequency located at BARC. The numerical modeling for this RF-ICP torch is done using ANSYS software with the developed User Defined Function. A comparative study is done between laminar and turbulent flow model to investigate how temperature and flow fields change when using different operating conditions such as (a) swirl and no swirl velocity for sheath gas flow rate, (b) variationmore » in sheath gas flow rate, and (c) variation in plasma gas flow rate. These studies will be useful for different material processing applications.« less

  17. Modeling of the static recrystallization for 7055 aluminum alloy by cellular automaton

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Lu, Shi-hong; Zhang, Jia-bin; Li, Zheng-fang; Chen, Peng; Gong, Hai; Wu, Yun-xin

    2017-09-01

    In order to simulate the flow behavior and microstructure evolution during the pass interval period of the multi-pass deformation process, models of static recovery (SR) and static recrystallization (SRX) by the cellular automaton (CA) method for the 7055 aluminum alloy were established. Double-pass hot compression tests were conducted to acquire flow stress and microstructure variation during the pass interval period. With the basis of the material constants obtained from the compression tests, models of the SR, incubation period, nucleation rate and grain growth were fitted by least square method. A model of the grain topology and a statistical computation of the CA results were also introduced. The effects of the pass interval time, temperature, strain, strain rate and initial grain size on the microstructure variation for the SRX of the 7055 aluminum alloy were studied. The results show that a long pass interval time, large strain, high temperature and large strain rate are beneficial for finer grains during the pass interval period. The stable size of the static recrystallized grain is not concerned with the initial grain size, but mainly depends on the strain rate and temperature. The SRX plays a vital role in grain refinement, while the SR has no effect on the variation of microstructure morphology. Using flow stress and microstructure comparisons of the simulated and experimental CA results, the established CA models can accurately predict the flow stress and microstructure evolution during the pass interval period, and provide guidance for the selection of optimized parameters for the multi-pass deformation process.

  18. Steam distillation extraction of ginger essential oil: Study of the effect of steam flow rate and time process

    NASA Astrophysics Data System (ADS)

    Fitriady, Muhammad Arifuddin; Sulaswatty, Anny; Agustian, Egi; Salahuddin, Aditama, Deska Prayoga Fauzi

    2017-01-01

    In Indonesia ginger was usually used as a seasoning for dishes, an ingredient for beverage and a source of herbal medicines. Beside raw usage, ginger can be processed to obtain the essential oil which has many advantages such as proven to be an active antimicrobial and having an antioxidant ability. There are a lot of methods to extract essential oil from ginger, one of which is steam distillation. The aim of the current study was to investigate the effect of variation of time process and steam flow rate in the yield on ginger essential oil steam distillation extraction process. It was found that the best operation condition was 0.35 ml/s as the steam flow rate which yields 2.43% oil. The optimum time process was predicted at 7.5 hours. The composition of the oil was varied depend on the flow rate and every flow rate has its own major component contained in the oil. Curcumene composition in the oil was increased as increased steam flow rate applied, but the composition of camphene was decreased along with the increasing steam flow rate.

  19. Flowing of supersonic underexpanded micro-jets in the range of moderate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Mironov, S. G.; Aniskin, V. M.; Maslov, A. A.

    2017-10-01

    The paper presents new experimental results on the simulation of supersonic underexpanded micro-jets by macro-jet in the range of moderate Reynolds numbers of air outflow from the nozzle. A correlation is shown between the variations in the Pitot pressure in the model micro-jet with variations in the length of the supersonic core of real the micro-jets. The results of experiments on the effect of humidity on the pulsation of mass flow rate in a micro-jet are presented.

  20. Flow Enhancement due to Elastic Turbulence in Channel Flows of Shear Thinning Fluids

    NASA Astrophysics Data System (ADS)

    Bodiguel, Hugues; Beaumont, Julien; Machado, Anaïs; Martinie, Laetitia; Kellay, Hamid; Colin, Annie

    2015-01-01

    We explore the flow of highly shear thinning polymer solutions in straight geometry. The strong variations of the normal forces close to the wall give rise to an elastic instability. We evidence a periodic motion close the onset of the instability, which then evolves towards a turbulentlike flow at higher flow rates. Strikingly, we point out that this instability induces genuine drag reduction due to the homogenization of the viscosity profile by the turbulent flow.

  1. Flow enhancement due to elastic turbulence in channel flows of shear thinning fluids.

    PubMed

    Bodiguel, Hugues; Beaumont, Julien; Machado, Anaïs; Martinie, Laetitia; Kellay, Hamid; Colin, Annie

    2015-01-16

    We explore the flow of highly shear thinning polymer solutions in straight geometry. The strong variations of the normal forces close to the wall give rise to an elastic instability. We evidence a periodic motion close the onset of the instability, which then evolves towards a turbulentlike flow at higher flow rates. Strikingly, we point out that this instability induces genuine drag reduction due to the homogenization of the viscosity profile by the turbulent flow.

  2. Visualization of flows in a motored rotary combustion engine using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Hicks, Y. R.; Schock, H. J.; Craig, J. E.; Umstatter, H. L.; Lee, D. Y.

    1986-01-01

    The use of holographic interferometry to view the small- and large-scale flow field structures in the combustion chamber of a motored Wankel engine assembly is described. In order that the flow patterns of interest could be observed, small quantities of helium were injected with the intake air. Variation of the air flow patterns with engine speed, helium flow rate, and rotor position are described. The air flow at two locations within the combustion chamber was examined using this technique.

  3. Modelling supply networks and business cycles as unstable transport phenomena

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk

    2003-07-01

    Physical concepts developed to describe instabilities in traffic flows can be generalized in a way that allows one to understand the well-known instability of supply chains (the so-called 'bull-whip effect'). That is, small variations in the consumption rate can cause large variations in the production rate of companies generating the requested product. Interestingly, the resulting oscillations have characteristic frequencies which are considerably lower than the variations in the consumption rate. This suggests that instabilities of supply chains may be the reason for the existence of business cycles. At the same time, we establish some links to queueing theory and between micro- and macroeconomics.

  4. Avoid cruising on the uroflowmeter: evaluation of cruising artifact on spinning disc flowmeters in an experimental setup.

    PubMed

    Addla, Sanjai Kumar; Marri, Rajender Reddy; Daayana, Sai Lakshmi; Irwin, Paul

    2010-09-01

    The aim of our study was to access the variability of maximum flow rate (Q(max)), average flow rate (Q(av)) and flow pattern while varying the point of impact of flow on the flowmeter. Water was delivered through a motorised tube holder in a standardised experimental set up. Flow was directed in 4 different directions on the funnel; 1) Periphery, 2) Base, 3) Centre and, 4) in a cruising motion from the periphery of the funnel to the centre and back again. The variation in the Q(max), Q(av) and the flow pattern were studied at 4 different flow rates. The variables recorded when the flow was directed at the centre of the funnel was taken as baseline. There was a significant difference in the Q(max) and Q(av)when the point of impact was at the periphery or in a cruising motion compared to the centre. The difference was more marked with cruising motion with a characteristic flow pattern. The maximum percentage difference in Q(av) was 4.1%, whereas the difference in Q(max) was higher at 16.6% on comparing crusing motion with the values from the centre. We have demonstrated a significant variation in Q(max), Q(av) and flow pattern with change in the point of impact on the flowmeter. Though the changes in Q(av) were statistically significant, the alteration in the recorded Q(max) values was more striking. Our study emphasizes the importance of combining Q(av) and flow pattern along with Q(max) in interpretation of results of uroflowmetry. © 2010 Wiley-Liss, Inc.

  5. 40 CFR 57.203 - Contents of the application.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... application shall also contain the following information: (1) A process flow diagram of the smelter, including current process and instrumentation diagrams for all processes or equipment which may emit or affect the... equipment (flow rates, temperature, volumes, compositions, and variations over time); and a list of all...

  6. 40 CFR 57.203 - Contents of the application.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... application shall also contain the following information: (1) A process flow diagram of the smelter, including current process and instrumentation diagrams for all processes or equipment which may emit or affect the... equipment (flow rates, temperature, volumes, compositions, and variations over time); and a list of all...

  7. 40 CFR 57.203 - Contents of the application.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... application shall also contain the following information: (1) A process flow diagram of the smelter, including current process and instrumentation diagrams for all processes or equipment which may emit or affect the... equipment (flow rates, temperature, volumes, compositions, and variations over time); and a list of all...

  8. 40 CFR 57.203 - Contents of the application.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... application shall also contain the following information: (1) A process flow diagram of the smelter, including current process and instrumentation diagrams for all processes or equipment which may emit or affect the... equipment (flow rates, temperature, volumes, compositions, and variations over time); and a list of all...

  9. Tensile properties and flow behavior analysis of modified 9Cr-1Mo steel clad tube material

    NASA Astrophysics Data System (ADS)

    Singh, Kanwarjeet; Latha, S.; Nandagopal, M.; Mathew, M. D.; Laha, K.; Jayakumar, T.

    2014-11-01

    The tensile properties and flow behavior of modified 9Cr-1Mo steel clad tube have been investigated in the framework of various constitutive equations for a wide range of temperatures (300-923 K) and strain rates (3 × 10-3 s-1, 3 × 10-4 s-1 and 3 × 10-5 s-1). The tensile flow behavior of modified 9Cr-1Mo steel clad tube was most accurately described by Voce equation. The variation of instantaneous work hardening rate (θ = dσ/dε) and σθ with stress (σ) indicated two stage behavior characterized by rapid decrease at low stresses (transient stage) followed by a gradual decrease in high stresses (Stage III). The variation of work hardening parameters and work hardening rate in terms of θ vs. σ and σθ vs. σ with temperature exhibited three distinct regimes. Rapid decrease in flow stress and work hardening parameters and rapid shift of θ vs. σ and σθ vs. σ towards low stresses with increase in temperature indicated dynamic recovery at high temperatures. Tensile properties of the material have been best predicted from Voce equation.

  10. Cooperative suction by vertical capillary array pump for controlling flow profiles of microfluidic sensor chips.

    PubMed

    Horiuchi, Tsutomu; Hayashi, Katsuyoshi; Seyama, Michiko; Inoue, Suzuyo; Tamechika, Emi

    2012-10-18

    A passive pump consisting of integrated vertical capillaries has been developed for a microfluidic chip as an useful component with an excellent flow volume and flow rate. A fluidic chip built into a passive pump was used by connecting the bottoms of all the capillaries to a top surface consisting of a thin layer channel in the microfluidic chip where the thin layer channel depth was smaller than the capillary radius. As a result the vertical capillaries drew fluid cooperatively rather than independently, thus exerting the maximum suction efficiency at every instance. This meant that a flow rate was realized that exhibited little variation and without any external power or operation. A microfluidic chip built into this passive pump had the ability to achieve a quasi-steady rather than a rapidly decreasing flow rate, which is a universal flow characteristic in an ordinary capillary.

  11. Tank depletion flow controller

    DOEpatents

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  12. Breast Cancer Tissue Bioreactor for Direct Interrogation and Observation of Response to Antitumor Therapies

    DTIC Science & Technology

    2012-07-01

    regulate microfluidic flow rates within the TTB, including flow channel height variation and incorporation of valves (see Figure 2 and Supplemental...cartridge. As an alternative to individual channel TURN valve -adjusted flow regulators, we investigated use of pre-fabricated microfluidic flow resistance...Small Parts, Inc. and B) Microfluidic manifolds with built-in TURN valves . Supplemental Figure S3. Simplified 2D and 3D diffusional model

  13. Comprehensive assessment of dam impacts on flow regimes with consideration of interannual variations

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Shao, Quanxi; Zhao, Tongtiegang

    2017-09-01

    Assessing the impact of human intervention on flow regimes is important in policy making and resource management. Previous impact assessments of dam regulation on flow regimes have focused on long-term average patterns, but interannual variations, which are important characteristics to be considered, have been ignored. In this study, the entire signatures of hydrograph variations of Miyun Reservoir in northern China were described by forty flow regime metrics that incorporate magnitude, variability and frequency, duration, timing, and rate of change for flow events based on a long-term synchronous observation series of inflow and outflow. Principal component analysis and cluster analysis were used to reduce the multidimensionality of the metrics and time and to determine impact patterns and their interannual shifts. Statistically significant driving factors of impact pattern variations were identified. We found that dam regulation resulted in four main impact classes on the flow regimes and that the regulated capacity was interannually attenuated from 1973 to 2010. The impact patterns alternated between the highly regulated class with extremely decreasing flow magnitude, slight variability, and extreme intermittency and the slightly regulated class with extremely increasing flow magnitude, slight variability, and extreme intermittency from 1973 to 1987 and then stabilized in the latter class from 1988 to 2001. After 2001, the pattern gradually changed from the moderately regulated class with moderately decreasing flow magnitude, extreme variability, and extreme intermittency to the slightly regulated class with slightly decreasing flow magnitude, slight variability, and no intermittency. Decreasing precipitation and increasing drought were the primary drivers for the interannual variations of the impact patterns, and inflow variability was the most significant factor affecting the patterns, followed by flow event frequency and duration, magnitude, and timing. This study shows that the use of interannual characteristics can help to gain more insight into the impact of dam regulation on flow regimes and will provide important information to scientifically guide the multi-purpose regulation of dams.

  14. Disentangling the role of athermal walls on the Knudsen paradox in molecular and granular gases

    NASA Astrophysics Data System (ADS)

    Gupta, Ronak; Alam, Meheboob

    2018-01-01

    The nature of particle-wall interactions is shown to have a profound impact on the well-known "Knudsen paradox" [or the "Knudsen minimum" effect, which refers to the decrease of the mass-flow rate of a gas with increasing Knudsen number Kn, reaching a minimum at Kn˜O (1 ) and increasing logarithmically with Kn as Kn→∞ ] in the acceleration-driven Poiseuille flow of rarefied gases. The nonmonotonic variation of the flow rate with Kn occurs even in a granular or dissipative gas in contact with thermal walls. The latter result is in contradiction with recent work [Alam et al., J. Fluid Mech. 782, 99 (2015), 10.1017/jfm.2015.523] that revealed the absence of the Knudsen minimum in granular Poiseuille flow for which the flow rate was found to decrease at large values of Kn. The above conundrum is resolved by distinguishing between "thermal" and "athermal" walls, and it is shown that, for both molecular and granular gases, the momentum transfer to athermal walls is much different than that to thermal walls which is directly responsible for the anomalous flow-rate variation with Kn in the rarefied regime. In the continuum limit of Kn→0 , the athermal walls are shown to be closely related to "no-flux" ("adiabatic") walls for which the Knudsen minimum does not exist either. A possible characterization of athermal walls in terms of (1) an effective specularity coefficient for the slip velocity and (2) a flux-type boundary condition for granular temperature is suggested based on simulation results.

  15. Composition pulse time-of-flight mass flow sensor

    DOEpatents

    Harnett, Cindy K [Livermore, CA; Crocker, Robert W [Fremont, CA; Mosier, Bruce P [San Francisco, CA; Caton, Pamela F [Berkeley, CA; Stamps, James F [Livermore, CA

    2007-06-05

    A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 2,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined. A pair of spaced apart electrodes can be used to produce the electrochemical pulse. In those instances where it is desired to measure a wide range of fluid flow rates a three electrode configuration in which the electrodes are spaced at unequal distances has been found to be desirable.

  16. Relationship among salivary carbonic anhydrase VI activity and flow rate, biofilm pH and caries in primary dentition.

    PubMed

    Frasseto, F; Parisotto, T M; Peres, R C R; Marques, M R; Line, S R P; Nobre Dos Santos, M

    2012-01-01

    This study aimed to determine the activity of carbonic anhydrase isoenzyme VI (CAVI) in the saliva of preschool children with caries and to investigate the relationship between caries and salivary CAVI activity, salivary flow rate and biofilm pH before and after a 20% sucrose rinse. Thirty preschool children aged 45.3-80.3 months were divided into two groups: a caries-free group and a caries group. Clinical examinations were conducted by one examiner (κ = 0.95) according to WHO criteria (dmfs) and early caries lesions. From each subject, CAVI activity, salivary flow rate and plaque pH were determined before and after a sucrose rinse. The results were submitted to Wilcoxon, Mann-Whitney and Spearman correlation tests (α = 0.05). The results showed that prerinse CAVI activity and its variation were higher in the saliva from caries children than from caries-free children. No difference was found between the two groups in postrinse salivary CAVI activity. After rinsing, biofilm pH differences were lower in both groups (p = 0.0012 and p = 0.0037 for the caries and caries-free groups, respectively). Also, after the sucrose rinse, salivary flow rate significantly increased in caries and caries-free groups (p = 0.0003, p = 0.0037). The variation of salivary CAVI activity was negatively correlated with caries (r = -0.501, p = 0.005). Child's age showed a positive correlation with caries (r = 0.456, p = 0.011). These results suggest that variation of salivary CAVI activity and child's age are associated with dental caries in preschool children. Copyright © 2012 S. Karger AG, Basel.

  17. Velocity Measurements in Confined Dual Coaxial Jets Behind an Axisymmetric Bluff Body: Isothermal and Combusting Flows

    DTIC Science & Technology

    1981-04-01

    made of the fuei and air stagnation points along the centerline, in bc-, isothermal and cotnbusting flows. STPi SECURITY CLA~S:FICATIOWII QF T•, PAGE...Flow Rates. 22 The Variation of the Centerline Location (Z.) of the Fuel 33 (f.) and Air (a.) Stuignation Points with the Mean Annulus Air Velocity (WA...Tunnel with No 41 Annular Flow. 31 Flowfield for Annula , Flow in the Combustion Tunnel with 42 No Fuel Flow. S2 Flowfield in the Combustion Tunnel when

  18. Salivary buffer effect in relation to late pregnancy and postpartum.

    PubMed

    Laine, M; Pienihäkkinen, K

    2000-02-01

    We studied the salivary pH, buffer effect (BE), and flow rates of unstimulated and paraffin-stimulated saliva of 8 women in their late pregnancy and postpartum. Salivary samples were collected about 1 month prior to and about 2 months after delivery. In non-pregnant control women, two paraffin-stimulated salivary samples were collected 1 month apart. The salivary BE increased significantly from late pregnancy to postpartum without exception. The increase was 2.04 +/- 1.17 pH units (P < 0.001) on average. The BE increased from 4.79 +/- 1.64 (final pH) to 6.82 +/- 1.01 (final pH). This change was not due to variation in salivary flow rates, since both unstimulated and paraffin-stimulated flow rates remained unchanged. In control women the difference between the 2 BE measurements was only 0.13 +/- 0.47 pH units on average. We concluded that women with high postpartum BE values may have moderate or even low BE values in late pregnancy. In control women, individual variation was found to be low in all variables studied.

  19. Pāhoehoe flow cooling, discharge, and coverage rates from thermal image chronometry

    USGS Publications Warehouse

    Dehn, Jonathan; Hamilton, Christopher M.; Harris, A. J. L.; Herd, Richard A.; James, M.R.; Lodato, Luigi; Steffke, Andrea

    2007-01-01

    Theoretically- and empirically-derived cooling rates for active pāhoehoe lava flows show that surface cooling is controlled by conductive heat loss through a crust that is thickening with the square root of time. The model is based on a linear relationship that links log(time) with surface cooling. This predictable cooling behavior can be used assess the age of recently emplaced sheet flows from their surface temperatures. Using a single thermal image, or image mosaic, this allows quantification of the variation in areal coverage rates and lava discharge rates over 48 hour periods prior to image capture. For pāhoehoe sheet flow at Kīlauea (Hawai`i) this gives coverage rates of 1–5 m2/min at discharge rates of 0.01–0.05 m3/s, increasing to ∼40 m2/min at 0.4–0.5 m3/s. Our thermal chronometry approach represents a quick and easy method of tracking flow advance over a three-day period using a single, thermal snap-shot.

  20. Study the effect of nitrogen flow rate on tribological properties of tantalum nitride based coatings

    NASA Astrophysics Data System (ADS)

    Chauhan, Dharmesh B.; Chauhan, Kamlesh V.; Sonera, Akshay L.; Makwana, Nishant S.; Dave, Divyeshkumar P.; Rawal, Sushant K.

    2018-05-01

    Tantalum Nitride (TaN) based coatings are well-known for their high temperature stability and chemical inertness. We have studied the effect of nitrogen flow rate variation on the structural and tribological properties of TaN based coating deposited by RF magnetron sputtering process. The nitrogen flow rate was varied from 5 to 30 sccm. X-ray diffractometer (XRD) and Atomic Force Microscopy (AFM) were used to determine structure and surface topography of coating. Pin on disc tribometer was used to determine tribological properties of coating. TaN coated brass and mild steel substrates shows higher wear resistance compared to uncoated substrates of brass and mild steel.

  1. Direct numerical simulation of turbulent flow in a rotating square duct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yi-Jun; Huang, Wei-Xi, E-mail: hwx@tsinghua.edu.cn; Xu, Chun-Xiao

    A fully developed turbulent flow in a rotating straight square duct is simulated by direct numerical simulations at Re{sub τ} = 300 and 0 ≤ Ro{sub τ} ≤ 40. The rotating axis is parallel to two opposite walls of the duct and normal to the main flow. Variations of the turbulence statistics with the rotation rate are presented, and a comparison with the rotating turbulent channel flow is discussed. Rich secondary flow patterns in the cross section are observed by varying the rotation rate. The appearance of a pair of additional vortices above the pressure wall is carefully examined, andmore » the underlying mechanism is explained according to the budget analysis of the mean momentum equations.« less

  2. Multi-metric calibration of hydrological model to capture overall flow regimes

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Shao, Quanxi; Zhang, Shifeng; Zhai, Xiaoyan; She, Dunxian

    2016-08-01

    Flow regimes (e.g., magnitude, frequency, variation, duration, timing and rating of change) play a critical role in water supply and flood control, environmental processes, as well as biodiversity and life history patterns in the aquatic ecosystem. The traditional flow magnitude-oriented calibration of hydrological model was usually inadequate to well capture all the characteristics of observed flow regimes. In this study, we simulated multiple flow regime metrics simultaneously by coupling a distributed hydrological model with an equally weighted multi-objective optimization algorithm. Two headwater watersheds in the arid Hexi Corridor were selected for the case study. Sixteen metrics were selected as optimization objectives, which could represent the major characteristics of flow regimes. Model performance was compared with that of the single objective calibration. Results showed that most metrics were better simulated by the multi-objective approach than those of the single objective calibration, especially the low and high flow magnitudes, frequency and variation, duration, maximum flow timing and rating. However, the model performance of middle flow magnitude was not significantly improved because this metric was usually well captured by single objective calibration. The timing of minimum flow was poorly predicted by both the multi-metric and single calibrations due to the uncertainties in model structure and input data. The sensitive parameter values of the hydrological model changed remarkably and the simulated hydrological processes by the multi-metric calibration became more reliable, because more flow characteristics were considered. The study is expected to provide more detailed flow information by hydrological simulation for the integrated water resources management, and to improve the simulation performances of overall flow regimes.

  3. Steady flow rate to a partially penetrating well with seepage face in an unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Behrooz-Koohenjani, Siavash; Samani, Nozar; Kompani-Zare, Mazda

    2011-06-01

    The flow rate to fully screened, partially penetrating wells in an unconfined aquifer is numerically simulated using MODFLOW 2000, taking into account the flow from the seepage face and decrease in saturated thickness of the aquifer towards the well. A simple three-step method is developed to find the top of the seepage face and hence the seepage-face length. The method is verified by comparing it with the results of previous predictive methods. The results show that the component of flow through the seepage face can supply a major portion of the total pumping rate. Variations in flow rate as a function of the penetration degree, elevation of the water level in the well and the distance to the far constant head boundary are investigated and expressed in terms of dimensionless curves and equations. These curves and equations can be used to design the degree of penetration for which the allowable steady pumping rate is attained for a given elevation of water level in the well. The designed degree of penetration or flow rate will assure the sustainability of the aquifer storage, and can be used as a management criterion for issuing drilling well permits by groundwater protection authorities.

  4. Optimization study for high speed radial turbine with special reference to design variables

    NASA Technical Reports Server (NTRS)

    Khalil, I.; Tabakoff, W.

    1977-01-01

    Numerical results of a theoretical investigation are presented to provide information about the effect of variation of the different design and operating parameters on radial inflow turbine performance. The effects of variations in the mass flow rate, rotor tip Mach number, inlet flow angles, number of rotor blades and hub to shroud radius ratio, on the internal fluid dynamics of turbine rotors, was investigated. A procedure to estimate the flow deviation angles at the turbine exit is also presented and used to examine the influence of the operating conditions and the rotor geometrical configuration on these deviations. The significance of the results obtained is discussed with respect to improved turbine performance.

  5. Complex flow morphologies in shock-accelerated gaseous flows

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Vorobieff, P.; Orlicz, G.; Palekar, A.; Tomkins, C.; Goodenough, C.; Marr-Lyon, M.; Prestridge, K. P.; Benjamin, R. F.

    2007-11-01

    A Mach 1.2 planar shock wave impulsively and simultaneously accelerates a row of three heavy gas (SF 6) cylinders surrounded by a lighter gas (air), producing pairs of vortex columns. The heavy gas cylinders (nozzle diameter D) are initially equidistant in the spanwise direction (center to center spacing S), with S/D=1.5. The interaction of the vortex columns is investigated with planar laser-induced fluorescence (PLIF) in the plane normal to the axes of the cylinders. Several distinct post-shock morphologies are observed, apparently due to rather small variations of the initial conditions. We report the variation of the streamwise and spanwise growth rates of the integral scales for these flow morphologies.

  6. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  7. Spectroscopic Doppler analysis for visible-light optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Shu, Xiao; Liu, Wenzhong; Duan, Lian; Zhang, Hao F.

    2017-12-01

    Retinal oxygen metabolic rate can be effectively measured by visible-light optical coherence tomography (vis-OCT), which simultaneously quantifies oxygen saturation and blood flow rate in retinal vessels through spectroscopic analysis and Doppler measurement, respectively. Doppler OCT relates phase variation between sequential A-lines to the axial flow velocity of the scattering medium. The detectable phase shift is between -π and π due to its periodicity, which limits the maximum measurable unambiguous velocity without phase unwrapping. Using shorter wavelengths, vis-OCT is more vulnerable to phase ambiguity since flow induced phase variation is linearly related to the center wavenumber of the probing light. We eliminated the need for phase unwrapping using spectroscopic Doppler analysis. We split the whole vis-OCT spectrum into a series of narrow subbands and reconstructed vis-OCT images to extract corresponding Doppler phase shifts in all the subbands. Then, we quantified flow velocity by analyzing subband-dependent phase shift using linear regression. In the phantom experiment, we showed that spectroscopic Doppler analysis extended the measurable absolute phase shift range without conducting phase unwrapping. We also tested this method to quantify retinal blood flow in rodents in vivo.

  8. Dynamic variation in sapwood specific conductivity in six woody species.

    Treesearch

    J.C. Domec; F.C. Meinzer; B.L. Gartner; J. Housset

    2007-01-01

    Relationships between pressure gradients and flow rates in the xylem are incompletely understood because steady-state conductivity coefficients are inadequate for predicting and interpreting flow under the non-steady-state conditions more prevalent in intact trees. The goal of this study was to determine the magnitude of deviation of trunk sapwood specific conductivity...

  9. High enthalpy hypersonic boundary layer flow

    NASA Technical Reports Server (NTRS)

    Yanow, G.

    1972-01-01

    A theoretical and experimental study of an ionizing laminar boundary layer formed by a very high enthalpy flow (in excess of 12 eV per atom or 7000 cal/gm) with allowance for the presence of helium driver gas is described. The theoretical investigation has shown that the use of variable transport properties and their respective derivatives is very important in the solution of equilibrium boundary layer equations of high enthalpy flow. The effect of low level helium contamination on the surface heat transfer rate is minimal. The variation of ionization is much smaller in a chemically frozen boundary layer solution than in an equilibrium boundary layer calculation and consequently, the variation of the transport properties in the case of the former was not essential in the integration. The experiments have been conducted in a free piston shock tunnel, and a detailed study of its nozzle operation, including the effects of low levels of helium driver gas contamination has been made. Neither the extreme solutions of an equilibrium nor of a frozen boundary layer will adequately predict surface heat transfer rate in very high enthalpy flows.

  10. Numerical Investigations of Slip Phenomena in Centrifugal Compressor Impellers

    NASA Astrophysics Data System (ADS)

    Huang, Jeng-Min; Luo, Kai-Wei; Chen, Ching-Fu; Chiang, Chung-Ping; Wu, Teng-Yuan; Chen, Chun-Han

    2013-03-01

    This study systematically investigates the slip phenomena in the centrifugal air compressor impellers by CFD. Eight impeller blades for different specific speeds, wrap angles and exit blade angles are designed by compressor design software to analyze their flow fields. Except for the above three variables, flow rate and number of blades are the other two. Results show that the deviation angle decreases as the flow rate increases. The specific speed is not an important parameter regarding deviation angle or slip factor for general centrifugal compressor impellers. The slip onset position is closely related to the position of the peak value in the blade loading factor distribution. When no recirculation flow is present at the shroud, the variations of slip factor under various flow rates are mainly determined by difference between maximum blade angle and exit blade angle, Δβmax-2. The solidity should be of little importance to slip factor correlations in centrifugal compressor impellers.

  11. Water flow statistics: SRP creeks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lower, M.W.

    1982-08-26

    For a number of environmental studies it is necessary to know the water flow rates and variations in the SRP streams. The objective of this memorandum is to pull together and present a number of statistical analyses for Upper Three Runs Creek, Four Mile Creek and Lower Three Runs Creek. The data basis covers 8 USGS stream gage stations for the years 1972 - 1981. The average flow rates over a ten-year period along Upper Three Runs Creek were determined to be 114 cfs at US Route 278, 193 cfs at Road C, and 265 cfs at Road A. Alongmore » Four Mile Creek the average flow rates over a ten-year period doubled from 9 cfs prior to F-Area discharges to 18 cfs prior to cooling water discharges from C-Area Reactor. Finally, average flow rates along Lower Three Runs Creek over a ten-year period tripled from 32 cfs at Par Pond to 96 cfs near Snelling, South Carolina. 1 figure, 9 tables.« less

  12. Cottonwood Tree Rings and Climate in Western North America

    NASA Astrophysics Data System (ADS)

    Friedman, J. M.; Edmondson, J.; Griffin, E. R.; Meko, D. M.; Merigliano, M. F.; Scott, J. A.; Scott, M. L.; Touchan, R.

    2012-12-01

    In dry landscapes of interior western USA, cottonwood (Populus spp.) seedling establishment often occurs only close to river channels after floods. Where winter is sufficiently cold, cottonwoods also have distinct annual rings and can live up to 370 years, allowing us to reconstruct the long-term history of river flows and channel locations. We have analyzed the annual rate of cottonwood establishment along streams in Montana, Wyoming, Colorado, North Dakota and Idaho. Because the trees germinate next to the river, establishment rates are strongly correlated with the rate of channel migration driven by floods. Along large rivers dominated by snowmelt from the mountains, interannual variation in peak flows and cottonwood establishment is small, and century-scale variation driven by climate change is apparent. The upper Snake, Yellowstone and Green rivers all show a strong decrease in cottonwood establishment beginning in the late 1800s and continuing to the present, indicating a decrease in peak flows prior to flow regulation by large dams. This is consistent with published tree-ring studies of montane conifers showing decreases in snowpack at the same time scale. In contrast, beginning in the late 1800s cottonwood ring widths along the Little Missouri River, North Dakota show an increase in annual growth that continues into the present. Because annual growth is strongly correlated with April-July flows (r=0.69) the ring-width data suggest an increase in April-July flows at the same time tree establishment dates suggest a decrease in peak flows. These results may be reconciled by the hypothesis that increases in low temperatures have decreased snowpack while lengthening the growing season.

  13. The Impact of the Flow Field Heterogeneity and of the Injection Rate on the Effective Reaction Rates in Carbonates: a Study at the Pore Scale

    NASA Astrophysics Data System (ADS)

    Nunes, J. P. P.; Bijeljic, B.; Blunt, M. J.

    2015-12-01

    Carbonate rocks are notoriously difficult to characterize. Their abrupt facies variations give rise to drastic changes in the petrophysical properties of the reservoir. Such heterogeneity, when further associated with variations in rock mineralogy due to diagenetic processes, result in a challenging scenario to model from the pore to the field scale. Micro-CT imaging is one of the most promising technologies to characterize porous rocks. The understanding at the pore scale of reactive and non-reactive transport is being pushed forward by recent developments in both imaging capability - 3D images with resolution of a few microns - and in modeling techniques - flow simulations in giga-cell models. We will present a particle-based method capable of predicting the evolution of petrophysical properties of carbonate cores subjected to CO2 injection at reservoir conditions (i.e. high pressures and temperatures). Reactive flow is simulated directly on the voxels of high resolution micro-CT images of rocks. Reactants are tracked using a semi-analytical streamline tracing algorithm and rock-fluid interaction is controlled by the diffusive flux of particles from the pores to the grains. We study the impact of the flow field heterogeneity and of the injection rate on the sample-averaged (i.e. effective) reaction rate of calcite dissolution in three rocks of increasing complexity: a beadpack, an oolitic limestone and a bioclastic limestone. We show how decreases in the overall dissolution rate depend on both the complexity of the pore space and also on the flow rate. This occurs even in chemically homogenous rocks. Our results suggest that the large differences observed between laboratory and field scale rates could, in part, be explained by the inhomogeneity in the flow field at the pore scale and the consequent transport-limited flux of reactants at the solid surface. Our results give valuable insight into the processes governing carbonate dissolution and provide a starting point to the refinement of upscaling techniques for reactive flows. Potential impacts for reservoir development and monitoring will also be discussed.

  14. Opposed-flow Flame Spread Over Solid Fuels in Microgravity: the Effect of Confined Spaces

    NASA Astrophysics Data System (ADS)

    Wang, Shuangfeng; Hu, Jun; Xiao, Yuan; Ren, Tan; Zhu, Feng

    2015-09-01

    Effects of confined spaces on flame spread over thin solid fuels in a low-speed opposing flow is investigated by combined use of microgravity experiments and computations. The flame behaviors are observed to depend strongly on the height of the flow tunnel. In particular, a non-monotonic trend of flame spread rate versus tunnel height is found, with the fastest flame occurring in the 3 cm high tunnel. The flame length and the total heat release rate from the flame also change with tunnel height, and a faster flame has a larger length and a higher heat release rate. The computation analyses indicate that a confined space modifies the flow around the spreading flame. The confinement restricts the thermal expansion and accelerates the flow in the streamwise direction. Above the flame, the flow deflects back from the tunnel wall. This inward flow pushes the flame towards the fuel surface, and increases oxygen transport into the flame. Such a flow modification explains the variations of flame spread rate and flame length with tunnel height. The present results suggest that the confinement effects on flame behavior in microgravity should be accounted to assess accurately the spacecraft fire hazard.

  15. Kinetics of ozone-initiated oxidation of textile dye, Amaranth in aqueous systems.

    PubMed

    Dachipally, Purnachandar; Jonnalagadda, Sreekanth B

    2011-01-01

    The ozone facilitated oxidation mechanism of water soluble azo anionic dye, amaranth (Am) was investigated monitoring the depletion kinetics of the dye spectrometrically at 521 nm. The oxidation kinetics of the dye by ozone was studied under semi-batch conditions, by bubbling ozone enriched oxygen through the aqueous reaction mixture of dye, as function of flow rate, ionic strength, [O(3)] and pH variations. With excess concentration of ozone and other reagents and low [amaranth], reaction followed pseudo-first-order kinetics with respect to the dye. Added neutral salts had marginal effect on the reaction rate and the variation of pH from 7 to 2 and 7 to 12 exerted only small increases in the reaction rate suggesting molecular ozone possibly is the principle reactive species in oxidation of dye. The reaction order with respect ozone was near unity and it varied slightly with pH and flow rate variations. The overall second-order rate constant for the reaction was (105 ± 4) M(-1) min(-1). The main oxidation products immediately after amaranth decolorization were identified. The reaction mechanism and overall rate law were proposed. After spiking the seawater, river water and wastewaters with Amaranth dye, the reaction rates and trends in BOD and COD under control and natural conditions were investigated. The rate of depletion of the dye in natural waters was relatively lower, but the ozonation process significantly decreased both the BOD and COD levels.

  16. ACCRETION FLOW DYNAMICS OF MAXI J1659-152 FROM THE SPECTRAL EVOLUTION STUDY OF ITS 2010 OUTBURST USING THE TCAF SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debnath, Dipak; Molla, Aslam Ali; Chakrabarti, Sandip K.

    2015-04-20

    Transient black hole candidates are interesting objects to study in X-rays as these sources show rapid evolutions in their spectral and temporal properties. In this paper, we study the spectral properties of the Galactic transient X-ray binary MAXI J1659-152 during its very first outburst after discovery with the archival data of RXTE Proportional Counter Array instruments. We make a detailed study of the evolution of accretion flow dynamics during its 2010 outburst through spectral analysis using the Chakrabarti–Titarchuk two-component advective flow (TCAF) model as an additive table model in XSPEC. Accretion flow parameters (Keplerian disk and sub-Keplerian halo rates, shockmore » location, and shock strength) are extracted from our spectral fits with TCAF. We studied variations of these fit parameters during the entire outburst as it passed through three spectral classes: hard, hard-intermediate, and soft-intermediate. We compared our TCAF fitted results with standard combined disk blackbody (DBB) and power-law (PL) model fitted results and found that variations of disk rate with DBB flux and halo rate with PL flux are generally similar in nature. There appears to be an absence of the soft state, unlike what is seen in other similar sources.« less

  17. Experimental study on heat transfer performance of fin-tube exchanger and PSHE for waste heat recovery

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Bae, Kyung Jin; Kwon, Oh Kyung

    2018-02-01

    In this paper, heat transfer characteristics of fin-tube heat exchanger and primary surface heat exchanger (PSHE) used in waste heat recovery were investigated experimentally. The flow in the fin-tube heat exchanger is cross flow and in PSHE counter flow. The variations of friction factor and Colburn j factor with air mass flow rate, and Nu number with Re number are presented. Various comparison methods are used to evaluate heat transfer performance, and the results show that the heat transfer rate of the PSHE is on average 17.3% larger than that of fin-tube heat exchanger when air mass flow rate is ranging from 1.24 to 3.45 kg/min. However, the PSHE causes higher pressure drop, and the fin-tube heat exchanger has a wider application range which leads to a 31.7% higher value of maximum heat transfer rate compared to that of the PSHE. Besides, under the same fan power per unit frontal surface, a higher heat transfer rate value is given in the fin-tube heat exchanger.

  18. Membrane reactor for water detritiation: a parametric study on operating parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascarade, J.; Liger, K.; Troulay, M.

    2015-03-15

    This paper presents the results of a parametric study done on a single stage finger-type packed-bed membrane reactor (PBMR) used for heavy water vapor de-deuteration. Parametric studies have been done on 3 operating parameters which are: the membrane temperature, the total feed flow rate and the feed composition through D{sub 2}O content variations. Thanks to mass spectrometer analysis of streams leaving the PBMR, speciation of deuterated species was achieved. Measurement of the amounts of each molecular component allowed the calculation of reaction quotient at the packed-bed outlet. While temperature variation mainly influences permeation efficiency, feed flow rate perturbation reveals dependencemore » of conversion and permeation properties to contact time between catalyst and reacting mixture. The study shows that isotopic exchange reactions occurring on the catalyst particles surface are not thermodynamically balanced. Moreover, the variation of the heavy water content in the feed exhibits competition between permeation and conversion kinetics.« less

  19. Extensive lava flow fields on Venus: Preliminary investigation of source elevation and regional slope variations

    NASA Technical Reports Server (NTRS)

    Magee-Roberts, K.; Head, James W., III; Lancaster, M. G.

    1992-01-01

    Large-volume lava flow fields have been identified on Venus, the most areally extensive of which are known as fluctus and have been subdivided into six morphologic types. Sheetlike flow fields (Type 1) lack the numerous, closely spaced, discrete lava flow lobes that characterize digitate flow fields. Transitional flow fields (Type 2) are similar to sheetlike flow fields but contain one or more broad flow lobes. Digitate flow fields are divided further into divergent (Types 3-5) and subparallel (Type 6) classes on the basis of variations in the amount of downstream flow divergence. As a result of our previous analysis of the detailed morphology, stratigraphy, and tectonic associations of Mylitta Fluctus, we have formulated a number of questions to apply to all large flow fields on Venus. In particular, we would like to address the following: (1) eruption conditions and style of flow emplacement (effusion rate, eruption duration), (2) the nature of magma storage zones (presence of neutral buoyancy zones, deep or shallow crustal magma chambers), (3) the origin of melt and possible link to mantle plumes, and (4) the importance of large flow fields in plains evolution. To answer these questions we have begun to examine variations in flow field dimension and morphology; the distribution of large flow fields in terms of elevation above the mean planetary radius; links to regional tectonic or volcanic structures (e.g., associations with large shield edifices, coronae, or rift zones); statigraphic relationships between large flow fields, volcanic plains, shields, and coronae; and various models of flow emplacement in order to estimate eruption parameters. In this particular study, we have examined the proximal elevations and topographic slopes of 16 of the most distinctive flow fields that represent each of the 6 morphologic types.

  20. Laminar and turbulent flow modes of cold atmospheric pressure argon plasma jet

    NASA Astrophysics Data System (ADS)

    Basher, Abdulrahman H.; Mohamed, Abdel-Aleam H.

    2018-05-01

    Laminar and turbulent flow modes of a cold atmospheric pressure argon plasma jet are investigated in this work. The effects of the gas flow rate, applied voltage, and frequency on each plasma mode and on intermodal transitions are characterized using photographic, electrical, and spectroscopic techniques. Increasing the gas flow rate increases the plasma jet length in the laminar mode. Upon transition to the turbulent mode, increasing the gas flow rate leads to a decrease in the plasma jet length. The flow rate at which the jet transitions from laminar to turbulent increases with the applied voltage. The presence of nitric oxide (NO) radicals is indicated by the emission spectra of the turbulent plasmas only, while excited Ar, N2, OH, and O excited species are produced in both laminar and turbulent modes. With no distinctive behavior observed upon transition between the two operating modes, the power consumption was found to be insensitive to gas flow rate variation, while the energy density was found to decrease exponentially with the gas flow rate. Rotational and vibrational temperature measurements of the two plasma modes indicated that they are of the non-thermal equilibrium plasma type. Since they offer NO radicals while maintaining the benefits of the laminar plasma jet, the turbulent plasma jet is more useful than its laminar counterpart in biomedical applications.

  1. Length polymorphism scanning is an efficient approach for revealing chloroplast DNA variation.

    Treesearch

    Matthew E. Horning; Richard C. Cronn

    2006-01-01

    Phylogeographic and population genetic screens of chloroplast DNA (cpDNA) provide insights into seedbased gene flow in angiosperms, yet studies are frequently hampered by the low mutation rate of this genome. Detection methods for intraspecific variation can be either direct (DNA sequencing) or indirect (PCR-RFLP), although no single method incorporates the best...

  2. Male-Mediated Gene Flow in Patrilocal Primates

    PubMed Central

    Schubert, Grit; Stoneking, Colin J.; Arandjelovic, Mimi; Boesch, Christophe; Eckhardt, Nadin; Hohmann, Gottfried; Langergraber, Kevin; Lukas, Dieter; Vigilant, Linda

    2011-01-01

    Background Many group–living species display strong sex biases in dispersal tendencies. However, gene flow mediated by apparently philopatric sex may still occur and potentially alters population structure. In our closest living evolutionary relatives, dispersal of adult males seems to be precluded by high levels of territoriality between males of different groups in chimpanzees, and has only been observed once in bonobos. Still, male–mediated gene flow might occur through rare events such as extra–group matings leading to extra–group paternity (EGP) and female secondary dispersal with offspring, but the extent of this gene flow has not yet been assessed. Methodology/Principal Findings Using autosomal microsatellite genotyping of samples from multiple groups of wild western chimpanzees (Pan troglodytes verus) and bonobos (Pan paniscus), we found low genetic differentiation among groups for both males and females. Characterization of Y–chromosome microsatellites revealed levels of genetic differentiation between groups in bonobos almost as high as those reported previously in eastern chimpanzees, but lower levels of differentiation in western chimpanzees. By using simulations to evaluate the patterns of Y–chromosomal variation expected under realistic assumptions of group size, mutation rate and reproductive skew, we demonstrate that the observed presence of multiple and highly divergent Y–haplotypes within western chimpanzee and bonobo groups is best explained by successful male–mediated gene flow. Conclusions/Significance The similarity of inferred rates of male–mediated gene flow and published rates of EGP in western chimpanzees suggests this is the most likely mechanism of male–mediated gene flow in this subspecies. In bonobos more data are needed to refine the estimated rate of gene flow. Our findings suggest that dispersal patterns in these closely related species, and particularly for the chimpanzee subspecies, are more variable than previously appreciated. This is consistent with growing recognition of extensive behavioral variation in chimpanzees and bonobos. PMID:21747938

  3. Flow Dependence Assessment for Fate and Transport of DNAPL in Karst Media

    NASA Astrophysics Data System (ADS)

    Carmona, M.; Padilla, I. Y.

    2017-12-01

    DNAPLs are a group of organic compounds, which exhibit high fluid density, relatively aqueous solubility, and a high level of toxicity. It is also very persistent and remains in the environment long after been released. Massive production of these compounds, their constant use and poor disposal methods have increased the occurrence of these contaminants in groundwater systems. The physico-chemical properties of DNAPL, combined with the high variation of groundwater flow causes contaminants to behave unpredictably in such aquifer. This research focuses on fate and transport of trichloroethylene (which is one of the most frequent DNAPL found) in a karstified limestone physical model (KLPM) at two different flow rates. The KLPM represents a real case of a saturated confined karst aquifer consisting of a porous limestone block enclosed in a stainless-steel tank with fifteen horizontal sampling ports. After injection of pure TCE solvent into a steady groundwater flow field, samples are taken spatially and temporally and analyzed volumetrically and analytically with HPLC. Data show pure TCE volumes are collected at the beginnings of the experiment in sampling ports located near the injection port. Results from the constructed temporal distributions curves at different spatial locations show spatial variations related to the limestone block heterogeneity. Rapid response to TCE concentrations is associated with preferential flow paths. Slow response with long tailing is indicative of diffusive transport in the rock matrix and mass transport rates limitations. Although, high flow rates show greater mass removal of TCE by dissolving its NAPL, pure TCE accumulates at all flow rates studied. Overall, results show that karstified limestone has a high capacity to rapidly transport, as well as store and slowly release TCE pure and dissolved phase for long periods of time. They also show that fate and transport of contaminants in karst environments is significantly flow dependent.

  4. Pressure difference-flow rate variation in a femoral artery branch casting of man for steady flow

    NASA Technical Reports Server (NTRS)

    Cho, Y. I.; Back, L. H.; Crawford, D. W.

    1983-01-01

    In-vitro, steady flow in a casting of the profunda femoris branch of the femoral artery of man was studied by measuring pressure differences in the main lumen and also in the branch over a large Reynolds number range from 200 to 1600. Effects of viscous and inviscid flows in this femoral artery branch were demonstrated quantitatively. The critical ratio of the flow rate in the branch to the upstream main lumen in this casting was found to be 0.4, above which the inviscid flow analysis indicated a pressure rise and below which it yielded a pressure drop in the main lumen across the branch junction. Pressure rises were experimentally found to occur both in the main lumen and in the branch for certain ranges of the aforementioned ratio.

  5. [Transpiration of Choerospondias axillaris in agro-forestrial system and its affecting factors].

    PubMed

    Zhao, Ying; Zhang, Bin; Zhao, Huachun; Wang, Mingzhu

    2005-11-01

    Measurement of transpiration is essential to assess plant water use efficiency. Applying Grainer method, this paper measured the sap flow of Choerospondias axillaries in an agro-forestrial system, aimed to evaluate the effects of intercropping and pruning on the diurnal variation of transpiration, and to relate the transpiration rate with climatic factors. The results showed that the diurnal variation of Choerospondias arillaries transpiration rate appeared in parabola, low in the morning and evening, and high at noon. The transpiration rate was closely related to leaf stomatal conductivity and soil water potential, especially the water potential in 100 cm soil depth (R = 0.737). The transpiration rate of Choerospondias axillaries was increased by about 40% approximately 160% in agro-forestrial system through the changes in regional environment and in the deep soil water use by tree. Correlation analysis and multi-factor successive regression analysis indicated that the transpiration was controlled by ray radiation intensity, air temperature and ground temperature, followed by the difference between saturated and actual vapor pressure and the wind speed. A statistical model for calculating the sap flow rate by micrometeorological factors was also provided.

  6. Computational modeling of lava domes using particle dynamics to investigate the effect of conduit flow mechanics on flow patterns

    NASA Astrophysics Data System (ADS)

    Husain, Taha Murtuza

    Large (1--4 x 106 m3) to major (> 4 x 106 m3) dome collapses for andesitic lava domes such as Soufriere Hills Volcano, Montserrat are observed for elevated magma discharge rates (6--13 m3/s). The gas rich magma pulses lead to pressure build up in the lava dome that result in structural failure of the over steepened canyon-like walls which may lead to rockfall or pyroclastic flow. This indicates that dome collapse intimately related to magma extrusion rate. Variation in magma extrusion rate for open-system magma chambers is observed to follow alternating periods of high and low activity. Periodic behavior of magma exhibits a rich diversity in the nature of its eruptive history due to variation in magma chamber size, total crystal content, linear crystal growth rate and magma replenishment rate. Distinguished patterns of growth were observed at different magma flow rates ranging from endogenous to exogenous dome growth for magma with varying strengths. Determining the key parameters that control the transition in flow pattern of the magma during its lava dome building eruption is the main focus. This dissertation examines the mechanical effects on the morphology of the evolving lava dome on the extrusion of magma from a central vent using a 2D particle dynamics model. The particle dynamics model is coupled with a conduit flow model that incorporates the kinetics of crystallization and rheological stiffening to investigate important mechanisms during lava dome building eruptions. Chapter I of this dissertation explores lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional carapace that caps a ductile magma core. Extrusion rate and magma rheology together with crystallization temperature and volatile content govern the distribution of strength in the composite structure. This new model is calibrated against existing observational models of lava dome growth. Chapter II of this dissertation explores the effects of a spectrum of different rheological regimes, on eruptive style and morphologic evolution of lava domes, using a two-dimensional (2D) particle-dynamics model for a spreading viscoplastic (Bingham) fluid. We assume that the ductile magma core of a 2-D synthetic lava dome develops finite yield strength, and that deformable frictional talus evolves from a carapace that caps the magma core. Our new model is calibrated against an existing analytical model for a spreading viscoplastic lava dome and is further compared against observational data of lava dome growth. Chapter III of this dissertation explores different lava-dome styles by developing a two-dimensional particle-dynamics model. These growth patterns range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fueled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. Chapter IV of this dissertation explores the Variation in the extruding lava flow patterns range from endogenous dome growth with a ductile core to the exogenous extrusion of a degassed lava plug that results in the generation of a spine. The variations are a manifestation of the changes in the magma rheology which is governed by magma composition and rate of decompression of the ascending magma. We simulate using a two-dimensional particle-dynamics model, the cyclic behavior of lava dome growth with endogenous growth at high discharge rates followed by exogenous extrusion of rheologically stiffened lava due to degassing induced crystallization at low discharge rates. We couple conduit flow dynamics with surface growth of the evolving lava dome which is fueled by an overpressured reservoir undergoing constant replenishment. The periodic behavior between magma chamber pressure and discharge rate is reproduced as a result of the temporal and spatial change in magma viscosity controlled by crystallization kinetics. Dimensionless numbers are used to map the flow behaviors with the changing extrusion regime. A dimensionless plot identifying the flow transition region during the growth cycle of an evolving lava dome in its lava dome eruptive period is presented. The plot provides a the threshold value of a dimensionless strength parameter (pi 2 < 3.31 x 10-4) below which the transition in flow pattern occurs from endogenously evolving lava dome with a ductile core to the development of a shear lobe for short or long lived periodic episode of the extrusion of magma. (Abstract shortened by UMI.).

  7. Ground-water recharge from streamflow data, NW Florida

    USGS Publications Warehouse

    Vecchioli, John; Bridges, W.C.; Rumenik, Roger P.; Grubbs, J.W.

    1991-01-01

    Annual base flows of streams draining Okaloosa County and adjacent areas in northwest Florida were determined through hydrograph separation and correlation techniques for purposes of evaluating variations in ground-water recharge rates. Base flows were least in the northern part of the county and greatest in the southern part. Topographic and soils data were then superimposed on the distribution of base flow by subbasin to produce a map showing distribution of ground-water recharge throughout the county. The highest recharge rate occurs in the southern part of the county where relatively flat upland areas underlain by excessively drained sandy soils result in minimal storm runoff and evapotranspiration.

  8. Measurement of filtration rates by infaunal bivalves in a recirculating flume

    USGS Publications Warehouse

    Cole, B.E.; Thompson, J.K.; Cloern, J.E.

    1992-01-01

    A flume system and protocol for measuring the filtration rate of infaunal bivalves is described. Assemblages of multi-sized clams, at natural densities and in normal filter-feeding positions, removed phytoplankton suspended in a unidirectional flow of water. The free-stream velocity and friction velocity of the flow, and bottom roughness height were similar to those in natural estuarine waters. Continuous variations in phytoplankton (Chroomonas salinay) cell density were used to measure the filtration rate of the suspension-feeding clam Potamocorbula amurensis for periods of 2 to 28 h. Filtration rates of P. amurensis varied from 100 to 580 liters (gd)-1 over a free-stream velocity range of 9 to 25 cm s-1. Phytoplankton loss rates were usually constant throughout the experiments. Our results suggest that suspension-feeding by infaunal bivalves is sensitive to flow velocity. ?? 1992 Springer-Verlag.

  9. Estimating recruitment dynamics and movement of rainbow trout (Oncorhynchus mykiss) in the Colorado River in Grand Canyon using an integrated assessment model

    USGS Publications Warehouse

    Korman, Josh; Martell, Steven J.D.; Walters, Carl J.; Makinster, Andrew S.; Coggins, Lewis G.; Yard, Michael D.; Persons, William R.

    2012-01-01

    We used an integrated assessment model to examine effects of flow from Glen Canyon Dam, Arizona, USA, on recruitment of nonnative rainbow trout (Oncorhynchus mykiss) in the Colorado River and to estimate downstream migration from Glen Canyon to Marble Canyon, a reach used by endangered native fish. Over a 20-year period, recruitment of rainbow trout in Glen Canyon increased with the annual flow volume and when hourly flow variation was reduced and after two of three controlled floods. The model predicted that approximately 16 000 trout·year–1 emigrated to Marble Canyon and that the majority of trout in this reach originate from Glen Canyon. For most models that were examined, over 70% of the variation in emigration rates was explained by variation in recruitment in Glen Canyon, suggesting that flow from the dam controls in large part the extent of potential negative interactions between rainbow trout and native fish. Controlled floods and steadier flows, which were originally aimed at partially restoring conditions before the dam (greater native fish abundance and larger sand bars), appear to have been more beneficial to nonnative rainbow trout than to native fish.

  10. Investigation of an Axial Fan—Blade Stress and Vibration Due to Aerodynamic Pressure Field and Centrifugal Effects

    NASA Astrophysics Data System (ADS)

    Xu, Cheng; Amano, Ryoichi Samuel; Lee, Eng Kwong

    A 1.829m (6ft) diameter industrial large flow-rate axial fan operated at 1770rpm was studied experimentally in laboratory conditions. The flow characteristics on the fan blade surfaces were investigated by measuring the pressure distributions on the blade suction and pressure surfaces and the results were discussed by comparing with analytical formulations and CFD. Flow visualizations were also performed to validate the flow characteristics near the blade surface and it was demonstrated that the flow characteristics near the fan blade surface were dominated by the centrifugal force of the fan rotation which resulted in strong three-dimensional flows. The time-dependent pressure measurement showed that the pressure oscillations on the fan blade were significantly dominated by vortex shedding from the fan blades. It was further demonstrated that the pressure distributions during the fan start-up were highly unsteady, and the main frequency variation of the static pressure was much smaller than the fan rotational frequency. The time-dependent pressure measurement when the fan operated at a constant speed showed that the magnitude of the blade pressure variation with time and the main variation frequency was much smaller than the fan rotational frequency. The pressure variations that were related to the vortex shedding were slightly smaller than the fan rotational frequency. The strain gages were used to measure the blade stress and the results were compared with FEA results.

  11. Variational optical flow computation in real time.

    PubMed

    Bruhn, Andrés; Weickert, Joachim; Feddern, Christian; Kohlberger, Timo; Schnörr, Christoph

    2005-05-01

    This paper investigates the usefulness of bidirectional multigrid methods for variational optical flow computations. Although these numerical schemes are among the fastest methods for solving equation systems, they are rarely applied in the field of computer vision. We demonstrate how to employ those numerical methods for the treatment of variational optical flow formulations and show that the efficiency of this approach even allows for real-time performance on standard PCs. As a representative for variational optic flow methods, we consider the recently introduced combined local-global method. It can be considered as a noise-robust generalization of the Horn and Schunck technique. We present a decoupled, as well as a coupled, version of the classical Gauss-Seidel solver, and we develop several multgrid implementations based on a discretization coarse grid approximation. In contrast, with standard bidirectional multigrid algorithms, we take advantage of intergrid transfer operators that allow for nondyadic grid hierarchies. As a consequence, no restrictions concerning the image size or the number of traversed levels have to be imposed. In the experimental section, we juxtapose the developed multigrid schemes and demonstrate their superior performance when compared to unidirectional multgrid methods and nonhierachical solvers. For the well-known 316 x 252 Yosemite sequence, we succeeded in computing the complete set of dense flow fields in three quarters of a second on a 3.06-GHz Pentium4 PC. This corresponds to a frame rate of 18 flow fields per second which outperforms the widely-used Gauss-Seidel method by almost three orders of magnitude.

  12. Diurnal variations of the energy intensity and associated greenhouse gas emissions for activated sludge processes.

    PubMed

    Emami, Nasir; Sobhani, Reza; Rosso, Diego

    2018-04-01

    A model was developed for a water resources recovery facility (WRRF) activated sludge process (ASP) in Modified Ludzack-Ettinger (MLE) configuration. Amplification of air requirements and its associated energy consumptions were observed as a result of concurrent circadian variations in ASP influent flow and carbonaceous/nitrogenous constituent concentrations. The indirect carbon emissions associated with the ASP aeration were further amplified due to the simultaneous variations in carbon emissions intensity (kgCO 2,eq (kWh) -1 ) and electricity consumption (kWh). The ratio of peak to minimum increased to 3.4 (for flow), 4.2 (for air flow and energy consumption), and 5.2 (for indirect CO 2,eq emission), which is indicative of strong amplification. Similarly, the energy costs for ASP aeration were further increased due to the concurrency of peak energy consumptions and power demands with time of use peak electricity rates. A comparison between the results of the equilibrium model and observed data from the benchmark WRRF demonstrated under- and over-aeration attributed to the circadian variation in air requirements and limitations associated with the aeration system specification and design.

  13. Variability in venom volume, flow rate and duration in defensive stings of five scorpion species.

    PubMed

    van der Meijden, Arie; Coelho, Pedro; Rasko, Mykola

    2015-06-15

    Scorpions have been shown to control their venom usage in defensive encounters, depending on the perceived threat. Potentially, the venom amount that is injected could be controlled by reducing the flow speed, the flow duration, or both. We here investigated these variables by allowing scorpions to sting into an oil-filled chamber, and recording the accreting venom droplets with high-speed video. The size of the spherical droplets on the video can then be used to calculate their volume. We recorded defensive stings of 20 specimens representing 5 species. Significant differences in the flow rate and total expelled volume were found between species. These differences are likely due to differences in overall size between the species. Large variation in both venom flow speed and duration are described between stinging events of single individuals. Both venom flow rate and flow duration correlate highly with the total expelled volume, indicating that scorpions may control both variables in order to achieve a desired end volume of venom during a sting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Highly sensitive miniature fluidic flowmeter based on an FBG heated by Co2+-doped fiber.

    PubMed

    Liu, Zhengyong; Htein, Lin; Cheng, Lun-Kai; Martina, Quincy; Jansen, Rob; Tam, Hwa-Yaw

    2017-02-20

    In this paper, we present a miniature fluidic flow sensor based on a short fiber Bragg grating inscribed in a single mode fiber and heated by Co2+-doped multimode fibers. The proposed flow sensor was employed to measure the flow rates of oil and water, showing good sensitivity of 0.339 nm/(m/s) and 0.578 nm/(m/s) for water and oil, flowing at v = 0.2 m/s. The sensitivity can be increased with higher laser power launched to the Co2+-doped multimode fibers. A small flow rate of 0.005 m/s and 0.002 m/s can be distinguished for a particular phase of water or oil, respectively, at a certain laser power (i.e. ~1.43W). The flow sensor can measure volume speed up to 30 L/min, which is limited by the test rig. The experimental results show that the sensor can discriminate slight variation of flow rates as small as 0.002m/s.

  15. Laser beam micro-milling of nickel alloy: dimensional variations and RSM optimization of laser parameters

    NASA Astrophysics Data System (ADS)

    Ahmed, Naveed; Alahmari, Abdulrahman M.; Darwish, Saied; Naveed, Madiha

    2016-12-01

    Micro-channels are considered as the integral part of several engineering devices such as micro-channel heat exchangers, micro-coolers, micro-pulsating heat pipes and micro-channels used in gas turbine blades for aerospace applications. In such applications, a fluid flow is required to pass through certain micro-passages such as micro-grooves and micro-channels. The fluid flow characteristics (flow rate, turbulence, pressure drop and fluid dynamics) are mainly established based on the size and accuracy of micro-passages. Variations (oversizing and undersizing) in micro-passage's geometry directly affect the fluid flow characteristics. In this study, the micro-channels of several sizes are fabricated in well-known aerospace nickel alloy (Inconel 718) through laser beam micro-milling. The variations in geometrical characteristics of different-sized micro-channels are studied under the influences of different parameters of Nd:YAG laser. In order to have a minimum variation in the machined geometries of each size of micro-channel, the multi-objective optimization of laser parameters has been carried out utilizing the response surface methodology approach. The objective was set to achieve the targeted top widths and depths of micro-channels with minimum degree of taperness associated with the micro-channel's sidewalls. The optimized sets of laser parameters proposed for each size of micro-channel can be used to fabricate the micro-channels in Inconel 718 with minimum amount of geometrical variations.

  16. Two-dimensional compressible flow in centrifugal compressors with straight blades

    NASA Technical Reports Server (NTRS)

    Stanitz, John D; Ellis, Gaylord O

    1950-01-01

    Six numerical examples are presented for steady, two-dimensional, compressible, nonviscous flow in centrifugal compressors with thin straight blades, the center lines of which generate the surface of a right circular cone when rotated about the axis of the compressor. A seventh example is presented for incompressible flow. The solutions were obtained in a region of the compressors, including the impeller tip, that was considered to be unaffected by the diffuser vanes or by the impeller-inlet configuration. Each solution applies to radial and mixed flow compressors with various cone angles but with the same angle between blades on the conic flow surface. The solution also apply to radial and mixed flow turbines with the rotation and the flow direction reversed. The effects of variations in the following parameters were investigated: (1) flow rate, (2) impeller-tip speed, (3) variation of passage height with radius, and (4) angle between blades on conic flow surface. The numerical results are presented in plots of the streamlines and constant Mach number lines. Correlation equations are developed whereby the flow conditions in any impeller with straight blades can be determined (in the region investigated by this analysis) for all operating conditions.

  17. Energy transfer model and its applications of ultrasonic gas flow-meter under static and dynamic flow rates

    NASA Astrophysics Data System (ADS)

    Fang, Min; Xu, Ke-Jun; Zhu, Wen-Jiao; Shen, Zi-Wen

    2016-01-01

    Most of the ultrasonic gas flow-meters measure the gas flow rate by calculating the ultrasonic transmission time difference between the downstream and upstream. Ultrasonic energy attenuation occurs in the processes of the ultrasonic generation, conversion, transmission, and reception. Additionally, at the same time, the gas flow will also affect the ultrasonic propagation during the measurement, which results in the ultrasonic energy attenuation and the offset of ultrasonic propagation path. Thus, the ultrasonic energy received by the transducer is weaker. When the gas flow rate increases, this effect becomes more apparent. It leads to the measurement accuracy reduced, and the measurement range narrowed. An energy transfer model, where the ultrasonic gas flow-meter under without/with the gas flow, is established by adopting the statistical analysis and curve fitting based on a large amount of experimental data. The static sub model without the gas flow expresses the energy conversion efficiency of ultrasonic gas transducers, and the dynamic sub model with the gas flow reflects the energy attenuation pattern following the flow rate variations. The mathematical model can be used to determine the minimum energy of the excitation signal for meeting the requirement of specific measurement range, and predict the maximum measurable flow rate in the case of fixed energy of excitation signal. Based on the above studies, a method to enhance the excitation signal energy is proposed under the output power of the transmitting circuit being a finite value so as to extend the measurement rage of ultrasonic gas flow-meter.

  18. What is normal nasal airflow? A computational study of 22 healthy adults

    PubMed Central

    Zhao, Kai; Jiang, Jianbo

    2014-01-01

    Objective Nasal airflow is essential for functioning of the human nose. Given individual variation in nasal anatomy, there is yet no consensus what constitutes normal nasal airflow patterns. We attempt to obtain such information that is essential to differentiate disease-related variations. Methods Computational fluid dynamics (CFD) simulated nasal airflow in 22 healthy subjects during resting breathing. Streamline patterns, airflow distributions, velocity profiles, pressure, wall stress, turbulence, and vortical flow characteristics under quasi-steady state were analyzed. Patency ratings, acoustically measured minimum cross-sectional area (MCA), and rhinomanometric nasal resistance (NR) were examined for potential correlations with morphological and airflow-related variables. Results Common features across subjects included: >50% total pressure-drop reached near the inferior turbinate head; wall shear stress, NR, turbulence energy, and vorticity were lower in the turbinate than in the nasal valve region. However, location of the major flow path and coronal velocity distributions varied greatly across individuals. Surprisingly, on average, more flow passed through the middle than the inferior meatus and correlated with better patency ratings (r=-0.65, p<0.01). This middle flow percentage combined with peak post-vestibule nasal heat loss and MCA accounted for >70% of the variance in subjective patency ratings and predicted patency categories with 86% success. Nasal index correlated with forming of the anterior dorsal vortex. Expected for resting breathing, the functional impact for local and total turbulence, vorticity, and helicity was limited. As validation, rhinomanometric NR significantly correlated with CFD simulations (r=0.53, p<0.01). Conclusion Significant variations of nasal airflow found among healthy subjects; Key features may have clinically relevant applications. PMID:24664528

  19. RESULTS FROM EPA FUNDED RESEARCH PROGRAMS ON THE IMPORTANCE OF PURGE VOLUME, SAMPLE VOLUME, SAMPLE FLOW RATE AND TEMPORAL VARIATIONS ON SOIL GAS CONCENTRATIONS

    EPA Science Inventory

    Two research studies funded and overseen by EPA have been conducted since October 2006 on soil gas sampling methods and variations in shallow soil gas concentrations with the purpose of improving our understanding of soil gas methods and data for vapor intrusion applications. Al...

  20. Female reproductive success variation in a Pseudotsuga menziesii seed orchard as revealed by pedigree reconstruction from a bulk seed collection.

    PubMed

    El-Kassaby, Yousry A; Funda, Tomas; Lai, Ben S K

    2010-01-01

    The impact of female reproductive success on the mating system, gene flow, and genetic diversity of the filial generation was studied using a random sample of 801 bulk seed from a 49-clone Pseudotsuga menziesii seed orchard. We used microsatellite DNA fingerprinting and pedigree reconstruction to assign each seed's maternal and paternal parents and directly estimated clonal reproductive success, selfing rate, and the proportion of seed sired by outside pollen sources. Unlike most family array mating system and gene flow studies conducted on natural and experimental populations, which used an equal number of seeds per maternal genotype and thus generating unbiased inferences only on male reproductive success, the random sample we used was a representative of the entire seed crop; therefore, provided a unique opportunity to draw unbiased inferences on both female and male reproductive success variation. Selfing rate and the number of seed sired by outside pollen sources were found to be a function of female fertility variation. This variation also substantially and negatively affected female effective population size. Additionally, the results provided convincing evidence that the use of clone size as a proxy to fertility is questionable and requires further consideration.

  1. Diurnal variation in peak expiratory flow rate among polyvinylchloride compounding workers.

    PubMed Central

    Lee, H S; Ng, T P; Ng, Y L; Phoon, W H

    1991-01-01

    The diurnal variation in peak expiratory flow rate (PEFR) was studied in 24 mixers and 24 non-mixers in three polyvinylchloride (PVC) compounding plants and 24 non-PVC controls from a marine police workshop. The three groups (all men) were matched for age, race, and smoking. The mean respirable dust concentration (essentially PVC dust) was 1.6 mg/m3 for mixers and 0.4 mg/m3 for nonmixers. The mean diurnal variation in PEFR of the mixers was 6.5%. This was significantly higher than the 4.8% for non-mixers and 4.3% for the non-PVC controls. Six mixers had a diurnal variation of more than 15% on at least one day compared with none among the other two groups. Twenty nine per cent of mixers complained of wheezing compared with 4% of non-mixers and none among non-PVC workers. These differences were significant. Forced expiratory volume in one second (FEV1) for the mixers was 10% below the predicted values whereas that of non-PVC workers was 2% below predicted values. The study indicates a significant acute airway constriction from occupational exposure to PVC dust. PMID:2025595

  2. Thermal management in inertial fusion energy slab amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, S.B.; Albrecht, G.F.

    As the technology associated with the development of solid-state drivers for inertial fusion energy (IFE) has evolved, increased emphasis has been placed on the development of an efficient approach for managing the waste heat generated in the laser media. This paper addresses the technical issues associated with the gas cooling of large aperture slabs, where the laser beam propagates through the cooling fluid. It is shown that the major consequence of proper thermal management is the introduction of simple wedge, or beam steering, into the system. Achieving proper thermal management requires careful consideration of the geometry, cooling fluid characteristics, coolingmore » flow characteristics, as well as the thermal/mechanical/optical characteristics of the laser media. Particularly important are the effects of cooling rate variation and turbulent scattering on the system optical performance. Helium is shown to have an overwhelming advantage with respect to turbulent scattering losses. To mitigate cooling rate variations, the authors introduce the concept of flow conditioning. Finally, optical path length variations across the aperture are calculated. A comparison of two laser materials (S-FAP and YAG) shows the benefit of a nearly a-thermal material on optical variations in the system.« less

  3. Size-dependent microstructures in rapidly solidified uranium-niobium powder particles

    DOE PAGES

    McKeown, Joseph T.; Hsiung, Luke L.; Park, Jong M.; ...

    2016-06-14

    The microstructures of rapidly solidified U-6wt%Nb powder particles synthesized by centrifugal atomization were characterized using scanning electron microscopy and transmission electron microscopy. Observed variations in microstructure are related to particle sizes. All of the powder particles exhibited a two-zone microstructure. The formation of this two-zone microstructure is described by a transition from solidification controlled by internal heat flow and high solidification rate during recalescence (micro-segregation-free or partitionless growth) to solidification controlled by external heat flow with slower solidification rates (dendritic growth with solute redistribution). The extent of partitionless solidification increased with decreasing particle size due to larger undercoolings in smallermore » particles prior to solidification. The metastable phases that formed are related to variations in Nb concentration across the particles. Lastly, the microstructures of the powders were heavily twinned.« less

  4. A clinical study to compare between resting and stimulated whole salivary flow rate and pH before and after complete denture placement in different age groups

    PubMed Central

    Muddugangadhar, B. C.; Sangur, Rajashekar; Rudraprasad, I. V.; Nandeeshwar, D. B.; Kumar, B. H. Dhanya

    2015-01-01

    Purpose: This study compared the flow rate and pH of resting (unstimulated) and stimulated whole saliva before and after complete denture placement in different age groups. Materials and Methods: Fifty healthy, non-medicated edentulous individuals of different age groups requiring complete denture prostheses were selected from the outpatient department. The resting (unstimulated) and stimulated whole saliva and pH were measured at three stages i.e., i)Before complete denture placement;ii)Immediately after complete denture placement; andiii)After 2 to 3 months of complete denture placement. Saliva production was stimulated by chewing paraffin wax. pH was determined by using a digital pH meter. Results: Statistically significant differences were seen in resting(unstimulated) and stimulated whole salivary flow rate and pH obtained before, immediately after, and after 2 to 3 months of complete denture placement. No statistically significant differences were found between the different age groups in resting (unstimulated) as well as stimulated whole salivary flow rate and pH. Conclusion: Stimulated whole salivary flow rates and pH were significantly higher than resting (unstimulated) whole salivary flow rates and pH obtained before, immediately after, and after 2 to 3 months of complete denture placement. No age related variations in whole salivary flow rate and pH were observed in healthy, non-medicated individuals. Clinical Implications: The assessment of salivary flow rate, pH in different age groups is of prognostic value, which is an important aspect to be considered in the practice of removable prosthodontics. PMID:26929540

  5. A clinical study to compare between resting and stimulated whole salivary flow rate and pH before and after complete denture placement in different age groups.

    PubMed

    Muddugangadhar, B C; Sangur, Rajashekar; Rudraprasad, I V; Nandeeshwar, D B; Kumar, B H Dhanya

    2015-01-01

    This study compared the flow rate and pH of resting (unstimulated) and stimulated whole saliva before and after complete denture placement in different age groups. Fifty healthy, non-medicated edentulous individuals of different age groups requiring complete denture prostheses were selected from the outpatient department. The resting (unstimulated) and stimulated whole saliva and pH were measured at three stages i.e., i)Before complete denture placement;ii)Immediately after complete denture placement; andiii)After 2 to 3 months of complete denture placement. Saliva production was stimulated by chewing paraffin wax. pH was determined by using a digital pH meter. Statistically significant differences were seen in resting(unstimulated) and stimulated whole salivary flow rate and pH obtained before, immediately after, and after 2 to 3 months of complete denture placement. No statistically significant differences were found between the different age groups in resting (unstimulated) as well as stimulated whole salivary flow rate and pH. Stimulated whole salivary flow rates and pH were significantly higher than resting (unstimulated) whole salivary flow rates and pH obtained before, immediately after, and after 2 to 3 months of complete denture placement. No age related variations in whole salivary flow rate and pH were observed in healthy, non-medicated individuals. The assessment of salivary flow rate, pH in different age groups is of prognostic value, which is an important aspect to be considered in the practice of removable prosthodontics.

  6. Flow rate calibration to determine cell-derived microparticles and homogeneity of blood components.

    PubMed

    Noulsri, Egarit; Lerdwana, Surada; Kittisares, Kulvara; Palasuwan, Attakorn; Palasuwan, Duangdao

    2017-08-01

    Cell-derived microparticles (MPs) are currently of great interest to screening transfusion donors and blood components. However, the current approach to counting MPs is not affordable for routine laboratory use due to its high cost. The current study aimed to investigate the potential use of flow-rate calibration for counting MPs in whole blood, packed red blood cells (PRBCs), and platelet concentrates (PCs). The accuracy of flow-rate calibration was investigated by comparing the platelet counts of an automated counter and a flow-rate calibrator. The concentration of MPs and their origins in whole blood (n=100), PRBCs (n=100), and PCs (n=92) were determined using a FACSCalibur. The MPs' fold-changes were calculated to assess the homogeneity of the blood components. Comparing the platelet counts conducted by automated counting and flow-rate calibration showed an r 2 of 0.6 (y=0.69x+97,620). The CVs of the within-run and between-run variations of flow-rate calibration were 8.2% and 12.1%, respectively. The Bland-Altman plot showed a mean bias of -31,142platelets/μl. MP enumeration revealed both the difference in MP levels and their origins in whole blood, PRBCs, and PCs. Screening the blood components demonstrated high heterogeneity of the MP levels in PCs when compared to whole blood and PRBCs. The results of the present study suggest the accuracy and precision of flow-rate calibration for enumerating MPs. This flow-rate approach is affordable for assessing the homogeneity of MPs in blood components in routine laboratory practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mitochondrial Variation among the Aymara and the Signatures of Population Expansion in the Central Andes

    PubMed Central

    BATAI, KEN; WILLIAMS, SLOAN R.

    2015-01-01

    Objectives The exploitation of marine resources and intensive agriculture led to a marked population increase early in central Andean prehistory. Constant historic and prehistoric population movements also characterize this region. These features undoubtedly affected regional genetic variation, but the exact nature of these effects remains uncertain. Methods Mitochondrial DNA (mtDNA) hypervariable region I sequence variation in 61 Aymara individuals from La Paz, Bolivia, was analyzed and compared to sequences from 47 other South American populations to test hypotheses of whether increased female effective population size and gene flow influenced the mtDNA variation among central Andean populations. Results The Aymara and Quechua were genetically diverse showing evidence of population expansion and large effective population size, and a demographic expansion model fits the mtDNA variation found among central Andean populations well. Estimated migration rates and the results of AMOVA and multidimensional scaling analysis suggest that female gene flow was also an important factor, influencing genetic variation among the central Andeans as well as lowland populations from western South America. mtDNA variation in south central Andes correlated better with geographic proximity than with language, and fit a population continuity model. Conclusion The mtDNA data suggests that the central Andeans experienced population expansion, most likely because of rapid demographic expansion after introduction of intensive agriculture, but roles of female gene flow need to be further explored. PMID:24449040

  8. Lightcurve of comet Austin(1989c1) and its dust mantle development

    NASA Technical Reports Server (NTRS)

    Hasegawa, Hitoshi; Watanabe, Jun-Ichi

    1992-01-01

    Brightness variations of comet Austin(1989c1) were investigated in terms of the variations of water production rate. We translated the visual brightness data into water production rates using Newburn's semi-empirical law. The curve of the water production rates as a function of heliocentric distance was compared with the model calculations that assumed energy balance between the solar incident and vaporization of water. Thermal flow in a dust mantle at a surface of the nucleus is also included in the model. The model calculations including the dust mantle are more favorable for the observed rate than non-dust mantle cases. The extinction after the perihelion passage suggests that the dust mantle developed gradually.

  9. Species delimitation and biogeography of two fir species (Abies) in central China: cytoplasmic DNA variation.

    PubMed

    Wang, J; Abbott, R J; Peng, Y L; Du, F K; Liu, J-Q

    2011-10-01

    It remains unclear how speciation history might contribute to species-specific variation and affect species delimitation. We examined concordance between cytoplasmic genetic variation and morphological taxonomy in two fir species, Abies chensiensis and A. fargesii, with overlapping distributions in central China. Range-wide genetic variation was investigated using mitochondrial (mt) and plastid (pt) DNA sequences, which contrast in their rates of gene flow. Four mtDNA haplotypes were recovered and showed no obvious species' bias in terms of relative frequency. In contrast, a high level of ptDNA variation was recorded in both species with 3 common ptDNA haplotypes shared between them and 21 rare ptDNA haplotypes specific to one or other species. We argue that the lack of concordance between morphological and molecular variation between the two fir species most likely reflects extensive ancestral polymorphism sharing for both forms of cytoplasmic DNA variation. It is feasible that a relatively fast mutation rate for ptDNA contributed to the production of many species-specific ptDNA haplotypes, which remained rare due to insufficient time passing for their spread and fixation in either species, despite high levels of intraspecific ptDNA gene flow. Our phylogeographic analyses further suggest that polymorphisms in both organelle genomes most likely originated during and following glacial intervals preceding the last glacial maximum, when species distributions became fragmented into several refugia and then expanded in range across central China.

  10. An in vitro experimental study of flow past aortic valve under varied pulsatile conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Ruihang; Zhang, Yan

    2017-11-01

    Flow past aortic valve represents a complex fluid-structure interaction phenomenon that involves pulsatile, vortical, and turbulent conditions. The flow characteristics immediately downstream of the valve, such as the variation of pulsatile flow velocity, formation of vortices, distribution of shear stresses, are of particular interest to further elucidate the role of hemodynamics in various aortic diseases. However, the fluid dynamics of a realistic aortic valve is not fully understood. Particularly, it is unclear how the flow fields downstream of the aortic valve would change under varied pulsatile inlet boundary conditions. In this study, an in vitro experiment has been conducted to investigate the flow fields downstream of a silicone aortic valve model within a cardiovascular flow simulator. Phased-locked Particle Image Velocimetry measurements were performed to map the velocity fields and Reynolds normal and shear stresses at different phases in a cardiac cycle. Temporal variations of pressure across the valve model were measured using high frequency transducers. Results have been compared for different pulsatile inlet conditions, including varied frequencies (heart rates), magnitudes (stroke volumes), and cardiac contractile functions (shapes of waveforms).

  11. Transition regime analytical solution to gas mass flow rate in a rectangular micro channel

    NASA Astrophysics Data System (ADS)

    Dadzie, S. Kokou; Dongari, Nishanth

    2012-11-01

    We present an analytical model predicting the experimentally observed gas mass flow rate in rectangular micro channels over slip and transition regimes without the use of any fitting parameter. Previously, Sone reported a class of pure continuum regime flows that requires terms of Burnett order in constitutive equations of shear stress to be predicted appropriately. The corrective terms to the conventional Navier-Stokes equation were named the ghost effect. We demonstrate in this paper similarity between Sone ghost effect model and newly so-called 'volume diffusion hydrodynamic model'. A generic analytical solution to gas mass flow rate in a rectangular micro channel is then obtained. It is shown that the volume diffusion hydrodynamics allows to accurately predict the gas mass flow rate up to Knudsen number of 5. This can be achieved without necessitating the use of adjustable parameters in boundary conditions or parametric scaling laws for constitutive relations. The present model predicts the non-linear variation of pressure profile along the axial direction and also captures the change in curvature with increase in rarefaction.

  12. An experimental study of the fluid mechanics associated with porous walls

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Heaman, J.; Smith, A.

    1992-01-01

    The fluid mechanics associated with the blowing phenomenon from porous walls is measured and characterized. The measurements indicate that the flow exiting a porous wall exhibits a lumpy velocity profile caused by the coalescence effects of smaller jets emerging from the surface. The velocity variations are spatially stable and prevail even at low flow rates. The intensity of this pseudoturbulence is found to be directly proportional to the filter rating of the porous wall and to increase linearly with the mean velocity. Beyond a critical mean velocity, the pseudoturbulence intensity shows a leveling trend with increase in the mean velocity. This critical velocity varies inversely as the filter rating and represents the onset of fully developed jetting action in the flow field. Based on the data, a more appropriate length scale for the flow field is proposed and a correlation is developed that can be used to predict the onset of fully developed jets in the flow emerging from a porous wall.

  13. Continuous-flow electrophoresis: Membrane-associated deviations of buffer pH and conductivity

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Mcguire, J. K.

    1978-01-01

    The deviations in buffer pH and conductivity which occur near the electrode membranes in continuous-flow electrophoresis were studied in the Beckman charged particle electrophoresis system and the Hanning FF-5 preparative electrophoresis instrument. The nature of the membranes separating the electrode compartments from the electrophoresis chamber, the electric field strength, and the flow rate of electrophoresis buffer were all found to influence the formation of the pH and conductivity gradients. Variations in electrode buffer flow rate and the time of electrophoresis were less important. The results obtained supported the hypothesis that a combination of Donnan membrane effects and the differing ionic mobilities in the electrophoresis buffer was responsible for the formation of the gradients. The significance of the results for the design and stable operation of continuous-flow electrophoresis apparatus was discussed.

  14. Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles

    NASA Astrophysics Data System (ADS)

    Linbo, GU; Yixi, CAI; Yunxi, SHI; Jing, WANG; Xiaoyu, PU; Jing, TIAN; Runlin, FAN

    2017-11-01

    To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min-1 was more appropriate for the purification of particles.

  15. In search of earthquake-related hydrologic and chemical changes along Hayward Fault

    USGS Publications Warehouse

    King, C.-Y.; Basler, D.; Presser, T.S.; Evans, William C.; White, L.D.; Minissale, A.

    1994-01-01

    Flow and chemical measurements have been made about once a month, and more frequently when required, since 1976 at two springs in Alum Rock Park in eastern San Jose, California, and since 1980 at two shallow wells in eastern Oakland in search of earthquake-related changes. All sites are on or near the Hayward Fault and are about 55 km apart. Temperature, electric conductivity, and water level or flow rate were measured in situ with portable instruments. Water samples were collected for later chemical and isotopic analyses in the laboratory. The measured flow rate at one of the springs showed a long-term decrease of about 40% since 1987, when a multi-year drought began in California. It also showed several increases that lasted a few days to a few months with amplitudes of 2.4 to 8.6 times the standard deviations above the background rate. Five of these increases were recorded shortly after nearby earthquakes of magnitude 5.0 or larger, and may have resulted from unclogging of the flow path and increase of permeability caused by strong seismic shaking. Two other flow increases were possibly induced by exceptionally heavy rainfalls. The water in both wells showed seasonal temperature and chemical variations, largely in response to rainfall. In 1980 the water also showed some clear chemical changes unrelated to rainfall that lasted a few months; these changes were followed by a magnitude 4 earthquake 37 km away. The chemical composition at one of the wells and at the springs also showed some longer-term variations that were not correlated with rainfall but possibly correlated with the five earthquakes mentioned above. These correlations suggest a common tectonic origin for the earthquakes and the anomalies. The last variation at the affected well occurred abruptly in 1989, shortly before a magnitude 5.0 earthquake 54 km away. ?? 1993.

  16. Thermal activation in Au-based bulk metallic glass characterized by high-temperature nanoindentation

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Wadsworth, Jeffrey; Nieh, Tai-Gang

    2007-02-01

    High-temperature nanoindentation experiments have been conducted on a Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glass from 30to140°C, utilizing loading rates ranging from 0.1to100mN/s. Generally, the hardness decreased with increasing temperature. An inhomogeneous-to-homogeneous flow transition was clearly observed when the test temperature approached the glass transition temperature. Analyses of the pop-in pattern and hardness variation showed that the inhomogeneous-to-homogeneous transition temperature was loading-rate dependent. Using a free-volume model, the authors deduced the size of the basic flow units and the activation energy for the homogeneous flow. In addition, the strain rate dependency of the transition temperature was predicted.

  17. Accuracy of 1D microvascular flow models in the limit of low Reynolds numbers.

    PubMed

    Pindera, Maciej Z; Ding, Hui; Athavale, Mahesh M; Chen, Zhijian

    2009-05-01

    We describe results of numerical simulations of steady flows in tubes with branch bifurcations using fully 3D and reduced 1D geometries. The intent is to delineate the range of validity of reduced models used for simulations of flows in microcapillary networks, as a function of the flow Reynolds number Re. Results from model problems indicate that for Re less than 1 and possibly as high as 10, vasculatures may be represented by strictly 1D Poiseuille flow geometries with flow variation in the axial dimensions only. In that range flow rate predictions in the different branches generated by 1D and 3D models differ by a constant factor, independent of Re. When the cross-sectional areas of the branches are constant these differences are generally small and appear to stem from an uncertainty of how the individual branch lengths are defined. This uncertainty can be accounted for by a simple geometrical correction. For non-constant cross-sections the differences can be much more significant. If additional corrections for the presence of branch junctions and flow area variations are not taken into account in 1D models of complex vasculatures, the resultant flow predictions should be interpreted with caution.

  18. Aquia Aquifer Dissolved Cl- and 36Cl/Cl: Implications for Flow Velocities

    NASA Astrophysics Data System (ADS)

    Purdy, Caroline Bascom; Helz, George R.; Mignerey, Alice C.; Kubik, Peter W.; Elmore, David; Sharma, Pankaj; Hemmick, Thomas

    1996-05-01

    The Aquia aquifer (southern Maryland) contains a remarkably smooth Cl- profile (0.46-3.23 ppm) along its flow path. This is interpreted as a record of historic changes in the deposition of Cl- in this region. Those changes have been influenced by the rise and fall of sea level, which has altered the distance of the recharge region from the coastline by ˜200 km. The 36Cl concentration along the flow path is not as smooth as the Cl- profile. Historic variations in cosmogenic production, atmospheric transport, precipitation, and evapotranspiration all might have influenced 36Cl concentrations. A general similarity between the 36Cl and Cl- profiles suggests that changes in precipitation and evapotranspiration rates, which influence both tracers similarly, are particularly important. To reconcile 14C, 36Cl, and hydrologic data, we propose a two-tier model for flow in the Aquia. Shallower portions of the aquifer (<60 m) were subjected to hydraulic gradients and flow rates approximately 5 times larger during the Pleistocene than modern, prepumping rates. At greater depths, flow rates were much slower and less variable; water in this region may be old enough to record some 36Cl decay.

  19. Experimental evaluation of wall Mach number distributions of the octagonal test section proposed for NASA Lewis Research Center's altitude wind tunnel

    NASA Technical Reports Server (NTRS)

    Harrington, Douglas E.; Burley, Richard R.; Corban, Robert R.

    1986-01-01

    Wall Mach number distributions were determined over a range of test-section free-stream Mach numbers from 0.2 to 0.92. The test section was slotted and had a nominal porosity of 11 percent. Reentry flaps located at the test-section exit were varied from 0 (fully closed) to 9 (fully open) degrees. Flow was bled through the test-section slots by means of a plenum evacuation system (PES) and varied from 0 to 3 percent of tunnel flow. Variations in reentry flap angle or PES flow rate had little or no effect on the Mach number distributions in the first 70 percent of the test section. However, in the aft region of the test section, flap angle and PES flow rate had a major impact on the Mach number distributions. Optimum PES flow rates were nominally 2 to 2.5 percent wtih the flaps fully closed and less than 1 percent when the flaps were fully open. The standard deviation of the test-section wall Mach numbers at the optimum PES flow rates was 0.003 or less.

  20. Atmospheric Pressure Effects on Cryogenic Storage Tank Boil-Off

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; Frontier, C. R.

    2007-01-01

    The Cryogenics Test Laboratory (CTL) at the Kennedy Space Center (KSC) routinely utilizes cryostat test hardware to evaluate comparative and absolute thermal conductivities of a wide array of insulation systems. The test method is based on measurement of the flow rate of gas evolved due to evaporative boil-off of a cryogenic liquid. The gas flow rate typically stabilizes after a period of a couple of hours to a couple of days, depending upon the test setup. The stable flow rate value is then used to calculate the thermal conductivity for the insulation system being tested. The latest set of identical cryostats, 1,000-L spherical tanks, exhibited different behavior. On a macro level, the flow rate did stabilize after a couple of days; however the stable flow rate was oscillatory with peak to peak amplitude of up to 25 percent of the nominal value. The period of the oscillation was consistently 12 hours. The source of the oscillation has been traced to variations in atmospheric pressure due to atmospheric tides similar to oceanic tides. This paper will present analysis of this phenomenon, including a calculation that explains why other cryostats are not affected by it.

  1. Investigation of electrostatic behavior of a lactose carrier for dry powder inhalers.

    PubMed

    Chow, Keat Theng; Zhu, Kewu; Tan, Reginald B H; Heng, Paul W S

    2008-12-01

    This study aims to elucidate the electrostatic behavior of a model lactose carrier used in dry powder inhaler formulations by examining the effects of ambient relative humidity (RH), aerosolization air flow rate, repeated inhaler use, gelatin capsule and tapping on the specific charge (nC/g) of bulk and aerosolized lactose. Static and dynamic electrostatic charge measurements were performed using a Faraday cage connected to an electrometer. Experiments were conducted inside a walk-in environmental chamber at 25 degrees C and RHs of 20% to 80%. Aerosolization was achieved using air flow rates of 30, 45, 60 and 75 L/min. The initial charges of the bulk and capsulated lactose were a magnitude lower than the charges of tapped or aerosolized lactose. Dynamic charge increased linearly with aerosolization air flow rate and RH. Greater frictional forces at higher air flow rate induced higher electrostatic charges. Increased RH enhanced charge generation. Repeated inhaler use significantly influenced electrostatic charge due to repeated usage. This study demonstrated the significance of interacting influences by variables commonly encountered in the use DPI such as variation in patient's inspiratory flow rate, ambient RH and repeated inhaler use on the electrostatic behavior of a lactose DPI carrier.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oktamuliani, Sri, E-mail: srioktamuliani@ymail.com; Su’ud, Zaki, E-mail: szaki@fi.itb.ac.id

    A preliminary study designs SPINNOR (Small Power Reactor, Indonesia, No On-Site Refueling) liquid metal Pb-Bi cooled fast reactors, fuel (U, Pu)N, 150 MWth have been performed. Neutronic calculation uses SRAC which is designed cylindrical core 2D (R-Z) 90 × 135 cm, on the core fuel composed of heterogeneous with percentage difference of PuN 10, 12, 13% and the result of calculation is effective neutron multiplication 1.0488. Power density distribution of the output SRAC is generated for thermal hydraulic calculation using Delphi based on Pascal language that have been developed. The research designed a reactor that is capable of natural circulation atmore » inlet temperature 300 °C with variation of total mass flow rate. Total mass flow rate affect pressure drop and temperature outlet of the reactor core. The greater the total mass flow rate, the smaller the outlet temperature, but increase the pressure drop so that the chimney needed more higher to achieve natural circulation or condition of the system does not require a pump. Optimization of the total mass flow rate produces optimal reactor design on the total mass flow rate of 5000 kg/s with outlet temperature 524,843 °C but require a chimney of 6,69 meters.« less

  3. Wave trapping and flow around an irregular near circular island in a stratified sea

    NASA Astrophysics Data System (ADS)

    Dyke, Phil

    2005-12-01

    Wave trapping and induced flow around an island is examined. The exactly circular island solutions are reprised and the solutions extended, and shown to apply to a stratified sea. The homogeneous solutions are then used to deduce the wave trapping and flow around a near circular island. It turns out that the cotidal pattern for a perfectly circular island is relatively immune to variations in geometry and radially dependent depth variations. This helps explain the similarity in the behaviour of the tides around various islands (the Pribilof Islands near Alaska, Oahu in Hawaii, Cook Island off north west Australia, Bermuda off the eastern coast of the USA, and Bear Island in the Norwegian Sea). The dominant steady drift and its rate of decay off-shore is also calculated.

  4. Regional variation of flow duration curves in the eastern United States: Process-based analyses of the interaction between climate and landscape properties

    NASA Astrophysics Data System (ADS)

    Chouaib, Wafa; Caldwell, Peter V.; Alila, Younes

    2018-04-01

    This paper advances the physical understanding of the flow duration curve (FDC) regional variation. It provides a process-based analysis of the interaction between climate and landscape properties to explain disparities in FDC shapes. We used (i) long term measured flow and precipitation data over 73 catchments from the eastern US. (ii) We calibrated the Sacramento model (SAC-SMA) to simulate soil moisture and flow components FDCs. The catchments classification based on storm characteristics pointed to the effect of catchments landscape properties on the precipitation variability and consequently on the FDC shapes. The landscape properties effect was pronounce such that low value of the slope of FDC (SFDC)-hinting at limited flow variability-were present in regions of high precipitation variability. Whereas, in regions with low precipitation variability the SFDCs were of larger values. The topographic index distribution, at the catchment scale, indicated that saturation excess overland flow mitigated the flow variability under conditions of low elevations with large soil moisture storage capacity and high infiltration rates. The SFDCs increased due to the predominant subsurface stormflow in catchments at high elevations with limited soil moisture storage capacity and low infiltration rates. Our analyses also highlighted the major role of soil infiltration rates on the FDC despite the impact of the predominant runoff generation mechanism and catchment elevation. In conditions of slow infiltration rates in soils of large moisture storage capacity (at low elevations) and predominant saturation excess, the SFDCs were of larger values. On the other hand, the SFDCs decreased in catchments of prevalent subsurface stormflow and poorly drained soils of small soil moisture storage capacity. The analysis of the flow components FDCs demonstrated that the interflow contribution to the response was the higher in catchments with large value of slope of the FDC. The surface flow FDC was the most affected by the precipitation as it tracked the precipitation duration curve (PDC). In catchments with low SFDCs, this became less applicable as surface flow FDC diverged from PDC at the upper tail (> 40% of the flow percentile). The interflow and baseflow FDCs illustrated most the filtering effect on the precipitation. The process understanding we achieved in this study is key for flow simulation and assessment in addition to future works focusing on process-based FDC predictions.

  5. Positional dependence of particles in microfludic impedance cytometry.

    PubMed

    Spencer, Daniel; Morgan, Hywel

    2011-04-07

    Single cell impedance cytometry is a label-free electrical analysis method that requires minimal sample preparation and has been used to count and discriminate cells on the basis of their impedance properties. This paper shows experimental and numerically simulated impedance signals for test particles (6 μm diameter polystyrene) flowing through a microfluidic channel. The variation of impedance signal with particle position is mapped using numerical simulation and these results match closely with experimental data. We demonstrate that for a nominal 40 μm × 40 μm channel, the impedance signal is independent of position over the majority of the channel area, but shows large experimentally verifiable variation at extreme positions. The parabolic flow profile in the channel ensures that most of the sample flows through the area of uniform signal. At high flow rates inertial focusing is observed; the particles flow in equal numbers through two equilibrium positions reducing the coefficient of variance (CV) in the impedance signals to negligible values.

  6. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-09-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip boundary condition can be applied. The measured viscous slip coefficients of binary gas mixtures exhibit a concave function of the molar ratio of the mixture, showing a similar profile with numerical results. However, from the detailed comparison between the measured and numerical values with the complete and incomplete accommodation at a surface, it is inappropriate to estimate the viscous slip coefficient for the mixture numerically by employing separately measured tangential momentum accommodation coefficient for each component. The time variation of the molar ratio in the downstream chamber was measured by sampling the gas from the chamber using the quadrupole mass spectrometer. In our measurements, it is indicated that the volume flow rate of argon is larger than that of helium because of the difference in the tangential momentum accommodation coefficient.

  7. Laminar boundary layer near the rotating end wall of a confined vortex

    NASA Astrophysics Data System (ADS)

    Shakespeare, W. J.; Levy, E. K.

    1982-06-01

    The results of an experimental and theoretical investigation of the fluid mechanics in a confined vortex are discussed with particular emphasis on behavior away from the axis of symmetry and near the end walls. The vortex is generated in a rotating cylindrical chamber with an exit opening in one end. Both end walls rotate. For the range of flow rates and swirl ratios (S between 1 and 5) of interest here, the flow field far from the end walls behaves as inviscid and irrotational; and the end wall boundary layers are thin and laminar. Measurements and calculations of tangential and radial velocity in the end wall region show the development of a secondary flow resulting in a strong velocity 'overshoot' in the radial component. Results illustrating the nature of the velocity variations on the end walls are presented; and it is shown that the mass flow rate through the end wall boundary layers, while only a small fraction of the total flow, increases with increasing swirl and with decreasing total flow rate through the chamber.

  8. Numerical studies of asymmetric adiabatic accretion flow - The effect of velocity gradients

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.; Fryxell, B. A.

    1989-01-01

    A numerical study of the time variation of the angular momentum and mass capture rates for a central object accreting from a uniform medium with a velocity gradient transverse to the direction of the mean flow is presented, covering a range of velocity asymmetries and Mach numbers in the incident flow. It is found that the mass accretion rate in a given evolutionary sequence varies in an irregular manner, with the matter accreting onto the central object from either a continuously moving accretion wake or from an accretion disk. The implications of the results from the study of short-term fluctuations observed in the pulse period and luminosity of X-ray pulsars are discussed.

  9. Extensive investigation of the sap flow of maize plants in an oasis farmland in the middle reach of the Heihe River, Northwest China.

    PubMed

    Zhao, Liwen; He, Zhibin; Zhao, Wenzhi; Yang, Qiyue

    2016-09-01

    A better understanding of the sap flow characteristics of maize plants is critical for improving irrigation water-use efficiency, especially for regions facing water resource shortages. In this study, sap flow rates, related soil-physics and plant-growth parameters, and meteorological factors, were simultaneously monitored in a maize field in two consecutive years, 2011 and 2012, and the sap flow rates of the maize plants were extensively analyzed based on the monitored data. Seasonal and daily variational characteristics were identified at different growth stages and under different weather conditions, respectively. The analyses on the relationships between sap flow rate and reference evapotranspiration (ET0), as well as several plant-growth parameters, indicate that the irrigation schedule can exert an influence on sap flow, and can consequently affect crop yield. The ranking of the main meteorological factors affecting the sap flow rate was: net radiation > air temperature > vapor pressure deficit > wind speed. For a quick estimation of sap flow rates, an empirical formula based on the two top influencing factors was put forward and verified to be reliable. The sap flow rate appeared to show little response to irrigation when the water content was relatively high, implying that some of the irrigation in recent years may have been wasted. These results may help to reveal the bio-physical processes of maize plants related to plant transpiration, which could be beneficial for establishing an efficient irrigation management system in this region and also for providing a reference for other maize-planting regions.

  10. Flow analysis system and method

    NASA Technical Reports Server (NTRS)

    Hill, Wayne S. (Inventor); Barck, Bruce N. (Inventor)

    1998-01-01

    A non-invasive flow analysis system and method wherein a sensor, such as an acoustic sensor, is coupled to a conduit for transmitting a signal which varies depending on the characteristics of the flow in the conduit. The signal is amplified and there is a filter, responsive to the sensor signal, and tuned to pass a narrow band of frequencies proximate the resonant frequency of the sensor. A demodulator generates an amplitude envelope of the filtered signal and a number of flow indicator quantities are calculated based on variations in amplitude of the amplitude envelope. A neural network, or its equivalent, is then used to determine the flow rate of the flow in the conduit based on the flow indicator quantities.

  11. Mathematical Investigation of Fluid Flow, Mass Transfer, and Slag-steel Interfacial Behavior in Gas-stirred Ladles

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Nastac, Laurentiu

    2018-06-01

    In this study, the Euler-Euler and Euler-Lagrange modeling approaches were applied to simulate the multiphase flow in the water model and gas-stirred ladle systems. Detailed comparisons of the computational and experimental results were performed to establish which approach is more accurate for predicting the gas-liquid multiphase flow phenomena. It was demonstrated that the Euler-Lagrange approach is more accurate than the Euler-Euler approach. The Euler-Lagrange approach was applied to study the effects of the free surface setup, injected bubble size, gas flow rate, and slag layer thickness on the slag-steel interaction and mass transfer behavior. Detailed discussions on the flat/non-flat free surface assumption were provided. Significant inaccuracies in the prediction of the surface fluid flow characteristics were found when the flat free surface was assumed. The variations in the main controlling parameters (bubble size, gas flow rate, and slag layer thickness) and their potential impact on the multiphase fluid flow and mass transfer characteristics (turbulent intensity, mass transfer rate, slag-steel interfacial area, flow patterns, etc.,) in gas-stirred ladles were quantitatively determined to ensure the proper increase in the ladle refining efficiency. It was revealed that by injecting finer bubbles as well as by properly increasing the gas flow rate and the slag layer thickness, the ladle refining efficiency can be enhanced significantly.

  12. Effects of surface coal mining and reclamation on the geohydrology of six small watersheds in west-central Indiana

    USGS Publications Warehouse

    Martin, Jeffrey D.; Duwelius, Richard F.; Crawford, Charles G.

    1987-01-01

    The watersheds studied include mined and reclaimed; mined and unreclaimed; and unmined, agricultural land uses, and are each < 3 sq mi in area. Surface water, groundwater, and meteorologic data for the 1981 and 1982 water years were used to describe and compare hydrologic systems of the six watersheds and to identify hydrologic effects of mining and reclamation. Peak discharges were greater at the agricultural watersheds than at the unreclaimed watersheds, primarily because of large final-cut lakes in the unreclaimed watersheds. Annual runoff was greatest at the unreclaimed watersheds, intermediate at the agricultural watersheds, and least at the reclaimed watersheds. Hydrologic effects of mining were identified by comparing the hydrologic systems at mined and unreclaimed watersheds with those at unmined, agricultural watersheds. Comparisons of the hydrologic systems of these watersheds indicate that surface coal mining without reclamation has the potential to increase annual runoff, base flow, and groundwater recharge to the bedrock; reduce peak flow rates and variation in flow; lower the water table in upland areas; change the relation between surface water and groundwater divides; and create numerous, local flow systems in the shallow groundwater. Hydrologic effects of reclamation were identified by comparing the hydrologic systems at mined and reclaimed watersheds with those at mined and unreclaimed watersheds. Reclamation has the potential to decrease annual runoff, base flow, and recharge to the bedrock; increase peak flow rates, variation in flow, and response to thunderstorms; reestablish the premining relation between surface and groundwater divides; and create fewer local flow systems in the shallow groundwater. (Lantz-PTT)

  13. Experimental investigation of 20 K two-stage layered active magnetic regenerative refrigerator

    NASA Astrophysics Data System (ADS)

    Park, Inmyong; Jeong, Sangkwon

    2015-12-01

    The performance of a two-stage layered AMRR is experimentally investigated. The test apparatus includes two-stage layered AMRs, low temperature superconducting (LTS) magnet which generates maximum magnetic field of 4 T, and the helium gas flow system. The helium compressor with the tandem rotary valve is employed to generate the oscillating flow of the helium gas minimizing the pressure swing effect. The mass flow rate of working fluid is controlled separately at the first and second stages of the AMR by solenoid valves. The mass flow rate of the AMRs is measured by the mass flow meter and the cryogenic hot-film sensor which is calibrated at cryogenic temperature range from 20 K to 77 K. In order to reduce the heat leak by shuttle heat transfer of the working fluid, void volumes have been implemented and connected to the cold ends of the AMR1 and AMR2. The temperature span of the AMR is recorded as 52 K and the performance of the AMR with the variation of the mass flow rate is analysed. The results show that the mass flow rate and the heat leak due to the shuttle heat transfer by oscillating working fluid are crucial factors in the AMR performance.

  14. Aeroacoustic and aerodynamic applications of the theory of nonequilibrium thermodynamics

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Smith, Charles A.; Karamcheti, Krishnamurty

    1991-01-01

    Recent developments in the field of nonequilibrium thermodynamics associated with viscous flows are examined and related to developments to the understanding of specific phenomena in aerodynamics and aeroacoustics. A key element of the nonequilibrium theory is the principle of minimum entropy production rate for steady dissipative processes near equilibrium, and variational calculus is used to apply this principle to several examples of viscous flow. A review of nonequilibrium thermodynamics and its role in fluid motion are presented. Several formulations are presented of the local entropy production rate and the local energy dissipation rate, two quantities that are of central importance to the theory. These expressions and the principle of minimum entropy production rate for steady viscous flows are used to identify parallel-wall channel flow and irrotational flow as having minimally dissipative velocity distributions. Features of irrotational, steady, viscous flow near an airfoil, such as the effect of trailing-edge radius on circulation, are also found to be compatible with the minimum principle. Finally, the minimum principle is used to interpret the stability of infinitesimal and finite amplitude disturbances in an initially laminar, parallel shear flow, with results that are consistent with experiment and linearized hydrodynamic stability theory. These results suggest that a thermodynamic approach may be useful in unifying the understanding of many diverse phenomena in aerodynamics and aeroacoustics.

  15. Prototype of a subsurface drip irrigation emitter: Manufacturing, hydraulic evaluation and experimental analyses

    NASA Astrophysics Data System (ADS)

    Souza, Wanderley De Jesus; Rodrigues Sinobas, Leonor; Sánchez, Raúl; Arriel Botrel, Tarlei; Duarte Coelho, Rubens

    2013-04-01

    Root and soil intrusion into the conventional emitters is one of the major disadvantages to obtain a good uniformity of water application in subsurface drip irrigation (SDI). In the last years, there have been different approaches to reduce these problems such as the impregnation of emitters with herbicide, and the search for an emitter geometry impairing the intrusion of small roots. Within the last this study, has developed and evaluated an emitter model which geometry shows specific physical features to prevent emitter clogging. This work was developed at the Biosystems Engineering Department at ESALQ-USP/Brazil, and it is a part of a research in which an innovated emitteŕs model for SDI has been developed to prevent root and soil particles intrusion. An emitter with a mechanical-hydraulic mechanism (opening and closing the water outlet) for SDI was developed and manufactured using a mechanical lathe process. It was composed by a silicon elastic membrane a polyethylene tube and a Vnyl Polychloride membrane protector system. In this study the performance of the developed prototype was assessed in the laboratory and in the field conditions. In the laboratory, uniformity of water application was calculated by the water emission uniformity coefficient (CUE), and the manufacturer's coefficient of variation (CVm). In addition, variation in the membrane diameter submitted to internal pressures; head losses along the membrane, using the energy equation; and, precision and accuracy of the equation model, analyzed by Pearson's correlation coefficient (r), and by Willmott's concordance index (d) were also calculated with samples of the developed emitters. In the field, the emitters were installed in pots with and without sugar cane culture from October 2010 to January 2012. During this time, flow rate in 20 emitters were measured periodically, and the aspects of them about clogging at the end of the experiment. Emitters flow rates were measured quarterly to calculate: relative flow rate (QR); flow disturbance (FD); CUE; and, variation coefficient of relative flow (CVQR). In the laboratory, both "CVm" and "CUE" were small since emitters were manufactured manually, the manufacturing variation was higher than in processed emitters. Variation in the membrane diameter decreased 1/4.5 from the central toward to the emitter end; and, the head loss increased. Estimated pressures were in good agreement to the observed ones with r and d values of 0.95, and 0.85, respectively. In the field tests, coefficients CVQR and QR were variable showing a poor classification according with ABNT (1986) and Solomon (1984). FD values were ranged between 11 and 24%and there was no observed clogging by roots and/or soil intrusion at the end of the experiment. On the other hand, emitter's flows were close to the average, indicating that water application kept according to the initial results. This study shows the suitability of this emitter model to prevent root and soil intrusion within the research conditions however further studies would be needed assessing the membrane performance, emitter physical characteristics, and control of emitter flow rate in order to develop the final prototype.

  16. Synthesis and characterization of CrCN-DLC composite coatings by cathodic arc ion-plating

    NASA Astrophysics Data System (ADS)

    Wang, R. Y.; Wang, L. L.; Liu, H. D.; Yan, S. J.; Chen, Y. M.; Fu, D. J.; Yang, B.

    2013-07-01

    CrCN-DLC composite coatings were deposited onto silicon (1 0 0) and cemented carbides substrates using pure Cr targets under C2H2 ambient by cathodic arc ion plating system. The influence of C2H2 flow rate on the structure and mechanical properties of the coatings was investigated systemically. The coatings structure and bonding state were characterized by XRD, Raman and X-ray photoelectron spectroscopy. The chemical composition was measured by EDS. The mechanical performance and tribological behaviour of the coatings were studied by a hardness tester and ball-on-disc wear tester. The results showed that with increasing C2H2 flow rate from 50 to 100 sccm, the corresponding hardness of coatings increased firstly and then decreased with further addition of C2H2 flow rate. The coatings deposited at lower C2H2 flow rate (less than 200 sccm) exhibited a relatively higher hardness value (more than HV0.0252000) and then the hardness decrease with increasing C2H2 flow rate. The friction coefficient also exhibited similar variation trend, when the C2H2 flow rate was higher than 100 sccm, the friction coefficient decreased and then maintained in a relatively lower value from 0.18 to 0.24, which may be attribute to the increasing carbon content and the coating exhibited more diamond-like structure.

  17. Variations in Rotation Rate and Polar Motion of a Non-hydrostatic Titan

    NASA Astrophysics Data System (ADS)

    Van Hoolst, T.; Coyette, A.; Baland, R. M.

    2017-12-01

    Observations of the rotation of large synchronously rotating satellites such as Titan can help to probe their interior. Previous studies (Van Hoolst et al. 2013, Richard et al. 2014, Coyette et al. 2016) mostly assume that Titan is in hydrostatic equilibrium, although several measurements indicate that it deviates from such a state. Here we investigate the effect of non-hydrostatic equilibrium and of flow in the subsurface ocean on the rotation of Titan. We consider (1) the periodic changes in Titan's rotation rate with a period equal to Titan's orbital period (diurnal librations) as a result of the gravitational torque exerted by Saturn, (2) the periodic changes in Titan's rotation rate with a main period equal to half the orbital period of Saturn (seasonal librations) and due to the dynamic variations in the atmosphere of Titan and (3) the periodic changes of the axis of rotation with respect to the figure axis of Titan (polar motion) with a main period equal to the orbital period of Saturn and due to the dynamic variations in the atmosphere of Titan. The non-hydrostatic mass distribution significantly influences the amplitude of the diurnal and seasonal librations. It is less important for polar motion, which is sensitive to flow in the subsurface ocean. The smaller than synchronous rotation rate measured by Cassini (Meriggiola 2016) can be explained by the atmospheric forcing.

  18. Discharge variability and bedrock river incision on the Hawaiian island of Kaua'i

    NASA Astrophysics Data System (ADS)

    Huppert, K.; Deal, E.; Perron, J. T.; Ferrier, K.; Braun, J.

    2017-12-01

    Bedrock river incision occurs during floods that generate sufficient shear stress to strip riverbeds of sediment cover and erode underlying bedrock. Thresholds for incision can prevent erosion at low flows and slow down erosion at higher flows that do generate excess shear stress. Because discharge distributions typically display power-law tails, with non-negligible frequencies of floods much greater than the mean, models incorporating stochastic discharge and incision thresholds predict that discharge variability can sometimes have greater effects on long-term incision rates than mean discharge. This occurs when the commonly observed inverse scalings between mean discharge and discharge variability are weak or when incision thresholds are high. Because the effects of thresholds and discharge variability have only been documented in a few locations, their influence on long-term river incision rates remains uncertain. The Hawaiian island of Kaua'i provides an ideal natural laboratory to evaluate the effects of discharge variability and thresholds on bedrock river incision because it has one of Earth's steepest spatial gradients in mean annual rainfall and it also experiences dramatic spatial variations in rainfall and discharge variability, spanning a wide range of the conditions reported on Earth. Kaua'i otherwise has minimal variations in lithology, vertical motion, and other factors that can influence erosion. River incision rates averaged over 1.5 - 4.5 Myr timescales can be estimated along the lengths of Kauaian channels from the depths of river canyons and lava flow ages. We characterize rainfall and discharge variability on Kaua'i using records from an extensive network of rain and stream gauges spanning the past century. We use these characterizations to model long-term bedrock river incision along Kauaian channels with a threshold-dependent incision law, modulated by site-specific discharge-channel width scalings. Our comparisons between modeled and observed erosion rates suggest that variations in river incision rates on Kaua'i are dominated by variations in mean rainfall and discharge, rather than by differences in storminess across the island. We explore the implications of this result for the threshold dependence of river incision across Earth's varied climates.

  19. Flow patterns and transition characteristics for steam condensation in silicon microchannels

    NASA Astrophysics Data System (ADS)

    Ma, Xuehu; Fan, Xiaoguang; Lan, Zhong; Hao, Tingting

    2011-07-01

    This study investigated the two-phase flow patterns and transition characteristics for steam condensation in silicon microchannels with different cross-sectional geometries. Novel experimental techniques were developed to determine the local heat transfer rate and steam quality by testing the temperature profile of a copper cooler. Flow regime maps for different microchannels during condensation were established in terms of steam mass flux and steam quality. Meanwhile, the correlation for the flow pattern transition was obtained using different geometrical and dimensionless parameters for steam condensation in microchannels. To better understand the flow mechanisms in microchannels, the condensation flow patterns, such as annular flow, droplet flow, injection flow and intermittent flow, were captured and analyzed. The local heat transfer rate showed the nonlinear variations along the axial direction during condensation. The experimental results indicate that the flow patterns and transition characteristics strongly depend on the geometries of microchannels. With the increasing steam mass flux and steam quality, the annular/droplet flow expands and spans over a larger region in the microchannels; otherwise the intermittent flow occupies the microchannels. The dimensionless fitting data also reveal that the effect of surface tension and vapor inertia dominates gravity and viscous force at the specified flow pattern transitional position.

  20. Nonintrusive, multipoint velocity measurements in high-pressure combustion flows

    NASA Technical Reports Server (NTRS)

    Allen, M.; Davis, S.; Kessler, W.; Legner, H.; Mcmanus, K.; Mulhall, P.; Parker, T.; Sonnenfroh, D.

    1993-01-01

    A combined experimental and analytical effort was conducted to demonstrate the applicability of OH Doppler-shifted fluorescence imaging of velocity distributions in supersonic combustion gases. The experiments were conducted in the underexpanded exhaust flow from a 6.8 atm, 2400 K, H2-O2-N2 burner exhausting into the atmosphere. In order to quantify the effects of in-plane variations of the gas thermodynamic properties on the measurement accuracy, a set of detailed measurements of the OH (1,0) band collisional broadening and shifting in H2-air gases was produced. The effect of pulse-to-pulse variations in the dye laser bandshape was also examined in detail and a modification was developed which increased in the single pulse bandwidth, thereby increasing the intraimage velocity dynamic range as well as reducing the sensitivity of the velocity measurement to the gas property variations. Single point and imaging measurements of the velocity field in the exhaust flowfield were compared with 2D, finite-rate kinetics simulations of the flowfield. Relative velocity accuracies of +/- 50 m/s out of 1600 m/s were achieved in time-averaged imaging measurements of the flow over an order of magnitude variation in pressure and a factor of two variation in temperature.

  1. Spatio-temporal models to determine association between Campylobacter cases and environment

    PubMed Central

    Sanderson, Roy A; Maas, James A; Blain, Alasdair P; Gorton, Russell; Ward, Jessica; O’Brien, Sarah J; Hunter, Paul R; Rushton, Stephen P

    2018-01-01

    Abstract Background Campylobacteriosis is a major cause of gastroenteritis in the UK, and although 70% of cases are associated with food sources, the remainder are probably associated with wider environmental exposure. Methods In order to investigate wider environmental transmission, we conducted a spatio-temporal analysis of the association of human cases of Campylobacter in the Tyne catchment with weather, climate, hydrology and land use. A hydrological model was used to predict surface-water flow in the Tyne catchment over 5 years. We analysed associations between population-adjusted Campylobacter case rate and environmental factors hypothesized to be important in disease using a two-stage modelling framework. First, we investigated associations between temporal variation in case rate in relation to surface-water flow, temperature, evapotranspiration and rainfall, using linear mixed-effects models. Second, we used the random effects for the first model to quantify how spatial variation in static landscape features of soil and land use impacted on the likely differences between subcatchment associations of case rate with the temporal variables. Results Population-adjusted Campylobacter case rates were associated with periods of high predicted surface-water flow, and during above average temperatures. Subcatchments with cattle on stagnogley soils, and to a lesser extent sheep plus cattle grazing, had higher Campylobacter case rates. Conclusions Areas of stagnogley soils with mixed livestock grazing may be more vulnerable to both Campylobacter spread and exposure during periods of high rainfall, with resultant increased risk of human cases of the disease. PMID:29069406

  2. The Effect of Speaking Rate on Velopharyngeal Function in Healthy Speakers

    ERIC Educational Resources Information Center

    Gauster, Andrea; Yunusova, Yana; Zajac, David

    2010-01-01

    The purpose of this study was to assess the effect of speaking rate variation on aerodynamic and acoustic measures of velopharyngeal (VP) function. Twenty-seven healthy adult speakers (14 males, 13 females) participated in the study. The modified pressure-flow method was used to collect aerodynamic data of /m/ and /p/ segments in the word…

  3. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (smallmore » ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.« less

  4. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    PubMed Central

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F.

    2015-01-01

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length. PMID:26328984

  5. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length.

    PubMed

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F

    2015-09-01

    Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as -0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31 μl/min among four wild-type rats. The authors' measured flow rates were consistent with results in the literature. By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  6. Flow separation characteristics of unstable dispersions

    NASA Astrophysics Data System (ADS)

    Voulgaropoulos, Victor; Zhai, Lusheng; Angeli, Panagiota

    2016-11-01

    Drops of a low viscosity oil are introduced through a multi-capillary inlet during the flow of water in a horizontal pipe. The flow rates of the continuous water phase are kept in the turbulent region while the droplets are injected at similar flow rates (with oil fractions ranging from 0.15 to 0.60). The acrylic pipe (ID of 37mm) is approximately 7m long. Measurements are conducted at three different axial locations to illustrate how the flow structures are formed and develop along the pipe. Initial observations are made on the flow patterns through high-speed imaging. Stratification is observed for the flow rates studied, indicating that the turbulent dispersive forces are lower than the gravity ones. These results are complemented with a tomography system acquiring measurements at the same locations and giving the cross-sectional hold-up. The coalescence dynamics are strong in the dense-packed drop layer and thus measurements with a dual-conductance probe are conducted to capture any drop size changes. It is found that the drop size variations depend on the spatial configuration of the drops, the initial drop size along with the continuous and dispersed phase velocities. Project funded under Chevron Energy Technology.

  7. Viscosity changes of riparian water controls diurnal fluctuations of stream-flow and DOC concentration

    NASA Astrophysics Data System (ADS)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2015-04-01

    Diurnal fluctuations in stream-flow are commonly explained as being triggered by the daily evapotranspiration cycle in the riparian zone, leading to stream flow minima in the afternoon. While this trigger effect must necessarily be constrained by the extent of the growing season of vegetation, we here show evidence of daily stream flow maxima in the afternoon in a small headwater stream during the dormant season. We hypothesize that the afternoon maxima in stream flow are induced by viscosity changes of riparian water that is caused by diurnal temperature variations of the near surface groundwater in the riparian zone. The patterns were observed in the Weierbach headwater catchment in Luxembourg. The catchment is covering an area of 0.45 km2, is entirely covered by forest and is dominated by a schistous substratum. DOC concentration at the outlet of the catchment was measured with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH) with a high frequency of 15 minutes over several months. Discharge was measured with an ISCO 4120 Flow Logger. During the growing season, stream flow shows a frequently observed diurnal pattern with discharge minima in the afternoon. During the dormant season, a long dry period with daily air temperature amplitudes of around 10 ° C occurred in March and April 2014, with discharge maxima in the afternoon. The daily air temperature amplitude led to diurnal variations in the water temperature of the upper 10 cm of the riparian zone. Higher riparian water temperatures cause a decrease in water viscosity and according to the Hagen-Poiseuille equation, the volumetric flow rate is inversely proportional to viscosity. Based on the Hagen-Poiseuille equation and the viscosity changes of water, we calculated higher flow rates of near surface groundwater through the riparian zone into the stream in the afternoon which explains the stream flow maxima in the afternoon. With the start of the growing season, the viscosity induced diurnal effect is overlain by the stronger influence of evapotranspiration. Diurnal DOC fluctuations show daily maxima in the afternoon. While daily variations in DOC concentrations are often explained by faster in-stream biogeochemical processes during daylight, we here propose that the viscosity effect in the riparian zone could explain the afternoon peaks in DOC concentrations. Our records show that daily water temperature variations and therefore viscosity changes only occur in the near surface parts of the riparian zone, where the DOC concentrations are higher than in deeper parts of the riparian zone. We calculated, that the viscosity induced higher flow rates from the near surface parts of the riparian zone can explain the DOC concentration maxima in the afternoon. As the viscosity effect does not disappear during the growing season but is just smaller than the evapotranspiration effect, the DOC concentration pattern is not changing between the dormant and growing seasons. The different controls of diurnal fluctuations of stream-flow and water quality concentrations need to be carefully considered in order to better understand the different patterns in catchment hydrology.

  8. How reactive fluids alter fracture walls and affect shale-matrix accessibility

    NASA Astrophysics Data System (ADS)

    Fitts, J. P.; Deng, H.; Peters, C. A.

    2014-12-01

    Predictions of mass transfer across fracture boundaries and fluid flow in fracture networks provide fundamental inputs into risk and life cycle assessments of geologic energy technologies including oil and gas extraction, geothermal energy systems and geologic CO2 storage. However, major knowledge gaps exist due to the lack of experimental observations of how reactive fluids alter the pore structures and accessible surface area within fracture boundaries that control the mass transfer of organics, metals and salts, and influence fluid flow within the fracture. To investigate the fracture and rock matrix properties governing fracture boundary alteration, we developed a new flow-through cell that enables time-dependent 2D x-ray imaging of mineral dissolution and/or precipitation at a fracture surface. The parallel plate design provides an idealized fracture geometry to investigate the relationship between flow rate, reaction rate, and mineral spatial heterogeneity and variation. In the flow-cell, a carbonate-rich sample of Eagle Ford shale was reacted with acidified brine. The extent and rate of mineral dissolution were correlated with calcite abundance relative to less soluble silicate minerals. Three-dimensional x-ray tomography of the reacted fracture wall shows how calcite dissolution left behind a porous network of silicate minerals. And while this silicate network essentially preserved the location of the initial fracture wall, the pore network structures within the fracture boundary were dramatically altered, such that the accessible surface area of matrix components increased significantly. In a second set of experiments with a limestone specimen, however, the extent of dissolution and retreat of the fracture wall was not strictly correlated with the occurrence of calcite. Instead, the pattern and extent of dissolution suggested secondary causes such as calcite morphology, the presence of argillaceous minerals and other diagenetic features. Our experiments show that while calcite dissolution is the primary geochemical driver of fracture wall alterations, hydrodynamic properties and matrix accessibility within fracture boundaries evolve based on a complex relationship between mineral spatial heterogeneity and variation, fluid chemistry and flow rate.

  9. Stability and sensitivity of ABR flow control protocols

    NASA Astrophysics Data System (ADS)

    Tsai, Wie K.; Kim, Yuseok; Chiussi, Fabio; Toh, Chai-Keong

    1998-10-01

    This tutorial paper surveys the important issues in stability and sensitivity analysis of ABR flow control of ATM networks. THe stability and sensitivity issues are formulated in a systematic framework. Four main cause of instability in ABR flow control are identified: unstable control laws, temporal variations of available bandwidth with delayed feedback control, misbehaving components, and interactions between higher layer protocols and ABR flow control. Popular rate-based ABR flow control protocols are evaluated. Stability and sensitivity is shown to be the fundamental issues when the network has dynamically-varying bandwidth. Simulation result confirming the theoretical studies are provided. Open research problems are discussed.

  10. Effect of different carrier gases and their flow rates on the growth of carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewari, Aarti; Sharma, Suresh C.

    2015-04-15

    The present paper examines the effect of different carrier gases and their flow rates on the growth of carbon nanotubes (CNTs). A theoretical model is developed incorporating the charging rate of the carbon nanotube, kinetics of all the plasma species, and the growth rate of the CNTs because of diffusion and accretion of ions on the catalyst nanoparticle. The three different carrier gases, i.e., argon (Ar), ammonia, and nitrogen, are considered in the present investigation, and flow rates of all the three carrier gases are varied individually (keeping the flow rates of hydrocarbon and hydrogen gas constant) to investigate themore » variations in the number densities of hydrocarbon and hydrogen ions in the plasma and their consequent effects on the height and radius of CNT. Based on the results obtained, it is concluded that Ar favors the formation of CNTs with larger height and radius whereas ammonia contributes to better height of CNT but decreases the radius of CNT, and nitrogen impedes both the height and radius of CNT. The present work can serve to the better understanding of process parameters during growth of CNTs by a plasma enhanced chemical vapor deposition process.« less

  11. Multiphase Flow Characteristics of Heterogeneous Rocks From CO2 Storage Reservoirs in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Reynolds, Catriona A.; Blunt, Martin J.; Krevor, Samuel

    2018-02-01

    We have studied the impact of heterogeneity on relative permeability and residual trapping for rock samples from the Bunter sandstone of the UK Southern North Sea, the Ormskirk sandstone of the East Irish Sea, and the Captain sandstone of the UK Northern North Sea. Reservoir condition CO2-brine relative permeability measurements were made while systematically varying the ratio of viscous to capillary flow potential, across a range of flow rates, fractional flow, and during drainage and imbibition displacement. This variation resulted in observations obtained across a range of core-scale capillary number 0.2

  12. Frozen Chemistry Effects on Nozzle Performance Simulations

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.; Georgiadis, Nicholas J.; O'Gara, Michael R.

    2009-01-01

    Simulations of exhaust nozzle flows are typically conducted assuming the gas is calorically perfect, and typically modeled as air. However the gas inside a real nozzle is generally composed of combustion products whose thermodynamic properties may differ. In this study, the effect of gas model assumption on exhaust nozzle simulations is examined. The three methods considered model the nozzle exhaust gas as calorically perfect air, a calorically perfect exhaust gas mixture, and a frozen exhaust gas mixture. In the latter case the individual non-reacting species are tracked and modeled as a gas which is only thermally perfect. Performance parameters such as mass flow rate, gross thrust, and thrust coefficient are compared as are mean flow and turbulence profiles in the jet plume region. Nozzles which operate at low temperatures or have low subsonic exit Mach numbers experience relatively minor temperature variations inside the nozzle, and may be modeled as a calorically perfect gas. In those which operate at the opposite extreme conditions, variations in the thermodynamic properties can lead to different expansion behavior within the nozzle. Modeling these cases as a perfect exhaust gas flow rather than air captures much of the flow features of the frozen chemistry simulations. Use of the exhaust gas reduces the nozzle mass flow rate, but has little effect on the gross thrust. When reporting nozzle thrust coefficient results, however, it is important to use the appropriate gas model assumptions to compute the ideal exit velocity. Otherwise the values obtained may be an overly optimistic estimate of nozzle performance.

  13. Linking diurnal cycles of river flow to interannual variations in climate

    USGS Publications Warehouse

    Lundquist, Jessica D.; Dettinger, Michael D.

    2003-01-01

    Many rivers in the Western United States have diurnal variations exceeding 10% of their mean flow in the spring and summer months. The shape and timing of the diurnal cycle is influenced by an interplay of the snow, topography, vegetation, and meteorology in a basin, and the measured result differs between wet and dry years. The largest interannual differences occur during the latter half of the melt season, as the snowline retreats to the highest elevations and most shaded slopes in a basin. In most basins, during this period, the hour of peak discharge shifts to later in the day, and the relative amplitude of the diurnal cycle decreases. The magnitude and rate of these changes in the diurnal cycle vary between years and may provide clues about how long- term hydroclimatic variations affect short-term basin dynamics.

  14. The importance of flow history in mixed shear and extensional flows

    NASA Astrophysics Data System (ADS)

    Wagner, Caroline; McKinley, Gareth

    2015-11-01

    Many complex fluid flows of experimental and academic interest exhibit mixed kinematics with regions of shear and elongation. Examples include flows through planar hyperbolic contractions in microfluidic devices and through porous media or geometric arrays. Through the introduction of a ``flow-type parameter'' α which varies between 0 in pure shear and 1 in pure elongation, the local velocity fields of all such mixed flows can be concisely characterized. It is tempting to then consider the local stress field and interpret the local state of stress in a complex fluid in terms of shearing or extensional material functions. However, the material response of such fluids exhibit a fading memory of the entire deformation history. We consider a dilute solution of Hookean dumbbells and solve the Oldroyd-B model to obtain analytic expressions for the entire stress field in any arbitrary mixed flow of constant strain rate and flow-type parameter α. We then consider a more complex flow for which the shear rate is constant but the flow-type parameter α varies periodically in time (reminiscent of flow through a periodic array or through repeated contractions and expansions). We show that the flow history and kinematic sequencing (in terms of whether the flow was initialized as shearing or extensional) is extremely important in determining the ensuing stress field and rate of dissipated energy in the flow, and can only be ignored in the limit of infinitely slow flow variations.

  15. More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other Conifers.

    PubMed

    Du, Fang K; Petit, Rémy J; Liu, Jian Quan

    2009-04-01

    Recent work has suggested that rates of introgression should be inversely related to levels of gene flow because introgressed populations cannot be 'rescued' by intraspecific gene flow if it is too low. Mitochondrial and chloroplast DNA (mtDNA and cpDNA) experience very different levels of gene flow in conifers due to their contrasted maternal and paternal modes of transmission, hence the prediction that mtDNA should introgress more readily than cpDNA in this group. Here, we use sequence data from both mtDNA and cpDNA to test this hypothesis in a group of closely related spruces species, the Picea asperata complex from China. Nine mitochondrial and nine chloroplast haplotypes were recovered from 459 individuals in 46 natural populations belonging to five species of the Picea asperata complex. Low variation was found in the two mtDNA introns along with a high level of differentiation among populations (G(ST) = 0.90). In contrast, we detected higher variation and lower differentiation among populations at cpDNA markers (G(ST) = 0.56), a trend shared by most conifer species studied so far. We found that cpDNA variation, although far from being fully diagnostic, is more species-specific than mtDNA variation: four groups of populations were identified using cpDNA markers, all of them related to species or groups of species, whereas for mtDNA, geographical variation prevails over species differentiation. The literature suggests that mtDNA haplotypes are often shared among related conifer species, whereas cpDNA haplotypes are more species-specific. Hence, increased intraspecific gene flow appears to decrease differentiation within species but not among species.

  16. Geomagnetic fluctuations during a polarity transition

    NASA Astrophysics Data System (ADS)

    Audunsson, Haraldur; Levi, Shaul

    1997-01-01

    The extensive Roza Member of the Columbia River Basalt Group (Washington State) has intermediate paleomagnetic directions, bracketed by underlying normal and overlying reverse polarity flows. A consistent paleomagnetic direction was measured at 11 widely distributed outcrops; the average direction has a declination of 189° and an inclination of -5°, with greater variation in the inclination [Rietman, 1966]. In this study the Roza Member was sampled in two Pasco Basin drillcores, where it is a single cooling unit and its thickness exceeds 50 m. Excellent core recovery allowed uniform and dense sampling of the drillcores. During its protracted cooling, the Roza flow in the drillcores recorded part of a 15.5 Ma geomagnetic polarity transition. The inclination has symmetric, quasicyclic intraflow variation, while the declination is nearly constant, consistent with the results from the outcrops. Thermal models of the cooling flow provide the timing for remanence acquisition. The inclination is inferred to have progressed from 0° to -15° and back to -3°over a period of 15 to 60 years, at rates of 1.6° to 0.5°/yr. Because the geomagnetic intensity was probably weak during the transition, these apparently high rates of change are not significantly different from present-day secular variation. These results agree with the hypothesis that normal secular variation persists through geomagnetic transitions. The Iow-amplitude quasicyclical fluctuations of the field over tens of years, recorded by Roza, suggest that the geomagnetic field reverses in discrete steps, and that more than 15-60 years were required to complete this reversal.

  17. Development of a flow controller for long-term sampling of gases and vapors using evacuated canisters.

    PubMed

    Rossner, Alan; Farant, Jean Pierre; Simon, Philippe; Wick, David P

    2002-11-15

    Anthropogenic activities contribute to the release of a wide variety of volatile organic compounds (VOC) into microenvironments. Developing and implementing new air sampling technologies that allow for the characterization of exposures to VOC can be useful for evaluating environmental and health concerns arising from such occurrences. A novel air sampler based on the use of a capillary flow controller connected to evacuated canisters (300 mL, 1 and 6 L) was designed and tested. The capillary tube, used to control the flow of air, is a variation on a sharp-edge orifice flow controller. It essentially controls the velocity of the fluid (air) as a function of the properties of the fluid, tube diameter and length. A model to predict flow rate in this dynamic system was developed. The mathematical model presented here was developed using the Hagen-Poiseuille equation and the ideal gas law to predict flow into the canisters used to sample for long periods of time. The Hagen-Poiseuille equation shows the relationship between flow rate, pressure gradient, capillary resistance, fluid viscosity, capillary length and diameter. The flow rates evaluated were extremely low, ranging from 0.05 to 1 mL min(-1). The model was compared with experimental results and was shown to overestimate the flow rate. Empirical equations were developed to more accurately predict flow for the 300 mL, 1 and 6 L canisters used for sampling periods ranging from several hours to one month. The theoretical and observed flow rates for different capillary geometries were evaluated. Each capillary flow controller geometry that was tested was found to generate very reproducible results, RSD < 2%. Also, the empirical formulas developed to predict flow rate given a specified diameter and capillary length were found to predict flow rate within 6% of the experimental data. The samplers were exposed to a variety of airborne vapors that allowed for comparison of the effectiveness of capillary flow controllers to sorbent samplers and to an online gas chromatograph. The capillary flow controller was found to exceed the performance of the sorbent samplers in this comparison.

  18. Performance of PEM fuel cells stack as affected by number of cell and gas flow-rate

    NASA Astrophysics Data System (ADS)

    Syampurwadi, A.; Onggo, H.; Indriyati; Yudianti, R.

    2017-03-01

    The proton exchange membrane fuel cell (PEMFC) is a promising technology as an alternative green energy due to its high power density, low operating temperatures, low local emissions, quiet operation and fast start up-shutdown. In order to apply fuel cell as portable power supply, the performance investigation of small number of cells is needed. In this study, PEMFC stacks consisting of 1, 3, 5 and 7-cells with an active area of 25 cm2 per cell have been designed and developed. Their was evaluated in variation of gas flow rate. The membrane electrode assembly (MEA) was prepared by hot-pressing commercial gas diffusion electrodes (Pt loading 0.5 mg/cm2) on pre-treated Nafion 117 membrane. The stacks were constructed using bipolar plates in serpentine pattern and Z-type gas flow configuration. The experimental results were presented as polarization and power output curves which show the effects of varying number of cells and H2/O2 flow-rates on the PEMFC performance. The experimental results showed that not only number of cells and gas flow-rates affected the fuel cells performance, but also the operating temperature as a result of electrochemistry reaction inside the cell.

  19. Calculation of gas turbine characteristic

    NASA Astrophysics Data System (ADS)

    Mamaev, B. I.; Murashko, V. L.

    2016-04-01

    The reasons and regularities of vapor flow and turbine parameter variation depending on the total pressure drop rate π* and rotor rotation frequency n are studied, as exemplified by a two-stage compressor turbine of a power-generating gas turbine installation. The turbine characteristic is calculated in a wide range of mode parameters using the method in which analytical dependences provide high accuracy for the calculated flow output angle and different types of gas dynamic losses are determined with account of the influence of blade row geometry, blade surface roughness, angles, compressibility, Reynolds number, and flow turbulence. The method provides satisfactory agreement of results of calculation and turbine testing. In the design mode, the operation conditions for the blade rows are favorable, the flow output velocities are close to the optimal ones, the angles of incidence are small, and the flow "choking" modes (with respect to consumption) in the rows are absent. High performance and a nearly axial flow behind the turbine are obtained. Reduction of the rotor rotation frequency and variation of the pressure drop change the flow parameters, the parameters of the stages and the turbine, as well as the form of the characteristic. In particular, for decreased n, nonmonotonic variation of the second stage reactivity with increasing π* is observed. It is demonstrated that the turbine characteristic is mainly determined by the influence of the angles of incidence and the velocity at the output of the rows on the losses and the flow output angle. The account of the growing flow output angle due to the positive angle of incidence for decreased rotation frequencies results in a considerable change of the characteristic: poorer performance, redistribution of the pressure drop at the stages, and change of reactivities, growth of the turbine capacity, and change of the angle and flow velocity behind the turbine.

  20. Population biology of Avena : IX. Gene flow and neighborhood size in relation to microgeographic variation in Avena barbata.

    PubMed

    Rai, Kedar N; Jain, Subodh K

    1982-06-01

    Pollen and seed dispersal patterns were analyzed in both natural and experimental populations of Avena barbata. Localized estimates of gene flow rates and plant densities gave estimates of neighborhood size in the range of 40 to 400 plants; the estimates of mean rate and distance of gene flow seemed to vary widely due to variable wind direction, rodent activity, microsite heterogeneity, etc. The relative sizes of neighborhoods in several populations were correlated with the patchy distribution of different genotypes (scored for lemma color and leaf sheath hairiness) within short distances, but patch sizes had a wide range among different sites. Highly localized gene flow patterns seemed to account for the observed pattern of highly patchy variation even when the dispersal curves for both pollen and seed were platykurtic in many cases. Measures of the stability of patches in terms of their size, dispersion in space and genetic structure in time are needed in order to sort out the relative roles of founder effects, random drift (due to small neighborhood size), and highly localized selection. However, our observations suggest that many variables and stochastic processes are involved in such studies so as to allow only weak inference about the underlying role of natural selection, drift and factors of population regulatien.

  1. The coupling between hydrodynamic and purification efficiencies of ecological porous spur-dike in field drainage ditch

    NASA Astrophysics Data System (ADS)

    Rao, Lei; Wang, Pei-fang; Dai, Qing-song; Wang, Chao

    2018-05-01

    In this study, a series of ecological porous spur-dikes are arranged in an experiment channel to simulate a real field drainage ditch. The inside and outside flow fields of spur-dikes are determined by numerical simulations and experimental methods. An Ammonia-Nitrogen (NH3-N) degradation evaluation model is built to calculate the pollution removal rate by coupling with the inner flow field of the porous spur-dikes. The variations of the total pollutant removal rate in the channel are discussed in terms of different porosities and gap distances between spur-dikes and inlet flow velocities. It is indicated that a reasonable parameter matching of the porosity and the gap distance with the flow velocity of the ditch can bring about a satisfactory purification efficiency with a small delivery quantity of ecological porous materials.

  2. The use of laminar tube flow in the study of hydrodynamic and chemical influences on polymer flocculation of Escherichia coli.

    PubMed

    Whittington, P N; George, N

    1992-08-05

    The optimization of microbial flocculation for subsequent biomass separation must relate the floc properties to separation process criteria. The effects of flocculant type, dose, and hydrodynamic conditions on floc formation in laminar tube flow were determined for an Escherichia coli system. Combined with an on-line aggregation sensor, this technique allows the flocculation process to be rapidly optimized. This is important, because interbatch variation in fermentation broth has consequences for flocculation control and subsequent downstream processing. Changing tube diameter and length while maintaining a constant flow rate allowed independent study of the effects of shear and time on the flocculation rate and floc characteristics. Tube flow at higher shear rates increased the rate and completeness of flocculation, but reduced the maximum floc size attained. The mechanism for this size limitation does not appear to be fracture or erosion of existing flocs. Rearrangement of particles within the flocs appears to be most likely. The Camp number predicted the extent of flocculation obtained in terms of the reduction in primary particle number, but not in terms of floc size.

  3. Sustained High Basal Motion of the Greenland Ice Sheet Revealed by Borehole Deformation

    NASA Technical Reports Server (NTRS)

    Ryser, Claudia; Luthi, Martin P.; Andrews, Lauren C.; Hoffman, Matthew, J.; Catania, Ginny A.; Hawley, Robert L.; Neumann, Thomas A.; Kristensen, Steen S.

    2014-01-01

    Ice deformation and basal motion characterize the dynamical behavior of the Greenland ice sheet (GrIS). We evaluate the contribution of basal motion from ice deformation measurements in boreholes drilled to the bed at two sites in the western marginal zone of the GrIS. We find a sustained high amount of basal motion contribution to surface velocity of 44-73 percent in winter, and up to 90 percent in summer. Measured ice deformation rates show an unexpected variation with depth that can be explained with the help of an ice-flow model as a consequence of stress transfer from slippery to sticky areas. This effect necessitates the use of high-order ice-flow models, not only in regions of fast-flowing ice streams but in all temperate-based areas of the GrIS. The agreement between modeled and measured deformation rates confirms that the recommended values of the temperature-dependent flow rate factor A are a good choice for ice-sheet models.

  4. Flow quality of NAL two-dimensional transonic wind tunnel. Part 1: Mach number distributions, flow angularities and preliminary study of side wall boundary layer suction

    NASA Technical Reports Server (NTRS)

    Sakakibara, Seizo; Takashima, Kazuaki; Miwa, Hitoshi; Oguni, Yasuo; Sato, Mamoru; Kanda, Hiroshi

    1988-01-01

    Experimental data on the flow quality of the National Aerospace Laboratory two-dimensional transonic wind tunnel are presented. Mach number distributions on the test section axis show good uniformity which is characterized by the two sigma (standard deviation) values of 0.0003 to 0.001 for a range of Mach numbers from 0.4 to 1.0. Flow angularities, which were measured by using a wing model with a symmetrical cross section, remained within 0.04 deg for Mach numbers from 0.2 to 0.8. Side wall boundary layer suction was applied through a pair of porous plates. The variation of aerodynamic properties of the model due to the suction mass flow rate change is presented with a brief discussion. Two dimensionality of the flow over the wing span is expected to be improved by applying the appropriate suction rate, which depends on the Mach number, Reynolds number, and lift coefficient.

  5. Xerostomia, Hyposalivation, and Salivary Flow in Diabetes Patients

    PubMed Central

    Casañas, Elisabeth; Ramírez, Lucía; de Arriba, Lorenzo; Hernández, Gonzalo

    2016-01-01

    The presence of xerostomia and hyposalivation is frequent among diabetes mellitus (DM) patients. It is not clear if the presence of xerostomia and hyposalivation is greater in DM than non-DM patients. The aims of this systematic review are (1) to compare the prevalence rates of xerostomia, (2) to evaluate the salivary flow rate, and (3) to compare the prevalence rates of hyposalivation in DM versus non-DM population. This systematic review was conducted according to the PRISMA group guidelines by performing systematic literature searches in biomedical databases from 1970 until January 18th, 2016. All studies showed higher prevalence of xerostomia in DM patients in relation to non-DM population, 12.5%–53.5% versus 0–30%. Studies that analyzed the quantity of saliva in DM population in relation to non-DM patients reported higher flow rates in non-DM than in DM patients. The variation flow rate among different studies in each group (DM/CG) is very large. Only one existing study showed higher hyposalivation prevalence in DM than non-DM patients (45% versus 2.5%). In addition, quality assessment showed the low quality of the existing studies. We recommend new studies that use more precise and current definitions concerning the determination and diagnosis of DM patients and salivary flow collection. PMID:27478847

  6. Xerostomia, Hyposalivation, and Salivary Flow in Diabetes Patients.

    PubMed

    López-Pintor, Rosa María; Casañas, Elisabeth; González-Serrano, José; Serrano, Julia; Ramírez, Lucía; de Arriba, Lorenzo; Hernández, Gonzalo

    2016-01-01

    The presence of xerostomia and hyposalivation is frequent among diabetes mellitus (DM) patients. It is not clear if the presence of xerostomia and hyposalivation is greater in DM than non-DM patients. The aims of this systematic review are (1) to compare the prevalence rates of xerostomia, (2) to evaluate the salivary flow rate, and (3) to compare the prevalence rates of hyposalivation in DM versus non-DM population. This systematic review was conducted according to the PRISMA group guidelines by performing systematic literature searches in biomedical databases from 1970 until January 18th, 2016. All studies showed higher prevalence of xerostomia in DM patients in relation to non-DM population, 12.5%-53.5% versus 0-30%. Studies that analyzed the quantity of saliva in DM population in relation to non-DM patients reported higher flow rates in non-DM than in DM patients. The variation flow rate among different studies in each group (DM/CG) is very large. Only one existing study showed higher hyposalivation prevalence in DM than non-DM patients (45% versus 2.5%). In addition, quality assessment showed the low quality of the existing studies. We recommend new studies that use more precise and current definitions concerning the determination and diagnosis of DM patients and salivary flow collection.

  7. Passive flow regulators for drug delivery and hydrocephalus treatment

    NASA Astrophysics Data System (ADS)

    Chappel, E.; Dumont-Fillon, D.; Mefti, S.

    2014-03-01

    Passive flow regulators are usually intended to deliver or drain a fluid at a constant rate independently from pressure variations. New designs of passive flow regulators made of a stack of a silicon membrane anodically bonded to a Pyrex substrate are proposed. A first design has been built for the derivation of cerebrospinal fluid (CSF) towards peritoneum for hydrocephalus treatment. The device allows draining CSF at the patient production rate independently from postural changes. The flow rate is regulated at 20 ml/h in the range 10 to 40 mbar. Specific features to adjust in vivo the nominal flow rate are shown. A second design including high pressure shut-off feature has been made. The intended use is drug delivery with pressurized reservoir of typically 100 to 300 mbar. In both cases, the membrane comprises several holes facing pillars in the Pyrex substrate. These pillars are machined in a cavity which ensures a gap between the membrane and the pillars at rest. The fluid in the pressurized reservoir is directly in contact with the top surface of the membrane, inducing its deflection towards Pyrex substrate and closing progressively the fluidic pathway through each hole of the membrane. Since the membrane deflection is highly non-linear, FEM simulations have been performed to determine both radial position and diameter of the membrane holes that ensure a constant flow rate for a given range of pressure.

  8. Static test-stand performance of the YF-102 turbofan engine with several exhaust configurations for the Quiet Short-Haul Research Aircraft (QSRA)

    NASA Technical Reports Server (NTRS)

    Mcardle, J. G.; Homyak, L.; Moore, A. S.

    1979-01-01

    The performance of a YF-102 turbofan engine was measured in an outdoor test stand with a bellmouth inlet and seven exhaust-system configurations. The configurations consisted of three separate-flow systems of various fan and core nozzle sizes and four confluent-flow systems of various nozzle sizes and shapes. A computer program provided good estimates of the engine performance and of thrust at maximum rating for each exhaust configuration. The internal performance of two different-shaped core nozzles for confluent-flow configurations was determined to be satisfactory. Pressure and temperature surveys were made with a traversing probe in the exhaust-nozzle flow for some confluent-flow configurations. The survey data at the mixing plane, plus the measured flow rates, were used to calculate the static-pressure variation along the exhaust nozzle length. The computed pressures compared well with experimental wall static-pressure data. External-flow surveys were made, for some confluent-flow configurations, with a large fixed rake at various locations in the exhaust plume.

  9. Performance of high flow rate samplers for respirable particle collection.

    PubMed

    Lee, Taekhee; Kim, Seung Won; Chisholm, William P; Slaven, James; Harper, Martin

    2010-08-01

    The American Conference of Governmental Industrial hygienists (ACGIH) lowered the threshold limit value (TLV) for respirable crystalline silica (RCS) exposure from 0.05 to 0.025 mg m(-3) in 2006. For a working environment with an airborne dust concentration near this lowered TLV, the sample collected with current standard respirable aerosol samplers might not provide enough RCS for quantitative analysis. Adopting high flow rate sampling devices for respirable dust containing silica may provide a sufficient amount of RCS to be above the limit of quantification even for samples collected for less than full shift. The performances of three high flow rate respirable samplers (CIP10-R, GK2.69, and FSP10) have been evaluated in this study. Eleven different sizes of monodisperse aerosols of ammonium fluorescein were generated with a vibrating orifice aerosol generator in a calm air chamber in order to determine the sampling efficiency of each sampler. Aluminum oxide particles generated by a fluidized bed aerosol generator were used to test (i) the uniformity of a modified calm air chamber, (ii) the effect of loading on the sampling efficiency, and (iii) the performance of dust collection compared to lower flow rate cyclones in common use in the USA (10-mm nylon and Higgins-Dewell cyclones). The coefficient of variation for eight simultaneous samples in the modified calm air chamber ranged from 1.9 to 6.1% for triplicate measures of three different aerosols. The 50% cutoff size ((50)d(ae)) of the high flow rate samplers operated at the flow rates recommended by manufacturers were determined as 4.7, 4.1, and 4.8 microm for CIP10-R, GK2.69, and FSP10, respectively. The mass concentration ratio of the high flow rate samplers to the low flow rate cyclones decreased with decreasing mass median aerodynamic diameter (MMAD) and high flow rate samplers collected more dust than low flow rate samplers by a range of 2-11 times based on gravimetric analysis. Dust loading inside the high flow rate samplers does not appear to affect the particle separation in either FSP10 or GK2.69. The high flow rate samplers overestimated compared to the International Standards Organization/Comité Européen de Normalisation/ACGIH respirable convention [up to 40% at large MMAD (27.5 microm)] and could provide overestimated exposure data with the current flow rates. However, both cyclones appeared to be able to provide relatively unbiased assessments of RCS when their flow rates were adjusted.

  10. Performance of High Flow Rate Samplers for Respirable Particle Collection

    PubMed Central

    Lee, Taekhee; Kim, Seung Won; Chisholm, William P.; Slaven, James; Harper, Martin

    2010-01-01

    The American Conference of Governmental Industrial hygienists (ACGIH) lowered the threshold limit value (TLV) for respirable crystalline silica (RCS) exposure from 0.05 to 0.025 mg m−3 in 2006. For a working environment with an airborne dust concentration near this lowered TLV, the sample collected with current standard respirable aerosol samplers might not provide enough RCS for quantitative analysis. Adopting high flow rate sampling devices for respirable dust containing silica may provide a sufficient amount of RCS to be above the limit of quantification even for samples collected for less than full shift. The performances of three high flow rate respirable samplers (CIP10-R, GK2.69, and FSP10) have been evaluated in this study. Eleven different sizes of monodisperse aerosols of ammonium fluorescein were generated with a vibrating orifice aerosol generator in a calm air chamber in order to determine the sampling efficiency of each sampler. Aluminum oxide particles generated by a fluidized bed aerosol generator were used to test (i) the uniformity of a modified calm air chamber, (ii) the effect of loading on the sampling efficiency, and (iii) the performance of dust collection compared to lower flow rate cyclones in common use in the USA (10-mm nylon and Higgins–Dewell cyclones). The coefficient of variation for eight simultaneous samples in the modified calm air chamber ranged from 1.9 to 6.1% for triplicate measures of three different aerosols. The 50% cutoff size (50dae) of the high flow rate samplers operated at the flow rates recommended by manufacturers were determined as 4.7, 4.1, and 4.8 μm for CIP10-R, GK2.69, and FSP10, respectively. The mass concentration ratio of the high flow rate samplers to the low flow rate cyclones decreased with decreasing mass median aerodynamic diameter (MMAD) and high flow rate samplers collected more dust than low flow rate samplers by a range of 2–11 times based on gravimetric analysis. Dust loading inside the high flow rate samplers does not appear to affect the particle separation in either FSP10 or GK2.69. The high flow rate samplers overestimated compared to the International Standards Organization/Comité Européen de Normalisation/ACGIH respirable convention [up to 40% at large MMAD (27.5 μm)] and could provide overestimated exposure data with the current flow rates. However, both cyclones appeared to be able to provide relatively unbiased assessments of RCS when their flow rates were adjusted. PMID:20660144

  11. CHARACTERIZATION OF FLOW-RESISTANT TUBES USED FOR SEMI-OCCLUDED VOCAL TRACT VOICE TRAINING AND THERAPY

    PubMed Central

    Smith, Simeon L.; Titze, Ingo R.

    2016-01-01

    Objectives To characterize the pressure-flow relationship of tubes used for semi-occluded vocal tract voice training/therapy, as well as to answer these major questions: (1) What is the relative importance of tube length to tube diameter? (2) What is the range of oral pressures achieved with tubes at phonation flow rates? (3) Does mouth configuration behind the tubes matter? Methods Plastic tubes of various diameters and lengths were mounted in line with an upstream pipe, and the pressure drop across each tube was measured at stepwise increments in flow rate. Basic flow theory and modified flow theory equations were used to describe the pressure-flow relationship of the tubes based on diameter and length. Additionally, the upstream pipe diameter was varied to explore how mouth shape affects tube resistance. Results The modified equation provided an excellent prediction of the pressure-flow relationship across all tube sizes (6% error compared to the experimental data). Variation in upstream pipe diameter yielded up to 10% deviation in pressure for tube sizes typically used in voice training/therapy. Conclusions Using the presented equations, resistance can be characterized for any tube based on diameter, length, and flow rate. With regard to the original questions, we found that: (1) For commonly used tubes, diameter is the critical variable for governing flow resistance; (2) For phonation flow rates, a range of tube dimensions produced pressures between 0 and 7.0 kPa; (3) The mouth pressure behind the lips will vary slightly with different mouth shapes, but this effect can be considered relatively insignificant. PMID:27133001

  12. Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity.

    PubMed

    Odendaal, Lizelle J; Jacobs, David S; Bishop, Jacqueline M

    2014-03-27

    Across heterogeneous environments selection and gene flow interact to influence the rate and extent of adaptive trait evolution. This complex relationship is further influenced by the rarely considered role of phenotypic plasticity in the evolution of adaptive population variation. Plasticity can be adaptive if it promotes colonization and survival in novel environments and in doing so may increase the potential for future population differentiation via selection. Gene flow between selectively divergent environments may favour the evolution of phenotypic plasticity or conversely, plasticity itself may promote gene flow, leading to a pattern of trait differentiation in the presence of gene flow. Variation in sensory traits is particularly informative in testing the role of environment in trait and population differentiation. Here we test the hypothesis of 'adaptive differentiation with minimal gene flow' in resting echolocation frequencies (RF) of Cape horseshoe bats (Rhinolophus capensis) across a gradient of increasingly cluttered habitats. Our analysis reveals a geographically structured pattern of increasing RF from open to highly cluttered habitats in R. capensis; however genetic drift appears to be a minor player in the processes influencing this pattern. Although Bayesian analysis of population structure uncovered a number of spatially defined mitochondrial groups and coalescent methods revealed regional-scale gene flow, phylogenetic analysis of mitochondrial sequences did not correlate with RF differentiation. Instead, habitat discontinuities between biomes, and not genetic and geographic distances, best explained echolocation variation in this species. We argue that both selection for increased detection distance in relatively less cluttered habitats and adaptive phenotypic plasticity may have influenced the evolution of matched echolocation frequencies and habitats across different populations. Our study reveals significant sensory trait differentiation in the presence of historical gene flow and suggests roles for both selection and plasticity in the evolution of echolocation variation in R. capensis. These results highlight the importance of population level analyses to i) illuminate the subtle interplay between selection, plasticity and gene flow in the evolution of adaptive traits and ii) demonstrate that evolutionary processes may act simultaneously and that their relative influence may vary across different environments.

  13. PILOT SCALE WATER REUSE SYSTEM

    EPA Science Inventory

    The efficiency of the treatment technologies is expected to vary with the source water quality. By testing the technologies with various source waters, the research will quantify the limits of the technology: testing the flow rate variations with influent water quality, evalu...

  14. Adaptation of the Carter-Tracy water influx calculation to groundwater flow simulation

    USGS Publications Warehouse

    Kipp, Kenneth L.

    1986-01-01

    The Carter-Tracy calculation for water influx is adapted to groundwater flow simulation with additional clarifying explanation not present in the original papers. The Van Everdingen and Hurst aquifer-influence functions for radial flow from an outer aquifer region are employed. This technique, based on convolution of unit-step response functions, offers a simple but approximate method for embedding an inner region of groundwater flow simulation within a much larger aquifer region where flow can be treated in an approximate fashion. The use of aquifer-influence functions in groundwater flow modeling reduces the size of the computational grid with a corresponding reduction in computer storage and execution time. The Carter-Tracy approximation to the convolution integral enables the aquifer influence function calculation to be made with an additional storage requirement of only two times the number of boundary nodes more than that required for the inner region simulation. It is a good approximation for constant flow rates but is poor for time-varying flow rates where the variation is large relative to the mean. A variety of outer aquifer region geometries, exterior boundary conditions, and flow rate versus potentiometric head relations can be used. The radial, transient-flow case presented is representative. An analytical approximation to the functions of Van Everdingen and Hurst for the dimensionless potentiometric head versus dimensionless time is given.

  15. Variations in rotation rate and polar motion of a non-hydrostatic Titan

    NASA Astrophysics Data System (ADS)

    Coyette, Alexis; Baland, Rose-Marie; Van Hoolst, Tim

    2018-06-01

    Observation of the rotation of synchronously rotating satellites can help to probe their interior. Previous studies mostly assume that these large icy satellites are in hydrostatic equilibrium, although several measurements indicate that they deviate from such a state. Here we investigate the effect of non-hydrostatic equilibrium and of flow in the subsurface ocean on the rotation of Titan. We consider the variations in rotation rate and the polar motion due to (1) the gravitational force exerted by Saturn at orbital period and (2) exchanges of angular momentum between the seasonally varying atmosphere and the solid surface. The deviation of the mass distribution from hydrostaticity can significantly increase the diurnal libration and decrease the amplitude of the seasonal libration. The effect of the non-hydrostatic mass distribution is less important for polar motion, which is more sensitive to flow in the subsurface ocean. By including a large spectrum of atmospheric perturbations, the smaller than synchronous rotation rate measured by Cassini in the 2004-2009 period (Meriggiola et al., 2016) could be explained by the atmospheric forcing. If our interpretation is correct, we predict a larger than synchronous rotation rate in the 2009-2014 period.

  16. On the decades-long stability of the interstellar wind through the solar system

    NASA Astrophysics Data System (ADS)

    Lallement, R.; Bertaux, J. L.

    2014-05-01

    We have revisited the series of observations recently used to infer a temporal variation in the interstellar helium flow over the past forty years. Concerning the recent IBEX-Lo direct detection of helium neutrals, there are two types of precise and unambiguous measurements that do not rely on the exact response of the instrument: the count rate maxima as a function of the spin angle, which determines the ecliptic latitude of the flow, and the count rate maxima as a function of IBEX longitude, which determines a tight relationship between the ecliptic longitude of the flow and its velocity far from the Sun. These measurements provide parameters (and couples of parameters in the second case) that are remarkably similar to the canonical, old values. In contrast, the preferred choice of a lower velocity and higher longitude reported before from IBEX data is only based on the count rate variation (at each spin phase maximum) as a function of the satellite longitude, when drifting across the region of high fluxes. We have examined the consequences of dead-time counting effects and conclude that including them at a realistic level is sufficient to reconcile the data with the old parameters, calling for further investigations. We discuss the analyses of the STEREO pickup ion data and argue that the statistical method that has been preferred to infer the neutral flow longitude (instead of the more direct method based on the pickup ion maximum flux directions) is not appropriate. Moreover, transport effects may have been significant at the very weak solar activity level of 2007-2009, in which case the longitudes of the pickup ion maxima are only upper limits on the flow longitude. Finally, we found that using some flow longitude determinations based on UV glow data is not adequate. Based on this global study, and at variance with recent conclusions, we find no evidence for a temporal variability of the interstellar helium flow. This has implications for inner and outer heliosphere studies.

  17. Robust estimation of simulated urinary volume from camera images under bathroom illumination.

    PubMed

    Honda, Chizuru; Bhuiyan, Md Shoaib; Kawanaka, Haruki; Watanabe, Eiichi; Oguri, Koji

    2016-08-01

    General uroflowmetry method involves the risk of nosocomial infections or time and effort of the recording. Medical institutions, therefore, need to measure voided volume simply and hygienically. Multiple cylindrical model that can estimate the fluid flow rate from the photographed image using camera has been proposed in an earlier study. This study implemented a flow rate estimation by using a general-purpose camera system (Raspberry Pi Camera Module) and the multiple cylindrical model. However, large amounts of noise in extracting liquid region are generated by the variation of the illumination when performing measurements in the bathroom. So the estimation error gets very large. In other words, the specifications of the previous study's camera setup regarding the shutter type and the frame rate was too strict. In this study, we relax the specifications to achieve a flow rate estimation using a general-purpose camera. In order to determine the appropriate approximate curve, we propose a binarizing method using background subtraction at each scanning row and a curve approximation method using RANSAC. Finally, by evaluating the estimation accuracy of our experiment and by comparing it with the earlier study's results, we show the effectiveness of our proposed method for flow rate estimation.

  18. Hydrothermal fluid flow and deformation in large calderas: Inferences from numerical simulations

    USGS Publications Warehouse

    Hurwitz, S.; Christiansen, L.B.; Hsieh, P.A.

    2007-01-01

    Inflation and deflation of large calderas is traditionally interpreted as being induced by volume change of a discrete source embedded in an elastic or viscoelastic half-space, though it has also been suggested that hydrothermal fluids may play a role. To test the latter hypothesis, we carry out numerical simulations of hydrothermal fluid flow and poroelastic deformation in calderas by coupling two numerical codes: (1) TOUGH2 [Pruess et al., 1999], which simulates flow in porous or fractured media, and (2) BIOT2 [Hsieh, 1996], which simulates fluid flow and deformation in a linearly elastic porous medium. In the simulations, high-temperature water (350??C) is injected at variable rates into a cylinder (radius 50 km, height 3-5 km). A sensitivity analysis indicates that small differences in the values of permeability and its anisotropy, the depth and rate of hydrothermal injection, and the values of the shear modulus may lead to significant variations in the magnitude, rate, and geometry of ground surface displacement, or uplift. Some of the simulated uplift rates are similar to observed uplift rates in large calderas, suggesting that the injection of aqueous fluids into the shallow crust may explain some of the deformation observed in calderas.

  19. Discerning the role of mechanosensors in regulating proximal tubule function

    PubMed Central

    Weisz, Ora A.

    2015-01-01

    All cells in the body experience external mechanical forces such as shear stress and stretch. These forces are sensed by specialized structures in the cell known as mechanosensors. Cells lining the proximal tubule (PT) of the kidney are continuously exposed to variations in flow rates of the glomerular ultrafiltrate, which manifest as changes in axial shear stress and radial stretch. Studies suggest that these cells respond acutely to variations in flow by modulating their ion transport and endocytic functions to maintain glomerulotubular balance. Conceptually, changes in the axial shear stress in the PT could be sensed by three known structures, namely, the microvilli, the glycocalyx, and primary cilia. The orthogonal component of the force produced by flow exhibits as radial stretch and can cause expansion of the tubule. Forces of stretch are transduced by integrins, by stretch-activated channels, and by cell-cell contacts. This review summarizes our current understanding of flow sensing in PT epithelia, discusses challenges in dissecting the role of individual flow sensors in the mechanosensitive responses, and identifies potential areas of opportunity for new study. PMID:26662200

  20. Measurement of pressure and flow rates during irrigation of a root canal ex vivo with three endodontic needles.

    PubMed

    Boutsioukis, C; Lambrianidis, T; Kastrinakis, E; Bekiaroglou, P

    2007-07-01

    To monitor ex vivo intra-canal irrigation with three endodontic needles (25, 27 and 30 gauge) and compare them in terms of irrigant flow rate, intra-barrel pressure, duration of irrigation and volume of irrigant delivered. A testing system was constructed to allow measurement of selected variables with pressure and displacement transducers during ex vivo intra-canal irrigation with a syringe and three different needles (groups A, B, C) into a prepared root canal. Ten specialist endodontists performed the irrigation procedure. Each operator performed ten procedures with each needle. Data recorded by the transducers were analysed using Friedman's test, Wilcoxon Signed Rank test, Mann-Whitney U-test and Kendall's T(b) test. The level of significance was set to 95%. Significant differences were detected among the three needles for most variables. Duration of delivery and flow rates significantly decreased as the needle diameter increased, whilst pressure increased up to 400-550 kPa. Gender of the operator had a significant impact on the results. Experience of the operators (years) were negatively correlated to volume of irrigant (all groups), to the duration of delivery (groups A, B) and to the average flow rate (group A). Finer diameter needles require increased effort to deliver the irrigant and result in higher intra-barrel pressure. The syringe and needles used tolerated the pressure developed. Irrigant flow rate should be considered as a factor directly influencing flow beyond the needle. Wide variations of flow rate were observed among operators. Syringe irrigation appears difficult to standardize and control.

  1. Fluid flow characteristics during polymer flooding

    NASA Astrophysics Data System (ADS)

    Yao, S. L.; Dou, H. E.; Wu, M.; Zhang, H. J.

    2018-05-01

    At present the main problems of polymer flooding is the high injection pressure which could not guarantee the later injection. In this paper the analyses of polymer’s physical properties and its solution’s variable movement characteristics in porous media reveal the inevitable trend of decrease in injection capacity and liquid production due to the increase of fluid viscosity and flow rate with more flow resistance. The injection rate makes the primary contribution to the active viscosity of the polymer solution in porous media. The higher injection rate, the greater shearing degradation and the more the viscosity loss. Besides the quantitative variation, the rate also changes qualitatively as that the injection rate demonstrates composite change of injection intensity and density. Due to the different adjustment function of the polymer solution on its injection profile, there should be different adjustment model of rates in such stages. Here in combination of the on-site recognitions, several conclusions and recommendations are made based on the study of the injection pattern adjustment during polymer flooding to improve the pressure distribution system, which would be a meaningful reference for extensive polymer flooding in the petroleum industry.

  2. Mafic-crystal distributions, viscosities, and lava structures of some Hawaiian lava flows

    NASA Astrophysics Data System (ADS)

    Rowland, Scott K.; Walker, George P. L.

    1988-09-01

    The distribution patterns of mafic phenocrysts in some Hawaiian basalt flows are consistent with simple in situ gravitational settling. We use the patterns to estimate the crystal settling velocity and hence viscosity of the lava, which in turn can be correlated with surface structures. Numerical modeling generates theoretical crystal concentration profiles through lava flow units of different thicknesses for differing settling velocities. By fitting these curves to field data, crystal-settling rates through the lavas can be estimated, from which the viscosities of the flows can be determined using Stokes' Law. Lavas in which the crystal settling velocity was relatively high (on the order of 5 × 10 -4 cm/sec) show great variations in phenocryst content, both from top to bottom of the same flow unit, and from one flow unit to another. Such lava is invariably pahoehoe, flow units of which are usually less than 1 m thick. Lavas in which the crystal-settling velocity was low show a small but measurable variation in phenocryst content. These lavas are part of a progression from a rough pahoehoe to toothpaste lava to a'a. Toothpaste lava is characterized by spiny texture as well as the ability to retain surface grooves during solidification, and flow units are usually thicker than 1 m. In the thickest of Hawaiian a'a flows, those of the distal type, no systematic crystal variations are observed, and high viscosity coupled with a finite yield strength prevented crystal settling. The amount of crystal settling in pahoehoe indicates that the viscosity ranged from 600 to 6000 Pa s. The limited amount of settling in toothpaste lava indicates a viscosity greater than this value, approaching 12,000 Pa s. We infer that distal-type a'a had a higher viscosity still and also possessed a yield strength.

  3. Individual variation of sap-flow rate in large pine and spruce trees and stand transpiration: a pilot study at the central NOPEX site

    NASA Astrophysics Data System (ADS)

    Čermák, J.; Cienciala, E.; Kučera, J.; Lindroth, A.; Bednářová, E.

    1995-06-01

    Transpiration in a mixed old stand of sub-boreal forest in the Norunda region (central Sweden) was estimated on the basis of direct measurement of sap flow rate in 24 large Scots pine and Norway spruce trees in July and August 1993. Sap flow rate was measured using the trunk tissue heat balance method based on internal (electric) heating and sensing of temperature. Transpiration was only 0.7 mm day -1 in a relatively dry period in July (i.e. about 20% of potential evaporation) and substantially higher after a rainy period in August. The error of the estimates of transpiration was higher during a dry period (about 13% and 22% in pine and spruce, respectively) and significantly lower (about 9% in both species) during a period of sufficient water supply. Shallow-rooted spruce trees responded much faster to precipitation than deeply rooted pines.

  4. Unconfined laminar nanofluid flow and heat transfer around a rotating circular cylinder in the steady regime

    NASA Astrophysics Data System (ADS)

    Bouakkaz, Rafik; Salhi, Fouzi; Khelili, Yacine; Quazzazi, Mohamed; Talbi, Kamel

    2017-06-01

    In this work, steady flow-field and heat transfer through a copper- water nanofluid around a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 5 was investigated for Reynolds numbers of 5-40. Furthermore, the range of nanoparticle volume fractions considered is 0-5%. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are carried out by using a finite-volume method based commercial computational fluid dynamics solver. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds number and volume fraction of nanoparticles. In addition, rotation can be used as a drag reduction technique.

  5. Calculating evidence-based renal replacement therapy - Introducing an excel-based calculator to improve prescribing and delivery in renal replacement therapy - A before and after study.

    PubMed

    Cottle, Daniel; Mousdale, Stephen; Waqar-Uddin, Haroon; Tully, Redmond; Taylor, Benjamin

    2016-02-01

    Transferring the theoretical aspect of continuous renal replacement therapy to the bedside and delivering a given "dose" can be difficult. In research, the "dose" of renal replacement therapy is given as effluent flow rate in ml kg -1  h -1 . Unfortunately, most machines require other information when they are initiating therapy, including blood flow rate, pre-blood pump flow rate, dialysate flow rate, etc. This can lead to confusion, resulting in patients receiving inappropriate doses of renal replacement therapy. Our aim was to design an excel calculator which would personalise patient's treatment, deliver an effective, evidence-based dose of renal replacement therapy without large variations in practice and prolong filter life. Our calculator prescribes a haemodialfiltration dose of 25 ml kg -1  h -1 whilst limiting the filtration fraction to 15%. We compared the episodes of renal replacement therapy received by a historical group of patients, by retrieving their data stored on the haemofiltration machines, to a group where the calculator was used. In the second group, the data were gathered prospectively. The median delivered dose reduced from 41.0 ml kg -1  h -1 to 26.8 ml kg -1  h -1 with reduced variability that was significantly closer to the aim of 25 ml kg -1 .h -1 ( p  < 0.0001). The median treatment time increased from 8.5 h to 22.2 h ( p  = 0.00001). Our calculator significantly reduces variation in prescriptions of continuous veno-venous haemodiafiltration and provides an evidence-based dose. It is easy to use and provides personal care for patients whilst optimizing continuous veno-venous haemodiafiltration delivery and treatment times.

  6. Inferring time-varying recharge from inverse analysis of long-term water levels

    NASA Astrophysics Data System (ADS)

    Dickinson, Jesse E.; Hanson, R. T.; Ferré, T. P. A.; Leake, S. A.

    2004-07-01

    Water levels in aquifers typically vary in response to time-varying rates of recharge, suggesting the possibility of inferring time-varying recharge rates on the basis of long-term water level records. Presumably, in the southwestern United States (Arizona, Nevada, New Mexico, southern California, and southern Utah), rates of mountain front recharge to alluvial aquifers depend on variations in precipitation rates due to known climate cycles such as the El Niño-Southern Oscillation index and the Pacific Decadal Oscillation. This investigation examined the inverse application of a one-dimensional analytical model for periodic flow described by Lloyd R. Townley in 1995 to estimate periodic recharge variations on the basis of variations in long-term water level records using southwest aquifers as the case study. Time-varying water level records at various locations along the flow line were obtained by simulation of forward models of synthetic basins with applied sinusoidal recharge of either a single period or composite of multiple periods of length similar to known climate cycles. Periodic water level components, reconstructed using singular spectrum analysis (SSA), were used to calibrate the analytical model to estimate each recharge component. The results demonstrated that periodic recharge estimates were most accurate in basins with nearly uniform transmissivity and the accuracy of the recharge estimates depends on monitoring well location. A case study of the San Pedro Basin, Arizona, is presented as an example of calibrating the analytical model to real data.

  7. Inferring time‐varying recharge from inverse analysis of long‐term water levels

    USGS Publications Warehouse

    Dickinson, Jesse; Hanson, R.T.; Ferré, T.P.A.; Leake, S.A.

    2004-01-01

    Water levels in aquifers typically vary in response to time‐varying rates of recharge, suggesting the possibility of inferring time‐varying recharge rates on the basis of long‐term water level records. Presumably, in the southwestern United States (Arizona, Nevada, New Mexico, southern California, and southern Utah), rates of mountain front recharge to alluvial aquifers depend on variations in precipitation rates due to known climate cycles such as the El Niño‐Southern Oscillation index and the Pacific Decadal Oscillation. This investigation examined the inverse application of a one‐dimensional analytical model for periodic flow described by Lloyd R. Townley in 1995 to estimate periodic recharge variations on the basis of variations in long‐term water level records using southwest aquifers as the case study. Time‐varying water level records at various locations along the flow line were obtained by simulation of forward models of synthetic basins with applied sinusoidal recharge of either a single period or composite of multiple periods of length similar to known climate cycles. Periodic water level components, reconstructed using singular spectrum analysis (SSA), were used to calibrate the analytical model to estimate each recharge component. The results demonstrated that periodic recharge estimates were most accurate in basins with nearly uniform transmissivity and the accuracy of the recharge estimates depends on monitoring well location. A case study of the San Pedro Basin, Arizona, is presented as an example of calibrating the analytical model to real data.

  8. Combined Effects of Flow Diverting Strategies and Parent Artery Curvature on Aneurysmal Hemodynamics: A CFD Study

    PubMed Central

    Yu, Ying; Lv, Nan; Wang, Shengzhang; Karmonik, Christof; Liu, Jian-Min; Huang, Qinghai

    2015-01-01

    Purpose Flow diverters (FD) are increasingly being considered for treating large or giant wide-neck aneurysms. Clinical outcome is highly variable and depends on the type of aneurysm, the flow diverting device and treatment strategies. The objective of this study was to analyze the effect of different flow diverting strategies together with parent artery curvature variations on altering intra-aneurysmal hemodynamics. Methods Four ideal intracranial aneurysm models with different parent artery curvature were constructed. Computational fluid dynamics (CFD) simulations of the hemodynamics before and after applying five types of flow diverting strategies (single FD, single FD with 5% and 10% packing density of coils, two FDs with 25% and 50% overlapping rate) were performed. Changes in pressure, wall shear stress (WSS), relative residence time (RRT), inflow velocity and inflow volume rate were calculated and compared. Results Each flow diverting strategy resulted in enhancement of RRT and reduction of normalized mean WSS, inflow volume rate and inflow velocity in various levels. Among them, 50% overlapped FD induced most effective hemodynamic changes in RRT and inflow volume rate. The mean pressure only slightly decreased after treatment. Regardless of the kind of implantation of FD, the mean pressure, inflow volume rate and inflow velocity increased and the RRT decreased as the curvature of the parent artery increased. Conclusions Of all flow diverting strategies, overlapping FDs induced most favorable hemodynamic changes. Hemodynamics alterations post treatment were substantially influenced by parent artery curvature. Our results indicate the need of an individualized flow diverting strategy that is tailored for a specific aneurysm. PMID:26398847

  9. Patterned-wettability-induced alteration of electro-osmosis over charge-modulated surfaces in narrow confinements.

    PubMed

    Ghosh, Uddipta; Chakraborty, Suman

    2012-04-01

    In the present study, we focus on alterations in flow physics as a consequence of interactions between patterned-wettability gradients on microfluidic substrates with modulated surface charge distributions, giving rise to an intricate electrohydrodynamic coupling over small scales. We demonstrate that by exploiting such intricate coupling, it may be possible to pattern vortices occurring in the fluidic confinement by exploiting an interplay between the Navier slip and electro-osmotic transport. Our studies do reveal that the resultant flow structure originating out of the spatially periodic variations in the surface charge and surface wettability may depend critically on several independently tunable controlling parameters, such as the amplitudes and frequencies of the respective patterning functions, the phase shift between the two, an asymmetry factor, and the channel height to Debye length ratio. We show that judicious choices with regard to the combinations of these parameters may result in significant augmentations in the corresponding mixing efficiency without any appreciable compromise in the net microfluidic throughput. Furthermore, our studies reveal an optimum patterning frequency, which results in the most efficient microfluidic mixing within the constraints of achieving a desired volumetric flow rate. Our results also demonstrate that the net flow rate is maximized when the surface wettability variation functions and surface charge-density functions are in phase, whereas mixing is best facilitated when they are in opposite phase. In practice, therefore, one may select an intermediate value of the phase angle depending on the extent of compromise necessary between flow rate and mixing characteristics, yielding far-ranging scientific and technological advances toward an improved design of miniaturized fluidic devices of practical relevance.

  10. High Rates of Gene Flow by Pollen and Seed in Oak Populations across Europe

    PubMed Central

    Gerber, Sophie; Chadœuf, Joël; Gugerli, Felix; Lascoux, Martin; Buiteveld, Joukje; Cottrell, Joan; Dounavi, Aikaterini; Fineschi, Silvia; Forrest, Laura L.; Fogelqvist, Johan; Goicoechea, Pablo G.; Jensen, Jan Svejgaard; Salvini, Daniela; Vendramin, Giovanni G.; Kremer, Antoine

    2014-01-01

    Gene flow is a key factor in the evolution of species, influencing effective population size, hybridisation and local adaptation. We analysed local gene flow in eight stands of white oak (mostly Quercus petraea and Q. robur, but also Q. pubescens and Q. faginea) distributed across Europe. Adult trees within a given area in each stand were exhaustively sampled (range [239, 754], mean 423), mapped, and acorns were collected ([17,147], 51) from several mother trees ([3], [47], 23). Seedlings ([65,387], 178) were harvested and geo-referenced in six of the eight stands. Genetic information was obtained from screening distinct molecular markers spread across the genome, genotyping each tree, acorn or seedling. All samples were thus genotyped at 5–8 nuclear microsatellite loci. Fathers/parents were assigned to acorns and seedlings using likelihood methods. Mating success of male and female parents, pollen and seed dispersal curves, and also hybridisation rates were estimated in each stand and compared on a continental scale. On average, the percentage of the wind-borne pollen from outside the stand was 60%, with large variation among stands (21–88%). Mean seed immigration into the stand was 40%, a high value for oaks that are generally considered to have limited seed dispersal. However, this estimate varied greatly among stands (20–66%). Gene flow was mostly intraspecific, with large variation, as some trees and stands showed particularly high rates of hybridisation. Our results show that mating success was unevenly distributed among trees. The high levels of gene flow suggest that geographically remote oak stands are unlikely to be genetically isolated, questioning the static definition of gene reserves and seed stands. PMID:24454802

  11. Effects of physical and chemical heterogeneity on water-quality samples obtained from wells

    USGS Publications Warehouse

    Reilly, Thomas E.; Gibs, Jacob

    1993-01-01

    Factors that affect the mass of chemical constituents entering a well include the distributions of flow rate and chemical concentrations along and near the screened or open section of the well. Assuming a layered porous medium (with each layer being characterized by a uniform hydraulic conductivity and chemical concentration), a knowledge of the flow from each layer along the screened zone and of the chemical concentrations in each layer enables the total mass entering the well to be determined. Analyses of hypothetical systems and a site at Galloway, NJ, provide insight into the temporal variation of water-quality data observed when withdrawing water from screened wells in heterogeneous ground-water systems.The analyses of hypothetical systems quantitatively indicate the cause-and-effect relations that cause temporal variability in water samples obtained from wells. Chemical constituents that have relatively uniform concentrations with depth may not show variations in concentrations in the water discharged from a well after the well is purged (evacuation of standing water in the well casing). However, chemical constituents that do not have uniform concentrations near the screened interval of the well may show variations in concentrations in the well discharge water after purging because of the physics of ground-water flow in the vicinity of the screen.Water-quality samples were obtained through time over a 30 minute period from a site at Galloway, NJ. The water samples were analyzed for aromatic hydrocarbons, and the data for benzene, toluene, and meta+para xylene were evaluated for temporal variations. Samples were taken from seven discrete zones, and the flow-weighted concentrations of benzene, toluene, and meta+para xylene all indicate an increase in concentration over time during pumping. These observed trends in time were reproduced numerically based on the estimated concentration distribution in the aquifer and the flow rates from each zone.The results of the hypothetical numerical experiments and the analysis of the field data both corroborate the impact of physical and chemical heterogeneity in the aquifer on water-quality samples obtained from wells. If temporal variations in concentrations of chemical constituents are observed, they may indicate variability in the ground-water system being sampled, which may give insight into the chemical distributions within the aquifer and provide guidance in the positioning of new sampling devices or wells.

  12. Behavior of lateral-deformation coefficients during elastoplastic deformation of metals

    NASA Astrophysics Data System (ADS)

    Zimin, B. A.; Smirnov, I. V.; Sudenkov, Yu. V.

    2017-06-01

    The results of investigations into variation of the coefficients of lateral deformation (the Poisson ratio) during single-axis tension of samples of steel 12Kh18N10T and St3, titanium VT1, the aluminum alloy D16AM, copper M1, and a magnesium alloy are considered. The technique developed on the basis of the optoacoustic effect and simultaneous measurements of the longitudinal and surface speeds of sound in metallic samples during the tension makes it possible to measure the rates at various stages of the deformation process. The data obtained make it possible to construct the dependences of variation of the lateral-deformation coefficients at all stages of the plastic flow. The correlation of these variations both with known processes of structural reconstructions at various stages of plastic flow and with the process of localization of plastic-shear bands in the aluminum alloy is noted.

  13. Turbulence Statistics in the Coastal Ocean Bottom Boundary Layer

    NASA Astrophysics Data System (ADS)

    Nayak, A. R.; Hackett, E. E.; Luznik, L.; Katz, J.; Osborn, T. R.

    2010-12-01

    A submersible particle image velocimetry (PIV) system was deployed off the coast of New Jersey, near the LEO-15 site, to characterize the flow and turbulence in the inner part of the continental shelf bottom boundary layer. The measurement domain extended from 5 mm at the bottom up to an elevation of 51 cm in different datasets. The flow comprised of a mean current and wave-induced flow with a period of 10 s. The ratio of wave velocity amplitude to mean current magnitude varied over the tidal cycle and with elevation, with a maximum of 2.35. Their relative orientation also varied. Large databases of time-resolved, high resolution, 2D velocity distributions enabled us to calculate the instantaneous spatial velocity gradients, and from them, the statistically converged vertical dissipation rate profiles. Reynolds Stresses were estimated using the Shaw & Trowbridge technique outside of the wave boundary layer (WBL), and directly, using the instantaneous spatial variations in velocity, near the wall. Results were utilized for calculating the shear production profiles. Hilbert Transforms were utilized for calculating the wave phase of each velocity distribution, and performing conditional sampling of data to determine variations in flow and turbulence parameters during a wave cycle. The mean velocity profiles indicated the presence of a wave boundary layer, followed by a transition region, and a log layer above it. The datasets extending to the wall show that there is no clear log layer within the WBL, but, as expected, profiles vary substantially with location relative to the ripples. Phase dependent variations in mean flow and dissipation rate occurred only in the WBL and transition region, but vanished at higher elevations. The dissipation rate typically peaked during acceleration phases of wave-induced motion, especially near the wall, but it sometimes peaked during wave-crest phases. Below the transition region, the dissipation rate increased rapidly as the wall was approached all the way to the ripple crest, presumably due to the increasing presence of eddies with characteristic size of 1-3 times the ripple height that fell in the dissipation range of the energy spectra. Shear production also peaked at the ripple crest, consistent with laboratory data for rough wall boundary layers. Acknowledgements : NSF

  14. Effects of gas flow rate on the etch characteristics of a low- k sicoh film with an amorphous carbon mask in dual-frequency CF4/C4F8/Ar capacitively-coupled plasmas

    NASA Astrophysics Data System (ADS)

    Kwon, Bong-Soo; Lee, Hea-Lim; Lee, Nae-Eung; Kim, Chang-Young; Choi, Chi Kyu

    2013-01-01

    Highly selective nanoscale etching of a low-dielectric constant (low- k) organosilicate (SiCOH) layer using a mask pattern of chemical-vapor-deposited (CVD) amorphous carbon layer (ACL) was carried out in CF4/C4F8/Ar dual-frequency superimposed capacitively-coupled plasmas. The etching characteristics of the SiCOH layers, such as the etch rate, etch selectivity, critical dimension (CD), and line edge roughness (LER) during the plasma etching, were investigated by varying the C4F8 flow rate. The C4F8 gas flow rate primarily was found to control the degree of polymerization and to cause variations in the selectivity, CD and LER of the patterned SiCOH layer. Process windows for ultra-high etch selectivity of the SiCOH layer to the CVD ACL are formed due to the disproportionate degrees of polymerization on the SiCOH and the ACL surfaces.

  15. Biodegradation of toluene by a lab-scale biofilter inoculated with Pseudomonas putida DK-1.

    PubMed

    Park, D W; Kim, S S; Haam, S; Ahn, I S; Kim, E B; Kim, W S

    2002-03-01

    The biodegradation of toluene by biofiltration inoculated with Pseudomonas putida DK-1 was investigated with variation of the several environmental parameters, such as temperature, bed length, gas flow rate and optimal humidity zone. The optimal temperature range to treat toluene gas was found to be 32-35 degrees C. Increasing the gas flow rate showed an inverse effect on the elimination capacity and the removal efficiency. The optimal gas flow rate was obtained at 65 ml min(-1) from the relation between the removal efficiency and the elimination capacity. The biodegradation rate of the toluene with respect to the bed lengths (3, 6, 9, 12 and 15 cm) increased up to 80 h but was then independent of the bed lengths after 80 h except for the 3 cm bed length. The elimination capacity was improved by about 70% compared with that reported in other literature and was also in agreement with theoretical models.

  16. Experimental analysis of armouring process

    NASA Astrophysics Data System (ADS)

    Lamberti, Alberto; Paris, Ennio

    Preliminary results from an experimental investigation on armouring processes are presented. Particularly, the process of development and formation of the armour layer under different steady flow conditions has been analyzed in terms of grain size variations and sediment transport rate associated to each size fraction.

  17. Uncertainty Management in Urban Water Engineering Adaptation to Climate Change

    EPA Science Inventory

    Current water resource planning and engineering assume a stationary climate, in which the observed historical water flow rate and water quality variations are often used to define the technical basis. When the non-stationarity is considered, however, climate change projection co...

  18. On radon emanation as a possible indicator of crustal deformation

    USGS Publications Warehouse

    King, C.-Y.

    1979-01-01

    Radon emanation has been monitored in shallow capped holes by a Tracketch method along several active faults and in the vicinity of some volcanoes and underground nuclear explosions. The measured emanation shows large temporal variations that appear to be partly related to crustal strain changes. This paper proposes a model that may explain the observed tectonic variations in radon emanation, and explores the possibility of using radon emanation as an indicator of crustal deformation. In this model the emanation variation is assumed to be due to the perturbation of near-surface profile of radon concentration in the soil gas caused by a change in the vertical flow rate of the soil gas which, in turn, is caused by the crustal deformation. It is shown that, for a typical soil, a small change in the flow rate (3 ?? 10-4 cm sec-1) can effect a significant change (a factor of 2) in radon emanation detected at a fixed shallow depth (0.7 m). The radon concentration profile has been monitored at several depths at a selected site to test the model. The results appear to be in satisfactory agreement. ?? 1979.

  19. A Wireless Implantable Micropump for Chronic Drug Infusion Against Cancer

    PubMed Central

    Cobo, Angelica; Sheybani, Roya; Tu, Heidi; Meng, Ellis

    2016-01-01

    We present an implantable micropump with a miniature form factor and completely wireless operation that enables chronic drug administration intended for evaluation and development of cancer therapies in freely moving small research animals such as rodents. The low power electrolysis actuator avoids the need for heavy implantable batteries. The infusion system features a class E inductive powering system that provides on-demand activation of the pump as well as remote adjustment of the delivery regimen without animal handling. Micropump performance was demonstrated using a model anti-cancer application in which daily doses of 30 μL were supplied for several weeks with less than 6% variation in flow rate within a single pump and less than 8% variation across different pumps. Pumping under different back pressure, viscosity, and temperature conditions were investigated; parameters were chosen so as to mimic in vivo conditions. In benchtop tests under simulated in vivo conditions, micropumps provided consistent and reliable performance over a period of 30 days with less than 4% flow rate variation. The demonstrated prototype has potential to provide a practical solution for remote chronic administration of drugs to ambulatory small animals for research as well as drug discovery and development applications. PMID:26855476

  20. Very high pressure liquid chromatography using fully porous particles: quantitative analysis of fast gradient separations without post-run times.

    PubMed

    Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois Ann; Guiochon, Georges

    2014-01-10

    Using a column packed with fully porous particles, four methods for controlling the flow rates at which gradient elution runs are conducted in very high pressure liquid chromatography (VHPLC) were tested to determine whether reproducible thermal conditions could be achieved, such that subsequent analyses would proceed at nearly the same initial temperature. In VHPLC high flow rates are achieved, producing fast analyses but requiring high inlet pressures. The combination of high flow rates and high inlet pressures generates local heat, leading to temperature changes in the column. Usually in this case a post-run time is input into the analytical method to allow the return of the column temperature to its initial state. An alternative strategy involves operating the column without a post-run equilibration period and maintaining constant temperature variations for subsequent analysis after conducting one or a few separations to bring the column to a reproducible starting temperature. A liquid chromatography instrument equipped with a pressure controller was used to perform constant pressure and constant flow rate VHPLC separations. Six replicate gradient separations of a nine component mixture consisting of acetophenone, propiophenone, butyrophenone, valerophenone, hexanophenone, heptanophenone, octanophenone, benzophenone, and acetanilide dissolved in water/acetonitrile (65:35, v/v) were performed under various experimental conditions: constant flow rate, two sets of constant pressure, and constant pressure operation with a programmed flow rate. The relative standard deviations of the response factors for all the analytes are lower than 5% across the methods. Programming the flow rate to maintain a fairly constant pressure instead of using instrument controlled constant pressure improves the reproducibility of the retention times by a factor of 5, when plotting the chromatograms in time. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Analysis and testing of high entrainment single nozzle jet pumps with variable mixing tubes

    NASA Technical Reports Server (NTRS)

    Hickman, K. E.; Hill, P. G.; Gilbert, G. B.

    1972-01-01

    An analytical model was developed to predict the performance characteristics of axisymmetric single-nozzle jet pumps with variable area mixing tubes. The primary flow may be subsonic or supersonic. The computer program uses integral techniques to calculate the velocity profiles and the wall static pressures that result from the mixing of the supersonic primary jet and the subsonic secondary flow. An experimental program was conducted to measure mixing tube wall static pressure variations, velocity profiles, and temperature profiles in a variable area mixing tube with a supersonic primary jet. Static pressure variations were measured at four different secondary flow rates. These test results were used to evaluate the analytical model. The analytical results compared well to the experimental data. Therefore, the analysis is believed to be ready for use to relate jet pump performance characteristics to mixing tube design.

  2. Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder

    NASA Technical Reports Server (NTRS)

    Wang, Chi R.; Yeh, Frederick C.

    1987-01-01

    A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.

  3. The diagnostic plot analysis of artesian aquifers with case studies in Table Mountain Group of South Africa

    NASA Astrophysics Data System (ADS)

    Sun, Xiaobin; Xu, Yongxin; Lin, Lixiang

    2015-05-01

    Parameter estimates of artesian aquifers where piezometric head is above ground level are largely made through free-flowing and recovery tests. The straight-line method proposed by Jacob-Lohman is often used for interpretation of flow rate measured at flowing artesian boreholes. However, the approach fails to interpret the free-flowing test data from two artesian boreholes in the fractured-rock aquifer in Table Mountain Group (TMG) of South Africa. The diagnostic plot method using the reciprocal rate derivative is adapted to evaluate the artesian aquifer properties. The variation of the derivative helps not only identify flow regimes and discern the boundary conditions, but also facilitates conceptualization of the aquifer system and selection of an appropriate model for data interpretation later on. Test data from two free-flowing tests conducted in different sites in TMG are analysed using the diagnostic plot method. Based on the results, conceptual models and appropriate approaches are developed to evaluate the aquifer properties. The advantages and limitations of using the diagnostic plot method on free-flowing test data are discussed.

  4. Experimental analysis of thermo-acoustic instabilities in a generic gas turbine combustor by phase-correlated PIV, chemiluminescence, and laser Raman scattering measurements

    NASA Astrophysics Data System (ADS)

    Arndt, Christoph M.; Severin, Michael; Dem, Claudiu; Stöhr, Michael; Steinberg, Adam M.; Meier, Wolfgang

    2015-04-01

    A gas turbine model combustor for partially premixed swirl flames was equipped with an optical combustion chamber and operated with CH4 and air at atmospheric pressure. The burner consisted of two concentric nozzles for separately controlled air flows and a ring of holes 12 mm upstream of the nozzle exits for fuel injection. The flame described here had a thermal power of 25 kW, a global equivalence ratio of 0.7, and exhibited thermo-acoustic instabilities at a frequency of approximately 400 Hz. The phase-dependent variations in the flame shape and relative heat release rate were determined by OH* chemiluminescence imaging; the flow velocities by stereoscopic particle image velocimetry (PIV); and the major species concentrations, mixture fraction, and temperature by laser Raman scattering. The PIV measurements showed that the flow field performed a "pumping" mode with varying inflow velocities and extent of the inner recirculation zone, triggered by the pressure variations in the combustion chamber. The flow field oscillations were accompanied by variations in the mixture fraction in the inflow region and at the flame root, which in turn were mainly caused by the variations in the CH4 concentration. The mean phase-dependent changes in the fluxes of CH4 and N2 through cross-sectional planes of the combustion chamber at different heights above the nozzle were estimated by combining the PIV and Raman data. The results revealed a periodic variation in the CH4 flux by more than 150 % in relation to the mean value, due to the combined influence of the oscillating flow velocity, density variations, and CH4 concentration. Based on the experimental results, the feedback mechanism of the thermo-acoustic pulsations could be identified as a periodic fluctuation of the equivalence ratio and fuel mass flow together with a convective delay for the transport of fuel from the fuel injector to the flame zone. The combustor and the measured data are well suited for the validation of numerical combustion simulations.

  5. Influence of the tilt angle of Percutaneous Aortic Prosthesis on Velocity and Shear Stress Fields

    PubMed Central

    Gomes, Bruno Alvares de Azevedo; Camargo, Gabriel Cordeiro; dos Santos, Jorge Roberto Lopes; Azevedo, Luis Fernando Alzuguir; Nieckele, Ângela Ourivio; Siqueira-Filho, Aristarco Gonçalves; de Oliveira, Glaucia Maria Moraes

    2017-01-01

    Background Due to the nature of the percutaneous prosthesis deployment process, a variation in its final position is expected. Prosthetic valve placement will define the spatial location of its effective orifice in relation to the aortic annulus. The blood flow pattern in the ascending aorta is related to the aortic remodeling process, and depends on the spatial location of the effective orifice. The hemodynamic effect of small variations in the angle of inclination of the effective orifice has not been studied in detail. Objective To implement an in vitro simulation to characterize the hydrodynamic blood flow pattern associated with small variations in the effective orifice inclination. Methods A three-dimensional aortic phantom was constructed, reproducing the anatomy of one patient submitted to percutaneous aortic valve implantation. Flow analysis was performed by use of the Particle Image Velocimetry technique. The flow pattern in the ascending aorta was characterized for six flow rate levels. In addition, six angles of inclination of the effective orifice were assessed. Results The effective orifice at the -4º and -2º angles directed the main flow towards the anterior wall of the aortic model, inducing asymmetric and high shear stress in that region. However, the effective orifice at the +3º and +5º angles mimics the physiological pattern, centralizing the main flow and promoting a symmetric distribution of shear stress. Conclusion The measurements performed suggest that small changes in the angle of inclination of the percutaneous prosthesis aid in the generation of a physiological hemodynamic pattern, and can contribute to reduce aortic remodeling. PMID:28793046

  6. Flow distribution in parallel microfluidic networks and its effect on concentration gradient

    PubMed Central

    Guermonprez, Cyprien; Michelin, Sébastien; Baroud, Charles N.

    2015-01-01

    The architecture of microfluidic networks can significantly impact the flow distribution within its different branches and thereby influence tracer transport within the network. In this paper, we study the flow rate distribution within a network of parallel microfluidic channels with a single input and single output, using a combination of theoretical modeling and microfluidic experiments. Within the ladder network, the flow rate distribution follows a U-shaped profile, with the highest flow rate occurring in the initial and final branches. The contrast with the central branches is controlled by a single dimensionless parameter, namely, the ratio of hydrodynamic resistance between the distribution channel and the side branches. This contrast in flow rates decreases when the resistance of the side branches increases relative to the resistance of the distribution channel. When the inlet flow is composed of two parallel streams, one of which transporting a diffusing species, a concentration variation is produced within the side branches of the network. The shape of this concentration gradient is fully determined by two dimensionless parameters: the ratio of resistances, which determines the flow rate distribution, and the Péclet number, which characterizes the relative speed of diffusion and advection. Depending on the values of these two control parameters, different distribution profiles can be obtained ranging from a flat profile to a step distribution of solute, with well-distributed gradients between these two limits. Our experimental results are in agreement with our numerical model predictions, based on a simplified 2D advection-diffusion problem. Finally, two possible applications of this work are presented: the first one combines the present design with self-digitization principle to encapsulate the controlled concentration in nanoliter chambers, while the second one extends the present design to create a continuous concentration gradient within an open flow chamber. PMID:26487905

  7. Constitutive Modeling of the High-Temperature Flow Behavior of α-Ti Alloy Tube

    NASA Astrophysics Data System (ADS)

    Lin, Yanli; Zhang, Kun; He, Zhubin; Fan, Xiaobo; Yan, Yongda; Yuan, Shijian

    2018-04-01

    In the hot metal gas forming process, the deformation conditions, such as temperature, strain rate and deformation degree, are often prominently changed. The understanding of the flow behavior of α-Ti seamless tubes over a relatively wide range of temperatures and strain rates is important. In this study, the stress-strain curves in the temperature range of 973-1123 K and the initial strain rate range of 0.0004-0.4 s-1 were measured by isothermal tensile tests to conduct a constitutive analysis and a deformation behavior analysis. The results show that the flow stress decreases with the decrease in the strain rate and the increase of the deformation temperature. The Fields-Backofen model and Fields-Backofen-Zhang model were used to describe the stress-strain curves. The Fields-Backofen-Zhang model shows better predictability on the flow stress than the Fields-Backofen model, but there exists a large deviation in the deformation condition of 0.4 s-1. A modified Fields-Backofen-Zhang model is proposed, in which a strain rate term is introduced. This modified Fields-Backofen-Zhang model gives a more accurate description of the flow stress variation under hot forming conditions with a higher strain rate up to 0.4 s-1. Accordingly, it is reasonable to adopt the modified Fields-Backofen-Zhang model for the hot forming process which is likely to reach a higher strain rate, such as 0.4 s-1.

  8. Constitutive Modeling of the High-Temperature Flow Behavior of α-Ti Alloy Tube

    NASA Astrophysics Data System (ADS)

    Lin, Yanli; Zhang, Kun; He, Zhubin; Fan, Xiaobo; Yan, Yongda; Yuan, Shijian

    2018-05-01

    In the hot metal gas forming process, the deformation conditions, such as temperature, strain rate and deformation degree, are often prominently changed. The understanding of the flow behavior of α-Ti seamless tubes over a relatively wide range of temperatures and strain rates is important. In this study, the stress-strain curves in the temperature range of 973-1123 K and the initial strain rate range of 0.0004-0.4 s-1 were measured by isothermal tensile tests to conduct a constitutive analysis and a deformation behavior analysis. The results show that the flow stress decreases with the decrease in the strain rate and the increase of the deformation temperature. The Fields-Backofen model and Fields-Backofen-Zhang model were used to describe the stress-strain curves. The Fields-Backofen-Zhang model shows better predictability on the flow stress than the Fields-Backofen model, but there exists a large deviation in the deformation condition of 0.4 s-1. A modified Fields-Backofen-Zhang model is proposed, in which a strain rate term is introduced. This modified Fields-Backofen-Zhang model gives a more accurate description of the flow stress variation under hot forming conditions with a higher strain rate up to 0.4 s-1. Accordingly, it is reasonable to adopt the modified Fields-Backofen-Zhang model for the hot forming process which is likely to reach a higher strain rate, such as 0.4 s-1.

  9. Late Quaternary history of contourite drifts and variations in Labrador Current flow, Flemish Pass, offshore eastern Canada

    NASA Astrophysics Data System (ADS)

    Marshall, Nicole R.; Piper, David J. W.; Saint-Ange, Francky; Campbell, D. Calvin

    2014-10-01

    Contourite drifts of alternating sand and mud, shaped by the Labrador Current, formed during the late Quaternary in Flemish Pass seaward of the Grand Banks of Newfoundland, Canada. The drifts preserve a record of Labrador Current flow variations through the last glacial maximum. A high-resolution seismic profile and a transect of four cores were collected across Beothuk drift on the southeast side of Flemish Pass. Downcore and lateral trends in grain size and sedimentation rate provide evidence that, between 16 and 13 ka, sediment was partitioned across Beothuk drift and the adjacent Flemish Pass floor by a strong current flow but, from 29 to 16 ka, sedimentation was more of a blanketing style, represented by draped reflections interpreted as being due to a weaker current. The data poorly resolve the low sedimentation rates since 13 ka, but the modern Labrador Current in Flemish Pass is the strongest it has been in at least the past 29 ka. Pre-29 ka current flow is interpreted based on reflection architecture in seismic profiles. A prominent drift on the southwestern side of Flemish Pass formed above a mid-Miocene erosion surface, but was buried by a mass-transport deposit after the penultimate glacial maximum and after drift deposition switched to eastern Flemish Pass. These findings illustrate the temporal complexity of drift sedimentation and provide the first detailed proxy for Labrador Current flow since the last glacial maximum.

  10. Kinematic, Dynamic, and Energy Characteristics of Diastolic Flow in the Left Ventricle

    PubMed Central

    Khalafvand, Seyed Saeid; Hung, Tin-Kan; Ng, Eddie Yin-Kwee; Zhong, Liang

    2015-01-01

    Blood flow characteristics in the normal left ventricle are studied by using the magnetic resonance imaging, the Navier-Stokes equations, and the work-energy equation. Vortices produced during the mitral valve opening and closing are modeled in a two-dimensional analysis and correlated with temporal variations of the Reynolds number and pressure drop. Low shear stress and net pressures on the mitral valve are obtained for flow acceleration and deceleration. Bernoulli energy flux delivered to blood from ventricular dilation is practically balanced by the energy influx and the rate change of kinetic energy in the ventricle. The rates of work done by shear and energy dissipation are small. The dynamic and energy characteristics of the 2D results are comparable to those of a 3D model. PMID:26417381

  11. Unsteady seepage flow over sloping beds in response to multiple localized recharge

    NASA Astrophysics Data System (ADS)

    Bansal, Rajeev K.

    2017-05-01

    New generalized solutions of linearized Boussinesq equation are derived to approximate the dynamic behavior of subsurface seepage flow induced by multiple localized time-varying recharges over sloping ditch-drain aquifer system. The mathematical model is based on extended Dupuit-Forchheimer assumption and treats the spatial location of recharge basins as additional parameter. Closed form analytic expressions for spatio-temporal variations in water head distribution and discharge rate into the drains are obtained by solving the governing flow equation using eigenvalue-eigenfunction method. Downward and zero-sloping aquifers are treated as special cases of main results. A numerical example is used for illustration of combined effects of various parameters such as spatial coordinates of the recharge basin, aquifer's bed slope, and recharge rate on the dynamic profiles of phreatic surface.

  12. Clustering and flow around a sphere moving into a grain cloud.

    PubMed

    Seguin, A; Lefebvre-Lepot, A; Faure, S; Gondret, P

    2016-06-01

    A bidimensional simulation of a sphere moving at constant velocity into a cloud of smaller spherical grains far from any boundaries and without gravity is presented with a non-smooth contact dynamics method. A dense granular "cluster" zone builds progressively around the moving sphere until a stationary regime appears with a constant upstream cluster size. The key point is that the upstream cluster size increases with the initial solid fraction [Formula: see text] but the cluster packing fraction takes an about constant value independent of [Formula: see text]. Although the upstream cluster size around the moving sphere diverges when [Formula: see text] approaches a critical value, the drag force exerted by the grains on the sphere does not. The detailed analysis of the local strain rate and local stress fields made in the non-parallel granular flow inside the cluster allows us to extract the local invariants of the two tensors: dilation rate, shear rate, pressure and shear stress. Despite different spatial variations of these invariants, the local friction coefficient μ appears to depend only on the local inertial number I as well as the local solid fraction, which means that a local rheology does exist in the present non-parallel flow. The key point is that the spatial variations of I inside the cluster do not depend on the sphere velocity and explore only a small range around the value one.

  13. Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream

    USGS Publications Warehouse

    Dudek Ronan, Anne; Prudic, David E.; Thodal, Carl E.; Constantz, Jim

    1998-01-01

    Two experiments were performed to investigate flow beneath an ephemeral stream and to estimate streambed infiltration rates. Discharge and stream-area measurements were used to determine infiltration rates. Stream and subsurface temperatures were used to interpret subsurface flow through variably saturated sediments beneath the stream. Spatial variations in subsurface temperatures suggest that flow beneath the streambed is dependent on the orientation of the stream in the canyon and the layering of the sediments. Streamflow and infiltration rates vary diurnally: Streamflow is lowest in late afternoon when stream temperature is greatest and highest in early morning when stream temperature is least. The lower afternoon Streamflow is attributed to increased infiltration rates; evapotranspiration is insufficient to account for the decreased Streamflow. The increased infiltration rates are attributed to viscosity effects on hydraulic conductivity from increased stream temperatures. The first set of field data was used to calibrate a two-dimensional variably saturated flow model that includes heat transport. The model was calibrated to (1) temperature fluctuations in the subsurface and (2) infiltration rates determined from measured Streamflow losses. The second set of field data was to evaluate the ability to predict infiltration rates on the basis of temperature measurements alone. Results indicate that the variably saturated subsurface flow depends on downcanyon layering of the sediments. They also support the field observations in indicating that diurnal changes in infiltration can be explained by temperature dependence of hydraulic conductivity. Over the range of temperatures and flows monitored, diurnal stream temperature changes can be used to estimate streambed infiltration rates. It is often impractical to maintain equipment for determining infiltration rates by traditional means; however, once a model is calibrated using both infiltration and temperature data, only relatively inexpensive temperature monitoring can later yield infiltration rates that are within the correct order of magnitude.

  14. Relation between flow and temporal variations of nitrate and pesticides in two karst springs in northern Alabama

    USGS Publications Warehouse

    Kingsbury, J.A.

    2008-01-01

    Two karst springs in the Mississippian Carbonate Aquifer of northern Alabama were sampled between March 1999 and March 2001 to characterize the variability in concentration of nitrate, pesticides, selected pesticide degradates, water temperature, and inorganic constituents. Water temperature and inorganic ion data for McGeehee Spring indicate that this spring represents a shallow flow system with a relatively short average ground-water residence time. Water issuing from the larger of the two springs, Meridianville Spring, maintained a constant temperature, and inorganic ion data indicate that this water represents a deeper flow system having a longer average ground-water residence time than McGeehee Spring. Although water-quality data indicate differing short-term responses to rainfall at the two springs, the seasonal variation of nitrate and pesticide concentrations generally is similar for the two springs. With the exception of pesticides detected at low concentrations, the coefficient of variation for most constituent concentrations was less than that of flow at both springs, with greater variability in concentration at McGeehee Spring. Degradates of the herbicides atrazine and fluometuron were detected at concentrations comparable to or greater than the parent pesticides. Decreases in concentration of the principal degradate of fluometuron from about July to November indicate that the degradation rate may decrease as fluometuron (demethylfluometuron) moves deeper into the soil after application. Data collected during the study show that from about November to March when recharge rates increase, nitrate and residual pesticides in the soil, unsaturated zone, and storage within the aquifer are transported to the spring discharges. Because of the increase in recharge, fluometuron loads discharged from the springs during the winter were comparable to loads discharged at the springs during the growing season. ?? 2008 American Water Resources Association.

  15. Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity

    PubMed Central

    2014-01-01

    Background Across heterogeneous environments selection and gene flow interact to influence the rate and extent of adaptive trait evolution. This complex relationship is further influenced by the rarely considered role of phenotypic plasticity in the evolution of adaptive population variation. Plasticity can be adaptive if it promotes colonization and survival in novel environments and in doing so may increase the potential for future population differentiation via selection. Gene flow between selectively divergent environments may favour the evolution of phenotypic plasticity or conversely, plasticity itself may promote gene flow, leading to a pattern of trait differentiation in the presence of gene flow. Variation in sensory traits is particularly informative in testing the role of environment in trait and population differentiation. Here we test the hypothesis of ‘adaptive differentiation with minimal gene flow’ in resting echolocation frequencies (RF) of Cape horseshoe bats (Rhinolophus capensis) across a gradient of increasingly cluttered habitats. Results Our analysis reveals a geographically structured pattern of increasing RF from open to highly cluttered habitats in R. capensis; however genetic drift appears to be a minor player in the processes influencing this pattern. Although Bayesian analysis of population structure uncovered a number of spatially defined mitochondrial groups and coalescent methods revealed regional-scale gene flow, phylogenetic analysis of mitochondrial sequences did not correlate with RF differentiation. Instead, habitat discontinuities between biomes, and not genetic and geographic distances, best explained echolocation variation in this species. We argue that both selection for increased detection distance in relatively less cluttered habitats and adaptive phenotypic plasticity may have influenced the evolution of matched echolocation frequencies and habitats across different populations. Conclusions Our study reveals significant sensory trait differentiation in the presence of historical gene flow and suggests roles for both selection and plasticity in the evolution of echolocation variation in R. capensis. These results highlight the importance of population level analyses to i) illuminate the subtle interplay between selection, plasticity and gene flow in the evolution of adaptive traits and ii) demonstrate that evolutionary processes may act simultaneously and that their relative influence may vary across different environments. PMID:24674227

  16. Uncertainty Management in Urban Water Engineering Adaptation to Climate Change - abstract

    EPA Science Inventory

    Current water resource planning and engineering assume a stationary climate, in which the observed historical water flow rate and water quality variations are often used to define the technical basis. When the non-stationarity is considered, however, climate change projection co...

  17. Characterization of arterial traffic congestion through analysis of operational parameters (gap acceptance and lane changing).

    DOT National Transportation Integrated Search

    2010-05-01

    This project monitored an urban arterial highway to characterize recurring congestion. There were two major initiatives in the project. The first one focused on observed variations in gap acceptance and lane changing in relation to traffic flow rates...

  18. Analysis of Hydrodynamics and Heat Transfer in a Thin Liquid Film Flowing over a Rotating Disk by Integral Method

    NASA Technical Reports Server (NTRS)

    Basu, S.; Cetegen, B. M.

    2005-01-01

    An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results.

  19. Diurnal variation in peak expiratory flow rate among grain elevator workers.

    PubMed Central

    Revsbech, P; Andersen, G

    1989-01-01

    The diurnal variation (DV) in peak expiratory flow rate (PEFR) has been studied among 132 grain elevator workers who accomplished three daily measurements of PEFR during three weeks. DV was calculated as the difference between the highest and the lowest PEFR as a percentage of the mean PEFR on each day. For the whole group the median was 5.9%. DV was higher among smokers and among workers with work related pulmonary symptoms. Analysis of variance showed that only age (p = 0.012) and smoking (p = 0.016) had a significant effect on DV. Pulmonary symptoms, total IgE, and duration of occupation had no independent impact on DV, whereas the exposure level of grain dust tended (p = 0.082) to have an independent effect. Twelve workers had an abnormally high DV (greater than 20%), of whom seven showed no signs of obstructive respiratory disease by spirometry. If only a single spirometric test had been performed the tentative diagnosis of bronchial asthma could have been missed in these seven workers. PMID:2775676

  20. Current and temperature distributions in-situ acquired by electrode-segmentation along a microtubular solid oxide fuel cell operating with syngas

    NASA Astrophysics Data System (ADS)

    Aydın, Özgür; Nakajima, Hironori; Kitahara, Tatsumi

    2015-10-01

    Addressing the fuel distribution and endothermic cooling by the internal reforming, we have measured longitudinal current/temperature variations by ;Electrode-segmentation; in a microtubular solid oxide fuel cell operated with syngas (50% pre-reformed methane) and equivalent H2/N2 (100% conversion of syngas to H2) at three different flow rates. Regardless of the syngas flow rates, currents and temperatures show irregular fluctuations with varying amplitudes from upstream to downstream segment. Analysis of the fluctuations suggests that the methane steam reforming reaction is highly affected by the H2 partial pressure. Current-voltage curves plotted for the syngas and equivalent H2/N2 flow rates reveal that the fuel depletion is enhanced toward the downstream during the syngas operation, resulting in a larger performance degradation. All the segments exhibit temperature drops with the syngas flow compared with the equivalent H2/N2 flow due to the endothermic cooling by the methane steam reforming reaction. Despite the drops, the segment temperatures remain above the furnace temperature; besides, the maximum temperature difference along the cell diminishes. The MSR reaction rate does not consistently increase with the decreasing gas inlet velocity (increasing residence time on the catalyst); which we ascribe to the dominating impact of the local temperatures.

  1. Sublithospheric flows in the mantle

    NASA Astrophysics Data System (ADS)

    Trifonov, V. G.; Sokolov, S. Yu.

    2017-11-01

    The estimated rates of upper mantle sublithospheric flows in the Hawaii-Emperor Range and Ethiopia-Arabia-Caucasus systems are reported. In the Hawaii-Emperor Range system, calculation is based on motion of the asthenospheric flow and the plate moved by it over the branch of the Central Pacific plume. The travel rate has been determined based on the position of variably aged volcanoes (up to 76 Ma) with respect to the active Kilauea Volcano. As for the Ethiopia-Arabia-Caucasus system, the age of volcanic eruptions (55-2.8 Ma) has been used to estimate the asthenospheric flow from the Ethiopian-Afar superplume in the northern bearing lines. Both systems are characterized by variations in a rate of the upper mantle flows in different epochs from 4 to 12 cm/yr, about 8 cm/yr on average. Analysis of the global seismic tomographic data has made it possible to reveal rock volumes with higher seismic wave velocities under ancient cratons; rocks reach a depth of more than 2000 km and are interpreted as detached fragments of the thickened continental lithosphere. Such volumes on both sides of the Atlantic Ocean were submerged at an average velocity of 0.9-1.0 cm/yr along with its opening. The estimated rates of the mantle flows clarify the deformation properties of the mantle and regulate the numerical models of mantle convection.

  2. Effects of free convection and friction on heat-pulse flowmeter measurement

    NASA Astrophysics Data System (ADS)

    Lee, Tsai-Ping; Chia, Yeeping; Chen, Jiun-Szu; Chen, Hongey; Liu, Chen-Wuing

    2012-03-01

    SummaryHeat-pulse flowmeter can be used to measure low flow velocities in a borehole; however, bias in the results due to measurement error is often encountered. A carefully designed water circulation system was established in the laboratory to evaluate the accuracy and precision of flow velocity measured by heat-pulse flowmeter in various conditions. Test results indicated that the coefficient of variation for repeated measurements, ranging from 0.4% to 5.8%, tends to increase with flow velocity. The measurement error increases from 4.6% to 94.4% as the average flow velocity decreases from 1.37 cm/s to 0.18 cm/s. We found that the error resulted primarily from free convection and frictional loss. Free convection plays an important role in heat transport at low flow velocities. Frictional effect varies with the position of measurement and geometric shape of the inlet and flow-through cell of the flowmeter. Based on the laboratory test data, a calibration equation for the measured flow velocity was derived by the least-squares regression analysis. When the flowmeter is used with a diverter, the range of measured flow velocity can be extended, but the measurement error and the coefficient of variation due to friction increase significantly. At higher velocities under turbulent flow conditions, the measurement error is greater than 100%. Our laboratory experimental results suggested that, to avoid a large error, the heat-pulse flowmeter measurement is better conducted in laminar flow and the effect of free convection should be eliminated at any flow velocities. Field measurement of the vertical flow velocity using the heat-pulse flowmeter was tested in a monitoring well. The calibration of measured velocities not only improved the contrast in hydraulic conductivity between permeable and less permeable layers, but also corrected the inconsistency between the pumping rate and the measured flow rate. We identified two highly permeable sections where the horizontal hydraulic conductivity is 3.7-6.4 times of the equivalent hydraulic conductivity obtained from the pumping test. The field test results indicated that, with a proper calibration, the flowmeter measurement is capable of characterizing the vertical distribution of preferential flow or hydraulic conductivity.

  3. Permeability anisotropy in marine mudstones in the Nankai Trough, SW Japan: Implications for hypothesized lateral fluid flow and chemical transport outboard of the trench

    NASA Astrophysics Data System (ADS)

    Saffer, D. M.; McKiernan, A. W.; Skarbek, R. M.

    2008-12-01

    Characterizing dewatering pathways and chemical fluxes near and outboard of subduction trenches is important toward understanding early sediment dewatering and devolatilization. Quantifying fluid flow rates also constrains the hydraulic gradients driving flow, and thus ultimately hold implications for pore pressure distribution and fault mechanical strength. We focus on the well-studied Nankai Trough offshore SW Japan, where drilling has sampled the sedimentary section at several boreholes from ~11 km outboard of the trench to 3 km landward. At these drillsites, &δ37Cl data and correlation of distinct extrema in downhole chloride profiles have been interpreted to reflect substantial horizontal fluid flow to >10 km outboard of the trench within the ~400 m-thick, homogeneous Lower Shikoku Basin (LSB) facies mudstone. The estimated horizontal velocities are 13 ± 5 cm yr-1; the flow is presumably driven by loading during subduction, and mediated by either permeable conduits or strong anisotropy in permeability. However, the pressure gradients and sediment permeabilities necessary for such flow have not been quantified. Here, we address this problem by combining (1) laboratory measurement of horizontal and vertical sediment permeability from a combination of constant rate of strain (CRS) consolidation tests and flow-through measurements on core samples; and (2) numerical models of fluid flow within a cross section perpendicular to the trench. In our models, we assign hydrostatic pressure at the top and seaward edges, a no-flow condition at the base of the sediments, and pore pressures ranging from 40%-100% of lithostatic at the arcward model boundary. We assign sediment permeability on the basis of our laboratory measurements, and evaluate the possible role of thin permeable conduits as well as strong anisotropy in the incoming section. Our laboratory results define a systematic log-linear relationship between sediment permeability and porosity within the LSB mudstones. The overall variation in permeability for our suite of samples is ~1 order of magnitude. Notably, horizontal permeabilities fall within the range of measured vertical permeabilities, and indicate no significant anisotropy. Using laboratory-derived permeability values, simulated horizontal flow rates range from 10-4 to 10-1 cm yr-1, and decrease dramatically with distance seaward of the trench. With permeability anisotropy of 1000x (i.e. kh = 1000kv), simulated flow rates peak at 3 cm yr-1 at the trench, and decrease to 3x10-1 cm yr-1 by 10 km seaward. These flow rates are substantially lower than those inferred from the geochemical data and also lower than the plate convergence rate of 4 cm yr-1, such that net transport of fluids out of the subduction zone is not likely. If discrete conduits are included in our models, permeabilities of ~10-114m2 are required to sustain the inferred flow rates. However, no potential conduits in the LSB were observed by coring or logging- while-drilling. In contrast, net egress of fluids - and associated chemical transport and pressure translation - are plausible at margins where continuous permeable strata are subducting. Overall, our results highlight a major discrepancy between constraints on fluid flow derived from physical hydrogeology and inferences from geochemical data. In this case, we suggest that the chemical signals may be affected by other processes such as in situ clay dehydration and down-section chemical variations.

  4. Droplet-based magnetically activated cell separation: analysis of separation efficiency based on the variation of flow-induced circulation in a pendent drop.

    PubMed

    Kim, Youngho; Lee, Sang Ho; Kim, Byungkyu

    2009-12-01

    Under the assumption that separation efficiencies are mainly affected by the velocity of flow-induced circulation due to buffer injection in a pendent drop, this paper describes an analysis of the separation efficiency of a droplet-based magnetically activated cell separation (DMACS) system. To investigate the velocity of the flow-induced circulation, we supposed that numerous flows in a pendent drop could be considered as a "theoretically normalized" flow (or conceptually normalized flow, CNF) based on the Cauchy-Goursat theorem. With the morphological characteristics (length and duration time) of a pendent drop depending on the initial volume, we obtained the velocities of the CNF. By measuring the separation efficiencies for different initial volumes and by analyzing the separation efficiency in terms of the velocity of the CNF, we found that the separation efficiencies (in the case of a low rate of buffer injection; 5 and 15 microl x min(-1)) are mainly affected by the velocity of the CNF. Moreover, we confirmed that the phenomenological features of a pendent drop cause a fluctuation of its separation efficiencies over a range of specific volumes (initial volumes ranging from 40 to 80 microl), because of the "sweeping-off" phenomenon, that is, positive cells gathered into the positive fraction are forced to move away from the magnetic side by flow-induced circulation due to buffer injection. In addition, from the variation of the duration time, that is, the interval between the beginning of injection of the buffer solution and the time at which a pendent drop detaches, it could also be confirmed that a shorter duration time leads to decrease of the number of positive cells in negative fraction regardless of the rate of buffer injection (5, 15, and 50 microl x min(-1)). Therefore, if a DMACS system is operated with a 15 microl x min(-1) buffer injection flow rate and an initial volume of 80 microl or more, we would have the best efficiency of separation in the negative fraction.

  5. Spiromax, a New Dry Powder Inhaler: Dose Consistency under Simulated Real-World Conditions.

    PubMed

    Canonica, Giorgio Walter; Arp, Jan; Keegstra, Johan René; Chrystyn, Henry

    2015-10-01

    Spiromax(®) is a novel dry powder inhaler for patients with asthma or chronic obstructive pulmonary disease (COPD). The studies presented here provide further data on attributes (in vitro dosing consistency with budesonide-formoterol (DuoResp) Spiromax; flow rates through empty versions of the Spiromax and Turbuhaler inhaler) of importance to patients with asthma or COPD. Dose-delivery studies were performed using low-, middle-, and high-strength DuoResp Spiromax. Dose consistency was assessed over inhaler life. Total emitted doses (TEDs) were measured at various flow rates, after exposure to high and low temperature or humidity, at different inhaler orientations, and after dropping the inhaler. The criterion for evaluating dose uniformity was whether mean TEDs were within the product specification limits. In separate studies, flow rates were measured after training, using the patient information leaflets, and again after enhanced training as part of a randomized, open-label, cross-over study. Mean values for both budesonide and formoterol were within 85%-115% of the label claim for each strength of DuoResp Spiromax for initial dose uniformity and for the other investigated conditions (temperature, humidity, orientation, dropping, knocking), with the exception of approximately an 80% increase in first dose after dropping the inhaler (subsequent doses not affected). In the flow rate patient study, two patients' inhalations with Spiromax and six with Turbuhaler were <30 L/min. The majority of asthma patients [91% (Spiromax) versus 82% (Turbuhaler)] achieved the preferred flow rate of >60 L/min. DuoResp Spiromax consistently meets dose uniformity criteria, under controlled laboratory conditions and with variations intended to mimic real-world use. Following enhanced training, all patients in the flow study were able to achieve the minimal inspiratory flow rate of >30 L/min, which is required for effective treatment.

  6. Study of low resistivity and high work function ITO films prepared by oxygen flow rates and N2O plasma treatment for amorphous/crystalline silicon heterojunction solar cells.

    PubMed

    Hussain, Shahzada Qamar; Oh, Woong-Kyo; Kim, Sunbo; Ahn, Shihyun; Le, Anh Huy Tuan; Park, Hyeongsik; Lee, Youngseok; Dao, Vinh Ai; Velumani, S; Yi, Junsin

    2014-12-01

    Pulsed DC magnetron sputtered indium tin oxide (ITO) films deposited on glass substrates with lowest resistivity of 2.62 x 10(-4) Ω x cm and high transmittance of about 89% in the visible wavelength region. We report the enhancement of ITO work function (Φ(ITO)) by the variation of oxygen (O2) flow rate and N2O surface plasma treatment. The Φ(ITO) increased from 4.43 to 4.56 eV with the increase in O2 flow rate from 0 to 4 sccm while surface treatment of N2O plasma further enhanced the ITO work function to 4.65 eV. The crystallinity of the ITO films improved with increasing O2 flow rate, as revealed by XRD analysis. The ITO work function was increased by the interfacial dipole resulting from the surface rich in O- ions and by the dipole moment formed at the ITO surface during N2O plasma treatment. The ITO films with high work functions can be used to modify the front barrier height in heterojunction with intrinsic thin layer (HIT) solar cells.

  7. Living on the edge: transfer and traffic of E. coli in a confined flow.

    PubMed

    Figueroa-Morales, Nuris; Leonardo Miño, Gastón; Rivera, Aramis; Caballero, Rogelio; Clément, Eric; Altshuler, Ernesto; Lindner, Anke

    2015-08-21

    We quantitatively study the transport of E. coli near the walls of confined microfluidic channels, and in more detail along the edges formed by the interception of two perpendicular walls. Our experiments establish the connection between bacterial motion at the flat surface and at the edges and demonstrate the robustness of the upstream motion at the edges. Upstream migration of E. coli at the edges is possible at much larger flow rates compared to motion at the flat surfaces. Interestingly, the speed of bacteria at the edges mainly results from collisions between bacteria moving along this single line. We show that upstream motion not only takes place at the edge but also in an "edge boundary layer" whose size varies with the applied flow rate. We quantify the bacterial fluxes along the bottom walls and the edges and show that they result from both the transport velocity of bacteria and the decrease of surface concentration with increasing flow rate due to erosion processes. We rationalize our findings as a function of local variations in the shear rate in the rectangular channels and hydrodynamic attractive forces between bacteria and walls.

  8. The effect of the solution flow rate on the properties of zinc oxide (ZnO) thin films deposited by ultrasonic spray

    NASA Astrophysics Data System (ADS)

    Attaf, A.; Benkhetta, Y.; Saidi, H.; Bouhdjar, A.; Bendjedidi, H.; Nouadji, M.; Lehraki, N.

    2015-03-01

    In this work, we used a system based on ultrasonic spray pyrolysis technique. By witch, we have deposited thin films of zinc oxide (ZnO) with the variation of solution flow rate from 50 ml / h to 150 ml / h, and set other parameters such as the concentration of the solution, the deposition time, substrate temperature and the nozzel -substrate distance. In order to study the influence of the solution flow rate on the properties of the films produced, we have several characterization techniques such as X-ray diffraction to determine the films structure, the scanning electron microscopy SEM for the morphology of the surfaces, EDS spectroscopy for the chemical composition, UV-Visible-Nir spectroscopy for determination the optical proprieties of thin films.The experimental results show that: the films have hexagonal structure at the type (wurtzite), the average size of grains varies from 20.11 to 32.45 nm, the transmittance of the films equals 80% in visible rang and the band gap is varied between 3.274 and 3.282 eV, when the solution flow rate increases from 50 to 150 ml/h.

  9. Magnus effects at high angles of attack and critical Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Ringel, M.

    1983-01-01

    The Magnus force and moment experienced by a yawed, spinning cylinder were studied experimentally in low speed and subsonic flows at high angles of attack and critical Reynolds numbers. Flow-field visualization aided in describing a flow model that divides the Magnus phenomenon into a subcritical region, where reverse Magnus loads are experienced, and a supercritical region where these loads are not encountered. The roles of the spin rate, angle of attack, and crossflow Reynolds number in determining the boundaries of the subcritical region and the variations of the Magnus loads were studied.

  10. Influence of thermal stratification and slip conditions on stagnation point flow towards variable thicked Riga plate

    NASA Astrophysics Data System (ADS)

    Anjum, A.; Mir, N. A.; Farooq, M.; Khan, M. Ijaz; Hayat, T.

    2018-06-01

    This article addresses thermally stratified stagnation point flow of viscous fluid induced by a non-linear variable thicked Riga plate. Velocity and thermal slip effects are incorporated to disclose the flow analysis. Solar thermal radiation phenomenon is implemented to address the characteristics of heat transfer. Variations of different physical parameters on the horizontal velocity and temperature distributions are described through graphs. Graphical interpretations of skin friction coefficient (drag force at the surface) and Nusselt number (rate of heat transfer) are also addressed. Modified Hartman number and thermal stratification parameter result in reduction of temperature distribution.

  11. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  12. Transport of magneto-nanoparticles during electro-osmotic flow in a micro-tube in the presence of magnetic field for drug delivery application

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Shit, G. C.

    2017-11-01

    In this paper, we have examined the motion of magnetic-nanoparticles and the flow characteristics of biofluid in a micro-tube in the presence of externally applied magnetic field and electrokinetic effects. In the drug delivery system, the motion of the magnetic nanoparticles as carriers is important for therapeutic procedure in the treatment of tumor cells, infections and removing blood clots. The unidirectional electro-osmotic flow of biofluid is driven by the combined effects of pulsatile pressure gradient and electrokinetic force. The governing equation for unsteady electromagnetohydrodynamic flow subject to the no-slip boundary condition has been solved numerically by using Crank-Nicolson implicit finite difference scheme. We have analyzed the variation of axial velocity, velocity distribution of magnetic nanoparticles, volumetric flow rate and wall shear stress for various values of the non-dimensional parameters. The study reveals that blood flow velocity, carriers velocity and flow rate are strongly influenced by the electro-osmotic parameter as well as the Hartmann number. The particle mass parameter as well as the particle concentration parameter have efficient capturing effect on magnetic nanoparticles during blood flow through a micro-tube for drug delivery.

  13. Leukocyte adhesion: High-speed cells with ABS.

    PubMed

    van der Merwe, P A

    1999-06-03

    In order to decide where to exit blood vessels and enter tissues, leukocytes roll along endothelial surfaces. Recent studies suggest that an 'automatic braking system' (ABS), involving selectin cell-adhesion molecules, enables leukocytes to roll at a fairly constant velocity despite large variations in blood flow rate.

  14. Characterization and Prediction of Flow Behavior in High-Manganese Twinning Induced Plasticity Steels: Part II. Jerky Flow and Instantaneous Strain Rate

    NASA Astrophysics Data System (ADS)

    Saeed-Akbari, A.; Mishra, A. K.; Mayer, J.; Bleck, W.

    2012-05-01

    The jerky and smooth flow curves in high-manganese twinning induced plasticity (TWIP) steels were investigated by comparing Fe-Mn-C and Fe-Mn-Al-C systems. The pronounced serrations on the flow curves of Fe-Mn-C TWIP steel, produced during tensile testing at 300 K (27 °C) and 373 K (100 °C), were shown to be the result of localized high-temperature Portevin Le-Chatelier (PLC) bands moving across the gage length throughout the deformation. The speed of the PLC bands and their temperature effects were found to be strongly dependent on the applied strain rate, which was controlled by adjusting the cross-head speed of the tensile testing machine. The localized temperature-dependent stacking fault energy (SFE) variations resulting from the PLC effect and adiabatic heating were analyzed and compared for both slow and fast deformation rates. The instabilities in the measured logarithmic strain values caused by jerky flow could cause the local strain rate to deviate systematically from the targeted (applied) strain rate. These instabilities are better observed by calculating the instantaneous strain rate (ISR) values for each instant of deformation along the entire gage length. Finally, a new type of diagram was developed by plotting the true stress against the ISR values. From the diagram, the onset of different mechanisms, such as deformation twinning, nonpronounced, and pronounced serrations, could be marked precisely.

  15. Geographic Variation in Advertisement Calls in a Tree Frog Species: Gene Flow and Selection Hypotheses

    PubMed Central

    Jang, Yikweon; Hahm, Eun Hye; Lee, Hyun-Jung; Park, Soyeon; Won, Yong-Jin; Choe, Jae C.

    2011-01-01

    Background In a species with a large distribution relative to its dispersal capacity, geographic variation in traits may be explained by gene flow, selection, or the combined effects of both. Studies of genetic diversity using neutral molecular markers show that patterns of isolation by distance (IBD) or barrier effect may be evident for geographic variation at the molecular level in amphibian species. However, selective factors such as habitat, predator, or interspecific interactions may be critical for geographic variation in sexual traits. We studied geographic variation in advertisement calls in the tree frog Hyla japonica to understand patterns of variation in these traits across Korea and provide clues about the underlying forces for variation. Methodology We recorded calls of H. japonica in three breeding seasons from 17 localities including localities in remote Jeju Island. Call characters analyzed were note repetition rate (NRR), note duration (ND), and dominant frequency (DF), along with snout-to-vent length. Results The findings of a barrier effect on DF and a longitudinal variation in NRR seemed to suggest that an open sea between the mainland and Jeju Island and mountain ranges dominated by the north-south Taebaek Mountains were related to geographic variation in call characters. Furthermore, there was a pattern of IBD in mitochondrial DNA sequences. However, no comparable pattern of IBD was found between geographic distance and call characters. We also failed to detect any effects of habitat or interspecific interaction on call characters. Conclusions Geographic variations in call characters as well as mitochondrial DNA sequences were largely stratified by geographic factors such as distance and barriers in Korean populations of H. japoinca. Although we did not detect effects of habitat or interspecific interaction, some other selective factors such as sexual selection might still be operating on call characters in conjunction with restricted gene flow. PMID:21858061

  16. Thermal Models of the Costa Rica - Nicaragua Subduction Zone: the Effect of a Three-Dimensional Oceanic Plate Structure and Hydrothermal Circulation in the Temperature Distribution and Mantle Wedge Dynamics

    NASA Astrophysics Data System (ADS)

    Rosas, J. C.; Currie, C. A.; He, J.

    2014-12-01

    Over the last years several 2D thermo-mechanical models of the Costa Rica - Nicaragua Subduction Zone (CNSZ) have studied the thermal distribution of sections of the fault. Such investigations allow us to understand temperature-related aspects of subduction zones, like volcanism and megathrust earthquake locations. However, certain features of the CNSZ limit the range of applicability of 2D models. In the CNSZ, geochemical trends and seismic anisotropy studies reveal a 3D mantle wedge flow that departs from the 2D corner flow. The origin of this flow are dip variations (20o to 25o between Nicaragua and Costa Rica) and the presence of a slab window in Panama that allows material to flow into the mantle wedge. Also, the Central America trench has abrupt variations in surface heat flux that contrasts with steady changes in plate age and convergence rate. These variations have been attributed to hydrothermal circulation (HC), which effectively removes heat from the oceanic crust.In this project we analyze the thermal structure of the CNSZ. The objective is to study dehydration and metamorphic reactions, as well as the length of the megathrust seismogenic zone. We created 3D finite-element models that employ a dislocation creep rheology for the mantle wedge. Two aspects make our models different from previous studies: an up-to-date 3D slab geometry, and an implementation of HC by introducing a conductive proxy in the subducting aquifer, allowing us to model convective heat transport without the complex, high-Rayleigh number calculations. A 3D oceanic boundary condition that resembles the along-strike changes in surface heat flux is also employed. Results show a maximum mantle wedge flow rate of 4.69 cm/yr in the along-strike direction, representing more than 50% of the slab convergence rate. With respect to 2D models, analysis shows this flow changes temperatures by ~100 C in the mantle wedge near areas of strong slab curvature. Along the subducting interface, there is also a change of 10-40 C, which can have a significant impact on dehydration and metamorphic reactions. Also, 2D models have proven that HC controls temperatures along the subduction thrust, which controls the length of the seismogenic zone. In general, the combined effect of 3D mantle wedge flow and HC is expected to have a significant impact on the thermal structure.

  17. Spiral blood flow in aorta-renal bifurcation models.

    PubMed

    Javadzadegan, Ashkan; Simmons, Anne; Barber, Tracie

    2016-01-01

    The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-renal bifurcations. In this regard, a computational fluid dynamics analysis of pulsatile blood flow was performed in two idealised models of aorta-renal bifurcations with and without flow diverter. The results show that the spirality effect causes a substantial variation in blood velocity distribution, while causing only slight changes in fluid shear stress patterns. The dominant observed effect of spiral flow is on turbulent kinetic energy and flow recirculation zones. As spiral flow intensity increases, the rate of turbulent kinetic energy production decreases, reducing the region of potential damage to red blood cells and endothelial cells. Furthermore, the recirculation zones which form on the cranial sides of the aorta and renal artery shrink in size in the presence of spirality effect; this may lower the rate of atherosclerosis development and progression in the aorta-renal bifurcation. These results indicate that the spiral nature of blood flow has atheroprotective effects in renal arteries and should be taken into consideration in analyses of the aorta and renal arteries.

  18. Fluid dynamics in flexible tubes: An application to the study of the pulmonary circulation

    NASA Technical Reports Server (NTRS)

    Kuchar, N. R.

    1971-01-01

    Based on an analysis of unsteady, viscous flow through distensible tubes, a lumped-parameter model for the dynamics of blood flow through the pulmonary vascular bed was developed. The model is nonlinear, incorporating the variation of flow resistance with transmural pressure. Solved using a hybrid computer, the model yields information concerning the time-dependent behavior of blood pressures, flow rates, and volumes in each important class of vessels in each lobe of each lung in terms of the important physical and environmental parameters. Simulations of twenty abnormal or pathological situations of interest in environmental physiology and clinical medicine were performed. The model predictions agree well with physiological data.

  19. Slip flow through a converging microchannel: experiments and 3D simulations

    NASA Astrophysics Data System (ADS)

    Varade, Vijay; Agrawal, Amit; Pradeep, A. M.

    2015-02-01

    An experimental and 3D numerical study of gaseous slip flow through a converging microchannel is presented in this paper. The measurements reported are with nitrogen gas flowing through the microchannel with convergence angles (4°, 8° and 12°), hydraulic diameters (118, 147 and 177 µm) and lengths (10, 20 and 30 mm). The measurements cover the entire slip flow regime and a part of the continuum and transition regimes (the Knudsen number is between 0.0004 and 0.14); the flow is laminar (the Reynolds number is between 0.5 and 1015). The static pressure drop is measured for various mass flow rates. The overall pressure drop increases with a decrease in the convergence angle and has a relatively large contribution of the viscous component. The numerical solutions of the Navier-Stokes equations with Maxwell’s slip boundary condition explore two different flow behaviors: uniform centerline velocity with linear pressure variation in the initial and the middle part of the microchannel and flow acceleration with nonlinear pressure variation in the last part of the microchannel. The centerline velocity and the wall shear stress increase with a decrease in the convergence angle. The concept of a characteristic length scale for a converging microchannel is also explored. The location of the characteristic length is a function of the Knudsen number and approaches the microchannel outlet with rarefaction. These results on gaseous slip flow through converging microchannels are observed to be considerably different than continuum flow.

  20. The ejector flowmeter: an evaluation of its accuracy.

    PubMed

    Waaben, J; Thomsen, A

    1978-01-01

    The accuracy of five ejector flowmeters was assessed using three different gases and four flow-rates. A soap-bubble flowmeter was used for the calibaration. Significant variations were found between individual flowmeters and between different gas mixtures. No variation was found between the four different flowrates, indicating that the calibration is linear. The mean calibration factor was 84.8% +/- 4.1 (100% O2:87.4 +/- 3.4, 50% N2O/O2: 84.2 +/- 2.8, and 100% N2O: 83.0 +/- 4.6).

  1. Dynamics of rain-induced pollutographs of solubles in sewers.

    PubMed

    Rutsch, M; Müller, I; Krebs, P

    2005-01-01

    When looking at acute receiving water impacts due to combined sewer overflows the characteristics of the background diurnal sewage flux variation may influence the peak loads from combined sewer overflows (CSO) and wastewater treatment plant (WWTP) effluent significantly. In this paper, effects on the dynamic compounds transported in the sewer, on CSO discharges and WWTP loading are evaluated by means of hydrodynamic simulations. The simulations are based on different scenarios for diurnal dry-weather flow variations induced by different infiltration rates.

  2. Heat Transfer and Entropy Generation Analysis of an Intermediate Heat Exchanger in ADS

    NASA Astrophysics Data System (ADS)

    Wang, Yongwei; Huai, Xiulan

    2018-04-01

    The intermediate heat exchanger for enhancement heat transfer is the important equipment in the usage of nuclear energy. In the present work, heat transfer and entropy generation of an intermediate heat exchanger (IHX) in the accelerator driven subcritical system (ADS) are investigated experimentally. The variation of entropy generation number with performance parameters of the IHX is analyzed, and effects of inlet conditions of the IHX on entropy generation number and heat transfer are discussed. Compared with the results at two working conditions of the constant mass flow rates of liquid lead-bismuth eutectic (LBE) and helium gas, the total pumping power all tends to reduce with the decreasing entropy generation number, but the variations of the effectiveness, number of transfer units and thermal capacity rate ratio are inconsistent, and need to analyze respectively. With the increasing inlet mass flow rate or LBE inlet temperature, the entropy generation number increases and the heat transfer is enhanced, while the opposite trend occurs with the increasing helium gas inlet temperature. The further study is necessary for obtaining the optimized operation parameters of the IHX to minimize entropy generation and enhance heat transfer.

  3. Episodic fluid flow in the Nankai accretionary complex: Timescale, geochemistry, flow rates, and fluid budget

    USGS Publications Warehouse

    Saffer, D.M.; Bekins, B.A.

    1998-01-01

    Down-hole geochemical anomalies encountered in active accretionary systems can be used to constrain the timing, rates, and localization of fluid flow. Here we combine a coupled flow and solute transport model with a kinetic model for smectite dehydration to better understand and quantify fluid flow in the Nankai accretionary complex offshore of Japan. Compaction of sediments and clay dehydration provide fluid sources which drive the model flow system. We explicitly include the consolidation rate of underthrust sediments in our calculations to evaluate the impact that variations in this unknown quantity have on pressure and chloride distribution. Sensitivity analysis of steady state pressure solutions constrains bulk and flow conduit permeabilities. Steady state simulations with 30% smectite in the incoming sedimentary sequence result in minimum chloride concentrations at site 808 of 550 mM, but measured chlorinity is as low as 447 mM. We simulate the transient effects of hydrofracture or a strain event by assuming an instantaneous permeability increase of 3-4 orders of magnitude along a flow conduit (in this case the de??collement), using steady state results as initial conditions. Transient results with an increase in de??collement permeability from 10-16 m2 to 10-13 m2 and 20% smectite reproduce the observed chloride profile at site 808 after 80-160 kyr. Modeled chloride concentrations are highly sensitive to the consolidation rate of underthrust sediments, such that rapid compaction of underthrust material leads to increased freshening. Pressures within the de??collement during transient simulations rise rapidly to a significant fraction of lithostatic and remain high for at least 160 kyr, providing a mechanism for maintaining high permeability. Flow rates at the deformation front for transient simulations are in good agreement with direct measurements, but steady state flow rates are 2-3 orders of magnitude smaller than observed. Fluid budget calculations indicate that nearly 71% of the incoming water in the sediments leaves the accretionary wedge via diffuse flow out the seafloor, 0-5% escapes by focused flow along the de??collement, and roughly 1% is subducted. Copyright 1998 by the American Geophysical Union.

  4. Flow and pressure characteristics within a screw compressor

    NASA Astrophysics Data System (ADS)

    Guerrato, D.; Nouri, J. M.; Stosic, N.; Arcoumanis, C.

    2007-10-01

    The angle-resolved mean and turbulence characteristics of the axial air flow inside a screw compressor with both male and female rotors have been measured, using a laser Doppler velocimeter (LDV) with high spatial and temporal resolution at different radial and axial locations for speeds of 800-1600 rpm, discharge pressures of 1-1.6 bar and discharge temperatures of 33-90°C. The velocity measurements were performed through a special transparent window fixed near the discharge port. The results confirmed the ability of the LDV technique to characterise the flow inside the compressor working chamber; an angular resolution of 1.5° was able to fully describe the velocity field within the machine. The flow variation between the different working chambers was established as well as the spatial variation of the axial mean velocity and turbulence velocity fluctuation within the working chamber. The effect of discharge port opening on the axial mean and RMS velocities was found to be significant near the leading edge of the rotors causing an increase in the mean and RMS velocities of the order of 4.2Vp in mean (where Vp is the axial pitched velocity) for male rotor and 5.4Vp for, female rotor and this effect is less pronounced on the flow near the root of the rotor. Moreover, to obtain a better understanding of the flow motion, a high sampling rate pressure transducer was used to provide the internal angular static pressure variation. These measurements are used to validate the in-house CFD model of the fluid flow within twin screw compressors which, in turn, allows reliable optimisation of various compressor designs.

  5. The incompressibility assumption in computational simulations of nasal airflow.

    PubMed

    Cal, Ismael R; Cercos-Pita, Jose Luis; Duque, Daniel

    2017-06-01

    Most of the computational works on nasal airflow up to date have assumed incompressibility, given the low Mach number of these flows. However, for high temperature gradients, the incompressibility assumption could lead to a loss of accuracy, due to the temperature dependence of air density and viscosity. In this article we aim to shed some light on the influence of this assumption in a model of calm breathing in an Asian nasal cavity, by solving the fluid flow equations in compressible and incompressible formulation for different ambient air temperatures using the OpenFOAM package. At low flow rates and warm climatological conditions, similar results were obtained from both approaches, showing that density variations need not be taken into account to obtain a good prediction of all flow features, at least for usual breathing conditions. This agrees with most of the simulations previously reported, at least as far as the incompressibility assumption is concerned. However, parameters like nasal resistance and wall shear stress distribution differ for air temperatures below [Formula: see text]C approximately. Therefore, density variations should be considered for simulations at such low temperatures.

  6. Solution of weakly compressible isothermal flow in landfill gas collection networks

    NASA Astrophysics Data System (ADS)

    Nec, Y.; Huculak, G.

    2017-12-01

    Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy-Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein.

  7. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurement accuracy. (iv) Coefficient of variability measurement accuracy. (v) Ambient pressure measurement... through the sample filter, measured in actual volume units at the temperature and pressure of the air as... volumetric flow rate corrections are made based on measurements of actual ambient temperature and pressure...

  8. Molecular structural property and potential energy dependence on nonequilibrium-thermodynamic state point of liquid n-hexadecane under shear.

    PubMed

    Tseng, Huan-Chang; Chang, Rong-Yeu; Wu, Jiann-Shing

    2011-01-28

    Extensive computer experiments have been conducted in order to shed light on the macroscopic shear flow behavior of liquid n-hexadecane fluid under isobaric-isothermal conditions through the nonequilibrium molecular dynamic methodology. With respect to shear rates, the accompanying variations in structural properties of the fluid span the microscopic range of understanding from the intrinsic to extrinsic characteristics. As drawn from the average value of bond length and bond angle, the distribution of dihedral angle, and the radius distribution function of intramolecular and intermolecular van der Waals distances, these intrinsic structures change with hardness, except in the situation of extreme shear rates. The shear-induced variation of thermodynamic state curve along with the shear rate studied is shown to consist of both the quasiequilibrium state plateau and the nonequilibrium-thermodynamic state slope. Significantly, the occurrence of nonequilibrium-thermodynamic state behavior is attributed to variations in molecular potential energies, which include bond stretching, bond bending, bond torsion, and intra- and intermolecular van der Waals interactions. To unfold the physical representation of extrinsic structural deformation, under the aggressive influence of a shear flow field, the molecular dimension and appearance can be directly described via the squared radius of gyration and the sphericity angle, R(g)(2) and ϕ, respectively. In addition, a specific orientational order S(x) defines the alignment of the molecules with the flow direction of the x-axis. As a result, at low shear rates, the overall molecules are slightly stretched and shaped in a manner that is increasingly ellipsoidal. Simultaneously, there is an obvious enhancement in the order. In contrast to high shear rates, the molecules spontaneously shrink themselves with a decreased value of R(g)(2), while their shape and order barely vary with an infinite value of ϕ and S(x). It is important to note that under different temperatures and pressures, these three parameters are integrated within a molecular description in response to thermodynamic state variable of density and rheological material function of shear viscosity.

  9. Diel variation of the cellular carbon to nitrogen ratio of Chlorella autotrophica (Chlorophyta) growing in phosphorus- and nitrogen-limited continuous cultures.

    PubMed

    Ng, Wai Ho Albert; Liu, Hongbin

    2015-02-01

    We investigated the relationship between daily growth rates and diel variation of carbon (C) metabolism and C to nitrogen (N) ratio under P- and N-limitation in the green algae Chlorella autotrophica. To do this, continuous cultures of C. autotrophica were maintained in a cyclostat culture system under 14:10 light:dark cycle over a series of P- and N-limited growth rates. Cell abundance, together with cell size, as reflected by side scatter signal from flow cytometric analysis demonstrated a synchronized diel pattern with cell division occurring at night. Under either type of nutrient limitation, the cellular C:N ratio increased through the light period and decreased through the dark period over all growth rates, indicating a higher diel variation of C metabolism than that of N. Daily average cellular C:N ratios were higher at lower dilution rates under both types of nutrient limitation but cell enlargement was only observed at lower dilution rates under P-limitation. Carbon specific growth rates during the dark period positively correlated with cellular daily growth rates (dilution rates), with net loss of C during night at the lowest growth rates under N-limitation. Under P-limitation, dark C specific growth rates were close to zero at low dilution rates but also exhibited an increasing trend at high dilution rates. In general, diel variations of cellular C:N were low when dark C specific growth rates were high. This result indicated that the fast growing cells performed dark C assimilation at high rates, hence diminished the uncoupling of C and N metabolism at night. © 2014 Phycological Society of America.

  10. Economic compensation standard for irrigation processes to safeguard environmental flows in the Yellow River Estuary, China

    NASA Astrophysics Data System (ADS)

    Pang, Aiping; Sun, Tao; Yang, Zhifeng

    2013-03-01

    SummaryAgriculture and ecosystems are increasingly competing for water. We propose an approach to assess the economic compensation standard required to release water from agricultural use to ecosystems while taking into account seasonal variability in river flow. First, we defined agricultural water shortage as the difference in water volume between agricultural demands and actual supply after maintaining environmental flows for ecosystems. Second, we developed a production loss model to establish the relationship between production losses and agricultural water shortages in view of seasonal variation in river discharge. Finally, we estimated the appropriate economic compensation for different irrigation stakeholders based on crop prices and production losses. A case study in the Yellow River Estuary, China, demonstrated that relatively stable economic compensation for irrigation processes can be defined based on the developed model, taking into account seasonal variations in river discharge and different levels of environmental flow. Annual economic compensation is not directly related to annual water shortage because of the temporal variability in river flow rate and environmental flow. Crops that have stable planting areas to guarantee food security should be selected as indicator crops in economic compensation assessments in the important grain production zone. Economic compensation may be implemented by creating funds to update water-saving measures in agricultural facilities.

  11. Tracer-monitored flow titrations.

    PubMed

    Sasaki, Milton K; Rocha, Diogo L; Rocha, Fábio R P; Zagatto, Elias A G

    2016-01-01

    The feasibility of implementing tracer-monitored titrations in a flow system is demonstrated. A dye tracer is used to estimate the instant sample and titrant volumetric fractions without the need for volume, mass or peak width measurements. The approach was applied to spectrophotometric flow titrations involving variations of sample and titrant flow-rates (i.e. triangle programmed technique) or concentration gradients established along the sample zone (i.e. flow injection system). Both strategies required simultaneous monitoring of two absorbing species, namely the titration indicator and the dye tracer. Mixing conditions were improved by placing a chamber with mechanical stirring in the analytical path aiming at to minimize diffusional effects. Unlike most of flow-based titrations, the innovation is considered as a true titration, as it does not require a calibration curve thus complying with IUPAC definition. As an application, acidity evaluation in vinegars involving titration with sodium hydroxide was selected. Phenolphthalein and brilliant blue FCF were used as indicator and dye tracer, respectively. Effects of sample volume, titrand/titrant concentrations and flow rates were investigated aiming at improved accuracy and precision. Results were reliable and in agreement with those obtained by a reference titration procedure. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Hydrodynamic study of an internal airlift reactor for microalgae culture.

    PubMed

    Rengel, Ana; Zoughaib, Assaad; Dron, Dominique; Clodic, Denis

    2012-01-01

    Internal airlift reactors are closed systems considered today for microalgae cultivation. Several works have studied their hydrodynamics but based on important solid concentrations, not with biomass concentrations usually found in microalgae cultures. In this study, an internal airlift reactor has been built and tested in order to clarify the hydrodynamics of this system, based on microalgae typical concentrations. A model is proposed taking into account the variation of air bubble velocity according to volumetric air flow rate injected into the system. A relationship between riser and downcomer gas holdups is established, which varied slightly with solids concentrations. The repartition of solids along the reactor resulted to be homogenous for the range of concentrations and volumetric air flow rate studied here. Liquid velocities increase with volumetric air flow rate, and they vary slightly when solids are added to the system. Finally, liquid circulation time found in each section of the reactor is in concordance with those employed in microalgae culture.

  13. Control of topography gradients on residence time distributions, mixing dynamics and reactive hotspot development

    NASA Astrophysics Data System (ADS)

    Bandopadhyay, Aditya; Le Borgne, Tanguy; Davy, Philippe

    2017-04-01

    Topography-driven subsurface flows are thought to play a central role in determining solute turnover and biogeochemical processes at different scales in the critical zone, including river-hyporheic zone exchanges, hillslope solute transport and reactions, and catchment biogeochemical cycles. Hydraulic head gradients, induced by topography gradients at different scales, generate a distribution of streamlines at depth, dictating the spatial distribution of redox sensitive species, the magnitude of surface water - ground water exchanges and ultimately the source/sink function of the subsurface. Flow velocities generally decrease with depth, leading to broad residence time distributions, which have been shown to affect river chemistry and geochemical reactions in catchments. In this presentation, we discuss the impact of topography-driven flows on mixing processes and the formation of localized reactive hotspots. For this, we solve analytically the coupled flow, mixing and reaction equations in two-dimensional vertical cross-sections of subsurface domains with different topography gradients. For a given topography gradient, we derive the spatial distribution of subsurface velocities, the rates of solute mixing accross streamlines and the induced kinetics of redox, precipitation and dissolution reactions using a Lagrangian approach (Le Borgne et al. 2014). We demonstrate that vertical velocity profiles driven by topography variations, act effectively as shear flows, hence stretching continuously the mixing fronts between recently infiltrated and resident water (Bandopadhyay et al. 2017). We thus derive analytical expressions for residence time distributions, mixing rates and kinetics of chemical reactions as a function of the topography gradients. We show that the rates dissolution and precipitation reactions are significantly enhanced by the existence of vertical velocity gradients and that reaction rates reach a maximum in a localized subsurface reactive layer, whose location and intensity depends on topography gradients. As a consequence of these findings, we discuss the links between topography variations, subsurface velocity gradients and biogeochemical processes in the critical zone. References: Bandopadhyay A., T. Le Borgne, Y. Méheust and M. Dentz (2017) Enhanced reaction kinetics and reactive mixing scale dynamics in mixing fronts under shear flow for arbitrary Damkohler numbers, Adv. in Water Resour. Vol. 100, p. 78-95 Le Borgne T., T. Ginn and M. Dentz (2014) Impact of Fluid Deformation on Mixing-Induced Chemical Reactions in Heterogeneous Flows, Geophys. Res. Lett., Vol. 41, 22, p. 7898-790

  14. Haemodynamic Variations of Flow to Renal Arteries in Custom-Made and Pivot Branch Fenestrated Endografting.

    PubMed

    Ou, J; Tang, A Y S; Chiu, T L; Chow, K W; Chan, Y C; Cheng, S W K

    2017-01-01

    This study aimed to investigate variation of blood flow to renal arteries in custom-made and pivot branch (p-branch) fenestrated endografting, using a computational fluid dynamics (CFD) technique. Idealised models of custom-made and p-branch fenestrated grafting were constructed on a basis of a 26 mm stent graft. The custom-made fenestration was designed with a 6 mm diameter, while the 5 mm depth renal p-branch was created with a 6 mm inner and 15 mm outer fenestration. Two configurations (option A and option B) were constructed with different locations of p-branches. Option A had both renal p-branches at the same level, whereas option B contained two staggered p-branches at lower positions. The longitudinal stent orientation in both custom-made and p-branch models was represented by a takeoff angle (ToA) between the renal stent and distal stent graft centreline, varying from 55° to 125°. Computational simulations were performed with realistic boundary conditions governing the blood flow. In both custom-made and p-branch fenestrated models, the flow rate and wall shear stress (WSS) were generally higher and recirculation zones were smaller when the renal stent faced caudally. In custom-made models, the highest flow rate (0.390 L/min) was detected at 70° ToA and maximum WSS on vessel segment (16.8 Pa) was attained at 55° ToA. In p-branch models, option A and option B displayed no haemodynamic differences when having the same ToA. The highest flow rate (0.378 L/min) and maximum WSS on vessel segment (16.7 Pa) were both calculated at 55° ToA. The largest and smallest recirculation zones occurred at 90° and 55° ToA respectively in both custom-made and p-branch models. Custom-made fenestrated models exhibited consistently higher flow rate and shear stress and smaller recirculation zones in renal arteries than p-branch models at the same ToA. Navigating the renal stents towards caudal orientation can achieve better haemodynamic outcomes in both fenestrated devices. Custom-made fenestrated stent grafts are the preferred choice for elective patients. Further clinical evidence is required to validate the computational simulations. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  15. Variations of iron flux and organic carbon remineralization in a subterranean estuary caused by inter-annual variations in recharge

    NASA Astrophysics Data System (ADS)

    Roy, Moutusi; Martin, Jonathan B.; Cable, Jaye E.; Smith, Christopher G.

    2013-02-01

    We determine the inter-annual variations in diagenetic reaction rates of sedimentary iron (Fe) in an east Florida subterranean estuary and evaluate the connection between metal fluxes and recharge to the coastal aquifer. Over the three years study period (from 2004 to 2007), the amount of Fe-oxides reduced at the study site decreased from 192 to 153 g/yr and associated organic carbon (OC) remineralization decreased from 48 to 38 g/yr. These reductions occurred although the Fe-oxide reduction rates remained constant around 1 mg/cm2/yr. These results suggest that changes in flow rates of submarine groundwater discharge (SGD) related to changes in precipitation may be important to fluxes of the diagenetic reaction products. Rainfall at a weather station approximately 5 km from the field area decreased from 12.6 to 8.4 cm/month from 2004 to 2007. Monthly potential evapotranspiration (PET) calculated from Thornthwaite's method indicated potential evapotranspiration cycled from about 3 cm/month in the winter to about 15 cm/month in the summer so that net annual recharge to the aquifer decreased from 40 cm in 2004 to -10 cm in 2007. Simultaneously with the decrease in recharge of groundwater, freshwater SGD decreased by around 20% and caused the originally 25 m wide freshwater seepage face to decrease in width by about 5 m. The smaller seepage face reduced the area under which Fe-oxides were undergoing reductive dissolution. Consequently, the observed decrease in Fe flux is controlled by hydrology of the subterranean estuary. These results point out the need to better understand linkages between temporal variations in diagenetic reactions and changes in flow within subterranean estuaries in order to accurately constrain their contribution to oceanic fluxes of solutes from subterranean estuaries.

  16. Effects of Experimental High Flow Releases and Increased Fluctuations in Flow from Glen Canyon Dam on Abundance, Growth, and Survival Rates of Early Life Stages of Rainbow Trout in the Lee's Ferry Reach of the Colorado River

    NASA Astrophysics Data System (ADS)

    Korman, Josh

    2010-05-01

    The abundance of adult fish populations is controlled by the growth and survival rates of early life stages. Evaluating the effects of flow regimes on early life stages is therefore critical to determine how these regimes affect the abundance of adult populations. Experimental high flow releases from Glen Canyon Dam, primarily intended to conserve fine sediment and improve habitat conditions for native fish in the Colorado River in Grand Canyon, AZ, have been conducted in 1996, 2004, and 2008. These flows potentially affect the Lee's Ferry reach rainbow trout population, located immediately downstream of the dam, which supports a highly valued fishery and likely influences the abundance of rainbow trout in Grand Canyon. Due to concerns about negative effects of high trout abundance on endangered native fish, hourly variation in flow from Glen Canyon Dam was experimentally increased between 2003 and 2005 to reduce trout abundance. This study reports on the effects of experimental high flow releases and fluctuating flows on early life stages of rainbow trout in the Lee's Ferry reach based on monthly sampling of redds (egg nests) and the abundance and growth of age-0 trout between 2003 and 2009. Data on spawn timing, spawning elevations, and intergravel temperatures were integrated in a model to estimate the magnitude and seasonal trend in incubation mortality resulting from redd dewatering due to fluctuations in flow. Experimental fluctuations from January through March promoted spawning at higher elevations where the duration of dewatering was longer and intergravel temperatures exceeded lethal thresholds. Flow-dependent incubation mortality rates were 24% (2003) and 50% (2004) in years with higher flow fluctuations, compared to 5-11% under normal operations (2006-2009). Spatial and temporal predictions of mortality were consistent with direct observations of egg mortality determined from the excavation of 125 redds. The amount of variation in backcalculated hatch date distributions predicted by flow-independent (84-93%) and flow-dependent (82-91%) incubation loss models were similar. Age-0 abundance was generally independent of viable egg deposition, except in one year when egg deposition was 10-fold lower due to reduced spawning activity. There was no evidence from the hatch date or stock-recruitment analysis that flow-dependent incubation losses, although large in experimental years, affected the abundance of the age-0 population. The data indicate that strong compensation in survival rates shortly after emergence mitigated the impact of flow-dependent losses. Multiple lines of evidence demonstrated that the March 2008 high flow experiment (HFE) resulted in a large increase in early survival rates (fertilization to ~1-2 months from emergence) of age-0 trout due an improvement in habitat conditions. A stock-recruitment analysis indicated that age-0 abundance in July 2008 was over four-fold higher than expected given the number of viable redds that produced these fish. A hatch date analysis indicated that early survival rates were much higher for cohorts that emerged about two months after the HFE. These cohorts, which were fertilized after the HFE, were not exposed to high flows and emerged into better quality habitat. Inter annual differences in growth of age-0 trout based on otolith microstructure support this hypothesis. Growth rates in the summer and fall of 2008 (0.44 mm·day-1) were virtually the same as in 2006 (0.46 mm·day-1), the highest recorded over six years, even though abundance was eight-fold greater in 2008. I speculate that high flows in 2008 increased interstitial spaces in the substrate and food availability or quality, leading to higher early survival of recently emerged trout and better growth during summer and fall. Abundance in 2009 was over two-fold higher than expected, possibly indicating that the effect of the HFE on early life stages was somewhat persistent.

  17. The morphology and evolution of the Stromboli 2002-2003 lava flow field--An example of a basaltic flow field emplaced on a steep slope

    USGS Publications Warehouse

    Lodato, Luigi; Harris, A.; Spampinato, L.; Calvari, Sonia; Dehn, J.; Patrick, M.

    2007-01-01

    The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.

  18. Experimental investigation of a two-dimensional shock-turbulent boundary layer interaction with bleed

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Tanji, F. T.

    1983-01-01

    The two-dimensional interaction of an oblique shock wave with a turbulent boundary layer that included the effect of bleed was examined experimentally using a shock generator mounted across a supersonic wind tunnel The studies were performed at Mach numbers 2.5 and 2.0 and unit Reynolds number of approximately 2.0 x 10 to the 7th/meter. The study includes surface oil flow visualization, wall static pressure distributions and boundary layer pitot pressure profiles. In addition, the variation of the local bleed rates were measured. The results show the effect of the bleed on the boundary layer as well as the effect of the flow conditions on the local bleed rate.

  19. Impact of laminar flow velocity of different acids on enamel calcium loss.

    PubMed

    Attin, T; Becker, K; Wiegand, A; Tauböck, T T; Wegehaupt, F J

    2013-03-01

    The aim of the study was to evaluate the impact of flow velocity under laminar flow conditions of different acidic solutions on enamel erosion. A total of 240 bovine enamel specimens were prepared and allocated to 30 groups (n = 8 each). Samples of 18 groups were superfused in a flow chamber system with laminar flow behavior using 1 ml of citric acid or hydrochloric acid (HCl) of pH 2.0, 2.6 or 3.0. Flow rates in the sample chamber were adjusted to 10, 60 or 100 μl/min. To simulate turbulent flow behavior, samples of six groups were immersed in 1 ml of the respective solution, which was vortexed (15 min, 600 rpm). For simulating non-agitated conditions, specimens of the remaining six groups were immersed in 1 ml of the respective solution without stirring. Calcium in the solutions, released from the enamel samples, was determined using Arsenazo III method. For acidic solutions of pH 2.6 and 3.0, erosive potential of citric acid was equivalent to that of HCl at a flow of 100 μl/min. The same observation was made for the samples subjected to turbulent conditions at pH 3. At all other conditions, citric acid induced a significantly higher calcium loss than HCl. It is concluded that under slow laminar flow conditions, flow rate variations lead to higher erosive impact of citric acid compared to hydrochloric acid at pH 2.0, but not at pH ≥ 2.6 and increasing laminar flow or turbulent conditions. Erosive enamel dissolution under laminar flow conditions is a complex issue influenced by flow rate and acidic substrate.

  20. Three dimensional instabilities of an electron scale current sheet in collisionless magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Neeraj; Büchner, Jörg; Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen

    In collisionless magnetic reconnection, electron current sheets (ECS) with thickness of the order of an electron inertial length form embedded inside ion current sheets with thickness of the order of an ion inertial length. These ECS's are susceptible to a variety of instabilities which have the potential to affect the reconnection rate and/or the structure of reconnection. We carry out a three dimensional linear eigen mode stability analysis of electron shear flow driven instabilities of an electron scale current sheet using an electron-magnetohydrodynamic plasma model. The linear growth rate of the fastest unstable mode was found to drop with themore » thickness of the ECS. We show how the nature of the instability depends on the thickness of the ECS. As long as the half-thickness of the ECS is close to the electron inertial length, the fastest instability is that of a translational symmetric two-dimensional (no variations along flow direction) tearing mode. For an ECS half thickness sufficiently larger or smaller than the electron inertial length, the fastest mode is not a tearing mode any more and may have finite variations along the flow direction. Therefore, the generation of plasmoids in a nonlinear evolution of ECS is likely only when the half-thickness is close to an electron inertial length.« less

  1. Characteristics of aquatic bacterial community and the influencing factors in an urban river.

    PubMed

    Wang, Peng; Chen, Bo; Yuan, Ruiqiang; Li, Chuangqiong; Li, Yan

    2016-11-01

    Bacteria play a critical role in environmental and ecological processes in river ecosystems. We studied the bacterial community in the Ganjiang River, a major tributary of the Yangtze River, as it flowed through Nanchang, the largest city in the Ganjiang River basin. Water was sampled at five sites monthly during the wet season, and the bacterial community was characterized using Illumina high-throughput sequencing. A total of 811 operational taxonomic units (OTUs) were observed for all samples, ranging from 321 to 519 for each sample. The bacterial communities were maintained by a core of OTUs that persisted longitudinally and monthly. Actinobacteria (41.17% of total sequences) and Proteobacteria (31.80%) were the dominant phyla, while Firmicutes (mostly genus Lactococcus) became most abundant during flooding. Temperature and flow rate, rather than water chemistry, were the main factors influencing the bacterial community in river water. Temperature was the best individual parameter explaining the variations in OTU abundance, while flow rate was the best individual parameter explaining the variations in phylum abundance. Except for Proteobacteria, the relative abundance of bacterial phyla did not differ significantly between sites, and the degrees of influence of urban landscape on the bacterial community were estimated to be 17%-34%. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Dual-wavelength light-emitting diode-based ultraviolet absorption detector for nano-flow capillary liquid chromatography.

    PubMed

    Xie, Xiaofeng; Tolley, Luke T; Truong, Thy X; Tolley, H Dennis; Farnsworth, Paul B; Lee, Milton L

    2017-11-10

    The design of a miniaturized LED-based UV-absorption detector was significantly improved for on-column nanoflow LC. The detector measures approximately 27mm×24mm×10mm and weighs only 30g. Detection limits down to the nanomolar range and linearity across 3 orders of magnitude were obtained using sodium anthraquinone-2-sulfonate as a test analyte. Using two miniaturized detectors, a dual-detector system was assembled containing 255nm and 275nm LEDs with only 216nL volume between the detectors A 100μm slit was used for on-column detection with a 150μm i.d. packed capillary column. Chromatographic separation of a phenol mixture was demonstrated using the dual-detector system, with each detector producing a unique chromatogram. Less than 6% variation in the ratios of absorbances measured at the two wavelengths for specific analytes was obtained across 3 orders of magnitude concentration, which demonstrates the potential of using absorption ratio measurements for target analyte detection. The dual-detector system was used for simple, but accurate, mobile phase flow rate measurement at the exit of the column. With a flow rate range from 200 to 2000nL/min, less than 3% variation was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Physical and Hydrological Meaning of the Spectral Information from Hydrodynamic Signals at Karst Springs

    NASA Astrophysics Data System (ADS)

    Dufoyer, A.; Lecoq, N.; Massei, N.; Marechal, J. C.

    2017-12-01

    Physics-based modeling of karst systems remains almost impossible without enough accurate information about the inner physical characteristics. Usually, the only available hydrodynamic information is the flow rate at the karst outlet. Numerous works in the past decades have used and proven the usefulness of time-series analysis and spectral techniques applied to spring flow, precipitations or even physico-chemical parameters, for interpreting karst hydrological functioning. However, identifying or interpreting the karst systems physical features that control statistical or spectral characteristics of spring flow variations is still challenging, not to say sometimes controversial. The main objective of this work is to determine how the statistical and spectral characteristics of the hydrodynamic signal at karst springs can be related to inner physical and hydraulic properties. In order to address this issue, we undertake an empirical approach based on the use of both distributed and physics-based models, and on synthetic systems responses. The first step of the research is to conduct a sensitivity analysis of time-series/spectral methods to karst hydraulic and physical properties. For this purpose, forward modeling of flow through several simple, constrained and synthetic cases in response to precipitations is undertaken. It allows us to quantify how the statistical and spectral characteristics of flow at the outlet are sensitive to changes (i) in conduit geometries, and (ii) in hydraulic parameters of the system (matrix/conduit exchange rate, matrix hydraulic conductivity and storativity). The flow differential equations resolved by MARTHE, a computer code developed by the BRGM, allows karst conduits modeling. From signal processing on simulated spring responses, we hope to determine if specific frequencies are always modified, thanks to Fourier series and multi-resolution analysis. We also hope to quantify which parameters are the most variable with auto-correlation analysis: first results seem to show higher variations due to conduit conductivity than the ones due to matrix/conduit exchange rate. Future steps will be using another computer code, based on double-continuum approach and allowing turbulent conduit flow, and modeling a natural system.

  4. Local selection modifies phenotypic divergence among Rana temporaria populations in the presence of gene flow.

    PubMed

    Richter-Boix, Alex; Teplitsky, Céline; Rogell, Björn; Laurila, Anssi

    2010-02-01

    In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open-canopy or partially closed-canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (Q(ST)) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (F(ST)). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in F(ST) at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature-induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.

  5. On Exact Solutions of Rarefaction-Rarefaction Interactions in Compressible Isentropic Flow

    NASA Astrophysics Data System (ADS)

    Jenssen, Helge Kristian

    2017-12-01

    Consider the interaction of two centered rarefaction waves in one-dimensional, compressible gas flow with pressure function p(ρ )=a^2ρ ^γ with γ >1. The classic hodograph approach of Riemann provides linear 2nd order equations for the time and space variables t, x as functions of the Riemann invariants r, s within the interaction region. It is well known that t( r, s) can be given explicitly in terms of the hypergeometric function. We present a direct calculation (based on works by Darboux and Martin) of this formula, and show how the same approach provides an explicit formula for x( r, s) in terms of Appell functions (two-variable hypergeometric functions). Motivated by the issue of vacuum and total variation estimates for 1-d Euler flows, we then use the explicit t-solution to monitor the density field and its spatial variation in interactions of two centered rarefaction waves. It is found that the variation is always non-monotone, and that there is an overall increase in density variation if and only if γ >3. We show that infinite duration of the interaction is characterized by approach toward vacuum in the interaction region, and that this occurs if and only if the Riemann problem defined by the extreme initial states generates a vacuum. Finally, it is verified that the minimal density in such interactions decays at rate O(1)/ t.

  6. Length-scales of Slab-induced Asthenospheric Deformation from Geodynamic Modeling, Mantle Deformation Fabric, and Synthetic Shear Wave Splitting

    NASA Astrophysics Data System (ADS)

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2017-12-01

    The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear-wave splitting observed in real subduction zones.

  7. Development and Characterization a Single-Active-Chamber Piezoelectric Membrane Pump with Multiple Passive Check Valves.

    PubMed

    Zhang, Ronghui; You, Feng; Lv, Zhihan; He, Zhaocheng; Wang, Haiwei; Huang, Ling

    2016-12-12

    In order to prevent the backward flow of piezoelectric pumps, this paper presents a single-active-chamber piezoelectric membrane pump with multiple passive check valves. Under the condition of a fixed total number of passive check valves, by means of changing the inlet valves and outlet valves' configuration, the pumping characteristics in terms of flow rate and backpressure are experimentally investigated. Like the maximum flow rate and backpressure, the testing results show that the optimal frequencies are significantly affected by changes in the number inlet valves and outlet valves. The variation ratios of the maximum flow rate and the maximum backpressure are up to 66% and less than 20%, respectively. Furthermore, the piezoelectric pump generally demonstrates very similar flow rate and backpressure characteristics when the number of inlet valves in one kind of configuration is the same as that of outlet valves in another configuration. The comparison indicates that the backflow from the pumping chamber to inlet is basically the same as the backflow from the outlet to the pumping chamber. No matter whether the number of inlet valves or the number of outlet valves is increased, the backflow can be effectively reduced. In addition, the backpressure fluctuation can be significantly suppressed with an increase of either inlet valves or outlet valves. It also means that the pump can prevent the backflow more effectively at the cost of power consumption. The pump is very suitable for conditions where more accurate flow rates are needed and wear and fatigue of check valves often occur.

  8. Comparison of Mixing Calculations for Reacting and Non-Reacting Flows in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Oechsle, V. L.; Mongia, H. C.; Holdeman, J. D.

    1994-01-01

    A production 3-D elliptic flow code has been used to calculate non-reacting and reacting flow fields in an experimental mixing section relevant to a rich burn/quick mix/lean burn (RQL) combustion system. A number of test cases have been run to assess the effects of the variation in the number of orifices, mass flow ratio, and rich-zone equivalence ratio on the flow field and mixing rates. The calculated normalized temperature profiles for the non-reacting flow field agree qualitatively well with the normalized conserved variable isopleths for the reacting flow field indicating that non-reacting mixing experiments are appropriate for screening and ranking potential rapid mixing concepts. For a given set of jet momentum-flux ratio, mass flow ratio, and density ratio (J, MR, and DR), the reacting flow calculations show a reduced level of mixing compared to the non-reacting cases. In addition, the rich-zone equivalence ratio has noticeable effect on the mixing flow characteristics for reacting flows.

  9. Centrifugal study of zone of influence during air-sparging.

    PubMed

    Hu, Liming; Meegoda, Jay N; Du, Jianting; Gao, Shengyan; Wu, Xiaofeng

    2011-09-01

    Air sparging (AS) is one of the groundwater remediation techniques for remediating volatile organic compounds (VOCs) in saturated soil. However, in spite of the success of air sparging as a remediation technique for the cleanup of contaminated soils, to date, the fundamental mechanisms or the physics of air flow through porous media is not well understood. In this study, centrifugal modeling tests were performed to investigate air flow rates and the evolution of the zone of influence during the air sparging under various g-levels. The test results show that with the increase in sparging pressure the mass flow rate of the air sparging volume increases. The air mass flow rate increases linearly with the effective sparging pressure ratio, which is the difference between sparging pressure and hydrostatic pressure normalized with respect to the effective overburden pressure at the sparging point. Also the slope of mass flow rate with effective sparging pressure ratio increases with higher g-levels. This variation of the slope of mass flow rate of air sparging volume versus effective sparging pressure ratio, M, is linear with g-level confirming that the air flow through soil for a given effective sparging pressure ratio only depends on the g-level. The test results also show that with increasing sparging pressure, the zone of influence (ZOI), which consists of the width at the tip of the cone or lateral intrusion and the cone angle, will lead to an increase in both lateral intrusion and the cone angle. With a further increase in air injection pressure, the cone angle reaches a constant value while the lateral intrusion becomes the main contributor to the enlargement of the ZOI. However, beyond a certain value of effective sparging pressure ratio, there is no further enlargement of the ZOI.

  10. Dual-responsive and Multi-functional Plasmonic Hydrogel Valves and Biomimetic Architectures Formed with Hydrogel and Gold Nanocolloids

    PubMed Central

    Song, Ji Eun; Cho, Eun Chul

    2016-01-01

    We present a straightforward approach with high moldability for producing dual-responsive and multi-functional plasmonic hydrogel valves and biomimetic architectures that reversibly change volumes and colors in response to temperature and ion variations. Heating of a mixture of hybrid colloids (gold nanoparticles assembled on a hydrogel colloid) and hydrogel colloids rapidly induces (within 30 min) the formation of hydrogel architectures resembling mold shapes (cylinder, fish, butterfly). The biomimetic fish and butterfly display reversible changes in volumes and colors with variations of temperature and ionic conditions in aqueous solutions. The cylindrical plasmonic valves installed in flow tubes rapidly control water flow rate in on-off manner by responding to these stimuli. They also report these changes in terms of their colors. Therefore, the approach presented here might be helpful in developing new class of biomimetic and flow control systems where liquid conditions should be visually notified (e.g., glucose or ion concentration changes). PMID:27703195

  11. Real-Time Variable Rate Spraying in Orchards and Vineyards: A Review

    NASA Astrophysics Data System (ADS)

    Wandkar, Sachin Vilas; Bhatt, Yogesh Chandra; Jain, H. K.; Nalawade, Sachin M.; Pawar, Shashikant G.

    2018-06-01

    Effective and efficient use of pesticides in the orchards is of concern since many years. With the conventional constant rate sprayers, equal dose of pesticide is applied to each tree. Since, there is great variation in size and shape of each tree in the orchard, trees gets either oversprayed or undersprayed. Real-time variable rate spraying technology offers pesticide application in accordance with tree size. With the help of suitable sensors, tree characteristics such as canopy volume, foliage density, etc. can be acquired and with the micro-processing unit coupled with proper algorithm, flow of electronic proportional valves can be controlled thus, controlling the flow rate of nozzles according to tree characteristics. Also, sensors can help in the detection of spaces in-between trees which allows to control the spray in spaces. Variable rate spraying helps in achieving precision in spraying operation especially inside orchards. This paper reviews the real-time variable rate spraying technology and efforts made by the various researchers for real-time variable application in the orchards and vineyards.

  12. Real-Time Variable Rate Spraying in Orchards and Vineyards: A Review

    NASA Astrophysics Data System (ADS)

    Wandkar, Sachin Vilas; Bhatt, Yogesh Chandra; Jain, H. K.; Nalawade, Sachin M.; Pawar, Shashikant G.

    2018-02-01

    Effective and efficient use of pesticides in the orchards is of concern since many years. With the conventional constant rate sprayers, equal dose of pesticide is applied to each tree. Since, there is great variation in size and shape of each tree in the orchard, trees gets either oversprayed or undersprayed. Real-time variable rate spraying technology offers pesticide application in accordance with tree size. With the help of suitable sensors, tree characteristics such as canopy volume, foliage density, etc. can be acquired and with the micro-processing unit coupled with proper algorithm, flow of electronic proportional valves can be controlled thus, controlling the flow rate of nozzles according to tree characteristics. Also, sensors can help in the detection of spaces in-between trees which allows to control the spray in spaces. Variable rate spraying helps in achieving precision in spraying operation especially inside orchards. This paper reviews the real-time variable rate spraying technology and efforts made by the various researchers for real-time variable application in the orchards and vineyards.

  13. Determining the effects of dams on subdaily variation in river flows at a whole-basin scale

    USGS Publications Warehouse

    Zimmerman, J.K.H.; Letcher, B.H.; Nislow, K.H.; Lutz, K.A.; Magilligan, F.J.

    2010-01-01

    River regulation can alter the frequency and magnitude of subdaily flow variations causing major impacts on ecological structure and function. We developed an approach to quantify subdaily flow variation for multiple sites across a large watershed to assess the potential impacts of different dam operations (flood control, run-of-river hydropower and peaking hydropower) on natural communities. We used hourly flow data over a 9-year period from 30 stream gages throughout the Connecticut River basin to calculate four metrics of subdaily flow variation and to compare sites downstream of dams with unregulated sites. Our objectives were to (1) determine the temporal scale of data needed to characterize subdaily variability; (2) compare the frequency of days with high subdaily flow variation downstream of dams and unregulated sites; (3) analyse the magnitude of subdaily variation at all sites and (4) identify individual sites that had subdaily variation significantly higher than unregulated locations. We found that estimates of flow variability based on daily mean flow data were not sufficient to characterize subdaily flow patterns. Alteration of subdaily flows was evident in the number of days natural ranges of variability were exceeded, rather than in the magnitude of subdaily variation, suggesting that all rivers may exhibit highly variable subdaily flows, but altered rivers exhibit this variability more frequently. Peaking hydropower facilities had the most highly altered subdaily flows; however, we observed significantly altered ranges of subdaily variability downstream of some flood-control and run-of-river hydropower dams. Our analysis can be used to identify situations where dam operating procedures could be modified to reduce the level of hydrologic alteration. ?? 2009 John Wiley & Sons, Ltd.

  14. Effect of heat transfer on rotating electroosmotic flow through a micro-vessel: haemodynamical applications

    NASA Astrophysics Data System (ADS)

    Sinha, A.; Mondal, A.; Shit, G. C.; Kundu, P. K.

    2016-08-01

    This paper theoretically analyzes the heat transfer characteristics associated with electroosmotic flow of blood through a micro-vessel having permeable walls. The analysis is based on the Debye-Hückel approximation for charge distributions and the Navier-Stokes equations are assumed to represent the flow field in a rotating system. The velocity slip condition at the vessel walls is taken into account. The essential features of the rotating electroosmotic flow of blood and associated heat transfer characteristics through a micro-vessel are clearly highlighted by the variation in the non-dimensional flow velocity, volumetric flow rate and non-dimensional temperature profiles. Moreover, the effect of Joule heating parameter and Prandtl number on the thermal transport characteristics are discussed thoroughly. The study reveals that the flow of blood is appreciably influenced by the elctroosmotic parameter as well as rotating Reynolds number.

  15. Flowing gas, non-nuclear experiments on the gas core reactor

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Suckling, D. H.; Copper, C. G.

    1972-01-01

    Flow tests were conducted on models of the gas core (cavity) reactor. Variations in cavity wall and injection configurations were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or freon to simulate the central nuclear fuel gas. All tests were run in the down-firing direction so that gravitational effects simulated the acceleration effect of a rocket. Results show that acceptable flow patterns with high volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity along the cavity wall, using louvered or oblique-angle-honeycomb injection schemes.

  16. Separation phenomena for gaseous mixture flowing through a long tube into vacuum

    NASA Astrophysics Data System (ADS)

    Sharipov, Felix; Kalempa, Denize

    2005-12-01

    A gaseous mixture flow through a long tube into vacuum is considered assuming the pressure to be arbitrary at the tube entrance. Thus, the flow regime can vary from hydrodynamic at the entrance to free molecular at the tube exit. The distributions of density and concentration along the tube were obtained for the mixture helium-xenon at various values of the concentration and rarefaction at the tube entrance. It was shown that the variation of the concentration along the tube can be significant. The flow rates of both species determining the chemical composition in the down flow container were calculated. An analysis of these data shows that the chemical composition in the down flow container can be different from that in the up flow one, i.e., the separation phenomenon takes place. The results presented in the article can be used in practice to avoid the separation phenomenon or to intensify it if necessary.

  17. Mean velocities and Reynolds stresses in a juncture flow

    NASA Technical Reports Server (NTRS)

    Mcmahon, H.; Hubbartt, J.; Kubendran, L.

    1982-01-01

    Values of three mean velocity components and six turbulence stresses measured in a juncture flow are presented and discussed. The juncture flow is generated by a constant thickness body, having an elliptical leading edge, which is mounted perpendicular to a large flat plate along which a turbulent boundary layer is growing. The measurements were carried out at two streamwise stations in the juncture and were made using two single sensor hot-wire probes. The secondary flow in the juncture results in a considerable distortion in the mean velocity profiles. The secondary flow also transports turbulence in the juncture flow and has a large effect on the turbulence stresses. From visual inspection of the results, there is considerable evidence of similarity between the turbulent shear stresses and the mean flow strain rates. There is some evidence of similarity between the variations in the turbulent stress components.

  18. Multiscale Sediment-Laden Flow Theory and Its Application in Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Cao, Z. X.; Pender, G.; Hu, P.

    2011-09-01

    Sediment-laden flows over erodible bed normally feature multiple time scales. The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity regime in line with local flow scenario and the bed deforms as compared to the flow, which literally dictate if a capacity based and/or decoupled model is justified. This paper synthesizes the recently developed multiscale theory for sediment-laden flows over erodible bed, with bed load and suspended load transport respectively. It is unravelled that bed load transport can adapt to capacity sufficiently rapidly even under highly unsteady flows and thus a capacity model is mostly applicable, whereas a non-capacity model is critical for suspended sediment because of the lower rate of adaptation to capacity. Physically coupled modeling is critical for cases characterized by rapid bed variation. Applications are outlined on flash floods and landslide dam break floods.

  19. CHANGES OF THE SOLAR MERIDIONAL VELOCITY PROFILE DURING CYCLE 23 EXPLAINED BY FLOWS TOWARD THE ACTIVITY BELTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, R. H.; Schuessler, M., E-mail: cameron@mps.mpg.d

    The solar meridional flow is an important ingredient in Babcock-Leighton type models of the solar dynamo. Global variations of this flow have been suggested to explain the variations in the amplitudes and lengths of the activity cycles. Recently, cycle-related variations in the amplitude of the P{sup 1}{sub 2} term in the Legendre decomposition of the observed meridional flow have been reported. The result is often interpreted in terms of an overall variation in the flow amplitude during the activity cycle. Using a semi-empirical model based upon the observed distribution of magnetic flux on the solar surface, we show that themore » reported variations of the P{sup 1}{sub 2} term can be explained by the observed localized inflows into the active region belts. No variation of the overall meridional flow amplitude is required.« less

  20. Numerical Modeling of Unsteady Thermofluid Dynamics in Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok

    2003-01-01

    A finite volume based network analysis procedure has been applied to model unsteady flow without and with heat transfer. Liquid has been modeled as compressible fluid where the compressibility factor is computed from the equation of state for a real fluid. The modeling approach recognizes that the pressure oscillation is linked with the variation of the compressibility factor; therefore, the speed of sound does not explicitly appear in the governing equations. The numerical results of chilldown process also suggest that the flow and heat transfer are strongly coupled. This is evident by observing that the mass flow rate during 90-second chilldown process increases by factor of ten.

  1. Laboratory study of forced rotating shallow water turbulence

    NASA Astrophysics Data System (ADS)

    Espa, Stefania; Di Nitto, Gabriella; Cenedese, Antonio

    2011-12-01

    During the last three decades several authors have studied the appearance of multiple zonal jets in planetary atmospheres and in the Earths oceans. The appearance of zonal jets has been recovered in numerical simulations (Yoden & Yamada, 1993), laboratory experiments (Afanasyev & Wells, 2005; Espa et al., 2008, 2010) and in field measurements of the atmosphere of giant planets (Galperin et al., 2001). Recent studies have revealed the presence of zonation also in the Earths oceans, in fact zonal jets have been found in the outputs of Oceanic General Circulation Models-GCMs (Nakano & Hasumi, 2005) and from the analysis of satellite altimetry observations (Maximenko et al., 2005). In previous works (Espa et al., 2008, 2010) we have investigated the impact of the variation of the rotation rate and of the fluid depth on jets organization in decaying and forced regimes. In this work we show results from experiments performed in a bigger domain in which the fluid is forced continuously. The experimental set-up consists of a rotating tank (1m in diameter) where the initial distribution of vorticity has been generated via the Lorentz force in an electromagnetic cell. The latitudinal variation of the Coriolis parameter has been simulated by the parabolic profile assumed by the free surface of the rotating fluid. Flow measurements have been performed using an image analysis technique. Experiments have been performed changing the tank rotation rate and the fluid thickness. We have investigated the flow in terms of zonal and radial flow pattern, flow variability and jet scales.

  2. Dependence of hydrogen arcjet operation on electrode geometry

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Sankovic, John M.; Sarmiento, Charles J.; Hamley, John A.

    1992-01-01

    The dependence of 2kW hydrogen arcjet performance on cathode to anode electrode spacing was evaluated at specific impulses of 900 and 1000 s. Less than 2 absolute percent change in efficiency was measured for the spacings tested which did not repeat the 14 absolute percent variation reported in earlier work with similar electrode designs. A different nozzle configuration was used to quantify the variation in hydrogen arcjet performance over an extended range of electrode spacing. Electrode gap variation resulted in less than 3 absolute percent change in efficiency. These null results suggested that electrode spacing is decoupled from hydrogen arcjet ignition. The dependence of breakdown voltage on mass flow rate and electrode agreed with Paschen curves for hydrogen. Preliminary characterization of the dependence of hydrogen arcjet ignition on rates of pulse repetition and pulse voltage rise were also included for comparison with previous results obtained using simulated hydrazine.

  3. Dependence of hydrogen arcjet operation on electrode geometry

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Sankovic, John M.; Sarmiento, Charles J.; Hamley, John A.

    1992-01-01

    The dependence of 2 kW hydrogen arcjet performance on cathode to anode electrode spacing was evaluated at specific impulses of 900 and 1000 s. Less than 2 absolute percent change in efficiency was measured for the spacings tested which did not repeat the 14 absolute percent variation reported in earlier work with similar electrode designs. A different nozzle configuration was used to quantify the variation in hydrogen arcjet performance over an extended range of electrode spacing. Electrode gap variation resulted in less than 3 absolute percent change in efficiency. These null results suggested that electrode spacing is decoupled from hydrogen arcjet performance considerations over the ranges tested. Initial studies were conducted on hydrogen arcjet ignition. The dependence of breakdown voltage on mass flow rate and hydrogen arcjet ignition on rates of pulse repetition and pulse voltage rise were also included for comparison with previous results obtained using simulated hydrazine.

  4. Self-potential characteristics of the dormant period of Izu-Oshima volcano

    NASA Astrophysics Data System (ADS)

    Matsushima, Nobuo; Nishi, Yuji; Onizawa, Shin'ya; Takakura, Shinichi; Hase, Hideaki; Ishido, Tsuneo

    2017-12-01

    Continuous self-potential (SP) monitoring has been conducted at Izu-Oshima volcano to detect signals resulting from volcanic activity since the installation of an SP monitoring network in March 2006. Since the installation, annual variations of up to 100 mV have been recorded. If we exclude these annual variations, temporal variations in SP do not show notable changes. This is consistent with the volcano being in a state of quiescence during the measurement period. The annual variations have the different amplitudes and mean levels between stations. To investigate the causes of these annual variations, we carried out numerical simulations of SP generation associated with downward meteoric water flow through electrokinetic coupling in a 550 m thick unsaturated layer. The results show that the vertical electric potential gradient varies with changes in liquid-phase saturation in the unsaturated layer. These changes are caused by variations in the rate of meteoric water percolation. This, in turn, correlates with fluctuations in daily precipitation, thus explaining the annual SP variation recorded at the ground surface. Differences in the amplitude and mean level of SP variation are shown to be associated with different rock properties, especially permeability, porosity, and electrical conductivity. Our results indicate that observable SP changes will appear at stations near the summit if the distributions of liquid-phase saturation and/or pertinent parameters controlling the electrokinetic coupling in the thick unsaturated layer are modified the upward flow of volcanic gas.

  5. Detecting aseismic strain transients from seismicity data

    USGS Publications Warehouse

    Llenos, A.L.; McGuire, J.J.

    2011-01-01

    Aseismic deformation transients such as fluid flow, magma migration, and slow slip can trigger changes in seismicity rate. We present a method that can detect these seismicity rate variations and utilize these anomalies to constrain the underlying variations in stressing rate. Because ordinary aftershock sequences often obscure changes in the background seismicity caused by aseismic processes, we combine the stochastic Epidemic Type Aftershock Sequence model that describes aftershock sequences well and the physically based rate- and state-dependent friction seismicity model into a single seismicity rate model that models both aftershock activity and changes in background seismicity rate. We implement this model into a data assimilation algorithm that inverts seismicity catalogs to estimate space-time variations in stressing rate. We evaluate the method using a synthetic catalog, and then apply it to a catalog of M???1.5 events that occurred in the Salton Trough from 1990 to 2009. We validate our stressing rate estimates by comparing them to estimates from a geodetically derived slip model for a large creep event on the Obsidian Buttes fault. The results demonstrate that our approach can identify large aseismic deformation transients in a multidecade long earthquake catalog and roughly constrain the absolute magnitude of the stressing rate transients. Our method can therefore provide a way to detect aseismic transients in regions where geodetic resolution in space or time is poor. Copyright 2011 by the American Geophysical Union.

  6. Experimental study of the surface thermal signature of gravity currents: application to the assessment of lava flow effusion rate

    NASA Astrophysics Data System (ADS)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2011-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flows advance and its velocity. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the heat flux lost by the lava at its surface and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger power radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., Bull. Volc. 2007) is currently used to estimate lava flow rate from satellite surveys yielding the surface temperatures and area of the lava flow field. However, this approach is derived from a static thermal budget of the lava flow and does not explicitly model the time-evolution of the surface thermal signal. Here we propose laboratory experiments and theoretical studies of the cooling of a viscous axisymmetric gravity current fed at constant flux rate. We first consider the isoviscous case, for which the spreading is well-know. The experiments using silicon oil and the theoretical model both reveal the establishment of a steady surface thermal structure after a transient time. The steady state is a balance between surface cooling and heat advection in the flow. The radiated heat flux in the steady regime, a few days for a basaltic lava flow, depends mainly on the effusion rate rather than on the viscosity. In this regime, one thermal survey of the radiated power could provide a consistent estimate of the flow rate if the external cooling conditions (wind) are reasonably well constrained. We continue to investigate the relationship between the thermal radiated heat flux and the effusion rate by using in the experiments fluids with temperature-dependent viscosity (glucose syrup) or undergoing solidification while cooling (PEG wax). We observe a transient evolution of the radiated heat flux closely related to the variations of the flow area. The study of experiments with time-variable effusion rates finally gives first leads on the inertia of the thermal surface structure. This is to be related to the time-period over which the thermal proxy averages the actual effusion rate, hence to the acquisition frequency appropriate for a thermal monitoring of effusive volcanic eruptions.

  7. CFD research on runaway transient of pumped storage power station caused by pumping power failure

    NASA Astrophysics Data System (ADS)

    Zhang, L. G.; Zhou, D. Q.

    2013-12-01

    To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.

  8. Regional blood flow in sea turtles: implications for heat exchange in an aquatic ectotherm.

    PubMed

    Hochscheid, Sandra; Bentivegna, Flegra; Speakman, John R

    2002-01-01

    Despite substantial knowledge on thermoregulation in reptiles, the mechanisms involved in heat exchange of sea turtles have not been investigated in detail. We studied blood flow in the front flippers of two green turtles, Chelonia mydas, and four loggerhead turtles, Caretta caretta, using Doppler ultrasound to assess the importance of regional blood flow in temperature regulation. Mean blood flow velocity and heart rate were determined for the water temperature at which the turtles were acclimated (19.3 degrees-22.5 degrees C) and for several experimental water temperatures (17 degrees-32 degrees C) to which the turtles were exposed for a short time. Flipper circulation increased with increasing water temperature, whereas during cooling, flipper circulation was greatly reduced. Heart rate was also positively correlated with water temperature; however, there were large variations between individual heart rate responses. Body temperatures, which were additionally determined for the two green turtles and six loggerhead turtles, increased faster during heating than during cooling. Heating rates were positively correlated with the difference between acclimation and experimental temperature and negatively correlated with body mass. Our data suggest that by varying circulation of the front flippers, turtles are capable of either transporting heat quickly into the body or retaining heat inside the body, depending on the prevailing thermal demands.

  9. Effects of in-stream concrete structures on the pH level of water.

    DOT National Transportation Integrated Search

    1976-01-01

    The pH values above and below concrete structures in streams on nine active construction projects throughout the state were determined. It was concluded that for streams with flow rates of 0.3 to 111.25 cfs (0.01 to 3.2 cubic meter/see) the variation...

  10. Turbulence Model Predictions of Strongly Curved Flow in a U-Duct

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Gatski, Thomas B.; Morrison, Joseph H.

    2000-01-01

    The ability of three types of turbulence models to accurately predict the effects of curvature on the flow in a U-duct is studied. An explicit algebraic stress model performs slightly better than one- or two-equation linear eddy viscosity models, although it is necessary to fully account for the variation of the production-to-dissipation-rate ratio in the algebraic stress model formulation. In their original formulations, none of these turbulence models fully captures the suppressed turbulence near the convex wall, whereas a full Reynolds stress model does. Some of the underlying assumptions used in the development of algebraic stress models are investigated and compared with the computed flowfield from the full Reynolds stress model. Through this analysis, the assumption of Reynolds stress anisotropy equilibrium used in the algebraic stress model formulation is found to be incorrect in regions of strong curvature. By the accounting for the local variation of the principal axes of the strain rate tensor, the explicit algebraic stress model correctly predicts the suppressed turbulence in the outer part of the boundary layer near the convex wall.

  11. Characterization of the Hot Deformation Behavior of a Newly Developed Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Shi, Zhaoxia; Yan, Xiaofeng; Duan, Chunhua; Tang, Cunjiang; Pu, Enxiang

    2018-03-01

    To clarify the microstructural evolution and hot workability of GH4282 during hot forming processes, the hot deformation behavior of this superalloy was investigated by isothermal compression tests in the temperature interval of 950-1210 °C and the strain rate range of 0.01-10 s-1 with a true strain of 0.7. The results show that the flow stresses decrease with an increase in the deformation temperature and a decrease in the strain rate. The characteristic of dynamic recrystallization is revealed by the flow curves. The variation rule of the flow stress can be well described by the hyperbolic sine type equation, and the thermal deformation activation energy is determined to be 498.118 kJ/mol. The optimum hot working parameters are 1100-1180 °C and 0.01-0.1 s-1, under which the fine and uniform microstructure can be obtained.

  12. Interrelationship of mid-diastolic mitral valve motion, pulmonary venous flow, and transmitral flow.

    PubMed

    Keren, G; Meisner, J S; Sherez, J; Yellin, E L; Laniado, S

    1986-07-01

    This study offers a unifying mechanism of left ventricular filling dynamics to link the unexplained mid-diastolic motion of the mitral valve with an associated increase in transmitral flow, with the phasic character of pulmonary vein flow, and with changes in the atrioventricular pressure difference. M mode echograms of mitral valve motion and Doppler echocardiograms of mitral and pulmonary vein flow velocities were recorded in 12 healthy volunteers (heart rate = 60 +/- 9 beats/min). All echocardiograms showed an undulation in the mitral valve (L motion) at a relatively constant delay from the peak of the diastolic phase of pulmonary vein flow (K phase). In six subjects, the L motion was also associated with a distinct wave of mitral flow (L wave). Measured from the onset of the QRS complex, Q-K was 577 +/- 39 msec; Q-L was 703 +/- 42 msec, and K-L was 125 +/- 16 msec. Multiple measurements within each subject during respiratory variations in RR interval indicated exceptionally small differences in the temporal relationships (mean coefficient of variation 2%). Early rapid flow deceleration is caused by a reversal of the atrioventricular pressure gradient, and the L wave arises from the subsequent reestablishment of a positive gradient due to left atrial filling via the pulmonary veins. The mitral valve moves passively in response to the flowing blood and the associated pressure difference. This interpretation is confirmed by (1) a computational model, and (2) a retrospective analysis of data from patients with mitral stenosis and from conscious dogs instrumented to measure transmitral pressure-flow relationships.

  13. Spontaneous electric current flow during deformation of non-piezoelectric marble samples: an indicator of stress state?

    NASA Astrophysics Data System (ADS)

    Cartwright-Taylor, A. L.; Sammonds, P. R.; Vallianatos, F.

    2016-12-01

    We recorded spontaneous electric current flow in non-piezoelectric Carrara marble samples during triaxial deformation. Mechanical data, ultrasonic velocities and acoustic emissions were acquired simultaneously with electric current to constrain the relationship between electric current flow, differential stress and damage. Under strain-controlled loading, spontaneous electric current signals (nA) were generated and sustained under all conditions tested. In dry samples, a detectable electric current arises only during dilatancy and is correlated with the damage induced by microcracking. Signal variations with confining pressure correspond to microcrack suppression, while variations with strain rate are associated with time-dependent differences in deformation mechanism across the brittle to semi-brittle transition. In the brittle regime, the signal exhibits a precursory change as damage localises and the stress drop accelerates towards failure. This change is particularly distinct at dynamic strain rates. Similar changes are seen in the semi-brittle regime although the signal is more oscillatory in nature. Current flow in dry samples is proportional to stress within 90% of peak stress. In fluid-saturated samples proportionality holds from 40% peak stress, with a significant increase in the rate of current production from 90% peak stress associated with fluid flow during dilatancy. This direct relationship demonstrates that electric current could be used as a proxy for stress, indicating when the rock is reaching the limit of its strength. The experimental power law relationship between electric current and strain rate, which mirrors the power-law creep equation, supports this observation. High-frequency fluctuations of electric current are not normally distributed - they exhibit `heavy-tails'. We model these distributions with q-Gaussian statistics and evolution of the q-parameter during deformation reveals a two-stage precursory anomaly prior to sample failure, consistent with the acoustic emissions b-value and stress intensity evolution as modelled from fracture mechanics. Our findings support the idea that electric currents in the crust can be generated purely from solid state fracture processes and that these currents may reflect the stress state within the damaged rock.

  14. Quantification of Marangoni flows and film morphology during solid film formation by inkjet printing

    NASA Astrophysics Data System (ADS)

    Ishizuka, Hirotaka; Fukai, Jun

    2018-01-01

    We visualized experimentally the internal flow inside inkjet droplets of polystyrene-anisole solution during solid film formation on substrates at room temperature. The effects of contact angle and evaporation rate on the internal flow and film morphology were quantitatively investigated. The transport process during film formation was examined by measuring the relationship between internal flow and film morphology, which provided three remarkable findings. First, self-pinning and the strength of outward flow on the free surface under 2.3 Pa s determined film morphology. The solute distribution, corresponding to rim areas in ring-like films and a convex trough in dot-like films, had already developed at self-pinning. Second, the mass fraction at self-pinning close to the contact line converged to one, regardless of the film morphology. This implies that self-pinning is independent of parameters such as the contact angle and evaporation rate. Third, at room temperature, the solutal Marangoni numbers were 20-30 times larger than the thermal ones. Thus, the outward flow on the free surface caused by the solutal Marangoni effect dominates in droplets before self-pinning. The solutal Marangoni number at self-pinning and thickness variation at the center of the film displayed a good relationship for droplets with different contact angles and evaporation rates. This suggests that film morphology can be technically controlled by solutal Marangoni number at room temperature.

  15. Microgravity flame spread over thick solids in low velocity opposed flow

    NASA Astrophysics Data System (ADS)

    Wang, Shuangfeng; Zhu, Feng

    2016-07-01

    Motivated primarily by fire safety of spacecraft, a renewed interest in microgravity flame spread over solid materials has arisen. With few exceptions, however, research on microgravity flame spread has been focused on thermally thin fuels due to the constraint on available test time. In this study, two sets of experiments are conducted to examine the flame spread and extinction behavior over thick PMMA in simulated and actual microgravity environments. The low-gravity flame spread environment is produced by a narrow channel apparatus in normal gravity. Extinction limits using flow velocity and oxygen concentration as coordinates are presented, and flame spread rates are determined as a function of the velocity and oxygen concentration of the gas flow. The microgravity experiments are also performed with varying low-velocity flow and varying ambient oxygen concentration. The important observations include flame behavior and appearance as a function of oxygen concentration and flow velocity, temperature variation in gas and solid phases, and flame spread rate. A comparison between simulated and actual microgravity data is made, and general agreement is found. Based on the experimental observations, mechanisms for flame spread and extinction in low velocity opposed flows are discussed.

  16. An in vitro test bench reproducing coronary blood flow signals.

    PubMed

    Chodzyński, Kamil Jerzy; Boudjeltia, Karim Zouaoui; Lalmand, Jacques; Aminian, Adel; Vanhamme, Luc; de Sousa, Daniel Ribeiro; Gremmo, Simone; Bricteux, Laurent; Renotte, Christine; Courbebaisse, Guy; Coussement, Grégory

    2015-08-07

    It is a known fact that blood flow pattern and more specifically the pulsatile time variation of shear stress on the vascular wall play a key role in atherogenesis. The paper presents the conception, the building and the control of a new in vitro test bench that mimics the pulsatile flows behavior based on in vivo measurements. An in vitro cardiovascular simulator is alimented with in vivo constraints upstream and provided with further post-processing analysis downstream in order to mimic the pulsatile in vivo blood flow quantities. This real-time controlled system is designed to perform real pulsatile in vivo blood flow signals to study endothelial cells' behavior under near physiological environment. The system is based on an internal model controller and a proportional-integral controller that controls a linear motor with customized piston pump, two proportional-integral controllers that control the mean flow rate and temperature of the medium. This configuration enables to mimic any resulting blood flow rate patterns between 40 and 700 ml/min. In order to feed the system with reliable periodic flow quantities in vivo measurements were performed. Data from five patients (1 female, 4 males; ages 44-63) were filtered and post-processed using the Newtonian Womersley's solution. These resulting flow signals were compared with 2D axisymmetric, numerical simulation using a Carreau non-Newtonian model to validate the approximation of a Newtonian behavior. This in vitro test bench reproduces the measured flow rate time evolution and the complexity of in vivo hemodynamic signals within the accuracy of the relative error below 5%. This post-processing method is compatible with any real complex in vivo signal and demonstrates the heterogeneity of pulsatile patterns in coronary arteries among of different patients. The comparison between analytical and numerical solution demonstrate the fair quality of the Newtonian Womersley's approximation. Therefore, Womersley's solution was used to calculate input flow rate for the in vitro test bench.

  17. Fabrication and evaluation of a graphene oxide-based cantilever-type flow-meter for subsonic gas flow rate measurement

    NASA Astrophysics Data System (ADS)

    Hamdollahi, Hassan; Rahbar-Shahrouzi, Javad

    2018-05-01

    In this paper, a cantilever-type flow meter was fabricated to measure the rate of air flow in turbulent subsonic regimes such as purged gases. In the fabrication process, a piezoresistive material was coated on an interdigitated electric board as a substrate. The piezoresistive layer was a blend of latex as the polymeric matrix and graphene oxide as the sensing nanomaterial agent, which was reduced by solvothermal reduction method. The piezoresistive blend was dip-coated on a substrate with dotted pattern and was then reduced at 240 °C for 1 h in every coating step. When an air flow passed over the surface of the cantilever beam, the beam was bent in the downward direction, resulting in small variations in the resistance of the piezoresistive layer and a change in the bending angle of the cantilever which were measured simultaneously. The air flow rate was acquired via calibrating electrical resistance changes by Arduino and Wheatstone bridge circuit. The blending angle of the substrate caused by the interaction between the airflow and the cantilever and recorded by the camera and image processing was ultimately compared with the simulation results. The flow meter accuracy as a percentage of full scale (% FS) was calculated to be  ±5.8%, and mean deviation was equal to 2.1 (% FS) with the appropriate response time of 0.70 s at the air flow range of 100‑240 m s‑1. Highlights • A cantilever-type flow meter was fabricated to measure the high-speed air flow rate. • The sensitive piezoresistive material was composed of GO and latex. • The dip-coating method was used to deposit the piezoresistive layer on the fiberglass substrate. • The impact of effective parameters on the performance of the flow meter was investigated. • A simulation study was performed and the results were compared with the experimental data.

  18. The variation of magma discharge during basaltic eruptions

    NASA Technical Reports Server (NTRS)

    Wadge, G.

    1981-01-01

    The rate at which basaltic magma is discharged during many eruptions varies substantially. An individual eruption has an eruption rate, which is the volumetric rate of discharge averaged over the whole or a major part of an eruption, and an effusion rate, which is the volumetric flux rate at any given time. In many cases, the effusion rate soon reaches a maximum after a short period of waxing flow (partly because of magmatic expansion); it then falls more slowly in the later parts of the eruption. The release of elastic strain energy from stored magma and the subvolcanic reservoir during eruption can give a waning flow of this type an exponential form. A comparison of the eruption rates of eruptions of Mauna Loa, Kilauea and Etna shows that for each volcano there is a trend of decreasing effusion rate with increasing duration of eruption. It is noted that this relationship is not predicted by a simple elastic model of magma release. Two other processes are invoked to explain the eruptive histories of these volcanoes: modification of the eruptive conduits and the continued supply of magma from depth during eruption.

  19. Characterizing effects of hydropower plants on sub-daily flow regimes

    NASA Astrophysics Data System (ADS)

    Bejarano, María Dolores; Sordo-Ward, Álvaro; Alonso, Carlos; Nilsson, Christer

    2017-07-01

    A characterization of short-term changes in river flow is essential for understanding the ecological effects of hydropower plants, which operate by turning the turbines on or off to generate electricity following variations in the market demand (i.e., hydropeaking). The goal of our study was to develop an approach for characterizing the effects of hydropower plant operations on within-day flow regimes across multiple dams and rivers. For this aim we first defined ecologically meaningful metrics that provide a full representation of the flow regime at short time scales from free-flowing rivers and rivers exposed to hydropeaking. We then defined metrics that enable quantification of the deviation of the altered short-term flow regime variables from those of the unaltered state. The approach was successfully tested in two rivers in northern Sweden, one free-flowing and another regulated by cascades of hydropower plants, which were additionally classified based on their impact on short-term flows in sites of similar management. The largest differences between study sites corresponded to metrics describing sub-daily flow magnitudes such as amplitude (i.e., difference between the highest and the lowest hourly flows) and rates (i.e., rise and fall rates of hourly flows). They were closely followed by frequency-related metrics accounting for the numbers of within-day hourly flow patterns (i.e., rises, falls and periods of stability of hourly flows). In comparison, between-site differences for the duration-related metrics were smallest. In general, hydropeaking resulted in higher within-day flow amplitudes and rates and more but shorter periods of a similar hourly flow patterns per day. The impacted flow feature and the characteristics of the impact (i.e., intensity and whether the impact increases or decreases whatever is being described by the metric) varied with season. Our approach is useful for catchment management planning, defining environmental flow targets, prioritizing river restoration or dam reoperation efforts and contributing information for relicensing hydropower dams.

  20. Experimental study of hemodynamics in the Circle of Willis.

    PubMed

    Zhu, Guangyu; Yuan, Qi; Yang, Jian; Yeo, Joon

    2015-01-01

    The Circle of Willis (CoW) is an important collateral pathway of the cerebral blood flow. An experimental study of the cerebral blood flow (CBF) distribution in different anatomical variations may help to a better understanding of the collateral mechanism of the CoW. An in-vitro test rig was developed to simulate the physiological cerebral blood flow in the CoW. Ten anatomical variations were considered in this study, include a set of different degrees of stenosis in L-ICA and L-ICA occlusion coexist with common anatomical variations. Volume flow rates of efferent arteries and pressure signals at the end of communicating arteries of each case were recorded. Physiological pressure waveforms were applied as inlet boundary condition. In the development of L-ICA stenosis, the total CBF decreases with the increase of stenosis degree. The blood supply of ipsilateral middle cerebral artery (MCA) was affected most by the stenosis of L-ICA. Anterior communicating artery (ACoA) and ipsilateral posterior communicating artery (PCoA) function as important collateral pathways of cerebral collateral circulation when unilateral stenosis occurred. The blood supply of anterior cerebral circulation was compensated by the posterior cerebral circulation through ipsilateral PCoA when L-ICA stenosis degree is greater than 40% and the affected side was compensated immediately by the unaffected side through ACoA. Blood flow of the anterior circulation and the total CBF reached the minimum among all cases studied when L-ICA occlusion coexist with the absence of PCoA. The results demonstrated the flow distribution patterns of the CoW under anatomical variations and clarified the collateral mechanism of the CoW. The flow ACoA is the most sensitive indexes to the morphology change of ipsilateral ICA. The relative independence of the circulation in anterior and posterior sections of the CoW is not broken and the function of ipsilateral PCoA is not activated until a severe stenosis of unilateral ICA occurs. PCoA is the most important collateral pathway of the collateral circulation and the missing of PCoA has the highest risk of stroke when the ipsilateral ICA has severe stenosis. These findings may provide the basis for future therapeutic and diagnosis applications.

  1. Identification of Vibrotactile Patterns Encoding Obstacle Distance Information.

    PubMed

    Kim, Yeongmi; Harders, Matthias; Gassert, Roger

    2015-01-01

    Delivering distance information of nearby obstacles from sensors embedded in a white cane-in addition to the intrinsic mechanical feedback from the cane-can aid the visually impaired in ambulating independently. Haptics is a common modality for conveying such information to cane users, typically in the form of vibrotactile signals. In this context, we investigated the effect of tactile rendering methods, tactile feedback configurations and directions of tactile flow on the identification of obstacle distance. Three tactile rendering methods with temporal variation only, spatio-temporal variation and spatial/temporal/intensity variation were investigated for two vibration feedback configurations. Results showed a significant interaction between tactile rendering method and feedback configuration. Spatio-temporal variation generally resulted in high correct identification rates for both feedback configurations. In the case of the four-finger vibration, tactile rendering with spatial/temporal/intensity variation also resulted in high distance identification rate. Further, participants expressed their preference for the four-finger vibration over the single-finger vibration in a survey. Both preferred rendering methods with spatio-temporal variation and spatial/temporal/intensity variation for the four-finger vibration could convey obstacle distance information with low workload. Overall, the presented findings provide valuable insights and guidance for the design of haptic displays for electronic travel aids for the visually impaired.

  2. Magnus effects on spinning transonic missiles

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Rosenwasser, I.

    1983-01-01

    Magnus forces and moments were measured on a basic-finner model spinning in transonic flow. Spin was induced by canted fins or by full-span or semi-span, outboard and inboard roll controls. Magnus force and moment reversals were caused by Mach number, reduced spin rate, and angle of attack variations. Magnus center of pressure was found to be independent of the angle of attack but varied with the Mach number and model configuration or reduced spin rate.

  3. Free-Flight Investigation of Heat Transfer to an Unswept Cylinder Subjected to an Incident Shock and Flow Interference from an Upstream Body at Mach Numbers up to 5.50

    NASA Technical Reports Server (NTRS)

    Carter, Howard S.; Carr, Robert E.

    1961-01-01

    Heat-transfer rates have been measured in free flight along the stagnation line of an unswept cylinder mounted transversely on an axial cylinder so that the shock wave from the hemispherical nose of the axial cylinder intersected the bow shock of the unswept transverse cylinder. Data were obtained at Mach numbers from 2.53 to 5.50 and at Reynolds numbers based on the transverse cylinder diameter from 1.00 x 10(exp 6) to 1.87 x 10(exp 6). Shadowgraph pictures made in a wind tunnel showed that the flow field was influenced by boundary-layer separation on the axial cylinder and by end effects on the transverse cylinder as well as by the intersecting shocks. Under these conditions, the measured heat-transfer rates had inconsistent variations both in magnitude and distribution which precluded separating the effects of these disturbances. The general magnitude of the measured heating rates at Mach numbers up to 3 was from 0.1 to 0.5 of the theoretical laminar heating rates along the stagnation line for an infinite unswept cylinder in undisturbed flow. At Mach numbers above 4 the measured heating rates were from 1.5 to 2 times the theoretical rates.

  4. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    USGS Publications Warehouse

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following dam releases. Direct coupling may have occurred between streamflow and stream temperature for losing stream reaches, such that reduced streamflows facilitated increased afternoon stream temperatures and increased afternoon stream temperatures induced increased streambed losses, leading to even greater increases in both stream temperature and streamflow losses.

  5. Computations in turbulent flows and off-design performance predictions for airframe-integrated scramjets

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Spiegler, E.

    1977-01-01

    The research activity focused on two main tasks: (1) the further development of the SCRAM program and, in particular, the addition of a procedure for modeling the mechanism of the internal adjustment process of the flow, in response to the imposed thermal load across the combustor and (2) the development of a numerical code for the computation of the variation of concentrations throughout a turbulent field, where finite-rate reactions occur. The code also includes an estimation of the effect of the phenomenon called 'unmixedness'.

  6. Parametric investigation of enclosed keeper discharge characteristics

    NASA Technical Reports Server (NTRS)

    Sheheen, T. W.; Finke, R. C.

    1973-01-01

    Volt-ampere discharge characteristics of an enclosed keeper hollow cathode discharge were measured as a function of the mercury flow rate and external circuit impedance. Discharge currents were varied from 0 to 1 ampere and voltages were 7 to 39 volts. Batteries and a vacuum tube control circuit were used to obtain characteristics curves that were independent of power supply impedance. Variation of the neutral flow results in changes in the discharge which interact with the impedance of the external circuit, and under some conditions, give rise to multiple operating points.

  7. Flow Field Analysis of Fish Farm and Planting Area in Floodplain during Flood

    NASA Astrophysics Data System (ADS)

    Wu, M.; Tan, H. N.; Lo, W. C.; Tsai, C. T.

    2017-12-01

    Fish farms constructing and crops planting is common in floodplain in Taiwan. The physiographic soil erosion-deposition (PSED) model was applied to simulate the sediment yield, the runoff, and sediment transport rate of the river watershed corresponding to one-day rainstorms of the return periods of 25, 50, and 100 year. The variation of flow field in the river sections could be simulated by utilizing the alluvial river-movable bed two dimensional (ARMB-2D) model. The results reveal that the tendency of river discharge, sediment deposition and erosion obtained from these two models is agreeable by calibration and verification. The water flow affected by fish farms and planting areas in floodplain during flood was analyzed. Lastly, based on the simulation results obtained from the PESD and ARMB-2D models for one-day rainstorms of the return periods of 25, 50, and 100 year, the illegal fish farms and planting area with severe variations of river flow and affected he capability for flood conveyance will be referred to as the demolishing-to-be areas. We could also suggest the management strategy of application for fish farms constructing and crops planting in river areas by incorporating the ability of our model to provide information of river flow to enhance the flood conveyance.

  8. Benchmarking variable-density flow in saturated and unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Guevara Morel, Carlos Roberto; Cremer, Clemens; Graf, Thomas

    2015-04-01

    In natural environments, fluid density and viscosity can be affected by spatial and temporal variations of solute concentration and/or temperature. These variations can occur, for example, due to salt water intrusion in coastal aquifers, leachate infiltration from waste disposal sites and upconing of saline water from deep aquifers. As a consequence, potentially unstable situations may exist in which a dense fluid overlies a less dense fluid. This situation can produce instabilities that manifest as dense plume fingers that move vertically downwards counterbalanced by vertical upwards flow of the less dense fluid. Resulting free convection increases solute transport rates over large distances and times relative to constant-density flow. Therefore, the understanding of free convection is relevant for the protection of freshwater aquifer systems. The results from a laboratory experiment of saturated and unsaturated variable-density flow and solute transport (Simmons et al., Transp. Porous Medium, 2002) are used as the physical basis to define a mathematical benchmark. The HydroGeoSphere code coupled with PEST are used to estimate the optimal parameter set capable of reproducing the physical model. A grid convergency analysis (in space and time) is also undertaken in order to obtain the adequate spatial and temporal discretizations. The new mathematical benchmark is useful for model comparison and testing of variable-density variably saturated flow in porous media.

  9. Temperature, Velocity, and Mean Turbulence Structure in Stongly-Heated Internal Gas Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEligot, Donald Marinus; Mikielewicz, D. P.; Shehata, A. M.

    2002-10-01

    The main objective of the present study is to examine whether "simple" turbulence models (i.e., models requiring two partial differential equations or less for turbulent transport) are suitable for use under conditions of forced flow of gas at low Reynolds numbers in tubes with intense heating, leading to large variations of fluid properties and considerable modification of turbulence. Eleven representative models are considered. The ability of such models to handle such flows was assessed by means of computational simulations of the carefully designed experiments of Shehata and McEligot (IJHMT 41 (1998) 4297) at heating rates of q+in˜0.0018, 0.0035 and 0.0045,more » yielding flows ranging from essentially turbulent to laminarized. The resulting comparisons of computational results with experiments showed that the model by Launder and Sharma (Lett. Heat Transfer 1 (1974) 131) performed best in predicting axial wall temperature profiles. Overall, agreement between the measured velocity and temperature distributions and those calculated using the Launder–Sharma model is good, which gives confidence in the values forecast for the turbulence quantities produced. These have been used to assist in arriving at a better understanding of the influences of intense heating, and hence strong variation of fluid properties, on turbulent flow in tubes.« less

  10. Application of double-layered skin phantoms for optical flow imaging during laser tattoo treatments

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-il; Song, Woosub; Kim, Hyejin; Kang, Hyun Wook

    2016-05-01

    The feasible application of double-layered skin phantoms was evaluated to identify artificial blood flow with a Doppler optical coherence tomography (DOCT) system for laser tattoo treatments. Polydimethylsiloxane (PDMS) was used to fabricate the artificial phantoms with flow channels embedded. A double-integrating sphere system with an inverse adding-doubling method quantified both the absorption and the reduced scattering coefficients for epidermis and dermis phantoms. Both OCT and caliper measurements confirmed the double-layered phantom structure (epidermis = 136 ± 17 µm vs. dermis = 3.0 ± 0.1 mm). The DOCT method demonstrated that high flow rates were associated with high image contrast, visualizing the position and the shape of the flow channel. Application of the channel-embedded skin phantoms in conjunction with DOCT can be a reliable technique to assess dynamic variations in the blood flow during and after laser tattoo treatments.

  11. Modeling Food Delivery Dynamics For Juvenile Salmonids Under Variable Flow Regimes

    NASA Astrophysics Data System (ADS)

    Harrison, L.; Utz, R.; Anderson, K.; Nisbet, R.

    2010-12-01

    Traditional approaches for assessing instream flow needs for salmonids have typically focused on the importance of physical habitat in determining fish habitat selection. This somewhat simplistic approach does not account for differences in food delivery rates to salmonids that arise due to spatial variability in river morphology, hydraulics and temporal variations in the flow regime. Explicitly linking how changes in the flow regime influences food delivery dynamics is an important step in advancing process-based bioenergetic models that seek to predict growth rates of salmonids across various life-stages. Here we investigate how food delivery rates for juvenile salmonids vary both spatially and with flow magnitude in a meandering reach of the Merced River, CA. We utilize a two-dimensional (2D) hydrodynamic model and discrete particle tracking algorithm to simulate invertebrate drift transport rates at baseflow and a near-bankfull discharge. Modeling results indicate that at baseflow, the maximum drift density occurs in the channel thalweg, while drift densities decrease towards the channel margins due to the process of organisms settling out of the drift. During high-flow events, typical of spring dam-releases, the invertebrate drift transport pathway follows a similar trajectory along the high velocity core and the drift concentrations are greatest in the channel centerline, though the zone of invertebrate transport occupies a greater fraction of the channel width. Based on invertebrate supply rates alone, feeding juvenile salmonids would be expected to be distributed down the channel centerline where the maximum predicted food delivery rates are located in this reach. However, flow velocities in these channel sections are beyond maximum sustainable swimming speeds for most juvenile salmonids. Our preliminary findings suggest that a lack of low velocity refuge may prevent juvenile salmonids from deriving energy from the areas with maximum drift density in this reach. Future efforts will focus on integration of food delivery and bioenergetic models to account for conflicting demands of maximizing food intake while minimizing the energetic costs of swimming.

  12. Spiromax, a New Dry Powder Inhaler: Dose Consistency under Simulated Real-World Conditions

    PubMed Central

    Canonica, Giorgio Walter; Arp, Jan; Keegstra, Johan René

    2015-01-01

    Abstract Background: Spiromax® is a novel dry powder inhaler for patients with asthma or chronic obstructive pulmonary disease (COPD). The studies presented here provide further data on attributes (in vitro dosing consistency with budesonide–formoterol (DuoResp) Spiromax; flow rates through empty versions of the Spiromax and Turbuhaler inhaler) of importance to patients with asthma or COPD. Methods: Dose-delivery studies were performed using low-, middle-, and high-strength DuoResp Spiromax. Dose consistency was assessed over inhaler life. Total emitted doses (TEDs) were measured at various flow rates, after exposure to high and low temperature or humidity, at different inhaler orientations, and after dropping the inhaler. The criterion for evaluating dose uniformity was whether mean TEDs were within the product specification limits. In separate studies, flow rates were measured after training, using the patient information leaflets, and again after enhanced training as part of a randomized, open-label, cross-over study. Results: Mean values for both budesonide and formoterol were within 85%–115% of the label claim for each strength of DuoResp Spiromax for initial dose uniformity and for the other investigated conditions (temperature, humidity, orientation, dropping, knocking), with the exception of approximately an 80% increase in first dose after dropping the inhaler (subsequent doses not affected). In the flow rate patient study, two patients' inhalations with Spiromax and six with Turbuhaler were <30 L/min. The majority of asthma patients [91% (Spiromax) versus 82% (Turbuhaler)] achieved the preferred flow rate of >60 L/min. Conclusions: DuoResp Spiromax consistently meets dose uniformity criteria, under controlled laboratory conditions and with variations intended to mimic real-world use. Following enhanced training, all patients in the flow study were able to achieve the minimal inspiratory flow rate of >30 L/min, which is required for effective treatment. PMID:26352860

  13. Improving H-Q rating curves in temprorary streams by using Acoustic Doppler Current meters

    NASA Astrophysics Data System (ADS)

    Marchand, P.; Salles, C.; Rodier, C.; Hernandez, F.; Gayrard, E.; Tournoud, M.-G.

    2012-04-01

    Intermittent rivers pose different challenges to stream rating due to high spatial and temporal gradients. Long dry periods, cut by short duration flush flood events explain the difficulty to obtain reliable discharge data, for low flows as well as for floods: problems occur with standard gauging, zero flow period, etc. Our study aims to test the use of an acoustic Doppler currentmeter (ADC) for improving stream rating curves in small catchments subject to large variations of discharge, solid transport and high eutrophication levels. The study is conducted at the outlet of the river Vène, a small coastal river (67 km2) located close to the city of Montpellier (France). The low flow period lasts for more than 6 month; during this period the river flow is sustained by effluents from urban sewage systems, which allows development of algae and macrophytes in the riverbed. The ADC device (Sontek ®Argonaut SW) is a pulsed Doppler current profiling system designed for measuring water velocity profiles and levels that are used to compute volumetric flow rates. It is designed for shallow waters (less than 4 meter depth). Its main advantages are its low cost and high accuracy (±1% of the measured velocity or ±0.05 m/sec, as reported by the manufacturer). The study will evaluate the improvement in rating curves in an intermittent flow context and the effect of differences in sensitivity between low and high water level, by comparing mean flow velocity obtained by ADC to direct discharges measurements. The study will also report long-term use of ADC device, by considering effects of biofilms, algae and macrophytes, as well as solid transport on the accuracy of the measurements. In conclusion, we show the possibility to improve stream rating and continuous data collection of an intermittent river by using a ADC with some precautions.

  14. Hydraulic visibility and effective cross sections based on hydrodynamical modeling of flow lines gained by satellite altimetry

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Garambois, P. A.; Calmant, S.; Roux, H.; Paris, A.; Monnier, J.; Santos da Silva, J.

    2015-12-01

    Hydrodynamic laws predict that irregularities in a river bed geometry produce spatial and temporal variations in the water level, hence in its slope. Conversely, observation of these changes is a goal of the SWOT mission with the determination of the discharge as a final objective. In this study, we analyse the relationship between river bed undulations and water surface for an ungauged reach of the Xingu river, a first order tributary of the Amazon river. It is crosscut more than 10 times by a single ENVISAT track over a hundred of km. We have determined time series of water levelsat each of these crossings, called virtual stations (VS), hence slopes of the flow line. Using the discharge series computed by Paiva et al. (2013) between 1998 and 2009, Paris et al. (submitted) determined at each VS a rating curve relating these simulated discharge with the ENVISAT height series. One parameter of these rating curves is the zero-flow depth Z 0 . We show that it is possible to explain the spatial and temporal variations of the water surface slope in terms of hydrodynamical response of the longitudinal changes of the river bed geometry given by the successive values of Z 0 . Our experiment is based on an effective, single thread representation of a braided river, realistic values for the Manning coefficient and river widths picked up on JERS images. This study confirms that simulated flow lines are consistent with water surface elevations (WSE) and slopes gained by satellite altimetry. Hydrodynamical signatures are more visible where the river bed geometry varies significantly, and for reaches with a strong downstream control. Therefore, this study suggests that the longitudinal variations of the slope might be an interesting criteria for the question of river segmentation into elementary reaches for the SWOT mission which will provide continuous measurements of the water surface elevation, the slope and the reach width.

  15. Nucleation of protein crystals under the influence of solution shear flow.

    PubMed

    Penkova, Anita; Pan, Weichun; Hodjaoglu, Feyzim; Vekilov, Peter G

    2006-09-01

    Several recent theories and simulations have predicted that shear flow could enhance, or, conversely, suppress the nucleation of crystals from solution. Such modulations would offer a pathway for nucleation control and provide a novel explanation for numerous mysteries in nucleation research. For experimental tests of the effects of shear flow on protein crystal nucleation, we found that if a protein solution droplet of approximately 5 microL (2-3 mm diameter at base) is held on a hydrophobic substrate in an enclosed environment and in a quasi-uniform constant electric field of 2 to 6 kV cm(-1), a rotational flow with a maximum rate at the droplet top of approximately 10 microm s(-1) is induced. The shear rate varies from 10(-3) to 10(-1) s(-1). The likely mechanism of the rotational flow involves adsorption of the protein and amphiphylic buffer molecules on the air-water interface and their redistribution in the electric field, leading to nonuniform surface tension of the droplet and surface tension-driven flow. Observations of the number of nucleated crystals in 24- and 72-h experiments with the proteins ferritin, apoferritin, and lysozyme revealed that the crystals are typically nucleated at a certain radius of the droplet, that is, at a preferred shear rate. Variations of the rotational flow velocity resulted in suppression or enhancement of the total number of nucleated crystals of ferritin and apoferritin, while all solution flow rates were found to enhance lysozyme crystal nucleation. These observations show that shear flow may strongly affect nucleation, and that for some systems, an optimal flow velocity, leading to fastest nucleation, exists. Comparison with the predictions of theories and simulations suggest that the formation of ordered nuclei in a "normal" protein solution cannot be affected by such low shear rates. We conclude that the flow acts by helping or suppressing the formation of ordered nuclei within mesoscopic metastable dense liquid clusters. Such clusters were recently shown to exist in protein solutions and to constitute the first step in the nucleation mechanism of many protein and nonproteinsystems.

  16. Influence of Hydrological Flow Paths on Rates and Forms of Nitrogen Losses from Mediterranean Watersheds

    NASA Astrophysics Data System (ADS)

    Lohse, K. A.; Sanderman, J.; Amundson, R. G.

    2005-12-01

    Patterns of precipitation and runoff in California are changing and likely to influence the structure and functioning of watersheds. Studies have demonstrated that hydrologic flushing during seasonal transitions in Mediterranean ecosystems can exert a strong control on nitrogen (N) export, yet few studies have examined the influence of different hydrological flow paths on rates and forms of nitrogen (N) losses. Here we illuminate the influence of variations in precipitation and hydrological pathways on the rate and form of N export along a toposequence of a well-characterized Mediterranean catchment in northern California. As a part of a larger study examining particulate and dissolved carbon loss, we analyzed seasonal patterns of dissolved organic nitrogen (DON), nitrate and ammonium concentrations in rainfall, throughfall, matrix and preferential flow, and stream samples over the course of one water year. We also analyzed seasonal soil N dynamics along this toposequence. During the transition to the winter rain season, but prior to any soil water displacement to the stream, DON and nitrate moved through near-surface soils as preferential flow. Once hillslope soils became saturated, saturated subsurface flow flushed nitrate from the hollow resulting in high stream nitrate/DON concentrations. Between storms, stream nitrate/DON concentrations were lower and appeared to reflect deep subsurface water flow chemistry. During the transition to the wet season, rates of soil nitrate production were high in the hollow relative to the hillslope soils. In the spring, these rates systematically declined as soil moisture decreased. Results from our study suggest seasonal fluctuations in soil moisture control soil N cycling and seasonal changes in the hydrological connection between hillslope soils and streams control the seasonal production and export of hydrologic N.

  17. Variational analysis of drifter positions and model outputs for the reconstruction of surface currents in the central Adriatic during fall 2002

    USGS Publications Warehouse

    Taillandier, V.; Griffa, A.; Poulain, P.-M.; Signell, R.; Chiggiato, J.; Carniel, S.

    2008-01-01

    In this paper we present an application of a variational method for the reconstruction of the velocity field in a coastal flow in the central Adriatic Sea, using in situ data from surface drifters and outputs from the ROMS circulation model. The variational approach, previously developed and tested for mesoscale open ocean flows, has been improved and adapted to account for inhomogeneities on boundary current dynamics over complex bathymetry and coastline and for weak Lagrangian persistence in coastal flows. The velocity reconstruction is performed using nine drifter trajectories over 45 d, and a hierarchy of indirect tests is introduced to evaluate the results as the real ocean state is not known. For internal consistency and impact of the analysis, three diagnostics characterizing the particle prediction and transport, in terms of residence times in various zones and export rates from the boundary current toward the interior, show that the reconstruction is quite effective. A qualitative comparison with sea color data from the MODIS satellite images shows that the reconstruction significantly improves the description of the boundary current with respect to the ROMS model first guess, capturing its main features and its exchanges with the interior when sampled by the drifters. Copyright 2008 by the American Geophysical Union.

  18. Microfluidic oscillators with widely tunable periods

    PubMed Central

    Kim, Sung-Jin; Yokokawa, Ryuji; Takayama, Shuichi

    2013-01-01

    We present experiments and theory of a constant flow-driven microfluidic oscillator with widely tunable oscillation periods. This oscillator converts two constant input-flows from a syringe pump into an alternating, periodic output-flow with oscillation periods that can be adjusted to between 0.3 s to 4.1 h by tuning an external membrane capacitor. This capacitor allows multiple adjustable periods at a given input flow-rate, thus providing great flexibility in device operation. Also, we show that a sufficiently large external capacitance, relative to the internal capacitance of the microfluidic valve itself, is a critical requirement for oscillation. These widely tunable microfluidic oscillators are envisioned to be broadly useful for the study of biological rhythms, as on-chip timing sources for microfluidic logic circuits, and other applications that require variation in timed flow switching. PMID:23429765

  19. The influence of broiler activity, growth rate, and litter on carbon dioxide balances for the determination of ventilation flow rates in broiler production.

    PubMed

    Calvet, S; Estellés, F; Cambra-López, M; Torres, A G; Van den Weghe, H F A

    2011-11-01

    Carbon dioxide balances are useful in determining ventilation rates in livestock buildings. These balances need an accurate estimation of the CO(2) produced by animals and their litter to determine the ventilation flows. To estimate the daily variation in ventilation flow, it is necessary to precisely know the daily variation pattern of CO(2) production, which mainly depends on animal activity. The objective of this study was to explore the applicability of CO(2) balances for determining ventilation flows in broiler buildings. More specifically, this work aimed to quantify the amount of CO(2) produced by the litter, as well as the amount of CO(2) produced by the broilers, as a function of productive parameters, and to analyze the influence of broiler activity on CO(2) emissions. Gas concentrations and ventilation flows were simultaneously measured in 3 trials, with 1 under experimental conditions and the other 2 in a commercial broiler farm. In the experimental assay, broiler activity was also determined. At the end of the experimental trial, on the day after the removal of the broilers, the litter accounted for 20% of the total CO(2) produced, and the broilers produced 3.71 L/h of CO(2) per kg of metabolic weight. On the commercial farm, CO(2) production was the same for the 2 cycles (2.60 L/h per kg of metabolic weight, P > 0.05). However, substantial differences were found between CO(2) and broiler activity patterns after changes in light status. A regression model was used to explain these differences (R(2) = 0.52). Carbon dioxide increased with bird activity, being on average 3.02 L/h per kg of metabolic weight for inactive birds and 4.73 L/h per kg of metabolic weight when bird activity was highest. Overall, CO(2) balances are robust tools for determining the daily average ventilation flows in broiler farms. These balances could also be applied at more frequent intervals, but in this case, particular care is necessary after light status changes because of discrepancy between animal activity and CO(2) production.

  20. Flow, Sediment Supply, and Channel Width Controls on Gravel Bedform Dynamics

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.; Morgan, J. A.

    2017-12-01

    Heterogeneous, coarse-grained riverbeds often self-organize into migrating bedforms such as gravel dunes or bedload sheets. It has recently been suggested that sediment supply and the relative mobility of the bed surface sediment affects the type of bedforms that may be present in gravel-bed rivers; however, our understanding of gravel bedform dynamics remains well behind that of bedforms in sandy channels. Here, we present results from flume experiments in which we investigate how the formation and dynamics of gravel bedforms is affected by changes in discharge, sediment supply, and channel geometry. Experiments were conducted in a 1.1-m wide, 18-m long, sediment-feed flume. The initial bed material and the sediment feed mixture was composed of a sediment mixture ranging in size from 0.5-4 mm, with a median value of 3.6 mm. We used two channel geometries (a straight channel and a channel with sinusoidal width variations) and conducted three experimental runs for each geometry: 1) equilibrium sediment supply and steady flow, 2) equilibrium sediment supply and repeated hydrographs, and 3) doubled sediment supply and repeated hydrographs. During the experiments, low-amplitude, migrating bedforms developed and their dynamics were tracked both visually and via collection of repeated structure-from-motion topographic datasets. In the constant-width geometry, bedform amplitudes and migration rates were relatively constant under steady flow, but when subjected to repeated hydrographs the average bedform celerity decreased by about 50% and the amplitude of the bedforms increased and decreased with the changing flow rate. At twice the equilibrium sediment supply, the bedforms organized into an alternating pattern. This pattern was most pronounced at the lower flow rates, and became less stable at the higher discharges of the repeat hydrographs. Preliminary results suggest bedform celerity in the variable width geometry under steady flow and equilibrium sediment supply was half the celerity of the bedforms for the same conditions in the straight-walled geometry. These experiments suggest that variations in discharge, sediment supply, and channel geometry play an important role in the formation and dynamics of bedforms in gravel-bed rivers.

  1. Vessel calibre and flow splitting relationships at the internal carotid artery terminal bifurcation.

    PubMed

    Chnafa, C; Bouillot, P; Brina, O; Delattre, B M A; Vargas, M I; Lovblad, K O; Pereira, V M; Steinman, D A

    2017-11-01

    Vessel lumen calibres and flow rates are thought to be related by mathematical power laws, reflecting the optimization of cardiac versus metabolic work. While these laws have been confirmed indirectly via measurement of branch calibres, there is little data confirming power law relationships of flow distribution to branch calibres at individual bifurcations. Flow rates and diameters of parent and daughter vessels of the internal carotid artery terminal bifurcation were determined, via robust and automated methods, from 4D phase-contrast magnetic resonance imaging and 3D rotational angiography of 31 patients. Junction exponents were 2.06  ±  0.44 for relating parent to daughter branch diameters (geometrical exponent), and 2.45  ±  0.75 for relating daughter branch diameters to their flow division (flow split exponent). These exponents were not significantly different, but showed large inter- and intra-individual variations, and with confidence intervals excluding the theoretical optimum of 3. Power law fits of flow split versus diameter ratio and pooled flow rates versus diameters showed exponents of 2.17 and 1.96, respectively. A significant negative correlation was found between age and the geometrical exponent (r  =  -0.55, p  =  0.003) but not the flow split exponent. We also found a dependence of our results on how lumen diameter is measured, possibly explaining some of the variability in the literature. Our study confirms that, on average, division of flow to the middle and anterior cerebral arteries is related to these vessels' relative calibres via a power law, but it is closer to a square law than a cube law as commonly assumed.

  2. GUI for Computational Simulation of a Propellant Mixer

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Richter, Hanz; Barbieri, Enrique; Granger, Jamie

    2005-01-01

    Control Panel is a computer program that generates a graphical user interface (GUI) for computational simulation of a rocket-test-stand propellant mixer in which gaseous hydrogen (GH2) is injected into flowing liquid hydrogen (LH2) to obtain a combined flow having desired thermodynamic properties. The GUI is used in conjunction with software that models the mixer as a system having three inputs (the positions of the GH2 and LH2 inlet valves and an outlet valve) and three outputs (the pressure inside the mixer and the outlet flow temperature and flow rate). The user can specify valve characteristics and thermodynamic properties of the input fluids via userfriendly dialog boxes. The user can enter temporally varying input values or temporally varying desired output values. The GUI provides (1) a set-point calculator function for determining fixed valve positions that yield desired output values and (2) simulation functions that predict the response of the mixer to variations in the properties of the LH2 and GH2 and manual- or feedback-control variations in valve positions. The GUI enables scheduling of a sequence of operations that includes switching from manual to feedback control when a certain event occurs.

  3. Variation of velocity profile according to blood viscosity in a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Yeom, Eunseop; Kang, Yang Jun; Lee, Sang-Joon

    2014-11-01

    The shear-thinning effect of blood flows is known to change blood viscosity. Since blood viscosity and motion of red blood cells (RBCs) are closely related, hemorheological variations have a strong influence on hemodynamic characteristics. Therefore, understanding on the relationship between the hemorheological and hemodynamic properties is importance for getting more detailed information on blood circulation in microvessels. In this study, the blood viscosity and velocity profiles in a microfluidic channel were systematically investigated. Rat blood was delivered in the microfluidic device which can measure blood viscosity by monitoring the flow-switching phenomenon. Velocity profiles of blood flows in the microchannel were measured by using a micro-particle image velocimetry (PIV) technique. Shape of velocity profiles measured at different flow rates was quantified by using a curve-fitting equation. It was observed that the shape of velocity profiles is highly correlated with blood viscosity. The study on the relation between blood viscosity and velocity profile would be helpful to understand the roles of hemorheological and hemodynamic properties in cardiovascular diseases. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. 2008-0061991).

  4. Local evolution of pyrethroid resistance offsets gene flow among Aedes aegypti collections in Yucatan State, Mexico.

    PubMed

    Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C

    2015-01-01

    The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1-4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. © The American Society of Tropical Medicine and Hygiene.

  5. An automated cell analysis sensing system based on a microfabricated rheoscope for the study of red blood cells physiology.

    PubMed

    Bransky, Avishay; Korin, Natanel; Nemirovski, Yael; Dinnar, Uri

    2006-08-15

    An automated rheoscope has been developed, utilizing a microfabricated glass flow cell, high speed camera and advanced image-processing software. RBCs suspended in a high viscosity medium were filmed flowing through a microchannel. Under these conditions, RBCs exhibit different orientations and deformations according to their location in the velocity profile. The rheoscope system produces valuable data such as velocity profile of RBCs, spatial distribution within a microchannel and deformation index (DI) curves. The variation of DI across the channel height, due to change in shear stress, was measured carrying implications for diffractometry methods. These curves of DI were taken at a constant flow rate and cover most of the relevant shear stress spectrum. This is an improvement of the existing techniques for deformability measurements and may serve as a diagnostic tool for certain blood disorders. The DI curves were compared to measurements of the flowing RBCs velocity profile. In addition, we found that RBCs flowing in a microchannel are mostly gathered in the center of the flow and maintain a characteristic spatial distribution. The spatial distribution in this region changes slightly with increasing flow rate. Hence, the system described, provides means for examining the behavior of individual RBCs, and may serve as a microfabricated diagnostic device for deformability measurement.

  6. Dusty Plasma Experimental (DPEx) device for complex plasma experiments with flow

    NASA Astrophysics Data System (ADS)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2015-11-01

    A versatile table-top dusty plasma experimental device to study flow induced excitations of linear and nonlinear waves/structures in a complex plasma is presented. In this Π-shaped apparatus, a DC glow discharge plasma is produced between a disc shaped anode and a grounded long cathode tray by applying a high voltage DC in the background of a neutral gas (argon) and subsequently a dusty plasma is created by introducing micron sized dust particles that get charged and levitated in the sheath region. A flow of the dust particles is induced in a controlled manner by adjusting the pumping speed and the gas flow rate into the device. A full characterisation of the plasma, using Langmuir and emissive probe data, and that of the dusty plasma using particle tracking data with the help of an idl based (super) Particle Identification and Tracking (sPIT) code is reported. Experimental results on the variation of the dust flow velocity as a function of the neutral pressure and the gas flow rate are given. The neutral drag force acting on the particles and the Epstein coefficient are estimated from the initial acceleration of the particles. The potential experimental capabilities of the device for conducting fundamental studies of flow induced instabilities are discussed.

  7. Flow behaviour, suspended sediment transport and transmission losses in a small (sub-bank-full) flow event in an Australian desert stream

    NASA Astrophysics Data System (ADS)

    Dunkerley, David; Brown, Kate

    1999-08-01

    The behaviour of a discrete sub-bank-full flow event in a small desert stream in western NSW, Australia, is analysed from direct observation and sediment sampling during the flow event and from later channel surveys. The flow event, the result of an isolated afternoon thunderstorm, had a peak discharge of 9 m3/s at an upstream station. Transmission loss totally consumed the flow over the following 7·6 km. Suspended sediment concentration was highest at the flow front (not the discharge peak) and declined linearly with the log of time since passage of the flow front, regardless of discharge variation. The transmission loss responsible for the waning and eventual cessation of flow occurred at a mean rate of 13.2% per km. This is quite rapid, and is more than twice the corresponding figure for bank-full flows estimated by Dunkerley (1992) on the same stream system. It is proposed that transmission losses in ephemeral streams of the kind studied may be minimized in flows near bank-full stage, and be higher in both sub-bank-full and overbank flows. Factors contributing to enhanced flow loss in the sub-bank-full flow studied included abstractions of flow to pools, scour holes and other low points along the channel, and overflow abstractions into channel filaments that did not rejoin the main flow. On the other hand, losses were curtailed by the shallow depth of banks wetted and by extensive mud drapes that were set down over sand bars and other porous channel materials during the flow. Thus, in contrast with the relatively regular pattern of transmission loss inferred from large floods, losses from low flows exhibit marked spatial variability and depend to a considerable extent on streamwise variations in channel geometry, in addition to the depth and porosity of channel perimeter sediments.

  8. Morphodynamic Modeling of the Lower Yellow River, China: Flux (Equilibrium) Form or Entrainment (Nonequilibrium) Form of Sediment Mass Conservation?

    NASA Astrophysics Data System (ADS)

    An, C.; Parker, G.; Ma, H.; Naito, K.; Moodie, A. J.; Fu, X.

    2017-12-01

    Models of river morphodynamics consist of three elements: (1) a treatment of flow hydraulics, (2) a formulation relating some aspect of sediment transport to flow hydraulics, and (3) a description of sediment conservation. In the case of unidirectional river flow, the Exner equation of sediment conservation is commonly described in terms of a flux-based formulation, in which bed elevation variation is related to the streamwise gradient of sediment transport rate. An alternate formulation of the Exner equation, however, is the entrainment-based formulation in which bed elevation variation is related to the difference between the entrainment rate of bed sediment into suspension and the deposition rate of suspended sediment onto the bed. In the flux-based formulation, sediment transport is regarded to be in a local equilibrium state (i.e., sediment transport rate locally equals sediment transport capacity). However, the entrainment-based formulation does not require this constraint; the sediment transport rate may lag in space and time behind the changing flow conditions. In modeling the fine-grained Lower Yellow River, it is usual to treat sediment conservation in terms of an entrainment-based (nonequilibrium) rather than a flux-based (equilibrium) formulation with the consideration that fine-grained sediment may be entrained at one place but deposited only at some distant location downstream. However, the differences in prediction between the two formulations are still not well known, and the entrainment formulation may not always be necessary for the Lower Yellow River. Here we study this problem by comparing the results of flux-based and entrainment-based morphodynamics under conditions typical of the Yellow River, using sediment transport equations specifically designed for the Lower Yellow River. We find, somewhat unexpectedly, that in a treatment of a 200-km reach using uniform sediment, there is little difference between the two formulations unless the sediment fall velocity is arbitrarily greatly reduced. A consideration of sediment mixtures, however, shows that the two formulations give very different patterns of grain sorting. We explain this in terms of the structures of the two Exner equations for sediment mixtures, and define conditions for applicability of each formulation.

  9. The Influence of Relative Submergence on the Near-bed Flow Field: Implications for Bed-load Transport

    NASA Astrophysics Data System (ADS)

    Cooper, J.; Tait, S.; Marion, A.

    2005-12-01

    Bed-load is governed by interdependent mechanisms, the most significant being the interaction between bed roughness, surface layer composition and near-bed flow. Despite this, practically all transport rate equations are described as a function of average bed shear stress. Some workers have examined the role of turbulence in sediment transport (Nelson et al. 1995) but have not explored the potential significance of spatial variations in the near-bed flow field. This is unfortunate considering evidence showing that transport is spatially heterogeneous and could be linked to the spatial nature of the near-bed flow (Drake et al., 1988). An understanding is needed of both the temporal and spatial variability in the near-bed flow field. This paper presents detailed spatial velocity measurements of the near-bed flow field over a gravel-bed, obtained using Particle Image Velocimetry. These data have been collected in a laboratory flume under two regimes: (i) tests with one bed slope and different flow depths; and (ii) tests with a combination of flow depths and slopes at the same average bed shear stress. Results indicate spatial variation in the streamwise velocities of up to 45 per cent from the double-averaged velocity (averaged in both time and space). Under both regimes, as the depth increased, spatial variability in the flow field increased. The probability distributions of near-bed streamwise velocities became progressively more skewed towards the higher velocities. This change was more noticeable under regime (i). This has been combined with data from earlier tests in which the near-bed velocity close to an entraining grain was measured using a PIV/image analysis system (Chegini et al, 2002). This along with data on the shape of the probability density function of velocities capable of entraining individual grains derived from a discrete-particle model (Heald et al., 2004) has been used to estimate the distribution of local velocities required for grain motion in the above tests. The overlap between this distribution and the measured velocities are used to estimate entrainment rates. Predicted entrainment rates increase with relative submergence, even for similar bed shear stress. Assuming bed-load rate is the product of entrainment rate and hop length, and that hop lengths are sensibly stable, suggests that transport rate has a dependence on relative submergence. This demonstrates that transport rate is not a direct function of average bed shear stress. The results describe a mechanism that will cause river channels with contrasting morphologies (and different relative submergence) but similar levels of average bed stress to experience different levels of sediment mobility. Chegini A. Tait S. Heald J. McEwan I. 2002 The development of an automated system for the measurement of near bed turbulence and grain motion. Proc. ASCE Conf. on Hydraulic Measurements and Experimental Methods, ISBN 0-7844-0655-3. Drake T.G. Shreve R.L. Dietrich W.E. Whiting P.J. Leopold L.B. 1988 Bedload transport of fine gravel observed by motion-picture photography, J. Fluid Mech., 192, 193-217. Heald J. McEwan I. Tait, S. 2004 Sediment transport over a flat bed in a unidirectional flow: simulations and validation, Phil. Trans. Roy. Soc. of London A, 362, 1973-1986. Nelson J.M. Shreve R.L. McLean S.R. Drake T.G. 1995 Role of near-bed turbulence structure in bed-load transport and bed form mechanics, Water. Res. Res., 31, 8, 2071-2086.

  10. In situ monitoring of localized shear stress and fluid flow within developing tissue constructs by Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Bagnaninchi, Pierre O.; Wang, Ruikang K.

    2008-02-01

    Mechanical stimuli can be introduced to three dimensional (3D) cell cultures by use of perfusion bioreactor. Especially in musculoskeletal tissues, shear stress caused by fluid flow generally increase extra-cellular matrix (ECM) production and cell proliferation. The relationship between the shear stress and the tissue development in situ is complicated because of the non-uniform pore distribution within the cell-seeded scaffold. In this study, we firstly demonstrated that Doppler optical coherence tomography (DOCT) is capable of monitoring localized fluid flow and shear stress in the complex porous scaffold by examining their variation trends at perfusion rate of 5, 8, 10 and 12 ml/hr. Then, we developed the 3D porous cellular constructs, cell-seeded chitosan scaffolds monitored during several days by DOCT. The fiber based fourier domain DOCT employed a 1300 nm superluminescent diode with a bandwidth of 52 nm and a xyz resolution of 20×20×15 μm in free space. This setup allowed us not only to assess the cell growth and ECM deposition by observing their different scattering behaviors but also to further investigate how the cell attachment and ECM production has the effect on the flow shear stress and the relationship between flow rate and shear stress in the developing tissue construct. The possibility to monitor continuously the constructs under perfusion will easily indicate the effect of flow rate or shear stress on the cell viability and cell proliferation, and then discriminate the perfusion parameters affecting the pre-tissue formation rate growth.

  11. Physiological Plasticity to Water Flow Habitat in the Damselfish, Acanthochromis polyacanthus: Linking Phenotype to Performance

    PubMed Central

    Binning, Sandra A.; Ros, Albert F. H.; Nusbaumer, David; Roche, Dominique G.

    2015-01-01

    The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1) whether aspects of swimming physiology and morphology show plastic responses to water flow, 2) whether trait divergence correlates with swimming performance and 3) whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology. PMID:25807560

  12. Assessing Airflow Sensitivity to Healthy and Diseased Lung Conditions in a Computational Fluid Dynamics Model Validated In Vitro.

    PubMed

    Sul, Bora; Oppito, Zachary; Jayasekera, Shehan; Vanger, Brian; Zeller, Amy; Morris, Michael; Ruppert, Kai; Altes, Talissa; Rakesh, Vineet; Day, Steven; Robinson, Risa; Reifman, Jaques; Wallqvist, Anders

    2018-05-01

    Computational models are useful for understanding respiratory physiology. Crucial to such models are the boundary conditions specifying the flow conditions at truncated airway branches (terminal flow rates). However, most studies make assumptions about these values, which are difficult to obtain in vivo. We developed a computational fluid dynamics (CFD) model of airflows for steady expiration to investigate how terminal flows affect airflow patterns in respiratory airways. First, we measured in vitro airflow patterns in a physical airway model, using particle image velocimetry (PIV). The measured and computed airflow patterns agreed well, validating our CFD model. Next, we used the lobar flow fractions from a healthy or chronic obstructive pulmonary disease (COPD) subject as constraints to derive different terminal flow rates (i.e., three healthy and one COPD) and computed the corresponding airflow patterns in the same geometry. To assess airflow sensitivity to the boundary conditions, we used the correlation coefficient of the shape similarity (R) and the root-mean-square of the velocity magnitude difference (Drms) between two velocity contours. Airflow patterns in the central airways were similar across healthy conditions (minimum R, 0.80) despite variations in terminal flow rates but markedly different for COPD (minimum R, 0.26; maximum Drms, ten times that of healthy cases). In contrast, those in the upper airway were similar for all cases. Our findings quantify how variability in terminal and lobar flows contributes to airflow patterns in respiratory airways. They highlight the importance of using lobar flow fractions to examine physiologically relevant airflow characteristics.

  13. Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beach, Robert; Prahl, Duncan; Lange, Rich

    2013-12-01

    IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away frommore » the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.« less

  14. On the star-forming ability of Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Anathpindika, S.; Burkert, A.; Kuiper, R.

    2018-02-01

    The star-forming ability of a molecular cloud depends on the fraction of gas it can cycle into the dense-phase. Consequently, one of the crucial questions in reconciling star formation in clouds is to understand the factors that control this process. While it is widely accepted that the variation in ambient conditions can alter significantly the ability of a cloud to spawn stars, the observed variation in the star-formation rate in nearby clouds that experience similar ambient conditions, presents an interesting question. In this work, we attempted to reconcile this variation within the paradigm of colliding flows. To this end we develop self-gravitating, hydrodynamic realizations of identical flows, but allowed to collide off-centre. Typical observational diagnostics such as the gas-velocity dispersion, the fraction of dense-gas, the column density distribution (N-PDF), the distribution of gas mass as a function of K-band extinction and the strength of compressional/solenoidal modes in the post-collision cloud were deduced for different choices of the impact parameter of collision. We find that a strongly sheared cloud is terribly inefficient in cycling gas into the dense phase and that such a cloud can possibly reconcile the sluggish nature of star formation reported for some clouds. Within the paradigm of cloud formation via colliding flows this is possible in case of flows colliding with a relatively large impact parameter. We conclude that compressional modes - though probably essential - are insufficient to ensure a relatively higher star-formation efficiency in a cloud.

  15. HISTORICAL CHANGES IN GLOBAL SCALE CIRCULATION PATTERNS, MID-ATLANTIC CLIMATE STREAM FLOW AND NUTRIENT FLUXES TO THE CHESAPEAKE BAY

    EPA Science Inventory

    The rate of change in Northern Hemisphere temperature in the past century strongly suggests that we are now in a period of rapid global climate change. Also, the climate in the mid-Atlantic is quite sensitive to larger scale climate variation, which affects the frequency and seve...

  16. Lithospheric extension near Lake Mead, Nevada - A model for ductile flow in the lower crust

    NASA Technical Reports Server (NTRS)

    Kruse, Sarah; Mcnutt, Marcia; Phipps-Morgan, Jason; Royden, Leigh

    1991-01-01

    Small variations in gravity anomalies and topographic elevation observed in areas that have undergone highly variable amounts of upper crustal thinning can be satisfactorily explained by ductile flow of lower crustal material under the proper conditions. The boundary between the unextended Colorado Plateau and a strongly extended domain in the Basin and Range Province in the Lake Mead (Nevada) region is examined. Finite element modeling of Newtonian flow and power law creep shows that flow over the length scale of the eastern Basin and Range (500) km or more) corresponding to upper crustal extension by a factor of 1.4-3 over 10 million years requires effective viscosities less than 10 to the 18th - 10 to the 20th Pa s for ductile channels 10-25 km thick. Modeling suggests that these effective viscosities may be sustained by lower crustal material deforming at laboratory-derived power law creep rates. The longer-scale flow may require elevated crustal temperatures (more than 700 C), depending on the composition and material properties assumed. Under the boundary conditions assumed in this study the linear viscous flow models yield a satisfactory approximation to deformation by power law creep. This work suggests that flow in the lower crust may be a viable mechanism for producing small variations in total crustal thickness between strongly extended and less extended regions, and thereby explaining the relative uniformity in gravity and topography between such regions.

  17. A new numerical benchmark for variably saturated variable-density flow and transport in porous media

    NASA Astrophysics Data System (ADS)

    Guevara, Carlos; Graf, Thomas

    2016-04-01

    In subsurface hydrological systems, spatial and temporal variations in solute concentration and/or temperature may affect fluid density and viscosity. These variations could lead to potentially unstable situations, in which a dense fluid overlies a less dense fluid. These situations could produce instabilities that appear as dense plume fingers migrating downwards counteracted by vertical upwards flow of freshwater (Simmons et al., Transp. Porous Medium, 2002). As a result of unstable variable-density flow, solute transport rates are increased over large distances and times as compared to constant-density flow. The numerical simulation of variable-density flow in saturated and unsaturated media requires corresponding benchmark problems against which a computer model is validated (Diersch and Kolditz, Adv. Water Resour, 2002). Recorded data from a laboratory-scale experiment of variable-density flow and solute transport in saturated and unsaturated porous media (Simmons et al., Transp. Porous Medium, 2002) is used to define a new numerical benchmark. The HydroGeoSphere code (Therrien et al., 2004) coupled with PEST (www.pesthomepage.org) are used to obtain an optimized parameter set capable of adequately representing the data set by Simmons et al., (2002). Fingering in the numerical model is triggered using random hydraulic conductivity fields. Due to the inherent randomness, a large number of simulations were conducted in this study. The optimized benchmark model adequately predicts the plume behavior and the fate of solutes. This benchmark is useful for model verification of variable-density flow problems in saturated and/or unsaturated media.

  18. Long term (1997-2014) spatial and temporal variations in nitrogen in Dongting Lake, China

    PubMed Central

    Tian, Zebin; Zheng, Binghui; Wang, Lijing; Li, Liqiang; Wang, Xing; Li, Hong; Norra, Stefan

    2017-01-01

    In order to protect the water quality of Dongting Lake, it is significant to find out its nitrogen pollution characteristics. Using long-term monthly to seasonally data (1997–2014), we investigated the spatial and temporal variations in nitrogen in Dongting Lake, the second largest freshwater lake in China. The average concentrations of total nitrogen (TN) in the eastern, southern, and western parts of the lake were 1.77, 1.56, and 1.35 mg/L, respectively, in 2014. TN pollution was generally worse in the southern area than in the western area. Concentrations showed temporal variation, and were significantly higher during the dry season than during the wet season. Based on the concentration and growth rate of TN, three different stages were identified in the long term lake data, from 1997 to 2002, from 2003 to 2008, and from 2009 to 2014, during which the concentrations and the growth rate ranged from 1.09–1.51 mg/L and 22.09%-40.03%, 1.05–1.57 mg/L and -9.05%-7.74%, and 1.68–2.02 mg/L and 57.99%-60.41%, respectively. The main controls on the lake water TN concentrations were the quality and quantity of the lake inflows, spatial and temporal variations in hydrodynamic conditions within the lake (flow velocity, flow direction), and point and nonpoint inputs from human activities. Diffuse nutrient losses from agricultural land are a significant contributor. As a priority, the local government should aim to control the pollutant inputs from upstream and non-point nutrient losses from land. PMID:28166245

  19. Tolerance Testing for Cooked Porridge made from a Sorghum Based Fortified Blended Food.

    PubMed

    Chanadang, Sirichat; Chambers, Edgar Iv; Alavi, Sajid

    2016-05-01

    Products that will be prepared by consumers must be tolerant to various cooking procedures that those consumers may use. Fortified blended foods (FBFs) are used as a source of nutrition for disaster or famine relief in developing countries. Many FBFs are served as porridge and may have a wide of solids content, cooking times and variations in added ingredients. Sorghum is being examined as a potential alternative to wheat and corn based FBF products. This study was intended to evaluate the tolerance to preparation variations for porridge made as a FBF intended for food aid. Whole Sorghum Soy Blend (WSSB), a fortified, extruded, ground cooked cereal was selected as the FBF for this study. Descriptive sensory analysis and Bostwick flow rate measurements were performed to evaluate the tolerance of porridge products made from variations in ingredients and cooking procedures. The results showed that most sensory properties were only marginally affected although some expected large differences in a few sensory properties were found when solids content varied (that is, thickness, adhesiveness) or fruit (banana flavor) was added. Moreover, Bostwick flow rate was a reasonable indicator of thickness characteristics of porridges in some cases, but not in others. Tolerance testing showed that the sensory properties of WSSB had high tolerance to variations in cooking procedures, which means that the product can be modified during preparation by consumers without having a major impact on most sensory properties other than ones they intended to change such as thickness, sweetness, or fruit flavor. © 2016 Institute of Food Technologists®

  20. Damage Propagation Modeling for Aircraft Engine Prognostics

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai; Simon, Don; Eklund, Neil

    2008-01-01

    This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are generated via a thermo-dynamical simulation model for the engine as a function of variations of flow and efficiency of the modules of interest. An exponential rate of change for flow and efficiency loss was imposed for each data set, starting at a randomly chosen initial deterioration set point. The rate of change of the flow and efficiency denotes an otherwise unspecified fault with increasingly worsening effect. The rates of change of the faults were constrained to an upper threshold but were otherwise chosen randomly. Damage propagation was allowed to continue until a failure criterion was reached. A health index was defined as the minimum of several superimposed operational margins at any given time instant and the failure criterion is reached when health index reaches zero. Output of the model was the time series (cycles) of sensed measurements typically available from aircraft gas turbine engines. The data generated were used as challenge data for the Prognostics and Health Management (PHM) data competition at PHM 08.

  1. Vapors-liquid phase separator. [infrared telescope heat sink

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.

    1980-01-01

    The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid phase separators for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.

  2. A Quantitative Study of Simulated Bicuspid Aortic Valves

    NASA Astrophysics Data System (ADS)

    Szeto, Kai; Nguyen, Tran; Rodriguez, Javier; Pastuszko, Peter; Nigam, Vishal; Lasheras, Juan

    2010-11-01

    Previous studies have shown that congentially bicuspid aortic valves develop degenerative diseases earlier than the standard trileaflet, but the causes are not well understood. It has been hypothesized that the asymmetrical flow patterns and turbulence found in the bileaflet valves together with abnormally high levels of strain may result in an early thickening and eventually calcification and stenosis. Central to this hypothesis is the need for a precise quantification of the differences in the strain rate levels between bileaflets and trileaflet valves. We present here some in-vitro dynamic measurements of the spatial variation of the strain rate in pig aortic vales conducted in a left ventricular heart flow simulator device. We measure the strain rate of each leaflet during the whole cardiac cycle using phase-locked stereoscopic three-dimensional image surface reconstruction techniques. The bicuspid case is simulated by surgically stitching two of the leaflets in a normal valve.

  3. Paleomagnetism of the Miocene Columbia River Basalt Group in Oregon and Washington from the Pacific Coast to the Columbia Plateau: Magnetostratigraphy, Vertical-Axis Rotations, Paleosecular Variation, and Remagnetization

    NASA Astrophysics Data System (ADS)

    Hagstrum, J. T.; Wells, R. E.; Evarts, R. C.; Niem, A. R.; Sawlan, M. G.; Blakely, R. J.

    2008-12-01

    Identification of individual flows within the Columbia River Basalt Group (CRBG) has mostly relied on minor differences in geochemistry, but magnetic polarity has also proved useful in differentiating flows and establishing a temporal framework. Within the thick, rapidly erupted Grande Ronde Basalt four major polarity chrons (R1 to N2) have been identified. Because cooling times of CRBG flows are brief compared to rates of paleosecular variation (PSV), within-flow paleomagnetic directions are expected to be constant across the extensive east-west reaches of these flows. Vertical-axis rotations in OR and WA, driven by northward-oblique subduction of the Juan de Fuca plate, thus can be measured by comparing directions for western sampling localities to directions for the same flow units on the relatively stable Columbia Plateau. Clockwise rotations calculated for outcrop locations within the Coast Range (CR) block are uniformly about 30° (N=102 sites). East of the northwest-trending en échelon Mt. Angel-Gales Creek, Portland Hills, and northern unnamed fault zones, as well as north of the CR block's northern boundary (~Columbia River), clockwise rotations abruptly drop to about 15° (N=39 sites), with offsets in these bounding fault zones corresponding to the Portland and Willamette pull-apart basins. The general agreement of vertical- axis rotation rates estimated from CRBG magnetizations with those determined from modern GPS velocities indicates a relatively steady rate over the last 10 to 15 Myr. Unusual directions due to PSV, field excursions, or polarity transitions could provide useful stratigraphic markers. Individual flow directions, however, have not been routinely used to identify flows. One reason this has been difficult is that remagnetization is prevalent, particularly in the Coast Ranges, coupled with earlier demagnetization techniques that did not completely remove overprint components. Except for the Ginkgo and Pomona flows of the Wanapum and Saddle Mountains Basalts, reference Plateau directions for the CRBG are poorly known. Moreover, field and drill- core relations indicate that flows with different chemistries were erupted at the same time. Renewed sampling, therefore, has been undertaken eastward from the Portland area into the Columbia River Gorge and out onto the Plateau. Resampling of the Patrick Grade section (23 flows) in southeastern WA has shown that overprint magnetizations were not successfully removed in many flows at this locality in an earlier study [1]. This brings into question blanket demagnetization studies of the CRBG as well as polarity measurements routinely made in the field with hand-held fluxgate magnetometers. [1] Choiniere and Swanson, 1979, Am. J. Sci., 279, p. 755

  4. Model-based review of Doppler global velocimetry techniques with laser frequency modulation

    NASA Astrophysics Data System (ADS)

    Fischer, Andreas

    2017-06-01

    Optical measurements of flow velocity fields are of crucial importance to understand the behavior of complex flow. One flow field measurement technique is Doppler global velocimetry (DGV). A large variety of different DGV approaches exist, e.g., applying different kinds of laser frequency modulation. In order to investigate the measurement capabilities especially of the newer DGV approaches with laser frequency modulation, a model-based review of all DGV measurement principles is performed. The DGV principles can be categorized by the respective number of required time steps. The systematic review of all DGV principle reveals drawbacks and benefits of the different measurement approaches with respect to the temporal resolution, the spatial resolution and the measurement range. Furthermore, the Cramér-Rao bound for photon shot is calculated and discussed, which represents a fundamental limit of the achievable measurement uncertainty. As a result, all DGV techniques provide similar minimal uncertainty limits. With Nphotons as the number of scattered photons, the minimal standard deviation of the flow velocity reads about 106 m / s /√{Nphotons } , which was calculated for a perpendicular arrangement of the illumination and observation direction and a laser wavelength of 895 nm. As a further result, the signal processing efficiencies are determined with a Monte-Carlo simulation. Except for the newest correlation-based DGV method, the signal processing algorithms are already optimal or near the optimum. Finally, the different DGV approaches are compared regarding errors due to temporal variations of the scattered light intensity and the flow velocity. The influence of a linear variation of the scattered light intensity can be reduced by maximizing the number of time steps, because this means to acquire more information for the correction of this systematic effect. However, more time steps can result in a flow velocity measurement with a lower temporal resolution, when operating at the maximal frame rate of the camera. DGV without laser frequency modulation then provides the highest temporal resolutions and is not sensitive with respect to temporal variations but with respect to spatial variations of the scattered light intensity. In contrast to this, all DGV variants suffer from velocity variations during the measurement. In summary, the experimental conditions and the measurement task finally decide about the ideal choice from the reviewed DGV methods.

  5. Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking.

    PubMed

    Fadnes, Solveig; Nyrnes, Siri Ann; Torp, Hans; Lovstakken, Lasse

    2014-10-01

    High-frame-rate ultrasound speckle tracking was used for quantification of peak velocity in shunt flows resulting from septal defects in congenital heart disease. In a duplex acquisition scheme implemented on a research scanner, unfocused transmit beams and full parallel receive beamforming were used to achieve a frame rate of 107 frames/s for full field-of-view flow images with high accuracy, while also ensuring high-quality focused B-mode tissue imaging. The setup was evaluated in vivo for neonates with atrial and ventricular septal defects. The shunt position was automatically tracked in B-mode images and further used in blood speckle tracking to obtain calibrated shunt flow velocities throughout the cardiac cycle. Validation toward color flow imaging and pulsed wave Doppler with manual angle correction indicated that blood speckle tracking could provide accurate estimates of shunt flow velocities. The approach was less biased by clutter filtering compared with color flow imaging and was able to provide velocity estimates beyond the Nyquist range. Possible placements of sample volumes (and angle corrections) for conventional Doppler resulted in a peak shunt velocity variations of 0.49-0.56 m/s for the ventricular septal defect of patient 1 and 0.38-0.58 m/s for the atrial septal defect of patient 2. In comparison, the peak velocities found from speckle tracking were 0.77 and 0.33 m/s for patients 1 and 2, respectively. Results indicated that complex intraventricular flow velocity patterns could be quantified using high-frame-rate speckle tracking of both blood and tissue movement. This could potentially help increase diagnostic accuracy and decrease inter-observer variability when measuring peak velocity in shunt flows. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Post-failure characteristics of weathered soils in Korea: determination of rheological thresholds and debris flow mobility

    NASA Astrophysics Data System (ADS)

    Jeong, Sueng-Won; Fukuoka, Hiroshi; Im, Sang-June

    2013-04-01

    Landslides in Korea are mainly triggered by localized summer heavy rainfall. The water infiltration, wetting and fluidization process are the key roles in slope instability. Mechanically, a loss in soil strength of the soil at weakend layer takes place as a result of water infiltration. The transition from slides to flows can be defined by the variation in strength parameters. In the flowing stage with large volume of sediments, debris flow impact may be governed by the rheology of the failed mass. We performed the rheological tests using the ball-measuring and vane-inserted rheometer and examined a possible threshold of landslides on mudstone, weathered granitic and gneissic soils in the mountainous region of Korea. The materials examined exhibited the shear-thinning behavior, which is the viscosity decreases with increasing shear rates. There are positive relationships between liquidity index and rheological values (i.e., yield stress and viscosities). However, the difference in rheological properties is of significance for given shear rates. The effect of wall-slip in different geometries is emphasized. This work is also concerned with post-failure characteristics of rainfall-induced landslides that occur in Chuncheon, Miryang and Seoul debris flow occurrence in 2011. They are mainly composed of gneissic, sedimentary and gneissic weathered soils. The rheological properties is helpful to predict the mobilization of fine-laden debris flows. In the relationship between shear stress and shear rate, one of simplest rheological models, i.e., the ideal Bingham fluid model, is selected to examine the flow pattern and depositional features of debris flows. A comparison will be made for the debris flow occurence on weahtered soils in Korea.

  7. Blood flow/pump rotation ratio as an artificial lung performance monitoring tool during extracorporeal respiratory support using centrifugal pumps.

    PubMed

    Park, Marcelo; Mendes, Pedro Vitale; Hirota, Adriana Sayuri; dos Santos, Edzangela Vasconcelos; Costa, Eduardo Leite Vieira; Azevedo, Luciano Cesar Pontes

    2015-01-01

    To analyze the correlations of the blood flow/pump rotation ratio and the transmembrane pressure, CO2 and O2 transfer during the extracorporeal respiratory support. Five animals were instrumented and submitted to extracorporeal membrane oxygenation in a five-step protocol, including abdominal sepsis and lung injury. This study showed that blood flow/pump rotations ratio variations are dependent on extracorporeal membrane oxygenation blood flow in a positive logarithmic fashion. Blood flow/pump rotation ratio variations are negatively associated with transmembrane pressure (R2 = 0.5 for blood flow = 1500mL/minute and R2 = 0.4 for blood flow = 3500mL/minute, both with p < 0.001) and positively associated with CO2 transfer variations (R2 = 0.2 for sweep gas flow ≤ 6L/minute, p < 0.001, and R2 = 0.1 for sweep gas flow > 6L/minute, p = 0.006), and the blood flow/pump rotation ratio is not associated with O2 transfer variations (R2 = 0.01 for blood flow = 1500mL/minute, p = 0.19, and R2 = - 0.01 for blood flow = 3500 mL/minute, p = 0.46). Blood flow/pump rotation ratio variation is negatively associated with transmembrane pressure and positively associated with CO2 transfer in this animal model. According to the clinical situation, a decrease in the blood flow/pump rotation ratio can indicate artificial lung dysfunction without the occurrence of hypoxemia.

  8. Optimization of multi response in end milling process of ASSAB XW-42 tool steel with liquid nitrogen cooling using Taguchi-grey relational analysis

    NASA Astrophysics Data System (ADS)

    Norcahyo, Rachmadi; Soepangkat, Bobby O. P.

    2017-06-01

    A research was conducted for the optimization of the end milling process of ASSAB XW-42 tool steel with multiple performance characteristics based on the orthogonal array with Taguchi-grey relational analysis method. Liquid nitrogen was applied as a coolant. The experimental studies were conducted under varying the liquid nitrogen cooling flow rates (FL), and the end milling process variables, i.e., cutting speed (Vc), feeding speed (Vf), and axial depth of cut (Aa). The optimized multiple performance characteristics were surface roughness (SR), flank wear (VB), and material removal rate (MRR). An orthogonal array, signal-to-noise (S/N) ratio, grey relational analysis, grey relational grade, and analysis of variance were employed to study the multiple performance characteristics. Experimental results showed that flow rate gave the highest contribution for reducing the total variation of the multiple responses, followed by cutting speed, feeding speed, and axial depth of cut. The minimum surface roughness, flank wear, and maximum material removal rate could be obtained by using the values of flow rate, cutting speed, feeding speed, and axial depth of cut of 0.5 l/minute, 109.9 m/minute, 440 mm/minute, and 0.9 mm, respectively.

  9. Natural flow and vertical heterogeneities in a sedimentary geothermal reservoir (Paris Basin, France): Geochemical investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Criaud, Annie, Fouassier, Philippe; Fouillac, Christian; Brach, Michel

    1988-01-01

    Three geothermal wells tapping the Dogger aquifer were studied in detail for their variations in chemical composition with time or conditions of exploitation. Analytical improvements for the determination of Cl, SO{sub 4}, Ca, Mg, Na and K make it possible to detect variations respectively of 0.15, 0.8, 0.6, 1.8, 1.8 and 1.4 %. Despite the fact that the natural flow may be important in some parts of the basin aquifer, we conclude that this factor is not responsible for the small variations noticed in mineralization within the one year survey period. The results concerning reactive and nonreactive species are bestmore » explained if a vertical heterogeneity of the chemistry of the fluid is assumed. A number of calcareous sub-layers, already demonstrated by geological studies, contribute to varying degrees to the production of the hot water. The changes in pumping rates, which are fixed according to external requirements, play a major role in the hydrodynamic and chemical disequilibrium of the wells. The consequences for the geothermal exploitations are emphasized.« less

  10. Asymptotic Spreading Rate of Initially Compressible Jets-Experiment and Analysis

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    1998-01-01

    Experimental results for the spreading and centerline velocity decay rates for round, compressible jets, from a convergent and a convergent-divergent nozzle, are presented. The spreading rate is determined from the variation of streamwise mass flux obtained from Pitot probe surveys. Results for the far asymptotic region show that both spreading and centerline velocity decay rates, when nondimensionalized by parameters at the nozzle exit, decrease with increasing "jet Mach number" M(sub j). Dimensional analysis with the assumption of momentum conservation, together with compressible flow calculations for the conditions at the nozzle exit, predict this Mach number dependence well. The analysis also demonstrates that an increase in the "potential core length" of the jet occurring with increasing M(sub j), a commonly observed trend, is largely accounted for simply by the variations in the density and static pressure at the nozzle exit. The effect of decreasing mixing efficiency with increasing compressibility is inferred to contribute only partially to the latter trend.

  11. Seasonal variations of Manning's coefficient depending on vegetation conditions in Tärnsjö, Sweden

    NASA Astrophysics Data System (ADS)

    Plakane, Rūta; Di Baldassarre, Giuliano; Okoli, Kenechukwu

    2017-04-01

    Hydrological modelling and water resources management require observations of high and low river flows. To estimate them, rating curves based on the characteristics of the river channel and floodplain are often used. Yet, multiple factors can cause uncertainties in rating curves, one of them being the variability of the Manning's roughness coefficient due to seasonal changes of vegetation. Determining this uncertainty has been a challenge, and depending on vegetation conditions on a stream, values can temporarily show an important deviation from the calibrated rating curve, enhancing the importance to understand changes in Manning's roughness coefficient. Examining the aquatic vegetation on the site throughout different seasonal conditions allows one to observe changes within the channel. By depending on cyclical changes in Manning's roughness coefficient values, different discharges may correspond to the same stage conditions. In this context, we present a combination of field work and modelling exercise to the variation of the rating curve due to vegetation changes in a Swedish stream.

  12. Long Range Effect of The M7.8 April 2015 Nepal Earth Quake on the Deep Groudwater Outflow in a Thousand-Mile-Away Geothermal Field in Southern China's Guangdong

    NASA Astrophysics Data System (ADS)

    Lu, G.; Yu, S.; Xu, F.; Wang, X.; Yan, K.; Yuen, D. A.

    2015-12-01

    Deep ground waters sustain high temperature and pressure and are susceptible to impact from an earthquake. How an earthquake would have been associated with long-range effect on geological environment of deep groundwater is a question of interest to the scientific community and general public. The massive Richter 8.1 Nepal Earthquake (on April 25, 2015) provided a rare opportunity to test the response of deep groundwater systems. Deep ground waters at elevated temperature would naturally flow to ground surface along preferential flow path such as a deep fault, forming geothermal water flows. Geothermal water flows are susceptible to stress variation and can reflect the physical conditions of supercritical hot water kilometers deep down inside the crust. This paper introduces the monitoring work on the outflow in Xijiang Geothermal Field of Xinyi City, Guangdong Province in southern China. The geothermal field is one of typical geothermal fields with deep faults in Guangdong. The geothermal spring has characteristic daily variation of up to 72% in flow rate, which results from being associated with a north-south run deep fault susceptible to earthquake event. We use year-long monitoring data to illustrate how the Nepal earthquake would have affected the flows at the field site over 2.5 thousand kilometers away. The irregularity of flow is judged by deviation from otherwise good correlation of geothermal spring flow with solid earth tidal waves. This work could potentially provide the basis for further study of deep groundwater systems and insight to earthquake prediction.

  13. Dynamic PIV measurement of a compressible flow issuing from an airbag inflator nozzle

    NASA Astrophysics Data System (ADS)

    Lee, Sang Joon; Jang, Young Gil; Kim, Seok; Kim, Chang Soo

    2006-12-01

    Among many equipment for passenger safety, the air bag system is the most fundamental and effective device for an automobile. The inflator housing is a main part of the curtain-type air bag system, which supplies high-pressure gases in pumping up the air bag-curtain which is increasingly being adapted in deluxe cars for protecting passengers from the danger of side clash. However, flow information on the inflator housing is very limited. In this study, we measure the instantaneous velocity fields of a high-speed compressible flow issuing from the exit nozzle of an inflator housing using a dynamic PIV system. From the velocity field data measured at a high frame-rate, we evaluate the variation of the mass flow rate with time. The dynamic PIV system consists of a high-repetition Nd:YLF laser, a high-speed CMOS camera, and a delay generator. The flow images are taken at 4000 fps with synchronization of the trigger signal for inflator ignition. From the instantaneous velocity field data of flow ejecting from the airbag inflator housing at the initial stage, we can see a flow pattern of broken shock wave front and its downward propagation. The flow ejecting from the inflator housing is found to have very high velocity fluctuations, with the maximum velocity at about 700 m/s. The time duration of the high-speed flow is very short, and there is no perceptible flow after 100 ms.

  14. Shear flow of angular grains: acoustic effects and nonmonotonic rate dependence of volume.

    PubMed

    Lieou, Charles K C; Elbanna, Ahmed E; Langer, J S; Carlson, J M

    2014-09-01

    Naturally occurring granular materials often consist of angular particles whose shape and frictional characteristics may have important implications on macroscopic flow rheology. In this paper, we provide a theoretical account for the peculiar phenomenon of autoacoustic compaction-nonmonotonic variation of shear band volume with shear rate in angular particles-recently observed in experiments. Our approach is based on the notion that the volume of a granular material is determined by an effective-disorder temperature known as the compactivity. Noise sources in a driven granular material couple its various degrees of freedom and the environment, causing the flow of entropy between them. The grain-scale dynamics is described by the shear-transformation-zone theory of granular flow, which accounts for irreversible plastic deformation in terms of localized flow defects whose density is governed by the state of configurational disorder. To model the effects of grain shape and frictional characteristics, we propose an Ising-like internal variable to account for nearest-neighbor grain interlocking and geometric frustration and interpret the effect of friction as an acoustic noise strength. We show quantitative agreement between experimental measurements and theoretical predictions and propose additional experiments that provide stringent tests on the new theoretical elements.

  15. Enteric coating of soft gelatin capsules by spouted bed: effect of operating conditions on coating efficiency and on product quality.

    PubMed

    Pissinati, Rafael; Oliveira, Wanderley Pereira

    2003-05-01

    The present study was conducted in order to analyze the viability of the spouted bed process for application of a gastric-resistant coating to soft gelatin capsules. The variables investigated were: included angle of conical base, (gamma), the relation between the feed mass flow rate of the coating suspension and the feed mass flow rate of spouting gas (W(s)/W(g)); the ratio between the flow rate of the spouting gas and the flow rate at minimum spouting condition (Q/Q(ms)); the mass of capsules in the bed (M(0)), and the capsule's size. The product quality was measured by disintegration tests, traction x deformation tests, image analysis and by the evaluation of the coating mass distribution and shape factor variation during the coating operation. The experiments were performed in a spouted bed with a column diameter of 200 mm and included a conical base angle of 40 degrees. The best coating efficiency values were obtained for M(0)=300 g. Coating efficiency tended to increase with increasing W(s)/W(g) ratio. Disintegration tests showed that the gastric-resistant effect was obtained with a coating mass of 3.86 mg/cm(2). The shape factor increase during the coating operation. The capsule's coating mass distribution tended to maintain the original distribution.

  16. Dense flow around a sphere moving into a cloud of grains

    NASA Astrophysics Data System (ADS)

    Gondret, Philippe; Faure, Sylvain; Lefebvre-Lepot, Aline; Seguin, Antoine

    2017-06-01

    A bidimensional simulation of a sphere moving at constant velocity into a cloud of smaller spherical grains without gravity is presented with a non-smooth contact dynamics method. A dense granular "cluster" zone of about constant solid fraction builds progressively around the moving sphere until a stationary regime appears with a constant upstream cluster size that increases with the initial solid fraction ϕ0 of the cloud. A detailed analysis of the local strain rate and local stress fields inside the cluster reveals that, despite different spatial variations of strain and stresses, the local friction coeffcient μ appears to depend only on the local inertial number I as well as the local solid fraction ϕ, which means that a local rheology does exist in the present non parallel flow. The key point is that the spatial variations of I inside the cluster does not depend on the sphere velocity and explore only a small range between about 10-2 and 10-1. The influence of sidewalls is then investigated on the flow and the forces.

  17. Mass transfer from a circular cylinder: Effects of flow unsteadiness and slight nonuniformities

    NASA Technical Reports Server (NTRS)

    Marziale, M. L.; Mayle, R. E.

    1984-01-01

    Experiments were performed to determine the effect of periodic variations in the angle of the flow incident to a turbine blade on its leading edge heat load. To model this situation, measurements were made on a circular cylinder oscillating rotationally in a uniform steady flow. A naphthalene mass transfer technique was developed and used in the experiments and heat transfer rates are inferred from the results. The investigation consisted of two parts. In the first, a stationary cylinder was used and the transfer rate was measured for Re = 75,000 to 110,000 and turbulence levels from .34 percent to 4.9 percent. Comparisons with both theory and the results of others demonstrate that the accuracy and repeatability of the developed mass transfer technique is about + or - 2 percent, a large improvement over similar methods. In the second part identical flow conditions were used but the cylinder was oscillated. A Strouhal number range from .0071 to .1406 was covered. Comparisons of the unsteady and steady results indicate that the magnitude of the effect of oscillation is small and dependent on the incident turbulence conditions.

  18. Tensile stress-strain and work hardening behaviour of P9 steel for wrapper application in sodium cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Christopher, J.; Choudhary, B. K.; Isaac Samuel, E.; Mathew, M. D.; Jayakumar, T.

    2012-01-01

    Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300-873 K) at a strain rate of 1.3 × 10 -3 s -1. Ludwigson equation described true stress ( σ)-true plastic strain ( ɛ) data most accurately in the range 300-723 K. At high temperatures (773-873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate ( θ = dσ/ dɛ) and θσ with stress indicated two-stage work hardening behaviour. True stress-true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ- σ and θσ- σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.

  19. Accounting for magnetic diffusion in core flow inversions from geomagnetic secular variation

    NASA Astrophysics Data System (ADS)

    Amit, Hagay; Christensen, Ulrich R.

    2008-12-01

    We use numerical dynamos to investigate the possible role of magnetic diffusion at the top of the core. We find that the contribution of radial magnetic diffusion to the secular variation is correlated with that of tangential magnetic diffusion for a wide range of control parameters. The correlation between the two diffusive terms is interpreted in terms of the variation in the strength of poloidal flow along a columnar flow tube. The amplitude ratio of the two diffusive terms is used to estimate the probable contribution of radial magnetic diffusion to the secular variation at Earth-like conditions. We then apply a model where radial magnetic diffusion is proportional to tangential diffusion to core flow inversions of geomagnetic secular variation data. We find that including magnetic diffusion does not change dramatically the global flow but some significant local variations appear. In the non frozen-flux core flow models (termed `diffusive'), the hemispherical dichotomy between the active Atlantic and quiet Pacific is weaker, a cyclonic vortex below North America emerges and the vortex below Asia is stronger. Our results have several important geophysical implications. First, our diffusive flow models contain some flow activity at low latitudes in the Pacific, suggesting a local balance between magnetic field advection and diffusion in that region. Second, the cyclone below North America in our diffusive flows reconciles the difference between mantle-driven thermal wind predictions and frozen-flux core flow models, and is consistent with the prominent intense magnetic flux patch below North America in geomagnetic field models. Finally, we hypothesize that magnetic diffusion near the core surface plays a larger role in the geomagnetic secular variation than usually assumed.

  20. Plane Poiseuille flow of a rarefied gas in the presence of strong gravitation.

    PubMed

    Doi, Toshiyuki

    2011-02-01

    Plane Poiseuille flow of a rarefied gas, which flows horizontally in the presence of strong gravitation, is studied based on the Boltzmann equation. Applying the asymptotic analysis for a small variation in the flow direction [Y. Sone, Molecular Gas Dynamics (Birkhäuser, 2007)], the two-dimensional problem is reduced to a one-dimensional problem, as in the case of a Poiseuille flow in the absence of gravitation, and the solution is obtained in a semianalytical form. The reduced one-dimensional problem is solved numerically for a hard sphere molecular gas over a wide range of the gas-rarefaction degree and the gravitational strength. The presence of gravitation reduces the mass flow rate, and the effect of gravitation is significant for large Knudsen numbers. To verify the validity of the asymptotic solution, a two-dimensional problem of a flow through a long channel is directly solved numerically, and the validity of the asymptotic solution is confirmed. ©2011 American Physical Society

  1. Technical Note: Quantitative dynamic contrast-enhanced MRI of a 3-dimensional artificial capillary network.

    PubMed

    Gaass, Thomas; Schneider, Moritz Jörg; Dietrich, Olaf; Ingrisch, Michael; Dinkel, Julien

    2017-04-01

    Variability across devices, patients, and time still hinders widespread recognition of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) as quantitative biomarker. The purpose of this work was to introduce and characterize a dedicated microchannel phantom as a model for quantitative DCE-MRI measurements. A perfusable, MR-compatible microchannel network was constructed on the basis of sacrificial melt-spun sugar fibers embedded in a block of epoxy resin. Structural analysis was performed on the basis of light microscopy images before DCE-MRI experiments. During dynamic acquisition the capillary network was perfused with a standard contrast agent injection system. Flow-dependency, as well as inter- and intrascanner reproducibility of the computed DCE parameters were evaluated using a 3.0 T whole-body MRI. Semi-quantitative and quantitative flow-related parameters exhibited the expected proportionality to the set flow rate (mean Pearson correlation coefficient: 0.991, P < 2.5e-5). The volume fraction was approximately independent from changes of the applied flow rate through the phantom. Repeatability and reproducibility experiments yielded maximum intrascanner coefficients of variation (CV) of 4.6% for quantitative parameters. All evaluated parameters were well in the range of known in vivo results for the applied flow rates. The constructed phantom enables reproducible, flow-dependent, contrast-enhanced MR measurements with the potential to facilitate standardization and comparability of DCE-MRI examinations. © 2017 American Association of Physicists in Medicine.

  2. Microfluidic-Based Measurement Method of Red Blood Cell Aggregation under Hematocrit Variations

    PubMed Central

    2017-01-01

    Red blood cell (RBC) aggregation and erythrocyte sedimentation rate (ESR) are considered to be promising biomarkers for effectively monitoring blood rheology at extremely low shear rates. In this study, a microfluidic-based measurement technique is suggested to evaluate RBC aggregation under hematocrit variations due to the continuous ESR. After the pipette tip is tightly fitted into an inlet port, a disposable suction pump is connected to the outlet port through a polyethylene tube. After dropping blood (approximately 0.2 mL) into the pipette tip, the blood flow can be started and stopped by periodically operating a pinch valve. To evaluate variations in RBC aggregation due to the continuous ESR, an EAI (Erythrocyte-sedimentation-rate Aggregation Index) is newly suggested, which uses temporal variations of image intensity. To demonstrate the proposed method, the dynamic characterization of the disposable suction pump is first quantitatively measured by varying the hematocrit levels and cavity volume of the suction pump. Next, variations in RBC aggregation and ESR are quantified by varying the hematocrit levels. The conventional aggregation index (AI) is maintained constant, unrelated to the hematocrit values. However, the EAI significantly decreased with respect to the hematocrit values. Thus, the EAI is more effective than the AI for monitoring variations in RBC aggregation due to the ESR. Lastly, the proposed method is employed to detect aggregated blood and thermally-induced blood. The EAI gradually increased as the concentration of a dextran solution increased. In addition, the EAI significantly decreased for thermally-induced blood. From this experimental demonstration, the proposed method is able to effectively measure variations in RBC aggregation due to continuous hematocrit variations, especially by quantifying the EAI. PMID:28878199

  3. Contrasting residence times and fluxes of water and sulfate in two small forested watersheds in Virginia, USA

    USGS Publications Warehouse

    Böhlke, J.K.; Michel, R.L.

    2009-01-01

    Watershed mass balances for solutes of atmospheric origin may be complicated by the residence times of water and solutes at various time scales. In two small forested headwater catchments in the Appalachian Mountains of Virginia, USA, mean annual export rates of SO4= differ by a factor of 2, and seasonal variations in SO4= concentrations in atmospheric deposition and stream water are out of phase. These features were investigated by comparing 3H, 35S, ??34S, ??2H, ??18O, ??3He, CFC-12, SF6, and chemical analyses of open deposition, throughfall, stream water, and spring water. The concentrations of SO4= and radioactive 35S were about twice as high in throughfall as in open deposition, but the weighted composite values of 35S/S (11.1 and 12.1 ?? 10- 15) and ??34S (+ 3.8 and + 4.1???) were similar. In both streams (Shelter Run, Mill Run), 3H concentrations and ??34S values during high flow were similar to those of modern deposition, ??2H and ??18O values exhibited damped seasonal variations, and 35S/S ratios (0-3 ?? 10- 15) were low throughout the year, indicating inter-seasonal to inter-annual storage and release of atmospheric SO4= in both watersheds. In the Mill Run watershed, 3H concentrations in stream base flow (10-13??TU) were consistent with relatively young groundwater discharge, most ??34S values were approximately the same as the modern atmospheric deposition values, and the annual export rate of SO4= was equal to or slightly greater than the modern deposition rate. In the Shelter Run watershed, 3H concentrations in stream base flow (1-3??TU) indicate that much of the discharging ground water had been deposited prior to the onset of atmospheric nuclear bomb testing in the 1950s, base flow ??34S values (+ 1.6???) were significantly lower than the modern deposition values, and the annual export rate of SO4= was less than the modern deposition rate. Concentrations of 3H and 35S in Shelter Run base flow, and of 3H, 3He, CFC-12, SF6, and 35S in a spring discharging to Shelter Run, all were consistent with a bimodal distribution of discharging ground-water ages with approximately 5-20% less than a few years old and 75-95% more than 40??years old. These results provide evidence for 3 important time-scales of SO4= transport through the watersheds: (1) short-term (weekly to monthly) storage and release of dry deposition in the forest canopy between precipitation events; (2) mid-term (seasonal to interannual) cycles in net storage in the near-surface environment, and (3) long-term (decadal to centennial) storage in deep ground water that appears to be related to relatively low SO4= concentrations in spring discharge that dominates Shelter Run base flow. It is possible that the relatively low concentrations and low ??34S values of SO4= in spring discharge and Shelter Run base flow may reflect those of atmospheric deposition before the middle of the 20th century. In addition to storage in soils and biota, variations in ground-water residence times at a wide range of time scales may have important effects on monitoring, modeling, and predicting watershed responses to changing atmospheric deposition in small watersheds.

  4. Modeling of grain size strengthening in tantalum at high pressures and strain rates

    DOE PAGES

    Rudd, Robert E.; Park, H. -S.; Cavallo, R. M.; ...

    2017-01-01

    Laser-driven ramp wave compression experiments have been used to investigate the strength (flow stress) of tantalum and other metals at high pressures and high strain rates. Recently this kind of experiment has been used to assess the dependence of the strength on the average grain size of the material, finding no detectable variation with grain size. The insensitivity to grain size has been understood theoretically to result from the dominant effect of the high dislocation density generated at the extremely high strain rates of the experiment. Here we review the experiments and describe in detail the multiscale strength model usedmore » to simulate them. The multiscale strength model has been extended to include the effect of geometrically necessary dislocations generated at the grain boundaries during compatible plastic flow in the polycrystalline metal. Lastly, we use the extended model to make predictions of the threshold strain rates and grain sizes below which grain size strengthening would be observed in the laser-driven Rayleigh-Taylor experiments.« less

  5. Study of temperature characterization of agricultural waste in the development of stove for combine heat power

    NASA Astrophysics Data System (ADS)

    Yulianto, Muhamad; Agustina, Sri Endah; Hartulistiyoso, Edy; Nelwan, Leopold Oscar; Nurlela

    2017-03-01

    Indonesia is one of tropical country in the world, therefore biomass product can find a lot in Indonesia. In the other side, waste of agricultural product is one of biomass resources which is can be converting to energy using Combine Heat Power for the example. In this paper, will be discussed about the temperature characterization due to influence of feeding rate and air flow rate. The contribution of this paper will show the temperature achievement of flue gas as the result of direct combustion in a stove. The research conducted using coconut shell as raw fuel material with varying feed rate and air flow rate. In this research also use the excess air to know the effect. The result show that the temperature of flue gas in direct combustion of coconut shell can reach of 520°C and temperature at combustion chamber reach 840°C. This achievement is occurring in the certain variation of experiment.

  6. Turbulence modeling in three-dimensional stenosed arterial bifurcations.

    PubMed

    Banks, J; Bressloff, N W

    2007-02-01

    Under normal healthy conditions, blood flow in the carotid artery bifurcation is laminar. However, in the presence of a stenosis, the flow can become turbulent at the higher Reynolds numbers during systole. There is growing consensus that the transitional k-omega model is the best suited Reynolds averaged turbulence model for such flows. Further confirmation of this opinion is presented here by a comparison with the RNG k-epsilon model for the flow through a straight, nonbifurcating tube. Unlike similar validation studies elsewhere, no assumptions are made about the inlet profile since the full length of the experimental tube is simulated. Additionally, variations in the inflow turbulence quantities are shown to have no noticeable affect on downstream turbulence intensity, turbulent viscosity, or velocity in the k-epsilon model, whereas the velocity profiles in the transitional k-omega model show some differences due to large variations in the downstream turbulence quantities. Following this validation study, the transitional k-omega model is applied in a three-dimensional parametrically defined computer model of the carotid artery bifurcation in which the sinus bulb is manipulated to produce mild, moderate, and severe stenosis. The parametric geometry definition facilitates a powerful means for investigating the effect of local shape variation while keeping the global shape fixed. While turbulence levels are generally low in all cases considered, the mild stenosis model produces higher levels of turbulent viscosity and this is linked to relatively high values of turbulent kinetic energy and low values of the specific dissipation rate. The severe stenosis model displays stronger recirculation in the flow field with higher values of vorticity, helicity, and negative wall shear stress. The mild and moderate stenosis configurations produce similar lower levels of vorticity and helicity.

  7. Groundwater Recharge and Flow Processes in Taihang Mountains, a Semi-humid Region, North China

    NASA Astrophysics Data System (ADS)

    Sakakibara, Koichi; Tsujimura, Maki; Song, Xianfang; Zhang, Jie

    2015-04-01

    Groundwater flow/recharge variations in time and space are crucial for effective water management especially in semi-arid and semi-humid regions. In order to reveal comprehensive groundwater flow/recharge processes in a catchment with a large topographical relief and seasonal hydrological variations, intensive field surveys were undertaken at 4 times in different seasons (June 2011, August 2012, November 2012, February 2014) in the Wangkuai watershed, Taihang mountains, which is a main groundwater recharge area of the North China Plain. The groundwater, spring, stream water and reservoir water were taken, and inorganic solute constituents and stable isotopes of oxygen-18 and deuterium were determined on all water samples. Also, the stream flow rate and the depth of groundwater table were observed. The stable isotopic compositions and inorganic solute constituents in the groundwater are depleted and shown similar values as those of the surface water at the mountain-plain transitional area. Additionally, the groundwater in the vicinity of the Wangkuai Reservoir presents clearly higher stable isotopic compositions and lower d-excess than those of the stream water, indicating the groundwater around the reservoir is affected by evaporation same as the Wangkuai Reservoir itself. Hence, the surface water in the mountain-plain transitional area and Wangkuai Reservoir are principal groundwater recharge sources. An inversion analysis and simple mixing model were applied in the Wangkuai watershed using stable isotopes of oxygen-18 and deuterium to construct a groundwater flow model. The model shows that multi-originated groundwater flows from upstream to downstream along topography with certain mixing. In addition, the groundwater recharge occurs dominantly at the altitude from 421 m to 953 m, and the groundwater recharge rate by the Wangkuai Reservoir is estimated to be 2.4 % of the total groundwater recharge in the Wangkuai watershed. Therefore, the stream water and reservoir water in the mountain-plain transitional area plays an important role of groundwater recharge in semi-arid and semi-humid regions.

  8. Variations in spatial patterns of soil-vegetation properties and the emergence of multiple resilience thresholds within different debris flow fan positions

    NASA Astrophysics Data System (ADS)

    Mohseni, Neda; Hosseinzadeh, Seyed Reza; Sepehr, Adel; Golzarian, Mahmood Reza; Shabani, Farzin

    2017-08-01

    Debris flow fans are non-equilibrium landforms resulting from the spatial variations of debris flows deposited on them. This geomorphic disturbance involving the asymmetric redistribution of water and sediment may create spatially heterogeneous patterns of soil-vegetation along landforms. In this research, founded on field-based observations, we characterized the spatial patterns of some soil (e.g., particle size distribution including fine and coarse covers, and infiltration capacity) and vegetation (e.g., plant distance, vegetation density, patch size, and average number of patches) properties within different debris flow fan positions (Upper, Middle, and Lower fan) located at the base of the Binaloud Mountain hillslope in northeastern Iran. Thereafter, using a mathematical model of dry land vegetation dynamics, we calculated response trends of the different positions to the same environmental harshness gradient. Field measurements of soil-vegetation properties and infiltration rates showed that the asymmetric redistribution of debris flow depositions can cause statistically significant differences (P < 0.05) in the spatial patterns of soil and eco-hydrological characteristics along different landform positions. The results showed that mean plant distance, mean vegetation density, and the average number of patches decreased as the coarse covers increased toward the Lower fan plots. Conversely, an increase in infiltration rate was observed. The simulation results on the aerial images taken from different positions, illustrated that positions with a heterogeneous distribution of vegetation patterns were not desertified to the same degree of aridity. Thus, the Middle and Lower positions could survive under harsher aridity conditions, due to the emergence of more varied spatial vegetation patterns than at the Upper fan position. The findings, based on a combined field and modeling approach, highlighted that debris flow as a geomorphic process with the asymmetric distribution of depositions on the gentle slope of an alluvial fan, can incur multiple resilience thresholds with different degrees of self-organization under stressful conditions over the spatial heterogeneities of soil-dependent vegetation structures.

  9. Measurement uncertainty budget of an interferometric flow velocity sensor

    NASA Astrophysics Data System (ADS)

    Bermuske, Mike; Büttner, Lars; Czarske, Jürgen

    2017-06-01

    Flow rate measurements are a common topic for process monitoring in chemical engineering and food industry. To achieve the requested low uncertainties of 0:1% for flow rate measurements, a precise measurement of the shear layers of such flows is necessary. The Laser Doppler Velocimeter (LDV) is an established method for measuring local flow velocities. For exact estimation of the flow rate, the flow profile in the shear layer is of importance. For standard LDV the axial resolution and therefore the number of measurement points in the shear layer is defined by the length of the measurement volume. A decrease of this length is accompanied by a larger fringe distance variation along the measurement axis which results in a rise of the measurement uncertainty for the flow velocity (uncertainty relation between spatial resolution and velocity uncertainty). As a unique advantage, the laser Doppler profile sensor (LDV-PS) overcomes this problem by using two fan-like fringe systems to obtain the position of the measured particles along the measurement axis and therefore achieve a high spatial resolution while it still offers a low velocity uncertainty. With this technique, the flow rate can be estimated with one order of magnitude lower uncertainty, down to 0:05% statistical uncertainty.1 And flow profiles especially in film flows can be measured more accurately. The problem for this technique is, in contrast to laboratory setups where the system is quite stable, that for industrial applications the sensor needs a reliable and robust traceability to the SI units, meter and second. Small deviations in the calibration can, because of the highly position depending calibration function, cause large systematic errors in the measurement result. Therefore, a simple, stable and accurate tool is needed, that can easily be used in industrial surroundings to check or recalibrate the sensor. In this work, different calibration methods are presented and their influences to the measurement uncertainty budget of the sensor is discussed. Finally, generated measurement results for the film flow of an impinging jet cleaning experiment are presented.

  10. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    DOE PAGES

    Pandey, Sachin; Rajaram, Harihar

    2016-12-05

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less

  11. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Sachin; Rajaram, Harihar

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less

  12. Age, gender, and voided volume dependency of peak urinary flow rate and uroflowmetry nomogram in the Indian population

    PubMed Central

    Kumar, Vikash; Dhabalia, Jayesh V.; Nelivigi, Girish G.; Punia, Mahendra S.; Suryavanshi, Manav

    2009-01-01

    Objectives: The objective of this study was measurement of urine flow parameters by a non invasive urodynamic test. Variation of flow rates based on voided volume, age, and gender are described. Different nomograms are available for different populations and racial differences of urethral physiology are described. Currently, there has been no study from the Indian population on uroflow parameters. So the purpose of this study was to establish normal reference ranges of maximum and average flow rates, to see the influence of age, gender, and voided volume on flow rates, and to chart these values in the form of a nomogram. Methods: We evaluated 1,011 uroflowmetry tests in different age groups in a healthy population (healthy relatives of our patients) 16-50 year old males, >50 year old males, 5-15 year old children, and >15 year pre-menopausal and post-menopausal females. The uroflowmetry was done using the gravitimetric method. Flow chart parameters were analyzed and statistical calculations were used for drawing uroflow nomograms. Results: Qmax values in adult males were significantly higher than in the elderly and Qmax values in young females were significantly higher than in young males. Qmax values in males increased with age until 15 years old; followed by a slow decline until reaching 50 years old followed by a rapid decline after 50 years old even after correcting voided volume. Qmax values in females increased with age until they reached age 15 followed by decline in flow rate until a pre-menopausal age followed by no significant decline in post-menopausal females. Qmax values increased with voided volume until 700 cc followed by a plateau and decline. Conclusions: Qmax values more significantly correlated with age and voided volume than Qavg. Nomograms were drawn in centile form to provide normal reference ranges. Qmax values in our population were lower than described in literature. Patients with voided volume up to 50 ml could be evaluated with a nomogram. PMID:19955668

  13. Influence of the South-to-North Water Transfer and the Yangtze River Mitigation Projects on the water quality of Han River, China

    NASA Astrophysics Data System (ADS)

    Liu, W.; Kuo, Y. M.

    2016-12-01

    The Middle Route of China's South-to-North Water Transfer (MSNW) and Yangtze-Han River Water Diversion (YHWD) Projects have been operated since 2014, which may deteriorate water quality in Han River. The 11 water sampling sites distributed from the middle and down streams of Han River watershed were monitored monthly between July 2014 and December 2015. Factor analysis and cluster analysis were applied to investigate the major pollution types and main variables influencing water quality in Han River. The factor analysis distinguishes three main pollution types (agricultural nonpoint source, organic, and phosphorus point source pollution) affecting water quality of Han River. Cluster analysis classified all sampling sites into four groups and determined their pollution source for both Dry and Wet seasons. The sites located at central city receive point source pollution in both seasons. The water quality in downstream Han River (excluding central city sites) was influenced by nonpoint source pollution from Jianghan Plain. Variations of water qualities are associated with hydrological conditions varied from operations of engineering projects and seasonal variability especially in Dry season. Good water quality as Class III mainly occurred when flow rate is greater than 800 cms in Dry season. The low average flow rate below 583 cms will degrade water quality as Class V at almost all sites. Elevating the flow rate discharged from MSNW and YHWD Projects to Han River can avoid degrading water quality especially in low flow conditions and may decrease the probability of algal bloom occurrence in Han River. Increasing the flow rate from 400 cms to 700 cms in main Han River can obviously improve the water quality of Han River. The investigation of relationships between water quality and flow rate in both projects can provide management strategies of water quality for various flow conditions.

  14. Estimation of cerebral metabolic rate of oxygen consumption using combined multiwavelength photoacoustic microscopy and Doppler microultrasound

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Zemp, Roger

    2018-01-01

    The metabolic rate of oxygen consumption is an important metric of tissue oxygen metabolism and is especially critical in the brain, yet few methods are available for measuring it. We use a custom combined photoacoustic-microultrasound system and demonstrate cerebral oxygen consumption estimation in vivo. In particular, the cerebral metabolic rate of oxygen consumption was estimated in a murine model during variation of inhaled oxygen from hypoxia to hyperoxia. The hypothesis of brain autoregulation was confirmed with our method even though oxygen saturation and flow in vessels changed.

  15. Flow rate and trajectory of water spray produced by an aircraft tire

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.

    1986-01-01

    One of the risks associated with wet runway aircraft operation is the ingestion of water spray produced by an aircraft's tires into its engines. This problem can be especially dangerous at or near rotation speed on the takeoff roll. An experimental investigation was conducted in the NASA Langley Research Center Hydrodynamics Research Facility to measure the flow rate and trajectory of water spray produced by an aircraft nose tire operating on a flooded runway. The effects of various parameters on the spray patterns including distance aft of nosewheel, speed, load, and water depth were evaluated. Variations in the spray pattern caused by the airflow about primary structure such as the fuselage and wing are discussed. A discussion of events in and near the tire footprint concerning spray generation is included.

  16. Packaged peristaltic micropump for controlled drug delivery application

    NASA Astrophysics Data System (ADS)

    Vinayakumar, K. B.; Nadiger, Girish; R. Shetty, Vikas; Dinesh, N. S.; Nayak, M. M.; Rajanna, K.

    2017-01-01

    Micropump technology has evolved significantly in the last two decades and is finding a variety of applications ranging from μTAS (micro Total Analysis System) to drug delivery. However, the application area of the micropump is limited owing to: simple pumping mechanism, ease of handling, controlled (microliter to milliliter) delivery, continuous delivery, and accuracy in flow rate. Here, the author presents the design, development, characterization, and precision flow controlling of a DC-motor driven peristaltic pump for controlled drug delivery application. All the micropump components were fabricated using the conventional fabrication technique. The volume flow variation of the pump has been characterized for different viscous fluids. The change in volume flow due to change in back pressure has been presented in detail. The fail-safe mode operation of the pump has been tested and leak rate was measured (˜0.14% leak for an inlet pressure of 140 kPa) for different inlet pressures. The precision volume flow of the pump has been achieved by measuring the pinch cam position and load current. The accuracy in the volume flow has been measured after 300 rotations. Finally, the complete system has been integrated with the necessary electronics and an android application has been developed for the self-administration of bolus and basal delivery of insulin.

  17. Condensation heat transfer and flow friction in silicon microchannels

    NASA Astrophysics Data System (ADS)

    Wu, Huiying; Wu, Xinyu; Qu, Jian; Yu, Mengmeng

    2008-11-01

    An experimental investigation was performed on heat transfer and flow friction characteristics during steam condensation flow in silicon microchannels. Three sets of trapezoidal silicon microchannels, with hydraulic diameters of 77.5 µm, 93.0 µm and 128.5 µm respectively, were tested under different flow and cooling conditions. It was found that both the condensation heat transfer Nusselt number (Nu) and the condensation two-phase frictional multiplier (phi2Lo) were dependent on the steam Reynolds number (Rev), condensation number (Co) and dimensionless hydraulic diameter (Dh/L). With the increase in the steam Reynolds number, condensation number and dimensionless hydraulic diameter, the condensation Nusselt number increased. However, different variations were observed for the condensation two-phase frictional multiplier. With the increase in the steam Reynolds number and dimensionless hydraulic diameter, the condensation two-phase frictional multiplier decreased, while with the increase in the condensation number, the condensation two-phase frictional multiplier increased. Based on the experimental results, dimensionless correlations for condensation heat transfer and flow friction in silicon microchannels were proposed for the first time. These correlations can be used to determine the condensation heat transfer coefficient and pressure drop in silicon microchannels if the steam mass flow rate, cooling rate and geometric parameters are fixed. It was also found that the condensation heat transfer and flow friction have relations to the injection flow (a transition flow pattern from the annular flow to the slug/bubbly flow), and with injection flow moving toward the outlet, both the condensation heat transfer coefficient and the condensation two-phase frictional multiplier increased.

  18. Effects of alternative instream-flow criteria and water-supply demands on ground-water development options in the Big River Area, Rhode Island

    USGS Publications Warehouse

    Granato, Gregory E.; Barlow, Paul M.

    2005-01-01

    Transient numerical ground-water-flow simulation and optimization techniques were used to evaluate potential effects of instream-flow criteria and water-supply demands on ground-water development options and resultant streamflow depletions in the Big River Area, Rhode Island. The 35.7 square-mile (mi2) study area includes three river basins, the Big River Basin (30.9 mi2), the Carr River Basin (which drains to the Big River Basin and is 7.33 mi2 in area), the Mishnock River Basin (3.32 mi2), and a small area that drains directly to the Flat River Reservoir. The overall objective of the simulations was to determine the amount of ground water that could be withdrawn from the three basins when constrained by streamflow requirements at four locations in the study area and by maximum rates of withdrawal at 13 existing and hypothetical well sites. The instream-flow requirement for the outlet of each basin and the outfall of Lake Mishnock were the primary variables that limited the amount of ground water that could be withdrawn. A requirement to meet seasonal ground-water-demand patterns also limits the amount of ground water that could be withdrawn by up to about 50 percent of the total withdrawals without the demand-pattern constraint. Minimum water-supply demands from a public water supplier in the Mishnock River Basin, however, did not have a substantial effect on withdrawals in the Big River Basin. Hypothetical dry-period instream-flow requirements and the effects of artificial recharge also affected the amount of ground water that could be withdrawn. Results of simulations indicate that annual average ground-water withdrawal rates that range up to 16 million gallons per day (Mgal/d) can be withdrawn from the study area under simulated average hydrologic conditions depending on instream-flow criteria and water-supply demand patterns. Annual average withdrawals of 10 to 12 Mgal/d are possible for proposed demands of 3.4 Mgal/d in the Mishnock Basin, and for a constant annual instream-flow criterion of 0.5 cubic foot per second per square mile (ft3/s/mi2) at the four streamflow-constraint locations. An average withdrawal rate of 10 Mgal/d can meet estimates of future (2020) water-supply needs of surrounding communities in Rhode Island. This withdrawal rate represents about 13 percent of the average 2002 daily withdrawal from the Scituate Reservoir (76 Mgal/d), the State?s largest water supply. Average annual withdrawal rates of 6 to 7 Mgal/d are possible for more stringent instream-flow criteria that might be used during dry-period hydrologic conditions. Two example scenarios of dry-period instream-flow constraints were evaluated: first, a minimum instream flow of 0.1 cubic foot per second at any of the four constraint locations; and second, a minimum instream flow of 10 percent of the minimum monthly streamflow estimate for each streamflow-constraint location during the period 1961?2000. The State of Rhode Island is currently (2004) considering methods for establishing instream-flow criteria for streams within the State. Twelve alternative annual, seasonal, or monthly instream-flow criteria that have been or are being considered for application in southeastern New England were used as hypothetical constraints on maximum ground-water-withdrawal rates in management-model calculations. Maximum ground-water-withdrawal rates ranged from 5 to 16 Mgal/d under five alternative annual instream-flow criteria. Maximum ground-water-withdrawal rates ranged from 0 to 13.6 Mgal/d under seven alternative seasonal or monthly instream-flow criteria. The effect of ground-water withdrawals on seasonal variations in monthly average streamflows under each criterion also were compared. Evaluation of management-model results indicates that a single annual instream-flowcriterion may be sufficient to preserve seasonal variations in monthly average streamflows and meet water-supply demands in the Big River Area, because withdrawals from wells in the Big

  19. Coupled Flow and Mechanics in Porous and Fractured Media*

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Newell, P.; Bishop, J.

    2012-12-01

    Numerical models describing subsurface flow through deformable porous materials are important for understanding and enabling energy security and climate security. Some applications of current interest come from such diverse areas as geologic sequestration of anthropogenic CO2, hydro-fracturing for stimulation of hydrocarbon reservoirs, and modeling electrochemistry-induced swelling of fluid-filled porous electrodes. Induced stress fields in any of these applications can lead to structural failure and fracture. The ultimate goal of this research is to model evolving faults and fracture networks and flow within the networks while coupling to flow and mechanics within the intact porous structure. We report here on a new computational capability for coupling of multiphase porous flow with geomechanics including assessment of over-pressure-induced structural damage. The geomechanics is coupled to the flow via the variation in the fluid pore pressures, whereas the flow problem is coupled to mechanics by the concomitant material strains which alter the pore volume (porosity field) and hence the permeability field. For linear elastic solid mechanics a monolithic coupling strategy is utilized. For nonlinear elastic/plastic and fractured media, a segregated coupling is presented. To facilitate coupling with disparate flow and mechanics time scales, the coupling strategy allows for different time steps in the flow solve compared to the mechanics solve. If time steps are synchronized, the controller allows user-specified intra-time-step iterations. The iterative coupling is dynamically controlled based on a norm measuring the degree of variation in the deformed porosity. The model is applied for evaluation of the integrity of jointed caprock systems during CO2 sequestration operations. Creation or reactivation of joints can lead to enhanced pathways for leakage. Similarly, over-pressures can induce flow along faults. Fluid flow rates in fractures are strongly dependent on the effective hydraulic aperture, which is a non-linear function of effective normal stress. The dynamically evolving aperture field updates the effective, anisotropic permeability tensor, thus resulting in a highly coupled multiphysics problem. Two models of geomechanical damage are discussed: critical shear-slip criteria and a sub-grid joint model. Leakage rates through the caprock resulting from the joint model are compared to those assuming intact material, allowing a correlation between potential for leakage and injection rates/pressures, for various in-situ stratigraphies. *This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energys National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  20. Influence of large-scale zonal flows on the evolution of stellar and planetary magnetic fields

    NASA Astrophysics Data System (ADS)

    Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel; ENS Collaboration

    2011-10-01

    Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. The first author thanks DFG and PlanetMag project for financial support.

  1. Numerical simulation of fluid flow and heat transfer in a thin liquid film over a stationary and rotating disk and comparison with experimental data

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1990-01-01

    In the first section, improvements in the theoretical model and computational procedure for the prediction of film height and heat-transfer coefficient of the free surface flow of a radially-spreading thin liquid film adjacent to a flat horizontal surface of finite extent are presented. Flows in the presence and absence of gravity are considered. Theoretical results are compared to available experimental data with good agreement. In the presence of gravity, a hydraulic jump is present, isolating the flow into two regimes: supercritical upstream from the jump and subcritical downstream of it. In this situation, the effects of surface tension are important near the outer edge of the disk where the fluid experiences a free fall. A region of flow separation is present just downstream of the jump. In the absence of gravity, no hydraulic jump or separated flow region is present. The variation of the heat-transfer coefficient for flows in the presence and absence of gravity are also presented. In the second section, the results of a numerical simulation of the flow field and associated heat transfer coefficients are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation was performed for different flow rates and rotational velocities using a 3-D boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an iterative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow is found to be dominated by inertia near the entrance and close to the free surface and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhances the heat transfer coefficient by a significant amount.

  2. A study of nonlinear dynamics of single- and two-phase flow oscillations

    NASA Astrophysics Data System (ADS)

    Mawasha, Phetolo Ruby

    The dynamics of single- and two-phase flows in channels can be contingent on nonlinearities which are not clearly understood. These nonlinearities could be interfacial forces between the flowing fluid and its walls, variations in fluid properties, growth of voids, etc. The understanding of nonlinear dynamics of fluid flow is critical in physical systems which can undergo undesirable system operating scenarios such an oscillatory behavior which may lead to component failure. A nonlinear lumped mathematical model of a surge tank with a constant inlet flow into the tank and an outlet flow through a channel is derived from first principles. The model is used to demonstrate that surge tanks with inlet and outlet flows contribute to oscillatory behavior in laminar, turbulent, single-phase, and two-phase flow systems. Some oscillations are underdamped while others are self-sustaining. The mechanisms that are active in single-phase oscillations with no heating are presented using specific cases of simplified models. Also, it is demonstrated how an external mechanism such as boiling contributes to the oscillations observed in two-phase flow and gives rise to sustained oscillations (or pressure drop oscillations). A description of the pressure drop oscillation mechanism is presented using the steady state pressure drop versus mass flow rate characteristic curve of the heated channel, available steady state pressure drop versus mass flow rate from the surge tank, and the transient pressure drop versus mass flow rate limit cycle. Parametric studies are used to verify the theoretical pressure drop oscillations model using experimental data by Yuncu's (1990). The following contributions are unique: (1) comparisons of nonlinear pressure drop oscillation models with and without the effect of the wall thermal heat capacity and (2) comparisons of linearized pressure drop oscillation models with and without the effect of the wall thermal heat capacity to identify stability boundaries.

  3. [Study of microorganism sterilization by instant microwave and electromagnetic pulse].

    PubMed

    Lu, Zhiyuan; Shi, Pinpin; Zhu, Manzuo; Sun, Wenquan; Ding, Hua; Hou, Jianqiang

    2008-08-01

    The sterilization effects of constant electromagnetic wave and instant pulse on foods and traditional Chinese medical pills are introduced in this paper. From the velum's voltage variation caused by the outward electric filed,the dielectric properties of membranaceous ion and the pass rate of the membranaceous ion, we could analyze the biological heating effect and the biological non-heating effect. The sterilization effect of constant electromagnetic wave is based on the biological heating effect, while the instant electromagnetic pulse is based on the biological non-heating effect. With the applied electronic field, the voltage of membrane could increase, which results in the gates of K+ open, and the flowing out of K+. And the variation of the membranaceous voltage makes the gates of Ca2+ open. The Ca2+ of large consistency could come into the cell by the gradient of voltage. It could induce the death of the cells. The greater the variation of membranaceous voltage becomes, the higher will be the death rate of the cells.

  4. Hydrological controls on chemical weathering in the typical carbonated river basin, SW China

    NASA Astrophysics Data System (ADS)

    LI, S. L.; Jin, L.; Zhong, J., Sr.

    2016-12-01

    The dynamics of dissolved load in the riverine system could provide an insight in understanding the surface processes, such as chemical weathering and carbon cycle. The Xijiang River is a typical carbonated river basin, located at southwestern China. The Xijiang River catchment is controlled by a humid subtropical climate. In spite of being impacted by monsoonal climate and with significant variations of discharge, the temporal variations of compositions of main ions and chemical weathering of Xijiang River are rarely documented. In this study, a systematic investigation on the seasonal and episodic water geochemistry (major ions and d13CDIC) of the major branch and outlet of Xijiang River were carried out with the purpose of 1) characterizing temporal variations of aqueous geochemistry and its controlling factors, 2) exploring the impact of hydrological controls on chemical weathering of the Xijiang River Basin. The results show that the concentrations of Cl, Na, Ca, Mg, and HCO3 are generally decreased during monsoon season, which should be mainly caused by dilution. However, the dilution effect does not strictly follow the theoretical dilution curve. Moreover, d13CDIC in the high-flow period has more negative values than in low-flow period. More negative δ13CDIC values in the river during the wet season reflected the influx of rain water with biological CO2 during the rain event. This study suggested that hydrochemistry and d13CDIC had a large variation responding to rainstorm events. The calculated results show that the weathering rates of silicate and carbonate as well as that of related CO2 consumption have a positive relation with water discharge, highlighting the hydrological controls on chemical weathering and CO2 consumption rates. The results indicated carbonated weathering rate responding to hydrological condition sensitivity in the typical carbonate river basin. This work was supported by The China National Science Fund for Outstanding Young Scholars (Grant No. 41422303).

  5. Variations of iron flux and organic carbon remineralization in a subterranean estuary caused by interannual variations in recharge

    USGS Publications Warehouse

    Roy, Moutusi; Martin, Jonathan B.; Cable, Jaye E.; Smith, Christopher G.

    2013-01-01

    We determine the inter-annual variations in diagenetic reaction rates of sedimentary iron (Fe ) in an east Florida subterranean estuary and evaluate the connection between metal fluxes and recharge to the coastal aquifer. Over the three-year study period (from 2004 to 2007), the amount of Fe-oxides reduced at the study site decreased from 192 g/yr to 153 g/yr and associated organic carbon (OC) remineralization decreased from 48 g/yr to 38 g/yr. These reductions occurred although the Fe-oxide reduction rates remained constant around 1 mg/cm2/yr. These results suggest that changes in flow rates of submarine groundwater discharge (SGD) related to changes in precipitation may be important to fluxes of the diagenetic reaction products. Rainfall at a weather station approximately 5 km from the field area decreased from 12.6 cm/month to 8.4 cm/month from 2004 to 2007. Monthly potential evapotranspiration (PET) calculated from Thornthwaite’s method indicated potential evapotranspiration cycled from about 3 cm/month in the winter to about 15 cm/month in the summer so that net annual recharge to the aquifer decreased from 40 cm in 2004 to -10 cm in 2007. Simultaneously, with the decrease in recharge of groundwater, freshwater SGD decreased by around 20% and caused the originally 25 m wide freshwater seepage face to decrease in width by about 5 m. The smaller seepage face reduced the area under which Fe-oxides were undergoing reductive dissolution. Consequently, the observed decrease in Fe flux is controlled by hydrology of the subterranean estuary. These results point out the need to better understand linkages between temporal variations in diagenetic reactions and changes in flow within subterranean estuaries in order to accurately constrain their contribution to oceanic fluxes of solutes from subterranean estuaries.

  6. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the tests and shall be checked at zero and at least one flow rate within ±3 percent of 16.7 L/min... this test, the absolute difference in values calculated in Equation 21 of this paragraph (g)(4) must... absolute difference between the mean ambient air pressure indicated by the test sampler and the ambient...

  7. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the tests and shall be checked at zero and at least one flow rate within ±3 percent of 16.7 L/min... this test, the absolute difference in values calculated in Equation 21 of this paragraph (g)(4) must... absolute difference between the mean ambient air pressure indicated by the test sampler and the ambient...

  8. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the tests and shall be checked at zero and at least one flow rate within ±3 percent of 16.7 L/min... this test, the absolute difference in values calculated in Equation 21 of this paragraph (g)(4) must... absolute difference between the mean ambient air pressure indicated by the test sampler and the ambient...

  9. 40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within... absolute difference calculated in Equation 15 of this paragraph (g)(4) must not exceed 0.3 (CV%) for each test run. (5) Ambient temperature measurement accuracy. (i) Calculate the absolute value of the...

  10. 40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within... absolute difference calculated in Equation 15 of this paragraph (g)(4) must not exceed 0.3 (CV%) for each test run. (5) Ambient temperature measurement accuracy. (i) Calculate the absolute value of the...

  11. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the tests and shall be checked at zero and at least one flow rate within ±3 percent of 16.7 L/min... this test, the absolute difference in values calculated in Equation 21 of this paragraph (g)(4) must... absolute difference between the mean ambient air pressure indicated by the test sampler and the ambient...

  12. Variation in genetic structure and gene flow across the range of Sequoiadendron giganteum (giant sequoia)

    Treesearch

    Rainbow DeSilva; Richard S. Dodd

    2017-01-01

    During this century, climate warming and altered precipitation patterns will lead to habitat changes that may be beneficial to some long-lived tree species and detrimental to others. Paleoendemics, with limited and disjunct distributions will face the greatest challenges, as migration rates will be too slow to keep pace with rapid environmental change and populations...

  13. Inverse problem and variation method to optimize cascade heat exchange network in central heating system

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Wei, Zhiyuan; Zhang, Yinping; Wang, Xin

    2017-12-01

    Urban heating in northern China accounts for 40% of total building energy usage. In central heating systems, heat is often transferred from heat source to users by the heat network where several heat exchangers are installed at heat source, substations and terminals respectively. For given overall heating capacity and heat source temperature, increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving. In this paper, the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established. Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity, the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method. The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger. It also indicates that in order to improve the thermal performance of the whole system, more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small. This work is important for guiding the optimization design of practical cascade heating systems.

  14. Blood flow/pump rotation ratio as an artificial lung performance monitoring tool during extracorporeal respiratory support using centrifugal pumps

    PubMed Central

    Park, Marcelo; Mendes, Pedro Vitale; Hirota, Adriana Sayuri; dos Santos, Edzangela Vasconcelos; Costa, Eduardo Leite Vieira; Azevedo, Luciano Cesar Pontes

    2015-01-01

    Objective To analyze the correlations of the blood flow/pump rotation ratio and the transmembrane pressure, CO2 and O2 transfer during the extracorporeal respiratory support. Methods Five animals were instrumented and submitted to extracorporeal membrane oxygenation in a five-step protocol, including abdominal sepsis and lung injury. Results This study showed that blood flow/pump rotations ratio variations are dependent on extracorporeal membrane oxygenation blood flow in a positive logarithmic fashion. Blood flow/pump rotation ratio variations are negatively associated with transmembrane pressure (R2 = 0.5 for blood flow = 1500mL/minute and R2 = 0.4 for blood flow = 3500mL/minute, both with p < 0.001) and positively associated with CO2 transfer variations (R2 = 0.2 for sweep gas flow ≤ 6L/minute, p < 0.001, and R2 = 0.1 for sweep gas flow > 6L/minute, p = 0.006), and the blood flow/pump rotation ratio is not associated with O2 transfer variations (R2 = 0.01 for blood flow = 1500mL/minute, p = 0.19, and R2 = - 0.01 for blood flow = 3500 mL/minute, p = 0.46). Conclusion Blood flow/pump rotation ratio variation is negatively associated with transmembrane pressure and positively associated with CO2 transfer in this animal model. According to the clinical situation, a decrease in the blood flow/pump rotation ratio can indicate artificial lung dysfunction without the occurrence of hypoxemia. PMID:26340159

  15. Plastic deformation behaviors of Ni- and Zr-based bulk metallic glasses subjected to nanoindentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weizhong, Liang, E-mail: wzliang1966@126.com; Zhiliang, Ning; Zhenqian, Dang

    2013-12-15

    Plastic deformation behaviors of Ni{sub 42}Ti{sub 20}Zr{sub 21.5}Al{sub 8}Cu{sub 5}Si{sub 3.5} and Zr{sub 51}Ti{sub 5}Ni{sub 10}Cu{sub 25}Al{sub 9} bulk metallic glasses at room temperature were studied by nanoindentation testing and atomic force microscopy under equivalent indentation experimental conditions. The different chemical composition of these two bulk metallic glasses produced variant tendencies for displacement serrated flow to occur during the loading process. The nanoindentation strain rate was calculated as a function of indentation displacement in order to verify the occurrence of displacement serrated flow at different loading rates. Atomic force microscopy revealed decreasing numbers of discrete shear bands around the indentationmore » sites as loading rates increased from 0.025 to 2.5 mNs{sup −1}. Variations in plastic deformation behaviors between Ni and Zr-based glasses materials can be explained by the different metastable microstructures and thermal stabilities of the two materials. The mechanism governing plastic deformation of these metallic glasses was analyzed in terms of an established model of the shear transformation zone. - Highlights: • Plastic deformation of Ni- and Zr-based BMG is studied under identical conditions • Zr-based BMG undergoes a greater extent of plastic deformation than Ni-based BMG • Nanoindentation strain rate is studied to clarify variation in plastic deformation • Metastable microstructure, thermal stability affect BMG plastic deformation.« less

  16. Characteristics of heat exchange in the region of injection into a supersonic high-temperature flow

    NASA Technical Reports Server (NTRS)

    Bakirov, F. G.; Shaykhutdinov, Z. G.

    1985-01-01

    An experimental investigation of the local heat transfer coefficient distribution during gas injection into the supersonic-flow portion of a Laval nozzle is discussed. The controlling dimensionless parameters of the investigated process are presented in terms of a generalized relation for the maximum value of the heat transfer coefficient in the nozzle cross section behind the injection hole. Data on the heat transfer coefficient variation along the nozzle length as a function of gas injection rate are also presented, along with the heat transfer coefficient distribution over a cross section of the nozzle.

  17. Hydrological controls on Chemical weathering in the Jinsha River draining the southeastern Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Zhong, Jun; Li, Siliang; Yue, Fujun; Ding, Hu

    2016-04-01

    The geochemistry of the riverine waters could provide an insight in understanding the surface processes, such as chemical weathering and carbon cycle. As the headwater of Chanjiang (Yangtze) River, Jinsha River flows on the southestern Qinhai-Tibet Plateau at high altitute (from 1000m to 4600m) above the major areas of human impact and carries important information on this erosive region. In spite of being impacted by monsoonal climate and with significant variations of discharge, the temporal variations of compositions of main ions and chemical weathering of Jinsha River are rarely documented. In this study, a systematic investigation on the seasonal and episodic water geochemistry (major ions and δ13CDIC) of the outlet of Jinsha River basin were carried out with the purpose of 1) characterizing temporal variations of aqueous geochemistry and its controlling factors, 2) quantifying rock weathering and associated CO2 consumption rates, and 3) exploring the impact of hydrological controls on chemical weathering of the Jinsha River Basin. The results show that the concentrations of Ca, Mg, HCO3 and NO3 are generally decreased during monsoon season, while that of Cl, Na, SO4, K are relative higher in monsoon season than in dry season, which may be mainly caused by hydrological condition, i.e., with increased runoff, more surficial evaporate dissolved water and salt lake water of the Basin flow into the river. Moreover, due to increased contribution of soil CO2and fast decomposition of organic matters, δ13CDIC in the high-flow period has more negative values than in low-flow period, and shows a negative relation with the concentration of DOC. An increasing of Ca concentrations was found with shift of the δ13CDIC values, positively, indicating the precipitation might be occured. Meanwhile, the dissolution of gypsum and anhydrite might enhance the calcium precipition. The forward model results show that the weathering rates of silicate and carbonate as well as that of related CO2 consumption have a positive relation with water discharge, highlighting the hydrological controls on chemical weathering and CO2 consumption rates, which should be considered in the future study in river basins impacted by monsoon climate. This work was supported by The China National Science Fund for Outstanding Young Scholars (Grant No. 41422303).

  18. Design of an interface to allow microfluidic electrophoresis chips to drink from the fire hose of the external environment.

    PubMed

    Attiya, S; Jemere, A B; Tang, T; Fitzpatrick, G; Seiler, K; Chiem, N; Harrison, D J

    2001-01-01

    An interface design is presented that facilitates automated sample introduction into an electrokinetic microchip, without perturbing the liquids within the microfluidic device. The design utilizes an interface flow channel with a volume flow resistance that is 0.54-4.1 x 10(6) times lower than the volume flow resistance of the electrokinetic fluid manifold used for mixing, reaction, separation, and analysis. A channel, 300 microm deep, 1 mm wide and 15-20 mm long, was etched in glass substrates to create the sample introduction channel (SIC) for a manifold of electrokinetic flow channels in the range of 10-13 microm depth and 36-275 microm width. Volume flow rates of up to 1 mL/min were pumped through the SIC without perturbing the solutions within the electrokinetic channel manifold. Calculations support this observation, suggesting a leakage flow to electroosmotic flow ratio of 0.1:1% in the electrokinetic channels, arising from 66-700 microL/min pressure-driven flow rates in the SIC. Peak heights for capillary electrophoresis separations in the electrokinetic flow manifold showed no dependence on whether the SIC pump was on or off. On-chip mixing, reaction and separation of anti-ovalbumin and ovalbumin could be performed with good quantitative results, independent of the SIC pump operation. Reproducibility of injection performance, estimated from peak height variations, ranged from 1.5-4%, depending upon the device design and the sample composition.

  19. Demonstration that a new flow sensor can operate in the clinical range for cerebrospinal fluid flow

    PubMed Central

    Raj, Rahul; Lakshmanan, Shanmugamurthy; Apigo, David; Kanwal, Alokik; Liu, Sheng; Russell, Thomas; Madsen, Joseph R.; Thomas, Gordon A.; Farrow, Reginald C.

    2015-01-01

    A flow sensor has been fabricated and tested that is capable of measuring the slow flow characteristic of the cerebrospinal fluid in the range from less than 4 mL/h to above 100 mL/h. This sensor is suitable for long-term implantation because it uses a wireless external spectrometer to measure passive subcutaneous components. The sensors are pressure-sensitive capacitors, in the range of 5 pF with an air gap at atmospheric pressure. Each capacitor is in series with an inductor to provide a resonant frequency that varies with flow rate. At constant flow, the system is steady with drift <0.3 mL/h over a month. At variable flow rate, V̇, the resonant frequency, f0, which is in the 200–400 MHz range, follows a second order polynomial with respect to V̇. For this sensor system the uncertainty in measuring f0 is 30 kHz which corresponds to a sensitivity in measuring flow of ΔV̇= 0.6 mL/hr. Pressures up to 20 cm H2O relative to ambient pressure were also measured. An implantable twin capacitor system is proposed that can measure flow, which is fully compensated for all hydrostatic pressures. For twin capacitors, other sources of systematic variation within clinical range, such as temperature and ambient pressure, are smaller than our sensitivity and we delineate a calibration method that should maintain clinically useful accuracy over long times. PMID:26543321

  20. The stabilizing effect of compressibility in turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Sarkar, S.

    1994-01-01

    Direct numerical simulation of turbulent homogeneous shear flow is performed in order to clarify compressibility effects on the turbulence growth in the flow. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number M(t) and the gradient Mach number M(g). Two series of simulations are performed where the initial values of M(g) and M(t) are increased separately. The growth rate of turbulent kinetic energy is observed to decrease in both series of simulations. This 'stabilizing' effect of compressibility on the turbulent energy growth rate is observed to be substantially larger in the DNS series where the initial value of M(g) is changed. A systematic companion of the different DNS cues shows that the compressibility effect of reduced turbulent energy growth rate is primarily due to the reduced level of turbulence production and not due to explicit dilatational effects. The reduced turbulence production is not a mean density effect since the mean density remains constant in compressible homogeneous shear flow. The stabilizing effect of compressibility on the turbulence growth is observed to increase with the gradient Mach number M(g) in the homogeneous shear flow DNS. Estimates of M(g) for the mixing and the boundary layer are obtained. These estimates show that the parameter M(g) becomes much larger in the high-speed mixing layer relative to the high-speed boundary layer even though the mean flow Mach numbers are the same in the two flows. Therefore, the inhibition of turbulent energy production and consequent 'stabilizing' effect of compressibility on the turbulence (over and above that due to the mean density variation) is expected to be larger in the mixing layer relative to the boundary layer in agreement with experimental observations.

  1. Quantifying hyporheic exchange dynamics in a highly regulated large river reach

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Bao, J.; Huang, M.; Hou, Z.; Arntzen, E.; Mackley, R.; Harding, S.; Crump, A.; Xu, Y.; Song, X.; Chen, X.; Stegen, J.; Hammond, G. E.; Thorne, P. D.; Zachara, J. M.

    2016-12-01

    Hyporheic exchange is an important mechanism taking place in riverbanks and riverbed sediments, where the river water and shallow groundwater mix and interact with each other. The direction and magnitude of hyporheic flux that penetrates the river bed and residence time of river water in the hyporheic zone are critical for biogeochemical processes such as carbon and nitrogen cycling, and biodegradation of organic contaminants. Hyporheic flux can be quantified using many direct and indirect measurements as well as analytical and numerical modeling tools. However, in a relatively large river, these methods can be limited by the accessibility, spatial constraints, complexity of geomorphologic features and subsurface properties, and computational power. In rivers regulated by hydroelectric dams, quantifying hyporheic fluxes becomes more challenging due to frequent hydropeaking events created by dam operations. In this study, we developed and validated methods that combined field measurements and numerical modeling for estimating hyporheic fluxes across the river bed in a 7-km long reach of the highly regulated Columbia River. The reach has a minimum width of about 800 meters and variations in river stage within a day could be up to two meters due to the upstream dam operations. In shallow water along the shoreline, vertical thermal profiles measured by self-recording thermistors were combined with time series of hydraulic gradient derived from river stage and water level at in-land wells to estimate the hyporheic flux rate. For the deep section, a high resolution computational fluid dynamics (CFD) modeling framework was developed to characterize the spatial distribution of flux rates at the river bed and the residence time of hyporheic flow at different river flow conditions. Our modeling results show that the rates of hyporheic exchange and residence time are controlled by (1) hydrostatic pressure induced by river stage fluctuations, and (2) hydrodynamic drivers associated with flow velocity variations, which also to certain extent dependent on flow conditions.

  2. A direct numerical simulation-based re-examination of coefficients in the pressure-strain models in second-moment closures

    NASA Astrophysics Data System (ADS)

    Jakirlić, S.; Hanjalić, K.

    2013-10-01

    The most challenging task in closing the Reynolds-averaged Navier-Stokes equations at the second-moment closure (SMC) level is to model the pressure-rate-of-strain correlation in the transport equation for the Reynolds-stress tensor. The accurate modelling of this term, commonly denoted as Φij, is the key prerequisite for the correct capturing of the stress anisotropy, which potentially gives SMCs a decisive advantage over the ‘anisotropy-blind’ eddy-viscosity models. A variety of models for Φij proposed in the literature can all be expressed as a function of the stress-anisotropy-, rate-of-strain- and rate-of-rotation second-rank tensors, so that the modelling task is reduced to determining the model coefficients. It is, thus, the coefficients, associated with various terms in the expression, which differ from one model to another. The model coefficients have been traditionally determined with reference to the available data for sets of generic flows while being forced to satisfying the known values at flow boundaries. We evaluated the coefficients up to the second-order terms (in stress-anisotropy aij) directly from the DNS database for Φij and the turbulence variables involved in its modelling. The variations of the coefficients across the flow in a plane channel over a range of Reynolds numbers are compared with several popular models. The analysis provided a reasonable support for the common tensor-expansion representation of both the slow and rapid terms. Apart from the near-wall region and the channel centre, most coefficients for higher Re numbers showed themselves to be reasonably uniform, with the values closest to those proposed by Sarkar et al (1991 J. Fluid Mech. 227 245-72). An illustration of the coefficient variation for the ‘quasi-linear’ model is also presented for flow over a backward-facing step.

  3. Intrapopulation Genome Size Variation in D. melanogaster Reflects Life History Variation and Plasticity

    PubMed Central

    Ellis, Lisa L.; Huang, Wen; Quinn, Andrew M.; Ahuja, Astha; Alfrejd, Ben; Gomez, Francisco E.; Hjelmen, Carl E.; Moore, Kristi L.; Mackay, Trudy F. C.; Johnston, J. Spencer; Tarone, Aaron M.

    2014-01-01

    We determined female genome sizes using flow cytometry for 211 Drosophila melanogaster sequenced inbred strains from the Drosophila Genetic Reference Panel, and found significant conspecific and intrapopulation variation in genome size. We also compared several life history traits for 25 lines with large and 25 lines with small genomes in three thermal environments, and found that genome size as well as genome size by temperature interactions significantly correlated with survival to pupation and adulthood, time to pupation, female pupal mass, and female eclosion rates. Genome size accounted for up to 23% of the variation in developmental phenotypes, but the contribution of genome size to variation in life history traits was plastic and varied according to the thermal environment. Expression data implicate differences in metabolism that correspond to genome size variation. These results indicate that significant genome size variation exists within D. melanogaster and this variation may impact the evolutionary ecology of the species. Genome size variation accounts for a significant portion of life history variation in an environmentally dependent manner, suggesting that potential fitness effects associated with genome size variation also depend on environmental conditions. PMID:25057905

  4. Firn thickness variations across the Northeast Greenland Ice Stream margins indicating nonlinear densification rates

    NASA Astrophysics Data System (ADS)

    Riverman, K. L.; Anandakrishnan, S.; Alley, R. B.; Peters, L. E.; Christianson, K. A.; Muto, A.

    2013-12-01

    Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland, draining approximately 8.4% of the ice sheet's area. The flow pattern and stability mechanism of this ice stream are unique to others in Greenland and Antarctica, and merit further study to ascertain the sensitivity of this ice stream to future climate change. Geophysical methods are valuable tools for this application, but their results are sensitive to the structure of the firn and any spatial variations in firn properties across a given study region. Here we present firn data from a 40-km-long seismic profile across the upper reaches of NEGIS, collected in the summer of 2012 as part of an integrated ground-based geophysical survey. We find considerable variations in firn thickness that are coincident with the ice stream shear margins, where a thinner firn layer is present within the margins, and a thicker, more uniform firn layer is present elsewhere in our study region. Higher accumulation rates in the marginal surface troughs due to drift-snow trapping can account for some of this increased densification; however, our seismic results also highlight enhanced anisotropy within the firn and upper ice column that is confined to narrow bands within the shear margins. We thus interpret these large firn thickness variations and abrupt changes in anisotropy as indicators of firn densification dependent on the effective stress state as well as the overburden pressure, suggesting that the strain rate increases nonlinearly with stress across the shear margins. A GPS strain grid maintained for three weeks across both margins observed strong side shearing, with rapid stretching and then compression along particle paths, indicating large deviatoric stresses in the margins. This work demonstrates the importance of developing a high-resolution firn densification model when conducting geophysical field work in regions possessing a complex ice flow history; it also motivates the need for a more detailed firn densification study along NEGIS to better understand the evolution of these abrupt structural variations within the firn.

  5. Reviewing RAWP. Variations in admission rates: implications for equitable allocation of resources.

    PubMed Central

    Bevan, G; Ingram, R

    1987-01-01

    The review of the Resource Allocation Working Party (RAWP) formula by the National Health Service Management Board has considered the method used to account for cross boundary flows between health authorities. There is no consensus on how this should be done subregionally, as it raises the unresolved problem of the best method of estimating the size of catchment populations. Different methods produce different population sizes when the admission rates of individuals living in different districts vary. The National Health Service/Department of Health and Social Security acute services working group on performance indicators recently considered the assumptions made by different methods in terms of admission thresholds set by hospital clinicians. More complicated methods of assessing catchment areas seem to offer little advantage over the simplest method, but none of the methods answer the underlying questions of what truly determines admission rates and whether higher admission rates are better than lower ones. Empirical research into variations in admission rates and their relation to outcomes is important for determining the fair allocation of resources in future. PMID:3120865

  6. Dielectric barrier structure with hollow electrodes and its recoil effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shuang; Chen, Qunzhi; Liu, Jiahui

    2015-06-15

    A dielectric barrier structure with hollow electrodes (HEDBS), in which gas flow oriented parallel to the electric field, was proposed. Results showed that with this structure, air can be effectively ignited, forming atmospheric low temperature plasma, and the proposed HEDBS could achieve much higher electron density (5 × 10{sup 15}/cm{sup 3}). It was also found that the flow condition, including outlet diameter and flow rate, played a key role in the evolution of electron density. Optical emission spectroscopy diagnostic results showed that the concentration of reactive species had the same variation trend as the electron density. The simulated distribution of discharge gasmore » flow indicated that the HEDBS had a strong recoil effect on discharge gas, and could efficiently promote generating electron density as well as reactive species.« less

  7. The debris-flow rheology myth

    USGS Publications Warehouse

    Iverson, R.M.; ,

    2003-01-01

    Models that employ a fixed rheology cannot yield accurate interpretations or predictions of debris-flow motion, because the evolving behavior of debris flows is too complex to be represented by any rheological equation that uniquely relates stress and strain rate. Field observations and experimental data indicate that debris behavior can vary from nearly rigid to highly fluid as a consequence of temporal and spatial variations in pore-fluid pressure and mixture agitation. Moreover, behavior can vary if debris composition changes as a result of grain-size segregation and gain or loss of solid and fluid constituents in transit. An alternative to fixed-rheology models is provided by a Coulomb mixture theory model, which can represent variable interactions of solid and fluid constituents in heterogeneous debris-flow surges with high-friction, coarse-grained heads and low-friction, liquefied tails. ?? 2003 Millpress.

  8. Ductile crustal flow in Europe's lithosphere

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Burov, Evgene B.; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.

    2011-12-01

    Potential gravity theory (PGT) predicts the presence of significant gravity-induced horizontal stresses in the lithosphere associated with lateral variations in plate thickness and composition. New high resolution crustal thickness and density data provided by the EuCRUST-07 model are used to compute the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. To investigate relationships between crustal and mantle lithospheric movements, we compare these results with the observed directions of mantle lithospheric anisotropy and GPS velocity vectors. We identify areas whose evolution could have been significantly affected by gravity-driven ductile crustal flow. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Gravitational forces directed from areas of high gravitational potential energy to subsiding basin areas can strongly reduce lithospheric extension in the latter, leading to a gradual late stage inversion of the entire system. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. In particular, in a number of regions the predicted strain rates are comparable to tectonically induced strain rates. These results are also important for quantifying the thickness of the low viscosity zones in the lowermost part of the crustal layers.

  9. Analytical solution of groundwater flow in a sloping aquifer with stream-aquifer interaction.

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhan, H.

    2017-12-01

    This poster presents a new analytical solution to study water exchange, hydraulic head distribution and water flow in a stream-unconfined aquifer interaction system with a sloping bed and stream of varying heads in presence of two thin vertical sedimentary layers. The formation of a clogging bed of fine-grained sediments allows the interfaces among a sloping aquifer and two rivers as the third kind and Cauchy boundary conditions. The numerical solution of the corresponding nonlinear Boussinesq equation is also developed to compare the performance of the analytical solution. The effects of precipitation recharge, bed slope and stage variation rate of two rivers for water flow in the sloping aquifer are discussed in the results.

  10. The Sound Generated by Mid-Ocean Ridge Black Smoker Hydrothermal Vents

    PubMed Central

    Crone, Timothy J.; Wilcock, William S.D.; Barclay, Andrew H.; Parsons, Jeffrey D.

    2006-01-01

    Hydrothermal flow through seafloor black smoker vents is typically turbulent and vigorous, with speeds often exceeding 1 m/s. Although theory predicts that these flows will generate sound, the prevailing view has been that black smokers are essentially silent. Here we present the first unambiguous field recordings showing that these vents radiate significant acoustic energy. The sounds contain a broadband component and narrowband tones which are indicative of resonance. The amplitude of the broadband component shows tidal modulation which is indicative of discharge rate variations related to the mechanics of tidal loading. Vent sounds will provide researchers with new ways to study flow through sulfide structures, and may provide some local organisms with behavioral or navigational cues. PMID:17205137

  11. Experimental study of hemodynamics in the circle of willis

    PubMed Central

    2015-01-01

    Background The Circle of Willis (CoW) is an important collateral pathway of the cerebral blood flow. An experimental study of the cerebral blood flow (CBF) distribution in different anatomical variations may help to a better understanding of the collateral mechanism of the CoW. Methods An in-vitro test rig was developed to simulate the physiological cerebral blood flow in the CoW. Ten anatomical variations were considered in this study, include a set of different degrees of stenosis in L-ICA and L-ICA occlusion coexist with common anatomical variations. Volume flow rates of efferent arteries and pressure signals at the end of communicating arteries of each case were recorded. Physiological pressure waveforms were applied as inlet boundary condition. Results In the development of L-ICA stenosis, the total CBF decreases with the increase of stenosis degree. The blood supply of ipsilateral middle cerebral artery (MCA) was affected most by the stenosis of L-ICA. Anterior communicating artery (ACoA) and ipsilateral posterior communicating artery (PCoA) function as important collateral pathways of cerebral collateral circulation when unilateral stenosis occurred. The blood supply of anterior cerebral circulation was compensated by the posterior cerebral circulation through ipsilateral PCoA when L-ICA stenosis degree is greater than 40% and the affected side was compensated immediately by the unaffected side through ACoA. Blood flow of the anterior circulation and the total CBF reached the minimum among all cases studied when L-ICA occlusion coexist with the absence of PCoA. Conclusion The results demonstrated the flow distribution patterns of the CoW under anatomical variations and clarified the collateral mechanism of the CoW. The flow ACoA is the most sensitive indexes to the morphology change of ipsilateral ICA. The relative independence of the circulation in anterior and posterior sections of the CoW is not broken and the function of ipsilateral PCoA is not activated until a severe stenosis of unilateral ICA occurs. PCoA is the most important collateral pathway of the collateral circulation and the missing of PCoA has the highest risk of stroke when the ipsilateral ICA has severe stenosis. These findings may provide the basis for future therapeutic and diagnosis applications. PMID:25603138

  12. Hybrid fuel formulation and technology development

    NASA Technical Reports Server (NTRS)

    Dean, D. L.

    1995-01-01

    The objective was to develop an improved hybrid fuel with higher regression rate, a regression rate expression exponent close to 0.5, lower cost, and higher density. The approach was to formulate candidate fuels based on promising concepts, perform thermomechanical analyses to select the most promising candidates, develop laboratory processes to fabricate fuel grains as needed, fabricate fuel grains and test in a small lab-scale motor, select the best candidate, and then scale up and validate performance in a 2500 lbf scale, 11-inch diameter motor. The characteristics of a high performance fuel have been verified in 11-inch motor testing. The advanced fuel exhibits a 15% increase in density over an all hydrocarbon formulation accompanied by a 50% increase in regression rate, which when multiplied by the increase in density yields a 70% increase in fuel mass flow rate; has a significantly lower oxidizer-to-fuel (O/F) ratio requirement at 1.5; has a significantly decreased axial regression rate variation making for more uniform propellant flow throughout motor operation; is very clean burning; extinguishes cleanly and quickly; and burns with a high combustion efficiency.

  13. Statistical characteristics of falling-film flows: A synergistic approach at the crossroads of direct numerical simulations and experiments

    NASA Astrophysics Data System (ADS)

    Charogiannis, Alexandros; Denner, Fabian; van Wachem, Berend G. M.; Kalliadasis, Serafim; Markides, Christos N.

    2017-12-01

    We scrutinize the statistical characteristics of liquid films flowing over an inclined planar surface based on film height and velocity measurements that are recovered simultaneously by application of planar laser-induced fluorescence (PLIF) and particle tracking velocimetry (PTV), respectively. Our experiments are complemented by direct numerical simulations (DNSs) of liquid films simulated for different conditions so as to expand the parameter space of our investigation. Our statistical analysis builds upon a Reynolds-like decomposition of the time-varying flow rate that was presented in our previous research effort on falling films in [Charogiannis et al., Phys. Rev. Fluids 2, 014002 (2017), 10.1103/PhysRevFluids.2.014002], and which reveals that the dimensionless ratio of the unsteady term to the mean flow rate increases linearly with the product of the coefficients of variation of the film height and bulk velocity, as well as with the ratio of the Nusselt height to the mean film height, both at the same upstream PLIF/PTV measurement location. Based on relations that are derived to describe these results, a methodology for predicting the mass-transfer capability (through the mean and standard deviation of the bulk flow speed) of these flows is developed in terms of the mean and standard deviation of the film thickness and the mean flow rate, which are considerably easier to obtain experimentally than velocity profiles. The errors associated with these predictions are estimated at ≈1.5 % and 8% respectively in the experiments and at <1 % and <2 % respectively in the DNSs. Beyond the generation of these relations for the prediction of important film flow characteristics based on simple flow information, the data provided can be used to design improved heat- and mass-transfer equipment reactors or other process operation units which exploit film flows, but also to develop and validate multiphase flow models in other physical and technological settings.

  14. A coupled metabolic-hydraulic model and calibration scheme for estimating of whole-river metabolism during dynamic flow conditions

    USGS Publications Warehouse

    Payn, Robert A.; Hall, Robert O Jr.; Kennedy, Theodore A.; Poole, Geoff C; Marshall, Lucy A.

    2017-01-01

    Conventional methods for estimating whole-stream metabolic rates from measured dissolved oxygen dynamics do not account for the variation in solute transport times created by dynamic flow conditions. Changes in flow at hourly time scales are common downstream of hydroelectric dams (i.e. hydropeaking), and hydrologic limitations of conventional metabolic models have resulted in a poor understanding of the controls on biological production in these highly managed river ecosystems. To overcome these limitations, we coupled a two-station metabolic model of dissolved oxygen dynamics with a hydrologic river routing model. We designed calibration and parameter estimation tools to infer values for hydrologic and metabolic parameters based on time series of water quality data, achieving the ultimate goal of estimating whole-river gross primary production and ecosystem respiration during dynamic flow conditions. Our case study data for model design and calibration were collected in the tailwater of Glen Canyon Dam (Arizona, USA), a large hydropower facility where the mean discharge was 325 m3 s 1 and the average daily coefficient of variation of flow was 0.17 (i.e. the hydropeaking index averaged from 2006 to 2016). We demonstrate the coupled model’s conceptual consistency with conventional models during steady flow conditions, and illustrate the potential bias in metabolism estimates with conventional models during unsteady flow conditions. This effort contributes an approach to solute transport modeling and parameter estimation that allows study of whole-ecosystem metabolic regimes across a more diverse range of hydrologic conditions commonly encountered in streams and rivers.

  15. Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis.

    PubMed Central

    Hey, Jody; Nielsen, Rasmus

    2004-01-01

    The genetic study of diverging, closely related populations is required for basic questions on demography and speciation, as well as for biodiversity and conservation research. However, it is often unclear whether divergence is due simply to separation or whether populations have also experienced gene flow. These questions can be addressed with a full model of population separation with gene flow, by applying a Markov chain Monte Carlo method for estimating the posterior probability distribution of model parameters. We have generalized this method and made it applicable to data from multiple unlinked loci. These loci can vary in their modes of inheritance, and inheritance scalars can be implemented either as constants or as parameters to be estimated. By treating inheritance scalars as parameters it is also possible to address variation among loci in the impact via linkage of recurrent selective sweeps or background selection. These methods are applied to a large multilocus data set from Drosophila pseudoobscura and D. persimilis. The species are estimated to have diverged approximately 500,000 years ago. Several loci have nonzero estimates of gene flow since the initial separation of the species, with considerable variation in gene flow estimates among loci, in both directions between the species. PMID:15238526

  16. Aortic flow conditions predict ejection efficiency in the NHLBI-Sponsored Women's Ischemia Syndrome Evaluation (WISE).

    PubMed

    Doyle, Mark; Pohost, Gerald M; Bairey Merz, C Noel; Farah, Victor; Shaw, Leslee J; Sopko, George; Rogers, William J; Sharaf, Barry L; Pepine, Carl J; Thompson, Diane V; Rayarao, Geetha; Tauxe, Lindsey; Kelsey, Sheryl F; Biederman, Robert W W

    2017-06-01

    The Windkessel model of the cardiovascular system, both in its original wind-chamber and flow-pipe form, and in its electrical circuit analog has been used for over a century to modeled left ventricular ejection conditions. Using parameters obtained from aortic flow we formed a Flow Index that is proportional to the impedance of such a "circuit". We show that the impedance varies with ejection fraction (EF) in a manner characteristic of a resonant circuit with multiple resonance points, with each resonance point centrally located in a small range of EF values, i.e., corresponding to multiple contiguous EF bands. Two target populations were used: (I) a development group comprising male and female subjects (n=112) undergoing cardiovascular magnetic resonance (CMR) imaging for a variety of cardiac conditions. The Flow Index was developed using aortic flow data and its relationship to left ventricular EF was shown. (II) An illustration group comprised of female subjects from the Women's Ischemia Syndrome Evaluation (WISE) (n=201) followed for 5 years for occurrence of major adverse cardiovascular events (MACE). Flow data was not available in this group but since the Flow Index was related to the EF we noted the MACE rate with respect to EF. The EFs of the development population covered a wide range (9%-76%) traversing six Flow Index resonance bands. Within each Flow Index resonance band the impedance varied from highly capacitive at the lower range of EF through minimal impedance at resonance, to highly inductive at the higher range of EF, which is characteristic of a resonant circuit. When transitioning from one EF band to a higher band, the Flow Index made a sudden transition from highly inductive to capacitive impedance modes. MACE occurred in 26 (13%) of the WISE (illustration) population. Distance in EF units (Delta center ) from the central location between peaks of MACE activity was derived from EF data and was predictive of MACE rate with an area under the receiver operator curve of 0.73. Of special interest, Delta center was highly predictive of MACE in the sub-set of women with EF >60% (AUC 0.79) while EF was no more predictive than random chance (AUC 0.48). A Flow Index that describes impedance conditions of left ventricular ejection can be calculated using data obtained completely from the ascending aorta. The Flow Index exhibits a periodic variation with EF, and in a separate illustration population the occurrence of MACE was observed to exhibit a similar periodic variation with EF, even in cases of normal EF.

  17. Simulation of thermal transpiration flow using a high-order moment method

    NASA Astrophysics Data System (ADS)

    Sheng, Qiang; Tang, Gui-Hua; Gu, Xiao-Jun; Emerson, David R.; Zhang, Yong-Hao

    2014-04-01

    Nonequilibrium thermal transpiration flow is numerically analyzed by an extended thermodynamic approach, a high-order moment method. The captured velocity profiles of temperature-driven flow in a parallel microchannel and in a micro-chamber are compared with available kinetic data or direct simulation Monte Carlo (DSMC) results. The advantages of the high-order moment method are shown as a combination of more accuracy than the Navier-Stokes-Fourier (NSF) equations and less computation cost than the DSMC method. In addition, the high-order moment method is also employed to simulate the thermal transpiration flow in complex geometries in two types of Knudsen pumps. One is based on micro-mechanized channels, where the effect of different wall temperature distributions on thermal transpiration flow is studied. The other relies on porous structures, where the variation of flow rate with a changing porosity or pore surface area ratio is investigated. These simulations can help to optimize the design of a real Knudsen pump.

  18. Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth's orbit

    NASA Astrophysics Data System (ADS)

    Sokół, Justyna M.; Bzowski, Maciej; Kubiak, Marzena A.; Möbius, Eberhard

    2016-06-01

    We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth's orbit over the solar cycle (SC) from 2002 to 2013 to verify if SC-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection speed of PUIs. We found that the ionization losses have a noticeable effect on the derivation of the ISN inflow longitude based on the Gaussian fit to the crescent and cone peak locations. We conclude that the non-zero radial velocity of the ISN flow and the energy range of the PUI distribution function that is accumulated are of importance for a precise reproduction of the PUI count rate along the Earth orbit. However, the temporal and latitudinal variations of the ionization in the heliosphere, and particularly their variation on the SC time-scale, may significantly modify the shape of PUI cone and crescent and also their peak positions from year to year and thus bias by a few degrees the derived longitude of the ISN gas inflow direction.

  19. Review of Laser Ablation Process for Single Wall Carbon Nanotube Production

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2003-01-01

    Different types of lasers are now routinely used to prepare single wall carbon nanotubes (SWCNTs). The original method developed by researchers at Rice University utilized a "double pulse laser oven" process. A graphite target containing about 1 atomic percent of metal catalysts is ablated inside a 1473K oven using laser pulses (10 ns pulse width) in slow flowing argon. Two YAG lasers with a green pulse (532 nm) followed by an IR pulse (1064 nm) with a 50 ns delay are used for ablation. This set up produced single wall carbon nanotube material with about 70% purity having a diameter distribution peaked around 1.4 nm. The impurities consist of fullerenes, metal catalyst clusters (10 to 100 nm diameter) and amorphous carbon. The rate of production with the initial set up was about 60 mg per hour with 10Hz laser systems. Several researchers have used variations of the lasers to improve the rate, consistency and study effects of different process parameters on the quality and quantity of SWCNTs. These variations include one to three YAG laser systems (Green, Green and IR), different pulse widths (nano to microseconds as well as continuous) and different laser wavelengths (Alexandrite, CO, CO2, free electron lasers in the near to far infrared). It is noted that yield from the single laser (Green or IR) systems is only a fraction of the two laser systems. The yield seemed to scale up with the repetition rate of the laser systems (10 to 60 Hz) and depended on the beam uniformity and quality of the laser pulses. The shift to longer wavelength lasers (free electron, CO and CO2) did not improve the quality, but increased the rate of production because these lasers are either continuous (CW) or high repetition rate pulses (kHz to MHz). The average power and the peak power of the lasers seem to influence the yields. Very high peak powers (MegaWatts per square centimeter) are noted to increase ablation of bigger particles with reduced yields of SWCNTs. Increased average powers seem to help the conversion of the carbon from target into vapor phase to improve formation of nanotubes. The use of CW far infrared lasers reduced the need for the oven, at the expense of controlled ablation. Some of these variations are tried with different combinations and concentrations of metal catalysts (Nickel with Cobalt, Iron, Palladium and Platinum) different buffer gases (e.g. Helium); with different oven temperatures (Room temperature to 1473K); under different flow conditions (1 to 1000 kPa) and even different porosities of the graphite targets. It is to be noted that the original Cobalt and Nickel combination worked best, possibly because of improved carbonization with stable crystalline phases. The mean diameter and yield seemed to increase with increasing oven temperatures. Thermal conductivity of the buffer gas and flow conditions dictate the quality as well as quantity of the SWCNTs. Faster flows, lower pressures and heavier gases seem to increase the yields. This review will attempt to cover all these variations and their relative merits. Possible growth mechanisms under these different conditions will also be discussed.

  20. Effect of short-term regulated temperature variations on the swimming economy of Atlantic salmon smolts

    PubMed Central

    Palstra, A. P.

    2017-01-01

    Abstract Migratory species travelling long distances between habitats to spawn or feed are well adapted to optimize their swimming economy. However, human activities, such as river regulation, represent potential threats to fish migration by changing environmental parameters that will have impact on their metabolism. The main objective of this study was to evaluate the changes in the swimming energetics of a salmonid species, Atlantic salmon (Salmo salar L.), caused by short-term temperature variations that usually result from the operation of hydroelectrical dams. Intermittent flow respirometry in swim tunnels allows to obtain high resolution data on oxygen consumption of swimming fish which can reflect aerobic and anaerobic metabolism. This method was used to compare the metabolic rates of oxygen consumption before, during and after sudden thermal change. Control (no temperature variation) and experimental (temperature variation of approximately 4°C in 1 h) swimming trials were conducted to achieve the following objectives: (i) quantify the variations in oxygen consumption associated with abrupt temperature decrease, and (ii) assess if the tested fish return quickly to initial oxygen consumption rates. Main results revealed that Atlantic salmon smolts show a strong response to sudden temperature variation, significantly reducing the oxygen consumption rate up to a seven-fold change. Fish quickly returned to initial swimming costs shortly after reestablishment of temperature values. Results from this study can be used to evaluate the species-specific effects of the applied operation modes by hydroelectrical dams and to increase the success of conservation and management actions directed to fish species inhabiting regulated rivers. PMID:28480037

  1. Effect of short-term regulated temperature variations on the swimming economy of Atlantic salmon smolts.

    PubMed

    Alexandre, C M; Palstra, A P

    2017-01-01

    Migratory species travelling long distances between habitats to spawn or feed are well adapted to optimize their swimming economy. However, human activities, such as river regulation, represent potential threats to fish migration by changing environmental parameters that will have impact on their metabolism. The main objective of this study was to evaluate the changes in the swimming energetics of a salmonid species, Atlantic salmon ( Salmo salar L.), caused by short-term temperature variations that usually result from the operation of hydroelectrical dams. Intermittent flow respirometry in swim tunnels allows to obtain high resolution data on oxygen consumption of swimming fish which can reflect aerobic and anaerobic metabolism. This method was used to compare the metabolic rates of oxygen consumption before, during and after sudden thermal change. Control (no temperature variation) and experimental (temperature variation of approximately 4°C in 1 h) swimming trials were conducted to achieve the following objectives: (i) quantify the variations in oxygen consumption associated with abrupt temperature decrease, and (ii) assess if the tested fish return quickly to initial oxygen consumption rates. Main results revealed that Atlantic salmon smolts show a strong response to sudden temperature variation, significantly reducing the oxygen consumption rate up to a seven-fold change. Fish quickly returned to initial swimming costs shortly after reestablishment of temperature values. Results from this study can be used to evaluate the species-specific effects of the applied operation modes by hydroelectrical dams and to increase the success of conservation and management actions directed to fish species inhabiting regulated rivers.

  2. Laser-based investigations in gas turbine model combustors

    NASA Astrophysics Data System (ADS)

    Meier, W.; Boxx, I.; Stöhr, M.; Carter, C. D.

    2010-10-01

    Dynamic processes in gas turbine (GT) combustors play a key role in flame stabilization and extinction, combustion instabilities and pollutant formation, and present a challenge for experimental as well as numerical investigations. These phenomena were investigated in two gas turbine model combustors for premixed and partially premixed CH4/air swirl flames at atmospheric pressure. Optical access through large quartz windows enabled the application of laser Raman scattering, planar laser-induced fluorescence (PLIF) of OH, particle image velocimetry (PIV) at repetition rates up to 10 kHz and the simultaneous application of OH PLIF and PIV at a repetition rate of 5 kHz. Effects of unmixedness and reaction progress in lean premixed GT flames were revealed and quantified by Raman scattering. In a thermo-acoustically unstable flame, the cyclic variation in mixture fraction and its role for the feedback mechanism of the instability are addressed. In a partially premixed oscillating swirl flame, the cyclic variations of the heat release and the flow field were characterized by chemiluminescence imaging and PIV, respectively. Using phase-correlated Raman scattering measurements, significant phase-dependent variations of the mixture fraction and fuel distributions were revealed. The flame structures and the shape of the reaction zones were visualized by planar imaging of OH distribution. The simultaneous OH PLIF/PIV high-speed measurements revealed the time history of the flow field-flame interaction and demonstrated the development of a local flame extinction event. Further, the influence of a precessing vortex core on the flame topology and its dynamics is discussed.

  3. Erratum: Evidence That a Deep Meridional Flow Sets the Sunspot Cycle Period

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Nandy, Dibyendu; Wilson, Robert M.; Reichmann, Edwin J.

    2004-01-01

    An error was made in entering the data. This changes the results concerning the length of the time lag between the variations in the meridional flow speed and those in the cycle amplitude. The final paragraph on page 667 should read: Finally, we study the relationship between the drift velocities and the amplitudes of the hemisphere/cycles. We compare the drift velocity at the maximum of the cycle to the amplitude of that cycle for that hemisphere. There is a positive (0.5) and significant (95%) correlation between the two. However, an even stronger relationship is found between the drift velocity and the amplitude of the N + 2 cycle. The correlation is stronger (0.7) and more significant (99%), as shown. This relationship is suggestive of a "memory" in the solar cycle, again a property of dynamo models that use meridional circulation. Indeed, the two-cycle lag is precisely the relationship found by Charbonneau & Dikpati. This behavior is, however, more difficult to interpret, and we elaborate on this in the next section. In either case, these correlations only explain part of the variance in cycle amplitude (25% for the current cycle and 50% for the N + 2 cycle). Obviously, other mechanisms, such as variations in the gradient in the rotation rate, also contribute to the cycle amplitude variations. Our investigation of possible connections between drift rates and the amplitudes of the N + 1 and N + 3 cycles gives no significant correlations at these alternative time lags.

  4. Sensitivity of cell-based biosensors to environmental variables.

    PubMed

    Gilchrist, Kristin H; Giovangrandi, Laurent; Whittington, R Hollis; Kovacs, Gregory T A

    2005-01-15

    Electrically active living cells cultured on extracellular electrode arrays are utilized to detect biologically active agents. Because cells are highly sensitive to environmental conditions, environmental fluctuations can elicit cellular responses that contribute to the noise in a cell-based biosensor system. Therefore, the characterization and control of environmental factors such as temperature, pH, and osmolarity is critical in such a system. The cell-based biosensor platform described here utilizes the measurement of action potentials from cardiac cells cultured on electrode arrays. A recirculating fluid flow system is presented for use in dose-response experiments that regulates temperature within +/-0.2 degrees C, pH to within +/-0.05 units, and allows no significant change in osmolarity. Using this system, the relationship between the sensor output parameters and environmental variation was quantified. Under typical experimental conditions, beat rate varied approximately 10% per degree change in temperature or per 0.1 unit change in pH. Similar relationships were measured for action potential amplitude, duration, and conduction velocity. For the specific flow system used in this work, the measured environmental sensitivity resulted in an overall beat rate variation of +/-4.7% and an overall amplitude variation of +/-3.3%. The magnitude of the noise due to environmental sensitivity has a large impact on the detection capability of the cell-based system. The significant responses to temperature, pH, and osmolarity have important implications for the use of living cells in detection systems and should be considered in the design and evaluation of such systems.

  5. Effect of flow rate and temperature on transmembrane blood pressure drop in an extracorporeal artificial lung.

    PubMed

    Park, M; Costa, E L V; Maciel, A T; Barbosa, E V S; Hirota, A S; Schettino, G de P; Azevedo, L C P

    2014-11-01

    Transmembrane pressure drop reflects the resistance of an artificial lung system to blood transit. Decreased resistance (low transmembrane pressure drop) enhances blood flow through the oxygenator, thereby, enhancing gas exchange efficiency. This study is part of a previous one where we observed the behaviour and the modulation of blood pressure drop during the passage of blood through artificial lung membranes. Before and after the induction of multi-organ dysfunction, the animals were instrumented and analysed for venous-venous extracorporeal membrane oxygenation, using a pre-defined sequence of blood flows. Blood flow and revolutions per minute (RPM) of the centrifugal pump varied in a linear fashion. At a blood flow of 5.5 L/min, pre- and post-pump blood pressures reached -120 and 450 mmHg, respectively. Transmembrane pressures showed a significant spread, particularly at blood flows above 2 L/min; over the entire range of blood flow rates, there was a positive association of pressure drop with blood flow (0.005 mmHg/mL/minute of blood flow) and a negative association of pressure drop with temperature (-4.828 mmHg/(°Celsius). These associations were similar when blood flows of below and above 2000 mL/minute were examined. During its passage through the extracorporeal system, blood is exposed to pressure variations from -120 to 450 mmHg. At high blood flows (above 2 L/min), the drop in transmembrane pressure becomes unpredictable and highly variable. Over the entire range of blood flows investigated (0-5500 mL/min), the drop in transmembrane pressure was positively associated with blood flow and negatively associated with body temperature. © The Author(s) 2014.

  6. Effects of small-scale vertical variations in well-screen inflow rates and concentrations of organic compounds on the collection of representative ground-water-quality samples

    USGS Publications Warehouse

    Gibs, Jacob; Brown, G. Allan; Turner, Kenneth S.; MacLeod, Cecilia L.; Jelinski, James; Koehnlein, Susan A.

    1993-01-01

    Because a water sample collected from a well is an integration of water from different depths along the well screen, measured concentrations can be biased if analyte concentrations are not uniform along the length of the well screen. The resulting concentration in the sample, therefore, is a function of variations in well-screen inflow rate and analyte concentration with depth. A multiport sampler with seven short screened intervals was designed and used to investigate small-scale vertical variations in water chemistry and aquifer hydraulic conductivity in ground water contaminated by leaded gasoline at Galloway Township, Atlantic County, New Jersey. The multiport samplers were used to collect independent samples from seven intervals within the screened zone that were flow-rate weighted and integrated to simulate a 5-foot-long, 2.375-inch- outside-diameter conventional wire-wound screen. The integration of the results of analyses of samples collected from two multiport samplers showed that a conventional 5-foot-long well screen would integrate contaminant concentrations over its length and resulted in an apparent contaminant concentration that was a little as 28 percent of the maximum concentration observed in the multiport sampler.

  7. Diffusive mixing through velocity profile variation in microchannels

    NASA Astrophysics Data System (ADS)

    Yakhshi-Tafti, Ehsan; Cho, Hyoung J.; Kumar, Ranganathan

    2011-03-01

    Rapid mixing does not readily occur at low Reynolds number flows encountered in microdevices; however, it can be enhanced by passive diffusive mixing schemes. This study of micromixing of two miscible fluids is based on the principle that (1) increased velocity at the interface of co-flowing fluids results in increased diffusive mass flux across their interface, and (2) diffusion interfaces between two liquids progress transversely as the flow proceeds downstream. A passive micromixer is proposed that takes advantage of the peak velocity variation, inducing diffusive mixing. The effect of flow variation on the enhancement of diffusive mixing is investigated analytically and experimentally. Variation of the flow profile is confirmed using micro-Particle Image Velocimetry (μPIV) and mixing is evaluated by color variations resulting from the mixing of pH indicator and basic solutions. Velocity profile variations obtained from μPIV show a shift in peak velocities. The mixing efficiency of the Σ-micromixer is expected to be higher than that for a T-junction channel and can be as high as 80%. The mixing efficiency decreases with Reynolds number and increases with downstream length, exhibiting a power law.

  8. A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.

    PubMed

    Blake, James R; Easson, William J; Hoskins, Peter R

    2009-09-01

    A dual-phantom system is developed for validation of velocity measurements in stenosis models. Pairs of phantoms with identical geometry and flow conditions are manufactured, one for ultrasound and one for particle image velocimetry (PIV). The PIV model is made from silicone rubber, and a new PIV fluid is made that matches the refractive index of 1.41 of silicone. Dynamic scaling was performed to correct for the increased viscosity of the PIV fluid compared with that of the ultrasound blood mimic. The degree of stenosis in the models pairs agreed to less than 1%. The velocities in the laminar flow region up to the peak velocity location agreed to within 15%, and the difference could be explained by errors in ultrasound velocity estimation. At low flow rates and in mild stenoses, good agreement was observed in the distal flow fields, excepting the maximum velocities. At high flow rates, there was considerable difference in velocities in the poststenosis flow field (maximum centreline differences of 30%), which would seem to represent real differences in hydrodynamic behavior between the two models. Sources of error included: variation of viscosity because of temperature (random error, which could account for differences of up to 7%); ultrasound velocity estimation errors (systematic errors); and geometry effects in each model, particularly because of imperfect connectors and corners (systematic errors, potentially affecting the inlet length and flow stability). The current system is best placed to investigate measurement errors in the laminar flow region rather than the poststenosis turbulent flow region.

  9. A Novel Vaping Machine Dedicated to Fully Controlling the Generation of E-Cigarette Emissions

    PubMed Central

    Soulet, Sébastien; Pairaud, Charly; Lalo, Hélène

    2017-01-01

    The accurate study of aerosol composition and nicotine release by electronic cigarettes is a major issue. In order to fully and correctly characterize aerosol, emission generation has to be completely mastered. This study describes an original vaping machine named Universal System for Analysis of Vaping (U-SAV), dedicated to vaping product study, enabling the control and real-time monitoring of applied flow rate and power. Repeatability and stability of the machine are demonstrated on flow rate, power regulation and e-liquid consumption. The emission protocol used to characterize the vaping machine is based on the AFNOR-XP-D90-300-3 standard (15 W power, 1 Ω atomizer resistance, 100 puffs collected per session, 1.1 L/min airflow rate). Each of the parameters has been verified with two standardized liquids by studying mass variations, power regulation and flow rate stability. U-SAV presents the required and necessary stability for the full control of emission generation. The U-SAV is recognised by the French association for standardization (AFNOR), European Committee for Standardization (CEN) and International Standards Organisation (ISO) as a vaping machine. It can be used to highlight the influence of the e-liquid composition, user behaviour and nature of the device, on the e-liquid consumption and aerosol composition. PMID:29036888

  10. A Novel Vaping Machine Dedicated to Fully Controlling the Generation of E-Cigarette Emissions.

    PubMed

    Soulet, Sébastien; Pairaud, Charly; Lalo, Hélène

    2017-10-14

    The accurate study of aerosol composition and nicotine release by electronic cigarettes is a major issue. In order to fully and correctly characterize aerosol, emission generation has to be completely mastered. This study describes an original vaping machine named Universal System for Analysis of Vaping (U-SAV), dedicated to vaping product study, enabling the control and real-time monitoring of applied flow rate and power. Repeatability and stability of the machine are demonstrated on flow rate, power regulation and e-liquid consumption. The emission protocol used to characterize the vaping machine is based on the AFNOR-XP-D90-300-3 standard (15 W power, 1 Ω atomizer resistance, 100 puffs collected per session, 1.1 L/min airflow rate). Each of the parameters has been verified with two standardized liquids by studying mass variations, power regulation and flow rate stability. U-SAV presents the required and necessary stability for the full control of emission generation. The U-SAV is recognised by the French association for standardization (AFNOR), European Committee for Standardization (CEN) and International Standards Organisation (ISO) as a vaping machine. It can be used to highlight the influence of the e-liquid composition, user behaviour and nature of the device, on the e-liquid consumption and aerosol composition.

  11. Single particle dynamics in a radio-frequency produced plasma sheath

    NASA Astrophysics Data System (ADS)

    Rubin-Zuzic, M.; Nosenko, V.; Zhdanov, S.; Ivlev, A.; Thomas, H.; Khrapak, S.; Couedel, L.

    2018-01-01

    Recently different research groups have investigated the motion of a single dust particle levitated in a rf plasma. Here we describe a highly resolved experiment where a single spherical melamine formaldehyde microparticle is suspended in the plasma sheath above the lower electrode of a capacitively coupled radio-frequency discharge at controlled pressure, power and neutral gas flow rate. The particle's horizontal oscillation is investigated, from which its neutral gas damping rate, kinetic temperature and eigenfrequency of the potential trap are measured. Compared to prior experiments we report about inhomogeneous and anisotropic velocity variations.

  12. Simulation of heart rate variability model in a network

    NASA Astrophysics Data System (ADS)

    Cascaval, Radu C.; D'Apice, Ciro; D'Arienzo, Maria Pia

    2017-07-01

    We consider a 1-D model for the simulation of the blood flow in the cardiovascular system. As inflow condition we consider a model for the aortic valve. The opening and closing of the valve is dynamically determined by the pressure difference between the left ventricular and aortic pressures. At the outflow we impose a peripheral resistance model. To approximate the solution we use a numerical scheme based on the discontinuous Galerkin method. We also considering a variation in heart rate and terminal reflection coefficient due to monitoring of the pressure in the network.

  13. Physical training improves flow-mediated dilation in patients with the polymetabolic syndrome.

    PubMed

    Lavrencic, A; Salobir, B G; Keber, I

    2000-02-01

    Endothelial dysfunction that can be detected as impaired flow-mediated dilation by ultrasonography is an early event in atherogenesis and has been demonstrated in healthy subjects with risk factors for atherosclerosis many years before the appearance of atheromatous plaques. We examined the influence of physical training on flow-mediated dilation in patients with the polymetabolic syndrome. Twenty-nine asymptomatic men aged 40 to 60 years with the polymetabolic syndrome were randomly divided between the control group and the training group, which trained 3 times a week for 12 weeks. On high-resolution ultrasound images, the diameter of the brachial artery was measured at rest, after reactive hyperemia (causing flow-mediated, endothelium-dependent dilation), and after sublingual glyceryltrinitrate (causing endothelium-independent vasodilation) in all subjects before and after the training period. The training program induced an increase of 18% in physical fitness. Flow-mediated dilation increased from 5.3+/-2.8% to 7.3+/-2.7% (P<0. 05). There was no change in body mass index, blood pressure, insulin resistance, lipids, and big endothelin-1 in either group. Flow-mediated dilation measured before training was negatively correlated with resting heart rate, waist-to-hip ratio, and insulin resistance. Resting heart rate emerged as the only independent determinant, which explained 22% of the variation in flow-mediated dilation. In conclusion, our findings suggest that a 3-month physical training program, which improved maximal exercise capacity, enhances flow-mediated dilation in patients with the polymetabolic syndrome.

  14. 40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperatures used in the tests and shall be checked at zero and at least one flow rate within ±3 percent of 16... absolute difference calculated in Equation 15 of this paragraph (g)(4) must not exceed 0.3 (CV%) for each test run. (5) Ambient temperature measurement accuracy. (i) Calculate the absolute value of the...

  15. 40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... temperatures used in the tests and shall be checked at zero and at least one flow rate within ±3 percent of 16... absolute difference calculated in Equation 15 of this paragraph (g)(4) must not exceed 0.3 (CV%) for each test run. (5) Ambient temperature measurement accuracy. (i) Calculate the absolute value of the...

  16. Regional variation in canopy transpiration of Central European beech forests.

    PubMed

    Schipka, Florian; Heimann, Jutta; Leuschner, Christoph

    2005-03-01

    Forest hydrologists have hypothesised that canopy transpiration (E(c)) of European temperate forests occurs at rather similar rates in stands with different tree species and hydrologic regimes. We tested this hypothesis by synchronously measuring xylem sap flow in four mature stands of Fagus sylvatica along a precipitation gradient with the aim (1) of exploring the regional variability of annual canopy transpiration (E(c(t))) in this species, and (2) of analysing the relationship between precipitation (P) and E(c(t)). E(c(t)) rates of 216, 225, 272 and 303 mm year(-1) corresponded to precipitation averages of 520, 710, 801 and 1,040 mm year(-1) in the four stands. We explored the regional variability of E(c(t)) in Central European colline to sub-montane beech stands in two meta-analyses based on (1) existing sap flow data on beech (n=5 observations), or (2) all canopy transpiration data on beech obtained by different techniques (sap flow, micrometeorological or soil water budget approaches, n=25). With a coefficient of variation (CV) of 20%, the regional variability of E(c(t)) (213-421 mm year(-1)) was smaller than the variation in corresponding precipitation (550-1,480 mm year(-1)). The mean E(c(t)) for beech was 289 (+/-58) mm year(-1) (n=25). A humped-shaped relationship between E(c(t)) and P, with a broad transpiration maximum in the precipitation range from ca. 700 to 1,000 mm year(-1), was found which may indicate soil moisture limitation of transpiration for P 1,000 mm year(-1). Thus, the precipitation level significantly influences canopy transpiration of humid temperate forests; however, the size of the P influence on E(c(t)) and, in part, the direction of its effect differ from forests in semi-arid or arid climates. European beech has the capacity to maintain high E(c) rates in both humid and partly dry summer climates (P<550 mm year(-1)).

  17. Modeling the shear rate and pressure drop in a hydrodynamic cavitation reactor with experimental validation based on KI decomposition studies.

    PubMed

    Badve, Mandar P; Alpar, Tibor; Pandit, Aniruddha B; Gogate, Parag R; Csoka, Levente

    2015-01-01

    A mathematical model describing the shear rate and pressure variation in a complex flow field created in a hydrodynamic cavitation reactor (stator and rotor assembly) has been depicted in the present study. The design of the reactor is such that the rotor is provided with surface indentations and cavitational events are expected to occur on the surface of the rotor as well as within the indentations. The flow characteristics of the fluid have been investigated on the basis of high accuracy compact difference schemes and Navier-Stokes method. The evolution of streamlining structures during rotation, pressure field and shear rate of a Newtonian fluid flow have been numerically established. The simulation results suggest that the characteristics of shear rate and pressure area are quite different based on the magnitude of the rotation velocity of the rotor. It was observed that area of the high shear zone at the indentation leading edge shrinks with an increase in the rotational speed of the rotor, although the magnitude of the shear rate increases linearly. It is therefore concluded that higher rotational speeds of the rotor, tends to stabilize the flow, which in turn results into less cavitational activity compared to that observed around 2200-2500RPM. Experiments were carried out with initial concentration of KI as 2000ppm. Maximum of 50ppm of iodine liberation was observed at 2200RPM. Experimental as well as simulation results indicate that the maximum cavitational activity can be seen when rotation speed is around 2200-2500RPM. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The Multiphase Rheology of Monte Nuovo's Eruption (Campi Flegrei, Italy)

    NASA Astrophysics Data System (ADS)

    Vona, A.; Romano, C.; Giordano, D.; Russell, K.

    2011-12-01

    We present a study of high-temperature, uniaxial deformation experiments of natural, partially crystallized samples from the Monte Nuovo (1538 AD) trachytic eruption. The experiments were performed at dry atmospheric conditions and controlled deformation rate using a high-temperature uniaxial Geocomp LoadTrac II press. Experiments were performed isothermally by deforming cores of the natural (i.e., crystal- and vesicle-bearing) samples at constant displacement rates (CDR) corresponding to constant strain rates between 10-7 and 10-4 s-1. The measurements were all performed in the viscous-flow regime and showed non-Newtonian shear thinning behavior. Measured viscosities vary between 1010 and 1013 Pa s. As no yield stress was detected, the flow behavior of the investigated specimens could be described with a simplified Herschel-Bulkley equation in terms of consistency K and flow index n. As the pure liquid and the liquid+crystal rheology of these samples were already measured in previous studies, we were able to estimate the net effects of crystals and vesicles on the rheology of the multiphase suspensions. The results revealed that the presence of vesicles has a major impact on the rheological response of magmas leading to a marked decrease of their viscosity, which partially balances the increase of viscosity due to the presence of crystals. At the same time, the presence of bubbles leads to a strong decrease in the shear strength of the magma inducing local and temporal variation in the deformation regimes (viscous vs. brittle). Brittle and ductile failure were in fact observed at T=600°C and strain rates of 10-5 s-1 and at T=800°C for the higher applied strain rate (10-4 s-1), respectively. During lava flow emplacement, this may explain the origin of the flow banding textures frequently observed in many silicic obsidian lava flows.

  19. Analytical interpretation of arc instabilities in a DC plasma spray torch: the role of pressure

    NASA Astrophysics Data System (ADS)

    Rat, V.; Coudert, J. F.

    2016-06-01

    Arc instabilities in a plasma spray torch are investigated experimentally and theoretically thanks to a linear simplified analytical model. The different parameters that determine the useful properties of the plasma jet at the torch exit, such as specific enthalpy and speed, but also pressure inside the torch and time variations of the flow rate are studied. The work is particularly focused on the link between the recorded arc voltage and the pressure in the cathode cavity. A frequency analysis of the recorded voltage and pressure allows the separation of different contributions following their spectral characteristics and highlights a resonance effect due to Helmholtz oscillations; these oscillations are responsible for the large amplitude fluctuations of all the parameters investigated. The influence of heat transfer, friction forces and residence time of the plasma in the nozzle are taken into account, thanks to different characteristics’ times. The volume of the cathode cavity in which the cold gas is stored before entering the arc region appears to be of prime importance for the dynamics of instabilities, particularly for the non-intuitive effect that induces flow-rate fluctuations in spite of the fact that the torch is fed at a constant flow rate.

  20. Simulating the effect of slab features on vapor intrusion of crack entry

    PubMed Central

    Yao, Yijun; Pennell, Kelly G.; Suuberg, Eric M.

    2012-01-01

    In vapor intrusion screening models, a most widely employed assumption in simulating the entry of contaminant into a building is that of a crack in the building foundation slab. Some modelers employed a perimeter crack hypothesis while others chose not to identify the crack type. However, few studies have systematically investigated the influence on vapor intrusion predictions of slab crack features, such as the shape and distribution of slab cracks and related to this overall building foundation footprint size. In this paper, predictions from a three-dimensional model of vapor intrusion are used to compare the contaminant mass flow rates into buildings with different foundation slab crack features. The simulations show that the contaminant mass flow rate into the building does not change much for different assumed slab crack shapes and locations, and the foundation footprint size does not play a significant role in determining contaminant mass flow rate through a unit area of crack. Moreover, the simulation helped reveal the distribution of subslab contaminant soil vapor concentration beneath the foundation, and the results suggest that in most cases involving no biodegradation, the variation in subslab concentration should not exceed an order of magnitude, and is often significantly less than this. PMID:23359620

  1. Aircraft aerodynamic prediction method for V/STOL transition including flow separation

    NASA Technical Reports Server (NTRS)

    Gilmer, B. R.; Miner, G. A.; Bristow, D. R.

    1983-01-01

    A numerical procedure was developed for the aerodynamic force and moment analysis of V/STOL aircraft operating in the transition regime between hover and conventional forward flight. The trajectories, cross sectional area variations, and mass entrainment rates of the jets are calculated by the Adler-Baron Jet-in-Crossflow Program. The inviscid effects of the interaction between the jets and airframe on the aerodynamic properties are determined by use of the MCAIR 3-D Subsonic properties are determined by use of the MCAIR 3-D Subsonic Potential Flow Program, a surface panel method. In addition, the MCAIR 3-D Geometry influence Coefficient Program is used to calculate a matrix of partial derivatives that represent the rate of change of the inviscid aerodynamic properties with respect to arbitrary changes in the effective wing shape.

  2. A simplified model to evaluate the effect of fluid rheology on non-Newtonian flow in variable aperture fractures

    NASA Astrophysics Data System (ADS)

    Felisa, Giada; Ciriello, Valentina; Longo, Sandro; Di Federico, Vittorio

    2017-04-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing operations, largely used for optimal exploitation of oil, gas and thermal reservoirs. Complex fluids interact with pre-existing rock fractures also during drilling operations, enhanced oil recovery, environmental remediation, and other natural phenomena such as magma and sand intrusions, and mud volcanoes. A first step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is typically spatially variable. A large bibliography exists on Newtonian flow in single, variable aperture fractures. Ultimately, stochastic modeling of aperture variability at the single fracture scale leads to determination of the flowrate under a given pressure gradient as a function of the parameters describing the variability of the aperture field and the fluid rheological behaviour. From the flowrate, a flow, or 'hydraulic', aperture can then be derived. The equivalent flow aperture for non-Newtonian fluids of power-law nature in single, variable aperture fractures has been obtained in the past both for deterministic and stochastic variations. Detailed numerical modeling of power-law fluid flow in a variable aperture fracture demonstrated that pronounced channelization effects are associated to a nonlinear fluid rheology. The availability of an equivalent flow aperture as a function of the parameters describing the fluid rheology and the aperture variability is enticing, as it allows taking their interaction into account when modeling flow in fracture networks at a larger scale. A relevant issue in non-Newtonian fracture flow is the rheological nature of the fluid. The constitutive model routinely used for hydro-fracturing modeling is the simple, two-parameter power-law. Yet this model does not characterize real fluids at low and high shear rates, as it implies, for shear-thinning fluids, an apparent viscosity which becomes unbounded for zero shear rate and tends to zero for infinite shear rate. On the contrary, the four-parameter Carreau constitutive equation includes asymptotic values of the apparent viscosity at those limits; in turn, the Carreau rheological equation is well approximated by the more tractable truncated power-law model. Results for flow of such fluids between parallel walls are already available. This study extends the adoption of the truncated power-law model to variable aperture fractures, with the aim of understanding the joint influence of rheology and aperture spatial variability. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and perpendicular to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results are then compared with those obtained for pure power-law fluids for different combinations of model parameters. It is seen that the adoption of the pure power law model leads to significant overestimation of the flowrate with respect to the truncated model, more so for large external pressure gradient and/or aperture variability.

  3. Dynamics of barite growth in porous media quantified by in situ synchrotron X-ray tomography

    NASA Astrophysics Data System (ADS)

    Godinho, jose; Gerke, kirill

    2016-04-01

    Current models used to formulate mineral sequestration strategies of dissolved contaminants in the bedrock often neglect the effect of confinement and the variation of reactive surface area with time. In this work, in situ synchrotron X-ray micro-tomography is used to quantify barite growth rates in a micro-porous structure as a function of time during 13.5 hours with a resolution of 1 μm. Additionally, the 3D porous network at different time frames are used to simulate the flow velocities and calculate the permeability evolution during the experiment. The kinetics of barite growth under porous confinement is compared with the kinetics of barite growth on free surfaces in the same fluid composition. Results are discussed in terms of surface area normalization and the evolution of flow velocities as crystals fill the porous structure. During the initial hours the growth rate measured in porous media is similar to the growth rate on free surfaces. However, as the thinner flow paths clog the growth rate progressively decreases, which is correlated to a decrease of local flow velocity. The largest pores remain open, enabling growth to continue throughout the structure. Quantifying the dynamics of mineral precipitation kinetics in situ in 4D, has revealed the importance of using a time dependent reactive surface area and accounting for the local properties of the porous network, when formulating predictive models of mineral precipitation in porous media.

  4. Development of a Model for Dynamic Recrystallization Consistent with the Second Derivative Criterion.

    PubMed

    Imran, Muhammad; Kühbach, Markus; Roters, Franz; Bambach, Markus

    2017-11-02

    Dynamic recrystallization (DRX) processes are widely used in industrial hot working operations, not only to keep the forming forces low but also to control the microstructure and final properties of the workpiece. According to the second derivative criterion (SDC) by Poliak and Jonas, the onset of DRX can be detected from an inflection point in the strain-hardening rate as a function of flow stress. Various models are available that can predict the evolution of flow stress from incipient plastic flow up to steady-state deformation in the presence of DRX. Some of these models have been implemented into finite element codes and are widely used for the design of metal forming processes, but their consistency with the SDC has not been investigated. This work identifies three sources of inconsistencies that models for DRX may exhibit. For a consistent modeling of the DRX kinetics, a new strain-hardening model for the hardening stages III to IV is proposed and combined with consistent recrystallization kinetics. The model is devised in the Kocks-Mecking space based on characteristic transition in the strain-hardening rate. A linear variation of the transition and inflection points is observed for alloy 800H at all tested temperatures and strain rates. The comparison of experimental and model results shows that the model is able to follow the course of the strain-hardening rate very precisely, such that highly accurate flow stress predictions are obtained.

  5. Development of a Model for Dynamic Recrystallization Consistent with the Second Derivative Criterion

    PubMed Central

    Imran, Muhammad; Kühbach, Markus; Roters, Franz; Bambach, Markus

    2017-01-01

    Dynamic recrystallization (DRX) processes are widely used in industrial hot working operations, not only to keep the forming forces low but also to control the microstructure and final properties of the workpiece. According to the second derivative criterion (SDC) by Poliak and Jonas, the onset of DRX can be detected from an inflection point in the strain-hardening rate as a function of flow stress. Various models are available that can predict the evolution of flow stress from incipient plastic flow up to steady-state deformation in the presence of DRX. Some of these models have been implemented into finite element codes and are widely used for the design of metal forming processes, but their consistency with the SDC has not been investigated. This work identifies three sources of inconsistencies that models for DRX may exhibit. For a consistent modeling of the DRX kinetics, a new strain-hardening model for the hardening stages III to IV is proposed and combined with consistent recrystallization kinetics. The model is devised in the Kocks-Mecking space based on characteristic transition in the strain-hardening rate. A linear variation of the transition and inflection points is observed for alloy 800H at all tested temperatures and strain rates. The comparison of experimental and model results shows that the model is able to follow the course of the strain-hardening rate very precisely, such that highly accurate flow stress predictions are obtained. PMID:29099068

  6. Genetically Regulated Temporal Variation of Novel Courtship Elements in the Hawaiian Cricket Genus Laupala

    PubMed Central

    deCarvalho, Tagide N.; Shaw, Kerry L.

    2011-01-01

    The Hawaiian cricket genus Laupala (Gryllidae: Trigonidiinae) has undergone rapid and extensive speciation, with divergence in male song and female acoustic preference playing a role in maintaining species boundaries. Recent study of interspecific differences in the diel rhythmicity of singing and mating, suggests that temporal variation in behavior may reduce gene flow between species. In addition, Laupala perform an elaborate and protracted courtship, providing potential for further temporal variation. However, whether these behavioral differences have a genetic basis or result from environmental variation is unknown. We observed courtship and mating in a common garden study of the sympatric species, Laupala cerasina and Laupala paranigra. We document interspecific differences in the onset and duration of courtship, spermatophore production rate, and diel mating rhythmicity. Our study demonstrates a genetic contribution to interspecific behavioral differences, and suggests an evolutionary pathway to the origins of novel timing phenotypes. PMID:20878226

  7. [Study on Oxygen Consumption, Oxygen Consumption Rate and Asphyxiation Point of Poecilobdella manillensis].

    PubMed

    Zhou, Wei-guan; Lv, Wei-ping; Qiu, Yi; Zhou, Wei-hai

    2014-12-01

    To investigate the oxygen consumption, oxygen consumption rate and asphyxiation point of Poecilobdella ma- nillensis. Oxygen consumption, oxygen consumption rate and asphyxiation point on juvenile (the average weight of 0. 29 g) and adult leech (the average weight of 2.89 g) of Poecilobdella manillensis were measured at water temperature conditions of 20. 2 and 30. 4 °C respectively using an airtight container with flowing water. Oxygen consumptions of Poecilobdella manillensis were increased with the increase of temperature and body weight respectively; However, their oxygen consumption rates circadian variation and the aver- age oxygen consumption rate at daytime were higher than those at night. In addition, their asphyxiation point was declined accordingly with the increase of temperature and body weight respectively. Oxygen consumption and oxygen consumption rate of Poeci- lobdella manillensis were closely associated with their activities and influenced by circadian variation, the preferable feeding time were the period of 6:00-10:00 in the morning or 17:00-19:00 in the afternoon; Meanwhile, Poecilobdella manillensis had a higher ability of the hypoxia tolerance for high density or factory farming, the long time living preservation and the long distance transport.

  8. Numerical Simulation of Fluidic Actuators for Flow Control Applications

    NASA Technical Reports Server (NTRS)

    Vasta, Veer N.; Koklu, Mehti; Wygnanski, Israel L.; Fares, Ehab

    2012-01-01

    Active flow control technology is finding increasing use in aerospace applications to control flow separation and improve aerodynamic performance. In this paper we examine the characteristics of a class of fluidic actuators that are being considered for active flow control applications for a variety of practical problems. Based on recent experimental work, such actuators have been found to be more efficient for controlling flow separation in terms of mass flow requirements compared to constant blowing and suction or even synthetic jet actuators. The fluidic actuators produce spanwise oscillating jets, and therefore are also known as sweeping jets. The frequency and spanwise sweeping extent depend on the geometric parameters and mass flow rate entering the actuators through the inlet section. The flow physics associated with these actuators is quite complex and not fully understood at this time. The unsteady flow generated by such actuators is simulated using the lattice Boltzmann based solver PowerFLOW R . Computed mean and standard deviation of velocity profiles generated by a family of fluidic actuators in quiescent air are compared with experimental data. Simulated results replicate the experimentally observed trends with parametric variation of geometry and inflow conditions.

  9. LOX/hydrocarbon fuel carbon formation and mixing data analysis

    NASA Technical Reports Server (NTRS)

    Fang, J.

    1983-01-01

    By applying the Priem-Heidmann Generalized-Length vaporization correlation, the computer model developed by the present study predicts the spatial variation of propellant vaporization rate using the injector cold flow results to define the streamtubes. The calculations show that the overall and local propellant vaporization rate and mixture ratio change drastically as the injection element type or the injector operating condition is changed. These results are compared with the regions of carbon formation observed in the photographic combustion testing. The correlation shows that the fuel vaporization rate and the local mixture ratio produced by the injector element have first order effects on the degree of carbon formation.

  10. Modeled hydrologic metrics show links between hydrology and the functional composition of stream assemblages.

    PubMed

    Patrick, Christopher J; Yuan, Lester L

    2017-07-01

    Flow alteration is widespread in streams, but current understanding of the effects of differences in flow characteristics on stream biological communities is incomplete. We tested hypotheses about the effect of variation in hydrology on stream communities by using generalized additive models to relate watershed information to the values of different flow metrics at gauged sites. Flow models accounted for 54-80% of the spatial variation in flow metric values among gauged sites. We then used these models to predict flow metrics in 842 ungauged stream sites in the mid-Atlantic United States that were sampled for fish, macroinvertebrates, and environmental covariates. Fish and macroinvertebrate assemblages were characterized in terms of a suite of metrics that quantified aspects of community composition, diversity, and functional traits that were expected to be associated with differences in flow characteristics. We related modeled flow metrics to biological metrics in a series of stressor-response models. Our analyses identified both drying and base flow instability as explaining 30-50% of the observed variability in fish and invertebrate community composition. Variations in community composition were related to variations in the prevalence of dispersal traits in invertebrates and trophic guilds in fish. The results demonstrate that we can use statistical models to predict hydrologic conditions at bioassessment sites, which, in turn, we can use to estimate relationships between flow conditions and biological characteristics. This analysis provides an approach to quantify the effects of spatial variation in flow metrics using readily available biomonitoring data. © 2017 by the Ecological Society of America.

  11. Fluid flow near the surface of earth's outer core

    NASA Technical Reports Server (NTRS)

    Bloxham, Jeremy; Jackson, Andrew

    1991-01-01

    This review examines the recent attempts at extracting information on the pattern of fluid flow near the surface of the outer core from the geomagnetic secular variation. Maps of the fluid flow at the core surface are important as they may provide some insight into the process of the geodynamo and may place useful constraints on geodynamo models. In contrast to the case of mantle convection, only very small lateral variations in core density are necessary to drive the flow; these density variations are, by several orders of magnitude, too small to be imaged seismically; therefore, the geomagnetic secular variation is utilized to infer the flow. As substantial differences exist between maps developed by different researchers, the possible underlying reasons for these differences are examined with particular attention given to the inherent problems of nonuniqueness.

  12. Evaluation of groundwater pollution in a mining area using analytical solution: a case study of the Yimin open-pit mine in China.

    PubMed

    Li, Tianxin; Li, Li; Song, Hongqing; Meng, Linglong; Zhang, Shuli; Huang, Gang

    2016-01-01

    This study focused on using analytical and numerical models to develop and manage groundwater resources, and predict the effects of management measurements in the groundwater system. Movement of contaminants can be studied based on groundwater flow characteristics. This study can be used for prediction of ion concentration and evaluation of groundwater pollution as the theoretical basis. The Yimin open-pit mine is located in the northern part of the Inner Mongolia Autonomous Region of China. High concentrations of iron and manganese are observed in Yimin open-pit mine because of exploitation and pumping that have increased the concentration of the ions in groundwater. In this study, iron was considered as an index of contamination, and the solute model was calibrated using concentration observations from 14 wells in 2014. The groundwater flow model and analytical solutions were used in this study to forecast pollution concentration and variation trend after calibration. With continuous pumping, contaminants will migrate, and become enriched, towards the wellhead in the flow direction. The concentration of the contaminants and the range of pollution increase with the flow rate increased. The suitable flow rate of single well should be <380 m/day at Yimin open-pit for the standard value of pollution concentration.

  13. Extensional Rheology Experiment Developed to Investigate the Rheology of Dilute Polymer Solutions in Microgravity

    NASA Technical Reports Server (NTRS)

    Logsdon, Kirk A.

    2001-01-01

    A fundamental characteristic of fluid is viscosity; that is, the fluid resists forces that cause it to flow. This characteristic, or parameter, is used by manufacturers and end-users to describe the physical properties of a specific material so that they know what to expect when a material, such as a polymer, is processed through an extruder, a film blower, or a fiber-spinning apparatus. Normally, researchers will report a shear viscosity that depends on the rate of an imposed shearing flow. Although this type of characterization is sufficient for some processes, simple shearing experiments do not provide a complete picture of what a processor may expect for all materials. Extensional stretching flows are common in many polymer-processing operations such as extrusion, blow molding, and fiber spinning. Therefore, knowledge of the complete rheological (ability to flow and be deformed) properties of the polymeric fluid being processed is required to accurately predict and account for the flow behavior. In addition, if numerical simulations are ever able to serve as a priori design tools for optimizing polymer processing operations such as those described above, an accurate knowledge of the extensional viscosity of a polymer system and its variation with temperature, concentration, molecular weight, and strain rate is critical.

  14. Boundary-layer and wake measurements on a swept, circulation-control wing

    NASA Technical Reports Server (NTRS)

    Spaid, Frank W.; Keener, Earl R.

    1987-01-01

    Wind-tunnel measurements of boundary-layer and wake velocity profiles and surface static pressure distributions are presented for a swept, circulation-control wing. The model is an aspect-ratio-four semispan wing mounted on the tunnel side wall at a sweep angle of 45 deg. A full-span, tangential, rearward blowing, circulation-control slot is located ahead of the trailing edge on the upper surface. Flow surveys were obtained at mid-semispan at freestream Mach numbers of 0.425 and 0.70. Boundary-layer profiles measured on the forward portions of the wing are approximately streamwise and two dimensional. The flow in the vicinity of the jet exit and in the near wake is highly three dimensional. The jet flow near the slot on the Coanda surface is directed normal to the slot. Near-wake surveys show large outboard flows at the center of the wake. At Mach 0.425 and a 5-deg angle of attack, a range of jet-blowing rates was found for which an abrupt transition from incipient separation to attached flow occurs in the boundary layer upstream of the slot. The variation in the lower-surface separation location with blowing rate was determined from boundary-layer measurements at Mach 0.425.

  15. Genetic structure of coexisting wild and managed agave populations: implications for the evolution of plants under domestication

    PubMed Central

    Figueredo, Carmen Julia; Casas, Alejandro; González-Rodríguez, Antonio; Nassar, Jafet M.; Colunga-GarcíaMarín, Patricia; Rocha-Ramírez, Víctor

    2015-01-01

    Domestication is a continuous evolutionary process guided by humans. This process leads to divergence in characteristics such as behaviour, morphology or genetics, between wild and managed populations. Agaves have been important resources for Mesoamerican peoples since prehistory. Some species are domesticated and others vary in degree of domestication. Agave inaequidens Koch is used in central Mexico to produce mescal, and a management gradient from gathered wild and silvicultural populations, as well as cultivated plantations, has been documented. Significant morphological differences were reported among wild and managed populations, and a high phenotypic variation in cultivated populations composed of plants from different populations. We evaluated levels of genetic diversity and structure associated with management, hypothesizing that high morphological variation would be accompanied by high genetic diversity in populations with high gene flow and low genetic structure among managed and unmanaged populations. Wild, silvicultural and cultivated populations were studied, collecting tissue of 19–30 plants per population. Through 10 nuclear microsatellite loci, we compared population genetic parameters. We analysed partition of variation associated with management categories to estimate gene flow among populations. Agave inaequidens exhibits high levels of genetic diversity (He = 0.707) and moderate genetic structure (FST = 0.112). No differences were found in levels of genetic diversity among wild (He = 0.704), silviculturally managed (He = 0.733) and cultivated (He = 0.698) populations. Bayesian analysis indicated that five genetic clusters best fit the data, with genetic groups corresponding to habitats where populations grow rather than to management. Migration rates ranged from zero between two populations to markedly high among others (M = 0.73–35.25). Natural mechanisms of gene flow and the dynamic management of agave propagules among populations favour gene flow and the maintenance of high levels of variation within all populations. The slight differentiation associated with management indicates that domestication is in an incipient stage. PMID:26433707

  16. Shear Resistance Variations in Experimentally Sheared Mudstone Granules: A Possible Shear-Thinning and Thixotropic Mechanism

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Xu, Qiang; Wang, Gonghui; Scaringi, Gianvito; Mcsaveney, Mauri; Hicher, Pierre-Yves

    2017-11-01

    We present results of ring shear frictional resistance for mudstone granules of different size obtained from a landslide shear zone. Little rate dependency of shear resistance was observed in sand-sized granules in any wet or dry test, while saturated gravel-sized granules exhibited significant and abrupt reversible rate-weakening (from μ = 0.6 to 0.05) at about 2 mm/s. Repeating resistance variations occurred also under constant shear displacement rate. Mudstone granules generate mud as they are crushed and softened. Shear-thinning and thixotropic behavior of the mud can explain the observed behavior: with the viscosity decreasing, the mud can flow through the coarser soil pores and migrate out from the shear zone. This brings new granules into contact which produces new mud. Thus, the process can start over. Similarities between experimental shear zones and those of some landslides in mudstone suggest that the observed behavior may play a role in some landslide kinematics.

  17. Spatial and temporal variation of residence time and storage volume of subsurface water evaluated by multi-tracers approach in mountainous headwater catchments

    NASA Astrophysics Data System (ADS)

    Tsujimura, Maki; Yano, Shinjiro; Abe, Yutaka; Matsumoto, Takehiro; Yoshizawa, Ayumi; Watanabe, Ysuhito; Ikeda, Koichi

    2015-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time and stock information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time and storage volume of subsurface water in time and space at the mountainous headwaters especially with steep slope. We performed an investigation on age dating and estimation of storage volume using simple water budget model in subsurface water with tracing of hydrological flow processes in mountainous catchments underlain by granite, Paleozoic and Tertiary, Yamanashi and Tsukuba, central Japan. We conducted hydrometric measurements and sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2012 in the catchments, and CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Residence time of subsurface water ranged from 11 to 60 years in the granite catchments, from 17 to 32 years in the Paleozoic catchments, from 13 to 26 years in the Tertiary catchments, and showed a younger age during the high-flow season, whereas it showed an older age in the low-flow season. Storage volume of subsurface water was estimated to be ranging from 10 ^ 4 to 10 ^ 6 m3 in the granite catchments, from 10 ^ 5 to 10 ^ 7 m3 in the Paleozoic catchments, from 10 ^ 4 to 10 ^ 6 m3 in the Tertiary catchments. In addition, seasonal change of storage volume in the granite catchments was the highest as compared with those of the Paleozoic and the Tertiary catchments. The results suggest that dynamic change of hydrological process seems to cause a larger variation of the residence time and storage volume of subsurface water in time and space in the granite catchments, whereas higher groundwater recharge rate due to frequent fissures or cracks seems to cause larger storage volume of the subsurface water in the Paleozoic catchments though the variation is not so considerable. Also, numerical simulation results support these findings.

  18. Magnetosheath Flow Anomalies in 3-D

    NASA Technical Reports Server (NTRS)

    Vaisberg, O. L.; Burch, J. L.; Smirnov, V. N.; Avanov, L. A.; Moore, T. E.; Waite, J. H., Jr.; Skalsky, A. A.; Borodkova, N. L.; Coffey, V. N.; Gallagher, D. L.; hide

    2000-01-01

    Measurements of the plasma and magnetic field with high temporal resolution on the Interball Tail probe reveal many flow anomalies in the magnetosheath. They are usually seen as flow direction and number density variations, accompanied by magnetic field discontinuities. Large flow anomalies with number density variations of factor of 2 or more and velocity variations of 100 km/s or more are seen with periodicity of about I per hour. The cases of flow anomalies following in succession are also observed, and suggest their decay while propagating through the magnetosheath. Some magnetospheric disturbances observed in the outer magnetosphere after the satellite has crossed the magnetopause on the inbound orbit suggest their association with magnetosheath flow anomalies observed in the magnetosheath prior to magnetopause crossing.

  19. Sound production due to large-scale coherent structures

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.

    1979-01-01

    The acoustic pressure fluctuations due to large-scale finite amplitude disturbances in a free turbulent shear flow are calculated. The flow is decomposed into three component scales; the mean motion, the large-scale wave-like disturbance, and the small-scale random turbulence. The effect of the large-scale structure on the flow is isolated by applying both a spatial and phase average on the governing differential equations and by initially taking the small-scale turbulence to be in energetic equilibrium with the mean flow. The subsequent temporal evolution of the flow is computed from global energetic rate equations for the different component scales. Lighthill's theory is then applied to the region with the flowfield as the source and an observer located outside the flowfield in a region of uniform velocity. Since the time history of all flow variables is known, a minimum of simplifying assumptions for the Lighthill stress tensor is required, including no far-field approximations. A phase average is used to isolate the pressure fluctuations due to the large-scale structure, and also to isolate the dynamic process responsible. Variation of mean square pressure with distance from the source is computed to determine the acoustic far-field location and decay rate, and, in addition, spectra at various acoustic field locations are computed and analyzed. Also included are the effects of varying the growth and decay of the large-scale disturbance on the sound produced.

  20. Identifying Loci Under Selection Against Gene Flow in Isolation-with-Migration Models

    PubMed Central

    Sousa, Vitor C.; Carneiro, Miguel; Ferrand, Nuno; Hey, Jody

    2013-01-01

    When divergence occurs in the presence of gene flow, there can arise an interesting dynamic in which selection against gene flow, at sites associated with population-specific adaptations or genetic incompatibilities, can cause net gene flow to vary across the genome. Loci linked to sites under selection may experience reduced gene flow and may experience genetic bottlenecks by the action of nearby selective sweeps. Data from histories such as these may be poorly fitted by conventional neutral model approaches to demographic inference, which treat all loci as equally subject to forces of genetic drift and gene flow. To allow for demographic inference in the face of such histories, as well as the identification of loci affected by selection, we developed an isolation-with-migration model that explicitly provides for variation among genomic regions in migration rates and/or rates of genetic drift. The method allows for loci to fall into any of multiple groups, each characterized by a different set of parameters, thus relaxing the assumption that all loci share the same demography. By grouping loci, the method can be applied to data with multiple loci and still have tractable dimensionality and statistical power. We studied the performance of the method using simulated data, and we applied the method to study the divergence of two subspecies of European rabbits (Oryctolagus cuniculus). PMID:23457232

Top